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Cox, Kevin C. (Ph.D., Department of Physics)

Quantum-Enhanced Measurements with Atoms in Cavities: Superradiance and Spin Squeezing

Thesis directed by Prof. James K. Thompson

Advances in engineering quantum systems are expected to lead to a new generation of quan-

tum technology with fundamentally new capabilities and no classical analogue. Specifically, in the

near future, quantum entanglement may become useful for enhancing state-of-the-art atomic clocks

and sensors. I have performed experiments using laser-cooled rubidium atoms trapped in a high

finesse optical cavity to explore quantum and collective enhancements to precision measurements.

In this thesis, I will present a recent experiment to create record amounts of entanglement-

enhancement, or spin squeezing, in a proof-of-principle atomic sensor using entanglement-generating

collective measurements. We have demonstrated up to a factor of 60 in directly observed spin

squeezing beyond the standard quantum limit for an unentangled quantum sensor and have demon-

strated squeezing with real-time feedback to create deterministic entangled states. Second, I will

present a new method that has generated over a factor of 10 in homogeneous entanglement that

could be resolvable in free-space quantum sensors such as matter-wave interferometers and discuss

a new method to reduce errors in manipulating collective spin states using reversible dephasing.

These experiments and methods are directly applicable to some of the world’s best optical lattice

clocks such as those housed here at JILA and NIST.

In addition, I have studied and demonstrated a proof-of-principle superradiant laser that relies

on collectively enhanced laser emission. These lasers have the potential to realize state-of-the-art

frequency purity useful for optical atomic clocks and long baseline interferometry. I will discuss

an experiment that demonstrates injection locking of a superradiant laser for the first time as well

as explores the collective synchronization behaviors in the system. This study of synchronization

informs research on current and future narrow linewidth superradiant lasers and may also provide

a platform for future studies of quantum phase transitions in open quantum systems.
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to 20 µK. An atomic transition is tuned near resonance with the mode of an optical
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ensemble into entangled states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 History of observed squeezing. Results from the Thompson lab are shown in brown
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to a piezo to a 795 nm reference laser. The reference laser is stabilized to an atomic

transition in rubidium using FM saturated spectroscopy (FMS). . . . . . . . . . . . 12

2.3 Optical cavity CAD diagram. A Macor “hat” (red) is used to join the Zerodur cavity
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together beforehand using a plastic (Delrin) alignment jig. Optical cavity parameters

are shown in Table 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Mirror heater calibration. The mirror surface temperature is plotted versus applied
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2.5 Optical pumping scheme to stretched state. a) Two optical pumping beams co-

propagate at an angle from the vertical axis with polarization that decomposes

into σ+ and π along the quantization axis set by the magnetic field ~B. b) En-
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3.1 Experimental setup and level diagram. (a) Atoms interact with both the externally

applied drive (grey) and the intra-cavity field generated by their collective emission

(blue and red). The superradiant laser primarily responds at two frequencies, the

drive frequency ωd and a self-lasing frequency ω`. (b) The characteristic frequencies

are displayed in a level diagram, and all lie within one cavity mode of width κ.

The Raman laser system is approximated as a 2-level laser incoherently repumped

through intermediate optically excited states (not shown) at rate W . W is also

the primary source of broadening of the lasing transition (shown as broadening of

|↓〉). In this work, the ratio of atomic and optical linewidths is W/κ ≈ 5 × 10−2 to

5 × 10−3 � 1, placing the system deep into the bad-cavity or superradiant regime.

The state |↑〉 is a dressed state consisting of a ground hyperfine state of Rb coupled

non-resonantly to an optically excited state as described in [23, 18, 171, 21]. The

applied drive couples |↓〉 and |↑〉 with an on-resonance Rabi frequency Ωd. . . . . . . 20

3.2 The predicted phase diagram for the driven superradiant laser is shown in a plane

defined by the applied drive strength Ωd and the drive detuning δd, normalized to

the repumping rate W , which is fixed to NCγ/2 here. The regions are first divided

by the number of distinct emission frequencies (1 or 2). Region (2) is further divided

by the frequency shift of the self-lasing component at ω`, which can be attracted

(2A) or repelled (2R) from the applied drive frequency ωd. When Ωd < 0.2×W , the

laser synchronizes by smoothly coalescing in frequency with the drive (dashed line).

For larger drives, the self-lasing component remains distinct and is quenched. The

two trajectories (black arrows) refer to the two parameter trajectories explored by

the data in Fig. 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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3.3 Experimental observation of coalescing attractive (a) and repulsive (b) synchroniza-

tions. (Left) 2D spectrograms are taken with fixed drive strength Ωd as the detuning

of the drive δd is varied along the representative vertical trajectories in Fig. 3.2.

Darker colors indicate higher power in a frequency bin (i.e. PSD). The red line indi-

cates the expected self-lasing trajectory in the absence of an applied drive. (Right)

Two panels show the frequency shift δ` = ω` − ω`0 between the lasing frequency

and the lasing frequency when no drive is present. In each region, we qualitatively

identify attraction and repulsion by the sign of δ` and label and color each region sim-

ilarly to the phase diagram in Fig. 3.2. The behaviors follow the prediction for their

respective trajectories across the phase diagram, which are represented by vertical

lines in Fig. 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Synchronization and gain saturation. (a) Measured gain and phase response of the

superradiant laser at the drive frequency ωd. At large drive detunings, the response

displays linear small-signal gain (red fit to perturbative model overlayed). The gain

saturates (grey shaded region) at small detunings as the laser approaches the syn-

chronization transition. (b) The same gain and phase response are represented in a

phasor picture. Points of small signal gain lie along the straight line, and the region

of saturation is approximately described by a curve of maximum stimulated electric

field (inner curve). (c) The stimulated output powers Ps and P`, at the self-lasing

frequency ω` (red) and at the drive frequency ωd (blue) respectively, are displayed

as the laser is driven across a repulsive synchronization transition at approximately

Ωd/2π ≈ 40 kHz. Theoretical predictions (solid lines) show good agreement with

the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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3.5 Quantitative small-signal gain measurements. (a) We measure the total transmitted

power at the drive frequency ωd and define power gain G as the measured transmitted

power normalized to the drive power transmitted through the cavity on resonance

with no atoms present. For these measurements δd is scanned over a frequency range

greater than the cavity linewidth κ. The data is fit to the model in Eq. 3.7 (red

line). Note that here, the cavity resonance marked by the vertical solid line is a few

MHz higher than the atomic resonance. (b) From fits to data such as (a), we plot the

variation of the fitted gain coefficient α (see text) versus W . The prediction α = γ2
⊥

is shown in grey. The width of the grey band corresponds to the uncertainty in an

independant calibration of the repumping rate W . . . . . . . . . . . . . . . . . . . . 31

3.6 Bloch vector interpretation of phase diagram. (a) The types of behavior for the driven

superradiant laser can be characterized by a phase diagram. The characteristic rates

that determine the lasing behavior are drive Rabi frequency Ωd, detuning δd, and

repumping rate W . The regions correspond to the number of distinct emission

frequencies (1 or 2) and the frequency shift (attraction or repulsion) of the carrier

(A and R respectively). The behavior of the synchronization (a), attraction (b),

and repulsion (c) configurations are shown in a Bloch sphere picture. In the frame

of the atomic transition frequency ωa, the drive is represented by a rotation ~Ωd,

with an orientation which rotates along the dashed green trajectory at frequency δd.

In the unsynchronized case this modulates the Bloch vector (red vector), causing

drift toward or away from the drive, with the average precession of the Bloch vector

indicated in each case via the large blue and red arrows. In the synchronized case,

the Bloch vector follows the drive all the way around the sphere. . . . . . . . . . . . 33

4.1 A 2-level atom’s quantum state is represented by a Bloch vector ~j that lives on the

surface of a Bloch sphere. The state can be parameterized by vector components jx,

jy, and jz or angles θ and φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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4.2 A collective Bloch sphere. The individual projection of each single-atom Bloch vector

leads to an uncertainty in the angular resolution of the Bloch vector of ∆θ = ∆φ =

1/
√
N for unentangled atoms, called the standard quantum limit. . . . . . . . . . . 40

4.3 A squeezed collective Bloch vector. Entanglement can reduce the quantum fluctu-

ation in an ensemble of atoms or spins, leading to a sharper atomic clock hand.

The blue probability is squeezed since it has an angular resolution narrower than

the standard quantum limit of ∆θSQL = 1/
√
N . The red distribution represents a

coherent spin state made up of identically prepared unentangled atoms. . . . . . . . 42

5.1 The reduced sensitivity of a dephased rotation to a small rotation error is graphi-

cally represented on collective Bloch spheres. A single representative Bloch vector

prepared in the x̂ − ẑ plane, along with the quantum uncertainty in its position, is

shown (red arrow and noise distribution). Each sphere also has a series of colored

lines denoting the tips of Bloch vectors that are at a constant Jz in the initial config-

uration. The original rings of constant Jz are shown in parts (b-e) as thin black lines

for reference. A small rotation Rŷ(π/16) representing an error is applied without (b)

and with (c,d,e) dephasing. By reversibly dephasing the Bloch vector to Cd = 0.14,

the impact of the rotation is greatly reduced. Rotation errors that would otherwise

dominate can be supressed well below the fundamental quantum noise. . . . . . . . . 53

5.2 (a) The standing wave intensity of each beam is shown inside the cavity (blue mir-

rors). The atoms are trapped at antinodes of the 823 nm optical lattice (blue). The

probe laser at 780 nm (red dashed) and dephasing beam at 795 nm (green dotted)

cause dephasing due to their inhomogeneous light shifts. We detect the phase of the

probe light to infer N↑. (b,c) The reduction in transverse coherence after dephas-

ing Cd (red and green squares) and rephasing CF (black circles) is measured versus

the average number of transmitted photons from the probe beam (b) and dephasing

beam (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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5.3 (a) The rms noise in the measured spin projection JzF , ∆JzF , after applying an

integer number of π-pulses is displayed for three different amounts of applied de-

phasing, quantified by Md. The contribution to ∆JzF due to finite measurement

resolution (i.e. ∆JzF at 0 π-pulses) is subtracted out. For Md = 0, a linear fit

extracts the rotation-added noise per pulse (red line). Predictions (green and black

bands) using Cd from Fig. 5.2 reasonably explain the reduction in rotation-added

noise with increased Md. All shaded regions represent 68% confidence intervals. (b)

Dephased rotations are applied in a sequence designed to resolve spin populations

below QPN. N↑ is measured before and after a π-pulse with outcomes labeled N↑,p,

N↓,p, N↑,f and N↓,f to determine the spin noise reduction R. Both the 780 nm probe

and 795 nm dephasing beams are applied during each measurement of N↑ and N↓.

(c) R is measured as a function of probe strength Mp for Md = 6.1(3) × 106 (blue

data and fit) and Md = 0 (red data and fit). All quantities are displayed in units of

dB relative to QPN, dBQPN. The fit to the measurement background Rbck is shown

in black. (d) The rotation-added noise Rrot, shown in the inset, can be inferred from

the data of part (c). Rrot with no dephasing is shown as a dashed line. Dephasing

can reduce Rrot by more than 21 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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5.4 Reduction in sensitivity to amplitude and frequency rotation errors. (a) The ensem-

ble is subjected to a rotation with arbitrary amplitude ψ and equitorial rotation axis

α̂ and zero detuning (measurement sequence shown below graph). The resulting Jzf

(blue points) are plotted versus amplitude of the rotation ψ for three different values

of dephasing, characterized by Md. At each amplitude the average magnitude of Jzf

(red points) is compared to a prediction using the measured transverse coherence

from Fig. 2 (black line). (b) The ensemble is subjected to a rotation with aribitrary

detuning δ∗ and azimuthal rotation axis α̂. The amplitude is constrained so that at

zero detuning, the rotation is a π-pulse. Jzf (blue points) are plotted as a function

of δ∗, again for three different values of dephasing, and the average magnitude of Jzf

(red points) is in agreement to a prediction from the measured transverse coherence
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6.1 (a) A coherent spin state’s spin-projection noise (pink distribution) is projected onto

a squeezed state by a measurement of Jz. The quantum state randomly collapses

within the original distribution, creating a conditionally squeezed state. The pre-

measurement’s outcome is then used to rotate the spin state’s polar angle to a de-

sired target spin projection (black solid line) Jz = Jztar, creating a deterministically

squeezed state. (b) The relevant 87Rb energy levels (black) and cavity resonance

frequency ωc (blue). (c) Simplified experimental diagram. The cavity is probed in

reflection. Homodyne detection of the probe is sampled by a microcontroller that

then applies microwaves at 6.8 GHz to achieve the desired feedback rotation θfb to

create the deterministically squeezed state in (a). See Section 6.4 for experimental

details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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6.2 (a) Measured cavity resonance frequency for a single trial versus time, subtracting

a constant 12 MHz frequency offset. (b) The time windows in which the probe is

turned on (green) and the populations determined from each window. The fixed

microwave rotations are shown in black with the feedback rotation shown in orange.
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plotted versus trial number and accumulated into histograms. Five different Jz
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quantum noise in the pre-measurement. (e) If no feedback is applied the final and

pre-measurement are strongly correlated (black), allowing for conditional squeezing

(S = -10.3(6) dB) by using the differential quantity Jzf − Jzp (gold). The increase

in noise from feedback is discussed in the Supplementary Material. . . . . . . . . . . 73

6.3 (a) Experimental sequence for conditional spin squeezing, with labeling mirroring

that of Fig. 6.2a. (b) Squared contrast C2 (blue), spin noise R (red), and spin

squeezing S (black) are plotted versus the average number of incident photons Mi in

a single measurement window. The solid lines are fits, the blue band is the predicted

loss of contrast from free-space scattering, and the grey band indicates the total

squeezing error bar. (c) The experimental sequence used to observe the back-action

spin-projection. (d) The measured spin noise R is plotted versus ψ with fit (purple).

(e) The reconstructed conditional probability distribution of the quantum state (red)

on a Bloch sphere with Bloch (black) vector. The distribution is magnified with a 1:1
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6.4 Experimental frequency diagram. Relevant frequencies described in the text are

shown along with the locking scheme of the atomic (blue) and cavity (red) probe

lasers. The two longitudinal resonances of the cavity that these two lasers probe are

separated by 122 GHz and shown on the upper graph. The unshifted n+15th cavity

mode at ωc is detuned δc blue from the atomic resonance ωa. The presence of atoms in

|↑〉 typically shift this cavity mode by approximately 70 MHz, to ω′c. The homodyne

local oscillator beam is shown in purple (dashed), and feedback stabilization steps

are shown as gold arrows with descriptions. . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 Optical block diagram. The resonance frequency of the optical cavity ω′c is detected

using homodyne detection of the atomic probe laser (red). Homodyne detection is

performed on an fs = 81.1 MHz sideband on the atomic probe laser. This sideband

can be applied at half power by the “kick” switch to provide an extra impulsive

kick to the atoms in order to cancel optomechanical ringing (described in Section

6.4.5.5). The carrier of the atomic probe laser is detected in heterodyne (RF port) to

provide a path length reference (see Fig. 6.6) for stabilizing the homodyne detection

phase. The cavity probe laser (blue) is P.D.H. locked, via the Lcav loop filter, to

another longitudinal mode of the optical cavity, unshifted by atoms, and provides

stabilization of the atomic probe laser’s frequency to the cavity frequency. The

atomic probe and cavity probe are separated optically via polarization. Real-time

feedback is applied using an Arduino microcontroller that controls the sign and

duration of 6.8 GHz µ-wave pulses. More details are given in Fig. 6.6. . . . . . . . . 82



xxii

6.6 Electronic block diagram. The homodyne detection phase is stabilized by detecting

the carrier of the atomic probe beam with the signal appearing at 81.1 MHz at the

RF port. The phase of this signal is locked to a DDS frequency reference by applying

feedback through the Lstab loop filter to a VCO controlling the homodyne AOM. The

homodyne difference signal (DIFF) is used to stabilize the atomic probe laser to the

atom-shifted cavity mode at ω′c. The signal is high-pass filtered at 1 Hz to remove
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phase lock between the atomic probe laser and the cavity probe laser using loop filter

La. The cavity frequency ω′c is detected by sampling the output of LSHA. When the

atomic probe is off, a sample and hold circuit is used to hold the output of the loop

filter. A separate synthesizer (DDS) can be used to perform sweeps of the atomic

probe. Real-time feedback is applied by the Arduino based on the sampled output

of LSHA. The Arduino can control the sign of the feedback by switching (sign)

between two 6.8 GHz sources that are 180◦ out of phase. . . . . . . . . . . . . . . . 83

6.7 (a) The measured power spectral density of instantaneous frequency fluctuations

Sν(f) between the atomic-probe and an empty cavity mode. The frequency stabi-

lization described in the text reduces the noise by close to a factor of 50 over a broad
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FWHM external cavity diode lasers. For this data, the atomic and cavity-probes

were set to a high enough power that increasing either did not decrease Sν(f), so

that we are sensitive only to technical noise floors. Also, heterodyne path-length

stabilization had not yet been implemented, and this is largely responsible for the

rise below 2 kHz. (b) The integrated noise in the difference of two frequency mea-

surement windows, plotted as a function of window length Tm, with a fixed t = 0 µs
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6.8 (a) The 2-window noise variance (∆fd)
2 is plotted versus the detected power of

the cavity-probe beam for Tm = 40 µs and t = 0. Above 1 µW, the noise variance

saturates to 27 dB below the quantum projection noise level. (b) The measured light

shift of the 87Rb clock transition is plotted versus the detected power of the cavity-
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Pc = 0 is due to an additional constant light shift from the 823 nm optical lattice.

Due to differing Clebsch-Gordan coefficients, the shift of the |↓〉 to |↑〉 transition

frequency ω↑↓ is approximately 13 times larger, but still causes very little coherence
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6.9 Probe induced oscillations partially cancelled by a staggered turn-on sequence. The

oscillations are fully present with no kick (red, 43 traces averaged) during a 40
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6.10 (a) The antisqueezing A is plotted versus Mi (black circles). The linear contribution

to the rise in A, A1, is shown in blue and the quadratic contribution A2 in red. The

squeezing (gold diamonds and fit) is plotted on the right axis. (b) The area of the
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Chapter 1

Motivation and Introduction

1.1 Quantum capability

We already live in a world full of quantum technology. The development of quantum physics

has lead to a rich and detailed understanding of atoms, solids, light, electricity, and magnetism:

quantum building blocks that are essential for many modern devices. Computers, lasers, and

advanced materials, to name a few, would not exist without modern quantum understanding.

On the other hand, even without modern quantum physics, the majority of modern tech-

nologies could, in principle, be realized through strictly “classical” means. For example, consider

a transistor, the basic element of modern computers. Transistors are quantum devices made of

joined semiconducting materials that display non-linear conduction versus applied voltage due to

the structure of the available quantum energy levels in the solid. Despite this, transistors can be

viewed simply as switches or amplifiers. Their relevant logical behavior can be achieved using com-

ponents that are adequately explained without quantum mechanics. A fully “classical” computer,

for example, that can calculate difficult polynomials was suggested by Charles Babbage in the

1800’s and has since been built with Lego children’s toys [37], a sufficiently classical infrastructure.

Quantum technologies with no classical analogue are difficult to find. This fact leads to an

important broad question that motivates research in every sub-field of quantum science: What are

the intrinsic capabilities of quantum systems? Researchers in quantum computing, for example,

study which types of problems quantum computers can solve efficiently [126]. A large body of

research is also aimed at understanding errors that occur in quantum objects or information and
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how to control and correct them [153]. The Nobel prize was even awarded this year for the study

of exotic phases exhibited by quantum matter, how they behave, and how they could be useful one

day.

The question of quantum capability also forms a central theme for this thesis. Specifically, I

will explore how quantum physics both limits and improves precision measurements.

1.2 Quantum certainty and uncertainty

Perhaps the most powerful, yet often under appreciated feature of quantum systems is their

certainty or “identicality”. Two 87Rb atoms (the atoms used in this thesis) are identical. One can

build two atomic clocks on opposite sides of the world and be certain that, given an ideal apparatus,

they would tick at exactly the same rate. Atoms are so identical that when one considers a quantum

wave function describing their behavior, the wave function fundamentally must have very specific

symmetry when the particles are exchanged with one another.

Quantum identicality is the primary power of atomic clocks and quantum sensors that perform

the most precise absolute measurements in the world [115, 66, 162]. I would argue that such devices

are indeed a truly useful quantum technology with no classical analogue because their unmatched

measurement precision is a direct outcome of quantum certainty. Similarly, in Section 1.3.2 and

Chapter 3 of this thesis I will describe experiments to demonstrate a proof-of-principle superradiant

laser that relies on the quantum identicality of the atomic gain medium to achieve a high degree of

frequency purity. Superradiant lasers may one day be able to surpass the frequency purity of the

current state-of-the-art lasers based on manmade reference cavities.

Quantum identicality comes with a price. For any quantum sensor, random collapse of the

atom’s, ion’s, or photon’s wave-function leads to uncertainty in the final readout of that sensor. This

means that many identical quantum particles must be used to average down quantum uncertainty.

Quantum noise is the “yang” to the identicality “yin”.

Quantum sensors based on 2-level qubits work much like flipping coins. By flipping N coins,

one can measure the error E in the coins’ probability E = PH − PT where PH is the probability
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for the coin to land on heads and PT is the probability for the coin to land on tails. I assume that

the coins are nearly fair (E ≈ 0), but small biases could be detected around E = 0. Flipping a

single coin would be a poor measurement of E. But by flipping many coins, an estimate of E, that

I label Ẽ, can be obtained using the equation Ẽ = (NH −NT )/N where NH is the number of coins

that landed in heads and NT is the number that landed on tails. The error in this estimate can

be shown to be, ∆Ẽ = 1/
√
N where ∆X refers to the standard deviation in the quantity X. This

coin-flip noise is a classical analogue of the quantum noise that plagues quantum sensors.

For real atoms or qubits with two quantum states labeled |↑〉 and |↓〉, quantum collapse

into |↑〉 or |↓〉 leads to uncertainty in measuring the quantum phases θ and φ in the superposition

|ψ〉 = cos(θ/2) |↑〉 + sin(θ/2)eiφ |↓〉 . A quantum sensor operates by biasing the probability in the

angles θ or φ based on a measured quantity such as time, gravity, or electric or magnetic fields.

For N unentangled atoms identically prepared in state |ψ〉, the random collapse of each atom

causes an uncertainty in an estimate of θ and φ known as the standard quantum limit (SQL)

∆θSQL = ∆φSQL = 1/
√
N .

What would be required to to surpass the SQL in an atomic sensor? To gain insight for

this process, the coin analogy still carries some insight. First, when flipping N coins with E ≈ 0,

the randomness of each coin cannot be avoided. Second, one cannot predetermine the outcome

of any individual coin, because if you could, there would be no way to be sensitive to changes in

E. From these two assumptions, the only way to improve the measurement of E is to engineer

a non-local connection between the coins leading to correlation. If the true value that we wish

to estimate is E = 0, then when one coin noisily lands on heads, another coin must, through the

connection between the coins, know to land on tails. 1 The ability for quantum systems to display

such nonlocal connection was pointed out in the famous EPR paradox [46]. Today such quantum

connections, which are a manifestations of a non-factorable wavefunction, are generally referred to

as entanglement. Most of this thesis deals with creating large amounts of quantum entanglement

1 A reduction in ∆Ẽ could also be explained by the coins communicating a “hidden variable”, but in quantum
mechanics, theories of this type can be ruled out by Bell tests [63, 65, 51, 143]
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to surpass the SQL in atomic sensors.

1.3 Brief overview of this work

A simplified diagram of our experimental system is shown in Fig. 1.1. We trap and cool

a cloud of 87Rb atoms (red) to a temperature of 10 µK inside an optical cavity (blue) using the

now-standard techniques of laser cooling and trapping. The cavity resonance frequency is tuned

near an atomic transitions in 87Rb, between the qubit state |↑〉 and an optically excited state |e〉.

In this configuration, the optical cavity has a strong rate of coupling to atoms in the excited state

|e〉, so that the ensemble and cavity exchange excitations (between atomic excitations and cavity

photons) at a rate of up to Ω = 2π× 6× 108 Hz where Ω is often called the collective vacuum Rabi

frequency. In this configuration, the cavity resonance frequency is highly sensitive to the qubit

state of the atoms. Atoms in |↑〉 affect the cavity strongly, and atoms in |↓〉 do not. By measuring

changes in the resonant frequency of the cavity we can infer the total number of atoms in |↑〉, and

therefore the superposition angle θ, very precisely.

Figure 1.1: Simple experimental diagram. 105 to 106 87Rb atoms (red) are trapped in a 1D optical
lattice, forming pancake-shaped layers of atoms. The atoms are cooled to 10 to 20 µK. An atomic
transition is tuned near resonance with the mode of an optical cavity (blue). Collective atomic
excitations and cavity excitations (green photons) are exchanged at rate Ω. By probing the optical
cavity with a laser (green) we can perform precise measurements of the quantum noise of the atoms
and project the ensemble into entangled states.
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1.3.1 Entanglement-enhanced sensors

The majority of this thesis describes experiments to create entanglement enhancements in the

atomic ensemble useful for precision measurements. By making a measurement of cavity resonance

frequency we measure θ below the SQL while maintaining the quantum superposition of the atoms.

By doing this, we essentially use the measured value of quantum noise in θ to subtract from

subsequent measurements, allowing differential sensing in an atomic clock or sensor below the

SQL. Equivalently, we can say that the first measurement projects the atoms into an entangled

state that is characterized by improved resolution in the quantum angle θ. We have shown directly

observed improvements in the variance in θ of up to a factor of 60 times lower than the SQL.

Although the concept of entanglement enhancements in sensors has been around for over 15

years (spin squeezing was first demonstrated in ions before the year 2000 [137, 159]), significant

entanglement enhancements have been previously elusive. Figure 1.2 shows a historical perspective

of directly observed entanglement enhancements, defined by S ≡ (∆θ/∆θSQL)2, usually called

spin squeezing. For this data, noise subtraction was not allowed in order to highlight the actual

observed sensitivity improvement relative to the SQL. The value S = 1 indicates no entanglement.

Along with another very recent experiment [68], the enhancement observed in this thesis S ≡

(∆θ/∆θSQL)2 = 59(8) is by far the largest entanglement enhancement observed to date in any

system. This amount of squeezing, if implemented in a quantum-noise limited atomic clock or other

sensor, would nominally mean that a particular quantum limited resolution could be achieved with

a factor of 60 fewer atoms, or in a factor of 60 less time. Such a large enhancement establishes

entanglement as a practical way to improve atomic clocks and other sensors. In addition to the

generation of large amounts of spin squeezing, I will present, for the first time, a demonstration

of spin squeezing with real-time feedback to a deterministic entangled state, where the result of

the squeezing measurement is no longer necessary to observe entanglement. Using this real-time

feedback we created one of the largest amounts of deterministic squeezing ever observed, comparable

to the amounts generated by the best naturally deterministic schemes such as 1-axis twisting using
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cavity feedback or collisions in an ultra-cold gas [95, 62].

Last, I will present another experiment to observe over a factor of 10 in squeezing that addi-

tionally has a homogeneous character. This squeezing, while still one of the largest enhancements

ever observed, could also be used in free space measurements such as matter wave interferometers

used for tests of gravity [135], Lorentz invariance [141], inertial sensing [9], probes of new physics

[131, 61], and potentially as gravitational wave detectors [54].

Figure 1.2: History of observed squeezing. Results from the Thompson lab are shown in brown
[39, 40, 42, 31]. Experiments using collective measurements are shown as solid circles [68, 4, 142,
180, 164]. Experiments using other schemes with neutral atoms (non-linear Hamiltonians from
collisions or cavity feedback) are shown as open circles [62, 101, 95, 114, 28]. Experiments with
ions are shown as open squares [111, 113, 92, 93, 24]. The largest observed squeezing in an optical
field is shown as a cross [163].

1.3.2 Superradiant Lasers

As well as creating a proof-of-principle entanglement-enhanced sensor, I have also worked

on experiments to demonstrate cold-atom based superradiant lasers. Lasers are the best rulers for

both space and time. Lasers have not only become ubiquitous in everyday life but are also used for
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some of the most precise measurements in the world, including gravitational wave interferometers

[1] and optical atomic clocks [115].

The most frequency-precise laser beams are formed by actively stabilizing the frequency of

a laser to an optical reference cavity [77]. The primary limit to these classical, manmade length

references has been thermal, Brownian motion of particles on the mirror surface that create fluctu-

ations in the cavity’s length and therefore impose fluctuations on the laser’s frequency. Engineering

more stable reference cavities remains a major effort to improve atomic clock performance [77].

As previously mentioned in Section 1.2, the motivation behind cold-atom superradiant lasers

is to replace these manmade length/frequency references with nature’s identical quantum frequency

references, atoms. This can be accomplished by building a laser where the gain medium is a

laser-cooled ensemble of atoms with a narrow optical transition such as strontium or ytterbium

[108, 122, 120]. Such a laser would operate in the bad-cavity, superradiant regime where the atomic

coherence times are much longer than the cavity decay time [83]. In this regime, atoms form the

phase flywheel for the laser and emit collectively into the cavity mode, leading to a superradiant

enhancement in the emitted power.

Superradiant lasers were suggested as a powerful type of frequency reference by Meiser et

al. in Ref. [108] and a proof of principle Raman laser was first demonstrated in the Thompson

lab soon before I arrived as a first year graduate student [23]. We have continued to study the

properties and relevant physics behind superradiant lasing over the subsequent years [21, 171, 22],

and due to the success of this work, a new Strontium superradiance project has begun, aimed at

realizing a narrow optical superradiant laser [122, 120].

In Chapter 3, I will describe an experiment observing the synchronization physics of a su-

perradiant laser by injection locking the laser to an external drive and discussing synchronization

behavior of the superradiant ensemble. I derive a phase diagram for the superradiant laser and

demonstrate similarities and differences between the superradiant oscillator and standard classical

models of synchronization. By studying superradiant synchronization, we develop a framework

for understanding the sensitivity of future narrow-linewidth superradiant lasers to external fields.
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Additionally, it is common in atomic systems to have multiple possible lasing transitions. By

studying the interaction of these different lasing transitions, this work has informed and lead to

recent experiments to interfere multiple lasing transitions to observe the fundamental linewidth of

the superradiant laser [122]. Lastly, the synchronization threshold is an example of a second order

phase transition in an open quantum system, and may be useful in the future for studies of phase

transitions in open quantum systems with similarities to recent experiments on the Dicke model

[10, 6].

