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Recent advances in the tunability of ultracold atomic gases have created opportunities for

studying interesting quantum many-body systems. Fano-Feshbach resonances, in particular, allow

experimenters to freely adjust the scattering of atoms by controlling an external magnetic field.

By rapidly changing this field near a resonance, it is possible to drive systems out of equilibrium

towards novel quantum states where correlations between atoms change dynamically. In this thesis,

we take a wave-function-based approach to theoretically examine the response of several interesting

systems to suddenly-switched, or “quenched”, interactions.

We first calculate the time evolution of a Bose-Einstein condensate that is quenched to the

unitarity regime, where the scattering length a diverges. Working within the time-dependent vari-

ational formalism, we find that the condensate does not deplete as quickly as the usual Bogoliubov

theory would suggest. We also make a quantitative prediction for the dynamics of short-range

pair correlations, encoded in Tan’s contact. We then consider the dynamics of these correlations

for quenches to small a, and we find that bound states can cause high contrast oscillations of

the contact. These dynamics can be modelled quantitatively at short times by using a properly-

chosen two-body model. Finally, we characterize the nonlocal correlation waves that are generated

by an interaction quench in arbitrary dimensionality. Our analysis demonstrates that the large-

momentum limit of the post-quench momentum distribution can sometimes include contributions

from both the short range and the long range, depending on the quench protocol.
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Chapter 1

Introduction

In recent years, ultracold atomic gases have become a fertile ground for developing and

testing ideas of quantum many-body physics. Typical experiments use magnetic or optical forces

to trap a dilute vapor of atoms in high vacuum. To a good approximation, samples are thermally

isolated from the environment and thus represent idealized quantum systems. Atoms can be further

manipulated by external magnetic, electric, or optical fields to realize new and exciting states of

matter that are governed by the laws quantum mechanics.

One of the most significant breakthroughs in this realm was the experimental creation of

Bose-Einstein condensates (BECs) of Alkali atoms. This novel state of matter was first theorized

by Einstein a century ago [56, 57] based on contemporary work by Bose [16], who had considered

the statistics of photons. The statistics that describe photons apply more generally to any indis-

tinguishable particles that do not satisfy the Pauli exlusion principle, termed “bosons”. Einstein’s

insight was that, below a certain temperature, such particles preferentially occupy the exact same

single-particle quantum state. This many-body ensemble, a BEC, was not observed in the con-

trolled environment of cold atomic gases until 1995, when researchers at JILA [1] and MIT [44]

successfully cooled atoms to below the transition temperature (∼ 100nK). This achievement came

on the heels of a couple decades of progress in the realm of atomic trapping and laser cooling

[134, 29, 34].

The exquisite control necessary to realize Bose-Einstein condensation in the laboratory paved

the way for a wealth of other studies of quantum phenomena. Experimenters began to explore how
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interactions between atoms change the character of a system. These interactions give rise to the

complexity that makes a single many-body problem intrinsically different from many one-body

problems. In the absence of interactions, the many-body Schrödinger equation is completely sep-

arable, and the eigenstates of the system can be described completely in terms of single-particle

quantum states. This simplification is what makes the thermodynamics and phase transition of a

noninteracting BEC a common textbook problem of statistical mechanics [131]. Nontrivial inter-

actions, on the other hand, introduce particle-particle correlations that alter the many-body state

in fundamental ways.

The theory of interacting BECs has been in development for several decades. Most of the

early work focused on the ground state in the weakly interacting limit, where mean-field theory

gives an adequate description of the many-body system [10, 7, 8, 106, 84, 74, 75, 136]. Mean-field

theory makes the assumption that most of the atoms remain at rest in the ground state, despite

interactions. For short-range interactions, this assumption is predicated upon the smallness of the

diluteness parameter na3, where n is the number density and a is the s-wave scattering length for

the interacting particles. The scattering length is defined in terms of the phase shift of an interacting

two-body wave function, and it relates to the low-energy limit of the elastic cross section for the

colliding pair via σ ∼ a2. In mean-field models, its magnitude is a measure of the interaction

strength and its sign indicates repulsive (a > 0) or attractive (a < 0) character. The condition

that na3 ≪ 1 is easily satisfied in most experimental setups, and as a result, the predictions of

mean-field theory have typically agreed very well with BEC experiments [162, 130, 81, 115, 174].

The discovery and characterization of Fano-Feshbach resonances in ultracold gases [158, 86,

165, 42] has given experimenters the ability to explore exotic, strongly interacting regimes that

cannot be described by the usual mean-field models. These resonances occur at specific values of

the magnetic field and, in some cases, they can be several Gauss wide. Close to resonance, the

scattering length a is large in magnitude, and it diverges on resonance (the “unitarity” regime).

Interactions can be tuned by simply fixing an external magnetic field to a desired value close to

a resonance [28]. Experimenters can therefore study the effects of interactions in a given system
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by repeating experiments at various interaction strengths. This advantage is rather unique to the

field of ultracold atoms. For example, the parameters of the Standard Model of particle physics

(masses, couplings, etc) are fixed by Nature, and we must live with the consequences. Not so, in

ultracold atoms.

Performing experiments at large scattering length does come at a cost, however. Just as a

large scattering length increases the probability for a two-body collision event, it also increases

the probability for three-body inelastic processes. When three atoms come together, two of them

can bond chemically, and the released binding energy is transformed into the kinetic energy of the

new molecule and third atom in a way that conserves momentum and energy. This extra kinetic

energy is almost always greater in magnitude than the depth of the magnetic or optical trap that is

confining the atoms. As a result, all three atoms are lost from the trap. Even in dilute gases, where

na3 ≪ 1, the total number of trapped atoms always decreases if you wait long enough. It has been

shown that the loss rate scales as a4 multiplied by a species-specific constant [63, 127, 59, 167].

This unfortunate scaling of loss has hindered experimental investigations of strongly-interacting

BECs in equilibrium. The splendor of large scattering lengths is, unfortunately, short lived.

The possibility of tuning interactions via Fano-Feshbach resonance has led to a resurgence of

theoretical efforts to understand strongly interacting BECs, despite their short lifetimes in practice.

Several studies [43, 146, 45] used constrained variational methods to calculate the ground state

energy and chemical potential at strong interactions. Among the results found was that, in the a →

∞ limit, these quantities scale universally with units derived from the number density n, as found

for two-component Fermi gases in the analogous regime [102]. Efimovian three-body contributions

[54, 55] to the dilute-gas limit were considered in Ref. [17], and Refs. [14, 177] considered the

metastability of the system in the strongly interacting limit. The equilibrium states discussed in

these studies are interesting in their own right, but it is unclear whether it’s possible to transition

to them adiabatically given the catastrophic a4 scaling of the three-body loss rate.

The outlook on the strongly-interacting-BEC problem changed when it was discovered that,

when a system is rapidly brought out of equilibrium, interesting dynamics may occur before sub-
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stantial three-body loss sets in. The idea is to take a weakly interacting BEC (na3 ≪ 1) and

rapidly change the scattering length to the unitarity regime (a → ∞) by ramping the magnetic

field quickly to a Fano-Feshbach resonance. This general protocol of rapidly changing a parameter

of the Hamiltonian to induce nonequilibrium dynamics is often called a “quench”. The experiment

reported in Ref. [112] performed a quench to unitarity and observed that, at typical densities, three-

body loss occurs over the course of about 1 ms. Interestingly, their measurements of the dynamic

momentum distribution indicated that their system seemed to reach some kind of steady state in

about 100 µs, with momentum-dependent saturation dynamics occuring along the way. This land-

mark experiment raises interesting questions about how weakly correlated states develop stronger

correlations when the interaction strength is increased, and about the nature of the nonequilibrium

steady state. Are there simple ways to understand the dynamics that occurs?

The nonequilibrium realm of ultracold quantum gases has become a hot topic in recent years

due to the exotic nature of the excited states that can be generated. For a BEC that is quenched

to unitarity, as discussed in the previous paragraph, the state is remarkably long lived. When

quenching a one-dimensional BEC from strong repulsion to strong attraction, the resultant state

is correlated in such a way that the attractive forces do not cause clustering [3]. This exotic

state, known as the super-Tonks-Girardeau gas, was recently observed in experiment [76]. Another

experiment [85] studied weak interaction quenches in two-dimensional BECs, and the authors found

that the system shows oscillatory density-density correlations, called Sakharov oscillations [140],

that are similar in nature to what has been famously observed in the distribution of matter in the

known universe [58]. Also of interest are the results reported in Ref. [48]. They observed that a

BEC undergoing a Ramsey sequence of interaction quenches can display coherence between atomic

and molecular states. We also mention the “bosenovae” experiment [49], which observed the violent

collapse dynamics of a three-dimensional BEC whose interactions are suddenly quenched from weak

repulsion to weak attraction. These experiments, and others, serve as an inspiration for the work

presented in this thesis.
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1.1 Outline

This thesis represents my graduate work done on the topic of interaction quenches in ultracold

atomic systems, and it does not include my studies of dipolar BECs [41, 40] and the Bose polaron

[83]. Most of the presented results deal with three-dimensional Bose-Einstein condensates, although

some aspects are more generally applicable. Chapter 2 describes the interactions that typically take

place in ultracold atoms. Due to the low energies involved at ultralow temperatures, the scattering

is predominantly s-wave in character and is well described by the scattering length a. Although

atom-atom interactions are generally very complicated on the microscopic scale, one can often

approximate these interactions with simpler short-range models that yield the correct low-energy

scattering behavior. This idea leads to a universality in which the important consequences of

interactions are model-independent. We introduce Tan’s contact [152, 154, 153], which relates

short-range pair correlations to the energetics of generic few- and many-body systems.

Chapter 3 gives a review of background concepts for BECs in the noninteracting and weakly-

interacting regimes. We discuss the thermodynamics of the condensed state, demonstrating how

the indistinguishability of identical bosons leads to macroscopic occupation of the single-particle

ground state even at nonzero temperature. We then introduce Bogoliubov theory, which describes

the low-energy collective excitations of a weakly-interacting BEC in terms of quasiparticles.

Chapter 4 presents our theoretical work on the topic of a BEC that is quenched to unitarity.

Our approach uses a time-dependent variational wave function to approximate the dynamical many-

body state of the system. The ansatz explicitly encodes two-body correlations, which we expect

to be dominant in the early stages of evolution. The short-time dynamics that we compute is

independent of the way in which we model short-range, resonant interactions. As main results,

we find that the BEC does not deplete as rapidly as Bogoliubov theory would suggest, and the

dynamics of the momentum distribution scale universally with units derived from the number

density n. This observation is consistent with the experimental results reported in Ref. [112]. We

are also able to compute the time evolution of Tan’s contact after the quench. Much of this work
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was published in Ref. [150]

In Chapter 5, we describe the dynamics of short-range pair correlations for BECs quenched

to finite scattering length. An important result is that bound-state effects may strongly influence

the dynamics when the quench is diabatic. The condensate fraction and Tan’s contact oscillate at a

frequency EB/~, where EB is the binding energy of the bound state. We also find that short-range

pair correlations are strongly enhanced by the bound state. Intriguingly, a diabatic decrease in the

scattering length yields a net increase in short-range pair correlations. We are able to explain these

results with an intuitive two-body model that yields quantitatively accurate results at short times.

This work was published in Ref. [38].

In Chapter 6, we present results on the nonlocal correlation waves that are generated by an

interaction quench. We investigate these waves at the level of a two-body wavefunction, where the

simplicity of the system allows for an analytic representation of the correlation waves in momentum

space. We find that correlations propagate ballistically and, to leading order, the amplitude of the

wave relates directly to the quench parameters and the initial short-range pair correlations. Al-

though intuition about equilibrium usually associates large-momentum asymptotics exclusively with

short-range behavior, our solution to the quench problem demonstrates that the large-momentum

tail of a nonequilibrium momentum distribution may also have a nonlocal, ballistic contribution.

We find that a semiclassical model based on the ballistic wave function gives accurate predictions

for transport over barriers, such as in an optical lattice. These results have recently been accepted

for publication and can be found on the arXiv [39].

Chapter 7 provides a summary of our work and describes promising avenues for future re-

search.



Chapter 2

Short-Range Two-Body Interactions

Given the complexity of a single many-electron atom, it may seem odd that people consider

doing theoretical calculations for systems that contain thousands or millions of interacting atoms.

There are too many degrees of freedom to keep track of, and modern computational resources are

hopelessly out of their league. Nevertheless, a considerable simplification comes about when we

work in the ultracold regime.

An analogy can be drawn to our theoretical understanding of the proton. Particle-accelerator

experiments reveal that protons are composite particles made up of quarks dressed by a field of

gluons. Understanding all of the nuts and bolts on a truly microscopic scale is a complicated

problem, but these details are not significant at sufficiently low energy scales. It is usually a good

approximation to consider the proton to be a structureless point particle that is characterized by a

mass, a spin, and an electric charge. To a casual spectroscopist, the energy levels of the hydrogen

atom can’t seem to tell the difference.1

A similar approximation can be made in the theoretical description of ultracold atomic gases.

At sufficiently low energies, we can treat individual atoms as point particles that are defined by

their mass, some quantum numbers that summarize their internal structure (such as a hyperfine

or Zeeman state), and a single parameter that defines how atoms interact with each other. This

interaction parameter, the scattering length a, has a complicated dependence on the internal states

of the atoms and the magnetic field. The precise determination of a, as well as the location of

1 High-precision spectroscopy reveals that the internal structure of the proton leads to slight, but measurable,
changes in the hydrogenic energy levels. For an example, see Ref. [60].



8

Fano-Feshbach resonances, requires sophisticated calculations that are fine-tuned with experimental

data. Over the years, experimental physicists have become adept at controlling the internal state of

trapped Alkali atoms using coherent manipulation techniques, such as adiabatic rapid passage and

RF pulses. Typical experiments usually trap an ultracold sample whose atoms occupy well-defined

spin states and where an external magnetic field fixes the scattering length to a known value. The

model many-body Hamiltonian is usually easy to write down and includes a just as a parameter,

as will be shown in Ch. 3. The challenge, then, is to solve the many-body problem.

We now turn our attention to describing simple models for the interactions between neutral

Alkali atoms, with a special focus on effects in three spatial dimensions. In what follows, we briefly

review the schematics of more realistic atom-atom interactions, emphasizing the important role

played by the scattering length. We then outline several useful short-range-interaction models that

are used as inputs into our many-body calculations. This chapter then concludes with a discussion

of Tan’s contact, which has emerged as a useful concept in understanding how interactions define

the short-range correlations and energetics of few- and many-body systems.

2.1 Alkali-Atom Interactions

The low-energy scattering of Alkali atoms is an intricate process that depends in detail on

how the electrons in each atom respond to the presence of the other atom. The natural language for

describing these interactions is given by the Born-Oppenheimer approximation, where the atomic

cores are assumed to move slowly in the field produced by the valence electrons. This is justified

by the orders-of-magnitude separation between the mass scales of the atomic core and the valence

electrons. The general idea is to treat the separation between the atomic cores, r, as a slowly

changing parameter and then solve for the electronic energies as a function of r. These energies

define a set of adiabatic potential curves that, if the atoms are asymptotically in their electronic

ground state, are approximately spherically symmetric. Figure 2.1 depicts one of these curves

schematically.

The qualitative behavior of atom-atom interactions is intuitive. We would expect that when
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0

0

Repulsive Core

Van der Waals Attraction

Figure 2.1: Schematic representation of an adiabatic potential curve, with van der Waals attraction
in the long range and repulsion in the short range.

r is roughly the size of an atom or smaller, the electronic clouds from the two atoms should have

significant overlap. This leads to repulsion at small interatomic separations on a length scale set by

the Bohr radius, a0. On large length scales, the instantaneous polarization of one atom can create

an electric field that induces opposite polarization in the other atom. This results in an attractive

van der Waals force that decays as r−6 for large particle separations. It is typical to define a van

der Waals length rvdW that quantifies the approximate “range” of the interaction. This range is

typically less than 5 nm for Alkali atoms [28].

At intermediate distances, the adiabatic potential smoothly interpolates between the repulsive

and attractive asymptotic regimes. The depth of the well depends strongly on whether the two

valence electrons have a symmetric (triplet) or antisymmetric (singlet) spin configuration, which

determines if covalent bonding is likely to occur. When the atoms are more than a few nanometers

apart, their individual hyperfine or Zeeman energies dominate the physics and define the scattering

channels of the problem. Colliding atoms that are initially in well-defined hyperfine/Zeeman states

project nontrivially onto the electron spin basis that governs interactions at smaller r. This leads

to coupling between the different scattering channels of the problem. An interesting result of this

coupling is that Fano-Feshbach resonances can occur in ultracold Alkali-atom systems. We discuss

the phenomenology of these resonances in Sec. 2.1.2.
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2.1.1 Low-Energy Behavior

Scattering events take on a particularly simple description in the low-energy limit. One

can make a partial-wave expansion of the scattering amplitude and exploit the fact that high

angular momentum requires high kinetic energy and/or a large impact parameter. For short-ranged

interactions and low energies, we therefore expect that higher partial waves should not contribute

appreciably to the scattering. This expectation is verified in the Wigner threshold laws, which state

the following: For an interaction potential that decays as r−ν in the long range, the contribution of

the ℓth partial wave to the total cross section σ vanishes at least as quickly as σℓ ∼ Emin{ν−3,2ℓ} in

the E → 0 limit, where E is the kinetic energy [155]. For van der Waals interactions, where ν = 6,

only s-wave (ℓ = 0) scattering occurs at ultralow temperatures.

The results of s-wave scattering are easy to write down in the low-energy limit. In the absence

of interactions, isotropic waves in 3D take the form

ψ(r) ∝ sin(kr)

r
(2.1)

where k =
√

2µE/~ is the wave number and µ is the reduced mass for the noninteracting atoms.

When scattering occurs in the presence of interactions, this wave experiences an energy-dependent

phase shift δ0(k) for r ≫ rvdW:

ψ(r) ∼ sin(kr + δ0(k))

r
. (2.2)

It can be shown that the low-energy behavior of δ0(k) satisfies the effective range expansion [155]

k cot (δ0(k)) = −1

a
+

1

2
reffk2 + O(k4), (2.3)

where a is the s-wave scattering length and reff is the so-called “effective range” of the interaction.

It is often (but not always!) the case that the effective range reff is similar in magnitude to the

short range rvdW. Such cases are universal in the sense that, for low energies satisfying kreff ≪ 1,

the s-wave phase shift is determined only by the energy and the scattering length a. Despite the

complicated physics occuring in the short range, scattered wave functions are remarkably easy to
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characterize in the low-energy limit once the scattering length is known. As an added bonus, the

total cross section has a simple energy dependence in this regime:2

σ ≈ 4πa2

1 + k2a2
. (2.4)

The magnitude of the scattering length therefore describes the apparent size of interacting atoms

from a low-energy collisional standpoint.

For attractive short-range interactions, the scattering length can be either positive or negative

depending on the behavior of the scattering phase shift. It is easy to show from Eq. (2.3) that

δ0(k) ≈ −ka for k|a| ≪ 1. Positive scattering length thus corresponds to waves being phase

shifted to larger particle separations, as occurs for purely repulsive potentials. Despite the seeming

repulsion for scattering states, however, attractive short-range interactions always admit a shallow

bound state when a > 0, and the binding energy behaves as

EB = − ~
2

2µa2
(2.5)

in the limit of large a, where µ is the reduced mass of the interacting atoms. This counterintuitive

fact will be demonstrated for a simple case in Sec. 2.2.1. We will see in Chapter 3 that, within

typical mean-field theories, small positive (negative) scattering length corresponds to repulsive

(attractive) interactions because the interaction energy is proportional to a.

2.1.2 Fano-Feshbach Resonances

The multichannel nature of atomic collisions leads to the useful phenomenon of Fano-Feshbach

resonances. These resonances are typically manifested in the fact that, for atoms in a given scat-

tering channel j, the scattering length exhibits a resonance profile

aj(B) = abg,j

(

1 − ∆j

B − B0,j

)

(2.6)

as a function of the magnetic field B. The parameter B0,j describes the location of a given resonance

(of which there might be many), ∆j defines the width of the resonance, and abg,j is the background

2 For identical bosons, symmetrization requires that we multiply this formula by a factor of 2
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0
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Bound State

Figure 2.2: Schematic representation of a Fano-Feshbach resonance. The cyan curve is the adiabatic
potential for the scattering channel j, the red curve is the potential for some higher-energy channel
k, and the horizontal dashed line represents the low energy of the scattering atoms.

scattering length at magnetic fields far away from any resonance. We have made explicit the

dependence of the resonance parameters on the scattering channel j.

The basic phenomenology of a Fano-Feshbach resonance can be understood from a two-

channel model. We will consider the coupled channels to represent different Zeeman states whose

magnetic moments are different by an amount δµ, and we assume that the atoms scatter in channel

j, which we define to have the lower energy in the r → ∞ limit. The adiabatic curves are shown

schematically in Fig. 2.2. The channel k is termed “closed” because energy conservation prevents

atoms from exiting in this channel. Channel j is analogously termed “open”. A Fano-Feshbach

resonance occurs when atoms colliding in the open channel have approximately the same energy as

a bound state in the closed channel, as shown. Due to the magnetic-moment differential δµ between

the two channels, their energy difference, and hence the detuning of the bound state relative to

the scattering energy, is sensitive to the magnetic field B in accordance with the Zeeman effect.

The resonance position B0,j is the magnetic field at which the bound-state detuning approximately

vanishes, and its precise location depends on the coupling between the channels. The width of the

resonance, ∆j , relates to the strength of the channel coupling, where strong coupling usually results
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in a broad resonance. The background scattering length, abg,j , is determined by the scattering that

occurs in the potential V (j)(r), ignoring channel coupling [28].

The idea of exploiting magnetic Fano-Feshbach resonances to tune interactions in ultracold

gases was first suggested in 1993 [158], and it was demonstrated experimentally in 1998 [86]. The

experimental protocol was to measure the loss of an ultracold sample of trapped 23Na atoms as

a function of magnetic field. It is predicted that the loss rate should scale as a4 multiplied by

a constant [63, 127]. Hence, loss should be strongly enhanced in the vicinity of a Fano-Feshbach

resonance. By scanning the magnetic field along a range of about 1000 G, experimenters were

able to identify two loss resonances whose locations agreed with theoretical predictions. They were

then able to infer the scattering length near these resonances by measuring the interaction energy

of a Bose-Einstein condensate, which is predicted to scale linearly with the scattering length (see

Sec. 3.3.3). Near the loss resonances, the magnetic-field profile of the scattering length matched

the predicted profile of Eq. (2.6).

Although most experiments utilize magnetic Fano-Feshbach resonances to tune interactions,

we also mention the possibility of using optical Feshbach resonances. The underlying physics is

nearly identical to that already described, where scattering states from one channel are coupled

to the bound state of another channel. The distinguishing feature in optical Feshbach resonances

is that the coupling is provided by an external laser field that couples scattering states to an

excited quasibound state via an optical transition. Rather than tune the magnetic field B, one can

tune both the intensity I and frequency ω of the off-resonant laser beam to alter the scattering

length of collisions [62, 11, 12]. Soon after its prediction, this effect was confirmed in experiments

[61, 156]. This scheme suffers the disadvantage of having extra loss when the excited state decays

spontaneously, and the laser field may also induce unwanted dipole forces to the system under

observation. However, recent progress has been made to mitigate these drawbacks [30]. Optical

Feshbach resonances offer the possibility of spatially modulating interactions. Additionally, they

allow experimenters to dynamically tune interactions on shorter timescales than are feasible with

magnetic Fano-Feshbach resonances. This improves the prospects for measuring the nonequilibrium
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results that we present in Chapters 4-6.

2.2 Single-Channel Models

The discussion in Sec. 2.1.1 shows that the phase shifts and cross sections of ultracold Alkali

collisions can be reduced to a simple form that depends only on the scattering length, a, and

the effective range, reff . The description continues to simplify if we narrow our consideration

to the regime where |a| ≫ |reff |. In this limit, the low-energy condition kreff ≪ 1 is sufficient

to keep only the scattering length term on the right-hand side of the effective-range expansion,

Eq. (2.3). This approximation, in which all scattering is determined by a only, is a valid description

of ultracold gases near entrance-channel-dominated resonances. The scattering and bound wave

functions associated with these resonances are composed mainly of the open-channel component,

with relatively little contribution from the closed-channel bound state despite the coupling [96].

These resonances are often wider than 1 G and are commonly referred to as “broad” resonances

[28]. In the remainder of this thesis, we will only consider interactions that are governed by this

class of Feshbach resonance. The scattering length a therefore uniquely determines all scattered

wave functions according to Eqs. (2.2)-(2.3), where we ignore the effective range and higher-order

terms.

In our quest to describe the physics of interacting many-body systems, we can exploit the di-

luteness of typical experimental Alkali-atom samples in the ultracold regime. The nearest-neighbor

spacing is usually a few orders of magnitude larger than the interaction range rvdW, and this

suggests that only a tiny fraction of the wave function exists within the interaction region. We

therefore expect that all of the interesting physics in such interacting systems is determined by

the part of the wave function that is phase shifted. The scattering length governs this phase shift

and, as a result, should uniquely dictate how interactions affect a dilute many-body system in the

ultracold limit. To simplify the many-body problem, we represent the microscopically-complicated

atom-atom interactions with simplified models that reproduce the desired scattering length. The

only errors introduced by this approximation occur at small particle separations (r . rvdW) and at
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Figure 2.3: Attractive square-well potentials. In (a), the well is shallow. In (b), the well is deep
and admits a bound state, as shown.

large momentum (kreff ∼ 1), both of which compose only a negligible fraction of the wave function

for ultracold, dilute, Alkali gases.

This section describes several useful short-range interaction models. The first class of models

uses a finite-range attractive well whose depth and range are chosen to reproduce the correct

scattering length. The second class invokes the zero-range approximation, where interactions are

replaced with a scattering-length-dependent boundary condition on the wave function at vanishing

particle separation.

2.2.1 Finite-Range Models

The simplest interaction potentials for which the Schrödinger equation can be solved analyt-

ically are those that are piecewise constant. The solutions are either real or complex exponentials,

depending on how the energy compares to the local potential height. The piecewise wave functions

can then be joined by assuming continuity and smoothness. As our first example, we solve for the

scattering and bound solutions in an attractive square-well potential

V (r) = −V0Θ(r0 − r), (2.7)

where V0 > 0 is the depth of the well, r0 is its range, and Θ is the Heaviside step function. This

potential is depicted in Fig. 2.3.
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We confine our analysis to solutions that are spherically symmetric, representing the s partial

wave that dominates at ultralow temperatures. In three dimensions, it is easiest to solve for the

quantity u(r) ≡ rψ(r), where ψ is the relative wave function. The radial Schrödinger equation is

then given by

Eu = − ~
2

2µ

d2u

dr2
+ V u (2.8)

where µ is the reduced mass for the atoms and E is the energy. Hermiticity requires that u(r)|r→0 =

0 [118]. We will first consider scattering solutions where E = ~
2k2/2µ is the relative kinetic energy.

For r > r0, the potential vanishes and the solution is given by

uk(r) = A sin (kr + δ) , (2.9)

where A is a normalizaton constant and δ is the yet-to-be-determined phase shift. For r < r0, the

solution is

uk(r) = B sin
(

k′r
)

(2.10)

where B is a normalization constant, and the wavenumber is shifted to k′ =
√

2µ (E + V0) /~2 due

to the excess kinetic energy inside the well. We can solve for the phase shift δ by matching the log

derivative u′/u at r0. After a small amount of algebra, one finds that

δ = tan−1

(

k

k′ tan
(

k′r0

)

)

− kr0. (2.11)

The low-energy limit of this phase shift should be δ → −ka according to the effective range

expansion, and this fixes the scattering length to be

a = r0 −
~√

2µV0
tan

(

√

2µV0r0/~

)

. (2.12)

Two sample scattering solutions are shown in Fig. 2.4 for a well whose range and depth are chosen

to yield a scattering length of a = 10r0. In the long range, they show the usual oscillatory behavior

with a phase shift. This extra phase is acquired in the short range, as shown in the left-hand plot. As

a consistency check of Eqs. (2.11)-(2.12), we see that both the phase shift and the scattering length

vanish in the V0 → 0 limit. The scattering length in Eq. (2.12) diverges whenever
√

2µV0r0/~ =
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Figure 2.4: Two scattering states at different energies for a square well whose range and depth are
chosen to yield a scattering length of a = 10r0. We constrain the depth such that

√
2µV0r0/~ <

3π/2, where at most one bound state is allowed. Deeper wells lead to more short-range nodes of
the wave function. The left-hand plot shows a short-range zoom of the wave functions. The plotted
functions are normalized to behave as sin (kr + δ) for r > r0

(n + 1/2)π, where n is a non-negative integer. As we will see below, this resonant behavior occurs

whenever the well deepens sufficiently to include another bound state.

The bound-state solutions can be calculated in much the same way as already shown, except

that we assume the energy satisfies −V0 < E < 0. The solution outside of the well must decay

exponentially as

uE(r) = Ae−
√−2µEr/~. (2.13)

The solution inside the well is unchanged. Matching log derivatives at r0, we find that the energy

must satisfy

√
−E = −

√

E + V0 cot
(

√

2µ (E + V0)r0/~

)

. (2.14)

No solution exists for
√

2µV0r0/~ < π/2, as the well is not deep enough to support a bound state

in this regime. It is easy to verify that this equation has a zero-energy solution when
√

2µV0r0/~ =

(n + 1/2)π for non-negative integer n. There is a shallow bound state when
√

2µV0/~ is slightly

greater than (n + 1/2)π, and this regime corresponds also to large positive scattering length as

evidenced by Eq. (2.12). For a weakly-bound state satisfying |E| ≪ V0, one can approximate
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Eq. (2.16) as
√
−E ≈ −

√

V0 cot
(

√

2µV0r0/~

)

≈ ~√
2µa

, (2.15)

where we have used the large-a limit of Eq. (2.12). For large positive scattering length (a ≫ r0),

the shallow bound state is given by

ψB(r) ≈ e−r/a

r
√

2πa
, EB ≈ − ~

2

2µa2
(2.16)

for r >> r0. This asymptotic relation between the scattering length and the shallow bound state

is valid more generally [28], as mentioned in connection with Eq. (2.5).

One can simulate short-range interactions with other single-channel potentials besides the

square well. The square well offers the simplicity of being transparent and analytically solvable,

and the scattering length relation Eq. (2.12) allows one to conveniently choose the two model

parameters V0 and r0 to achieve any desired scattering length. One can also add a repulsive barrier

to the square well [88]. Analytic solutions are also available for a pure van der Waals interaction

with a hard core [71, 66], whose free parameters are the C6 coefficient and the core radius. The low-

energy scattering in a Morse potential can also be solved analytically [123, 94, 93]. Another simple

interaction model is the attractive Gaussian well, although the relation between the scattering

length and its depth and range must be found numerically [157]. The common thread of these

models is that they are essentially short ranged and can be tuned to give the correct low-energy

scattering.

2.2.2 Zero-Range Models

From a theoretical standpoint, we are free to choose the interaction range of our model to be

as small in magnitude as we wish. The parameter r0 in the square well, for example, could take an

arbitrarily small value. One would simply have to adjust the depth V0 to yield the desired scattering

length a according to Eq. (2.12). As we allow r0 to approach zero for fixed scattering length,

the scattering wave function (2.9) and bound wave function (2.16), valid for particle separations
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Figure 2.5: Short-range part of the scattered wave functions for a square-well potential chosen to
yield a = 10r0, with the phase shifts extrapolated back to vanishing particle separation. Compare
with the left-hand plot in Fig. 2.4.

satisfying r > r0, eventually become valid for all r > 0. This is shown schematically in Fig. 2.5,

which should be compared with the left-hand plot in Fig. 2.4. It is in this limiting sense that we

introduce the idea of a zero-range interaction.

The zero-range approximation stipulates that the relative wave function for a pair of in-

teracting atoms satisfies the noninteracting Schrödinger equation, albeit with a rigged boundary

condition at vanishing particle separation. For three-dimensional systems, this boundary condition

is given by

∂ [rψ] /∂r

rψ

∣

∣

∣

∣

r→0+

= −1

a
, (2.17)

as discussed in a famous paper by Bethe and Peierls [9]. (The basic idea was also presented

in earlier work by Fermi [64].) The quantity on the left-hand side is often called the “logarithmic

derivative”, as it can be expressed as ∂ [ln(rψ)] /∂r. The Bethe-Peierls boundary condition enforces

a scattering-length-dependent relation between the value of the wave function and its slope in the

r → 0+ limit. For small particle separations, the wave function must behave linearly as

rψ(r) = [rψ]|r→0+

[

1 − r

a
+ O

(

r2
)

]

. (2.18)

The scattering length evidently has the following meaning in the zero-range approximation: If you
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fit a line to the short-range behavior of rψ, it intercepts the horizontal axis at r = a. This same

geometric interpretation is valid for interactions with a finite range in the limit that |a| ≫ r0,

although it is only robust in the low-energy regime (kr0 ≪ 1) and the line must be fit outside

the interaction region. This behavior is readily visible in the square-well eigenstates depicted in

Fig. 2.5, and one can easily verify its validity for the bound-state solution (2.16).

It is easy to find the eigenstates of the Schrödinger equation within the zero-range approxi-

mation. For r > 0, the scattering solution must be a superposition of sin(kr) and cos(kr), and the

only superposition that satisfies the log-derivative boundary condition (2.17) is

rψk(r) = A [sin(kr) − ka cos(kr)] , Ek =
~

2k2

2µ
(2.19)

where A is a normalization constant. After a simple trigonometric manipulation, one can show

that this is proportional to sin(kr + δ), where the phase shift must satisfy

k cot(δ) = −1

a
(2.20)

for all k. On comparing this with the effective range expansion (2.3), we see that the zero-range

approximation sets reff → 0 and defines all phase shifts in terms of the scattering length only. A

bound-state solution only exists for a > 0, and it is given by

rψB(r) =
e−r/a

r
√

2πa
, EB = − ~

2

2µa2
. (2.21)

These solutions are useful in that they are simple to write down, and they give a remarkably

accurate description of ultracold scattering in the limit that |a| ≫ rvdW near a broad Feshbach

resonance.

Zero-range interactions are often cast in the language of the Fermi pseudopotential [65, 84].

Within this framework, the relative wavefunction for a pair of interacting particles in three dimen-

sions must satisfy

Eψ = − ~
2

2µ
∇2ψ +

2π~
2a

µ
δ(3)(r)

∂ (rψ)

∂r
, (2.22)

where the last term represents the operation of the Fermi pseudopotential on the wave function.

Integrating Eq. (2.22) over a small sphere of radius ǫ > 0 about the origin, we find that the left-hand
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side vanishes in the ǫ → 0 limit. What remains is

0 = − ~
2

2µ

∫

r<ǫ

d3r∇2ψ +
2π~

2a

µ

∂ (rψ)

∂r

∣

∣

∣

∣

r→0

(2.23)

If we assume that ψ(r) = (rψ)|r→0 (1
r + O(r0)) for small r, we can exploit the relation ∇2 1

r =

−4πδ(3)(r) to evaluate the integral. The result is that

0 =
2π~

2

µ
(rψ)|r→0 +

2π~
2a

µ

∂(rψ)

∂r

∣

∣

∣

∣

r→0

, (2.24)

which is identical to the Bethe-Peierls boundary condition (2.17). The two formulations are there-

fore equivalent.

Representing short-range interactions with a delta function is obviously a nontrivial task, as

evidenced by the unusual partial differentiation that appears in the Fermi pseudopotential (2.22).

It raises the question of whether one can use a delta function without the derivative. Can we

represent interactions with a potential that is constant in momentum space, as would befit the

Fourier transform of a delta function? It turns out that this is possible in a limiting sense, but

it requires a careful renormalization procedure in which the strength of the delta function must

depend on its width (which is nonzero for a nascent delta function). We begin by defining the

Fourier transform of a function

f̃(k) =

∫

d3re−ik·rf(r) (2.25)

and its inverse transform

f(r) =

∫

d3k

(2π)3
eik·rf̃(k). (2.26)

Rather than use a strict delta function for the interaction, whose Fourier transform equals 1 for all

k, we consider the analogous quantity up to a momentum-space cutoff Λ:

δ
(3)
Λ (r) ≡

∫

d3k

(2π)3
eik·rΘ(Λ − k) (2.27)

where Θ is the Heaviside function. The quantity Λ−1 can be understood as the range of the

interaction. We will define the interaction potential to be

Vint(r) = UΛδ
(3)
Λ (r), (2.28)
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where UΛ is a scattering-length-dependent coupling constant required to give the correct short-range

physics.

The functional form of UΛ can be demonstrated simply by solving the bound-state problem

in momentum space. The momentum-space Schrödinger equation can be written as [117]

EBψ̃B(k) =
~

2k2

2µ
ψ̃B(k) + UΛ

∫

d3re−ik·rδ(3)
Λ (r)ψB(r)

=
~

2k2

2µ
ψ̃B(k) + UΛ

∫

d3k′

(2π)3
ψ̃B(k′ − k)Θ(Λ − k′)

≈ ~
2k2

2µ
ψ̃B(k) + UΛ

∫

k′<Λ

d3k′

(2π)3
ψ̃B(k′)

(2.29)

where we have invoked the convolution theorem and assumed that Λ is much larger than both k

and a−1. In momentum space, the bound-state solution shown in Eq. (2.21) becomes

ψ̃B(k) =
2
√

2πa3

1 + k2a2
, EB = − ~

2

2µa2
(2.30)

If we substitute this solution into Eq. (2.29), all of the k dependence vanishes, and we can solve

directly for UΛ. When the smoke clears, we find that

UΛ =
2π~

2a/µ

1 − 2
πΛa

(2.31)

in the Λa ≫ 1 limit. This is the coupling constant required to give the correct short-range physics.

It is valid more generally for any value of a and even for Λa ≪ 1 (where no bound state occurs),

as can be proved with Green function techniques [19].

It is interesting that, for fixed scattering length, UΛ decays as Λ−1 in the Λ → ∞ limit. This

behavior may seem surprising at first, but it is analogous to what occurs in the r0 → 0 limit of the

square well calculation at fixed scattering length. In that case, the “volume” of the well (∼ V0r
3
0,

analogous to UΛ) decays as O(r0) as the range is reduced.3 Given our interpretaton of Λ−1 as the

range of δ
(3)
Λ (r), we see that the scalings are identical in the zero-range limit. In fact, the two model

potentials are not particularly different, except that one is a Heaviside function in position space

3 This is immediately obvious from Eq. (2.12) in the case of infinite scattering length, where we can fix√
2µV0r0/~ = π/2. It can be shown that this scaling is also valid for arbitrary nonzero scattering length in the

r0 → 0 limit.
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and the other is a Heaviside function in momentum space. Both models are broad in momentum

space up to an effective cutoff Λ ∼ r−1
0 .

2.3 Tan’s Contact

There is considerable power in the idea that, once you know the scattering length for a pair

of particles with short-range interactions, you can make universally valid statements about the

scattering and bound wave functions to within a good approximation. We have discussed this

paradigm in the two previous sections. The necessary assumption is that relative momenta be low

enough to satisfy kreff ≪ 1, which can be fulfilled in most cold-atom experiments near a broad

Feshbach resonance. It turns out that, in this regime describable by the zero-range approximation,

one can make even stronger statements about system observables based purely on the short-range

nature of the interactions. These statements, called the Tan relations, were introduced by Shina

Tan about a decade ago [152, 154, 153]. They hold true for all equilibrium states in the ultracold

regime, both few-body and many-body, both in the ground state and at finite temperature, whether

we know how to solve the problem or not.

Central to the Tan relations is the idea that global interaction effects should scale with the

probability that atoms are close enough to interact. As an obvious example, the interaction energy

for a pair of atoms is zero if their relative wave function vanishes inside the interaction region,

and it should be large in magnitude if the wave function has a significant component in the short

range. Within the framework of the zero-range approximation, the relative wave function behaves

as ψ(r) ≈ (rψ)|r→0
1
r in the short range, as written in Eq. (2.18). The operative quantity (rψ)|r→0

is not determined by the log-derivative boundary condition (2.17), but rather by the specific state

of the system. Its magnitude-squared encodes the probability that the atoms are close enough

to interact or, in other words, are in “contact” with each other. This contact probability should

determine the interaction energy and the extent to which the pair will notice a change in the

interactions. By properties of the Fourier transform, it should also determine the large-k behavior

of the momentum distribution via nk ∼ |ψ̃(k)|2 ∼
∣

∣(rψ)|r→0
4π
k2

∣

∣

2
. Such a probability is well defined



24

for an arbitrary system of two or more interacting particles, and Tan’s crucial development was to

establish quantitatively the universal ways in which it relates to the observables of any equilibrium

system for which the zero-range approximation is valid.