1.4 Format and goals of this thesis

Chapter 2 will be devoted to an overview of various experimental techniques used in this work,

and Chapter 3 will discuss experiments related to superradiant synchronization. I will give a basic

review of the relevant physics for describing and creating entanglement enhanced, spin squeezed

states in Chapter 4, and I will review an experiment to use reversible dephasing to improve coherent

rotations of the atomic state in Chapter 5. Then, I will focus on the current largest entanglement

enhancement observed in our lab, based on the third generation squeezing experiment in Chapter

6 as well as present a demonstration of squeezing with real-time feedback to create deterministic

entangled states. In Chapter 7, I will discuss a recent experiment that used a time averaging

scheme to observe a large entanglement enhancement in a homogeneous configuration that would

be appropriate for matter wave interferometers.

All of the experiments in this thesis have been (or are in the process of being) published in

journal articles. Since much effort was given to clearly describe the experiments in those documents,

the bulk of each chapter will rely heavily on these previous writings. Apart from this introduction,

I have spent the majority of my original writing focus on experimental details that have not been

previously published. These can be found in Chapters 2, 4, and the appendices. I hope that in

addition to giving a complete collection of my thesis work and compiling many relevant results,

some of these additional details will be useful as a detailed resource for readers wishing to utilize

our techniques in the future.



Chapter 2

Experimental System Overview

Many of the experimental details for this work can be found in previous writings [32, 38,

39, 170, 20, 30]. However, I will provide a brief overview of the experimental apparatus here.

In addition to the general information in this chapter, additional experimental details that are

more relevant or specific to a particular experiment can be found in the chapter describing that

experiment. Additional information about homodyne and heterodyne detection as well as the use

of feedback loops in our lab can be found in the Appendices.

2.1 Laser cooling and trapping

The first step in the experiment is to laser cool and trap a large ensemble of up to 106 87Rb

atoms inside the TEM00 mode of an optical cavity. The relevant energy level structure is shown in

Figure 2.1. Cooling and trapping is performed in two stages. First the atoms are cooled an trapped

in a magneto-optical trap (MOT). Second, the atoms are transferred from the MOT into an optical

lattice formed by a resonant cavity TEM00 mode and cooled to a final temperature of 10 to 20 µK.

2.1.1 Magneto-optical trap

MOTs are a very robust technology that have become a standard tool in atomic physics [110].

Our MOT is described in detail in refs [20, 30], and relies on 6 laser beams that provide Doppler

cooling in every direction as well as repumping from the F=1 ground states where the cooling is

not active. A quadrupole magnetic field with gradient of approximately 10 G/cm works in concert
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Figure 2.1: Level diagram for the D2 transition in 87Rb. The F = 1 and F = 2 ground state
manifolds are metastable and the excited state lifetime is Γ = 2π × 6.06 MHz.

with these Doppler cooling beams to form a trapping potential. In our experiment, each MOT laser

beam has a characteristic diameter of approximately 1 cm and a power of 10 mW. The MOT beams

are red-detuned by around 3 MHz from the F = 2 to F ′ = 3 transition with circular polarization.

The repumper laser operates on resonance with D2, F = 1→ F ′ = 2 transition with a total power

of 6 mW. For simplicity, we overlap the MOT and repumper beams before splitting into the 6

orthogonal beams although this is not critical. Atoms in the MOT are cooled near the Doppler

temperature, set by the linewidth Γ = 2π × 6.06 MHz of the optical transition, of TD = ~Γ/(2kb)

where kb is Boltzmann’s constant. For Rubidium this is 145 µK.

2.1.2 Vapor pressure

The MOT is loaded directly from a background vapor. The background Rb pressure is

observed to be the limiting contribution to the vacuum pressure and is measured using an ion

gauge to be approximately 4 × 10−9 Torr. As a useful note, the background vapor pressure can

also be approximately measured from the MOT loading time [5], that is of order a second for our

system. The vapor pressure is created by heating a Rb ampule to between 50 and 100 degrees

C. Recently, we observed that the small aperture in the ampule that allows Rb to escape can get
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plugged with an unknown layer, presumed to be rubidium oxide. When this happens, Rb will not

be sufficiently released into the main chamber. To avoid this, care should be taken with these

objects not to expose the Rb to any air.

2.1.3 Polarization gradient cooling

Sub-doppler cooling occurs very naturally in laser cooling schemes with Rb. In fact, the effect

was a mystery for several years leading to a Nobel prize award for the observation and theoretical

explanation of sub-Doppler cooling mechanisms [43]. In our experiment, we use the same circular

polarized MOT cooling beams to achieve the polarization gradient cooling (PGC). This cooling

works best with beams detuned from the optical transition. PGC cooling also requires a zero

magnetic field so that Zeeman sublevels are degenerate. This is achieved with bias coils in all three

dimensions that can zero the earth’s magnetic fields as well as any other biases in the system. In

the PGC cooling step, the MOT quadrupole magnetic field is shut off, and atoms are PGC cooled

and loaded into the optical trap for around 20 to 50 ms before they have a chance to fall away from

the cavity region. After this step, their temperature is measured to be 10 to 20 µK.

2.1.4 Optical lattice and cavity stabilization

The final optical trap of the atoms is created by a cavity standing wave at 823 nm, that we

refer to as the optical lattice. This lattice forms an attractive potential for the atoms due to the

optical dipole force [110]. The lattice typically has 0.3 W of circulating power and forms a trap

with a depth of 115 µK, mode waist of 71 µK and Rayleigh length of 2.05(5) cm. The radial and

axial trap frequencies are 1 kHz and 180 kHz respectively. Atoms load the central 1 to 2 mm of

the Lattice, and once they are loaded, the ensemble has a rms thermal displacement in the radial

direction of approximately 7 µm and a thermal rms displacement in the axial direction of 40 nm

at each lattice cite. We load between 105 and 106 atoms, which means there are 100 to 1000 atoms

per site.

Fig. 2.2 shows a simplified experimental diagram of the science cavity frequency stabilization
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Figure 2.2: Experimental diagram for science cavity frequency stabilization. The main optical
cavity is stabilized to an optical lattice using Pound-Drever-Hall (PDH) spectroscopy and feedback
to a piezo. A lattice laser sideband created with a tunable EOM is locked to the transfer cavity
that bridges the gap between the 795 nm and 823 nm laser frequencies. The transfer cavity is
locked using PDH spectroscopy and feedback to a piezo to a 795 nm reference laser. The reference
laser is stabilized to an atomic transition in rubidium using FM saturated spectroscopy (FMS).

chain. First a 795 nm reference laser (red) is stabilized to a Rb vapor cell using FM saturated

spectroscopy [59] and feedback to the laser’s current and piezo. An optical transfer cavity is then

stabilized to this laser via the Pound-Drever-Hall (PDH) stabilization method [16, 45] and feedback

to a cavity piezo. This cavity serves as an effective “gear” to transfer stabilization to the 823 nm

optical lattice. Specifically, phase modulation sidebands are applied to the lattice laser and one of

those sidebands is stabilized to the transfer cavity using PDH spectroscopy and feedback. After

these three steps, the optical lattice frequency is set. Then, the science cavity is PDH-locked to the

lattice laser giving absolute frequency stability to the optical cavity mode. Feedback to the cavity

piezos occurs with a bandwidth of approximately 1 kHz limited by resonances in the piezos. As a
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note, since the transfer cavity length is not known precisely enough to give an absolute frequency

conversion between the 795 nm reference laser and the 823 nm lattice laser, we usually probe the

science cavity with a “probe” laser beam with well defined frequency relative to the Rb transition,

and then empirically adjust the lattice laser frequency by changing the EOM sideband frequency

in Fig. 2.2.

2.2 Vacuum system and optical cavity

The central element to the experiment is the atom cavity system under ultra-high vacuum. A

SolidWorks CAD drawing of the cavity is shown below in Fig. 2.3. The cavity was constructed by

gluing piezos (Piezomechanik HPCh 150/12-6/2) and mirrors (custom from Advanced Thin Films)

to a ZeroDur spacer machined in the JILA machine shop. In order to assemble the system, the

mirrors and piezos were first glued together on a clean-room workbench using a Delrin plastic jig

that controlled the placement. Meanwhile, an additional “hat” constructed of Macor was used to

join the piezos and the cavity spacer, and was secured with additional drops of Torrseal. Vacuum-

compatible Kapton-dipped wires were glued to the piezo electrodes with low-outgassing silver epoxy

(Epoxy Technology H21D). Additionally, before gluing the mirror-piezo combination to the spacer,

the mirror was wrapped with 5 turns of 140 µm diameter Kapton wire purchased from Kurt J.

Lesker and secured with thermal epoxy (Epoxy Technology H77), to allow for heating the mirror to

expel Rb that can stick to the surface. A plot of the mirror temperature, as measured in vacuum,

versus current through the heater wires is shown below in Fig. 2.4.

The measured cavity parameters are shown below in Table 2.1.

One important note is that the cavity linewidth is measured to be 3.15 MHz versus an

expected linewidth from construction of approximately 2.8 MHz. During curing, we observed

that some epoxy outgassed onto the mirror surface and initially raised the cavity linewidth to

approximately 6 MHz. We were able to clean the mirrors and achieve the observed linewidth using

the plasma cleaner in the JILA clean room.

The optical cavity is mounted to the vacuum chamber using a vibration isolation mount that
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Cavity Parameters (probe λ = 780 nm)

Single-atom cooperativity C = 4g2

κΓ 0.044(6)

Input coupling κ1 2π × 2.60(5) MHz
Output coupling κ2 2π × 0.17(1) MHz
Internal losses κL 2π × 0.38(8) MHz
Linewidth κ 2π × 3.15(10) MHz
Q.E. due to internal losses κ1/κ 0.83(3)
Finesse 2532(80)
Free spectral range 8.105(2) GHz
Frequency difference TEM00-TEM10 2.290(5) GHz
TEM00 waist size w0 70(1) µm
Cavity length 1.849(1) cm
Mirror radius of curvature 4.999(5) cm

Cavity Parameters (lattice λ = 823 nm)

Input coupling κ1 2π × 4.40(10) MHz
Output coupling κ2 2π × 0.23(1) MHz
Linewidth 2π × 5.8(6) MHz
Finesse 1400(150)
Trap depth 115 µK
Power Buildup (Pcirc/Pinc) 800(130)
TEM00 waist size w0 71(1) µm

Table 2.1: Relevant cavity parameters at the atomic and cavity probe laser wavelength λ = 780 nm
and at the lattice laser wavelength λ = 823 nm. The cavity’s mirror transmission coefficients,
T1 on the probed end (1) and T2 on the closed end (2), are expressed in terms of coupling rates
κ1,2 = T1,2 × (free spectral range).



15

Figure 2.3: Optical cavity CAD diagram. A Macor “hat” (red) is used to join the Zerodur cav-
ity spacer (light purple) and a piezo (white). The piezo and mirror (blue) were glued together
beforehand using a plastic (Delrin) alignment jig. Optical cavity parameters are shown in Table
2.1.

Figure 2.4: Mirror heater calibration. The mirror surface temperature is plotted versus applied
current in a vacuum test under the same configuration as the final science cavity.

was adapted from an old version that is described in [30, 20]. However, the previous version was

observed to oscillate at 17 Hz leading to oscillations in the transmission power of an optimally

aligned, on-resonance laser of up to 20%. In the new version, we simply inserted a clamp to

the Viton isolation system to increase the rigidity of the system and rely on the higher quality

vibration isolation of the JILA X-wing. Oscillations in the probe laser’s coupling to the cavity due
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to vibrations have not been observed in the new system.

The cavity system is mounted inside of a large vacuum chamber that extends down through

a hole in the optical table. The system is pumped with an ion pump and also has a Titanium-

sublimation pump that can be engaged if desired. The system reaches a base pressure of approxi-

mately 1×10−9 Torr that may be limited epoxy outgassing and the small conductance of the upper

part of the vacuum chamber. However, this base pressure should only limit the vacuum lifetime

of atoms to nearly a second or greater [5], and has allowed plenty of time to perform current spin

squeezing and superradiance experiments.

2.3 State preparation

For most of the experiments described in this thesis we use the qubit states |↑〉 = |52S1/2, F = 2,MF = 2〉

and |↓〉 = |52S1/2, F = 2,MF = 1〉, the stretched hyperfine ground states. The advantage of

these states is that the |↑〉 state can be probed on an optical cycling transition from |↑〉 to

|e〉 = |52P3/2, F = 3,MF = 3〉. In order to prepare the atoms in the |↓〉 state, we use the opti-

cal pumping scheme shown in Fig. 2.5. An F = 1 beam is tuned between F = 1 and the excited

F ′ = 0 state, leaving a dark state in |↓〉. An F = 2 beam is tuned from F = 2 to excited F ′ = 2

to clear out all the F = 2 levels. The quantization axis is defined by the magnetic field, which is

aligned with the cavity axis as shown in Fig. 2.5(a). The polarization is set to a combination of

σ+ and π-polarization along the z-axis. In all, this allows atoms to accumulate in |↓〉 as shown in

Fig. 2.5(b) with approximately 95% of the atoms in the correct state. A small number of atoms in

other F=1 sub-states do not significantly affect experiments, but atoms remaining in |↑〉 can cause

serious errors. For this reason, after optical pumping, we often apply a strong final F=2 depumping

pulse which ensures that less than 1% of atoms remain in the F=2 manifold. After this step, the

various experimental sequences of chapters 3-7 can be performed at will.
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Figure 2.5: Optical pumping scheme to stretched state. a) Two optical pumping beams co-
propagate at an angle from the vertical axis with polarization that decomposes into σ+ and π
along the quantization axis set by the magnetic field ~B. b) Energy level diagram for optical pump-
ing. Pumping channels are shown by red and blue lines for the F=1 and F=2 pumps respectively.
Atoms accumulate in |↓〉 = |52S1/2, F = 2,MF = 1〉.



Chapter 3

Superradiant Injection Locking

3.1 Introduction

In a superradiant (or “bad-cavity”) laser, the atomic coherence decays much more slowly

than the optical cavity field. As such, the atomic coherence primarily stores the laser’s phase

information and is initially established via spontaneous synchronization of the individual atomic

dipoles (as in Fig. 3.1(a)). Unlike in conventional good-cavity lasers, coherence has been shown to

persist with less than one, and even zero, intracavity photons [23, 21, 171]. This bad-cavity regime

of laser physics has generated recent interest because it offers a promising route for overcoming

fundamental thermal mirror noise in order to realize laser linewidths of one milliHertz or less [109].

More broadly, cold atom-cavity systems are extremely well-controlled experiments useful for

observing many-body phenomena with the cavity mode providing strong long-range interactions

between the atoms. For example, the spontaneous spatial ordering [73, 14, 148, 55] and realization of

the Dicke model [11] in cold atom-cavity systems are examples of nonequilibrium phase transitions

and provide insights into our fundamental understanding of phase transitions in condensed matter

physics [158]. Further, atomic ensembles coupled to many cavity modes may allow the creation

of exotic phases of matter with emergent crystallization and frustration [52, 152], and could serve

as a model system for associative memories [53]. Superradiant lasers have been identified as an

interesting system in which to study the problem of synchronization of quantum oscillators [104,

167].
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3.2 Experiment: superradiant injection locking

In this chapter, I will discuss an experiment to study synchronization of a superradiant laser

to an externally applied optical field that is injected into the lasing cavity mode (Fig. 3.1(a)). The

synchronization is analogous to injection locking in a good-cavity laser, but in this superradiant

system phase locking is manifested as collective synchronization of an ensemble of cold atoms to the

applied drive. For a weakly injected optical driving field, the system can be approximately mapped

to a driven Van der Pol self-oscillator, a canonical system in synchronization physics [125, 124].

We directly observe the two synchronization behaviors predicted for such a system. However,

when the applied drive’s poer and/or detuning from the self-lasing freqeuency are large, we observe

two additional effects which are not explained by either the Van der Pol model or traditional

injection locking theory [145]. First, the stimulated emission component at the self-lasing frequency

is repulsed from, rather than attracted to, the drive frequency. Second, as the drive strength is

increased the stimulated output power at the self-oscillation frequency actually decreases. These two

effects arise from the full three-dimensional description of the atomic spin or Bloch vector dynamics,

in comparison to a two-dimensional description of a Van der Pol oscillator. The new, third degree

of freedom corresponds to the atomic inversion, which is no longer approximately constant at large

detunings or drive strengths. In each regime we show good quantitative understanding of our

system, providing a solid foundation for future work in fundamental physics using superradiant

lasers.

Complex injection locking behaviors beyond the simple Van der Pol description, including

instability, chaos, and repulsion, have been theoretically studied and observed in lasers which

operate in the crossover regime of laser physics where the cavity decay rate and one or more atomic

decay rates are similar [90, 112, 147]. Frequency repulsion is predicted in these lasers from a

coupling between the injection locking dynamics and relaxation oscillations [123]. In a distributed

feedback (DFB) laser, a one-sided frequency repulsion was seen to arise from tuning of the cavity

frequency [99]. In our system, frequency repulsion and three-dimensional dynamics are a direct
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Figure 3.1: Experimental setup and level diagram. (a) Atoms interact with both the externally
applied drive (grey) and the intra-cavity field generated by their collective emission (blue and red).
The superradiant laser primarily responds at two frequencies, the drive frequency ωd and a self-
lasing frequency ω`. (b) The characteristic frequencies are displayed in a level diagram, and all lie
within one cavity mode of width κ. The Raman laser system is approximated as a 2-level laser
incoherently repumped through intermediate optically excited states (not shown) at rate W . W is
also the primary source of broadening of the lasing transition (shown as broadening of |↓〉). In this
work, the ratio of atomic and optical linewidths is W/κ ≈ 5 × 10−2 to 5 × 10−3 � 1, placing the
system deep into the bad-cavity or superradiant regime. The state |↑〉 is a dressed state consisting
of a ground hyperfine state of Rb coupled non-resonantly to an optically excited state as described
in [23, 18, 171, 21]. The applied drive couples |↓〉 and |↑〉 with an on-resonance Rabi frequency Ωd.
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consequence of injection locking deep in the bad-cavity regime, a regime largely inaccessible by

previous work [25].

The apparatus for the superradiant laser and principles behind its basic operation have

been described in detail in previous work [23, 18, 171, 21]. The atomic gain medium consists of

N ≈ 1.1 × 106 87Rb atoms cooled to 10 to 20 µK and trapped in a 1D optical lattice inside of an

optical cavity with power decay linewidth κ = 2π × 11.8 MHz. The atoms are tightly confined to

� λ (i.e. the Lamb-Dicke regime) along the cavity axis, but only weakly confined perpendicular

to the cavity axis.

A dressing laser is applied transverse to the cavity to induce spontaneous Raman transitions

between two hyperfine gound states |↑〉 ≡ |5S1/2, F = 2,mF = 0〉 to |↓〉 ≡ |5S1/2, F = 1,mF = 0〉,

with typical single-atom free-space Raman transition rates γ = 2π × 100 Hz to 2π × 300 Hz.

The cavity frequency ωc is tuned to be on or near resonance with the spontaneously emitted

light’s frequency ωa. The effective two-photon coupling to the cavity is characterized by the rms

value of the Jaynes-Cummings coupling constant g2 [108] and single atom cooperativity parameter

C =
4g2

2
κγ = 5 × 10−3. The collective (or superradiant) emission rate for a single atom scales as

NCγ.

To maintain population inversion and steady-state emission, additional lasers are applied to

incoherently repump atoms through optically excited states from |↓〉 back to |↑〉. The characteristic

repumping rate from |↓〉 (including Rayleigh scattering) is W ≈ 2π × 60 kHz to 2π × 500 kHz.

The repumping process is the primary contribution to the atomic transverse decoherence rate

γ⊥ ≈ W/2 + ΓD. We measure a small additional contribution to the transverse broadening ΓD

which is primarily due to doppler broadening of the two-photon transition from |↑〉 to |↓〉 resulting

from the weak transverse confinement of the atoms.

A conceptually simplified experimental diagram for this work is shown in Fig. 3.1. The key

distinct feature in this work is the application of an additional coherent drive to the superradiant

laser’s cavity mode (Fig. 3.1). The drive couples the upper |↑〉 and lower |↓〉 lasing states with

a single-atom Rabi frequency Ωd. The drive frequency ωd is detuned from the effective atomic
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transition frequency ωa by δd ≡ ωd − ωa (Fig. 3.1(b)). The behavior of the system depends on the

relative magnitudes of drive strength Ωd, detuning δd, and characteristic rates of the superradiant

laser: the repumping rate W and characteristic collective emission rate into the cavity NCγ given

by the collective cooperativity NC and the single-atom decay rate γ from |↑〉 to |↓〉.

When no drive is applied the laser emits at frequency ω`0 near, but not necessarily identical

to ωa. When the drive is applied, the lasing frequency ω` is shifted by the atoms’ interaction with

the drive by δ` ≡ ω` − ω`0 . Additionally, the laser can emit at the drive frequency ωd. We detect

the light emitted from the cavity using heterodyne detection. This gives complete information

about the emission spectrum and allows us to measure ω`, ωd and the phases and amplitudes of

the electric fields emitted from the cavity at these frequencies. Other frequency components in the

laser emission are expected and observed at sums and differences of ω` and ωd. These additional

components can become rather large near synchronization (see Ref. [125]).

3.3 Phase diagram

The predicted behavior of the emitted field of the laser is summarized by the theoretical

phase diagram in Fig. 3.2. The phase diagram is calculated by numerically integrating optical

Bloch equations based on a simplified 2-level model for the superradiant laser (see [22] and Section

3.5). For simplification, the repumping rate W is set to a value that optimizes the output power

of the laser Wopt = 1
2NCγ [109], so that the characteristic rates governing the phase diagram are

the two ratios Ωd/W and δd/W .

The primary feature of the phase diagram is the synchronization or non-synchronization of

the superradiant emission to the drive. In the unsynchronized phase of region (2), the atomic

dipoles are not perfectly synchronized to the drive and the spectrum of light contains two distinct

frequency components at the drive frequency ωd and the self-lasing frequency ω`. In contrast in

region (1), the atomic dipoles become synchronized to the drive and all light emission occurs at ωd.

For the optimum repumping W = Wopt here, the synchronization transition occurs roughly when

Ωd = δd.
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Figure 3.2: The predicted phase diagram for the driven superradiant laser is shown in a plane
defined by the applied drive strength Ωd and the drive detuning δd, normalized to the repumping
rate W , which is fixed to NCγ/2 here. The regions are first divided by the number of distinct
emission frequencies (1 or 2). Region (2) is further divided by the frequency shift of the self-lasing
component at ω`, which can be attracted (2A) or repelled (2R) from the applied drive frequency
ωd. When Ωd < 0.2 × W , the laser synchronizes by smoothly coalescing in frequency with the
drive (dashed line). For larger drives, the self-lasing component remains distinct and is quenched.
The two trajectories (black arrows) refer to the two parameter trajectories explored by the data in
Fig. 3.3.
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(a)

(b)

Figure 3.3: Experimental observation of coalescing attractive (a) and repulsive (b) synchronizations.
(Left) 2D spectrograms are taken with fixed drive strength Ωd as the detuning of the drive δd is
varied along the representative vertical trajectories in Fig. 3.2. Darker colors indicate higher power
in a frequency bin (i.e. PSD). The red line indicates the expected self-lasing trajectory in the
absence of an applied drive. (Right) Two panels show the frequency shift δ` = ω`−ω`0 between the
lasing frequency and the lasing frequency when no drive is present. In each region, we qualitatively
identify attraction and repulsion by the sign of δ` and label and color each region similarly to the
phase diagram in Fig. 3.2. The behaviors follow the prediction for their respective trajectories
across the phase diagram, which are represented by vertical lines in Fig. 3.2.

The unsynchronized region (2) is broken into two subregions, delineated by the self-lasing’s

attraction toward or repulsion from the drive frequency. The region of attraction ( δ`δd > 0) is labeled

(2A) in the phase diagram. The region of repulsion ( δ`δd < 0) is labeled (2R). As δd or Ωd are tuned,

the behavior of the approach to synchronization depends on whether one enters region (1) from

region (2A) or (2R). For attractive synchronization (from (2A) to (1)), as the Ωd = δd boundary
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is crossed, ω` is pulled toward the drive. For drive strengths Ωd < 0.2 ×W (dashed line in Fig

3.2), the self-lasing component synchronizes by smoothly coalescing with the drive at ωd. When

Ωd > 0.2 × W , the self-lasing is driven to zero before coalescence can occur. In the repulsive

synchronization (from (2R) to (1) in the phase diagram), as one approaches synchronization ω` is

repelled in frequency from ωd and the self-lasing component is driven to zero so that the superradiant

ensemble is emitting power only at the drive frequency ωd.

In the limit Ωd, |δd| � W , the laser inversion Jz is approximately fixed, and the three-

dimensional Bloch vector (Jx, Jy, Jz) describing the atomic ensemble can be reduced to an effective

two dimensional object described by the transverse coherence J− = Jx − iJy . In this case, the

equation describing the time evolution of J− is closely equivalent to that of a driven Van der

Pol oscillator, for which attractive synchronization ((2A) to (1)) with and without coalescence

(characterized by saddle-node and Hopf bifurcations respectively) have been well studied [125, 124].

We outline this mapping explicitly in Section 3.7.

However, when either Ωd or |δd| & W , the inversion Jz can no longer be approximated as

fixed and the dynamic response of the full three-dimensional Bloch vector must be considered. The

response of the extra degree of freedom Jz leads to the repulsive behavior in region (2R) which can

be interpreted as an AC Stark shift (Section 3.7).

Experimental examples of the two synchronization transitions are shown in Fig. 3.3, with

approximate trajectories in the phase diagram represented by black arrows in Fig. 3.2. Fig. 3.3(a)

demonstrates attractive, coalescing synchronization and Fig. 3.3(b) represents repulsive synchro-

nization. The left plots are two-dimensional power spectra of the laser emission. Each horizontal

slice corresponds to a single power spectrum of laser emission where color represents the optical

power in each frequency bin. The nominal detuning δd is changed between experimental trials and

plotted on the left axis. On the horizontal axis, the drive freqency ωd is set to zero so that in the

absence of an applied drive (Ωd = 0), the emission frequency ω` would follow the diagonal red line.

At sufficiently small detunings synchronization occurs and only power at ωd is observed. A faint

spectral component in Fig. 3.3 appears on the opposite side of zero from the self-lasing component.
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We believe this small feature is an artifact of nonlinearities in the detection system.

The spectrograms illustrate the qualitative differences between the two types of synchroniza-

tion. In Fig. 3.3(a), the self-lasing frequency ω` is attracted toward and joins ωd as |δd| becomes

small. In Fig. 3.3(b), the two emission components remain distinct until the ω` component is extin-

guished. To more clearly illustrate the attraction and repulsion, the measured quantity δ` = ω`−ω`0

is plotted on the right. The plots are overlaid with color and labeled to help identify the repulsion

(red) and attraction regions (blue) matching the phase diagram of Fig. 3.2. For the trajectory at

small Ωd the laser goes from synchronized (1), to attraction (2A), to repulsion (2R) as predicted.

For the trajectory at larger ωd there is a single transition from (1)- to (2R)-like responses. Both

behaviors qualitatively agree with the prediction from the phase diagram for a 2-level laser, shown

by the trajectories in Fig. 3.2.

The qualitative behavior of the data exhibits asymmetry with respect to δd = 0, whereas

the theoretical phase diagram of Fig. 3.2 is symmetric. This is because the data did not strictly

follow the vertical trajectories shown in Fig. 3.2. As the detuning δd was changed, the fractional

amount of the fixed incident drive power coupled into the cavity changed, following the Lorentzian

cavity resonance profile. The symmetry of this effect about δd = 0 is broken by the fact that

δc ≡ ωc − ωa 6= 0 (where ωc is the cavity resonance frequency), leading to the observed asymmetry

in the data of Fig. 3.3.

3.4 Van Der Pol description

We now turn to the development of a perturbative description of the system far from synchro-

nization and the break down of this description as the system approaches and ultimately crosses

the synchronization threshold.

Deep into region (2) of the phase diagram, the superradiant laser’s response to the drive is

small and can be understood as a small modulation of the initially undriven Bloch vector describing

the atomic coherence. The modulated Bloch vector then radiates an additional field into the cavity

at the drive frequency ωd, producing gain. In Fig. 3.4(a) we measure this power gain G and phase
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Figure 3.4: Synchronization and gain saturation. (a) Measured gain and phase response of the
superradiant laser at the drive frequency ωd. At large drive detunings, the response displays linear
small-signal gain (red fit to perturbative model overlayed). The gain saturates (grey shaded region)
at small detunings as the laser approaches the synchronization transition. (b) The same gain and
phase response are represented in a phasor picture. Points of small signal gain lie along the straight
line, and the region of saturation is approximately described by a curve of maximum stimulated
electric field (inner curve). (c) The stimulated output powers Ps and P`, at the self-lasing frequency
ω` (red) and at the drive frequency ωd (blue) respectively, are displayed as the laser is driven across
a repulsive synchronization transition at approximately Ωd/2π ≈ 40 kHz. Theoretical predictions
(solid lines) show good agreement with the data.

response φ of the laser at the drive frequency ωd versus the drive detuning δd. This corresponds to

a vertical trajectory on the phase diagram where, in this dataset, Ωd
W ≈ 0.04. A fit to a perturbative

model based on the optical Bloch equations in Section 3.6 is shown in red.

At small detunings (grey region), the gain and phase response begin to saturate, and deviate

from the predicted small-signal values. This is roughly the point when the laser begins to synchro-
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nize to the drive and the emission at frequencies other than ωd begin to disappear. In Fig. 3.4(a)

we have chosen a specific drive strength (Ωd
W ≈ 0.04) to illustrate the transition from linear gain to

saturation. If a smaller(larger) drive strength is chosen, we observe that, as expected, saturation

occurs at a smaller(larger) detuning.

In Fig. 3.4(b), the equivalent complex electric field response Ed at the drive frequency is

shown in a phasor diagram with each point corresponding to the measured field at a given detuning

in Fig. 3.4(a). The drive response when no atoms are present Ed0 is normalized to be real and of

length 1. In the perturbative limit, the additional stimulated field follows a straight line. The line

of small-signal gain is tilted due to an additional phase shift of the stimulated field arising from

nonzero detuning of the drive from the optical cavity ωd−ωc 6= 0. At saturation, the stimulated field

deviates from the straight line and qualitatively follows a contour of constant stimulated electric

field (solid semi-circle).