The key parameter that appears in the Tan relations is the “contact” C, and it is proportional

to the short-range pair probability of the system. The short-range r−2 behavior of the interacting

two-body probability |ψ(r)|2 carries over to the many-body pair distribution function g(2)(r), whose

short-range behavior defines the contact via

g(2)(r) =
C

(4πn)2r2
+ O

(

1

r

)

(2.32)

where n is the many-body number density of the system. The pair distribution function quantifies

the relative likelihood of measuring other particles a distance r from any particle of interest.4 In

the absence of correlations, g(2)(r) = 1. Similar to the two-body case, the short-range behavior of

the pair probability also determines the large-k tail of the momentum distribution according to

nk =
C

k4
+ O

(

1

k5

)

, (2.33)

where nk is assumed to be normalized to the density as n =
∫

d3k
(2π)3

nk. As written so far, the

contact is a volume-averaged intensive quantity. If we were to normalize the density distribution

to the particle number N instead of the density, then the definition (2.33) would imply that C is

an extensive quantity. There are several conventions in the literature. When addressing many-

body problems in this thesis, we will normalize momentum distributions to the number density n;

therefore, we consider C to be intensive.

We now briefly state some of the Tan relations as they apply to identical bosons of mass m in

the absence of three-body effects.5 Relevant derivations can be found in Refs. [152, 154, 153, 20, 18].

The first relations can be considered to be Eqs. (2.32)-(2.33), either of which can define the contact.

The contact relates intimately to the total energy density E of a homogenous gas in equilibrium

4 This likelihood is compared to an uncorrelated gas, where the probability of measuring a particle in a volume
element d3r is given simply by n × d3r.

5 Three-body effects will be discussed in Ch. 7
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according to

E =

∫

d3k

(2π)3
~

2k2

2m

[

nk − C

k4

]

+
~

2

8πma
C, (2.34)

where both the contact and the momentum distribution depend implicitly on a. The contact also

determines how this energy density evolves as the scattering length is changed adiabatically:

dE
d (1/a)

= − ~
2

8πm
C. (2.35)

Similarly, diabatic changes in the scattering length lead to a contact-dependent change in the energy

density

Ef − Ei = − ~
2

8πm
C

(

1

af
− 1

ai

)

, (2.36)

where it is assumed that the change occurs quickly enough that the short-range behavior of the

initial quantum state, characterized by C, does not evolve appreciably while the interactions are

switched. Similar relations have been derived for the large-detuning limit of the RF spectrum,

the short-range limit of the one-body density matrix, the pressure, and the virial theorem. It is

important to note that these results provide constraints on system observables, but they do not

directly predict what these observables are unless the parameter C is known.

Tan’s relations have been verified experimentally in a variety of systems. Several of these re-

lations were measured in a gas of ultracold two-component fermions across the BCS-BEC crossover,

and agreement was found for both weak and strong interactions [147]. Soon afterwards, Tan’s pre-

dictions were seen in a weakly-interacting Bose-Einstein condensate [174]. The contact has recently

gained significant interest in the context of nuclear-physics experiments, which appear to display

asymptotic k−4 behavior in the momentum distribution [169, 168, 77]. It is significant that the

contact is relevant to such disparate systems despite the fact that their densities differ by about a

factor of 1020.

2.4 Summary

In this chapter, we have given a basic description of Alkali-atom interactions and empha-

sized the important simplifications that occur in the ultracold regime. Due to the short range of
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interactions, low-energy physics for both scattering and binding is determined universally by the

scattering length. We can use simple models to represent these interactions, including the zero-

range approximation, and this leads to a significant reduction in complexity over the multi-channel

representation of true atom-atom interactions. We introduced Tan’s contact, which helps bridge the

conceptual gap to the many-body problem, demonstrating the important role played by short-range

pair probabilities even in a many-body context.



Chapter 3

Weakly Interacting Bose-Einstein Condensates

In this chapter, we review the basic phenomenology and theoretical treatment of weakly

interacting Bose-Einstein condensates in equilibrium. Two-body interactions, as described in the

previous chapter, complicate the many-body picture somewhat; at the same time, however, they

deeply enrich the physics, and we will see that the scattering length plays an important role in

determining the properties of a BEC. This is a precursor to our studies of strongly interacting

condensates out of equilibrium, which will be presented in the later chapters of this thesis.

3.1 The Phenomenon

Bose-Einstein condensation is the abrupt macroscopic occupation of the single-particle ground-

state wave function that occurs when a many-boson sample is cooled below a critical temperature.

Those atoms that occupy the ground state constitute the Bose-Einstein condensate (BEC). This

phase of matter was first predicted for noninteracting systems by Einstein almost a century ago

[56, 57], and its existence can be intuited from the Bose-Einstein distribution function for identical

noninteracting bosons:

N(Ej , µ, T ) =
1

e(Ej−µ)/kBT − 1
, (3.1)

where Ej is the energy of a single-particle state, kB is Boltzmann’s constant, and T is the temper-

ature of the system. If we measure energies with respect to the single-particle ground state, the

chemical potential µ must satisfy µ < 0 so that the occupation numbers are nonnegative and finite.
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The chemical potential is fixed by the total particle number N according to

N =
∑

j

N(Ej , µ, T ). (3.2)

Equation (3.1) suggests that the single-particle ground state can be macroscopically occupied [that

is, N(0, µ, T ) = O(N)] if and only if |µ| is much smaller than the spacing between single-particle

energy levels. When this is the case, all excited single-particle states satisfy Ej ≫ |µ|, and we can

therefore approximate µ ≈ 0 in calculating their thermal populations via (3.1).

We can identify the conditions for Bose-Einstein condensation by investigating when µ ≈ 0

leads to a consistent solution of Eqs. (3.1)-(3.2). Inasmuch as the ground state may be macroscop-

ically occupied, we can separate it out explicitly and approximate the remaining sum in Eq. (3.2)

in the µ → 0− limit as an integral over energies:

N = N(0, 0, T ) +
∑

j>0

N(Ej , 0, T )

≈ N(0, 0, T ) +

∞
∫

0

dE g(E)N(E, 0, T )

≈ N(0, 0, T ) +

∞
∫

0

dE
g(E)

eE/kBT − 1

, (3.3)

where g(E) is the system-dependent density of states.1 For systems in which the integral in

Eq. (3.3) is greater than N , the ansatz µ ≈ 0 is clearly wrong because it violates number con-

servation [Eq. (3.2)]; such systems are therefore uncondensed. When that integral is less than

N , however, there is a macroscopic ground-state occupation N(0, 0, T ) > 0 for which Eqs. (3.1)-

(3.3) are satisfied, and the system is Bose condensed. The onset of condensation in such cases is

determined by the temperature TC for which

N =

∞
∫

0

dE
g(E)

eE/kBTC − 1
, (3.4)

and there is a nontrivial BEC fraction for T < TC that is determined by number conservation

1 The density of states encodes the degeneracy of single-particle states, and it is defined such that its integral
E′

R

0

dE g(E) gives the number of states below energy E′.
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according to Eq. (3.3). This fraction increases continuously from zero as the temperature is lowered

below TC .

There are a few useful examples for which the condensation temperature and condensate

fraction can be calculated analytically. Here, we simply state the results and refer the reader to

Ref. [131] for the derivations. For a homogenous gas of N bosons in volume V, the condensation

temperature has been evaluated analytically as

TC =
2π~

2

mkB

[

N

V ζ(3/2)

]2/3

(Homogenous Gas), (3.5)

where m is the mass and ζ(z) is the Riemann zeta function. We can similarly find the condensate

fraction to be

N(0, 0, T )

N
= 1 −

(

T

TC

)3/2

(Homogenous Gas) (3.6)

for T < TC . If the bosons are in a harmonic trap of mean frequency ω̄ = (ωxωyωz)
1/3, then the

condensation temperature evaluates to

TC =
~ω̄

kB

[

N

ζ(3)

]1/3

(Trapped Gas), (3.7)

and the condensate fraction is given by

N(0, 0, T )

N
= 1 −

(

T

TC

)3

(Trapped Gas) (3.8)

when T < TC . For homogenous gases in 2D and 1D, the energy integrals in Eqs. (3.3)-(3.4) diverge

and no condensation occurs for T > 0.

3.1.1 The Importance of Indistinguishability

It may, at first glance, seem odd that thermodynamics would allow most of the particles to oc-

cupy the ground-state even when the temperature is larger than the spacing between single-particle

energy levels. Consider the case of N particles in a spherically-symmetric harmonic oscillator of

frequency ω. For sufficiently large N , Eqs. (3.7)-(3.8) show that it is possible to have an almost

pure BEC of ground-state particles (T ≪ TC) at a temperature where many oscillator states are
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thermally accessible to each particle (kBT ≫ ~ω). Why do condensed bosons avoid these excited

states despite their accessibility? The resolution of this seeming paradox comes from the different

counting statistics that apply to distinguishable and indistinguishable particles. We will illustrate

this heuristically.

For the case of distinguishable particles, we can apply Boltzmann statistics separately to

each particle. Occupation probabilities are then proportional to the Boltzmann factor e−E/kBT .

In the regime where kBT ≫ ~ω, a large number q of modes are thermally accessible, and the

probability of an atom occupying any of these states (including the ground state) is of order 1/q.

We conclude on these grounds that only a tiny fraction of particles can occupy the ground state at

this temperature. We could alternatively arrive at this conclusion by applying Boltzmann statistics

to the eigenstates of the many-body ensemble. From this perspective, each system state has its

own energy and Boltzmann factor. The many-body ground state contributes a Boltzmann factor of

unity to the partition function Z =
∑

j e−Ej/kBT . States with energy ∼ NkBT (that is, ∼ kBT per

particle) each contribute a tiny Boltzmann factor of approximately e−N ; however, there should be

about qN of these states, and this more than makes up for the miniscule scale of their Boltzmann

factors. These excited states, taken together, are exponentially probable for large N compared

to the ground state. Again, we conclude that only a tiny fraction of particles should occupy the

ground state.

When the particles are indistinguishable, we must count excited states differently. For exam-

ple, suppose we take the many-body ground state and excite a single particle to a specific orbital.

This configuration corresponds to only one unique eigenstate in the indistinguishable case, whereas

there are N such eigenstates if the particles are distinguishable. There is, generally speaking, a

dramatic suppression of entropy when we are dealing with the low-energy eigenstates of indistin-

guishable particles. Returning to the states of total energy ∼ NkBT , the Boltzmann factors remain

approximately e−N . We can estimate the total number of such states by counting the number of
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ways we can arrange N identical particles among q single-particle states:

Number of States =

(

N + q − 1

N

)

=
(N + q − 1)!

N !(q − 1)!
. (3.9)

Exploiting Sterling’s approximation [2] and the fact that both N and q are large numbers, we can

write this approximately as

Number of States ≈



















( qe
N

)N
if 1 ≪ N ≪ q

(

Ne
q

)q
if 1 ≪ q ≪ N

. (3.10)

At high temperatures (N ≪ q), the number of states scales exponentially with particle number as ∼

qN , and the combinatoric factor again causes many-body states of energy ∼ NkBT to dominate the

partition function. In contrast, the low-temperature limit (q ≪ N) shows only polynomial scaling

with particle number ∼ N q, and this gets trumped by the exponential decay of the Boltzmann

factors e−N . At low temperatures, the collection of states with energy ∼ kBT per particle is

thus exponentially improbable. The net result is that configurations similar to the many-body

ground state have an increased relative weighting in the partition function and, consequently, the

thermodynamics [142].

3.1.2 Experimental Observation in Dilute Alkali Gases

Typical cold-atom experiments operate at low number density (n . 1014 cm−3) in order to

minimize chemically reactive processes, and this leads to low condensation temperatures on the

order of about 100 nK. With reference to absolute zero, that is about 10 million times colder than

deep space. Reaching such low temperatures is a technical challenge, and it took several decades

to develop the tools necessary to trap and cool atoms just to the sub-mK regime. For a review of

laser cooling and trapping, see Refs. [134, 29, 34].

The big breakthrough of Bose-Einstein condensation came when evaporative cooling was

applied to laser-cooled Alkali atoms. The general idea is to selectively remove the most energetic

atoms from a sample, thereby lowering the temperature of the remaining atoms. This is the same
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process that occurs in a bowl of hot soup: the hottest soup molecules escape as steam, and the

remaining soup cools as a result. In a liquid, the work function determines which molecules are hot

enough to escape. In a cold-atom system, the depth of the confining potential discriminates hot

particles, and one can cool a system by slowly lowering the trap depth [78]. One can also use an RF

resonance condition, where photons are detuned in such a way that only energetic atoms can make

the Zeeman or hyperfine transition [113]. (This is often called an RF “knife”.) For either method

to work well, it is necessary that the thermalization timescale be short compared to the lifetime of

the sample [91]. Under proper conditions, Alkali-atom systems can be evaporatively cooled from

hundreds of µK to several nK, well below the threshold for the BEC transition. This technique

led to the observations of Bose-Einstein condensation at JILA [1] and MIT [44] in 1995, and it has

since become the standard method for creating degenerate quantum gases.

The first experimental evidence for reaching the Bose-condensed state in cold-atom systems

was seen in ballistic-expansion measurements. The general protocol is to turn off the trap, wait

several dozen milliseconds, and then take a picture via absorption imaging. If the gas has expanded

freely during the wait time, the fastest atoms travel the furthest, and the image represents a mo-

mentum distribution. For a gas of uncondensed atoms, this distribution is fixed by the temperature

T à la Boltzmann according to

n(p) ∝ e
− p2

2mkBT , (3.11)

where m is the atom mass. In the zero-temperature limit, however, the momentum distribution

should be determined by the momentum-space wave function of the harmonic-oscillator ground

state, shared mutually by all condensed atoms. For nonzero temperatures below TC , Eq. (3.3)

suggests that the distribution should be a sum of the classical and quantum predictions with

the relative weighting determined by the condensate fraction (see Ref. [110] for a less hand-wavy

analysis). Figure 3.1 shows this transition from a thermal gas to a BEC for a system of 87Rb atoms

that is evaporatively cooled across TC [37].

Once this transition was observed, it became possible to investigate systematically how inter-
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Figure 3.1: (Color online) Velocity distribution for a ballistically expanded Bose gas of 87Rb atoms,
as it is cooled across the BEC transition temperature. From left to right, the temperatures are
400 nK, 200 nK, and 50 nK. Used with permission from Ref. [37].
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actions alter the condensed state, both in and out of equilibrium. These systems have turned into

a proving ground for condensed matter theories, with Fano-Feshbach resonances opening the door

to study strongly correlated systems. Before we delve into resonant interactions, we first review

the present understanding of weakly interacting BECs. This will set the stage for later chapters.

3.2 Many-body Formalism

In this thesis, we will assume that systems are cold enough that thermal effects are negligible

and the system can be described by a pure quantum state instead of a density matrix [131]. For

a many-body system of identical bosons, this occurs at temperatures well below the condensation

temperature, as suggested by Eqs. (3.6) and (3.8). We will also consider the atoms to be spin

polarized such that we can suppress all indices relating to internal structure. In this regime, one

can completely describe the state of an N -body system by the wave function Ψ(r1, r2, . . . , rN , t).

The wave function must satisfy the Schrödinger equation

i
∂Ψ

∂t
=

N
∑

j=1

[

− ~
2

2m
∇2

j + Vext(rj)

]

Ψ +
N

∑

i<j

Vint(ri − rj)Ψ, (3.12)

where m is the particle mass, Vext is an external potential, and Vint is the interaction potential.

The magnitude squared of this wave function represents the probability density of measuring the

particles at positions {r1, . . . , rN}. For identical bosons, this wave function must be symmetric

under particle exchange.

It is useful to reformulate the many-body problem in the language of second quantization.

One chief advantage of this formulation is that it allows us to easily represent many-body states in

the abstract “ket” space, as opposed to the position-space representation implied by Eq. (3.12). We

enforce symmetrization by simply stating commutation relations for the operators that compose

the theory.2 This streamlines calculations considerably, as we will see shortly.

2 The formulation for fermions is nearly identical, except that anticommutators are used [117].
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3.2.1 Second Quantization

To understand second-quantized operators, we must first make sense of the Hilbert space in

which they operate. Basis elements in this space, called “Fock states”, are defined by occupation

numbers of single-particle states. Consider a complete, orthonormal set of states {φj(r)} for a

single quantum particle.3 The quantum numbers that describe a given Fock state are then the

occupation numbers {nj} (non-negative integers) of these single-particle states. In other words,

the Fock state

|{nj}〉 ≡ |n1, n2, . . .〉 (3.13)

is defined to be the (symmetrized) state where n1 particles occupy state φ1(r), n2 particles oc-

cupy state φ2(r), and so forth. These states are defined to be normalized, and they satisfy the

orthonormality condition

〈

{n′
j}

∣

∣{nj}
〉

= δn1,n′

1
δn2,n′

2
. . . . (3.14)

Fock space is defined to be the span of all Fock states of the form (3.13). It is an enormous Hilbert

space in which any number of particles can occupy any configuration. The Fock space itself, as

defined, is then independent of the choice of {φj(r)}. This is in the same sense that the Hilbert

space for a single particle in free space exists independently of the basis in which we choose to

represent vectors, be they momentum eigenstates or be they harmonic-oscillator wave functions.

Of course, representing a Fock state in the form (3.13) presupposes a specific single-particle basis.

Given the discrete nature of occupation numbers in Fock space, it is useful to define raising

and lowering operators. For a given single-particle basis {φj(r)}, we can define a set of operators

{âj} and {â†j} whose operation on a Fock state is

âi |n1, n2, . . . ni, . . .〉 =
√

ni |n1, n2, . . . ni − 1, . . .〉

â†i |n1, n2, . . . ni, . . .〉 =
√

ni + 1 |n1, n2, . . . ni + 1, . . .〉
(3.15)

in direct analogy with the operators that are defined in the one-body harmonic-oscillator problem.

3 These states could be momentum eigenstates, harmonic oscillator wave functions, or any other complete basis.
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Bosonic symmetrization requires that these operators satisfy the commutation relation given by

[âj , â
†
k] ≡ âj â

†
k − â†kâj = δj,k

[âj , âk] = [â†j , â
†
k] = 0

. (3.16)

These operators can be used to construct number operators for each single-particle mode j via

n̂j ≡ â†j âj , and the Fock states given by (3.13) serve as the eigenvectors of these operators with

eigenvalue nj . The state for which nj = 0 for all j is called the particle “vacuum” |0〉, and

Eq. (3.15) implies that âj |0〉 = 0 for all j. It is possible to generate any Fock state from the

vacuum by repeatedly acting on it with raising operators:

|{nj}〉 =
1√

n1!n2! . . .

(

â†1

)n1
(

â†2

)n2

. . . |0〉. (3.17)

The operators â†j and âj are often called “creation” and “annihilation” operators, respectively, as

they appear to create and annihilate particles in state j according to Eq. (3.15).

It is useful to define operators that create and annihilate particles at position r. We can

exploit the completeness of the arbitrary basis {φj(r)} to define the “quantum field operators”

ψ̂(r) =
∑

j

âjφj(r)

ψ̂†(r) =
∑

j

â†jφ
∗
j (r)

(3.18)

which must satisfy the commutation relations

[

ψ̂(r), ψ̂†(r′)
]

= δ(3)(r − r′)
[

ψ̂(r), ψ̂(r′)
]

=
[

ψ̂†(r), ψ̂†(r′)
]

= 0

. (3.19)

One can use these fields to construct the particle number density operator

n̂(r) = ψ̂†(r)ψ̂(r). (3.20)

It is significant that, in this formulation, the position r appears as a parameter instead of as an

operator. The familiar commutation relation from single-particle quantum mechanics [r̂i, p̂j ] =

i~δi,j , in which position and momentum are operators in the Hilbert space, is often referred to as
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“first quantization”. The term “second quantization” refers to using operator-valued functions as

quantized fields,4 in the sense of Eqs. (3.18)-(3.19).

In the representation of second quantization, the quantum field operators ψ̂ and ψ̂† constitute

useful building blocks for important theoretical quantities. For one thing, they provide a natural

expression of the position-space wave function Ψ(r1, r2, . . . , rN , t) in the abstract “ket” space:

|Ψ(t)〉 =
1√
N !

∫

d3r1d
3r2 . . . d3rNΨ(r1, r2, . . . , rN , t)ψ̂†(r1)ψ̂

†(r2) . . . ψ̂†(rN )|0〉, (3.21)

where the commutation of the ψ̂† operators according to Eq. (3.19) ensures that that the state is

symmetric under particle exchange. The Hamiltonian that governs the dynamics of |Ψ(t)〉 according

to the Schrödinger equation (3.12) can be written as

Ĥ =

∫

d3rψ̂†(r)

[

− ~
2

2m
∇2 + Vext(r)

]

ψ̂(r) +
1

2

∫

d3rd3r′Vint(r − r′)ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r). (3.22)

It is worth pointing out that this representation of the Hamiltonian does not presuppose any specific

particle number N ; it is valid for all particle numbers and can even be used for describing systems

in which N is not fixed, such as the grand canonical ensemble [117].

It is often convenient to perform many-body calculations assuming a homogenous (untrapped)

sample. This makes it easy to take the thermodynamic limit, where the particle number N and

the volume V approach infinity with the number density n fixed. Momentum is also conserved

in the absence of a trap, which simplifies ground state calculations by allowing us to work in the

zero-momentum subspace. We therefore expand the quantum field operator ψ̂(r) in the basis of

single-particle plane-wave states:

ψ̂(r) =
1√
V

∑

k

âkeik·r, (3.23)

where the operator âk annihilates a particle with momentum ~k. The operators {âk} and {â†k}

satisfy the discrete commutation relations given by Eq. (3.16), with momentum indices. In this

basis, the Hamiltonian (3.22) takes the compact form

Ĥ =
∑

k

εkâ
†
kâk +

1

2V

∑

k,k′,q

Ṽint(q)â†k+qâ†
k′−q

âkâk′ , (3.24)

4 For rigor, we should call them operator-valued distributions due to the singular nature of their commutators.
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Figure 3.2: Diagrammatic representation of the Born series for interacting BEC particles. The
dashed lines represent condensed atoms with zero momentum, the wiggly lines represent interactions
via the potential Ṽint, and the straight solid lines represent intermediate scattering states with
arbitrary momentum. Only the first two terms of this series can be generated by the Bogoliubov
Hamiltonian (3.25).

where εk = ~
2k2

2m is the kinetic energy of a particle, and Ṽint(q) is the Fourier transform of the

interaction potential.

3.3 Weakly Interacting BECs

It is notoriously difficult to solve the quantum many-body problem in the presence of non-

trivial interactions. When these interactions are weak, however, progress can be made. We expect

generally that the ground state of a weakly interacting BEC should still feature a sizeable con-

densate fraction, for example. This idea leads to the widely used Bogoliubov approximation [10],

which treats the problem in a mean-field sense. In this section, we will focus on the case in which

there are N atoms in a homogenous volume V , whose Hamiltonian is given by Eq. (3.24).

3.3.1 The Bogoliubov Approximation

The Bogoliubov theory of interacting BECs begins with the assumption that the condensate

fraction is approximately equal to unity, with minimal uncertainty or fluctuation. Said another way,

we assume that the ground state is dominated by configurations where the number of ground state

atoms N0 is nearly equal to the total number of atoms N . This suggests that, in the relevant part

of the Hilbert space, the operators with the largest matrix elements are those that are composed of

â0 and â†0, as these operators introduce factors of
√

N0 and
√

N0 + 1 according to Eq. (3.15). We
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write the Bogoliubov Hamiltonian by discarding terms in the interaction that have fewer than two

factors of either â0 or â†0:

Ĥ ≈ Ṽint(0)

2V
â†0â

†
0â0â0 +

∑

k

εkâ
†
kâk +

1

2V

∑

k 6=0

Ṽint(k)
(

2â†0â
†
kâkâ0 + â†kâ†−kâ0â0 + â†0â

†
0âkâ−k

)

+
Ṽint(0)

V

∑

k 6=0

â†0â
†
kâkâ0

.

(3.25)

The neglect of terms such as â†qâ†−qâkâ−k has important consequences for the theory. This Hamil-

tonian can evidently excite a pair of atoms from the condensate (via â†kâ†−kâ0â0), but these atoms

cannot scatter multiple times before returning to the condensate (via â†0â
†
0âkâ−k). In terms of

Feynman diagrams, Eq. (3.25) only allows condensate atoms to scatter up to second order in the

Born approximation, which are the first two terms shown in Fig. 3.2. We can expect this Hamilto-

nian, as written, to reproduce the correct physics only for cases in which the higher-order terms of

the Born series are vanishingly small at low energies.

A good candidate for the interaction is the regularized contact potential given by Eqs. (2.28)

and (2.31). This potential has the form

Ṽint(k) = UΛΘ(Λ − k) =
4π~

2a/m

1 − 2
πΛa

Θ(Λ − k). (3.26)

In the limit that Λ|a| ≪ 1, the first Born approximation [117] f (1) = − m
4π~2 Ṽint(0) approximately

reproduces the exact low-energy scattering amplitude f = −a; it can be shown that the higher-

order terms of the Born series are smaller by successive powers of Λa at low energies. In this regime,

the coupling constant UΛ depends only weakly on the cutoff Λ, and it is convenient to simply write

it as U0 = 4π~
2a/m. It is worth noting that using an arbitrary short-range potential in (3.25),

or even an effective potential (3.26) that violates Λ|a| ≪ 1, leads to incorrect results due to the

neglect of higher-order scattering in the sense of Fig. 3.2. At the same time, we must choose the

range of the interaction Λ−1 to be small compared to the mean interparticle separation ∼ n−1/3 so

that range effects remain negligible. These considerations constrain the cutoff Λ such that

n1/3 ≪ Λ ≪ |a|−1. (3.27)
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We immediately see that these approximations, neglecting both higher-order scattering and range

effects, can be consistent only for n|a|3 ≪ 1.

Besides neglecting certain terms in the interaction, the Bogoliubov approximation entails

approximating â0 and â†0 as
√

N0. This is motivated by the fact that all relevant matrix elements

that contain these operators introduce essentially that same factor. In this approximation, the

Bogoliubov Hamiltonian can be written as

ĤBog =
N2

0 U0

2V
+

Λ
∑

k 6=0

εkâ
†
kâk +

N0U0

2V

Λ
∑

k 6=0

(

2â†kâk + â†kâ†−k + âkâ−k

)

+
N0U0

V

Λ
∑

k 6=0

â†kâk

, (3.28)

where we have neglected high-energy modes k > Λ that are not expected to be populated in a

weakly interacting BEC.5 The first and last terms can be combined to yield

N2
0 U0

2V
+

N0U0

V

Λ
∑

k 6=0

â†kâk =
U0

2V



N2
0 + 2N0

Λ
∑

k 6=0

â†kâk





≈ U0

2V



N0 +

Λ
∑

k 6=0

â†kâk





2

≈ N2U0

2V

(3.29)

according to number conservation. To this order of approximation, we can now set N0/V and N/V

to the number density n, and the Bogoliubov Hamiltonian becomes

ĤBog =
NnU0

2
+

Λ
∑

k 6=0

εkâ
†
kâk +

nU0

2

Λ
∑

k 6=0

(

2â†kâk + â†kâ†−k + âkâ−k

)

. (3.30)

5 It can be shown that these modes are approximately decoupled in the Bogoliubov ground-state calculation,
which is reason enough to ignore them.
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3.3.2 Solving the Problem

The Hamiltonian (3.30) can be diagonalized by a so-called Bogoliubov transformation.6 The

trick is to define operators according to

âk = ukβ̂k − vkβ̂
†
−k

â†k = ukβ̂
†
k − vkβ̂−k

, (3.31)

where uk and vk are undetermined parameters. It can be checked that β̂k and β̂†
k satisfy the bosonic

commutation relations
[

β̂k, β̂†
k′

]

= δkk′

[

β̂k, β̂k′

]

=
[

β̂†
k, β̂†

k′

]

= 0

(3.32)

as long as

u2
k − v2

k = 1 (3.33)

for all k > 0. We can substitute (3.31) into (3.30), and we find that

ĤBog =
NnU0

2
+

Λ
∑

k 6=0

[

v2
k (εk + nU0) − ukvknU0

]

+
Λ

∑

k 6=0

β̂†
kβ̂k

[(

u2
k + v2

k

)

(εk + nU0) − 2ukvknU0

]

+
1

2

Λ
∑

k 6=0

(

β̂†
kβ̂†

−k + β̂kβ̂−k

)

[(

u2
k + v2

k

)

nU0 − 2ukvk (εk + nU0)
]

. (3.34)

We can choose the parameters uk and vk such that the last line of (3.34) vanishes:

uk =

√

εk + nU0

2~ωk
+

1

2

vk = sgn [U0]

√

εk + nU0

2~ωk
− 1

2

(3.35)

where we have defined

~ωk =
√

εk (εk + 2nU0). (3.36)

After some algebra, the Hamiltonian can be written as

ĤBog =
NnU0

2
+

1

2

Λ
∑

k 6=0

[~ωk − εk − nU0] +
Λ

∑

k 6=0

β̂†
kβ̂k~ωk. (3.37)

6 Although Bogoliubov popularized the idea [10], it appeared in the literature several years earlier in the context
of magnetic systems [82].
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This form is diagonal in the sense that its operator component, the last term, has the form of a

number operator. However, it is not counting particles, but rather a different form of excitation

defined by Eqs. (3.31) and (3.35). These excitations, which are the approximate normal modes of

the system, are often called “quasiparticles” [116] and their energies are given by ~ωk in Eq. (3.36).

The excitation energies reveal important physics about interacting BECs. For a < 0, these

energies are imaginary valued in the small-k limit, signifying that the assumed Bose-condensed

state is dynamically unstable. For a > 0, they are real valued and behave asymptotically as

~ωk ≈



















√

4π~2na
m2 ~k if kξ ≪ 1

εk + 4π~
2na

m if kξ ≫ 1

, (3.38)

where we have defined the length scale ξ = 1/
√

8π~2na, called the “healing length”. The linear

dispersion for small k indicates that these modes are phonons with a sound speed given by c =
√

4π~2na
m2 . In this case, the sound speed c also serves as the superfluid critical velocity: impurities

traveling slower than c (relative to the BEC) are energetically forbidden from exciting the BEC.

This interesting result follows from energy-momentum conservation, as first discussed by Landau

in the context of superfluid helium [103, 104]. It is worth pointing out that the critical velocity

vanishes in the limit that a → 0, and the BEC ceases to be a superfluid. Hence, interactions are

crucial to the phenomenon of superfluidity.

3.3.3 The Ground State

The ground state of the system |Ψ0〉 is defined by the absence of quasiparticle excitations.

This means that it must satisfy β̂k|Ψ0〉 = 0 for all k 6= 0. We can use this feature, along with

(3.31), to calculate the momentum distribution of excited particles. We find that

nk = 〈Ψ0|â†kâk|Ψ0〉

= 〈Ψ0|(ukβ̂
†
k − vkβ̂−k)(ukβ̂k − vkβ̂

†
−k)|Ψ0〉

= v2
k

=
εk + nU0

2~ωk
− 1

2

. (3.39)
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It can be shown that this distribution has a large-k tail that goes as C/k4, as anticipated in Sec. 2.3.

We can extract the contact C by noting that

C = lim
k→∞

k4 ×
[

εk + nU0

2
√

εk(εk + 2nU0)
− 1

2

]

= lim
k→∞

k4 ×





1 + nU0
εk

2
√

1 + 2nU0
εk

− 1

2





= lim
k→∞

k4 ×
[

1

4

(

nU0

εk

)2

+ O
(

nU0

εk

)3
]

= 16π2n2a2

, (3.40)

where we have used the definition of the quasiparticle energy (3.36).

We can sum Eq. (3.39) over k 6= 0 to find the total fraction of excited particles. It is helpful

to convert the sum to an integral via

Nex

N
=

1

N

Λ
∑

k 6=0

nk ≈ 1

n

∫

k<Λ

d3k

(2π)3
nk , (3.41)

where we have made the usual replacement
∑

k 6=0 → V
∫

d3k
(2π)3

, and recalled that n = N/V . This

convergent integral is approximately independent of the cutoff as long as Λξ ≫ 1, which is consistent

with the restrictions in Eq. (3.27) whenever na3 ≪ 1. We are therefore justified in extending the

integration limits to infinity, and the excited fraction evaluates to

Nex

N
≈ 8

3

√

na3

π
. (3.42)

This verifies (after the fact, of course) that the BEC fraction is approximately unity in the limit

that na3 ≪ 1. In contrast to the thermal depletion considered in Eq. (3.6), this depletion occurs

purely as a result of interactions. It is often referred to as the “quantum depletion”.

The ground state energy can almost be read off as the c-number contribution to the Bogoli-

ubov Hamiltonian (3.37), which is

E0 → NnU0

2
+

1

2

Λ
∑

k 6=0

[~ωk − εk − nU0] . (3.43)

This quantity, as written, grows linearly with Λ for Λξ ≫ 1. This conundrum is rooted in the fact

that we have ignored the weak cutoff dependence of the coupling constant UΛ. If we restore this
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cutoff dependence to (3.43), then the resulting energy is approximately cutoff independent. We can

demonstrate this by expanding UΛ to lowest order in Λa ≪ 1:

UΛ =
4π~

2a

m

[

1 +
2

π
Λa + O (Λa)2

]

= U0



1 + 4πa

∫

k<Λ

d3k

(2π)3
1

k2
+ O (Λa)2





= U0



1 +
U0

V

Λ
∑

k 6=0

1

2εk
+ O (Λa)2





, (3.44)

where we have exchanged an integral for a sum. Substituting this cutoff-dependent expression into

Eq. (3.43) yields

E0 =







NnU0

2
+

1

2

Λ
∑

k 6=0

[

~ωk − εk − nU0 +
n2U2

0

2εk

]







[1 + O (Λa)] (3.45)

after some algebra. This quantity is cutoff independent for ξ−1 ≪ Λ ≪ a−1, where it evaluates to

E0/N ≈ 2π~
2na

m

(

1 +
128

15

√

na3

π

)

. (3.46)

To lowest order, the energy per particle scales linearly with both the scattering length and the

density, and it relates to the contact (3.40) in the way predicted by the Tan relations (2.33)-(2.35)

if one ignores higher-order corrections.7 The small parameter na3, familiar from the depletion

(3.42), appears in the next-order correction to the ground state energy. The expressions (3.42) and

(3.46) were first derived in a seminal paper by Lee, Huang, and Yang [106].

Although our approach used a specific potential model, the results are valid more generally

for weakly-interacting, dilute BECs satisfying na3 ≪ 1. Such can be proved rigorously using

the diagrammatic methods of quantum field theory, as done by Beliaev in Refs. [7, 8]. Using the

Bogoliubov method to treat the general case, however, requires altering the Bogoliubov Hamiltonian

(3.25) at the first stage of the calculation. One must retroactively account for the neglected terms

of the Born series in Fig. (3.2) by replacing the true potential Ṽint(k) in (3.25) with the T-matrix,

which is defined as the effective potential for which the first Born approximation gives the exact

7 The exact Tan relations are thus satisfied approximately by our inexact theory.



45

scattering behavior [21, 132]. In the language of quantum field theory, this is often referred to as

“summing ladder diagrams”. It is worth noting that both the Bogoliubov and Beliaev approaches

are ill suited to describing physics occurring uniquely at momentum scales larger than (or equal

to) a−1. This becomes a problem either when a is comparable to or larger than the length scales

set by many-body physics (such as the particle separation ∼ n−1/3), or in nonequilibrium scenarios

where the bound state may play a role in the dynamics. These situations will be discussed in the

next two chapters.



Chapter 4

BEC Quenched to Unitarity

Many of the results presented in this chapter were published in Ref. [150].

4.1 Motivation

As shown in the previous chapter, the usual theoretical treatment of Bose-Einstein con-

densation is rooted in a perturbative inclusion of interaction effects. The starting assumption

of Bogoliubov theory is that the condensate fraction remains close to unity despite interactions,

and Eq. (3.42) indicates that this requirement is self-consistently fulfilled only in the limit that

na3 ≪ 1. This condition is met in most BEC experiments, and thus Bogoliubov theory (with its

Gross-Pitaevskii extension to confined systems [74, 75, 136]) has been enormously successful in

quantitatively describing observations [162, 130, 81, 115, 126, 174]. In stark contrast, the strongly-

interacting regime na3 ≫ 1 has remained theoretically elusive for decades, and the prospects

for achieving it in a BEC experiment were bleak due to the a4 scaling of three-body loss rates

[63, 127, 167]. Even with the advent of magnetic Fano-Feshbach resonances in Alkali-atom exper-

iments, whereby the scattering length a could be freely tuned, it seemed unlikely that one could

create an equilibrium strongly-interacting BEC that would survive long enough for interesting

physics to be observed.

It was soon realized that the strongly-interacting regime could be probed in an out-of-

equilibrium scenario as long as the experimental timescale was short compared to the (already

short) lifetime of the gas. One simple protocol for such an experiment is to rapidly change the
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scattering length from an initial value ai to a final value af by ramping the magnetic field near

a Fano-Feshbach resonance, and then observe the response of the system. This sequence is often

called an interaction “quench”. One early experiment [32] considered the response of a weakly-

interacting BEC (na3
i ≪ 1) of 85Rb atoms that was quenched to na3

f . 1 over the course of 12.5 µs,

and it was observed that the condensate exhibited nontrivial decay dynamics over the course of

about 100 µs that could not be explained simply by three-body loss. After more than a decade,

these measurements still have not been explained quantitatively by theory [145].

More recently, experimenters boldly quenched a weakly-interacting 85Rb BEC directly to the

unitarity regime, where af → ∞ [112]. In this case, the dynamical momentum distribution was mea-

sured by ballistically expanding the gas after various hold times at unitarity. It was observed, rather

unexpectedly, that the populations of large-momentum modes saturated on timescales (. 100 µs)

that were much shorter than the lifetime of the gas (∼ 1 ms). This saturation suggested that the

gas had reached a kind of metastable quasi-equilibrated state, despite the resonant interactions.

Also significant was the fact that, when they repeated their measurements on a gas with a different

density, there were indications of universality. That is, the saturation and loss dynamics for sys-

tems of different density were approximately identical as long as momenta and time were rescaled

by n1/3 and n−2/3, respectively. These scalings can be derived trivially from dimensional analysis

under the assumption that the particle spacing ∼ n−1/3 is the only physically relevant length scale

for the system. This assumption makes some sense, given that the scattering length and thermal

deBroglie wavelength are infinite and cannot be used for dimensional analysis. On the other hand,

three-body Efimov physics [54, 55] can introduce another length scale to the problem, namely, the

size of a three-body bound state. Discovering the role of this effect in the quenched BEC system,

and how it might disrupt universality, is an area of active research. At the same time, it is useful

to first consider the dynamical consequences of two-body physics in the quench to unitarity.
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4.2 Many-Body Model

In our quest to understand the dynamics of a BEC quenched to unitarity, we consider a

simplified system that is spatially uniform with density n = N/V and whose atoms are initially

noninteracting (ai = 0). We adopt a time-dependent variational approach to solving the problem.