In Fig. 3.4(c) we show an example of how optical power is “stolen” from the self-lasing

frequency ω` and transferred to the drive frequency. Here the drive strength Ωd is increased at a

fixed detuning δd/W = 2.2, and the vertical axis shows the self-lasing power P` and the stimulated

drive power Ps ≡ Pd − Pd0 . Pd0 is the detected power at the drive frequency in the absence of

any atomic response, scaling as Pd0 ∝ Ω2
d, such that Ps represents the extra stimulated power at

ωd. This dataset corresponds to tuning the system along a horizontal line in Fig. 3.2 that lies

outside the plotted range and such that the system crosses from the repulsive region (2R) to the

synchronized region (1).

Numerical solutions (solid lines in Figure 3.4(c)) of the optical Bloch equations (Section 3.5l)

give reasonable agreement with the data. The theoretical model includes approximate corrections

for an additional cavity tuning effect [21], and the absolute vertical scale of the theory has been

scaled so that the P` agrees with the data at Ωd = 0.

The synchronization point in this data is represented by the sharp point when P` hits zero,

with a discontinuous first derivative in P` and Ps. At the synchronization point, Ps is approximately

the original output power of the laser when Ωd is zero. At large drive strengths in Fig. 3.4(c), Ωd
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becomes much larger than W and the total output power of the laser decreases due to repumping-

induced dephasing of the rapid Rabi oscillations caused by the drive. This reduction in stimulated

output power is another unique aspect to injection locking in the bad-cavity laser.

3.5 Optical Bloch equations

The average behavior of the superradiant laser with an applied drive can be understood with

slight modifications to the optical Bloch equations presented in [22]. The optical Bloch equations

describe the time evolution of expectation values of the cavity annihilation operator â and the

collective atomic operators, Ĵz and Ĵ−, defined as,

Ĵz =
N∑
i=1

|↑i〉 〈↑i| − |↓i〉 〈↓i|
2

(3.1)

Ĵ− =
N∑
i=1

|↓i〉 〈↑i| . (3.2)

Ĵz and Ĵ− represent the atomic inversion and transverse coherence respectively. The optical Bloch

equations govern the time evolution of the expectation values of these operators, Jz = 〈Ĵz〉, J− =

〈Ĵ−〉, and E = 〈â〉. The atomic response can be visualized as a three-dimensional Bloch vector

with x and y projections of the vector given by J− = (Jx − iJy)/2. E is a complex representation

of the optical cavity electric field such that |E|2 is the average number of photons inside the cavity.

The nonlinear equations are closed by approximating that the expectation values of products of

operators can be factorized into products of expectation values. Assuming uniform coupling to the

cavity mode, the coupled equations for a 2-level system with an applied drive can be written as

Ė = −
(κ

2
+ iδc

)
E − ig2J− +

κ

2
Edi e

iδdt (3.3)

J̇− = −γ⊥J− + i2g2JzE (3.4)

J̇z = −WJz +
N

2
W + ig2(J−E

∗ − J∗−E). (3.5)

The equations are written in a frame rotating at the atom’s natural transition frequency ωa.

Edi is proportional to the amplitude of the electric field of the applied drive incident on the optical
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cavity. δc = ωc − ωa is the detuning of the cavity from the natural atomic transition frequency ωa.

The rest of the equation parameters are defined in previous text. The Rabi frequency of the drive

is related to these parameters by Ωd =
2g2Edi
1+δ̃2

c
, where quantities Ã ≡ A

κ/2 . The measured intracavity

field when no atoms are present is Ed0 =
Edi

1+iδ̃d,c
, where δd,c is the detuning of the driving electric

field from the cavity resonance, δd,c = ωd − ωc.

We have numerically solved these equations to derive the phase diagram of Fig. 2 and to

create theoretical curves for Fig. 4. The two-level model does a reasonable job of predicting the

behavior of synchronization versus Ωd and δd. However, due to the true multi-level structure of

the atom, these equations cannot be used to predict the total output power of the system. When

these equations are not adequate, multi-level optical Bloch equations from Ref. [22] can be used.

Additionally, to approximately account for dispersive shifts of the optical cavity in our Raman

laser, the cavity detuning δc is made a function of Jz to generate the theory for Fig. 4(c). Details

can be found in Ref. [22].

3.6 Derivation of small-signal gain

The small-signal regions of gain and phase response, as described in the main text, follow

a simple form that can be derived from the optical Bloch equations. We first assume κ is larger

than all other characteristic frequencies in the system so that E adiabatically follows J−. We

then assume that J− primarily responds at two frequencies, ωa and ωd, and make the ansatz

J− = J−a+J−d e
iδdt. Lastly, we assume that in this perturbative limit Jz is unaffected by the weak

drive, and retains its steady state value with no drive, Jzss = W (1+δ̃2
c )

2Cγ . With these approximations,

we find the small-signal complex field response at the drive frequency. The total detected field at

the drive frequency, Ed = Ed0 +Es, has two contributions. One contribution (Ed0) comes from the

drive alone, and the other (Es) from atomic stimulation. The small-signal form of Es is given by

Es =
−iEd0γ⊥(1 + δ̃2

c )

δd(1 + iδ̃c)
. (3.6)
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In the limit δ̃c = 0, Es can be written in the form Es =
−i
√
αEd0
δd

, where
√
α characterizes the

stimulated field gain. From Eq. 3.6 one expects α = γ2
⊥.

Eq. 3.6 explains several features of the measured small-signal gain shown in Fig. 4 of the

main text. For δc = 0, the stimulated field is in the orthogonal quadrature to the driving field.

However, when δc 6= 0 as is the case in the data of Fig. 4(b), the response of the cavity to the

driving atomic dipole causes the stimulated field to be partially rotated into the same quadrature

as the driving field. This rotation breaks the symmetry about δd = 0 for both the measured phase

and power gain shown in Fig. 4(a).

(a)

(b)

Figure 3.5: Quantitative small-signal gain measurements. (a) We measure the total transmitted
power at the drive frequency ωd and define power gain G as the measured transmitted power
normalized to the drive power transmitted through the cavity on resonance with no atoms present.
For these measurements δd is scanned over a frequency range greater than the cavity linewidth κ.
The data is fit to the model in Eq. 3.7 (red line). Note that here, the cavity resonance marked by
the vertical solid line is a few MHz higher than the atomic resonance. (b) From fits to data such as
(a), we plot the variation of the fitted gain coefficient α (see text) versus W . The prediction α = γ2

⊥
is shown in grey. The width of the grey band corresponds to the uncertainty in an independant
calibration of the repumping rate W .

To quantify the small-signal gain experimentally, we measure the total output power of the
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laser at the drive frequency for a large range of drive detunings δd. We fit the total output power

to the gain model shown in Eq. 3.7. Equation 3.7 is the magnitude squared of Eq. 3.6 with the

Ed0 dependence on δ̃d,c written explicitly.

G(δd, δ̃d,c) =
G0

1 + δ̃2
d,c

{
1− 2

√
α(δ̃c − δ̃0)

(δd − δ0)
+
α[1 + (δ̃c − δ̃0)2]

(δd − δ0)2

}
(3.7)

For a single scan of δd, we allow fitting of the parameters G0, α, δc, κ, and δ0. The fit model

constrains the transmitted power to be G0 when the drive is on resonance with the cavity in the

absence of an atomic response. The δ0 coefficient allows for an arbitrary offset of the atomic

transition frequency ωa from zero. Figure 3.1(a) displays an example of this measured total output

power as a function of δd with the fit overlaid in red. In Fig. 3.1(a), the data has been rescaled such

that the fitted coefficient G0 = 1. After this rescaling, the data represents the total power emitted

at the drive frequency, normalized to the power transmitted through the cavity when the drive is

on resonance with the cavity and no atoms are present. Also, the frequency axis of the data has

been adjusted such that δ0 = 0.

We follow this procedure, measuring the output power and fitting to Eq. 3.7, for many

repumping rates W . We plot the fitted gain coefficients α versus W in Fig. 3.1(b). The prediction

that α = γ2
⊥ = (W/2 + ΓD)2 is overlaid in grey. Uncertainty in the prediction (width of the grey

band) is due to uncertainty in the experimental calibration of W . The prediction shows reasonable

agreement with the theory over a significant range of W .

3.7 Bloch vector interpretation of phase diagram

The predicted phase diagram is shown in Fig. S2. The behavior in each of the 3 regions

can be visualized by the behavior of the Bloch vector in each regime. In a frame rotating at the

atom’s natural transition frequency ωa, the applied drive can be represented by a rotation of the

Bloch vector, ~Ωd = Ωd (x̂ cos(δdt) + ŷ sin(δdt)). |Ωd| is the angular frequency of the rotation, and

Ω̂d is the axis about which the Bloch vector rotates. The azimuthal phase of the applied rotation

axis precesses at frequency δd. When Ωd � |δd|, the drive primarily acts to slightly modulate the
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Figure 3.6: Bloch vector interpretation of phase diagram. (a) The types of behavior for the
driven superradiant laser can be characterized by a phase diagram. The characteristic rates that
determine the lasing behavior are drive Rabi frequency Ωd, detuning δd, and repumping rateW . The
regions correspond to the number of distinct emission frequencies (1 or 2) and the frequency shift
(attraction or repulsion) of the carrier (A and R respectively). The behavior of the synchronization
(a), attraction (b), and repulsion (c) configurations are shown in a Bloch sphere picture. In the
frame of the atomic transition frequency ωa, the drive is represented by a rotation ~Ωd, with an
orientation which rotates along the dashed green trajectory at frequency δd. In the unsynchronized
case this modulates the Bloch vector (red vector), causing drift toward or away from the drive,
with the average precession of the Bloch vector indicated in each case via the large blue and red
arrows. In the synchronized case, the Bloch vector follows the drive all the way around the sphere.
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orientation of the Bloch vector (both Fig. 3.6(b) and (c)). However, when Ωd > |δd|, the applied

modulation is so large that the Bloch vector can actually follow the drive all the way around the

sphere. This is the synchronized region (1) in Fig. 3.6(a). Near the synchronization transition, the

repulsive (2R) versus attractive (2A) behavior is determined by the size of the repumping rate W

compared to δd and Ωd.

3.7.1 Attractive regime: mapping to 2D Van der Pol oscillator

In the case |δd|,Ωd . W (i.e. 2A) the drive does not significantly perturb the laser from

its steady-state inversion because any change in Jz caused by the applied field is quicky healed by

the repumping process [18]. When Jz is not modified, the azimuthal phase φ is partially or fully

dragged in the same direction as the rotating axis Ω̂d (Fig. 3.6(a)). The lasing can be viewed as

being captured by the applied drive.

Furthermore, in this regime of weak drive, |δd|,Ωd . W , the system can be mapped onto a

Van der Pol self-oscillator model with a nonlinear driving term,

̇− = −iδ− + λ−(1− |−|2) + Ω(1− β|−|2) (3.8)

with complex amplitude  and characteristic rates λ, δ, Ω, and β. Equation 3.8 has an equilibrium

amplitude |−|2 = 1. The nonlinearity of the applied drive is governed by the parameter β. For

β = 0 this model has been well studied [125, 124].

To explicitly show the mapping of the optical Bloch equations (Eq. 3.3) onto this form, we

first eliminate the cavity field E by assuming operation in the deep bad-cavity limit, and assume

that Jz is not perturbed by the drive. Setting J̇z equal to zero gives the nominal steady state value,

Jzss =
N

2
− Cγ

W
|J−|2. (3.9)

One can then insert Jzss into the J− equation in Eq. 3.3, which leads to

J̇− = −iδdJ− + J−

[(
NCγ

2
− W

2

)
− (Cγ)2

W
|J−|2

]
(3.10)

+
Ωd

2

(
N

2
− Cγ

W
|J−|2

)
.
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Eq. 10 is identical in form to Eq. 3.8. For the case of optimal repumping, we set W = Wopt = NCγ
2 ,

and normalize J− to its steady state value defining − = J−/J−ss , where J−ss = N√
8
, giving

̇− = −iδd− +
NCγ

4
(1− |−|2) +

Ωd√
2

(
1− |−|

2

2

)
. (3.11)

This equation is of the same form as Eq. 3.8 with δ = δd, Ω = Ωd√
2
, β = 1

2 , and λ = NCγ
4 . We can

define an effective drive strength Ω′d = Ωd√
2

(
1− |−|

2

2

)
. For a weak drive, the laser remains close to

its steady state. One finds Ω′d = 1√
8
Ωd, and the system can be thought of as behaving similarly to

the standard driven Van der Pol oscillator of Ref. [125, 124] with a constant driving term.

3.7.2 Repulsive regime: 3D dynamics

When the drive is applied with a large detuning |δd| &W (i.e. (2R)), the repumping at rate

W cannot heal the changes in the inversion Jz caused by the applied drive [18]. Jz can no longer

be considered static and thus introduces a third degree of freedom (in addition to Jx and Jy) in the

system. In this regime, the Van der Pol model breaks down, and small oscillations in Jz must be

taken into account. The unhealed modulations of Jz at frequency δd coherently interact with the

applied rotation due to the drive to cause the Bloch vector to on average aquire a small precession

in the opposite sense to the precession of the drive rotation axis Ω̂d (shown in Fig. 3.6(c)). The

precession rate is second order in Ωd and can be identified as an AC Stark shift that leads to the

observed frequency repulsion in region (2R). To emphasize, this shift does not appear in region (2A)

because there the repumping process acts to smooth out the modulations in Jz that are essential

for creating the AC Stark shift.

The AC Stark shift can be derived to leading order by perturbatively allowing for small

oscillations in Jz. In this way we can mathematically show the additional repulsive behavior not

evident in the 2-dimensional model of Eq. 3.8. The optical Bloch equation for Jz allowing for

modulation, and written in the frame of the drive frequency ωd is,

J̇z = −WJz +
N

2
W − Cγ|J−|2 − ΩdRe(J−) (3.12)
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We treat this equation perturbatively by assuming that J− primarily oscillates at the self-lasing

frequency. From this we can derive a leading order repulsion term giving a new self-lasing frequency,

δ′ = δd +
Ω2
dδd

2(δ2
d +W 2)

, (3.13)

which arises from oscillations in Jz coupling into an average frequency repulsion of the Bloch vector.

This repulsive physics is not present in the driven Van der Pol oscillator and arises from the Bloch

vector occupying a higher, 3-dimensional parameter space.

3.8 Outlook

We have observed for the first time two different types of synchronization transitions of a

superradiant laser to an external drive, one attractive and one repulsive in nature. The synchro-

nization transition is analogous to a ferromagnet in the presence of an applied magnetic field, the

drive breaking a continuous symmetry of the laser with respect to phase [44]. However, the laser

steady state is far from thermodynamic equilibrium, making our well-controlled cold atom-cavity

system an interesting avenue for continued study of nonequilibrium phase transitions with modern

approaches [158].

It is often useful to apply an external drive to a superradiant laser. Such drives have been

used, for instance, to probe the frequency of the optical cavity in Raman-laser systems such as

ours (as was done in ref. [18]) or perhaps in future narrow linewidth superradiant lasers to reduce

errors, inaccuracies, and technical noise due to cavity frequency pulling. This work establishes

understanding for how such a technical probe will affect the system. Furthermore, the phase

response within the saturation region of Fig. 3.4(a) could be used as an error signal for a form of

active spectroscopy of the gain medium, in some sense, the inverse approach to that of Ref. [106],

although the fundamental signal-to-noise of such an approach is an open question.

In the future, this work will guide the interpretation of other proposed experiments in cold

atom-cavity systems. For instance, multiple superradiant sub-ensembles each with an independent
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transition frequency ωa can be engineered to interact with each other through one or multiple

cavity modes [52, 152, 53, 178, 104, 167]. Furthermore, while injection locking is well-described by

a mean field description, and therefore can be considered classical behavior, recent theoretical works

propose systems of multiple superradiant ensembles where quantum noise becomes observably large

and may serve to drive the phase transitions and affect the average behavior [178, 167, 104].



Chapter 4

Review: Spin Squeezing and Joint Measurements with Atoms in Cavities

4.1 Quantum sensors and the Bloch sphere

Many quantum sensors use 2-level atoms or qubits as the sensing device. Such sensors are

used for state-of-the-art measurements of time and frequency [115, 66], electric and magnetic fields

[85, 2], fundamental constants [135, 175, 36], tests for new physics [61, 7], biological systems [81],

and more. An arbitrary quantum state of a 2-level atom used for these sensors can be written as,

|ψ〉 = cos

(
θ

2

)
|↑〉+ eiφ sin

(
θ

2

)
|↓〉 , (4.1)

where |↑〉 ≡ |e〉 is the excited state and |↓〉 ≡ |g〉 is the ground state. The superposition is

parametrized by the two angles θ and φ which tell the population and phase of the superposition

respectively. The 2-level system is equivalent to a quantum spin-1/2 particle that, when measured,

must collapse into either spin “up” or spin “down”. It is convenient to visualize the 2-level system’s

quantum state as a pseudo-spin vector, or Bloch vector [48], labeled ~j that lives on the surface

of a Bloch sphere. The Bloch vector is defined as ~j = jxx̂ + jyŷ + jz ẑ with the α ∈ {x, y, z}

component equal to a first order expectation value jα ≡ 〈ĵα〉 of the spin operator ĵα, that are

simply proportional to the Pauli spin operators, ĵα = σ̂α/2. By these definitions, the Bloch sphere is

normalized so that the z projection of the Bloch vector, jz = (P↑−P↓)/2, is equal to the difference in

probabilities of the atom existing in the two states |↑〉 and |↓〉. Similarly, the transverse components

of the Bloch vector give the magnitude and phase of the coherence between the two states. An

example Bloch vector is plotted below in Fig. 4.1.
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Figure 4.1: A 2-level atom’s quantum state is represented by a Bloch vector ~j that lives on the
surface of a Bloch sphere. The state can be parameterized by vector components jx, jy, and jz or
angles θ and φ.

In all of our experiments, we deal with a large ensemble of 104 to 106 atoms. So we most

commonly think in terms of a collective Bloch vector composed of many individual Bloch vectors

arranged tip to tail. Going forward, unless otherwise states, all Bloch vectors will be assumed to

be collective.

The collective Bloch vector is denoted with a capitol ~J in terms of collective operators Ĵi =∑N
i=1 ĵi. An example collective Bloch vector, composed of many individual ones, is shown in Fig.

4.2. The Bloch vector shown represents a coherent spin state (CSS) where every atom is identically

prepared in an arbitrary superposition state described by the angles φ and θ. However, due to the

random projection of each atom when measured, uncertainty arises in the two angles, that is often

plotted as a probability distribution of the Bloch vector on the sphere (red distribution). For a CSS

on the equator the uncertainties in θ and φ are equal, and analogous to the coin flip uncertainty

discussed in Chapter 1, ∆φ = ∆θ = 1/
√
N . This uncertainty is called the standard quantum limit

(SQL) for unentangled atoms [173, 74].
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Figure 4.2: A collective Bloch sphere. The individual projection of each single-atom Bloch vector
leads to an uncertainty in the angular resolution of the Bloch vector of ∆θ = ∆φ = 1/

√
N for

unentangled atoms, called the standard quantum limit.

The angular uncertainty in the Bloch vector can also be interpreted in terms of variances

in each component Jα calculated using second order expectation values of the spin operators. For

example, (∆Jz)
2 = 〈Ĵ2

z 〉 − 〈Ĵz〉
2
. For a coherent spin state on the equator of the Bloch sphere,

a common example, (∆Jz)
2 =
√
N/2. This spin noise is referred to as quantum projection noise

(QPN).

In addition to representing a collective spin state and its uncertainty, Bloch vectors have

immense intuitive power for other reasons as well. First, the Bloch sphere can be used to visualize

coherent rotations of the atom’s quantum state. For any 2-level system or spin-1/2, coherent state

rotations can be accomplished by applying an AC field at or near the frequency difference ωa

between |↑〉 and |↓〉. Applying a resonant coupling, for example, will cause Rabi flopping of the

spin. However, general applied pulses can be used to achieve arbitrary rotations of the Bloch vector.

For an applied field with Rabi frequency Ω and detuning δ, the Bloch vector is rotated through an

angle γ =
√

Ω2 + δ2 × t about an axis with polar angle θ = π/2 + arctan (δ/Ω). The azimuthal
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angle of the rotation axis is set by the phase of the applied field.

Second, and perhaps most importantly, the equatorial face of the Bloch sphere gives a visu-

alization of the “face” of any atomic clock or quantum sensor. A CSS oriented on the equator will

undergo phase oscillation at the difference frequency ω between the |↑〉 and |↓〉 states. An atomic

sensor operates by measuring the difference in φ and the phase of the local oscillator φLO. This

phase difference is converted into a population difference using a π/2 rotation of the Bloch sphere,

and the populations of the two state are measured. This sequence is called Ramsey spectroscopy

and is ubiquitous among all types of quantum sensors.

4.2 Squeezing

The goal of this work is to create entanglement-enhanced quantum clock hands that have an

enhanced resolution in φ or θ below the SQL, as shown in Fig. 4.3. In particular, the entanglement

enhancement is measured using the Wineland parameter for spin-squeezing S = (∆θ/∆θSQL)2 (or

similar for φ). One can show that any state with S < 1 must be in a nonfactorable, entangled

quantum state [149]. Whichever quadrature is squeezed, θ or φ, the anti-squeezing quadrature will

always have an increased uncertainty given by the Heisenberg uncertainty relation ∆φ∆θ ≥ 1/N .

Over the past 10 years or so, researchers have demonstrated many ways to create spin

squeezed states of neutral atoms. Many schemes use unitary interactions between qubits [136,

93, 113, 118, 102, 132, 62, 114, 28, 95]. However, we and others create entanglement using a joint,

or collective measurement (sometimes called quantum-nondemolition) [88, 4, 140, 169, 96, 31, 19,

12, 142, 119, 133, 134].

4.3 Joint measurements

To understand how entanglement can be generated with joint measurements, consider a CSS

of 4 atoms,

|ψCSS〉 =

N=4∏
i=1

1√
2

(|↑i〉+ |↓i〉). (4.2)
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Figure 4.3: A squeezed collective Bloch vector. Entanglement can reduce the quantum fluctuation
in an ensemble of atoms or spins, leading to a sharper atomic clock hand. The blue probability is
squeezed since it has an angular resolution narrower than the standard quantum limit of ∆θSQL =
1/
√
N . The red distribution represents a coherent spin state made up of identically prepared

unentangled atoms.

The number of atoms in |↑〉 is uncertain in this state. In principle the state could have anywhere

from zero to four atoms in |↑〉. However, one could simply perform a measurement of N↑, the

number of atoms in |↑〉, in a collective way without gaining any information about which atom is

in |↑〉, and if the outcome is N↑ = 2, for example, then the resulting state would be,

|ψ〉 =
1√
6

(|↑↑↓↓〉+ |↑↓↑↓〉+ |↑↓↓↑〉+ |↓↑↑↓〉+ |↓↑↓↑〉+ |↓↓↑↑〉) (4.3)

that is, in some sense, a maximally squeezed state of the 4 atoms. In fact, unless the outcome of the

collective or joint measurement had been |↑↑↑↑〉 or |↓↓↓↓〉 the resulting state would be entangled

no matter the outcome of the measurement. For a very large number of atoms, such as the 105 to

106 in our experiment, the outcome of a measurement can be very well approximated by a normal,

Gaussian probability distribution P (θ) = 1√
2π(∆θSQL)2

e
−θ2

2(∆θSQL)2 where ∆θSQL = 1/
√
N is very

small. This means that a collective measurement will, essentially, always give an entangled state
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near the equator.

The state shown in equation 4.3 is a Dicke state of 4 atoms, which would be drawn as a

ring around the equator of the Bloch sphere. In our experiments, our entanglement generating

measurements are not precise enough to create such states, but rather we collapse into states that

are somewhere in between Eq. 4.2 and 4.3. Such states are a bit difficult to write down, but very

easy to plot on the Bloch sphere. These states are the classic “squeezed” states that have reduced

uncertainty in the θ direction on the Bloch sphere and an increased uncertainty in the φ direction.

Of course, since quantum sensors measure the quantum phase φ, our squeezed states will need to

be rotated 90◦ before use in atomic clocks and most other precision measurements.

One mathematical formalism that can be used to write down and analyze squeezed states

is a quantum Baysian formalism [50]. The Baysian formalism simply implements the rule that a

quantum state must be consistent with any measurement outcome. In this formalism, one defines

a projection operator for a measurement that we write as P̂B. For this work, we can assume that

the measurement is a collective measurement that has an outcome of JzM and a measurement

uncertainty of ∆JzM . The collapse operator is then,

P̂B =
1

A
e

(Ĵz−JzM )2

2∆JzM

2

(4.4)

where A is a normalization constant that renormalizes the wave function after the collapse. In the

case that the measurement resolution ∆JzM is much smaller than the original projection noise, this

measurement simply collapses the Bloch sphere into a state that is centered around the measurement

outcome Jz = JzM with an uncertainty equal to the measurement uncertainty ∆Jz = ∆JzM . In

order to analytically derive the wave function of a squeezed state, one can simply apply the operator

of Equation 4.4 to a coherent spin state written in the Dicke basis,

ψCSS(θ = π/2, φ = 0) = 2−N/2
N∑
i=0

(
N

i

)
|N↑ = N − i〉N . (4.5)

Since the state collapses around the measurement outcome JzM , this outcome must be

recorded and subtracted from any final measurement for the entanglement-enhancement to be
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realized. For this reason, this type of squeezing is often called “conditional”, since the final mea-

surement is certain conditioned on the premeasurement. However, conditional squeezing is still

deterministic in the sense that squeezing is created on every trial. In addition, in chapter ?? we

discuss an experiment to use real-time feedback after the measurement in order to create squeezing

with a specific targeted population value Jz.

4.4 Quantifying entanglement through spin squeezing

As I have already discussed, spin squeezing is an entanglement metric that quantifies the

reduction in a group of atoms’ quantum noise. This reduction in spin noise means there must

be quantum correlation between the atoms. In fact, the amount of squeezing and the quantum

spin correlation can be directly related to each other by writing squeezing in terms of second order

moments of the spin operators. Assume a state at the equator of the Bloch sphere is squeezed in

the θ direction so that the variance in Jz is reduced ∆Jz < ∆Jz,SQL. I can re-write the spin noise

using expectation values of the second order moment, assuming Jz = 0,

(∆Jz)
2 = 〈Ĵ2

z 〉 (4.6)

=
∑

all atoms i,j

〈ĵziĵzj〉 (4.7)

=
∑
all i

〈ĵ2
zi〉+

∑
all i 6=j

〈ĵziĵzj〉 (4.8)

=
N

4
+
∑

all i 6=j
〈ĵziĵzj〉 . (4.9)

The expectation value can be written in terms of second order operators of a single atom (line 4.8

first term) and joint operators between each atom (line 4.8 term two). The single atom operators

are what lead to the original projection noise (∆Jz)
2 = N/4 as shown in line 4.9. Any reduction in

this quantum noise must come from quantum correlation between the atoms given by, for example,

a nonzero expectation value 〈ĵziĵzj〉 for atoms i and j.

In an ideal system, it is reasonable to assume that the correlations would be symmetric among
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the atoms so that line 4.9 could then be written without the sum, for arbitrary i and j,

(∆Jz)
2 =

N

4
+N2 〈ĴziĴzj〉 . (4.10)

Additionally, since we assume the state is fully coherent and lies on the equator of the Bloch sphere,

we can write the squeezing fully in terms of the spin noise reduction or squeezing, and cancel all

the factor of two by writing the quantity in terms of the simple Pauli spin operators,

S =
(∆Jz)

2

(∆Jz,SQL)2
(4.11)

= 1 +N 〈σ̂ziσ̂zj〉 . (4.12)

Therefore, in this case, the squeezing is directly expressed in terms of the total atom number and

the atom-atom quantum correlation. However, for large atom number, the maximum correlation

of a single pair will be whatever is required to fully cancel the original spin noise so that S goes to

approximately zero, that is

〈σ̂ziσ̂zj〉max = −1/N (4.13)

However, even though the quantum correlation between two atoms pulled out of the squeezed

ensemble may be weak, the total quantum correlation in the system is very high. This is because

there are N2 links between atoms that can be correlated at order 1/N . The total correlation is then

the product of N2 and 1/N , namely, N . Therefore, a maximally squeezed state has the same total

quantum correlation as N perfectly entangled pairs. In fact, for our best squeezed states wich have

S ≈ 1/60, the total quantum correlation is approximately,
∑

all i 6=j 〈σ̂ziσ̂zj〉 = 390, 000, equivalent

to the quantum correlation of 390,000 maximally entangled pairs! This quantity of entanglement is

enormous, and created by a single measurement operation. Could there be some way to use joint

measurements as an entanglement resource to create, distill, and then harvest the entanglement for

quantum information processing or other quantum tasks?

As another note, one other popular entanglement metric for non-classical states has been the

so-called “entanglement depth” [150]. This entanglement metric proves that entanglement exists
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and gives a minimum provable number of particles that must be participating in an entangled

group. However, entanglement depth does not quantify the strength of the quantum correla-

tion/entanglement in the system, and can even be maximal in the limit of infinitesimal quantum

correlation. Entanglement depth might be more accurately labeled entanglement breadth. For this

reason, spin squeezing may provide a more useful metric for thinking of entanglement as a resource

for quantum correlations.

4.5 Joint measurements of atoms in a cavity mode

So far the joint measurements have been described in an abstract way that is implementation

independent. I will now turn to an overview of how we implement joint measurements by placing

the atoms inside an optical cavity mode.

The |↑〉 and |↓〉 states are formed in rubidium by the F = 2 and F = 1 hyperfine ground

states, where F is the quantum number labeling total angular moment of the atom including

electron spin, orbital angular momentum, and nuclear spin. For all of the work in this thesis we

use the stretched mF = 1 and mF = 2 states. The optical cavity is then tuned near resonance

to the |↑〉 → |e〉 transition, where |e〉 is an optically excited state on either the D2 (780 nm) or

D1 (795 nm) transition. In this situation, photons in the cavity can be exchanged with atomic

excitations, if the atoms begin in |↑〉. We work in a regime where the number of photons in the

cavity is much smaller than the number of atoms, so the excitation fraction is low. In this regime,

the atom-cavity system can be approximated (known the Holstein-Primakoff approximation) as

two coupled harmonic oscillators. This approximation and formalism is described in detail in Ref.