Our variational wave function |Ψvar(t)〉 is constructed to include the physics that should be most

important at short times after the quench. For example, we expect that the jump to resonance

does not instantaneously deplete the condensate, as the many-body wave function must evolve

continuously from its initial condensed state. We also expect that the dominant process immediately

following the quench should be that multiple pairs of condensate atoms scatter off each other with

equal and opposite momentum, as required by momentum conservation. To incorporate these two

notions, we use a time-dependent generalization of the ansatz used in Refs. [146, 67, 128]:

|Ψvar(t)〉 = A(t)exp







c0(t)â
†
0 +

1

2

∑

k 6=0

gk(t)â†kâ†−k







|0〉, (4.1)

where c0(t) and {gk(t)} are time-dependent variational parameters and

A(t) = exp







− |c0(t)|2 /2 +
1

4

∑

k 6=0

ln
[

1 − |gk(t)|2
]







(4.2)

is a normalization constant. The first term in the exponential in (4.1) represents the condensate

as a coherent state [68]. The relation â0|Ψvar(t)〉 = c0(t)|Ψvar(t)〉 essentially replaces the operator

â0 by c0 for all matrix elements in the restricted Hilbert space, in analogy with the Bogoliubov

prescription described above Eq. (3.28). It therefore follows that the condensate population is

given by N0(t) = |c0(t)|2. The term involving gk, assumed to have reflection symmetry gk =

g−k, generates correlated pairs of excited atoms. One can show that the dynamical momentum

distribution is nk(t) = |gk(t)|2
1−|gk(t)|2 . As initial conditions for these parameters, we set c0(0) =

√
N and

gk(0) = 0.

The Hamiltonian that governs the post-quench (t > 0) dynamics of the system is given by
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Eq. (3.24), which reads

Ĥ =
∑

k

εkâ
†
kâk +

1

2V

∑

k,k′,q

Ṽint(q)â†k+qâ†
k′−q

âkâk′ . (4.3)

The interaction potential Ṽint(k) must be chosen to yield resonant scattering (a → ±∞). As

discussed in Section 2.2, this can be accomplished by using an attractive short-range potential

whose depth is chosen so that there is a two-body bound state at zero energy. It is expected that

the dynamics, if computed correctly, should not depend on the particular model as long as the

potential is short-ranged and resonant.1 This idea will serve as a useful check of our solution

method.

We derive the equations of motion for the parameters c0(t) and {gk(t)} by minimizing the ac-

tion for a suitably-defined Lagrangian that “knows” about quantum mechanics. Such a Lagrangian

can be written as

L =
i~

2

(〈

Ψ(t)
∣

∣

∣
Ψ̇(t)

〉

−
〈

Ψ̇(t)
∣

∣

∣
Ψ(t)

〉)

− 〈Ψ(t)| Ĥ |Ψ(t)〉 , (4.4)

where the dot denotes a time derivative. It can be checked that, for an unconstrained state |Ψ〉, the

Euler-Lagrange equation of motion δL
δΨ̇

− δL
δΨ = 0 leads to the time-dependent Schrödinger equation

[101]. In our case, the quantum state of the system is constrained to have the form (4.1), so it does

not strictly satisfy the Schrödinger equation except in the least-action sense.2 This should not be

a problem at short times where the ansatz, by design, includes the dominant physics of the system.

In deriving the equations of motion, we evidently need to know the expectation value of Ĥ

1 Otherwise, we’d be stuck using the honest-to-goodness 85Rb potentials, and even then, the result would only be
relevant to a single atomic species.

2 This is similar to how static variational calculations usually lead only to approximate solutions to the time-
independent Schrödinger equation. In the dynamical case, we find the optimal solution by minimizing the action,
instead of 〈Ĥ〉.
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in the variational state |Ψvar〉. With a little bit of effort, one finds that [146]

〈Ψvar|Ĥ|Ψvar〉 =
∑

k 6=0

εk
|gk|2

1 − |gk|2
+

Ṽint(0)

2V
|c0|4 +

1

V

∑

k 6=0

[

Ṽint(k) + Ṽint(0)
] |gk|2

1 − |gk|2
|c0|2

+
1

2V

∑

k 6=0

Ṽint(k)
c2
0g

∗
k + c∗20 gk

1 − |gk|2
+

1

2V

∑

k,q 6=0

Ṽint(k − q)

(

g∗k
1 − |gk|2

) (

gq

1 − |gq|2
)

+
1

2V

∑

k,q 6=0

[

Ṽint(k − q) + Ṽint(0)
]

( |gk|2
1 − |gk|2

) ( |gq|2
1 − |gq|2

)

.

(4.5)

Similarly, one can calculate that

〈

Ψvar

∣

∣

∣
Ψ̇var

〉

−
〈

Ψ̇var

∣

∣

∣
Ψvar

〉

= c∗0ċ0 − ċ∗0c0 +
1

2

∑

k 6=0

g∗kġk − ġ∗kgk

1 − |gk|2
. (4.6)

These ingredients allow us to find the Euler-Lagrange equations of motion

d

dt

(

∂L
∂α̇

)

− ∂L
∂α

= 0, (4.7)

where α is any variational parameter. When the smoke clears, we have

i~ċ0 =
∂〈Ĥ〉
∂c∗0

= nṼint(0)c0 +
1

V

∑

k 6=0

Ṽint(k)
c∗0gk + c0 |gk|2

1 − |gk|2
(4.8)

and

i~ġk =
(

1 − |gk|2
)2 ∂〈Ĥ〉

∂g∗k

= 2
(

εk + nṼint(0)
)

gk +
Ṽint(k)

V

[

c2
0 + c∗20 g2

k + 2 |c0|2 gk

]

+
1

V

∑

q 6=0

Ṽint(k − q)
2 |gq|2 gk + gq + g∗qg2

k

1 − |gq|2

. (4.9)

In writing these equations of motion, we have used the fact that they conserve mean total particle

number3 to make the replacement 1
V

(

|c0|2 +
∑

k 6=0
|gk|2

1−|gk|2
)

→ n. We solve these coupled ODEs

numerically, assuming that gk(t) depends only on the magnitude of the momentum k.

It is interesting to note that our equations of motion (derived from an ansatz for the quantum

state) map directly onto the time-dependent Hartree-Fock-Bogoliubov (HFB) formulation. In that

3 Proving this requires messy algebra.
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case, one expands the Heisenberg-picture field operator as

ψ̂(r, t) ≈ Φ0(t) +
1√
V

∑

k 6=0

eik·r
(

uk(t)b̂k + v∗k(t)b̂†−k

)

, (4.10)

where Φ0 is the condensate component and the uk(t) and vk(t) are quasiparticle amplitudes. After

making certain mean-field approximations [72], one can write coupled equations of motion for

Φ0(t) and {uk(t), vk(t)}. It is then straightforward to show that our parameter gk(t) and the HFB

quantity v∗k(t)/u∗
k(t) satisfy exactly the same equations of motion. This equivalence between our

variational calculation and the HFB formalism was suggested recently in Ref. [138]. Our variational

treatment thus suffers from the same spurious low-energy gap as found in HFB; however, because

this unphysical gap should manifest itself at longer time scales, this should not hinder our study of

short-time behavior. This is a motivating reason why HFB was able to adequately simulate [99] the

coherent atom-molecule oscillations observed a decade ago [48], the main results of which can be

reproduced by our single-channel variational model. Our formalism also reduces to time-dependent

Bogoliubov theory [125] once the usual approximations are made: replace the operators â0 and â†0

by the constant
√

N0, neglect quartic interaction terms of noncondensed particles in Eq. (4.3), and

use a coupling constant UΛ → U0 = 4π~
2af/m as in Section 3.3.

4.3 Post-Quench Dynamics

We have solved the equations of motion (4.8)-(4.9) for densities and interaction ranges that

are typical for Alkali-atom experiments. In particular, our simulations assumed a density of n =

5 × 1012 cm−3, which approximately matches the average density probed in the JILA experiment

[112]. One can use the density to define useful momentum and energy units as kF = (6π2n)1/3 ≈

1/(2800a0) and ~ωF =
~
2k2

F
2m ≈ ~/(61 µs), respectively. To test the robustness of our theory, we

have employed three different models of resonant interactions: a square well, a Gaussian well, and
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Figure 4.1: Three potential models for resonant interactions, as in Eq. (4.11) . From left to right,
we have the square well, Gaussian well, and the contact model. In each case, the depth of the well
is chosen so that there is a two-body bound state with vanishing binding energy, depicted in red.

the contact model given by Eqs. (2.28) and (2.31). Their potentials are respectively given by

Vint(r) = −
(π

2

)2
Θ(r0 − r)

~
2

mr2
0

Vint(r) = −2.68e−r2/r2
0

~
2

mr2
0

Ṽint(k) = −2π2Θ(Λ − k)
~

2

mΛ

, (4.11)

where the depths have been chosen so that there is a two-body bound state of vanishing binding

energy (a → ±∞). We fixed the range to be r0 = 100a0 for the square and Gaussian wells, and

we chose the momentum cutoff of the contact model to be Λ = 100πkF ≈ 1/(9a0) to get a better

sense for the zero-range limit. These potentials are depicted in Fig. 4.1.

Our numerical solution of Eqs. (4.8)-(4.9) was performed with a 4th order Runge-Kutta

scheme in MATLAB [143]. We replaced sums with integrals using the usual relation 1
V

∑

k 6=0 →
∫

d3k
(2π)3

. For the Gaussian-well calculations, we discretized momentum into 4095 evenly-spaced grid

points up to a maximum of 5π/r0; for the square-well calculations, we used 16383 grid points

up to the same maximum; for the contact model, we used 16383 grid points up to the cutoff Λ.

The chosen grid sizes all have the form 2m − 1 for some integer m, as this optimizes the speed of

discrete sine transforms in MATLAB. These sine transforms are helpful for spectrally evaluating

the convolution integral in Eq. (4.9) via the convolution theorem [2]. It is worth pointing out that

our discretizations are sufficient to resolve physics on both length scales appearing in the equations
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Figure 4.2: Dynamical momentum distribution of 85Rb atoms at several times after quenching from
noninteracting to unitarity, given a density of n = 5×1012 cm−3. The red circles, blue squares, and
solid green lines correspond respectively to the square well, Gaussian well, and contact interaction
models, as in Eq. (4.11). In the first frame, the dashed line denotes generic k−4 scaling, for
comparison.
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of motion: the interaction range and the particle spacing.

The dynamical momentum distributions are plotted in Fig. 4.2 at several instants in time

after the quench to unitarity. We can immediately observe that the three interaction models in

Eq. (4.11) lead to the same dynamics over the range of momenta satisfying k ≪ r−1
0 . At larger k,

range effects predictably seep into the dynamics, as expected from the effective range expansion

(2.3); nevertheless, these modes remain relatively unpopulated and thus contribute very little to the

overall momentum distribution. The agreement between models shows that our solution method

is robust against the arbitrariness of how we treat the short-range, resonant interactions. All

calculations indicate that the system rapidly (t & mr2
0/~) develops a k−4 tail in the large-k limit that

first appears at large momenta and progates into smaller momenta.4 We also observe subleading

oscillatory structure. For the times shown, the low-momentum modes grow in approximate unison.

We reran our square-well simulations at the reduced density n = 2 × 1012 cm−3 to see

if our results displayed universality, as suggested in the experimental study [112]. Figure 4.3

compares these results against those of the previous density. The left-hand plot shows the dynamical

distributions at the same instant in time and as a function of momentum in SI units; the results

are quantitatively different. The right-hand plot shows the distributions after rescaling momenta

and time by kF and ωF respectively, which are different for the two densities. (Note that we are

now plotting the two sets of numerical data at different instants in time.) With this rescaling, the

distributions agree quantitatively. We therefore infer that the dynamics of our variational model

are universal. There is a sense in which this universality is mathematically equivalent to the model

independence shown already in Fig. 4.2. If one writes the equations of motion in these density-

derived units, then the only intrinsic parameter of the problem is kF r0. Thus, the two calculations

discussed in this paragraph would appear to be identical except that they use resonant square wells

of “different” range, due to their different values of kF r0. As evident in Fig. 4.2, the resulting

dynamics should not depend on these details as long as this range remains small.

4 In analogy with Tan’s results (see Section 2.3), our invoking the “large-k limit” will always entail the stipulation
kr0 ≪ 1.
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Figure 4.3: Dynamical momentum distribution of 85Rb atoms after quenching from noninteracting
to unitarity, for two different densities. The blue lines correspond to the density n = 5×1012 cm−3,
and the red lines correspond to the density n = 2 × 1012 cm−3. Both distributions are calculated
with the same attractive square well potential of range r0 = 100a0. On the left, we show these
distributions as a function of momentum in fixed SI units at the same instant in time. On the
right, we plot the computed distributions with time and momentum rescaled by the density units
ω−1

F and kF , respectively.



56

0 0.05 0.1
0

1

2

×10
-7 20 40

0 0.05 0.1
0

0.5

1

×10
-6 10 20

Figure 4.4: Population dynamics of a single mode immediately after the quench. On the left, we
show the dynamics for the mode k = 10kF . On the right, we show the dynamics for the mode
k = 15kF over the same time interval. The bottom horizontal axis shows the time scaled by ωF ,
and the top shows the time scaled by 2εk/~.

We now look more carefully at the oscillatory structure of the momentum distribution. These

oscillations can be viewed more transparently in the population dynamics of a single mode. Fig-

ure 4.4 shows the time-dependent population of modes k = 10kF (left) and k = 15kF (right)

shortly after the quench. Comparing the two populations, we find that the mode with larger k

oscillates with a larger frequency and with a reduced amplitude relative to its (linearly-growing)

offset. These oscillations occur with approximate frequency 2εk/~ in our simulations, as can be

seen if one rescales time by this quantity (upper horizontal axis). Analyzing our numerics, we have

found that the amplitude of these oscillations decays as k−5 in the large-k limit at all times after

the quench. Similar oscillations have been observed in time-dependent Bogoliubov calculations for

quenched systems [125, 85, 175], and Chapter 6 will demonstrate that they are the signature of

ballistic correlation waves. We expect on physical grounds that quasiparticle collisions (which are

mostly absent from our ansatz) will lead to damping, although it is difficult to model this quanti-

tatively without introducing a certain amount of arbitrariness to the theory [137, 138, 92, 93, 94].

The general lack of oscillations in the JILA experiment [112] suggests that damping may play an

important role in the late-time dynamics of the unitary Bose gas. In contrast, damping seemed less

significant for the weakly-quenched BEC system described in Ref. [85].
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Figure 4.5: Depletion dynamics after the quench to unitarity, calculated using the square well
model described in Eq. (4.11).

We calculate the total fraction of excited particles to get a sense for the speed at which

resonant interactions deplete the BEC. This quantity is given by

nex(t)

n
=

1

nV

∑

k 6=0

nk(t) = 1 − n0(t)

n
, (4.12)

and we plot it in Fig. 4.5. Our numerics suggest that, immediately after the quench, the depletion

fraction grows as ∼ 0.6 (ωF t)3/2. This should be contrasted with the predictions of time-dependent

Bogoliubov theory, which suggest a scaling of
√

t after an interaction quench [125, 175, 89]. In

our case, the depletion remains small shortly after the quench, and the heuristics motivating our

ansatz (4.1) are self-consistently satisfied. This is no longer the case at late times, however. Our

model predicts that all of the atoms are eventually expelled from the condensate. Hence, the

main assumptions of our theory are only satisfied at relatively short times. It is worth mentioning,

though, that the Hartree-Fock-Bogoliubov calculations of Ref. [99] gave a good description of atom-

molecule coherence measurements [48] even when the depletion (4.12) was greater than 50%. This

fact inspires hope that our theory might still capture relevant short-range physics, such as the

contact dynamics, at intermediate times after the quench.

The dynamical contact can be computed by taking the large-k limit of the momentum dis-

tribution, similar to Eq. (3.40). As a practical matter, this limit is least ambiguous for the contact

model with large Λ due to the relative lack of range effects in that case. The results are shown in
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Figure 4.6: Contact dynamics after the quench to unitarity.

Fig. 4.6. As implied by the large-k dynamics in Fig. 4.4, the initial contact growth is linear:

C(t) ≈ 26.9 n4/3 ωF t, (4.13)

where the leading factor comes from a numerical fit. This linear growth is already qualitatively

different from what one finds in time-dependent Bogoliubov theory, where the contact is mistakenly

predicted to change discontinuously after a quench [125].5 We can extract the finite saturation

timescale τC by fitting our numerical data to an exponential function ∆C(1 − e−t/τC ), exactly as

in the experiment [112]. We find that the contact (and therefore all large-k modes) saturates in a

time given by τC ≈ 0.4ω−1
F , which is consistent with the measured equilibration time of the largest

momentum modes reported in Figure 5 of Ref. [112]. For k > 2kF , the observed timescales are

scattered within the range τ ∈ [0.1, 0.5]ω−1
F .

At long times, we see that the contact saturates to a value of approximately 12n4/3. To

give some context, predictions for C in the unitarity ground state can be found in Refs. [45, 149,

161, 36, 139], and they range from 9 − 32n4/3. The measured momentum distribution in the

JILA experiment did not have enough signal-to-noise at large k to distinguish the contact. We

should note, though, that our prediction is consistent with the measured late-time data shown in

the inset of Figure 3 in Ref. [112]. Our model predicts that their plotted quantity, denoted as

κ4n(κ),6 should asymptote to 12/(6π2)1/3 ≈ 3. This is consistent with the scatter in their data

5 The failure of time-dependent Bogoliubov theory to describe contact dynamics will be discussed in more detail
in the next chapter.

6 They define κ ≡ k/kF and normalize n(κ) such that
R

d3κ
(2π)3

n(κ) = 1.
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at large momentum, which ranges from about 2 to 5 for k > 2.5kF ; unfortunately, there is not

enough dynamic range to identify a clear asymptote. The authors of Ref. [144] separately analyzed

the JILA data while making nontrivial assumptions about three-body universality violations,7

and they suggested that the late-time contact should be approximately 22n4/3. Perhaps a future

version of the experiment will measure the contact directly. There are empirical and theoretical

indications that the large-momentum modes saturate long before three-body loss kicks in, and one

could perform RF spectroscopy [174] after this saturation occurs. Given the large separation in

saturation and loss timescales, resolving the late-time contact should be possible even with relatively

long RF pulses.

4.4 Summary and Discussion

Inspired by recent experimental results [112], we have used a time-dependent variational

approach to explore the dynamics of a BEC that is quenched from noninteracting to unitarity.

Our many-body model is based on the idea that the BEC depletes continuously after the quench,

with pairs of condensate atoms scattering off each other with equal and opposite momentum. The

calculation encodes two-body correlations while ignoring three-body effects, which are difficult to

include in a many-body model. We have demonstrated that our approach is robust in the sense that

the computed dynamics do not depend on the details of how we model the short-range, resonant

interactions. We found that the dynamics scale universally with the appropriate density-dependent

units, a result that seemed present in the published measurements but is still under experimental

investigation. It is expected that any deviations from universality should be due to Efimov physics,

which would be interesting to see in a nonequilibrium scenario.

We focused our attention on the evolution of the momentum distribution after the quench.

We observed the rapid growth of a k−4 tail whose saturation time and value are consistent with

the large-momentum measurements of Ref. [112]; however, further experimental work is necessary

7 These assumptions include the idea that the momentum distribution violates universality, while the two-body
and three-body contacts do not. It is also assumed that the momentum range k ∈ [1.5, 3]kF is within the asymptotic
regime where populations are governed by short-range correlations via the contact.
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to identify the contact of the unitary Bose gas. In addition to the k−4 tail, we also saw subleading

oscillations with frequency ∼ k2 and amplitude ∼ k−5 for large k. The total fraction of excited

particles was found to scale as t3/2 shortly after the quench, indicating that the BEC survives longer

than Bogoliubov theory would suggest [175, 89].

About a year after we published this work [150], another theoretical development came along

in the form of the Hyperbolic Bloch equations [92, 93, 94]. This new formulation is inspired by ideas

from semiconductor physics [109], and it introduces phenomenological damping and dephasing to

mean-field-like equations that are similar to the Hartree-Fock Bogoliubov framework. Like our

variational model, this new formulation of the problem manifestly includes two-body correlations

while ignoring Efimov physics. A major result of that study is that there exists an optimal choice

of phenomenological parameters for which the theoretical momentum distribution agrees quite well

with the experimental measurement, even at late times and small momentum. We have checked

that, given the proposed free parameters, the model in Ref. [93] yields essentially the same short-

time predictions for the contact and depletion growth as our variational model.8 In the next

chapter, where we focus only on short-time quench dynamics at arbitrary scattering length, we

employ our variational model.

8 The late-time predictions of the newer model depend quantitatively on the choice of phenomenological damping
and dephasing parameters.



Chapter 5

Bound-State Signatures in Quenched BECs

Results presented in this chapter were published in Ref. [38].

5.1 Preliminaries

Rapid interaction quenches represent a possible pathway to creating exotic quantum states.