[32], but I will briefly overview the physics here.

Under the Holstein-Primakoff approximation, the atom-cavity system can be approximated

by the following Hamiltonian, written for a single excitation, neglecting cavity losses and other

decoherence mechanisms, and in matrix form in the
(
|↑〉|1〉
|e〉|0〉

)
basis, where |1〉 represents a photon
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in the cavity and |0〉 represents zero photons in the cavity.

H
.
= ~

 δ Ω/2

Ω/2 0

 . (4.14)

The cavity mode is detuned by δ ≡ ωc − ωa away from the atomic transition ωa (which is set

to zero energy in this Hamiltonian). The collective coupling between the atoms and the cavity

mode is defined by Ω, called the vacuum Rabi splitting, where Ω =
√
N↑2g and 2g, called the

Jaynes-Cummings coupling parameter is the single photon Rabi frequency of atoms in the cavity.

The Eigenstates of this Hamiltonian are characterized by new symmetric and antisymmetric

normal modes of the coupled oscillators. The new normal modes of the system are, relative to the

nominal atomic transition ωa

ω± =
δ ±
√
δ2 + Ω2

2
. (4.15)

Most importantly, the size of the vacuum Rabi splitting (the splitting between the two modes when

δ = 0), is dependent on the number of atoms in |↑〉. This collectively-enhanced mode splitting is

the phenomenon that allows us to make a joint measurement of N↑. In general, even if the cavity

is detuned off of resonance (taken to be blue detuning here), the atoms cause a shift ∆ω to the

cavity resonance equal to

∆ω =
−δ +

√
δ2 + Ω2

2
(4.16)

that depends linearly on atom number in the dispersive regime, where δ2 � Ω2.

In all, by measuring ∆ω, and knowing our detuning δ, we perform a nondestructive, joint

measurement of the number of atoms in |↑〉. This allows us to project the atoms into a squeezed

state. A more complete description of the atom cavity system, the Jaynes Cummings Hamiltonian,

etc. can be found in [32]. In the next two sections, I will describe the signal to noise of this probing

as well as the fundamental limitation to this scheme from free space scattering.
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4.6 Signal to noise when probing

In order to probe the cavity shift ∆ω, we send probe photons with frequency ωp at the cavity

near the atom-shifted cavity resonance frequency ω′c . Small changes in the cavity frequency around

ωp will then be imposed as a phase shift on either the transmitted or reflected electric fields. This

phase shift can either be measured in a homodyne or a heterodyne detection scheme by interfering

the transmitted and reflected light against a reference beam. In the most recent third generation

experiments, we have used homodyne phase measurements in reflection, that are advantageous

over any heterodyne measurements which are limited to a 50% fundamental quantum efficiency

due to gaining both phase and amplitude information from the reflected light (see Section A).

However, importantly for this chapter, vacuum fluctuations of the transmitted or reflected field

lead to noise variance in the estimated phase φH of of the homodyne fringe. The homodyne phase

can be written as the amplitude of the q-quadrature of the reflected electric field to the nominally

maximal i-quadrature, φH = q(δ)/i(δ ≈ 0) where δ = ωp − ω′c is the detuning of the probe from

the atom-shifted cavity. The noise in the homodyne phase signal, when sitting at a zero of the

q-quadrature, is then

(∆φH)2 =
∆q

imax
=

1

qp4Md
(4.17)

where Md is the total number of detected photons as inferred from the voltage on the photodiode

and the photodiode sensitivity S. qp is a quantum efficiency after the detection plane (that is,

in this case, taken to be directly in front of the photodetector) that includes detector quantum

efficiencies and effective quantum efficiency loss from added technical noise sources in and after the

photodetector. The homodyne phase noise leads to noise in the measured cavity frequency ω̃c of,

(∆ω̃c)
2 = α2/(qp4Md) (4.18)

where α−1 = 1
i
dq
dδ |

δ≈0 is the phase shift of the relfected probe when probing the cavity near reso-

nance. α depends on the input and output cavity linewidths κ1 and κ2 and whether one probes in

reflection or transmission. The general phase response of the cavity can be found in Ref. [32]. For
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probing in reflection in the dispersive regime, the result is,

α−1 =
4κ1

κ(κ− 2κ1)
(4.19)

where κ is the full cavity linewidth. For a perfect single-ended cavity with κ1 = κ, the result

simplifies to α = −4/κ.

Now that we have calculated the photon shot noise in the measurement of the cavity reso-

nance, this noise must be compared to the fluctuations in the cavity resonance induced by fluc-

tuations in the number of atoms in |↑〉 due to quantum projection noise. As already mentioned,

∆Jz,QPN =
√
N/2. This leads to equivalent fluctuations of N↑, ∆N↑,QPN =

√
N/2 and fluctuations

in the outcome of a single measurement of the cavity resonance frequency of,

∆ωc,QPN =
g

2
√

2

Ω√
Ω2 + δ2

. (4.20)

Given the quantum projection noise and the noise in probing, we can note that the amount of

spin noise reductionR when limited by the fundamental photon shot noise is, RPSN ≡ (∆ω̃c/∆ωc,QPN )2.

In the dispersive regime, one finds, for two equal measurements,

RPSN =
κ2δ2

qp Ω2 g2Md
=

κ2δ2

4qp g4MdN
. (4.21)

. Probing with more photons improves this photon shot noise-limited resolution of the cavity,

although in practical systems there will be technical noise floors that limit the decrease in R.

4.7 Contrast loss from free-space scattering and optimal squeezing

However, competing with the photon shot noise concern, which demands more probe photons,

is contrast loss from free space scattering that worsens as more photons are used to probe the cavity

frequency. To lowest order, due to low transverse optical depth, every photon that is emitted into

a free space mode reveals whether a single atom is in |↑〉 or down and therefore causes that atom’s

wave-function to collapse. This causes a reduction in the transverse projection of the Bloch vector,

measured by contrast C ≡ (J2
x+J2

y )/(N/2)2. Specifically, C = e−Ms/N whereMs is the total number
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of free-space scattered photons. The Wineland squeezing parameter can then be equivalently re-

written in terms of R and C as S ≡ ∆θ/∆θSQL = R/C2. This leads to an optimal squeezing, in

the far detuned limit of, Sopt = e/2qNC, again for two equal probing windows, [32] where q is the

total quantum efficiency for detecting the probe photons.

For our recent spin-squeezing experiments, this fundamental free-space scattering has been

relevant limit to spin squeezing, along with technical noise floors from laser frequency noise and

optomechanics (See chapter 6). In addition, spin flips induced by state-changing Raman transitions

can also add significant limitations to spin noise reduction and squeezing [32], but these have been

significantly reduced by working on optical cycling transitions.



Chapter 5

Improved Bloch Vector Rotations with Reversible Dephasing

In the summer of 2013 we performed an experiment to directly observe over a factor of

ten in entanglement enhancement of an atomic clock hand, the largest amount of spin squeezing

ever observed at the time [19]. The details of this experiment have been discussed in detail in

previous theses [20, 170]. One outcome of this experiment was the realization of the difficulty

of performing precise rotations of the atomic Bloch vector necessary for Ransey clock sequences,

differential measurements of the Bloch vector, or any quantum information protocol. This difficulty

is exacerbated when working on a magnetic field sensitive transition. For this reason, we conducted

an experiment to demonstrate a new method to achieve cancellation of certain classes of Bloch

vector rotation errors in a collective system using reversible dephasing [41]. In this chapter, I will

describe this work.

5.1 Experiment: dephased rotations

Decoherence destroys entanglement, degrades precision measurement signals, and limits a

wide range of coherent processes from lasing to operating quantum gates [138, 89]. Therefore,

most technologies relying on real or synthetic atoms try to minimize decoherence resulting from

loss, relaxation, and inhomogeneous broadening. Recently, however, specifically engineered forms of

decoherence have been used to enhance certain processes. Dissipative decoherence, for example, can

remove information from a system leading to stabilization of polar molecules from lossy collisions

[179] or generation of entanglement [49, 87, 130]. Also, non-dissipative, reversible, decoherence in
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the form of inhomogeneous broadening can be used to stabilize coherent operations allowing, for

example, storage of non-classical light signals [67], or as we show in this Letter, insensitivity to

errors in collective quantum state rotations.

Precision measurements using one or many atoms require precise rotations of the atoms’

quantum state. These rotations, achieved by applying a coherent field at or near the atomic tran-

sition frequency, are used to excite an atomic transition [127, 17], map the evolution of a quantum

phase into a measurable quantity [129, 66], or simply transfer state populations for precision read-

out [31]. Imperfections in these rotations lead to classical uncertainty in the atoms’ quantum state,

which can dominate fundamental quantum uncertainty and limit precision measurements.

In this Chapter, I will present an approach to suppress rotation errors using reversible inho-

mogenous broadening, an alternative to the composite coupling pulses that are often used to correct

state rotation errors [160, 172, 78, 98, 161, 151, 128, 157]. I first theoretically show how collective

rotations of many qubits can be performed with greatly reduced errors if controlled inhomogeneous

broadening of the transition is applied prior to the desired rotation. I also show that collective

coherence is restored by reversal of the inhomogeneous broadening after the rotation.

Next I apply dephased rotations in a specific experiment, demonstrating a maximum sup-

pression of technical noise of greater than 21 dB when rotating the internal states of laser-cooled

and trapped 87Rb atoms. Dephased rotations aid the generation and observation of entangled,

spin-squeezed states with a directly observed enhancement in quantum phase estimation 9.5(5) dB

below the standard quantum limit for an unentangled ensemble, one of the largest such enhance-

ments in atomic systems reported to date [19, 103, 62, 113, 95]. In the absence of any reversible

inhomogeneous broadening, either incidental or deliberate, we estimate that little to no squeezing

would have been observed in this experiment due to imperfections in the required quantum state

rotations 1 .

1 A different measurement sequence [19] that avoids any rotations achieved a comparable amount of directly
observed spin squeezing in the same system without relying on dephased rotations, but only by sacrificing a factor of
two in fundamental measurement resolution. This additional factor of two was not realized in this work due to the
probe laser’s frequency noise coupling more strongly into the measurment sequence of Fig. 5.3
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Figure 5.1: The reduced sensitivity of a dephased rotation to a small rotation error is graphically
represented on collective Bloch spheres. A single representative Bloch vector prepared in the
x̂ − ẑ plane, along with the quantum uncertainty in its position, is shown (red arrow and noise
distribution). Each sphere also has a series of colored lines denoting the tips of Bloch vectors that
are at a constant Jz in the initial configuration. The original rings of constant Jz are shown in parts
(b-e) as thin black lines for reference. A small rotation Rŷ(π/16) representing an error is applied
without (b) and with (c,d,e) dephasing. By reversibly dephasing the Bloch vector to Cd = 0.14,
the impact of the rotation is greatly reduced. Rotation errors that would otherwise dominate can
be supressed well below the fundamental quantum noise.
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Dephased rotations are a general concept and could be applied to a variety of applications,

having several advantages over traditional composite rotation sequences. Composite sequences rely

on cancellation between the errors of each individual rotation. However, cancellation fails if the

errors fluctuate on time scales comparable to the time required for the composite pulse sequence.

Furthermore, increasing the rate of rotations to enhance the correlation in errors may actually be

detrimental depending on the form of the noise spectrum [33]. Lastly, composite pulses require

precise control over the phase of the coupling field, and the most effective composite sequences

require many pulses, increasing the time required for a measurement sequence. The approach

presented here to a large degree avoids these requirements. We note that intense efforts to apply

composite pulses to reduce rotation-added noise were largely unsuccessful in our experiment.

We describe our system of N 2-level atoms as spin-1/2 particles using a collective Bloch

vector J = Jxx̂+Jyŷ+Jz ẑ = ΣN
i=1Ji, where the ith Bloch vector Ji = 〈Ĵi〉 is the expectation value

of the quantum spin projection operator for the ith atom. The ẑ projection of the collective Bloch

vector Jz ≡ J · ẑ = (N↑ −N↓) /2, is directly determined by measuring the number of atoms in spin

up N↑ and down N↓. Precision measurements with 2-level systems are fundamentally limited by

quantum uncertainty in the angles describing the orientation of the Bloch vector. This quantum

uncertainty appears as quantum projection noise (QPN) in the measurement of the spin projection

Jz. For unentangled atoms, the rms fluctuation for a coherent spin state (CSS) with J = N/2 x̂ is

∆Jz,QPN =
√
N/2. The projection noise limits the estimate of the Bloch vector’s polar angle to

an rms uncertainty of ∆θSQL = 1/
√
N , the so-called standard quantum limit (SQL). Due to this

scaling, states with large N are desirable for precise phase estimation, but in these states, classical

rotation errors become more challenging to reduce below the smaller SQL.

The rotation of the ith Bloch vector through angle ψi about an axis n̂ is defined by the

rotation matrix Rn̂(ψi). If the rotation is uniform (ψi = ψ for all i) then the result is a rigid

rotation in which the length of the Bloch vector is conserved. The errors we wish to suppress

are those generated by uniform rotation errors associated with the coupling field, in particular,

an arbitrary erroneous rotation through a small angle φ described by Rn̂(φ). The suppression of
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the rotation errors will be achieved by introducing a brief, controlled inhomogeneous broadening

of the energy difference between |↑〉 and |↓〉 before and after the imperfect rotation. The time-

integrated effect of the broadening on the ith vector is characterized by the non-uniform rotation

Rẑ(ψi). The amount of dephasing is quantified by the fractional reduction in the collective Bloch

vector’s transverse projection J⊥ ≡
√
J2
x + J2

y . Specifically, we define the transverse coherence

Cd = J⊥d/J⊥0, where the subscript d refers to J⊥ after dephasing and 0 refers to J⊥ prior to

dephasing. In the present work, the inhomogeneous broadening will be achieved through light

shifts, but could also be realized through magnetic fields or electric fields. Whatever method is

used, the key is that the dephasing must be reversible: at a later time the opposite rotation can be

realized Rẑ(−ψi) to fully or partially undo the dephasing. Here the dephasing will be undone by

using a π-pulse (e.g. Rŷ(π)) followed by identical inhomogeneous broadening.

To theoretically show that dephased collective spin vectors are protected from small rotation

errors, we analyze the rotation error of a nominal π-pulse, with fractional amplitude error ε and

detuning error δ of the applied coupling field from the atomic transition, that is preceded and

followed by dephasing steps. The final Bloch vector after such a sequence is

JF = ΣN
i=1Rẑ(ψi)Rγ̂(β)Rẑ(ψi)Ji0 , (5.1)

where the subscript F indicates a quantity after all rotations.

The effective rotation angle is a function of both ε and δ and can be written β = π
√

(1 + ε)2 + δ∗2

where δ∗ = δ/Ω and Ω is the on resonance Rabi frequency of the applied rotation. In the rotating

frame of the applied field, the rotation axis depends on the detuning error, γ̂ ∝ Ωα̂ + δẑ. For an

arbitrary initial Bloch vector, the rotation axis α̂ = ŷ can be chosen without loss of generality.

As an example, we assume that the inhomogeneous phase rotation angles ψi are drawn from

a Gaussian distribution with mean of zero and rms value σ. The reduction in transverse coherence

due to the applied inhomogeneous broadening in this case is Cd = e−σ
2/2. The complete sequence

of applied broadening and imperfect rotations can then be averaged over all atoms to compute the

final Bloch vector JF with solution,



56


JxF

JyF

JzF

 ≈ −


Jx0(1− η2) + CdπεJz0

Jy0(1− η2)− Cd2δ∗Jz0

Jz0(1− 2η2)− Cd(2δ∗Jy0 + πεJx0).

 (5.2)

where η2 ≡ π2ε2/4 + δ∗2. We have assumed here that πε, δ∗, and Cd � 1, and neglected all terms

of third order in products of these quantities.

The key result is that all rotation errors that are first order in πε and δ∗ are reduced by a

factor Cd. The cost of this error suppression is shortening of the Bloch vector, but only at second

order in the rotation error η. The final transverse Bloch vector component CF = J⊥F /J⊥0 is

reduced as CF ≈ 1− η2, and the ẑ projection of the Bloch vector is reduced to JzF /Jz0 ≈ 1− 2η2.

Fig. 1 graphically demonstrates the reduced sensitivity of an arbitrary CSS to a rotation

about an axis on the equator. The rings of constant color indicate the location of the tips of

the Bloch vectors with equal Jz at the beginning of a rotation sequence (top left). Subsequent

steps indicate how these points are mapped to new positions due to rotations and dephasing, with

the initial ring locations shown in black for reference. The figure depicts the effect of an error

πε = π/16, δ∗ = 0 rotation about the y-axis with and without dephasing to Cd = 0.14, a reasonable

experimental value. Without dephasing, the rotation error can cause angular deflections greater

than the representative quantum noise distribution (shown for N = 120 for visual clarity). With

dephasing, the rotation error is greatly reduced, causing negligible error compared to the quantum

noise.

The dephased rotation scheme exhibits an additional useful attribute for suppressing rotation

errors in the generation and manipulation of spin-squeezed ensembles. Dephased rotations can

significantly reduce the amount of anti-squeezing projected into the low noise squeezed quadrature

by a rotation error. We show this theoretically in the Supplementary Material.

We apply the proposed scheme to collective measurements of N = 2.1 × 105 to N = 5 ×

105 87Rb atoms laser-cooled and trapped inside an optical cavity of finesse F = 660 (see ref. [19]

for experimental details). The atoms are tightly confined by a 1D optical lattice formed by exciting
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Figure 5.2: (a) The standing wave intensity of each beam is shown inside the cavity (blue mirrors).
The atoms are trapped at antinodes of the 823 nm optical lattice (blue). The probe laser at
780 nm (red dashed) and dephasing beam at 795 nm (green dotted) cause dephasing due to their
inhomogeneous light shifts. We detect the phase of the probe light to infer N↑. (b,c) The reduction
in transverse coherence after dephasing Cd (red and green squares) and rephasing CF (black circles)
is measured versus the average number of transmitted photons from the probe beam (b) and
dephasing beam (c).
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a longitudinal TEM00 mode of the cavity with wavelength λl = 823 nm. The atoms fill lattice

sites long the central 2 mm of the cavity. The spin system is defined by hyperfine ground states

|↑〉 = |F = 2,mf = 2〉 and |↓〉 = |F = 1,mf = 1〉. Coherent rotations between these states are

performed by applying microwaves at the transition frequency 6.83 GHz. N↑ can be inferred by

measuring the dispersive frequency shift of another TEM00 cavity mode tuned ≈ 200 MHz from

resonance with the optical transition between |↑〉 and an excited state |e〉 = |F ′ = 3,mf = 3〉 on

the 780 nm D2 line [19].

The probe light at λp = 780 nm that is used to measure the cavity frequency shift and infer

N↑ also creates an inhomogeneous light shift that dephases the atoms. Since the standing waves of

the lattice and probe are incommensurate (λp 6= λl), the atoms at different lattice sites experience

different light shifts from the probe, leading to dephasing (shown in Fig. 5.2).

We can also apply an additional dephasing laser tuned to resonance with yet another TEM00

longitudinal mode of the cavity. This dephasing beam is detuned ≈ 50 GHz from the 795 nm D1

optical transition and allows us to modify the amount of dephasing without modifying the signal to

noise of the atom number probe or causing additional unwanted free-space scattering. The 795 nm

beam also serves to dephase the sub-class of atoms at lattice sites that are at anti-nodes of the

probe mode (see Fig. 5.2(a)). Because the atoms are tightly confined with respect to the cavity

axis, the same light shifts can be applied at a later time. after a π-pulse, to reverse the applied

phase shifts.

We can measure Cd due to dephasing from the probe and dephasing lasers by first preparing

a coherent spin state along x̂. We then apply either the probe or dephasing laser for a varying

amount of time, after which we apply the rotation Rα̂(π/2) about a random axis α̂ lying in the

x̂-ŷ plane. Lastly, we measure the number of atoms N↑. When averaged over all rotation axes,

the standard deviation of N↑ is proportional to Cd. In Fig. 5.2(b) and (c), Cd and CF are plotted

versus the average number of probe Mp and dephasing Md photons transmitted through the cavity.

For small Md the transverse coherence only shows second order reduction (1−CF ∝M2
d )), due to

the large detuning of the dephasing beam from the optical transition. In contrast, for small Mp
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the transverse coherence loss is linear (1− CF ∝Mp) due to the higher probability of single-atom

wave function collapse from free-space scattering of probe photons.

In Fig. 5.3(a) we demonstrate reduced sensitivity to rotation noise arising from environ-

mental noise sources using our dephased rotation scheme. Data showing reduced sensitivity to

intentionally applied rotation errors can be found in the Supplementary Material. In our exper-

iment, undesirable environmental rotation noise arises primarily from microwave amplitude noise

and frequency fluctuations in the magnetic field-sensitive hyperfine transition. To demonstrate a

reduction in sensitivity to environmental noise sources, JzF is measured after a large even number

of π-pulses. With increased dephasing, the rotation-added noise can be reduced below QPN even

after eight π-pulses.

We now show how dephased rotations can be used in experiments to generate entangled,

spin squeezed states by making precise collective measurements of the spin projection Jz. These

experiments are treated in detail in a related work [19]. Here we primarily emphasize the role

dephased rotations can play, enabling large reductions in technical rotation noise and allowing

resolution of the spin projection far below the quantum projection noise level. In our experiment,

dephased rotations are highly advantageous to composite pulse sequences because they do not

require any control of the applied rotation axis and do not increase the duration of the measurement

sequence, which would increase sensitivity to low frequency noise.

To verify that the noise in Jz is below QPN, two consecutive measurements of Jz, labeled

Jz,p and Jz,f must be correlated below ∆Jz,QPN . The degree of spin noise compared to quan-

tum projection noise is characterized by the spin noise reduction R = [∆(Jz,f − Jz,p)]2/∆J2
z,QPN ,

where ∆(Jz,f − Jz,p) is the standard deviation in the differential quantity Jz,f − Jz,p. The mea-

surement sequence for R is shown in Fig. 5.3(b). The spin noise reduction has two contributions

R = Rbck +Rrot. One, Rbck, we attribute to measurement imprecision of the experiment along with

measurement back-action. The other, Rrot, is rotation-added noise from the two π-pulses in the

measurement sequence. We estimate Rbck (black line in Fig. 5.3(c)) by performing the measure-

ment sequence of 5.3(b) without the π-pulses. The experiment is then repeated with the π-pulses
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Figure 5.3: (a) The rms noise in the measured spin projection JzF , ∆JzF , after applying an integer
number of π-pulses is displayed for three different amounts of applied dephasing, quantified by
Md. The contribution to ∆JzF due to finite measurement resolution (i.e. ∆JzF at 0 π-pulses) is
subtracted out. For Md = 0, a linear fit extracts the rotation-added noise per pulse (red line).
Predictions (green and black bands) using Cd from Fig. 5.2 reasonably explain the reduction in
rotation-added noise with increased Md. All shaded regions represent 68% confidence intervals.
(b) Dephased rotations are applied in a sequence designed to resolve spin populations below QPN.
N↑ is measured before and after a π-pulse with outcomes labeled N↑,p, N↓,p, N↑,f and N↓,f to
determine the spin noise reduction R. Both the 780 nm probe and 795 nm dephasing beams are
applied during each measurement of N↑ and N↓. (c) R is measured as a function of probe strength
Mp for Md = 6.1(3) × 106 (blue data and fit) and Md = 0 (red data and fit). All quantities are
displayed in units of dB relative to QPN, dBQPN. The fit to the measurement background Rbck is
shown in black. (d) The rotation-added noise Rrot, shown in the inset, can be inferred from the
data of part (c). Rrot with no dephasing is shown as a dashed line. Dephasing can reduce Rrot by
more than 21 dB.
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included, and any increase in R is assigned as rotation-added noise Rrot.

In Fig. 5.3(c), the measured spin noise reduction and measurement background are shown

versus Mp (transmitted probe photons in a single measurement window). With the probe beam

alone (i.e. Md = 0), the spin noise reduction R (red data and fit) lies well above the measurement

background Rbck (black line). However, when the additional dephasing is applied with strength

Md = 6.1(3) × 106, the observed R (blue points and fit) is improved to values very close to the

measurement background.

Fig. 5.3(d) (inset) displays the inferred rotation-added noise Rrot with and without the

additional dephasing applied (blue and red lines respectively). The combined dephasing of the probe

and dephasing beams allows a reduction of the rotation-added noise of greater than approximately

21 dB compared to the original rotation noise with no dephasing (i.e. Rrot ≈ 0 dBQPN when Mp = 0

and Md = 0) enabling up to R = 13(1) dB of spin noise reduction below the QPN at 2.1 × 105

atoms.

The rephasing nearly completely restores coherence, as demonstrated in Fig. 5.2. As a result,

the state generated after the premeasurement can be viewed as a determinstically generated spin-

squeezed state (i.e. no post-selection), conditioned on knowledge of the measurement outcome Jz,p

on a given trial. After accounting for both the degree of spin-noise reduction R and the loss of

coherence CF , the optimum measurement sequence with dephasing provides a directly observed

enhanced phase resolution 9.5(5) dB below the SQL. In contrast, without any reversible dephasing,

rotation-added noise would have precluded the observation of any enhancement beyond the SQL.

5.2 Reduction of applied frequency and amplitude errors

The main text shows both experimentally and theoretically that dephasing reduces an en-

semble’s sensitivity to collective rotation errors arising from imperfections in the coupling field used

for state manipulation. To gain intuition, consider the case when the initial Bloch vector lies on

the equator of the Bloch sphere (Jz = 0). In this case, the length of the dephased Bloch vector Jd

is reduced, by definition of Cd, to Jd = CdJ0. Since the length of the Bloch vector is reduced by
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Cd, the possible change in the Bloch vector’s Jz projection due to a rotation must also be reduced

by Cd.

Fig. 5.4 demonstrates this reduced sensitivity to intentionally applied rotations representing

amplitude and frequency errors in the coupling field. Measurement sequences are shown at the

bottom of Fig. 5.4. A π/2-pulse initializes the Bloch vector at the equator (black pulse). Dephasing

is applied with a strength characterized by the average number of photons transmitted through

the cavity Md (yellow pulse). A rotation representing an error (either amplitude (a) or detuning

(b)) is applied, after which N↑ is measured by measuring the shift of the optical cavity resonance

frequency[19, 32]. From the measured N↑, we infer the z-projection of the final Bloch vector Jzf .

For part (a), the applied rotation is Rα̂(ψ), where ψ is the arbitrary rotation amplitude,

and α̂ is a random rotation axis lying in the x̂ − ŷ plane of the Bloch sphere. Jzf (blue points)

is plotted as a function of the applied amplitude ψ for three different values of dephasing. The

randomization of α̂ causes large scatter of Jzf over positive and negative values. To compare with

an expectation, we plot the average magnitude of the measured Jzf in red, and a prediction based

on the independently measured transverse coherence Cd from Fig. 2 of the main text is shown as a

black line. The envelope of the data decays linearly with Cd in reasonable agreement Eq. 2 in the

main text and our intuitive expectation.

To demonstrate the reduction in sensitivity to rotations for which the coupling field is detuned

from the atomic resonance frequency, we apply a nominal π-rotation with variable detuning. The

applied rotation is Rγ̂(π
√

1 + δ∗2) where γ̂ ∝ Ωα̂ + δẑ, and the azimuthal axis α̂ is randomized

between each trial. δ∗ = δ
κ/2 is the detuning of the coupling field from atomic resonance in cavity

half-widths. In Fig. 5.4(b), Jzf (blue points) is plotted versus δ∗ for three different values of Md,

and the average magnitude of Jzf (red points) are compared to a prediction (black line). Just as

with the amplitude errors, the magnitude of the deflections of Jzf scale linearly with Cd in good

agreement with the prediction.
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Figure 5.4: Reduction in sensitivity to amplitude and frequency rotation errors. (a) The ensemble is
subjected to a rotation with arbitrary amplitude ψ and equitorial rotation axis α̂ and zero detuning
(measurement sequence shown below graph). The resulting Jzf (blue points) are plotted versus
amplitude of the rotation ψ for three different values of dephasing, characterized by Md. At each
amplitude the average magnitude of Jzf (red points) is compared to a prediction using the measured
transverse coherence from Fig. 2 (black line). (b) The ensemble is subjected to a rotation with
aribitrary detuning δ∗ and azimuthal rotation axis α̂. The amplitude is constrained so that at zero
detuning, the rotation is a π-pulse. Jzf (blue points) are plotted as a function of δ∗, again for three
different values of dephasing, and the average magnitude of Jzf (red points) is in agreement to a
prediction from the measured transverse coherence (black line).
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5.3 Dephased rotation of quantum noise

When dealing with spin squeezed states, classical rotation errors can rotate the anti-squeezed

quadrature of a system into the measurement basis. This leads to additional noise above the noise

in classical rotation errors primarily considered in the main text. In this section, we treat this

problem theoretically with a fully quantum mechanical description of the spin state, instead of

treating each spin as a classical vector as in the main text. We show that dephasing protects

squeezed noise distributions from rotation of the anti-squeezed spin projection into the originally

squeezed quadrature.

We assume for simplicity that there is an arbitrary initial state oriented along ŷ with a

squeezed noise distribution in Ĵz (and anti-squeezed in Ĵx). The state is subjected to a small

rotation amplitude error of size πε around the ŷ-axis which rotates the anti-squeezed spin projection

into the z quadrature. The initial squeezed noise distribution is characterized by the second order

expectation value

〈Ĵ2
z 〉0 ≡ 〈ψ0| Ĵ2

z |ψ0〉 , (5.3)

where |ψ0〉 describes the initial state. We wish to evaluate the noise distribution of Ĵz for the final

state,

〈Ĵ2
z 〉f ≡ 〈ψf | Ĵ2

z |ψf 〉 , (5.4)

where the final state |ψf 〉 can be written in terms of |ψ0〉 using the dephasing operator

D̂ ≡
N∏
i

R̂ẑ(θi) (5.5)

and rotation operator (around ŷ) R̂ŷ(πε), |ψf 〉 = D̂†R̂ŷ(πε)D̂ |ψ0〉. For now, we do not need to

specify a specific form of dephasing (i.e. the inhomogeneous rotations θi). Using the dephasing and

rotation operators, Eq. 5.4 becomes
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〈Ĵ2
z 〉f = 〈ψ0|D†R̂ŷ(πε)†D̂Ĵ2

z D̂
†R̂ŷ(πε)D̂ |ψ0〉 . (5.6)

The rotation operators can be written in terms of single atom spin projection operators as, to

second order in the small parameter πε,

R̂ŷ(πε) ≈
N∏
k

(Ik + iπεĴŷ,k −
(πε)2

2
Ik), (5.7)

where Ik is the identity operator for the kth atom, and the collective spin projection operator Ĵŷ

can be written as a sum over all atoms’ individual spin operators Ĵŷ =
∑N

i Ĵi · ŷ. Using these

definitions and single atom commutation relations, we simplify Eq. 5.6 keeping to second order in

ε,

〈Ĵ2
z 〉f = 〈Ĵ2

z 〉0 + (πε)2〈Ĵ2
x〉d − (πε)2〈Ĵ2

z 〉0 + 2πε〈ĴzĴx〉d. (5.8)

The expectation values in the second and final terms (with subscript d) are calculated with respect

to the dephased state, |ψd〉 = D̂ |ψ0〉. This equation is particularly useful because it gives the

quantum noise rotation in terms of measureable quantities for an arbitrary form of the dephasing.

For squeezed states oriented along ŷ with symmetry around x̂ and ẑ (generated, for example,

by 2-axis twisting or quantum non-demolition measurement [32, 79]) the final term in Eq. 5.8 is

zero, giving

〈Ĵ2
z 〉f = 〈Ĵ2

z 〉0 + (πε)2〈Ĵ2
x〉d − (πε)2〈Ĵ2

z 〉0. (5.9)

This result shows that the back-action quadrature is introduced at order ε2 through 〈Ĵ2
x〉d instead

of 〈Ĵ2
x〉0. In the limit of random Gaussian dephasing (as considered in the main text), 〈Ĵ2

x〉d can

be written,

〈Ĵ2
x〉d = C2

d〈Ĵ2
x〉0 + (1− C2

d)∆J2
QPN . (5.10)
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In the limit of small and moderate dephasing, the standard deviation of the back-action quadrature

that is rotated into ẑ is reduced linearly with Cd (first term). However, for complete random

dephasing, the back-action can only be reduced to the quantum projection noise level for a CSS,

∆JQPN =
√
N/2 as seen by the second term. Applying greater dephasing provides marginal returns

when the two terms in Eq. 5.10 become equal. This occurs at a value of Cd which we label C ′d,

C ′2d =
1

1 + 〈Ĵ2
x〉0/∆J2

QPN

. (5.11)

For a spin squeezed state with a large back-action quadrature, 〈Ĵ2
x〉0 � ∆J2

QPN , more dephasing

is required to reduce 〈Ĵ2
x〉d, the dephased back-action projection, to near the QPN level.



Chapter 6

3rd Generation Spin Squeezing and Deterministic Squeezing with Feedback

6.1 Introduction

After achieving a factor of 10 in squeezing, the obvious question arose: how could we reach a

factor of 100? Working on the cycling transition had effectively removed the limit to squeezing due

to Raman spin flips, S =
√

8p/(qNC) where p is the probability for a free space scattered photon

to cause a Raman spin flip, q is the total quantum efficiency for detecting cavity photons, and NC

is the collective cooperativity [32]. The new observed squeezing was instead limited by decoherence

from free space scattering, laser frequency noise, and noise induced from atomic motion due to

optomechanical forces [19]. These issues prompted a third spin squeezing attempt which achieved

a factor of 59 in spin squeezing and was realized through significant engineering improvements and

a rebuilt experiment in the basement of the JILA X-wing.

One of the primary improvements was a significant increase in the quantum efficiency q for

detecting probe light. This lead to a reduction in optomechanics, since more spin resolution could

be gained with lower probing power, and an improvement in the fundamental limit due to free

space scattering S = 1/(qNC). In the 2nd generation experiment, we only reached a quantum

efficiency of q ≈ 5%, limited by a 50% lossy optical cavity, use of heterodyne detection, various

small losses due to detecting both sides of the symmetric optical cavity, path efficiency, quantum

efficiency of silicon photodetectors, and technical noise in the AD8015 transimpedance amplifiers

used for heterodyne detection [19].

By building a new, lower loss, single-ended optical cavity and moving to homodyne detection
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with a custom detector sensitive at both DC (for homodyne) and AC (for path length stabilization),

we achieved a quantum efficiency in a single measurement of nearly 40%, roughly 8 times better

than in the second generation. This new system and quantum efficiencies are described in detail in

Sect. 6.4.

In generation 2, the frequency stabilization of the probing laser was achieved by narrowing

Photodigm DBR lasers with a long external optical cavity [100]. Details of this technique can be

found in Ref. [170]. Using this technique, the optimum frequency resolution of the optical cavity

which was achieved was approximately 20 kHz rms, or 17 dB below the typical projection noise

driven fluctuation of the cavity freqeuency of 140 kHz [19]. In order to improve this floor to achieve

close to 20 dB of directly observed squeezing, we implemented a relative stabilization of the atomic

probe laser to the cavity using an additional “cavity probe” laser resonant with another TEM00

optical cavity mode 122 GHz away from the D2 atomic transition. This system achieved frequency

resolution of the cavity of approximately 5 kHz and is explained in detail in Sect 6.4.

In all, these and other engineering improvements lead to a directly observed squeezing of

17.7(6) dB below the standard quantum limit using 4 × 105 atoms. This result, along with the

similar result reported by [68] is the largest entanglement enhancement of any kind in atomic or

optical systems.

Further, with this new spin squeezing apparatus, we demonstrated real-time feedback to a

squeezed state to create so-called “deterministic” squeezing, where the result of the pre-measurement

is no longer necessary to obtain enhanced resolution. Using this real-time feedback we created one

of the largest amounts of deterministic squeezing ever observed, comparable to the amounts gen-

erated by the best naturally deterministic schemes such as 1-axis twisting using cavity feedback or

collisions in an ultra-cold gas [95, 62].

In this Chapter, in Sections 6.2 and 6.3, I will first present the primary results from the

third generation of spin squeezing experiment. Then, I will elaborate on the apparatus used for

these measurements in Sect 6.4 and report additional relevant information regarding background

decoherence, back-action measurements, and the feedback scheme in Sections 6.5 6.6 and 6.7 re-
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spectively.

6.2 Spin squeezing with real-time feedback

This section features two main results. First, following Fig. 6.1(a), we use the outcome of a

collective, or joint, measurement to actively steer the collective spin-projection of an ensemble of 5×

104 laser-cooled and trapped 87Rb atoms to a target entangled quantum state. Real-time feedback

allows generation of the target state with enhanced angular resolution S−1 ≡ (∆θSQL/∆θ)
2 =

5.5(8), or 7.4(6) dB below the SQL, with no background subtractions. Second, we perform a direct

subtraction of quantum noise without feedback and directly observe a conditionally enhanced phase

resolution S−1 = 59(8) or equivalently 17.7(6) dB below the SQL, along with [68], the largest phase

estimation enhancement from entanglement to date in any system.

Entanglement is often created and manipulated via unitary interactions between qubits [136,

93, 113, 118, 102, 132, 62, 114, 28, 95]. However, the joint measurements on two or more qubits

used here (sometimes referred to as quantum non-demolition measurements) have shown promise

for creating entanglement, particularly among large numbers of qubits [88, 4, 140, 169, 96, 31, 19,

12, 142, 119, 133, 134]. By adding real-time feedback guided by the outcome of joint measurements,

one can access a more diverse range of quantum technologies including Heisenberg-limited atomic

sensors [26], reduction of mean field shifts in atom interferometers [47, 75], quantum teleportation

[144, 86], and error correction [116, 165]. Quantum noise suppression with real-time feedback has

been considered theoretically [155, 154] and demonstrated in a previous experiment [72] but without

the critical enhancement in phase resolution that signifies entanglement.

We visualize a collection of N spin-1/2 atoms as a single collective Bloch vector J =

Jxx̂ + Jyŷ + Jz ẑ given by first order expectation values Jα ≡ 〈Ĵα〉 of collective spin projection

operators with α = {x, y, z}. The quantum projection noise (QPN) and resulting SQL can be

intuitively visualized by a quasi-probability distribution perpendicular to the classical Bloch vec-

tor (Fig. 6.1(a)). The distribution’s rms fluctuations along a given spin-projection direction are

given by ∆Jα ≡
√
〈Ĵ2
α〉 − 〈Ĵα〉

2
. In this chapter ∆ will refer to the standard deviation of a given
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Figure 6.1: (a) A coherent spin state’s spin-projection noise (pink distribution) is projected onto a
squeezed state by a measurement of Jz. The quantum state randomly collapses within the original
distribution, creating a conditionally squeezed state. The pre-measurement’s outcome is then used
to rotate the spin state’s polar angle to a desired target spin projection (black solid line) Jz = Jztar,
creating a deterministically squeezed state. (b) The relevant 87Rb energy levels (black) and cavity
resonance frequency ωc (blue). (c) Simplified experimental diagram. The cavity is probed in
reflection. Homodyne detection of the probe is sampled by a microcontroller that then applies
microwaves at 6.8 GHz to achieve the desired feedback rotation θfb to create the deterministically
squeezed state in (a). See Section 6.4 for experimental details.
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quantity. For a coherent spin state oriented at the equator of the Bloch sphere, the spin projection

Jz and spin population N↓ both fluctuate from one trial to the next with a standard deviation

∆Jz,QPN = ∆N↓QPN ≡
√
N/2.

We calculate the enhancement in phase resolution S ≡ (∆θ/∆θSQL)2 = R/C2 [174], where

R ≡ (∆Jz/∆Jz,QPN )2 is the observed spin projection noise relative to the projection noise level,

and C ≡ 2 〈|Ĵ |〉 /N is the fractional atomic coherence remaining (or “contrast”) after a joint

measurement. An additional 0.2 dB correction is applied to S for a 4% background loss of contrast

(see Supplementary Material). Observing S−1 > 1 serves as a witness for entanglement between

atoms [149] and the magnitude usefully quantifies the degree of entanglement [174, 79].

A joint measurement of the population of atoms N↑ is engineered by measuring the frequency

shift of a TEM00 cavity mode. The cavity is tuned δc = 2π × 400 MHz to the blue of the 87Rb

|↑〉 ≡ |52S1/2, F = 2,MF = 2〉 to |e〉 ≡ |52P3/2, F = 3,MF = 3〉 optical atomic transition as shown

in Fig. 6.1(b). The second state forming the pseudo-spin system is |↓〉 ≡ |52S1/2, F = 1,MF = 1〉.

The cavity has finesse 2532(80) and power decay linewidth κ = 2π× 3.15(10) MHz. The atoms are

laser-cooled to 10 µK and trapped tightly on axis in an intracavity 1D optical lattice (Fig. 6.1(c)).

Spatially inhomogeneous coupling of atoms to the cavity mode is handled as in [31, 32, 19, 69].

Atoms in |↑〉 strongly phase shift the intracavity probe light, causing the empty cavity resonance

frequency ωc to shift to ω′c. A measurement of the shift ω′c − ωc using homodyne detection of

probe light reflected from the cavity can then be used to infer the population N↑. To measure the

population N↓, a π-pulse microwave coupling can then be applied to swap the populations between

|↑〉 and |↓〉, and a measurement of the new population in |↑〉 can be made with the measurement

outcome now labeled N↓.

The experimental sequence is shown in Fig. 6.2 (a) and (b). All atoms are prepared in |↓〉,

then a microwave π/2-pulse is applied to place each atom in an equal superposition of spin states,

equivalent to preparing the Bloch vector along ŷ. We make a measurement of the spin projection Jz

with measurement outcome labeled Jzp = (N↑p −N↓p)/2. Each population measurement outcome

N↑p and N↓p is obtained by averaging the cavity-probe signal over a 40 µs window. In each run
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of the experiment, a microcontroller calculates Jzp and applies feedback to steer the state toward

a targeted value of spin projection Jztar. The feedback is accomplished by applying microwaves

to rotate the Bloch vector through polar angle θfb ≈ 2 × (Jztar − Jzp)/(NC). After the feedback,

a final measurement of the spin projection Jz is made with measurement outcome labeled Jzf =

(N↑f −N↓f )/2. Feedback toward Jzf = 0 is evident in the time trace (Fig. 6.2 (a)), since the final

two cavity frequency measurement windows that provide N↑f and N↓f are more nearly equal than

was the case for the two pre-measurement windows.

The microcontroller sets the sign of the rotation θfb by digitally toggling between two mi-

crowave sources that are 180◦ out of phase. The magnitude of the rotation |θfb| is controlled by

varying the duration tfb for which the microwaves are applied, with a discrete timing resolution of

approximately 12 ns. The input technical noise floor, timing jitter, and timing resolution of the

microcontroller are all sufficient to allow up to 20 dB of squeezing.

The outcomes Jzp and Jzf are plotted versus trial number and collated into histograms in

Fig. 6.2(c). Projection noise for this data (independently confirmed by measuring the scaling of

∆Jz with N) is ∆Jz,QPN = 218(10), consistent with the measured ∆Jzp = 235(24). The data on

the right shows the final measurement outcomes Jzf after applying feedback for five different target

states Jztar. By implementing the feedback, each target state was reached with noise below the

original projection noise.

To observe deterministic squeezing or phase resolution enhancement, the atomic coherence

that remains after the pre-measurement and feedback must be evaluated. The contrast is deter-

mined in a separate set of experiments by using microwave rotations after the feedback step to

rotate the Bloch vector to determine its total length. Accounting for the loss of coherence, we

directly observe up to S−1 = 5.5(8) (7.4(6) dB) of deterministic squeezing via pre-measurement

and feedback.
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Figure 6.2: (a) Measured cavity resonance frequency for a single trial versus time, subtracting a
constant 12 MHz frequency offset. (b) The time windows in which the probe is turned on (green)
and the populations determined from each window. The fixed microwave rotations are shown in
black with the feedback rotation shown in orange. (c) The pre-measurements Jzp (left) and final
measurements Jzf (right) of Jz are plotted versus trial number and accumulated into histograms.
Five different Jz states are targeted (five distinct colors on right) and reached with noise below
QPN. The maximum deterministic squeezing is S = −7.4(6) dB relative to the SQL. (d) Feedback
reduces the noise distribution of the final measurement relative to the initial quantum noise in
the pre-measurement. (e) If no feedback is applied the final and pre-measurement are strongly
correlated (black), allowing for conditional squeezing (S = -10.3(6) dB) by using the differential
quantity Jzf − Jzp (gold). The increase in noise from feedback is discussed in the Supplementary
Material.
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Figure 6.3: (a) Experimental sequence for conditional spin squeezing, with labeling mirroring that
of Fig. 6.2a. (b) Squared contrast C2 (blue), spin noise R (red), and spin squeezing S (black)
are plotted versus the average number of incident photons Mi in a single measurement window.
The solid lines are fits, the blue band is the predicted loss of contrast from free-space scattering,
and the grey band indicates the total squeezing error bar. (c) The experimental sequence used to
observe the back-action spin-projection. (d) The measured spin noise R is plotted versus ψ with
fit (purple). (e) The reconstructed conditional probability distribution of the quantum state (red)
on a Bloch sphere with Bloch (black) vector. The distribution is magnified with a 1:1 aspect ratio
and plotted with the equivalent coherent spin state (blue) in the lower panel. (f) Thermal radial
motion of the atoms causes the spin noise R to oscillate at twice the radial trap frequency as the
time separation T between the pre- and final measurements is increased.
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6.3 17.7 dB of conditional squeezing

For many applications, the feedback is not necessary. Instead of applying feedback, one

can cancel the quantum noise by directly subtracting the pre-measurement Jzp from the final

measurement Jzf , a technique known as conditional squeezing [88, 4, 140, 169, 96, 31, 19, 12, 142].

In Fig. 6.2(d) and (e), we compare conditional and deterministic spin noise reductions taken under

identical settings. Jzf is plotted versus Jzp and the results are collated into histograms on each

axis. With feedback (red), Jzf is driven to zero with resolution below ∆Jz,QPN , regardless of Jzp.

Without feedback (black), Jzp and Jzf are correlated, and the quantum noise can be conditionally

subtracted from the final measurement by taking the difference Jzf − Jzp (gold).

The deterministic squeezing with feedback is primarily limited by errors in the π-pulses due

to microwave amplitude and frequency noise. However, by increasing the number of atoms to

N = 4× 105, we improve the amount of conditional spin squeezing to S−1 = 59(8) or 17.7(6) dB.

The experimental measurement sequence is the same, but to avoid added noise from the π-pulses,

we only consider the reduction in the noise of the difference of two population measurements of the

same spin state R = (∆(N↓f −N↓p))/∆N↓QPN )2 ( Fig. 6.3(a)). The information gained from the

first measurement N↑p is not used here, but its presence serves to spin-echo away probe-induced

inhomogeneous light shifts at the end of the pre-measurement pair N↑p and N↓p. Because the

Bloch vector lies at the equator, small angular displacements of the polar angle could be sensed

from changes in a single spin state’s population alone.

In Fig. 6.3(b), we show the noise reduction R versus the average number of photons Mi

incident upon the cavity during a single probe measurement window. Again, this is the directly

observed noise reduction with no background subtractions or removal of noise of the final mea-

surement applied. The maximum quantum noise reduction is R−1 = 92(9), or 19.6(4) dB below

QPN and is limited by both a technical noise floor 25 dB below QPN and optomechanical effects

induced by the probe light being turned on and off, an effect that increases with Mi. Also apparent

in Fig. 6.3(b), the atomic coherence or contrast (blue) after the pre-measurement decreases with
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increasing Mi due primarily to undesired free space scattering causing collapse of individual atoms’

wave functions into spin up (blue prediction band). The background contrast CBG is obtained

from a measurement with Mi = 0 in the two pre-measurement windows. The black data and fit in

Fig. 6.3(b) display the squeezing obtained by combining the reduction in noise with the reduction

in contrast.

We also examine the back-action or anti-squeezed spin-projection. The experimental sequence

is shown in Fig. 6.3(c) and is distinguished by the replacement of the rotation θfb with a microwave

rotation about an axis parallel to the Bloch vector through a fixed angle ψ. Figure 6.3(d) shows

the increase in spin noise R moving from the 17 dB squeezed (at ψ = 0) to anti-squeezed (at

ψ = ±90◦) projections. Using an inverse Radon transform, we construct a visualization of the

equivalent squeezed state, shown in Fig. 6.3(e). The original coherent state noise is shown in blue.

The state has ∆Jz∆Jx/(∆Jz,QPN )2 = 6.1 > 1 and is no longer a minimum uncertainty state

owing to finite quantum efficiency for detecting the probe light. From the increase in area and its

scaling with Mi we can infer the quantum efficiency of a joint measurement of a single population

is Q̃1 = 38(14)%, in good agreement with an independent prediction of 37(5)% from measuring

path efficiencies, cavity loss, detector efficiencies, technical noise floors, and laser turn-on times (see

Sect. 6.4). Here, the total quantum efficiency of the full measurement sequence (N↑p, N↓p, N↓f ) is

effectively 4 times lower than Q̃1 due to the additional noise in the final measurement N↓f and the

presently unused pre-measurement N↑p.

In Fig. 6.3(f), we evaluate how well the conditional noise reduction can be maintained

over a variable evolution time T . This is an important consideration for implementing conditional

squeezing in atomic sensors. The contribution to R from technical noise sources is partially removed

by performing the measurement sequence of Fig. 6.3(a) with no atoms present and subtracting the

measured noise variance from the noise variances obtained with atoms present. The spin noise R

is seen to oscillate at twice the radial frequency of the trapping potential due to thermal radial

atomic motion that causes an oscillation in each atom’s coupling to the cavity mode. The additional

monotonic increase in R is not currently understood. A 3D optical lattice or a smaller atomic
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temperature to lattice depth ratio can be used to reduce the noise oscillations in the future.

The improved squeezing relative to previous work [19, 41] was achieved by increasing the

net quantum efficiency for probe detection from 5% to 37% (by constructing a single-ended cavity,

reducing losses on cavity mirrors, and using homodyne detection), increasing the cavity finesse

by 3.5, and implementing a two-probe laser technique that reduced the relative frequency noise

between the probe laser and the empty cavity from 16 to 25 dB relative to projection noise [38].

See Sect. 6.4.

It is physically reasonable to expect that the majority of the atoms participate in a single mul-

tipartite entangled state. The entanglement depth, or we believe more appropriately “entanglement

breadth” ζ quantifies the minimum number of atoms that provably particpate in a multipartite en-

tangled state, no matter how weakly [150, 107]. We find the largest breadth ζ = 400(120) atoms

at squeezing S−1=15 dB, but at the largest squeezing we find ζ=170(30) atoms.

Applying real-time feedback based on the outcome of joint measurements may allow for new

applications in both quantum information technology and precision measurement. For instance, the

utility of highly spin-squeezed states suffers from the fact that the state lives on a sphere, causing the

back-action spin projection to couple into the measured spin projection Jz if the state is rotated

too far from the equator. In clock applications, this results in needing to reduce the Ramsey

phase evolution time such that the net enhancement in clock precision is far from approaching

the Heisenberg limit [3]. It was recently proposed that joint measurement and feedback similar

to that used here would allow one to actively measure and steer the back-action noise out of

the measured spin projection and would thus allow enhancements in precision approaching the

Heisenberg limit [26]. With improved atom-cavity coupling (e.g higher finesse, smaller mode waist

size), even greater amounts of squeezing than that reported here can be achieved in principle [32].

However, it will be critical to consider current limiting effects such as optomechanical ringing and

time-varying couplings between measurements due to atomic motion in order to achieve significant

improvements. Having now shown that large enhancements in phase resolution using entanglement

are achievable in real systems that are compatible with state-of-the-art precison measurements,
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next steps may include application to matterwave interferometers [47] and optical lattice clocks

[119].

6.4 Experimental details

Several technological improvements from previous experiments were key to achieving the

results of this chapter. Full experimental diagrams of the optics and electronics are shown in Fig.

6.5 and Fig. 6.6 respectively in an attempt to highlight differences from previous work, and a

general procedure is described.

6.4.1 Atomic state preparation

The atoms are loaded from a magneto-optical trap (MOT) whose loading time sets the

experimental repetition rate of 1 second. Polarization gradient cooling is then used to cool the

atoms to 10 µK and to load them into 823 nm optical lattice sites spanning approximately 1 mm

along the cavity axis. A bias magnetic field along the cavity axis of 1.1 Gauss sets the quantization

axis. Optical pumping beams are used to polarize the atoms with > 90% probability into the

|↓〉 = |52S1/2, F = 1,MF = 1〉 ground state. After optical pumping, the MOT beams are applied

once more to clear any remaining atoms from the F = 2 manifold. Atoms not in |↓〉 are not

rotated by the microwaves into the measured |↑〉 state due to the Zeeman splitting between states.

As a result, they do not contribute to the experiment. Lastly, to account for inhomogeneous

coupling of the atomic ensemble to the probe mode, the reported atom numbers N↑, coupling g,

and cooperativity parameter C, in both the main text and here, are effective values as described in

Refs. [31, 32, 19, 69]. Neglecting small corrections for radial inhomogeneity, the total atom number

N↑,tot in the lattice in state |↑〉, the single-atom Rabi frequency 2g0 at an antinode of the probe

mode, and the cooperativity parameter C0 at an antinode of the probe mode are related to the

effective quantities by N↑ ≈ 2
3N↑,tot, g

2 ≈ 3
4g

2
0, and C ≈ 3

4C0, respectively.
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6.4.2 Science cavity and lattice

The optical cavity parameters are given in Table 6.1. Compared to previous work [19, 31], the

cavity finesse has been increased by a factor of 3.5, or equivalently the cavity power decay linewidth

κ is smaller by the same factor. The cavity is now primarily transmissive at a single end, i.e. the

input mirror’s transmission coupling rate κ1 is much greater than the output mirror’s transmission

coupling rate κ2. As a result, measurement of the probe light in reflection from the cavity captures

nearly all of the information transmitted out of the cavity mode, with effective quantum efficiency

now of κ1/κ = 0.83(3) compared to the previous effective quantum efficiency of 0.23 in reflection

alone. This eliminates the need for a second detection system for the transmitted cavity light.

The cavity’s frequency is actively stabilized to the frequency of the 823 nm optical lattice

laser. This is achieved by a Pound-Drever-Hall (PDH) frequency servo that feeds back to piezos to

control the cavity length. The bandwidth of the servo is about 1.5 kHz. The lattice laser is frequency

stabilized to an independent transfer cavity using PDH detection with servo bandwidth of 1 MHz.

The lattice laser’s frequency is tuned relative to the transfer cavity by using a high frequency phase

modulator to place 5 to 8 GHz sidebands on the lattice laser light probing the cavity. The optical

frequency of a first order sideband is locked to the transfer cavity, such that tuning the modulation

frequency then allows the lattice laser’s frequency to be tuned continuously over several GHz. The

microwave voltage-controlled oscillator (VCO) that provides the modulation is phase-locked to a

DDS that is controlled by the data acquisition computer for ease of tuning. Finally, the frequency

of the transfer cavity is stabilized with 1.5 kHz bandwidth by PDH probing of another longitudinal

mode using a 795 nm laser that is stabilized using Doppler-free FM spectroscopy to the D1 transition

in 87Rb. 795 nm light is used simply for historical reasons.

6.4.3 Relative frequency noise between cavity and probe

Relative frequency noise between the atomic probe laser (200 kHz FWHM nominal linewidth

ECDL laser) and the empty cavity hinders our ability to determine the atomic-induced shift ω′c−ωc
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Figure 6.4: Experimental frequency diagram. Relevant frequencies described in the text are shown
along with the locking scheme of the atomic (blue) and cavity (red) probe lasers. The two longitu-
dinal resonances of the cavity that these two lasers probe are separated by 122 GHz and shown on
the upper graph. The unshifted n+15th cavity mode at ωc is detuned δc blue from the atomic res-
onance ωa. The presence of atoms in |↑〉 typically shift this cavity mode by approximately 70 MHz,
to ω′c. The homodyne local oscillator beam is shown in purple (dashed), and feedback stabilization
steps are shown as gold arrows with descriptions.
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Cavity Parameters (probe λ = 780 nm)

Single-atom cooperativity C = 4g2

κΓ 0.044(6)

Single-atom vacuum Rabi splitting g 2π × 0.44(3) MHz
Input coupling κ1 2π × 2.60(5) MHz
Output coupling κ2 2π × 0.17(1) MHz
Internal losses κL 2π × 0.38(8) MHz
Linewidth κ 2π × 3.15(10) MHz
Dressed-cavity linewidth∗ κ′ 2π × 3.6(1) MHz
Dressed-cavity linewidth† κ′ 2π × 3.2(1) MHz
Q.E. due to internal losses κ1/κ 0.83(3)
Finesse 2532(80)
Free spectral range 8.105(5) GHz
Frequency difference TEM00-TEM10 2.290(5) GHz
TEM00 waist size w0 70(1) µm
Cavity length 1.849(1) cm
Mirror radius of curvature 4.999(5) cm

Cavity Parameters (lattice λ = 823 nm)

Input coupling κ1 2π × 4.40(10) MHz
Output coupling κ2 2π × 0.23(1) MHz
Linewidth 2π × 5.8(6) MHz
Finesse 1400(150)
Trap depth 115 µK
Circulating power Pcirc 0.30(3) W
Power Buildup (Pcirc/Pinc) 800(130)
Axial trap frequency 181(20) kHz
Radial trap frequency 900(50) Hz
TEM00 waist size w0 71(1) µm

Table 6.1: Relevant cavity parameters at the atomic and cavity probe laser wavelength λ = 780 nm
and at the lattice laser wavelength λ = 823 nm. The symmetric, standing wave cavity’s mirror
transmission coefficients, T1 on the probed end (1) and T2 on the closed end (2), are expressed in
terms of coupling rates κ1,2 = T1,2 × (free spectral range). The atomic decay linewidth of |e〉 is
Γ = 2π × 6.07 MHz. The dressed cavity linewidths κ′ include broadening of the cavity resonance
at ω′c due to spontaneous scattering from the atoms.
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Figure 6.5: Optical block diagram. The resonance frequency of the optical cavity ω′c is detected
using homodyne detection of the atomic probe laser (red). Homodyne detection is performed on an
fs = 81.1 MHz sideband on the atomic probe laser. This sideband can be applied at half power by
the “kick” switch to provide an extra impulsive kick to the atoms in order to cancel optomechanical
ringing (described in Section 6.4.5.5). The carrier of the atomic probe laser is detected in heterodyne
(RF port) to provide a path length reference (see Fig. 6.6) for stabilizing the homodyne detection
phase. The cavity probe laser (blue) is P.D.H. locked, via the Lcav loop filter, to another longitudinal
mode of the optical cavity, unshifted by atoms, and provides stabilization of the atomic probe laser’s
frequency to the cavity frequency. The atomic probe and cavity probe are separated optically via
polarization. Real-time feedback is applied using an Arduino microcontroller that controls the sign
and duration of 6.8 GHz µ-wave pulses. More details are given in Fig. 6.6.
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the carrier of the atomic probe beam with the signal appearing at 81.1 MHz at the RF port. The
phase of this signal is locked to a DDS frequency reference by applying feedback through the Lstab
loop filter to a VCO controlling the homodyne AOM. The homodyne difference signal (DIFF) is
used to stabilize the atomic probe laser to the atom-shifted cavity mode at ω′c. The signal is
high-pass filtered at 1 Hz to remove slowly drifting DC offsets and then passed through a variable
gain amplifier (used to maintain constant loop gain as Mi is varied) before entering the loop filter
LSHA. The output of LSHA is used to control a VCO which provides a phase reference to a phase
lock between the atomic probe laser and the cavity probe laser using loop filter La. The cavity
frequency ω′c is detected by sampling the output of LSHA. When the atomic probe is off, a sample
and hold circuit is used to hold the output of the loop filter. A separate synthesizer (DDS) can be
used to perform sweeps of the atomic probe. Real-time feedback is applied by the Arduino based
on the sampled output of LSHA. The Arduino can control the sign of the feedback by switching
(sign) between two 6.8 GHz sources that are 180◦ out of phase.
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and hence the atomic populations that constitute our joint measurement of spin projection Jz. To

remove this, an improved stabilization scheme of the atomic probe laser has been implemented

similar to that described in [38], described below and shown in Fig. 6.4.