This much is clear from the unitary BEC experiment [112] discussed in the previous chapter,

which was able to explore the strongly-interacting regime that had been so elusive to both theory

and experiment. The surprisingly-long lifetime of the gas in that setup has been attributed to

the projective nature of the quench: The initial condition projects mainly onto long-lived states,

thereby limiting inelastic loss [150]. Similar ideas play out in a 1D gas of hard-core bosons (a so-

called “Tonks-Girardeau gas”) that is suddenly quenched to strong attraction. The resulting state,

known as the “super-Tonks-Girardeau gas” [3], has a long lifetime despite the strong attractive

interactions. This attraction would normally lead to rapid decay into a clustered state; however,

the initial state is anti-clustered and does not project (much) onto eigenstates that are clustered,

so minimal decay occurs. Experiments with quasi-1D BECs, in which radial motion is frozen out

by tight confinement, have confirmed this prediction [76].

Interaction-quenched BECs have proven to be fascinating even outside of the the strongly-

interacting regime. As mentioned in Section 3.3, homogeneous condensates are dynamically un-

stable for a < 0. In a trap, however, the nonzero kinetic energy can stabilize the system against

collapse for small, negative a. In one experiment [49], a weakly-interacting BEC (ai > 0) was
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suddenly quenched across the stability threshhold to a point where the gas was expected to be

unstable. Violent collapse dynamics ensued, including an implosion followed by an explosion.1

The sequence was artfully termed “bosenovae”. In another study [48], a multi-quench Ramsey se-

quence was used to put condensed atoms into a superposition of scattering and bound states. Such

exotic states were found to occur in the dynamics even when the BEC was in the weakly-interacting

regime, where na3 ≪ 1.

These exciting experimental developments have inspired a number of theoretical studies on

the topic of nonequilibrium BECs near Fano-Feshbach resonances. Much of the early work a decade

ago used two-channel resonance models embedded in a mean-field-like theory [159, 80, 99, 111, 97,

96, 120, 50, 51, 52, 70, 98, 145]. These models had sufficient flexibility to account for species-specific

effective-range corrections to scattering and binding, which can be important either by narrow

resonances or at large detunings away from a broad resonance. A common theme throughout these

investigations was that bound-state physics can be important to the nonequilibrium dynamics

of BECs, a fact that was underscored by the atom-molecule-coherence experiment described in

Ref. [48]. This idea has been underappreciated in recent years, with many theories of quench

phenomena being based on the time-dependent Bogoliubov (or Popov) formulation [25, 125, 175,

176, 89, 138], which lacks a bound state. These theories can be accurate only in the regime where

quenches are adiabatic with respect to the bound state. Otherwise, pairs of atoms can project

nontrivially onto the bound state of the new Hamiltonian.

In this chapter, we examine the effect of the bound state on the short-time, short-range

correlations of a BEC that is quenched suddenly from one scattering length to another. Our

focus is the dynamical response of Tan’s contact to the quench, and we find that it exhibits high-

contrast oscillations occuring at a frequency ωB = −EB/~, where EB < 0 is the binding energy

of the Feshbach-molecular bound state. We first approach this phenomenon using the many-body

variational model described in the previous chapter. The contact oscillations are shown to be

1 The explosion was on an atomic scale, having only a few thousand atoms reaching “hot” temperatures of a few
hundred nK.
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significant for realistic quench times near the 85Rb Fano-Feshbach resonance at 155 G. We then

present exactly solvable two-body models that paint a simplified picture of the contact dynamics.

We introduce an intuitive calibration scheme that unambiguously links these models to many-body

physics; our prescription unifies the few-body predictions across a broad class of exactly-solvable

models, while yielding analytic formulas that agree with the less-transparent, many-body numerics.

Strikingly, we find that the dynamical correlations are larger than Bogoliubov theory would suggest,

and a diabatic reduction of the scattering length is shown to increase pair correlations. This

feature is surprising, considering that a smaller scattering length is often associated with “weaker”

interactions. Our two-body models illustrate that these exciting results are a direct consequence of

bound-state physics.

5.2 Many-body Phenomenon

We consider a homogeneous BEC of density n = 1012 cm−3 that is quenched from noninter-

acting (ai = 0) to af = 700a0. These values are reasonable for a hypothetical 85Rb experiment.

Within the zero-range approximation, this final scattering length corresponds to a binding energy of

~ωB = ~
2

ma2
f
≈ ~/(2 µs). The dynamics are computed using the time-dependent variational formu-

lation presented in Section 4.2, with an interaction potential chosen to yield the desired scattering

lengths. We showed in the previous chapter that the dynamics for modes kr0 ≪ 1 are independent

of the choice of potential model;2 hence, without loss of generality, we use the contact potential

of Eqs. (2.28) and (2.31) as this gives us better access to the physics at large k. We account for

the finite ramp rate of experimental quenches by letting the scattering length of our model be

time dependent. We model these ramps using the scattering length profile of 85Rb atoms near the

resonance at B0 = 155.04 G:

a(t) = abg

(

1 − ∆

B(t) − B0

)

, (5.1)

2 At finite scattering length, we find that this independence requires a ≫ r0 or Λa ≫ 1, where range effects do
not change the binding energy appreciably.
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where the resonance width is ∆ = 10.7 G and the background scattering length is abg = −443a0

[33]. We assume linear ramps in the magnetic field. This results in a nonlinear evolution of a(t) and

UΛ(t) during the ramp. The equations of motion (4.8)-(4.9) are solved numerically with the same

method as described in Section 4.3, except that we use a momentum grid of 8191 evenly-spaced

points up to a cutoff of Λ = 200πkF ≈ 1/(8a0). At all instants in time, we find that there is a

well-defined k−4 tail, which we use to extract the dynamical contact.

Figure 5.1 shows the time evolution of Tan’s contact for several different quench speeds. We

see that the contact oscillates at approximately the frequency of the bound state, ωB, and the

contrast of these oscillations is strikingly large even when we account for the finite ramp rate of

Ḃexp = 1.6 G/µs reported in the JILA experiment [112]. The nature of the interference leading

to these oscillations will become apparent in the careful two-body calculation of Section 5.3. We

stress that these dynamics are quite different from those predicted by time-dependent Bogoliubov

theory.

For the case of an instantaneous quench, it is difficult to define a contact in Bogoliubov

theory because the momentum distribution does not have a well-defined k−4 tail [125]. However,

such a tail exists as long as the ramp time tR is nonzero, and it occurs at momenta such that

~k2tR/m ≫ 1. Large-momentum quasiparticles adiabatically follow the scattering length in this

case, and the contact thus saturates quickly to a new equilibrium value [see Eq. (3.40)]

C0 = 16π2n2a2
f (5.2)

over the arbitrarily-small time scale of the quench, regardless of the initial scattering length. These

trivial dynamics are plotted as the horizontal red line in Fig. 5.1, and they are in stark contraast to

the strong oscillatory behavior predicted by our variational theory. The peak-to-trough oscillation

amplitude remains as large as C0 itself when the experimental ramp rate is decreased by a factor of

10. Further reducing the ramp rate eventually results in a quench that is adiabatic with respect to

the bound state, in which case the variational and time-dependent Bogoliubov theories agree and

give a nonoscillating contact.
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Figure 5.1: Contact dynamics following a quench from noninteracting to 700a0, for several ramp
speeds near the 85Rb Fano-Feshbach resonance at 155.04 G. We assume a density of 1012 cm−3.
As a reference, the red (horizontal) line represents the prediction from Bogoliubov theory, C0 =
16π2n2a2

f , which specifies the units of the plot. The blue (oscillating, solid) line is the many-body-
variational prediction for a quench that is completely diabatic, the cyan (dashed) line is for the
experimental ramp speed of Ḃexp = 1.6 G/µs [112], the green (dot-dashed) line is for a ramp
speed of Ḃexp/10, and the black (dotted) line is for a ramp speed of Ḃexp/50. In each case, the
time t = 0 defines the end of the magnetic field ramp.
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Figure 5.2: Excitation fraction following a diabatic quench from noninteracting to 700a0, for a
BEC of density n = 1012 cm−3. The blue line is the prediction of our many-body-variational
formulation. The magenta line is the prediction from Bogoliubov theory.

One can sense the limitations of the Bogoliubov description of diabatic quench experiments

by considering momentum cutoffs heuristically. Recall from Section 3.3 that using the coupling

constant UΛ → 4π~
2af/m in the theory, as required within the Bogoliubov approximation, requires

that the momentum cutoff satisfy Λaf ≪ 1. There is no bound state in this limit, and any important

physics occuring uniquely on the time scale ω−1
B and length scale af of the bound state is therefore

absent in time-dependent Bogoliubov theory [25, 125, 175, 176, 89, 138]. When the quench is

adiabatic with respect to the bound state [105], the ramp time is at least consistent with the

shortest timescale describable by the theory, where tR >
(

~Λ2/m
)−1 ≫ ω−1

B . That is precisely the

regime in which Bogoliubov theory correctly describes the contact dynamics, as shown in Fig. 5.1.

These bound-state oscillations also occur in the depletion of the condensate, defined by

Eq. (4.12). Figure 5.2 shows the time evolution of this quantity after a sudden quench, computed

both within the variational and Bogoliubov theories. As mentioned in the previous chapter, Bogoli-

ubov theory predicts that the depletion grows as
√

t at short times [125]. This correctly captures

the initial growth of the depletion except for the large-amplitude oscillations. The nonoscillatory

contribution to this growth comes mainly from momenta that are too small to probe bound-state

effects (kaf ≪ 1), whereas the oscillating component is due to the aforementioned contact dynamics

(occurring at kaf & 1). Similar oscillations have been discussed previously in the theory literature
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[159, 80, 50, 52], and they received only a brief mention in the experimental results of Ref. [48]. To

date, there is no published data on the subject, although some preliminary observations of these

condensate oscillations can be found in Ref. [31].

5.3 Two-Body Models

Two-body models afford another intuitive description of BEC quench dynamics. In some

cases, they are exactly solvable [154, 22], and they can paint relatively transparent pictures of

nonequilibrium physics [15, 70, 119, 13, 69] that are sometimes obscured by the mathematics of

more sophisticated, many-body models. It was recently suggested that such models might even

be made quantitatively accurate in their descriptions of short-time, large-momentum dynamics in

quenched BEC systems [150], although an unambiguous, universal link to the many-body BEC

problem has been absent in the literature. In this section, we establish such a link and derive

analytic predictions for the contact dynamics following a diabatic quench of the scattering length

near a broad Fano-Feshbach resonance.

5.3.1 Calibration

We consider the quantum dynamics of a pair of free-space atoms whose scattering length is

quenched from an initial value ai ≥ 0 to a final value af ≥ 0. Assuming zero momentum for the

center of mass (as is the case for any pair of atoms that scatter out of a BEC), the post-quench

dynamics are governed by the time-dependent Schrödinger equation

i~
∂ψ(r, t)

∂t
= − ~

2

2µ
∇2ψ(r, t) +

2π~
2af

µ
δ(r)

∂

∂r
[rψ(r, t)] (5.3)

where ψ(r, t) is the wavefunction for the relative coordinate r, µ = m/2 is the reduced mass, and

we model the short-range interactions of the system with the Fermi pseudopotential discussed in

Section 2.2.2.

We can time-evolve an arbitrary spherically-symmetric initial condition by expanding in the

basis of energy-normalized s-wave eigenfunctions of the Hamiltonian shown in Eq. (5.3). These
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eigenfunctions are

ψ
(S)
k (r) =

sin(kr) − kafcos(kr)

r
√

4π2~2k(k2a2
f + 1)/m

, Ek =
~

2k2

m
(5.4)

for the scattering states and

ψB(r) =
e−r/af

r
√

2πaf
, EB = − ~

2

ma2
f

(5.5)

for the bound state. Given an initial condition ψ0(r), the solution to Eq. (5.3) is [117]

ψ(r, t) =

∞
∫

0

dEk′e−iEk′ t/~ψ
(S)
k′ (r)

∫

d3r′ψ(S)
k′ (r′)ψ0(r

′) + e−iEBt/~ψB(r)

∫

d3r′ψB(r′)ψ0(r) . (5.6)

We then evaluate the momentum distribution by taking the Fourier transform of Eq. (5.6):

ψ̃(k, t) =

∫

d3re−ik·rψ(r, t). (5.7)

Following our intuition from mean-field theory, we relate this two-body problem to the many-

body system by considering the combined effect of a background, dilute BEC on the momentum

distribution of a single particle. Assuming that this time-dependent, single-particle momentum

distribution is normalized in the continuum via

1 =

∫

d3k

(2π)3

∣

∣

∣
ψ̃(k, t)

∣

∣

∣

2
, (5.8)

we compute the full momentum distribution by multiplying by the total density n [119, 70]. The

combined effect of the dilute background gas is modeled by an appropriate choice of initial condition

ψ0(r). Previous calculations of this type have placed the two-body system in a (fictitious) tight

harmonic trap, whose frequency is chosen to reproduce either the total density n [13] or the ap-

proximate nearest-neighbor separation [150].3 Both of these prescriptions are limited in the sense

that their quantitative predictions for short-distance dynamics depend strongly on the harmonic

nature of the fictitious trap. In this sense, they are intrinsically semi-quantitative.

3 This reference estimated the mean nearest-neighbor spacing using the Wigner-Seitz radius (4πn/3)−1/3, which
is correct for an uncorrelated gas up to a factor of Γ(4/3) ≈ 0.89. Including this factor in that model would change
the prediction for the contact slope upon quenching to unitarity by a factor of Γ−3(4/3) ≈ 1.4. See Ref. [26] for an
exact calculation of the nearest-neighbor distribution.
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The new prescription that we propose is motivated by the fact that a quench of zero-range

interactions signifies a quench of a log-derivative boundary condition at r = 0:

lim
r→0

∂r (rψ(r))

(rψ(r))
= −1

a
, (5.9)

as discussed in Section 2.2.2. As a result, the contact dynamics immediately following a quench

occurs entirely in the short range. The most important feature of an initial condition ψ0(r) is

therefore its behavior as r → 0. Our first requirement is that ψ0(r) satisfy Eq. (5.9) for the

initial scattering length of the system, ai. (All of the eigenstates in our post-quench expansion

basis, Eqs. (5.4)-(5.5), satisfy this log-derivative condition for the final scattering length, af .)

Importantly, this log-derivative condition does not fix the absolute magnitude of ψ0(r) for small

r; any such scaling cancels in Eq. (5.9). We propose that this absolute scaling of the short-range

wavefunction be fixed by the many-body problem. The quantity |ψ0(r)|2 represents the probability

density of finding a background particle a distance r from the particle of interest, and this is given

by ng(2)(r) in the many body-problem, where g(2)(r) is the two-body correlation function [131].

For a pure, noninteracting BEC, there are no correlations and g(2)(r) = 1. If the initial scattering

length is nonzero, however, short-range correlations are determined exlusively by the contact via

Eq. (2.32). We thus calibrate the short-range behavior of the two-body wavefunction as follows:

lim
r→0

|ψ0(r)|2 = n (ai = 0) (5.10a)

|ψ0(r)|2 → Ci

16π2nr2
+ O

(

1

r

)

(ai > 0) (5.10b)

where Ci = 16π2n2a2
i is the contact for the initial BEC, as derived in Eq. (3.40). Equation (5.10)

guarantees that the initial probability of finding another particle near the particle of interest (within

our simple model) matches that same probability for the many-body system before the quench. We

hypothesize that these probabilities remain approximately equal in the dynamics that occurs shortly

after the quench.

We now choose a set of initial two-body wavefunctions to test the robustness of our calibration

scheme. We have been able to analytically evaluate the integrals in Eqs. (5.6)-(5.7) for the initial
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conditions

ψ0(r) =



































A0(ai, L0)
(

1 − L0ai
(L0−ai)r

)

e−r/L0

A1(ai, L1)
(

1 − ai
r

)

e−r/L1

[

1 + r
L1

]

A2(ai, L2)
(

1 − ai
r

)

e−r/L2

[

1 + r
L2

+ 1
2

(

r
L2

)2
]

(5.11)

where Lj is a free parameter for each initial condition, and Aj(ai, Lj) is a constant chosen to

give unit normalization. The leading factor in parentheses enforces the log-derivative boundary

condition, and the bracketed polynomial factors have been chosen to add variety to our treatment

of the long-range wavefunction. The calibration given by Eq. (5.10) then completely fixes the short-

range behavior, along with the free parameter Lj . The necessary integrations in Eqs. (5.6)-(5.7)

can be carried out with a combination of contour integration and symbolic mathematical software,

such as Mathematica. Appendix A lays out the steps of the solution.

5.3.2 Revisiting the Quench to Unitarity

A useful figure of merit for nonequilibrium physics is the momentum distribution after a

quench from noninteracting (ai = 0) to unitarity (af = ∞). We computed this quantity in the pre-

vious chapter using a many-body variational formulation. For our two-body models, the formulae

for the exact momentum-space wave functions ψ̃(k, t) are too complicated to usefully write down.

Here, we include only the simplest formula as an example. The first initial condition in Eq. (5.11)

evolves as

ψ̃(k, t) =
8
√

L0

k
(

1 + k2L2
0

)2

{

(

1 − k2L2
0

)

DawsonF

[
√

i
~k2t

m

]

+
(

1 + k2L2
0

)

√

i
~k2t

m

+e
i ~t

mL2
0
√

π

(

kL0 − i
(

1 + k2L2
0

) ~kt

mL0

)

erfc

[√

i
~t

mL2
0

]} , (5.12)

where the Dawson function is defined by

DawsonF(z) ≡ e−z2

∫ z

0
dy ey2

. (5.13)

This wave function evolves continuously from its initial condition.
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Figure 5.3: Momentum distributions at fixed time ωF t = 0.01 after a quench from noninteracting
to unitarity. The thick black line is the numerical data from a many-body variational calculation at
density n = 5×1012 cm−3, using the contact interaction model. The thin lines are the analytically-
computed two-body results. The cyan, green, and magenta lines respectively correspond to the
properly-calibrated initial conditions in the order listed in Eq. (5.11).
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The predicted momentum distributions from our two-body models are plotted in Fig. 5.3 at

a fixed time shortly after the quench, and they are compared with the many-body numerics from

Chapter 4. With the free parameter of each initial condition chosen in our prescribed manner, all

results agree favorably at large momentum. Despite the various functional forms for the initial

conditions in Eq. (5.11), all of our two-body wavefunctions predict that

C(t) =
128π

(6π2)2/3
n4/3ωF t, (5.14)

at short times, which agrees with the many-body variational prediction (4.13) to within less than

two percent. Equation (5.14) also follows from applying our prescription to the Gaussian initial

condition of Ref. [150], for which only the contact growth can be calculated analytically. The

contact slope now appears to be independent of the arbitrary details of the two-body model.

We remark that the model independence of our large-momentum dynamics is nontrivial. If

we had chosen each free parameter Lj by matching 〈r〉 to an estimate for the nearest-neighbor sep-

aration, the predicted slope of the contact would vary by almost an order of magnitude, depending

on the chosen initial condition in Eq. (5.11).4 The approximate agreement between the two- and

many-body models demonstrated in Ref. [150] is a result of the near-equivalence of the requirements

that 〈r〉 ≡ (4πn/3)−1/3 and |ψ0(0)|2 ≡ n for normalized Gaussian functions. As explained above,

the latter requirement is more physically motivated, and it leads to improved agreement with the

many-body results while unifying the large-momentum predictions of the various exactly-solvable

two-body models. In the remainder of our discussion, we employ this calibration scheme.

Contact dynamics aside, our models also agree on the subleading oscillatory structure of

the large-momentum dynamics, as shown in Fig. 5.3. As discussed in the previous chapter, these

oscillations have phase 2εkt/~, where εk is the kinetic energy of a single particle of momentum k,

and an amplitude that scales as k−5. Each distribution shows distinct low-momentum behavior

that is determined by the long-range characteristics of the initial conditions. We can infer from

4 This discrepancy is most pronounced for a Lorentzian initial condition ψ0(r) ∼ 1/(r2 + L2), for which 〈r〉 is
infinite and cannot be matched to the particle spacing. If this initial condition is calibrated as we propose, it yields
Eq. (5.14).
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Eq. (5.11) that these long-range features occur on a length scale that is set by the parameter Lj ,

which is of the order of the mean interparticle spacing for the gas. At such momentum scales, we

expect many-body effects to determine the physics, and this limits the approximate validity of our

two-body models to momenta k ≫ kF and times ωF t ≪ 1. These limits are implicit in all of the

two-body results that follow.