A second 200 kHz FWHM laser at 780 nm, called the cavity probe laser, is PDH locked with

servo bandwidth 800 kHz to a longitudinal mode of the science cavity that is 122 GHz (15 free

spectral ranges) away from resonance with the atomic transition |↑〉 to |e〉. The large detuning

means that even at much higher circulating powers inside the cavity, the cavity probe produces

sufficiently small atomic dephasing and spontaneous emission. Frequency noise on the science cavity

is thereby imposed on the cavity probe laser for spectral noise at frequencies below the unity gain

frequency of the servo. Conversely, the original frequency noise of the cavity probe laser is also

reduced relative to that of the empty cavity.

The cavity probe light is circularly polarized σ−, opposite to that of the primary or atomic

probe which is σ+ polarized. This allows the reflected cavity probe light to be polarization separated

from the atomic probe after probing the cavity. An avalanche photodiode (Hamamatsu S2381, gain

≈ 150) is used to detect the PDH signal generated by typically 50 nW of total optical probe

power. To maximize the signal-to-noise for a given amount of circulating cavity probe power in the

cavity, the PDH signal is derived by phase modulating the cavity probe light at frequency 9.7 MHz

� (κ/2)/2π so that the phase modulation sidebands do not enter the cavity.

To link the cavity probe laser to the atomic probe laser, approximately 2 mW of the cavity

probe laser’s light is phase modulated at fm = 13.6 GHz. The modulation frequency is derived

from a low-phase noise microwave source [34]. The atomic probe laser is then phase-locked to a

9th order sideband at a total offset of 9× fm = 122.4 GHz from the cavity probe frequency using

loop filter Lcav. The heterodyne signal between the sideband and the atomic probe appears in

the rf spectrum at 500 to 700 MHz. This heterodyne beat note is phase-locked to an rf voltage-

controlled oscillator (VCO) with center frequency fca, and with servo bandwidth of 2 MHz. By

tuning the VCO frequency fca, we can thereby tune the atomic probe laser relative to the cavity,

while frequency noise on the atomic probe is now common-mode with the cavity.
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A representative power spectral density of instantaneous frequency noise between the atomic

probe laser and the cavity, Sν(f) is shown in Fig. 6.7a. This data was taken using a heterodyne

detection setup which existed before implementing the final homodyne detection scheme described

in this chapter [38]. However, for this data, the power in the atomic probe laser beam was turned

up so that technical noise due to laser freqeuency fluctionations dominated the fundamental photon

shot noise and any technican noise associated with the detection scheme. The data in Fig. 6.7

faithfully characterizes the quality of frequency stabilization between the atomic probe and the

optical cavity for all of the generation three spin squeezing experiments.

In the central flat region of Fig. 6.7(a), Sν ≈ 1.5 × 103 Hz2/Hz. This corresponds to the

instantaneous frequency noise of a laser with Lorentzian FWHM ∆ν = π×Sν = 5 kHz, significantly

smaller than the initial laser linewidth of 200 kHz.

The roll off at high frequency results from 300 kHz anti-aliasing low pass filters after the

IQ demodulation. The rise at low frequencies is largely due to uncontrolled relative path length

changes between the atomic-probe LO and atomic-probe paths. We have found it unnecessary to

stabilize this path length phase for the preliminary results presented here because it only required

200 µs to measure the differential quantity fcf − fcp.

We are interested in characterizing the noise in the difference between the final and preme-

saurement. Each measurement is the average of the measured frequency in a window of length

Twin and the two measurement windows have a time gap Tdiff between them. The variance is ob-

tained by integrating (∆fd)
2 =

∫∞
0 Sν(f)T (f) df . The transfer function is T (f) = 4 sin2(πf(Twin +

Tdiff)) sin2(πfTwin)/(πfTwin)2. Figure 6.7b shows the measured noise variance ∆fd as a function of

the measurement window length Twin with t = 0 µs. For this data, the minimum is ∆fd = 6 kHz

at Twin = 100 µs.

6.4.4 Decoherence from the cavity probe

The measurements of Fig. 6.7 were made at very high probe powers with no atoms in the

cavity. As a result, the photon shot noise and technical noise sources of the detectors were negligible
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Figure 6.7: (a) The measured power spectral density of instantaneous frequency fluctuations Sν(f)
between the atomic-probe and an empty cavity mode. The frequency stabilization described in
the text reduces the noise by close to a factor of 50 over a broad range relative to the Sν one
expects for the linewidth of our free-running 200 kHz FWHM external cavity diode lasers. For this
data, the atomic and cavity-probes were set to a high enough power that increasing either did not
decrease Sν(f), so that we are sensitive only to technical noise floors. Also, heterodyne path-length
stabilization had not yet been implemented, and this is largely responsible for the rise below 2 kHz.
(b) The integrated noise in the difference of two frequency measurement windows, plotted as a
function of window length Tm, with a fixed t = 0 µs window separation.



87

compared to contributions from other technical noise sources. However, as the power in the cavity-

probe is increased, the amount of squeezing may become limited by additional scattering of light

from the atoms, potentially leading to single-particle wavefunction collapse (loss of signal) and

Raman transitions to other ground hyperfine states (a source of additional noise.) Inhomogeneous

differential light shifts of the spin transition frequency can also lead to dephasing that can be

spin-echoed away, but perhaps imperfectly.

Figure 6.8a shows the noise variance (∆fd)
2 between two measurements of the cavity reso-

nance frequency versus the cavity-probe power incident on the cavity Pc. Here the atomic-probe

power is increased such that its photon shot noise contribution is negligible. The right hand axis

translates the noise variance into an equivalent uncertainty relative to a quantum projection noise

level ∆fPJN = 97 kHz. For powers above 1 µW, the technical noise floor saturates to 27 dB below

the projection noise level. For lower powers, the noise variance scales as (∆fd)
2 ∝ 1/P 2

c , indicating

that lower powers Pc might be utilized with improved photodetection.

The cavity-probe induces a differential light shift of the transition frequency ωhf between

down and up. We measure the differential shift of the clock transition frequency |F = 1,mF = 0〉

to |F = 2,mF = 0〉 versus Pc in Fig. 6.8b. Appropriately rescaling for transition strengths and

detunings gives an average shift of ω↑↓ by 8.5 kHz per µW. The shift is highly inhomogeneous and

leads to dephasing. However, spin-echo measurements have shown that the atomic contrast (i.e.,

length of the Bloch vector) is negligibly affected at Pc = 0.5 µW with 40 µs measurement windows.

Thus, the atomic state is not significantly decohered by the cavity stabilization presented here.

6.4.5 Atomic probe

The atomic probe is used to determine the shifted cavity mode frequency ω′c−ωc. The cavity

probe is σ+ polarized to take full advantage of the cycling transition for strong light-atom coupling

as well as to avoid Raman transitions to other ground states caused by spontaneous emission [32].

The circular polarization also facilitates easy separation of the cavity probe light reflected from the

cavity for sending to a homodyne detector.
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Figure 6.8: (a) The 2-window noise variance (∆fd)
2 is plotted versus the detected power of the

cavity-probe beam for Tm = 40 µs and t = 0. Above 1 µW, the noise variance saturates to 27 dB
below the quantum projection noise level. (b) The measured light shift of the 87Rb clock transition
is plotted versus the detected power of the cavity-probe beam. The shift is approximately 660 Hz
per µW. The non-zero light shift at Pc = 0 is due to an additional constant light shift from the
823 nm optical lattice. Due to differing Clebsch-Gordan coefficients, the shift of the |↓〉 to |↑〉
transition frequency ω↑↓ is approximately 13 times larger, but still causes very little coherence loss
for the preliminary squeezing results presented here.
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Near resonance, the reflected qr quadrature response of the field is directly related to the

incident field ii ∝
√
Mi and the detuning δp between the probe light and the cavity resonance by

[32]:

qr
ii

=
4δp
κ

(κ1

κ

) (κ/κ′)2

1 +

(√
N↑2g

2δ′c

)2

 (6.1)

where δ′c = ω′c−ωa; ωa is the optical atomic transition frequency, and the dressed cavity linewidth is

κ′ = (κ+ Γ
(√

N↑g/δ
′
c

)2
)/(1 +

(√
N↑g/δ

′
c

)2
). Homodyne measurements of qr allow us to determine

the detuning of the probe from ω′c.

6.4.5.1 Homodyne phase stabilization

Homodyne detection requires stabilization of the relative path length between the homodyne

reference path and the probe path, as well as removing other sources of relative phase noise. To

achieve this, the homodyne reference light derived from the same laser is shifted up in frequency by

an acousto-optic modulator (AOM) driven by a VCO with nominal frequency fh = 81.1 MHz. The

atomic probe light is weakly phase modulated at fixed frequency fs = 81.1 MHz. The lower sideband

is tuned close to resonance with ω′c while the much stronger carrier component is 81.1 MHz off

resonance from the cavity. The strong carrier component primarily reflects off of the cavity without

creating any additional light circulating inside of the cavity–important for avoiding dephasing and

spontaneous emission from this frequency component.

The carrier component acts as a phase reference for stabilizing the homodyne detection phase,

and it appears on the homodyne detector as a signal at fs. The signal is separately amplified from

the DC signal by AC coupling the homodyne detector’s signal to a high frequency transimpedance

amplifier AD8015 (RF port). The RF port of the homodyne detector is sensitive to frequencies

above 5 MHz while the DC difference and sum ports (not shown) of the detector have a bandwidth

1.5 MHz. The two detector ports are balanced well enough that PDIFF
PSUM

< 7×10−3, where PDIFF and

PSUM are the difference and sum of the two powers detected on the two photodiodes comprising the
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homodyne detector. An additional electronic relative gain adjustment between the two photodiodes

allows cancellation of power noise on the homodyne reference by typically < 3× 10−4.

The carrier/homodyne reference beat note is then phase-locked to a stable DDS reference

frequency at fs. The phase of this reference frequency φs sets the quadrature of detection in

homodyne and is under the control of the data acquisition computer. The phase lock is implemented

with 50 kHz bandwidth and is achieved by feedback to the VCO that drives the homodyne frequency

shifting AOM at fh. This feedback loop works to continuously readjust the homodyne reference’s

phase to compensate for relative path length noise and other relative phase noise so that the q

quadrature of the light reflected from the cavity appears at the difference port of the homodyne

detector. The rms noise in this phase lock is low enough to resolve the cavity frequency with

precision at least 28 dB below quantum projection noise.

6.4.5.2 Locking of atomic probe to cavity

We actively feedback to lock the atomic probe’s sideband to ω′c. This improves the dynamic

range of the detection system, removes sensitivity to scale-factor noise, creates more consistent

optomechanical effects, and removes nonlinearities associated with the dispersive error signal. The

error signal is the detected q quadrature of the atomic probe’s lower sideband as measured in

homodyne at the difference port. The signal is a dispersive feature with a zero crossing appearing

as the atomic probe laser’s frequency is swept through resonance with ωc (or ω′c) [32] .

During each measurement window of ω′c the atomic probe’s lower sideband is turned on for

approximately 40 µs, and the DC homodyne signal is used to actively lock the sideband’s frequency

to ω′c. This is achieved by feedback to the VCO that provides the frequency reference fca to which

the cavity/atomic probe beat note is phase-locked. The phase-locking is achieved by adjusting the

atomic probe laser’s frequency via the loop filter LSHA. The characteristic settling time of the

servo is 1 µs for a unity gain frequency of 160 kHz. In order to record ω′c, the output of the LSHA

loop filter that sets the VCO control voltage is directly sampled at 2.5 MHz by the data acquisition

computer (DAQ).
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Since the atomic probe lower sideband is turned off between measurements, the atomic probe

laser’s frequency must be held fixed using the sample-and-hold circuit as shown in Fig. 6.6. When

the atomic probe sideband is turned on, the circuit samples the loop filter voltage provided to the

VCO that provides fca. When the sideband is turned off, the circuit holds the output voltage of

the loop filter so that fca is held at its previous value.

Trial-to-trial fluctuations in atom number are significantly larger than fluctuations due to

projection noise. This increases the range over which the probe laser must slew its frequency to

align the lower sideband with ω′c during the first N↑p premeasurement. To reduce this initial offset,

a “pre-centering” measurement is performed 1.5 ms before each experimental squeezing trial: a

π/2 microwave pulse rotates the atoms to a superposition of |↑〉 and |↓〉 and the lower sideband is

centered by the feedback loop at ω′c. The atomic probe frequency is then held, and the probe light

is switched off. The atoms are then optically pumped back to |↓〉 for the actual spin squeezing

measurements described in the main text.

We often wish to scan the power in the atomic probe lower sideband (quantified by the

number of incident probe photons in a single measurement window Mi) to look at variation in

measurement noise. This is accomplished by changing the rf power supplied to the EOM at fs to

modify the phase modulation index. For reference, a typical sideband/carrier ratio for Mi = 36500

incident photons is 0.004. Thus, the carrier power and hence the open loop gain of the path length

phase stabilization for homodyne detection is relatively unaffected as we vary Mi.

In contrast, the open loop amplitude gain of the lower sideband to cavity lock scales as
√
Mi.

To compensate, a variable gain amplifier (VGA; Analog Devices AD8337) is inserted after the

homodyne detector. When the data acquisition computer changes the rf power that sets Mi, it also

simultaneously scales the VGA’s gain to keep the net loop gain fixed. DC offsets in the homodyne

difference port are problematic when the gain is scaled and are therefore removed using a low pass

filter (τ = 1 s) and differential amplifier that essentially make a low bandwidth measurement of

the DC offset that is then subtracted from the fast 40 µs measurement windows.

With this approach, we achieve a very large dynamic range from Mi = 150 to Mi = 3× 105.



92

When Mi . 100 in a 40 µs window, the average number of detected photons within the servo’s

time scale of 1 µs approaches unity. The photon shot-noise then imposes rms fluctuations on the

atomic probe’s frequency that are comparable to the cavity half-linewidth, leading to a reduction

in fundamental signal to noise for estimating ω′c.

Lastly, for diagnostic reasons, it is often useful to do broad sweeps of the lower sideband’s

frequency across the cavity resonance frequency. To accomplish this, the atomic probe laser’s beat

note with the cavity probe laser can be phase-locked to a direct digital synthesizer (DDS) source

that provides the reference frequency fca in place of the usual VCO. The DDS frequency can be

phase-coherently swept at programmable rate and range, accomplishing the desired sweep of the

atomic probe frequency.

6.4.5.3 Calibration of incident photon number Mi

The number of incident photons on the cavity Mi is determined from the homodyne signal

and measured quantum efficiencies. The locking scheme used for homodyne detection allows precise

control of the relative phase between the homodyne reference beam and the atomic probe sideband

by tuning the phase φs. Experimentally, when the atomic probe sideband is off resonance from

the cavity and one scans φs over 2π, a sinusoidal interference fringe is observed in the homodyne

difference port. The size of this fringe and the independently measured total power in the homodyne

reference beam (130 µW typical) are used to determine the rate Ri of incident photons in the atomic

probe lower sideband, coupled to the cavity, that would have been required to produce the observed

fringe. The number of incident photons is Mi = Ri × 40 µs.

Physically, this means Mi can be understood as the average number of photons in the atomic

probe lower sideband crossing an imaginary plane directly in front of the cavity input mirror,

counting only those that are spatially mode matched to the cavity TEM00 mode, and integrated

into a 40 µs window. The uncertainty in the absolute calibration Mi is approximately 25% due to

uncertainty in the spatial mode-matching of the incident atomic probe beam and the homodyne

reference beam. This uncertainty leads to uncertainty in the prediction of contrast lost in Fig.
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3(b) of the main text, but does not lead to any uncertainty in the amount of squeezing or the

experimental quantum efficiency Q
(0)
1 to be discussed in Section 6.4.5.4.

6.4.5.4 Quantum efficiency

To determine the probe detuning δp, we estimate the ratio qr/ii from the detected fields

qd/id. Vacuum or photon shot noise that appears in the detection of the qd quadrature limits the

resolution on our ability to determine ω′c. We express the noise in the ratio as

(∆qd)
2

i2d
=

1

4MiQ
(0)
1

+ (∆q)2, (6.2)

where the one-window quantum efficiency Q
(0)
1 includes fundamental losses of signal to noise re-

sulting from both photon losses and technical noise floors shown in Table 6.2.

The additional term (∆q)2 = f+rMn
i represents noise contributions from the technical noise

floor f associated with residual frequency noise on the atomic probe laser relative to the cavity

mode frequency, and noise from optomechanical ringing r, which we model with an arbitrary nth-

order polynomial scaling with n 6= −1 . These noise sources have different scalings with Mi than

the fundamental quantum noise (first term).

We define a new effective quantum efficiency Q1 which includes the effects of the technical

noise floor and optomechanics and write the noise in homodyne detection as

(∆qd)
2

i2d
=

1

4MiQ1
(6.3)

where Q1 is given by

Q1 =
Q

(0)
1

1 + 4MiQ
(0)
1 (f + rMn

i )
. (6.4)

This effective quantum efficiency provides a useful figure of merit for the experiment and can be

compared to measurements of the increase in area of the Bloch vector’s noise distribution (discussed

in Section 6.6).
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Source Q

Path efficiency, Qpath 0.75(3)
Cavity-mode/homodyne overlap, Qo 0.95(3)
QE of cavity (κ1/κ), Qcav 0.83(3)
Technical noise from detector, Qelec 0.86(1)
Detector QE, QPD 0.86(2)
Probe turn-on time, Qturnon 0.86(1)

Total, Q
(0)
1 0.37(5)

Table 6.2: Quantum efficiency summary table. Quantum efficiency losses come from sources of
signal loss and added noise floors. Qturnon comes from finite laser turn-on times and ringing-
cancelling “kicks” (see Sec. 6.4.5.5) during which the probe is on but we do not collect information.

The total quantum efficiency Q
(0)
1 = 0.37(5) is the product of all the measured contributions.

6.4.5.5 Limits to noise reduction, optomechanics

The primary limitation to noise reduction R is currently set by optomechanical effects from

the probing light. Due to the incommensurate probing and trapping potentials, when the probe light

is turned on, the atoms are given an impulse that drives axial oscillations in the trap. Additionally,

the minimum of the trapping potential moves in space. This ringing effect is shown in Fig. 6.9

(red) over the 40 µs probing period.

To partially cancel the optomechanical ringing, we employed a 2.5 µs half-power turn-on

sequence of the probe laser. The initial half power turn-on induces ringing, while the second,

full-power turn-on (applied one quarter of an axial oscillation period later) coherently zeroes the

initial axial ringing such that the atoms come to rest at the new trap minimum. As shown in

Fig. 6.9, this technique significantly reduced the amount of ringing but only somewhat improved

the optimal squeezing in Fig. 3 by an estimated 0.6 dB. Mitigation of optomechanical effects will

present a challenge for future experiments aimed at generating even more spin squeezing. Tighter

trapping or homogeneous coupling of atoms to the atomic probe could be avenues toward reducing

optomechanical effects.
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Figure 6.9: Probe induced oscillations partially cancelled by a staggered turn-on sequence. The
oscillations are fully present with no kick (red, 43 traces averaged) during a 40 µs measurement,
but greatly reduced by a half-power 2.5 µs kick (blue, 30 traces averaged). The 2.5 µs kick length
corresponds to a quarter of the axial trap oscillation period. There is an 80 MHz offset subtracted
from the vertical axis.
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6.5 Background contrast correction

The spin squeezing values presented in the main text were calculated using the slightly

modified relationship S = RCBG/C
2 described in Ref. [173]. Here CBG = 0.96 is the background

contrast as determined from measurements of the contrast at Mi = 0 probe photons. For clarity of

presentation we approximated CBG = 1 for the expressions in the main text. Using the more exact

formula represents a small 0.2 dB improvement in the reported squeezing compared to what would

be calculated with S = R/C2.

6.6 Antisqueezing and area of the noise distribution

The noise in the backaction (or antisqueezed) quadrature of the squeezed state was measured

using the sequence in Fig. 3(c) of the main text, with the variable rotation ψ inserted, and mea-

surement outcomes here labeled Jzp and Jzf (ψ) for the first and second measurements respectively.

This measurement sequence was used to make the visualization of the squeezed state shown in Fig.

3(e) of the main text. In order to construct a meaningful probability distribution describing our

state, we constructed the normalized probability distribution P (Jzf (ψ)− cosψJzp) for obtaining

a differential measurement outcome Jzf (ψ) − cosψJzp. The weighting of the premeasurement by

cosψ ensures that we only condition the final measurement on the premeasurement to the degree

that the two spin projections overlap. We performed an inverse Radon transform [94] on the mea-

sured P (Jzf (ψ)− cosψJzp), yielding the conditional probability distribution shown in Fig. 3(e) of

the main text.

We now consider the magnitude of the noise in the backaction quadrature versus the number

of probe photons Mi. We generalize the spin noise reduction to now be a function of ψ as R(ψ) =

∆ (Jzf (ψ)− cosψJzp)
2 /∆J2

z,QPN . The antisqueezing is defined as A ≡ R(π/2)CBG/C
2, in direct

analogy to the Wineland squeezing parameter, S = R(0)CBG/C
2. The antisqueezing parameter

can be interpreted as the noise variance in the azimuthal phase of the Bloch vector relative to the

standard quantum limit A ≈ (∆φ/∆φSQL)2, up to the small correction for the background contrast
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CBG = 0.96.

The antisqueezing A is plotted in Fig. 6.10 versus Mi. The data is fit to a model that includes

three contributions A = A0 +A1Mi+A2M
2
i . The quantum backaction should rise linearly with Mi

and is therefore parameterized by A1. The contribution of this term to the total backaction is shown

by the blue shaded region. Classical intensity noise on the probe laser power circulating inside the

cavity (for example) would contribute backaction noise scaling as M2
i . The classical backaction is

therefore parameterized by A2, with this classical contribution to the total backaction shown by

the red shaded region. Lastly, the constant term A0 is attributed primarily to the projection noise

as well as noise in the rotations.

Squeezing data S was taken at the same experimental settings (gold points and line in

Fig. 6.10). This allows us to infer the angular area of the quantum noise distribution, ∆φ∆θ/∆θ2
SQL =√

SA1/C2
BG, shown in purple in Fig. 6.10(b).

The increase of the area of the noise distribution can also be used as an alternate, global

measurement of the quantum efficiency Q1 in Section 6.4.5.4. Specifically, the total quantum

efficiency of the entire measurement sequence is proportional to the square of the increase in the

angular area of the noise distribution and can be written Q̃1 = 4/(A1SC
2/C2

BG). The factor C2

comes from the angular momentum uncertainty relation and accounts for the fact that the SQL

increases as the Bloch vector shrinks. As mentioned in the main text, the factor of four arises due

to finite measurement strength and an unused premeasurement. Q̃1 as measured by the area of

the noise distribution is plotted in Fig. 6.10(b) in gold. The gold shaded region represents the

uncertainty in the extrapolation of Q̃1 due to uncertainty in the fit of the antisqueezing data of

Fig. 6.10(a). At low photon number, Q̃1 agrees with the predicted value of Q
(0)
1 from Table 6.2.

At higher photon number, Q̃1 begins to rise due to the effective quantum efficiency losses from the

technical noise floor and optomechanics discussed in Section 6.4.5.4.



98

Figure 6.10: (a) The antisqueezing A is plotted versus Mi (black circles). The linear contribution
to the rise in A, A1, is shown in blue and the quadratic contribution A2 in red. The squeezing (gold
diamonds and fit) is plotted on the right axis. (b) The area of the noise distribution is calculated
from the data in part (a) and plotted in purple. The measured effective quantum efficiency Q̃1

is plotted in gold with an error bar shown as a gold band. At low Mi, Q̃1 is consistent with the

prediction (green dash) Q
(0)
1 from Table 6.2.
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6.7 Feedback implementation

6.7.1 Experimental details

Real-time feedback to steer the atomic spin projection to a target spin projection Jz is imple-

mented with an Arduino Due microcontroller with an internal clock of 84 MHz. The microcontroller

is programmed to sample the loop filter LSHA output voltage (directly related to N↑) during the

N↑p and N↓p measurement windows, and the sampling rate allows for averaging 18 points in each

40 µs window. The microcontroller then calculates Jzp from the difference of the two measure-

ment windows and applies the feedback microwave rotation to the atoms through the formula

θfb ≈ 2× (Jztar−Jzp)/N where Jztar is the target value for Jz. Fluctuations in N are small enough

that it can be taken as a constant. The microcontroller controls the microwave rotation angle by

varying the duration for which the microwaves are applied using a high speed microwave switch

(Minicircuits ZASW-2-50-DR+) (labelled rot in Fig. 6.6) with single clock cycle (12 ns) resolu-

tion. The sign of the rotation is controlled by another digital output of the Arduino that toggles

a switch denoted sign between two microwave sources that are 180◦ apart in phase, as shown in

Fig. 6.6. Microwave rotations to accomplish π/2 and π pulses can also be applied independently

of the Arduino using digital outputs from the data acquisition computer (not shown), though with

less timing resolution.

6.7.2 Limitations to squeezing with feedback

As mentioned in the main text, the primary limitation to deterministic squeezing is noise

imposed from microwave rotations. We estimate these noise sources by performing two additional

variations of the measurement sequence of Fig. 2 of the main text, removing either the feedback

rotation θFB or all rotations.

At the optimal deterministic spin squeezing with feedback, we achieve R−1 = 9.5(4) dB. To

estimate the noise added from feedback, we measure conditional spin noise Jzf − Jzp in a sequence

with no feedback and find R−1 = 12.4(7) dB. Feedback leads to approximately 2.9 dB of added



100

noise. Next, we perform the sequence with no microwave rotations of any kind, effectively measuring

the same spin population N↑ four times. In this sequence we attain R−1 = 14.0(5) dB, 1.6 dB less

than the sequence with rotations but no feedback. This measurement suggests a rotation noise floor

due to microwave amplitude and frequency noise that is approximately 17.5 dB below projection

noise. Further, we suspect that rotation noise is also a primary contribution to the additional noise

from adding feedback, since certain rotation errors which cancel after two π pulses will no longer

cancel when feedback is applied. Improving the precision of microwave rotations remains a major

obstacle in working with atomic spin states with extreme phase resolution.



Chapter 7

Spatially Homogeneous Spin Squeezing for Atom Interferometry

7.1 Introduction

Spin-squeezed states could be used to improve a wide range of quantum sensors, with today’s

best atomic clocks [115, 66, 76] being particularly promising candidates [121]. In this chapter

I focus on preparing spin-squeezed states appropriate for matter-wave atom interferometry with

applications including inertial sensing [9], measurements of gravity and freefall [135, 141], and even

the search for certain proposed types of dark matter and dark energy [131, 61].

A major challenge arises for cavity-based atom interferometry and other applications involv-

ing release of spin-squeezed atoms into free space. The problem is that the probe mode used to per-

form the collective measurement is a standing wave, but the atoms are trapped in a 1-dimensional

lattice defined by a standing wave cavity mode with a significantly different wavelength. Some

atoms will sit in lattice sites positioned near nodes and some near anti-nodes of the entanglement-

generating probe light. As a result, the atoms will contribute to the collective measurement with

different strengths. In this common case, the large degree of squeezing exists only for this spe-

cific coupling configuration and would be largely lost after releasing the atoms into the arm of

an interferometer, since their final coupling to the cavity mode or other readout detector will be

different from the original configuration [70]. In contrast, we wish to create spatially homogeneous

entanglement, quantified by the amount of observed phase resolution beyond the SQL that one can

achieve when every atom couples equally to the final measurement apparatus.
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7.2 Homogeneous squeezing in an effective optical dipole trap

In this section, I demonstrate a method to create homogeneous spin-squeezed states in a

standing wave optical cavity by allowing the atoms to traverse many wavelengths of the standing

wave probe during each collective measurement. Atoms experience a time-averaged coupling to the

cavity so that every atom is measured with the same strength, ensuring homogeneous entanglement.

We do this by creating an optical trap with a uniform axial potential, which we refer to as an effective

“dipole trap” as opposed to the standing-wave “lattice”. The dipole trap maintains transverse

confinement of the atoms while allowing free movement subject to gravity along the vertical cavity

axis. We demonstrate 11(1) dB of directly observed squeezing via collective measurements in the

dipole trap, the most directly observed spin squeezing ever achieved apart from Refs. [39, 68], and

use fluorescence images and noise scalings to show that the generated squeezing is homogeneously

shared among the atoms to a large degree, in principle allowing significant amounts of squeezing for

free space or guided matter-wave interferometry. We also discuss the limits placed on entanglement

generation with time-averaged measurements.

Homogeneous squeezing can also be obtained using a travelling wave “ring” cavity [13], but

birefringence must be controlled to maintain the efficacy of utilizing cycling transitions [32]. An-

other appealing approach is to introduce a commensurate lattice [68, 91]. This approach requires

special mirror coatings and frequency doubling equipment and doesn’t permit guided movement for

atom interferometry within the cavity mode. Homogeneous entangled states can also be obtained

without using a cavity [56, 4, 12, 114, 62], but free space experiments have not yet achieved the

large amounts of squeezing observed using optical cavities.

In this work, we use the pseudo-spin states defined by the ground hyperfine states of 87Rb,

with |↓〉 ≡ |52S1/2, F = 1,mF = 1〉 and |↑〉 ≡ |52S1/2, F = 2,mF = 2〉 split by 6.8 GHz. As in Refs.

[39, 32], we describe the total pseudo-spin state of N atoms by a collective Bloch vector ~J , with

spin projections Jx, Jy, and Jz. The spin projection on a single trial Jz = N↑− N
2 is determined by

making a collective measurement of the total number of atoms in the upper spin state N↑. For an
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unentangled, coherent spin state (CSS), quantum projection noise (QPN) leads to fluctuations in

Jz of size ∆Jz,QPN =
√
N/2. In this work, ∆X will refer to the standard deviation of a quantity

X as measured over repeated trials of the experiment.

The collective measurement is performed using the experimental apparatus and techniques

described in Ref. [39]. In brief, we trap 87Rb atoms in the central 2 mm of a 2 cm optical cavity

with finesse F = 2532(80). A cavity mode is tuned δc = 2π × 400 MHz to the blue of the |↑〉 to

|e〉 ≡ |52P3/2, F = 3,mF = 3〉 transition. The cavity resonance frequency ω is shifted by an amount

depending on the number of atoms in |↑〉 due to the dispersive interaction between the atoms and

cavity. The cavity’s resonance frequency is measured by probing the cavity in reflection for 40 µs.