5.3.3 Quenching to Finite Scattering Length

With our two-body models properly calibrated, we are well equipped to revisit and generalize

the bound-state oscillations addressed in Sec. 5.2. We will see that the simple two-body approach

illustrates the crucial role played by the bound state after a diabatic quench, while quantitatively

describing the evolution of two-body correlations via the dynamical contact.

As a preliminary matter, our two-body approach leads to an intuitive understanding of bound-

state oscillations. The basic structure of Eq. (5.6) suggests that the short range of the bound

and scattering contributions may be compared to the two legs of a simple interferometer. The

diabatic quench essentially projects the initial condition onto these two legs, and a different phase

is acquired over each leg as time progresses, as evidenced by Eq. (5.6). The measured momentum

distribution is always defined with respect to free-particle (noninteracting) momentum states, rather

than the scattering states of Eq. (5.4); it is for this definition that the k−4 tail is meaningfully

related to short-range density-density correlations via the contact [152, 147]. Hence, the two legs of

the interferometer are recombined during a measurement of the momentum distribution, thereby

projecting the quantum state onto the free-particle momentum basis as in Eq. (5.7). The phase

evolution of the bound-state component leads to periodically-modulated interference that is most

pronounced at the length scale of the bound state, r . af . As a result, the contact oscillates, along

with certain other observables such as the condensate fraction (see Fig. 5.2).

As discussed previously, the various initial conditions of Eq. (5.11) lend themselves to analyt-

ical, time-dependent solutions for arbitrary initial and final scattering lengths. These formulae are
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Figure 5.4: (Color online) Contact dynamics following a diabatic quench from noninteracting to
700a0, for a BEC of density n = 1012 cm−3. The circles represent the many-body-variational data
computed with a momentum grid of 32767 evenly spaced points up to a cutoff Λ = 2000πkF . (The
cutoff is chosen to be large to make a better comparison with the zero-range theory assumed in
the two-body model.) The green line represents the formula given in Eq. (5.15), and the red line
represents the linear growth given in Eq. (5.14).
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quite complicated in general, but, remarkably, they each predict the same behavior of the contact

C(t) = 16π2n2a2
f

∣

∣

∣

∣

1 +

(

ai

af
− 1

)

eiωBt
(

1 + erf
[

√

iωBt
])

∣

∣

∣

∣

2

(5.15)

if we take the limits na3
i ≪ 1 and na3

f ≪ 1. Figure 5.4 plots this result against a many-body

simulation for the diabatic quench considered already in Fig. 5.1. Apart from a slight offset in the

oscillation frequency, the agreement is excellent. We believe that this small frequency deviation is

due to the fact that our numerical solution of the many-body model is constrained to a finite (albeit

large) momentum cutoff Λ, whereas our two-body models are truly zero-range. Any experimental

realization of these oscillations would experience such an offset due to the finite range of true

interatomic interactions. This was certainly the case in the Ramsey experiment of Ref. [48]. It is

also possible that mean-field effects could shift the oscillation frequency [33], but this should not be

significant in the small-na3 limit that we are considering. Aside from the bound-state oscillations

of the contact, the momentum distributions at small scattering length look essentially the same as

in Fig. 5.3, including the subleading k−5 behavior mentioned previously.

It is useful to examine the general dynamics given by Eq. (5.15). At short times ωBt ≪ 1,

the contact evolves continuously from its intial value Ci as

C(t) = Ci+32π2n2ai (ai − af )

√

2

π
ωBt

+
128π

(6π2)2/3

(

ai

af
− 1

)2

n4/3ωF t + O(t3/2)

. (5.16)

In the limit of vanishing initial scattering length, the contact first grows linearly according to

Eq. (5.14) for all values of af . This is shown in Fig. 5.4 for the case of a quench to af = 700a0.

However, at nonzero initial scattering length, this linear growth is superseded by nonanalytic
√

t

behavior. At later times ωBt ≫ 1, the contact is oscillatory:

C(t) ≈ 16π2n2a2
f

[

1+4

(

ai

af
− 1

)2

+ 4

(

ai

af
− 1

)

cos (ωBt)

]. (5.17)

For a diabatic quench upward (af > ai), the time-averaged contact 〈C(t)〉t may be up to five times

larger than the Bogoliubov prediction of C0 = 16π2n2a2
f , and the oscillation amplitude may be up
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Figure 5.5: Contact dynamics following a diabatic quench downwards with af = ai/3. For refer-
ence, the green line is the equilibrium contact Ci for the BEC at the initial scattering length ai,
and the red line is the contact C0 for a ground state BEC at the final scattering length af .

to four times as large. Of course, in the limit of no quench (af = ai), the contact is trivially time

independent.

The case of a diabatic quench downward (af < ai) reveals interesting physics. Depending on

the ratio of initial and final scattering lengths, the time-averaged contact may be much larger than

the Bogoliubov prediction C0, and larger even than the initial contact Ci. Figure 5.5 shows these

dynamics for a quench to af = ai/3, in which case 〈C(t)〉t is more than an order of magnitude

larger than C0 and almost twice as large as Ci. The peak-to-trough oscillation amplitude is also

larger than both C0 and Ci. This is in stark contrast to the Bogoliubov case, in which the contact

relaxes to C0 over the fast timescale of the diabatic quench. At least in the transient dynamics,

a diabatic reduction in the scattering length can evidently increase local two-body correlations by

up to a factor of four compared to the initial condition, as evidenced by Eq. (5.17). An important

limitation, however, is that these dynamical correlations are most pronounced at and below the

length scale of the bound state.

The heightened short-range correlations contained in 〈C(t)〉t, beyond those already at the

Bogoliubov level, come fundamentally from bound-state physics. For example, if we ignore the

contribution of the bound state to the dynamics in Eq. (5.6), we find that the scattering states

dephase in such a way that the dynamical contact asymptotes towards C0 without any oscillations,

regardless of the initial scattering length. This is in qualitative agreement with the Bogoliubov
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prediction. Once the scattering states dephase, however, the bound state is left to dominate the

short-range wavefunction except in the relatively trivial case where af ∼ ai. The excess short-

range correlations, given by the second bracketed term in Eq. (5.17), are determined entirely by

the original projection of the initial condition onto the bound state.

We can estimate the amplitude of the depletion oscillations by simply integrating over the

relevant portion of the momentum distribution. From Eq. (5.17) and the fact that nk(t) ∼ C(t)/k4

at large k, the part of the momentum distribution oscillating at the bound-state frequency behaves

as

nk,osc(t) ∼
16π2n2a2

f

k4
4

(

ai

af
− 1

)

cos (ωBt) , (5.18)

aside from the time-independent contribution to the k−4 tail. As mentioned previously, these

oscillations occur at the momentum scale of the bound state, where kaf & 1. Integrating Eq. (5.18),

we find that the oscillating part of the depletion fraction is approximately

nex,osc(t)

n
∼ 1

n

∫

kaf >1

d3k

(2π)3
nk,osc(t)

∼ 32
(

na3
f

)

(

ai

af
− 1

)

cos (ωBt)

. (5.19)

The oscillation amplitude given here agrees with the many-body data shown in Fig. 5.2 to within

a factor of order unity, and we expect it to be a reasonable estimate as long as the diluteness

parameter na3 is small before and after the diabatic quench.

As a final aside, we note that our two-body analysis is able to generalize the short-time

dynamics following a quench to unitarity. If we calibrate our initial wavefunction for ai ≥ 0 and

then quench to unitarity, the initial contact dynamics are

C(t) = Ci − 32π2n2ai

√

2~

πm
t +

128π

(6π2)2/3
n4/3ωF t (5.20)

to leading order in na3
i and ωF t. This represents a generalization of Eq. (5.14) for diabatic quenches

from small initial scattering length. It is interesting that Eq. (5.20) is equal to the af → ∞ limit of

Eq. (5.16), despite the fact that Eq. (5.16) was derived for small final scattering length (na3
f ≪ 1).
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5.4 Summary

We have elucidated the important role of the bound state in determining the contact dynamics

of a diabatically-quenched BEC. We first computed these dynamics using a variational many-

body model, demonstrating that large-amplitude oscillations of the contact can be observed even

with existing magnetic-field-ramp technology. Our calculations reinforce the idea that coherent,

short-range physics can lead to measureable signatures even in the BEC fraction. This is the

dominant physics of the quenched gas on short time scales, before many-body effects and loss

become important.

We also developed a calibration scheme for two-body models that leads to an unambiguous,

quantitative description of BEC contact dynamics following a sudden quench. Our prescription fixes

both the log-derivative and absolute magnitude of the initial short-range, two-body wavefunction

by matching to the many-body problem, and we are able to derive analytic formulae for the short-

time evolution of the contact in the weakly-interacting and unitarity limits. Our dynamics are

shown to be independent of the arbitrary features of the models, and they agree with many-

body predictions. This two-body picture indicates that bound-state oscillations of the contact are

analogous to interferometry. We expect that one can account for finite ramp speeds by numerically

solving the two-body Schrödinger equation for a properly-calibrated model.

The dynamical contact can be measured using time-resolved RF spectroscopy, as done in

Ref. [4]. Our analysis shows that even the time-averaged contact 〈C(t)〉t may be greatly magnified

relative to the Bogoliubov prediction due to bound-state physics, and this could be observed with

an RF pulse that is long compared to the bound-state oscillation period. Measuring the oscillations

themselves necessarily requires using shorter pulses, and that may lead to inconvenient broadening

of the central RF peak. In any event, the temporal constraints on time-resolved RF spectroscopy

depend both on the atomic species and on the transition under consideration, and they are beyond

the scope of the present study.

We reiterate that the bound-state dynamics that we have considered are a coherent, transient
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effect. They encapsulate the response of a short-range wavefunction to an abrupt change in the

scattering length or, equivalently, a log-derivative boundary condition. At longer time scales, we

expect the oscillations to damp out as the system equilibrates. Similar damping was observed in the

Ramsey experiment of Refs. [48, 33], and it was believed to be due to a combination of incoherent

three-body loss and dephasing from magnetic-field inhomogeneities. Still, the coherence of large-

momentum dynamics persisted for many oscillation periods before damping became significant. The

engineering of quench apparatus has improved over the years, especially in creating ramps that are

diabatic with respect to the bound state [112]. This opens the door for systematic experimental

studies of bound-state signatures in quenched BECs.



Chapter 6

Quench-Induced Correlation Waves

Results presented in this chapter can be found in our recent preprint on the arXiv [39], which

has been accepted for publication in Physical Review A.

6.1 Background

It is a generic property of wave mechanics that an abrupt change in a system’s boundary

condition generates waves that propagate outward from the boundary. The tap of a mallet excites

phonons in a percussive chime; with a flick of the wrist, a lion tamer snaps his whip; electric

pulses in an antenna generate a radio broadcast. If we think of short-range interactions in terms of

a scattering-length-dependent boundary condition for the relative wave function, as in Eq. (2.17),

then we should expect that a sudden change of the scattering length generates waves that propagate

to nonzero particle separations. In contrast to previous chapters, which focused on short-range

correlations via the dynamical contact, we now shift our focus to longer-range correlation waves

that are generated by a quench.

One landmark experiment on this topic was performed recently at the University of Chicago

[85]. A quasi-2D BEC was quenched between two different scattering lengths,1 and the nonequi-

librium density distribution was subsequently measured in situ after various hold times. The in-

terfering phonons generated by the quench led to oscillatory pair correlations in the system. These

waves, known as Sakharov oscillations [140], are similar in their acoustic nature to the observed

1 The quench was adiabatic with respect to the bound state, so the results of the previous chapter do not apply
to this experiment.
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fluctuations of the cosmic microwave background [79]. Besides its intriguing relevance to cosmol-

ogy, this experiment demonstrates how correlations can propagate from the short range (where the

quench occurs) to the long range (where the fluctuations are measured) in a many-body system.

Dynamical waves that propagate in the pair correlation function in response to an interaction

quench, hereafter referred to as “quench-induced correlation waves,” have been discussed at length

in the context of several many-body models. For the case of 2D and 3D quenched Bose condensates,

these correlations have been calculated in the Bogoliubov approximation [85, 25, 125] and with

quantum kinetic theory [93]. Numerical results were presented for quenched 1D Bose gases in Refs.

[73, 124, 178], with analytical results for the Tonks-Girardeau regime given in Ref. [100]. Other

studies have calculated these waves in quenched single-band Hubbard models using matrix-product-

state [5] and variational-Monte-Carlo [24] algorithms, where Lieb-Robinson bounds [108] can limit

the spreading of correlations; these studies accompany recent experimental progress in that realm

[27].

This chapter takes a different, but complementary, approach to correlation waves. Inspired

by the results of the previous chapter, we reconsider the question: What does an interaction

quench (alternatively, a quenched boundary condition) do to the relative wave function for a pair

of particles? This question lies at the root of the many-body quench problem, where interactions

are pairwise and three-body correlations are often negligible. Two-body models offer the advantage

that they can be solved exactly and give direct access to the wave function [22]. Moreover, they

are immediately relevant to few-body systems in optical tweezers [170, 179, 90] and deep optical

lattices [148]. In many instances, they have given insight into understanding nonequilibrium many-

body phenomena [15, 70, 119, 13, 69]. These models can moreover give a quantitative description

of short-time short-range pair correlations in quenched systems, as demonstrated earlier in this

thesis.

In this chapter, we show that two-body models give an intuitive description of the physics be-

hind quench-induced correlation waves. Section 6.2 reviews ballistic expansion from the standpoint

of a quench. Our phase-space analysis shows that the correlation waves propagate ballistically, i.e.,
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as if they were free particles. We demonstrate that these waves, which are inherently nonlocal,

can contribute to the k−4 tail of a dynamical momentum distribution. This result is unexpected

considering that the ideas surrounding Tan’s contact relate the k−4 tail exclusively to local cor-

relations. In Section 6.3, we discuss the leading-order behavior of the momentum distribution for

arbitrary interaction quenches. We find that there is generally a competition between short-range

and ballistic physics in the large-momentum limit, an effect that is absent in equilibrium scenarios.

Additionally, we find that the amplitude of the correlation wave is determined chiefly by the initial

and final scattering lengths, and also by the initial amplitude of the wave function at vanishing

particle separation. Section 6.4 outlines our solution of the two-body quench problem in the pres-

ence of an external lattice potential. We show that ballistic correlation waves can propagate even

in deep lattices, and we present a simple semiclassical model that yields accurate estimates for the

transport that occurs. Section 6.5 summarizes our results.

6.2 Ballistic waves

It is instructive to begin with the simplest case in which quench-induced correlation waves

occur: a measurement of the momentum distribution of a strongly interacting ultracold gas. The

general method is to rapidly turn off the external trap and interactions, thereby freezing the mo-

mentum distribution of the gas, and then to allow the sample to expand freely before imaging.

After expansion, the image represents the column-integrated momentum distribution of the gas.

Correlation waves are generated by this simple protocol, as we now demonstrate.

The above-described procedure constitutes an interaction quench in the sense that, trap

effects aside, the scattering length is rapidly changed from some initial value (ai) to some final

value (af ). The effect on the wave function can be seen in the ballistic expansion of a bound pair

of interacting particles in 1D. In terms of the particle separation x and coupling constant g1D, the

short-range interaction potential is

Vint(x) = g1Dδ(x). (6.1)
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Figure 6.1: Ballistic expansion of a bound-state wave function. The black (thin) line represents the
initial wave function. The blue (thick, solid) line represents the wave function at ~t/2µa2

i = 0.008,
and the magenta (dashed) line is the wave function at ~t/2µa2

i = 0.015.

One can define a 1D scattering length via a = −~
2/µg1D, where µ is the reduced mass for the pair.

The interactions are attractive (repulsive) for a > 0 (a < 0), and they vanish for a = ±∞.2 For

an initially bound pair of atoms, the relative wave function is

ψ(x, t = 0) =
1√
ai

e−|x|/ai . (6.2)

The solution, upon turning off interactions (af → ±∞), is most compactly written in momentum

space. In analogy with Eq. (2.25), we define the 1D Fourier transform as

f̃(k) ≡
∫

dxe−ikxf(x). (6.3)

The time-dependent wave function is then given by

ψ̃(k, t) =
2
√

ai

1 + k2a2
i

e−iEkt/~, (6.4)

where Ek = ~
2k2/2µ is the relative kinetic energy. The short-time dynamics of the position-space

wave function is shown in Fig. 6.1. At t = 0, the wave function has a kink at vanishing particle

separation. This kink is absent for t > 0, where we see a correlation wave that propagates to larger

particle separations.

The ballistic expansion dynamics can be easily visualized with a phase-space representation.

2 This is a bit different from what one finds in 3D, although we will see shortly that the 1D scattering length still
relates to a log-derivative boundary condition.
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a) b)

Figure 6.2: The Wigner distribution given by Eq. (6.5) for the ballistic expansion of a 1D bound-
state wave function at (a) t = 0 and (b) ~t/2µa2

i = 0.4. The dashed white line in (b) represents
the formula x = 2~kt/m, which corresponds to the separation of two classical particles that start
out on top of each other (x = 0) and then fly apart with momenta ±~k.
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The Wigner function [173]

W (x, k, t) =

∫

dyeikyψ∗
(

x +
y

2
, t

)

ψ
(

x − y

2
, t

)

(6.5)

gives an approximate sense of the phase-space distribution of the instantaneous quantum state

ψ(x, t). The position and momentum distributions can be found by integrating:

|ψ(x, t)|2 =

∫

dk

2π
W (x, k, t)

|ψ̃(k, t)|2 =

∫

dxW (x, k, t)

. (6.6)

Figure 6.2(a) shows the Wigner function of the bound state at t = 0. Initially, the k−2 tail of the

momentum-space wave function is responsible for the kink in the position-space wave function at

x = 0 (see Fig. 6.1). This is typical for wave functions of 1D systems with short-range interactions.

It is generally understood that any state behaving as Ψ(x) ≈ Ψ(0)(1 − |x|/a) in the short range

should have a contribution

Ψ̃(k) ∼ 2Ψ(0)

ak2
+ O

(

1

k3

)

(6.7)

to the large-momentum limit of the momentum-space wave function [129]. This momentum tail is

analogous to what occurs in 3D: a wave function behaving as Ψ(r) ≈ (rΨ)|r→0
1
r in the short range

should have a momentum tail that goes as Ψ̃(k) ∼ (rΨ)|r→0
4π
k2 at large k. The connection between

short-range correlations and large-momentum asymptotics has led to the development of universal

contact relations in 1D [129, 6], akin to Tan’s work in 3D [152, 154, 153]. These ideas have also

been extended to 2D systems [151, 35, 160, 172, 171].

Figure 6.2(b) shows that, after the interactions are turned off, the large-momentum com-

ponents of the wave function propagate outwards to larger particle separations. Although the

momentum distribution does not change during the dynamics [cf. Eq. (6.4)], the momentum com-

ponents eventually separate spatially in a semiclassical sense, with the fastest modes moving the

farthest. (In the figure, we see that the spatial wings of the phase-space distribution agree very

well with the classical problem in which a pair of particles flies apart with momentum ±~k (white

dashed line), similar to the suggestion of Ref. [23].) This mechanism leads to the usual correspon-

dence between the expanded spatial distribution and the initial momentum distribution, as probed



86

by ballistic expansion measurements of interacting systems. We point out that such a mapping

would not occur if the interactions were turned off adiabatically or if they were left unchanged; it

was necessary to quench the system.

It is interesting that ballistic expansion leads to a momentum distribution whose k−4 tail

does not correspond to a kink in the short-range wave function. Rather, this tail is responsible

for the correlation wave that propagates from the short range to the long range, as evidenced in

Fig. 6.2. One can alternatively view this correlation wave, and hence the k−4 tail in the dynamical

momentum distribution, to be the result of a rapidly disturbed boundary condition. It can be shown

that the interaction potential in Eq. (6.1) enforces a log-derivative boundary condition

∂xψ

ψ

∣

∣

∣

∣

x→0+

= −1

a
(6.8)

for symmetrized wave functions,3 similar to the Bethe-Peierls boundary condition (2.17) in 3D.