The probing is collective because it is not possible to tell from the single probe mode precisely

which atoms are in |↑〉.

In a single trial, we apply resonant microwaves to prepare each atom in an equal superposition

(|↑〉+ |↓〉)/
√

2. We then perform two consecutive measurements of the projection Jz, with the two

measurement outcomes labeled Jzp and Jzf , with subscripts denoting pre and final measurement.

The quantum projection noise is common to the two measurements and is removed when we take

the difference between the pre and final measurements, yet the atoms nearly completely retain

coherence of the quantum phase between |↑〉 and |↓〉. This allows one to sense a quantum phase

that evolves between the final and premeasurements below the SQL.

The atoms are initially cooled to approximately 10 µK and trapped in a far off resonance red

detuned optical lattice at λl = 823 nm (with corresponding wave vector k0 = 2π/λl). We then

convert this standing-wave lattice into an effective dipole trap. This is achieved by simultaneously

driving multiple TEM00 longitudinal modes of the cavity near 823 nm. Adjacent longitudinal modes

have opposite symmetry with respect to the cavity center. To lowest order, near the center of the

cavity, one mode creates a cos2(k0z) standing-wave intensity profile while the next mode creates a

sin2(k0z) intensity profile such that the sum of the two standing waves cos2(k0z) + sin2(k0z) = 1

creates a net uniform intensity profile along the cavity axis as shown in Fig. 7.1(a).

To drive adjacent longitudinal modes, we phase modulate the lattice light at the cavity
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Figure 7.1: (a) Optical lattice sidebands separated by one free spectral range (FSR) are injected
into the cavity to create an axially homogeneous “dipole” trap. Dipole trap intensity (blue) and
its envelope (red) plotted inside of the optical cavity, with exaggerated wavelength λl × 103. (b)
The envelope of the residual lattice potential Vres(z) normalized to the peak lattice potential depth
V0 is plotted near the cavity center, optimized for a minimum at z = 0 (gold, β = 1.20) and for
the minimal fraction of trapped atoms determined experimentally (red, β = 1.32). (c) Fraction of
atoms remaining in the cavity mode (blue points) vs. fall time, fit to a model (red dash) described
in the text. Fluorescence images show the falling atom cloud at various times (inset).

free spectral range (FSR), FSR = 2π × 8.1050(5) GHz, using a fiber-coupled phase modulator.
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The resulting axial component of the potential at distance z from the cavity center can be written

V (z) = V0[J2
0 (β) cos2 (k0z)+J2

−1(β) sin2 ((k0 + δk−1)z)+J2
1 (β) sin2 ((k0 + δk1)z)+. . . ], where Jn(β)

is the nth Bessel function and β is the modulation index. δkn = nFSR/c is the additional wave

vector for the sidebands offset by n cavity free spectral ranges, with speed of light c. Interference

terms between sidebands are neglected since they oscillate at 8 GHz.

Figure 7.1(b) shows the depth of the residual standing-wave lattice potential in the dipole

trap Vres(z) as a function of distance from the center of the cavity for two different values of β.

We find β ≈ 1.32 (overdriving the dipole trap) to be the optimum value for freeing atoms to move.

This is due to a wider minimum of Vres(z) which overlaps the atomic spatial distribution as well

as the fact that overdriving causes the lattice potential wells to be converted into small potential

peaks, giving atoms additional potential energy.

When an atom begins to fall in the dipole trap, the increase in the residual lattice depth is

not sufficient to stop the atom from continuing to fall; rather, we expect the atom to be guided by

the optical dipole trap until it collides with the lower mirror. In Fig. 7.1(c), we measure the number

of atoms in the cavity as a function of freefall time, tdrop, by continuously monitoring the dispersive

shift of the cavity resonance frequency. The data is renormalized to account for background atom

loss and is reasonably described by a fit (purple line) which assumes atoms are guided by the net

transverse intensity profile of the dipole trap until they are lost when they collide with the lower

mirror. For comparison, ballistic expansion out of the cavity mode would occur in only 2 ms were

we to simply turn off the optical lattice. The free fall and guiding are corroborated by fluorescence

measurements such as shown in Fig. 7.1(c) inset for various tdrop. Figure 7.1(c) and fluorescence

images indicate that at long times only 5(1)% of the atoms remain trapped in a residual lattice. The

majority of the atoms move along the cavity axis, the key for obtaining time-averaged homogeneity

in the coupling of the atoms to the standing-wave probe mode.

For a fixed total atom number, we expect the projection noise induced fluctuations in the

cavity resonance frequency ∆ωQPN to be smaller in the dipole trap than in the lattice. While

the total dispersive shift is the same in both cases, in the lattice the dominant contribution is
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Figure 7.2: (a) Projection noise scaling versus total atom number N , measured in the lattice (red
points) including a theoretical prediction (red line) and in the dipole trap (blue points) including
a fit to infer a coupling fraction ζ (blue line, with 68% confidence interval bands). Sequences
are inset. Dashed boxes represent Bloch vector rotations through a given angle using resonant
microwaves. Solid boxes represent cavity frequency measurements. (b) Quantum noise reduction
in the dipole trap with 6.3(3)×105 atoms. A histogram of Jzf − Jzp (black data points) shows a
standard deviation 13.9(6) dB below projection noise ∆Jz,QPN = 397 atoms (gold line and shaded
distribution). The measurement sequence is inset.
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from the subset of atoms situated near antinodes of the probe. These atoms have a Jaynes-

Cummings coupling parameter gi near the maximum value g0 = 2π × 0.519(5) MHz and provide

stronger than average fluctuations. In the ideal time-averaged situation, on the other hand, the

full ensemble only couples with the rms coupling strength grms = g0/
√

2, actually leading to

weaker cavity frequency fluctuations. To quantify the level of homogeneous coupling, we define

a model where fractionally, ζ of the atoms release into the dipole trap and are assumed to have

perfectly homogeneous coupling. 1 − ζ of the atoms remain fixed in position and maintain their

original coupling. In this model, the projection noise induced fluctuations in the cavity resonance

frequency can be written ∆ωQPN = g2
rms

√
N(3− ζ)/

√
8(g2

0N + δ2
c ) (See Section 7.5).

We observe this change in the projection noise scaling between the lattice and dipole trap by

performing the measurement sequences of Fig. 7.2(a) in the lattice (red, superscript L) and in the

dipole trap (blue, superscript D) versus the total atom number in the cavity N . The ω↑ and ω↓

windows represent the outcome of a measurement of the cavity resonance frequency, sensitive to N↑

or N↓ respectively, and we plot the observed projection noise fluctuations ∆ωQPN,meas = ∆(ω↑−ω↓)

in either the lattice or the dipole trap. A small amount of technical noise that does not have the

proper scaling with atom number has been subtracted out of this data. The lattice data is used

as a calibration of g0 with the theoretical scaling plotted in red. The dipole trap data is fit to the

model 2×∆ωQPN (since the measurement sequence includes two anti-correlated windows, ω↑ and

ω↓) with ζ as a free parameter. We fit ζ = 1.0(2), consistent with our expectation of 95% from the

data in Fig. 7.1(c).

By consecutively performing a pre and final measurement ωD
↓ , labeled ωD

↓p and ωD
↓f we can

show a large degree of spin noise reduction below QPN and correspondingly demonstrate the

creation of entangled, spin-squeezed states in the dipole trap. We measure spin squeezing using

the Wineland criterion for phase enhancement relative to the SQL, (∆θ/∆θSQL)2 ≡ S = R/C2

[174, 39]. The observed spin noise reduction normalized to the quantum projection noise level

is R = (∆(Jzf − Jzp)/∆Jz,QPN )2 < 1. Squeezing or enhanced phase resolution also requires

the additional demonstration of retained coherence, or Bloch vector length, often referred to as
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“contrast”, C ≡ 2| ~J |/N .

The measurement sequence is shown in the inset of Fig. 7.2(b) and is the same as that of

Ref. [39]. We use tdrop = 13 ms, which accelerates the atoms enough to average over approximately

13 cycles of the probe standing wave during the 40 µs measurement window. Figure 7.2(b) shows

noise in measurements of ωD
↓f − ωD

↓p in the dipole trap with total atom number N = 630(30) ×

103 atoms. Experimental parameters grms, δc, and N are used to scale between cavity frequency

measurements and Jz, ∂ω/∂Jz = g2
rms/

√
4g2
rmsN↑ + δ2

c . The data is collated into a histogram

on the left, showing a standard deviation 13.9(6) dB less than the projection noise level shown in

yellow. The remaining contrast after the premeasurement was independently measured, C =0.70(5).

Together with the noise reduction, this yields a directly observed phase resolution, or spin squeezing,

of S = 1/13(3) or −11(1) dB below the SQL

7.3 Coupling oscillations

When the cavity frequency is measured in a 40 µs window using the dipole trap, oscillations

in the signal are observed, indicating the atomic motion over the probe standing wave. Specifically,

we measure the number of atoms N↑ that are coupled to the cavity as a function of time by applying

a scale factor to convert cavity frequency to atom number. We refer to this rescaled time signal as

N (t) =
∑N↑

i g2
i (t)/g

2
rms. We observe noise in the atom’s coupling in the frequency domain, which

can be used to infer the distribution of atoms’ coupling oscillation frequencies. Most of the coupling

oscillations average away, since the oscillation of each atom occurs with a random phase. However,

the residual uncancelled coupling oscillations are observed in N (t) such that the squared Fourier

transform of the time signal, |Ñ (f)2| has units of Atoms/Hz and is closely related to the atomic

velocity distribution.

Figure 7.3(a) shows |Ñ (f)2|, recorded using 2 ms of data and taking the average power

spectrum of time traces from approximately 65 trials. The data was taken after 1 ms (blue), 7.5 ms

(red), and 15 ms (green) of freefall time after release into the dipole trap. Each power spectrum is fit

to an appropriately folded 1D Boltzmann distribution that accounts for the inability to distinguish
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Figure 7.3: (a) Power spectra showing coupling oscillations for fall times of 1 ms (blue), 7.5 ms (red)
and 15 ms (green) with their respective fits. (inset) Center frequency f0 of the fitted Boltzmann
distribution for various fall times (points) compared to a freefall prediction line of f0 = 2at/λp (line),
see text for definitions. (b) Power spectrum showing coupling oscillations at the trap frequency
when atoms are trapped in the optical lattice.
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between upwards and downwards velocities. The fit center frequency f0 is plotted as a function

of the freefall time t in the inset of Fig. 7.3(a). The result is consistent, particularly at long

times, with the simple prediction, f0 = a t/(λp/2), where a = 9.81 m/s2 is the acceleration due to

gravity. The widths of the distributions are consistent with Boltzmann distributions giving final

axial temperatures of 25 µK. To contrast, Fig. 7.3(b) shows |Ñ (f)2| for atoms in the lattice. Instead

of a large thermal distribution, a narrow distribution is observed at the lattice trap frequency, about

200 kHz.

7.4 Outlook for atom interferometry

In summary, we infer that we have created a spatially homogeneous squeezed state from the

combined observations of Figs. 1-3. First, we observe release of 95(1)% of the atoms (Fig. 7.1)

at a sufficient velocity (Fig. 7.3) to ensure, on average, 13 averaging cycles of the probe standing

wave during a 40 µs collective measurement. In Fig. 7.2(a) we also confirm the transformation

to homogenous coupling by the change in scaling of projection noise fluctuations of the cavity.

The demonstration of 11(1) dB of observed squeezing in the homogeneous configuration proves our

ability to create a large amount of entanglement in this highly time-averaged scheme.

We investigate the limits to squeezing using our time-averaged scheme in the Section 7.5.

Since the ac signals in Fig. 7.3 yield additional information about the spin state of each velocity

component of the atomic ensemble, time averaging will fundamentally limiting the squeezing to

order S ∝ 1
qN , where q is the total quantum efficiency of the experiment. For q ∼ 1, this is close

to the Heisenberg limit. The more relevant limitation for our system is imperfect averaging of the

probe standing wave. For 40 µs measurements after a 13 ms drop time and for a 25 µK ensemble,

we estimate that the observed noise reduction should be limited to 15 dB below QPN, which we

believe to be a primary limitation to our observed spin noise reduction of 13.9(6) dB. In the future,

this limit could be improved using longer measurement windows to average over more cycles of the

probe standing wave during each measurement.

To realize a free space matter-wave interferometer, atoms could be prepared in the cavity for
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the entanglement generating premeasurement, then released into free space for an interferometry

sequence. The final measurement could be performed with fluorescence detection. The 5% of atoms

with non-uniform coupling during the premeasurement would lead to an additional noise floor, not

observed in this work, of 13 dB below the SQL. Additionally, inhomogeneity from radial motion

will lead to another additional noise floor of approximately 10 dB below the SQL [39]. Notably,

this radial motion would also equally affect systems using ring cavities, commensurate lattices, or

other axial averaging techniques.

Another possibility is to perform guided interferometry inside the cavity mode. Here the

pre and final measurements would both be performed with collective cavity measurements. In this

case, the noise from the 5% of atoms remaining trapped and radial motion largely cancels at short

times. The 11(1) dB of squeezing observed in this work would in principle fully translate to this

type of interferometer. In addition to the possibility of using entangled states, performing the final

readout via a cavity measurement may allow for reduced technical noise, higher bandwidth, cleaner

optical modes, and power buildup for Raman transitions [60].

Similarly, higher order transverse modes, atom-chip technologies [168, 176], or tailored poten-

tials [58, 97] might be combined with the cavity measurement technique presented here to create

new varieties of matter-wave Sagnac interferometers and other inertial sensors. The real-time

observation of mechanical motion also opens the path to stochastic cooling schemes based on mea-

surement and feedback [166] with applications to more complex systems such as molecules, which

can be challenging to laser cool using conventional Doppler cooling methods.

7.5 Squeezing limits from time averaging

7.5.1 Introduction

As shown in the Main Text, time averaging the probe standing wave during collective cavity

measurements can be used to create homogeneous squeezing within an atomic ensemble in a cavity.

However, the technique introduces limitations to spin squeezing in addition to the fundamental



112

limits calculated in Ref. [32] set by finite collective cooperativity NC, finite quantum efficiency

for detecting the probe light q, and the probability of the probe light inducing a spin flip p.

Specifically, the best achievable spin squeezing is S = Max
[
e/(qNC),

√
8p/(qNC)

]
where the first

limit (e/(qNC)) is due to wave-function collapse from free space scattering and the second limit

(
√

8p/(qNC)) is due to additional noise from Raman spin flips. Here, we calculate the additional

limits to S imposed by time averaging the spatially inhomogeneous coupling.

First, we establish the language for describing the limits on spin-noise reduction R when

the coupling coefficient of each atom differs between the pre and final measurement windows, with

results closely matching those of Hu et al. [70]. We apply this formalism to determine the best

achievable spin-noise reduction, and therefore best spin squeezing for two concrete scenarios relevant

to matter-wave interferometry with squeezed states. First, we consider the scenario in which we

perform the premeasurement of the spin state with the atoms trapped in an incommensurate

1D intracavity lattice and then perform the final measurement with uniform coupling. Next, we

consider the case of incomplete cycle averaging over the standing wave probe mode if the atoms

are allowed to move along the cavity axis during the pre and final measurements.

Next, we calculate two sources of inhomogeneous broadening, or dephasing, that arise from

time averaging. This dephasing leads to a loss of contrast or signal. The first source is fundamental

quantum back-action that arises from the atoms sampling the photon shot noise of the intracavity

probe light at different times, or equivalently, spectral frequencies. The second source arises from

imperfect cycle averaging of the probe coupling. We show that these two limiting effects do not sig-

nificantly impact current experiments, and can in principle allow spatially homogeneous squeezing

near the Heisenberg limit.
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7.5.2 Noise reduction limits with inhomogeneous coupling

7.5.2.1 Noise between the final and premeasurement

To find the optimum spin-noise reduction with inhomogeneous coupling, we begin with an

expression for a measurement of atoms in a cavity where we assume each atom i couples to the

optical cavity with a factor ηmi(t) in the pre (m = p) or final (m = f) measurement. Concretely, we

can write ηmi(t) = g2
mi(t)/δc when we are in the dispersive regime of cavity measurements, where

δc, the optical cavity detuning from the atomic transition, is much greater than Ω = 2grms

√
N , the

collectively enhanced coupling rate between the atoms and the cavity, or vacuum Rabi splitting [32].

g2
mi(t) is the ith atom’s time dependent Jaynes-Cummings coupling parameter. We consider the

average outcome of the measurement by taking the time average of ηmi(t), denoted by dropping

the time dependence (t). As a reminder, g2
rms is the average of g2

i over the atomic ensemble.

Note however, that by changing the units and scaling of ηmi, the expressions we derive can be

generalized for any type of population measurement such as fluorescence detection. The operator

ω̂mi that measures the time-averaged cavity frequency shift from the ith atom is then

ω̂mi =
(
σ̂′z,i + γ

)
ηmi. (7.1)

Here, σ̂′z,i = (1− γ)( |↑i〉 〈↑i| − |↓i〉 〈↓i| ) is the Pauli spin operator σ̂z,i for the ith atom, rescaled by

(1 − γ). The constant 0 ≤ γ ≤ 1/2 is used to account for the fact that the measurement may be

sensitive to some linear combination of state populations N↑ and N↓, given by (N↑−(1−2γ)N↓). We

include this factor since a number of spin squeezing experiments have used an optical cavity detuned

halfway between the |↑〉 → |e〉 and |↓〉 → |e〉 transitions [68, 140, 4]. In such cases, the dispersive

cavity shift is sensitive only to population differences between |↑〉 and |↓〉 and can be modeled with

γ = 0. However, in this work we set the cavity resonance frequency near the |↑〉 → |e〉 transition

(modeled with γ = 1/2), so there is no sensitivity to N↓. This scheme is advantageous for probing

on a cycling transition p = 0, as mentioned in the introduction [39, 32, 19]. Additionally, even when

the cavity only couples to atoms in |↑〉, a π-pulse can be used to swap the state populations and
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measure N↑ and N↓ sequentially, again achieving a differential measurement with γ = 0. However,

this method is only valid if the atoms’ couplings to the measurement do not change between the

N↑ and N↓ measurement.

We wish to cancel the quantum projection noise in the final measurement of all N atoms

ω̂f =
∑N

i=1 ω̂fi using a premeasurement ω+ =
∑N

i=1 ω̂pi of the noise value. However, if the ith atom’s

couplings ηfi and ηpi differ, its projection noise cannot be exactly cancelled. In order to optimize

the cancellation of the noise, we construct a weighted difference ω̂diff ≡ ω̂f −Wω+, with weight

factor W . It is important to note that, since our entanglement-generating collective measurements

of ω̂f and ω+ must not reveal single-particle information, we can only use a single weight factor for

the entire ensemble. Thus, if the change between ηfi and ηpi is inhomogeneous, that is, different

for each atom i, there is no value of W that can be chosen to achieve full cancellation of the noise

in the final measurement.

To derive the best achievable squeezing limit with inhomogeneous coupling, we will calculate

the noise in the weighted difference ω̂diff and find the optimum value for the weight factor W .

First, using Eq. 7.1, we calculate the variance (∆ωdiff,i)
2 in ω̂i,diff for a single atom. Next, we will

independently sum the noise contributions from each atom to calculate the total variance (∆ωdiff)2.

We neglect all sources of noise in the system except the quantum projection noise and fluctuations

in the couplings ηmi. Other realistic noise sources such as photon shot noise and laser frequency

noise are neglected in order to calculate the squeezing limit just from inhomogeneous coupling.

Importantly, the optimum weight factor W for cancelling quantum noise and coupling noise is

likely to not be the optimum for cancelling the other technical noise sources such as laser frequency

noise. In fact, in our experiments optimum squeezing was always observed with W = 1.

The noise variance in ω̂i,diff is calculated using

(∆ωdiff,i)
2 ≡ 〈(ω̂fi −Wω̂pi)

2〉 − 〈(ω̂fi −Wω̂pi)〉2, (7.2)

where we denote the average over many independent experimental trials with the 〈...〉 notation. This

trial average will simultaneously evaluate the quantum fluctuations of the spin projection operator



115

σ̂′z,i as well as possible fluctuations in the time-averaged couplings ηmi. In calculating averages, we

will reasonably assume that fluctuations in the couplings are uncorrelated with fluctuations in the

spin projection operator, leading to

(∆ωdiff,i)
2 = 〈(σ̂′z,i + γ)2〉〈(ηfi −Wηpi)

2〉 (7.3)

− 〈σ̂′z,i + γ〉2〈ηfi −Wηpi〉2. (7.4)

We now limit the discussion to the relevant case of atoms in an equal superposition of |↑〉 and |↓〉

such that 〈σ̂′z,i〉 = 0. However, we leave the expectation value 〈σ̂′2z,i〉 unevaluated. This helps to

illuminate different contributions to (∆ωdiff,i)
2 and also allows for the possibility of atoms being in

different entangled or mixed states.

(∆ωdiff,i)
2 = 〈σ̂′2z,i〉

[
〈η2
fi +W 2η2

pi − 2Wηfiηpi〉
]

(7.5)

+ γ2
[
(∆ηfi)

2 +W 2(∆ηpi)
2 − 2WCov(ηfi, ηpi)

]
(7.6)

where Cov(X,Y ) = 〈XY 〉 − 〈X〉〈Y 〉 is the covariance between X and Y. As a reminder, the

covariance quantifies the correlation of the fluctuations of X and Y . If X and Y are uncorrelated,

then Cov(X,Y ) = 0. If X and Y are perfectly correlated, then Cov(X,Y ) = ∆X∆Y where ∆X

is the standard deviation in the quantity X. There are two contributions to (∆ωdiff,i)
2. The first

(line 7.5) is the term arising from uncancelled quantum projection noise and will be nonzero if

the couplings, Wηpi and ηfi, are not equal to one another. This term captures the fundamental

problem of inhomogeneous coupling to the collective measurement.

The second contribution proportional to γ (line 7.6) results from trial-to-trial noise in the

couplings ηfi and ηpi and is fully classical, since it has no contribution from projection noise, that

is, 〈σ̂′2z,i〉. The physical origin of this term can be thought of as trial-to-trial noise in the scale factor

relating an observed cavity frequency shift to an estimated population of atoms in spin up or down.

When γ = 0, the cavity frequency shifts are proportional to N↑ −N↓ which is on average zero for

the case considered here. As a result, any noise in the scale factor contributes no additional noise.
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However, if γ = 1/2, then the cavity frequency shifts are proportional to N↑ which for the case

considered here is approximately N/2. In this case, classical scale factor noise can easily contribute

at or above the quantum noise level.

As an example, the second term (line 7.6) is important when the atoms are trapped in the

intracavity lattice for the premeasurement and then released to into an optical dipole trap for the

final measurement. An atom in the optical lattice sees fluctuations with a range of 100% from

trial to trial in the standing wave coupling ηpi. This leads to classical noise in the premeasurement

that is of the same order as quantum projection noise. The quantum (line 7.5) and classical (line

7.6) contribution to (∆ωdiff,i)
2 are approximately equally. The classical noise could, in principle,

be removed if we knew every atom’s couplings ηfi and ηpi on each trial, but we do not. Instead,

we can only measure the average couplings 〈ηfi〉 and 〈ηpi〉 by linking a cavity shift, averaged over

many trials, to a change in the state population N↑.

The second relevant example that is sensitive to both quantum and classical noise in ω̂diff is

that of our time-averaged scheme. Atoms will have different initial positions and velocities from

trial to trial, leading to classical noise between ηfi and ηpi. We theoretically predict the contribution

to our observed squeezing from this effect in section 7.5.2.4.

The total noise variance (∆ωdiff)2 is found by summing the noise contribution from each

atom, assuming that they are uncorrelated:

(∆ωdiff)2 =

N∑
i=1

(∆ωdiff,i)
2. (7.7)

Every second order moment (e.g. 〈η2
mi〉) contributing to this sum can in principle be different, but

we make the often-valid assumption that the particle labels for every atom are interchangeable. In

this case, the trial average 〈...〉 can equivalently be viewed as an average over all of the atoms in

the ensemble on a single trial. In either picture, each term in Eq. 7.7 is equal so that

(∆ωdiff)2 = N(∆ωdiff,i)
2. (7.8)
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Since we have assumed that expectation values are the same for all atoms i, we will drop the indexes

in following expressions such that 〈ηmiηm′i〉 ≡ 〈ηmηm′〉, 〈ηmi〉 ≡ 〈ηm〉, and 〈σ̂′2z,i〉 ≡ 〈σ̂′2z 〉.

7.5.2.2 Quantum projection noise

To calculate the quantum projection noise (QPN) limit to the noise difference (∆ωdiff)2, we

can consider the case in Eq. 7.5-7.6 when W = 0 and only take the resulting noise from the quantum

term of line 7.5,

(∆ωQPN)2 = N〈σ̂′2z 〉〈η2
f 〉. (7.9)

Equation 7.9 can be used to derive the prediction (given in the Main Text) for projection noise

fluctuations in the effective dipole trap when fractionally (1 − ζ) of the atoms remained trapped

in the residual lattice. We assume that the atoms are identically prepared in a pure state with

an equal superposition of |↑〉 and |↓〉, so that 〈σ̂′2z,i〉 = 1/4. We have set γ = 1/2, to model our

measurements that are sensitive to N↑. For the ζ atoms in the dipole trap, 〈η2
f 〉 = g4

0/(4δ
2
c ) where

g0 is the Jaynes-Cummings coupling parameter at an anti-node of the cavity. For the 1− ζ atoms

in the residual lattice, 〈η2
f 〉 = 3g4

0/(8δ
2
c ). Simply adding the projection noise variance of all of the

atoms leads to the observed decrease of the projection noise versus ζ,

(∆ωQPN)2(ζ) =
Ng4

0

4δ2
c

[
1

4
ζ +

3

8
(1− ζ)

]
. (7.10)

The equation for the QPN level given in the Main Text is more general in that it does not assume

the dispersive limit δc � 2
√
Ngrms as we have done here.

7.5.2.3 Optimum spin-noise reduction

The observable spin-noise reduction relative to the quantum noise in the final measurement

is given by R = (∆ωdiff)2/(∆ωQPN)2. Here we consider atoms independently prepared in a pure



118

state with equal superposition of |↑〉 and |↓〉, such that 〈σ̂′2z 〉 = 1/(1− γ)2. We then find,

R =
〈η2
f +W 2η2

p − 2Wηfηp〉
〈η2
f 〉

(7.11)

+
γ′2

〈η2
f 〉

[
(∆ηf )2 +W 2(∆ηp)

2 − 2WCov(ηf , ηp)
]

(7.12)

where we define γ′ = γ/(1− γ). As a reminder, γ = γ′ = 0 represents a measurement of N↑ −N↓

and γ = 1/2, γ′ = 1 represents a measurement of only N↑. Similar to Eq. 7.5-7.6, this result

possesses a quantum (line 7.11) and classical (line 7.12) contribution. The classical term is given

by the variances, or fluctuations of measurement strengths while the quantum term is given by the

squared magnitude of the pre and final measurement coupling strengths. Additionally, if γ′ = 0

the classical term vanishes, since the measurement signal will be centered around zero. If γ′ = 1,

the two components can be of the same size. This shows that engineering measurements sensitive

to N↑ −N↓ can be advantageous to measuring N↑.

The optimum weight factor that minimizes R is

Wopt =
γ′2Cov(ηf , ηp) + 〈ηfηp〉
〈η2
p〉+ γ′2(∆ηp)2

, (7.13)

with optimized noise reduction Ropt,

Ropt = 1 +
γ′2(∆ηf )2

〈η2
f 〉

(7.14)

−
[
〈ηfηp〉+ γ′2Cov(ηf , ηp)

]2
〈η2
f 〉〈η2

p〉+ γ′2〈η2
f 〉(∆ηp)2

. (7.15)

This result is the best noise reduction possible when the final and premeasurement have different

coupling strengths. Line 7.14 gives the projection noise and classical noise in the final measurement.

Line 7.15 represents the optimum cancellation of the final measurement’s noise provided by the

optimally weighted premeasurement. In the case that only population differences (N↑ − N↓) are

mesured, such that γ′ = 0, Ropt simplifies to

Ropt = 1−
〈ηfηp〉2

〈η2
f 〉〈η2

p〉
, (7.16)

the ratio of the second order moments of the coupling strengths.



119

7.5.2.4 Fundamental limits for specific cases

We now apply the previous results to two important cases. First, we show that spin-squeezed

states created in an optical lattice with incommensurate coupling to the probe standing wave do

not lead to significant noise reduction below the SQL after they are launched into a homogeneous

environment such as free space or our time-averaged optical dipole trap. Second, we derive the

limit to spin-noise reduction in our time-averaged scheme due to imperfect time averaging of the

probe standing wave.

For applications such as atom interferometry, it is interesting to consider the case in which

the atoms uniformly couple to the final measurement (homogeneous coupling), but during the

premeasurement the atoms are held in an optical lattice that has an incommensurate wavelength

with the probe standing wave (inhomogeneous coupling.)

We take the final coupling to be the same for all atoms ηf = g2
0/2δc. This represents the case

when the final measurement is performed with the atoms moving along the cavity axis such that

they perfectly time average away spatially inhomogeneous coupling to the probe standing wave.

This will also capture the physics of similar such measurement scenarios including ring cavities,

commensurate lattice/probe standing waves and spatially homogeneous fluorescence detection.

In our experiment, the lattice λl = 823 nm and probe λp = 780 nm wavelengths are higly

incommensurate. The two standing wave antinodes go from fully aligned to misaligned to fully

realigned in roughly 7.5 µm, a much shorter length than the characteristic 1 mm range of lattice

sites into which atoms are loaded. To describe this scenario, we take the premeasurement coupling

of the ithatom to depend on its fixed position xi on a single trial as ηpi = (g2
0/δc) sin2(Φi), where

the phase of the coupling is Φi = 2πxi/λp. We further assume that the atoms independently and

randomly load into different lattice sites from one trial to the next such that the ithatom uniformly

samples coupling phases Φi = 0 to 2π from trial to trial. However, we re-emphasize that to model

a premeasurement performed with the atoms trapped in the lattice, on a single trial the coupling

phase of atom i does not vary in time. One then finds second order moments 〈η2
p〉 = 3g4

0/8δ
2
c and
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〈η2
f 〉 = 〈ηpηf 〉 = g4

0/4δ
2
c = g4

rms/δ
2
c , and variances (∆ηp)

2 = 〈η2
p〉 − 〈ηp〉2 = g4

0/8δ
2
c , (∆ηf )2 = 0 and

Cov(ηf , ηp) = 0.

The best achievable spin-noise reduction for this case is Ropt = 1/3 (1/2) or -4.8 dB (-3 dB)

when we consider the two different cases, γ′ = 0 (1). This shows that squeezed states created

by a premeasurement in an incommensurate standing wave lattice [39] cannot provide significant

entanglement enhancement for free space sensors. Specifically, this degree of spin-noise reduction

is far worse than the R ≈ −18 dB of spin-noise reduction achieved in experiments in which the

atoms are trapped for both the pre and final measurement [68, 39].

This optimal spin-noise reduction is achieved using the optimum weight factor Wopt =

2/3 (1/2). For comparison, if the relative weight factor is not optimized, but simply set to W = 1,

one finds that Ropt = 1/2 (1) or -3 dB (0 dB).

For the case γ′ = 0, it is interesting to note that in previous squeezing work with incommen-

surate standing waves [140, 95, 31, 19, 39], an effective atom number Neff was defined in relationship

to the total atom number N as Neff = 2N/3 = WoptN . The above results provide a nice physical

interpretation of this effective atom number. The premeasurement can in principle perfectly mea-

sure the spin noise of Neff of the total atoms N , here 2/3 of all the atoms. The spin noise of the

Neff atoms can then be perfectly cancelled from the final measurement of N atoms. The remaining

spin noise of the “unmeasured” atoms N −Neff, here 1/3 of the total atoms, cannot be canceled at

all such that the best achievable spin-noise reduction is Ropt = (N −Neff)/N = 1/3.

As another example, consider the case in the Section 7.2, where both the pre and final

measurements are performed by time averaging the probe coupling as the ithatom moves along the

cavity axis at velocity vi. The atom moves from anti-node to anti-node of the probe at frequency

fi = 2vi/λp, a frequency we call the coupling oscillation frequency. The time dependent coupling

can then be written as ηmi(t) = (g2
0/δc) sin2(πfit + φmi), where φmi sets the coupling at t = 0.

We assume both the pre and final measurements last for a time Twin, and that the pre and final

measurements start at t = 0 and Tdiff (Tdiff ≥ Twin) respectively. We take the projection noise

level to be that for a perfectly time-averaged scenario in which each atom moves exactly an integer



121

number of cycles of the standing wave: (∆ωQPN)2 = Ng4
0/16δ2

c . Under the same assumption, we

set the weight factor W = 1. The spin-noise reduction, averaging over the normalized thermal

velocity distribution of atoms P (fi), is

R =

∫ ∞
−∞

P (fi)
4 sin2(πfiTdiff) sin2(πfiTwin)

f2
i π

2T 2
win

dfi. (7.17)

To gain some insight, consider an example when the atomic distribution P (fi) is Gaussian with

mean f0 and standard deviation ∆f . In the limit that Tdiff, Twin � 1/∆f and f0 � ∆f , the terms

sin2(πfiTdiff) and sin2(πfiTwin) in Eq. 7.17 will oscillate rapidly with fi and so can be replaced

in the integrand by their average 1/2. The resulting spin-noise reduction is then R = 1/(πNosc)
2

where Nosc = f0Twin is the number of cycles averaged by an atom at coupling oscillation frequency

f0.

We estimate the maximum possible spin-noise reduction expected for the conditions used for

spin squeezing in the Section 7.2, for which the above simplifying approximations are not valid.

To do this, we keep the full expression in Eq. 7.17, set Tdiff = Twin = 40 µs, and use the directly

measured distribution of coupling oscillation frequencies shown in Fig 3(a) of the main text to

obtain an experimentally measured probability distribution P (fi). We find a limit from imperfect

averaging R ≈ −15 dB. We believe this is one of the primary limits to the observed spin-noise

reduction R = −13.9(6) dB. However, we expect that this limit can be improved to beyond 20 dB

by allowing the atoms to fall for longer or by using longer measurement windows Twin, changes that

are difficult to implement with current technical constraints of the experiment but that could be

straightforward to implement in the future.

7.5.3 Dephasing from inhomogeneous back-action

In Section 7.2, the atoms are allowed to move along the cavity axis in order to achieve time

averaging of the inhomogeneous coupling to the standing wave probe mode. As atoms traverse

the probe standing wave, they produce fast oscillations in the measured cavity frequency shift in

addition to the desired average pre and final measurement signals that are used to resolve phases
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below the standard quantum limit. This power spectrum of the oscillations in the cavity shift is

shown in Fig. 7.3 with the spread in frequency components reflecting the thermal spread in atomic

velocities. These oscillating signals yield information about the spin state of atoms moving at a

particular velocity and therefore must cause some degree of additional quantum collapse or back-

action, which may limit the amount of squeezing. A full treatment of this effect is very difficult

since it likely moves the total wave function away from the restricted fully symmetric Hilbert space

of N dimensions and toward the full 2N dimensional Hilbert space. However, we attempt to derive

an estimate for the scale of the deleterious back-action using a classical back-action model driven

by quantum noise on the optical probing field. We estimate that the time-averaging scheme, at

worst, only provides an additional squeezing limit near the Heisenberg limit ∆θ2
H = 1/N2 rad2.

This is far from being a relevant limit for the best current experiments that achieve enhanced phase

resolutions of approximately ∆θ2 ≈ 104/N2 rad2 with approximately N = 106 atoms [68, 39].

One explanation of the quantum back-action is that the probe light causes a differential AC

Stark shift between the spin states such that |↑〉+ |↓〉 → |↑〉+ eıψi |↓〉, equivalent to the ith atom’s

Bloch vector changing its azimuthal angle by ψi. Photon shot noise (PSN) of the probing beam

causes a noisy, unknown contribution to the phase shift with rms fluctuation ∆ψ that is equivalent

to the observed quantum back-action in the azimuthal angle. The PSN level can be plotted (dotted

purple line in Fig. 7.4) in frequency space as a power spectral density of photon number fluctuations

in the cavity SM = 4Mc/κ [105], valid for frequencies much less than the cavity linewidth κ, where

Mc is the average number of photons in the cavity mode and κ is the cavity linewidth. Stationary

atoms sample this PSN in a frequency window centered at zero frequency, with characteristic

bandwidth 1/Twin (the exact sensitivity function shown in red in Fig. 7.4) However, if an atom

moves along the cavity axis, its coupling to the probe field during the premeasurement oscillates as

g2
pi(t) = g2

0 sin2(πfit+φpi), and it will sample the PSN with a modified transfer function, sensitive at

DC (due to the time-averaged component of g2
pi(t)) as well as a component oscillating at fi (shown

for two different velocities or fi in blue in Fig 7.4). In the time domain picture, this is equivalent to

the intra-cavity photon number fluctuating on a time scale 1/κ. Atoms at different velocities and
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initial positions sample these fluctuations differently. As a reminder, we only consider the back-

action of the premeasurement (p) because loss of coherence during or after the final measurement

does not affect the desired sensitivity for detecting a phase that is applied between the pre and

final measurement.

Given a thermal velocity distribution of atoms, the distribution of coupling oscillation fre-

quencies fi will be given by a Gaussian probability distribution P (fi) with standard deviation

2π ×∆f = 4π
√
kbTwin/(mλ2

p) where kb is Boltzmann’s constant, and m is the mass of 87Rb.The

number of sub-ensembles that receive uncorrelated back-action will be of order Ne ∼ ∆f ×Twin. If

Ne � 1, the total Bloch vector length will be reduced, leading to a loss of contrast C = e−∆ψ2/2.

We can write the rms phase shift about the mean due to back-action ∆ψ as

∆ψ = α
√
Mr, (7.18)

where Mr is the total number of probe photons reflected from the cavity input mirror during

a measurement, assuming a loss-less, single-ended cavity. On resonance, the intra-cavity photon

numberMc can be related toMr byMr = Mc(Twinκ)/4. The constant α = 4g2
rms/(κδc) characterizes

the average azimuthal phase shift to an atom’s Bloch vector per reflected photon.

Using the Heisenberg uncertainty relation for a collective spin state, ∆θ∆ψ ≥ 1/N , the PSN

limited spin-noise reduction, ignoring all other noise sources, can be shown to be written

R =
1

α2MrqN
. (7.19)

In real experiments, the squeezing is fundamentally limited by contrast loss from free space scatter-

ing or diffusion of the Bloch vector due to Raman transitions [32]. However, here we neglect these

limits to squeezing and instead focus on the squeezing limit solely due to the contrast loss C from

inhomogeneous back-action due to time averaging. In this case, the total squeezing as a function

of Mr becomes

S = R/C2 =
eα

2Mr

α2MrqN
. (7.20)
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Figure 7.4: Sensitivity of atoms at different velocities to photon shot noise. A moving atom couples
to the probe mode with a transfer function (blue) with sensitivity at DC and at a frequency fi
corresponding to its velocity, shown for an atom with velocity 5 cm/s and 15 cm/s. Stationary
atoms only couple at DC (red). The distribution of oscillation frequencies is given by the Boltzmann
distribution P (fi) (black). Atoms at different frequencies sample photon shot noise (PSN, purple
dash) at different frequencies leading to dephasing that can limit squeezing with time averaging.
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which has an optimum value

Sopt =
e

Nq
. (7.21)

Sopt represents an estimate of the quantum limit to squeezing with our time averaging scheme.

However, Equations 20 and 21 show that, for q near 1, the squeezing is only affected by time

averaging near the Heisenberg limit.

The physical mechanism and scaling of the squeezing limit (Eq. 21) is quite similar to regular

quantum back-action, where every atom receives an identical random phase with an rms magnitude

of ψrms due to photon shot noise in the measurement. In this standard case, since the phase shift

is the same for all atoms, the Bloch vector retains its rms extent J2 ≡ 〈Ĵ2
x〉 + 〈Ĵ2

y 〉 ≈ N2/4. The

difference in the time-averaged case is that each subensemble receives a random phase causing a

decrease in the collective Bloch vector extent J2 < N2/4. In this case, the intrinsic phase resolution

of the ensemble is lowered, but only when one approaches the Heisenberg limit.

7.5.4 Dephasing from imperfect time averaging

In addition to quantum back-action driven dephasing, there can also be classical dephasing:

each atom receives a different average AC Stark shift due to imperfect cycle averaging of the probe

standing wave. In realistic experiments, this classical dephasing will usually be much larger than

the quantum dephasing described in the previous section.

The phase shift on a single atom can be written, for a single premeasurement window,

ψi =

∫ Twin

0
dt
g2
pi(t)Mc

δc
(7.22)

where Mc is the average intracavity photon number, taken to be constant for this calculation.

To estimate the dephasing due to classical imperfections in the time averaging, we calculate the

standard deviation in ψi, ∆ψ, over the atomic distribution . The coupling for the ith atom is

g2
pi(t) = g2

0 sin2(πfit + φpi), with a normalized probability distribution for fi and φpi, denoted
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P (fi, φpi).

∆ψ2 =

∫ 2π

0
dφpi

∫ ∞
−∞

dfiP (fi, φpi)ψ
2
i− (7.23)(∫ 2π

0
dφpi

∫ ∞
−∞

dfiP (fi, φpi)ψi

)2

(7.24)

Assuming the phase φpi of the coupling oscillations is random for each atom, the result can be

simplified to

∆ψ2 =

∫ ∞
−∞

dfiP (fi)
1

2

(
g2

0Mc

2πfiδc

)2

sin2(πfiTwin), (7.25)

reducing the contrast after a single premeasurement by e−∆ψ2/2. Similar to the uncancelled noise

reduction of Eq. 7.17, this result has the interpretation of being due to the phase shift from the

final, uncancelled non-integer fraction of an atom’s coupling oscillation. However, the result will

be slightly modified by the use of a spin-echo pulse for the premeasurement, as in Fig. 7.2 (b), but

since the phase of each atom’s coupling oscillation changes for each window based on it’s velocity,

significant spin-echo cancellation of this dephasing is not expected. For our system we estimate

that classical dephasing from imperfect time averaging leads to a small contrast loss of less than

1 dB at the optimal squeezing and could be improved to arbitrary levels with better averaging by

increasing the number of periods of oscillation in a measurement window while holding the total

number of incident photons in the window fixed.



Chapter 8

Conclusion and Future Outlook

Over the course of my graduate studies, my labmates and I have performed a number of

experiments to explore how quantum atom-cavity systems can be used to improve precision mea-

surements. I hope that this collection of work will continue to advance the field of quantum science

and precision measurement by leading to practical entanglement-enhanced sensors, providing new

techniques for building high quality atom-cavity systems, understanding how to generate and un-

derstand large amounts of entanglement, and providing new techniques to control precise atomic

states.

In general, as atomic sensors become more accurate and precise, we will be able to more

sensitively probe the most fundamental principles of the universe, perhaps leading to physics be-

yond the standard model [61, 156, 7, 175]. Additionally, as atomic experiments become easier to

construct and operate, commercialized and miniaturized systems will make their way into indus-

trial applications [80]. Lastly, the ability to control and manipulate quantum systems including

entangled states is critically important to the quickly growing field of quantum information science.

As we continue to explore and improve the capabilities of atom-cavity systems, I expect advances

in quantum communication and quantum simulation to occur as well as advances in precision

measurement.
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8.1 Future outlook: Spin-squeezed optical lattice clocks

In the near future it may be possible to translate the spin squeezing techniques of this thesis

to state-of-the-art optical lattice clocks [115, 66, 121]. Many optical lattice clocks already employ

optical cavities to create 1-D optical lattices, and have convenient, dipole-allowed, nearly cycling

transitions on which to perform low noise collective probing [121]. An initial proof-of-concept ex-

periment has already been demonstrated in the new strontium experiment in the Thompson lab

[121]. Since today’s best optical lattice clocks are already significantly limited by quantum noise,

and laser-frequency noise from the Dick effect continues to be improved through lower noise lasers

[77], and continuous probing schemes [139], spin squeezing has the potential to lead to significant

improvements. Increasing atom number to improve quantum noise, on the other hand, may actu-

ally be more difficult than generating entanglement since higher atom density leads to unwanted

collisional shifts in the clock [71]. However, our technique for generating squeezing fundamentally

improves with increasing atom number, so the future of atomic clocks may include both 3D optical

lattices for high atom number (small SQL) and very large entanglement enhancements.

8.2 Future outlook: squeezed atom interferometer

Another short term outlook for our work is to demonstrate a proof-of-principle atom interfer-

ometer with resolution below the SQL. The work of chapter 7 is a clear first step towards this goal.

In particular we could demonstrate a guided interferometer operating inside the optical cavity mode

that would not need to perform fluorescence detection, that can be difficult for large ensembles of

atoms.

Such an atom interferometer could use Bragg pulses through the cavity in order to drive

spin-dependent momentum transfer to the atoms. An experimental diagram that shows the level

diagram for the Bragg pulses as well as an experimental sequence is shown below in Fig. 8.1.

In a similar experiment [60], state changing pulses and momentum transfer were accomplished

using Raman light pulses. This was possible to do through the cavity since the cavity free spectral
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Figure 8.1: a) Momentum transfer diagram for 2-photon Bragg pulses. Two laser beams (red),
detuned by the frequency corresponding to 2 quanta of photon momentum change are used to
make transitions along the kinetic energy curve of the atom (blue) b) Timing diagram for atom
interferometry in a cavity. Atoms’ internal states are manipulated by microwave pulses (black and
grey) and state-dependent momentum transfers are achieved using 2-photon Bragg pulses (red and
grey). The spin-momentum entanglement is used to separate the wave function into different spatial
paths leading to a differential phase φ, that is subsequently mapped onto the final wave function
and read out by a final Ramsey π/2 pulse. Squeezing is generated by the collective premeasurement
of Jz shown with a blue and grey pulse.

range was tuned equal to the hyperfine splitting in the atom. However, in our system, this may

not be the case, so I have proposed operating the interferometer with separate microwave spin-

changing pulses and Bragg momentum transfers, that can easily be injected into the cavity since

the frequency difference between the momentum states is only in the kHz range. An experimental

diagram showing a possible atom interferometry sequence and the energy/momentum diagram for

the 2-photon Bragg pulses is shown in Fig. 8.1. The interferometer would operate in the z-direction

parallel to the cavity axis. Since precise rotations of the Bloch vector have remained challenging

in this experiment, operating at lower atom number and higher cavity finesse may be the easiest

route to demonstrate a first squeezed interferometer.
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As a first proof-of-principle experiment, the evolution time in such a sequence could be very

small and one could simply show the ability to generate and read-out momentum-spin entanglement

below the standard quantum limit. However, in the future this type of interferometer could be useful

in a wide range of atom interferometer applications [9, 135, 141, 131, 61].

8.3 Future outlook: superradiant cooling

Another future outlook for the experiment that is currently being investigated is a collec-

tive superradiant cooling mechanism. This phenomenon was recently theoretically introduced in

Ref. [177]. While it is certainly unclear whether superradiant cooling will provide a practical or

technological advancement to the field of cold atom research, it is clear that this is one of the only

collective (could not occur with a single-atom) cooling mechanisms to date and for this reason is

of significant scientific value to study.

8.4 Future outlook: Heisenberg limited states

Speculating further for the future, given the recent advances in atom-cavity systems and joint

measurement, it is reasonable to believe that we may be able to create maximally-entangled states

with Heisenberg-limited phase resolution. Such states could be generated, for example, in a cavity

with a single atom cooperativity C much greater than 1. These cavities can be constructed using

higher finesse mirrors and/or smaller mode waists. Given our increased ability to engineer high

quantum efficiency joint measurements and low technical-noise probing of the optical cavity, this

may be possible. However, as the phase resolution on the Bloch sphere continues to improve, state

manipulation will continue to be a challenge. For this reason, it may be advisable to first attempt

creating maximally entangled states using a smaller atom number, perhaps closer to 103 than 106.

8.5 Final remarks

Entanglement-enhanced sensors may be among the first practical technologies with no clas-

sical analogue. In fact, squeezed states are already being added to a few precision measurements
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[57, 121]. As previously mentioned, entangled states are a reasonable avenue toward improving

optical lattice atomic clocks and atom interferometers. Additionally, gravitational wave interfer-

ometers [57] have demonstrated the use of squeezed light in long baseline interferometry and is

expected to implement squeezed light to improve sensitivity of gravitational wave detectors [64].

In addition to using atom-cavity sensors to create spin squeezed states, atom-cavity systems

are being explored for other entanglement-enhanced technologies as well. Atoms in cavities can

be used to build quantum repeaters to build up quantum networks [35, 29, 146, 15]. They are

also being explored for quantum simulation and exploration of highly complex many body physics

[117, 82]. They are being used to control optomechanical systems [27], and they are allowing the

creation of more exotic entangled states with negative Wigner functions and complex structure

[107, 8]

But what comes next? Although it is impossible to definitively predict the future impact of

entanglement-enhanced technology, allow me to spend the last paragraph of my thesis in wild spec-

ulation. Perhaps one day top down approaches to entanglement generation such as spin squeezing

could be used as entanglement resources. This entanglement could be created, manipulated at will,

and then shared among large quantum networks. Perhaps large ensembles of atoms in a cavity

could be used for analog quantum algorithms, where the probability distribution of the collective

spin is manipulated in specific ways to perform algorithms that are difficult for classical computers.

Lastly, as has already been proposed, perhaps entangled atomic clocks could be connected in a

network [84] to achieve enhanced global timekeeping and synchronization.

I believe the outlook for atom-cavity systems and other quantum technologies is promising,

and the most impactful uses of these quantum platforms are yet to come.
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Appendix A

Homodyne and Heterodyne Detection

For all of the experiments in this thesis, we wish to make phase or frequency measurements

of an optical field used to probe the optical cavity or emitted from the atoms inside the optical

cavity. To do this, we overlap the emitted field with another local oscillator (LO) beam used as

a phase reference, and perform optical interferometry. There are generally two possible ways to

do this. The first is for the measured field and LO to have the same frequency and measure the

direct DC interference. This is known as homodyne detection. The second option is to detune the

measured beam from the LO and observe oscillations in the interference between them, allowing

a simultaneous measurement of both the laser’s amplitudes and relative phases. This is known as

heterodyne detection.

We have used both heterodyne and homodyne detection to measure cavity fields for various

experiments. Heterodyne is often considered easier since it does not require as strong phase stability

between the probe and LO, there is an infinite dynamic range for phase excursions, and the signals

lie away from DC where technical 1/f noise sources can be troublesome. On the other hand,

heterodyne detection also leads to a sub-optimal measurement of the phase of the emitted light

since half the time the heterodyne effectively measures the phase quadrature and half the time the

amplitude of the emitted light. This leads to an effective loss of 50% of the emitted information.

In recent experiments (Chapters 6,7), a homodyne measurement was used to perform an

entanglement-generating joint measurement of atoms in a cavity as well as to calibrate the power

in the probing beam. For this reason, and since the factors of two that determine the size of these
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interference signals have caused difficulty in the past, I will derive the size of homodyne signals

here.

Figure A.1: Homodyne detection. A signal field Es(t) (blue) and strong local oscillator field
ELO(t) (red) are overlapped on a 50/50 beamsplitter and measured on a detector with sensitivity
S [Amps/Watt]. The signals are then subtracted and sent through a transimpedance amplifier
with gain Rt [Ohms]. The output voltage, Vout can be used either as a measurement of the signal
amplitude or signal phase, depending on the phase φ between the signal and LO.

As shown in Fig. A.1, the signal and LO beam are overlapped on a 50/50 beamsplitter and

detected on a balanced homodyne detector. The signal beam and LO beam can be written, for this

analysis, as classical electric fields with peak amplitudes Es and ELO.

Es(t) = Es sin(ωt+ φ) (A.1)

ELO(t) = ELO sin(ωt) (A.2)

The photocurrents I1(t) and I2(t) that would be generated on an infinite bandwidth detector

on each arm are given by a constant ε2 which converts squared electric fields into photo-current.

I1(t) =
ε2

2

[
E2
s sin2(ωt+ φ) + E2

LO sin2(ωt) + 2ELOEs sin(ωt+ φ) sin(ωt)
]

(A.3)

I2(t) =
ε2

2

[
E2
s sin2(ωt+ φ) + E2

LO sin2(ωt)− 2ELOEs sin(ωt+ φ) sin(ωt)
]

(A.4)
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The final terms in I1(t) and I2(t) must differ by a sign due to energy conservation requirements in

the beamsplitter.

The products of oscillating signals in I1(t) and I2(t) can be rewritten in terms of sums and

differences.

I1(t) =
ε2

2

[
E2
s sin2(ωt+ φ) + E2

LO sin2(ωt) + ELOEs cos(φ)− ELOEs cos(2ω + φ) (A.5)

I2(t) =
ε2

2

[
E2
s sin2(ωt+ φ) + E2

LO sin2(ωt)− ELOEs cos(φ) + ELOEs cos(2ω + φ)
]
. (A.6)

Since photodetectors do not have the bandwidth to directly measure the optical frequency of the

beam ω, the measured difference of the two photocurrents Idiff also includes a time average of

the oscillations, signified as an over bar. The cos terms which oscillate rapidly at freqeuency ω

will quickly average to zero, and the sin2 terms will simple become DC offsets which cancel in the

difference. The result of the time average is,

Idiff = (I1 − I2) = ε2EsELO cosφ. (A.7)

The only term that remains from I1(t) and I2(t) is the DC interference between the signal and

LO. Additionally, the conversion constant ε can be re-written in terms of the sensitivity of the

photodiode when the electric fields are re-written in terms of the average optical power in the

signal and LO beams Ps and PLO and the photodetector’s sensitivity S in units of Amps per

Watt. This relation can be easily derived by considering the effect of a single beam (here labeled

“a”) incident on a single photodetector using Ia = SPa = ε2E2
a/2. The final homodyne signal,

in terms of measured quantities Vout, Rt, S, and optical powers, is found by substituting Es and

ELO by their average powers Ps and PLO as measured on a DC photodiode and multiplying by the

transimpedance gain Rt.

Vout = RtIdiff = 2RtS
√
PsPLO cos(φ). (A.8)

When performing heterodyne detection, one finds the exact same solution where φ now becomes a

function of time φ→ φ(t).



Appendix B

Feedback Loops

For the optical and electrical elements of our experiment to work in concert requires a number

of feedback loops used for laser frequency, amplitude, and temperature stabilization, as well as

dynamic control and synchronization of the optical and rf signals required in an experimental

sequence. Inserting PID (Proportional-Integral-Differential) feedback loops has become a general

purpose tool in the lab. In this section, I will review a simplified feedback theory and useful

information about the standard loop filter circuits most commonly used for feedback in our lab.

B.1 Feedback model

Figure B.1: Simple system with feedback. In order to stabilize a noisy input voltage V ∗in(t), one
can compare the voltage to a set point, Vset and apply feedback by multiplying the difference by
large gain L∗(ω).

A simple steady-state model of feedback can elucidate the most important results for design-
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ing feedback loops. Assume there is an AC signal V ∗in(t) represented in the complex plane that we

wish to stabilize. I assume that this signal, presumed to be a voltage, is a constant oscillation with

a complex amplitude V ∗in, V ∗in(t) = V ∗ine
iωt. In order to stabilize V ∗in(t) to a constant real value Vset,

we apply feedback through a loop filter with a complex, frequency dependent gain labeled, L∗(ω).

The steady state output voltage V ∗out can be found by solving the recursive equation for the

feedback loop,

V ∗out = V ∗in(t) + (V ∗out − Vset)× L∗(ω). (B.1)

The equation has a solution,

V ∗out =
V ∗in(t)− VsetL

∗(ω)

1− L∗(ω)
(B.2)

If L∗(ω) is very large, V ∗out → Vset as desired; the feedback successfully suppresses the noise at

frequency ω. However, in reality, the system will be subjected to a continuum of noise at all

frequencies ω. For the feedback to work properly, therefore, the system must be well behaved at all

ω. In particular, the most important point is at the unity gain frequency ω1 such that |L∗(ω1)| ≡ 1.

The feedback will actually amplify noise near frequencies ω1 unless L∗(ω1) is negative or imaginary,

that is, unless Re[L∗(ω1)] < 0. Therefore, the optimization of a feedback loop is this: maximize the

gain L and feedback bandwdith ω1 while still making sure that the phase shifts around ω1 (called

loss of phase margin) are sufficiently small to avoid positive feedback at the unity gain frequency.

Positive feedback begins to occur when the loss of phase margin surpasses 90◦. Often, phase losses

slightly larger than 90◦ are allowable, but lead to a small amount of noise gain (and therefore a

visible noise bump in the spectrum) near the unity gain frequency.

B.2 Loop filters

Loop filters are built to allow a large amount of tunability in the amplitude and bandwidth of

L∗(ω). PID loop filters have a constant, integral L∗(ω) ∝ 1/ω, and differential gain term L∗(ω) ∝ ω

that allow one to craft the most optimal feedback. Importantly, integrators give a large gain boost
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TJ011-A3 Parameter Ranges

Proportional Gain -50 to 20 dB
PI1 15 kHz to 7 MHz
PI2 20 kHz to 10 MHz
D 20 kHz to 10 MHz
Lead Span ×3.2 to ×10 (trimpot)
DC Gain 20 to 1000 (trimpot)

Table B.1: Ranges for setting for the JILA TJ011-A3 high speed loop filter.

at low frequencies but also cause a 90◦ phase lag. Differentiators cause a 90◦ phase advance and

are usually used to correct for some loss of phase margin at high frequency. One of the most

common problems for a feedback loop is when the feedback crosses unity gain with two integrators,

and therefore a 180◦ phase shift, causing the loop to go into positive feedback and oscillate out of

control.

For reference, the high speed JILA-built loop filters most commonly used in the Thompson

lab have transfer functions decided by various frequency corners that are represented below in Fig.

B.2. Corner freqeuncies are set by the PI1, PI2, DC gain, D, and Lead span settings. In the

TJ011-A3 (most recent) version of the JILA high speed loop filters, the loop filter settings can

be adjusted by the amount shown in Table B.1. The DC gain limitation on the integrators can

be engaged (using a jumper) on one or two of the integrators. importantly, since real systems of

lasers and electronics also have their own transfer functions, in order to predict the performance of

a feedback loop one must multiply L∗(ω) times the gain of the rest of the system.

B.3 Example: beatnote lock between 2 lasers

As a specific example of a feedback loop in our lab, consider the most common application:

phase locking two lasers together with an offset frequency. This is performed using a Hittite

HMC440 phase freqeuncy detector (PFD) that is sensitive to both frequency and phase errors

between the two lasers. When viewed as freqeuncy feedback, the phase detection can be viewed

as an additional integrator in the system that integrates frequency errors into phase errros. For

this reason, often only one integrator is necessary to achieve a high quality phase lock between
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Figure B.2: Transfer function parameters of JILA high speed loop filters. The gain profile L∗(ω)
is designed to have high gain at low frequencies and then can be optimized to achieve the highest
feedback bandwidth on the system without losing phase margin.

the two lasers. The feedback settings for an example laser beatnote phase lock are shown in Table

B.2. The resulting power spectrum of interference between the two laser, as normally viewed on

a spectrum analyzer in the lab, is shown in Fig. B.3. The feedback is seen to effectively remove

power from the background Lorentzian power-spectrum between the two lasers and concentrate the

majority of the power within a phase-locked carrier that appears as a delta function on the center

of the spectrum analyzer. The approximate unity gain frequency of 1 MHz is seen as the location

of the “shoulders” of the phase lock. The fact that these shoulders do not peak strongly indicates

sufficient phase margin at the unity gain freqeuncy.

As an additional note, one observed difficulty in setting up phase locks using the HMC440

PFDs is the need for high signal to noise in the phase frequency detector. Empirically we observe

that greater than 40 dB of signal to noise between the carrier and the noise floor (measured in a

3MHz spectrum anaylzer bandwidth), is usually needed for high quality phase lock.
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Example Beatnote Lock Settings

G1 0 dB
G2 −10 dB
PI1 150 kHz
PI2 Off
D 100 kHz

Table B.2: Example settings for a beatnote lock. The additional parameters DC gain and lead
span are continuously adjusted using potentiometers. For this setup they were tuned near their
maximum values.

Figure B.3: Power spectrum of interference between two beatnote-locked lasers as normally viewed
on a spectrum analyzer and taking 100 averages. The majority of the laser power resides in a
phased-locked carrier that appears as a delta function in the power spectrum. The unity gain
bandwidth is indicated by the shoulders of the distribitution, measured with markers to be 1 MHz
away from the carrier.
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