The quench from ai > 0 to af = ±∞ changes this boundary condition discontinuously, thereby

generating a correlation wave. We expect intuitively that such a wave should be generated whenever

the quench is diabatic and af 6= ai. The strength of the wave should depend on the mismatch

between the initial and final boundary conditions. For example, the generated wave should be

weak when af ≈ ai, and it should be strong when a−1 changes drastically. We expect also that

the large-momentum behavior of the wave function should contain both short-range and ballistic

contributions, generalizing Eq. (6.7).

6.3 Arbitrary Quenches

We demonstrated in Chapter 5 that it is possible to find closed-form solutions to the two-

body quench problem in 3D for a broad class of initial wave functions. The short-time, zero-range

dynamics were found to depend on only three parameters: the initial scattering length ai, the final

scattering length af , and the initial zero-range behavior of the wave function rψ(r, 0)
∣

∣

r→0+ . It is

natural to suppose that a similar universality should persist in the large-momentum content of the

3 This can be proved by integrating the Schrödinger equation in the viscinity of the interaction, as in Eq. (2.23).
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Figure 6.3: The Wigner distribution given by Eq. (6.5) for a 1D bound-state wave function
quenched to af = 2ai. The Wigner function is evaluated at the same time as in Fig. 6.2(b), and
for the same initial scattering length ai. The dashed white line represents the same classical model
as shown previously.

quench-induced ballistic wave, as this wave originates in the short range and is a direct response

to the change in boundary condition. We indeed find this to be the case in each dimensionality.

The derivation of the large-momentum limit of the 1D dynamical wave function is given

in Appendix A. In short, one must project the initial wave function onto the complete basis of

energy eigenstates satisfying the appropriate log-derivative boundary condition, Eq. (6.8), and then

propagate in time.4 We find that the large-momentum limit of the wave function is

ψ̃(k, t) =
2ψ(0, t)

afk2
+

(

af

ai
− 1

)

2ψ(0, 0)

(k2af − i|k|)e
−iEkt/~ + O

(

1

k3

)

(1D) (6.9)

for t > 0. The first term shown here comes from the dynamical kink that appears in the short-range

wave function for finite values of af , as in Eq. (6.7) and in accordance with our intuition about

the contact [129]. The second term represents the ballistic wave that is generated by the quench,

similar to Eq. (6.4). As a consistency check, it is easy to verify that Eq. (6.9) agrees with Eq. (6.4)

in the af → ±∞ limit. It is also immediately obvious that the ballistic contribution vanishes in

the limit that no quench occurs (i.e., af → ai).

It is significant that, after the quench, the large-momentum limit of the wave function has

two distinct components that are both O
(

k−2
)

. This occurs whenever the final scattering length

4 This is the same approach we used to solve the 3D problem in Section 5.3.1.
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Figure 6.4: Quenching a bound state to af = −ai/2. The black (thin) line represents the initial
wave function. The blue (thick, solid) line represents the wave function at ~t/2µa2

i = 0.008, and
the magenta (dashed) line is the wave function at ~t/2µa2

i = 0.015. Compare with Fig. 6.1, which
depicts a quench to af = ±∞.

is finite. Figure 6.3 shows this behavior for the case in which an initial bound state at a scattering

length ai > 0 is quenched to a final scattering length af = 2ai. Similar to Fig. 6.2(a), we see

large-momentum content in the short range that is due to the residual kink in the wave function.

Similar to Fig. 6.2(b), we see that the quench generates a ballistic correlation wave that rapidly

propagates to large particle separations. This is in strong contrast to equilibrium systems, where

only the short-range correlations contribute to the large-momentum asymptotics [129]. For this

1D quench problem, the k−4 tail of the one-body momentum distribution (∼ |ψ̃(k, t)|2) does not

correspond perfectly with the zero-range pair probability, indicating that one must exercise care

when interpreting the 1D contact in a nonequilibrium context.

The amplitude of the ballistic correlation wave shown in Eq. (6.9) can be adjusted by changing

the final scattering length af . Figure 6.4 shows the short-time position-space wave function for a

bound state that is quenched to af = −ai/2, evaluated at the same times as in Fig. 6.1. One can

see that the quench from attraction (ai > 0) to repulsion (af < 0) has increased the amplitude of

the correlation wave when compared to the ballistic expansion case (af = ±∞). Equation (6.9)

indicates that this enhancement is by approximately a factor of 3.

One may observe from Eq. (6.9) that quenches to the Tonks-Girardeau regime (af → 0−)
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generate especially strong ballistic waves. In this limit, the wave function behaves as

ψ̃(k, t) =
2ψ(0, 0)

i|k| e−iEkt/~ + O
(

1

k2

)

(6.10)

for large k and t > 0, with the ballistic component dominating the short-range.5 One can intuit

the k−1 tail by observing that the final energy of the system is determined by the expectation value

of the post-quench Hamiltonian in the initial state; this energy must diverge as gf ∼ −1/af → ∞.

For t > 0, the interaction energy must vanish because ψ(0, t) = 0. Conservation of energy therefore

requires that, after the quench, the kinetic energy diverge:

∫

dk

2π

∣

∣

∣
ψ̃(k, t)

∣

∣

∣

2 ~
2k2

2µ
→ ∞. (6.11)

This was first pointed out by the authors of Ref. [100], who calculated analytically the dynamical

density correlations for a many-body system of density n that is quenched from noninteracting to the

Tonks-Girardeau regime. Our results connect smoothly with theirs in the short-time (~n2t/m ≪ 1),

short-range (nx ≪ 1) limit. In this limit, their dynamical pair correlations take the form of a

relative wave function that behaves exactly as in Eq. (6.10) except that ψ(0, 0) → √
n. If we were

to simulate the many-body problem with a two-body model, as done in the previous chapter, we

would use this same prescription. This prescription also leads to quantitative agreement (at short

times) with the numerical calculations of g(2)(0, t) in Ref. [178], which considered a broad range

of af < 0. This reinforces our idea that properly calibrated few-body models can quantitatively

describe short-time short-range correlation phenomena for quenched many-body systems.

The derivation given in Appendix A for quenched one-dimensional systems can be straight-

forwardly generalized to two and three dimensions. In direct analogy with Eq. (6.9), the results for

t > 0 are

ψ̃(k, t) = −
2π

(

ψ(ρ,t)
ln(ρ/b)

)∣

∣

∣

ρ→0+

k2
+ ln

(

ai

af

) 2π
(

ψ(ρ,0)
ln(ρ/b)

)∣

∣

∣

ρ→0+

k2
(

ln(kaf ) − iπ
2

) e−iEkt/~ + O
(

1

k3

)

(2D) (6.12)

where b > 0 is an arbitrary length scale that makes the argument of the logarithm dimensionless,

5 The numerator and denominator of the first term in Eq. (6.9) both vanish in the af → 0− limit. This subtlety
can be treated along the lines presented in Appendix A.
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and

ψ̃(k, t) =
4π (rψ(r, t))|r→0+

k2
+

(

1−af

ai

)

4π (rψ(r, 0))|r→0+

k2(1 + ikaf )
e−iEkt/~ + O

(

1

k4

)

(3D). (6.13)

For the two-dimensional case, we define the scattering length with the convention that the bound

state has energy EB = − ~
2

2µa2 [114].6 Both in 2D and in 3D, we see that the ballistic contribution

(second term) vanishes when af = ai. It can also be verified that both formulas reduce to the

free-particle result when interactions are turned off (af = ∞ in 2D, and af = 0 in 3D).

The ballistic contribution in Eqs. (6.12) and (6.13) is subleading to the short range in the

large-k limit, but it is nevertheless large compared to what one expects in equilibrium. The sub-

leading terms of all equilibrium states are O
(

k−4
)

for both dimensionalities. In contrast, we see

that the quench induces a new subleading structure, which is O
(

k−2 ln−1(k)
)

in 2D and O
(

k−3
)

in 3D. This subleading behavior in 3D is responsible for the decaying oscillations that we observed

in the BEC momentum distribution after quenching to unitarity, as shown in Figs. 4.2-4.4. Indeed,

the cross term between the ballistic and short-range contributions to Eq. (6.13) oscillates with

frequency Ek/~ = 2εk/~ and decays as k−5 at all times, exactly as observed in the many-body

numerics of Chapter 4. In that case, however, the nonlocal and ballistic origin of the effect was not

obvious.

Despite the subleading nature of the ballistic terms in Eqs. (6.12) and (6.13) for finite af ,

one can generate leading-order O
(

k−2
)

behavior by turning off interactions. This is along the

lines of the ballistic-expansion arguments presented in Sec. 6.2. If we then turn on interactions

before the wave spreads appreciably, the wave function will develop a short-range singularity that

will separately contribute a term of O
(

k−2
)

to ψ̃(k, t). As was found for a single quench in 1D

[Eq. (6.9)], the short-range and ballistic components can therefore occur at the same order in the

large-k limit of the wave function. Again, we conclude that the considerations that relate the

momentum tail exclusively to short-range correlations in equilibrium do not always hold outside of

6 We follow the scattering-length convention used in Ref. [114], which is slightly different from that used in
Refs. [151, 35, 160, 172, 171]. They are related by a′

2D = 2e−γa2D, where γ is Euler’s constant, a2D is the scattering
length by our convention, and a′

2D is the scattering length in the other convention.



91

equilibrium.

We conclude this section by remarking on the limitations of our ballistic analysis. The zero-

range approximation, wherein interactions are represented with boundary conditions at vanishing

particle separation, has been enormously successful in describing ultracold quantum gases near

broad Feshbach resonances [28]. This approximation is only valid for momenta satisfying kr0 ≪ 1,

where r0 is the range of the interaction. In experiments that use tight optical trapping to create

quasi-low-dimensional geometries, the oscillator length of the tight trap represents another scale

that bounds the “range” of the interaction in the reduced dimensionality. The immediate result is

that the momentum tails discussed in the context of zero-range models do not extend out indefinitely

to large k, although the point of breakdown (kr0 ∼ 1) might not be easily observable in typical

signal to noise by a broad resonance (see Ref. [147]).

Our analysis also invoked the sudden approximation, wherein the scattering length (alter-

natively, the boundary condition) is assumed to change instantaneously. The consequence is that

ballistic modes of arbitrarily large energy are generated by the quench, as shown in Eqs. (6.9)-(6.13).

Any experimental realization of the quench protocol will occur over a finite timescale [32, 85, 112],

and this will lead to an energy cutoff in the ballistic modes that can be generated. However, optical

switching of interactions was demonstrated to be possible on timescales that are short compared to

those set by the interaction range [30]. It follows that experimentally feasible quench times do not

introduce any intrinsic constraint on the quench protocol beyond that already introduced by the

range of interactions. We do expect, however, that slower quenches will produce weaker correlation

waves; in the limit that interactions are changed adiabatically, no correlation waves are generated.

6.4 Lattice Transport

It makes sense to suppose that the ballistic nature of quench-induced correlation waves should

allow for transport over potential-energy barriers. Semiclassically speaking, some part of the k−2

ballistic tail in Eq. (6.9) always has enough energy to cross a barrier of finite height, as suggested in

Ref. [47]. We expect that the amount of transport can be tuned by adjusting the amplitude of the
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wave and, therefore, the strength of the quench. In this section, we investigate the quench-induced

dynamics that occurs for a pair of particles on a single site of a 1D optical lattice. We find that a

semiclassical adaptation of our quantum description gives a good measure of the quench-induced

transport.

Interaction-quench effects in an optical lattice were recently discussed in the numerical results

of Refs. [121, 122]. There, the authors used the multi-layer multi-configuration time-dependent

Hartree method for bosons (ML-MCTDHB) to investigate the dynamics of several interacting

bosons in a few lattice sites. They found that a quench can trigger rapid transport between wells,

as well as breathing and cradle modes within a given well. Such higher-band effects are ignored in

typical Hubbard models that only include the lowest Wannier state in the formalism. Bound states,

strong interactions, and/or strong quenches may distort the wave function considerably from the

Wannier description, thereby necessitating models that encompass higher bands. The inclusion of

higher bands, either in the ML-MCTDHB sense or in the spirit of a multi-band Hubbard model

[53], makes it difficult to obtain numerically converged results for many-body systems on a lattice

with strong interactions and strong quenches. Our two-body calculation should provide a useful

benchmark in quantitatively understanding the rapid transport that takes place after an interaction

quench.

The relative and center-of-mass coordinates do not separate for the case of an interacting pair

of atoms in an optical lattice. We therefore resort to numerics to investigate the exact quantum

dynamics. Without loss of generality, we consider identical bosons of mass m. The time-dependent

Schrödinger equation for this system can then be written as

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
1

− ~
2

2m

∂2Ψ

∂x2
2

+ Vlat(x1)Ψ + Vlat(x2)Ψ + Vint(x1 − x2)Ψ (6.14)

where the interaction potential is given by Eq. (6.1), and the optical lattice potential of spacing ℓ

and depth V0 is given by

Vlat(xj) = V0 sin2
(πxj

ℓ

)

. (6.15)

It is customary to measure lattice depth in units of the recoil energy ER = h2

8mℓ2
. Inasmuch as
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the interaction quench directly excites relative momenta, it is convenient to work with the relative

coordinate x = x1−x2 and the center-of-mass coordinate X = (x1+x2)/2. After changing variables

and using a trig identity, one finds that

i~
∂Ψ

∂t
= −~

2

m

∂2Ψ

∂x2
− ~

2

4m

∂2Ψ

∂X2
+ V0

(

1 − cos

(

2πX

ℓ

)

cos
(πx

ℓ

)

)

Ψ + Vint(x)Ψ . (6.16)

The energy eigenstates corresponding to Eqs. (6.14)-(6.16) were found numerically in Ref. [164]

(see also Ref. [166] for the 3D analogue). Here, we instead solve for the dynamical wave function

by time-evolving an initial condition with the widely-used split-operator method. This method is

described in detail in Ref. [107].

In our numerics, we exploit bosonic symmetry [Ψ(x, X) = Ψ(−x, X)] by discretizing only

for x ≥ 0 and taking spectral transforms along this variable with the discrete cosine transform.

We discretize the center-of-mass coordinate X for both positive and negative values, and we take

spectral transforms along that variable using the fast Fourier transform. Our grid consists of 213

equally spaced points for x ∈ [0, 64ℓ] meshed with 27 equally spaced points for X ∈ [−4ℓ, 4ℓ]. We

model short-range interactions on the spatial grid by employing a potential that has support only

at grid points where x = 0. We have found that representing δ(x) → δx,0/∆x, where ∆x is the

grid spacing along the x direction, leads to the correct log-derivative boundary condition Eq. (6.8)

in the limit that ∆x ≪ |a|. This condition is satisfied by all simulations discussed in this section.

Our study focuses on quenched systems for which the induced transport is expected to be

the most significant. As indicated in Eq. (6.9) and alluded to in Ref. [47], the amplitude of the

ballistic wave is proportional to the initial probability amplitude that the atoms are in the same

position, ψ(0, 0). This quantity is largest, in equilibrium, when the system is in a bound state. We

therefore choose the initial condition for the transport problem Eq. (6.16) to be a bound state in

a single lattice site. This configuration represents a subsystem of the state described by Ref. [163],

which reported observing a single molecule per lattice site. For a deep lattice, the bottom of the

well can be approximated as a harmonic-oscillator potential of frequency ω = 2
√

V0ER/~ and width



94

a) b)

Figure 6.5: Quenching a bound state from ai = 0.2ℓ to af = −ai on a single lattice site. The lattice
is assumed to have a depth of 10ER. a) The initial two-body probability density ℓ2|Ψ(x1, x2)|2 for
a bound state on a lattice site (t = 0). b) The same quantity calculated at ~t/mℓ2 = 0.01. Note
the logarithmic color scale, whose lower limit is a cutoff.
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aho =
√

~

mω . One can write the approximate initial condition as

Ψ(x, X) = ψ0(x)φ0(X), (6.17)

where φ0(X) =
(

2
πa2

ho

)1/4
e−X2/a2

ho describes the center-of-mass degree of freedom, and ψ0(x) is the

molecular state dressed by the oscillator [22]. For a ≪ aho, one can show that ψ0 approaches the

ordinary bound state given by Eq. (6.2). For our simulations, we will consider an initial bound state

of scattering length ai = 0.2ℓ in a lattice of depth V0 = 10ER. The two-body probability density

associated with this initial condition is shown in separate-particle coordinates in Fig. 6.5(a).

As discussed previously, we expect that an interaction quench will generate an energetic

correlation wave that propagates over the potential barriers that separate individual lattice sites.

This transport is shown in Fig. 6.5(b) a short time after quenching to af = −ai. The wave has the

same general structure as in Fig. 6.4, with spatially decaying oscillations and a cusp of reduced

probability when both particles come together. Even after such a short time, we see that the wave

already extends a couple of lattice sites in each direction.

It is instructive to quantify the amount of quench-induced transport that takes place. We

can define a dynamical probability for the likelihood that both atoms remain in the central well:

PCC(t) =

∫

|x1|< ℓ
2

dx1

∫

|x2|< ℓ
2

dx2|Ψ(x1, x2, t)|2. (6.18)

In like manner, we also define the probability that both atoms have tunneled,

PTT (t) =

∫

|x1|> ℓ
2

dx1

∫

|x2|> ℓ
2

dx2|Ψ(x1, x2, t)|2, (6.19)

and the probability that a single atom has tunneled,

PTC(t) = 2

∫

|x1|> ℓ
2

dx1

∫

|x2|< ℓ
2

dx2|Ψ(x1, x2, t)|2. (6.20)

Here, we have exploited the symmetry of the bosonic wave function. The complementarity of the

integration regions results in the identity PCC + PTT + PTC = 1 at all times. These probabilities

are plotted for af = ±∞ and af = −ai in Figs. 6.6(a) and 6.6(b), respectively. In both cases,



96

the atoms begin in the central well [PCC(0) ≈ 1]. After the quench, the transport probabilities

smoothly saturate to values that depend on af . We note that the transport is substantial even

though the lattice depth is of the order required for a typical Mott-insulating state in 1D [87, 180].

The ballistic description of the previous section leads to an intuitive, semiclassical model of

transport. We can estimate the saturated values of PCC , PTT , and PTC by considering the following

question: What fraction of the momentum distribution describes ballistic atoms that are energetic

enough to make it over the barrier?

The simplest analysis can be made for the case in which the interactions are turned off

(af = ±∞). Short-range physics then does not contribute to the momentum distribution, and

we can consider ballistic effects to stem entirely from the momentum-space version of the initial

condition Eq. (6.17), similar to our analysis in Sec. 6.2. One can find the initial two-body wave

function Ψ̃(k1, k2, 0) from Eq. (6.17) via

Ψ̃(k1, k2, 0) = ψ̃0(k)φ̃0(K)

= ψ̃0(k1 − k2)φ̃0

(

k1 + k2

2

) (6.21)

where we have changed to separate-particle momentum coordinates k1 and k2 from the relative and

center-of-mass coordinates k and K. In a semiclassical sense, we expect that atoms with kinetic

energy εki < V0 don’t make it over the barrier. Hence, we estimate that the probability for both

atoms to stay in the central lattice site is given by

PCC →
∫

εk1
<V0

dk1

2π

∫

εk2
<V0

dk2

2π
|Ψ̃(k1, k2, 0)|2. (6.22)

Similarly, we estimate the other transport probabilities to be

PTT →
∫

εk1
>V0

dk1

2π

∫

εk2
>V0

dk2

2π
|Ψ̃(k1, k2, 0)|2

PTC → 2

∫

εk1
>V0

dk1

2π

∫

εk2
<V0

dk2

2π
|Ψ̃(k1, k2, 0)|2

. (6.23)

These probabilities are plotted as the horizontal dashed lines in Fig. 6.6(a), and they agree reason-

ably well with the saturation observed in the dynamics.
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Figure 6.6: Lattice transport for a bound state that is quenched from ai = 0.2ℓ to (a) af = ±∞ and
(b) af = −ai. The solid blue line denotes the dynamical probability of both atoms occupying the
central well of the lattice, PCC(t); the solid cyan line is the probability of a single atom occupying
the central well PTC(t); the solid red line is the probability that no atoms occupy the central
lattice site, PTT (t). The horizontal dashed lines correspond to the semiclassical estimates for these
probabilities.
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When af is finite, the transport estimates should include only the ballistic contribution to

the momentum distribution. This much is clear from the fact that, in the absence of a quench, the

k−4 tail of the momentum distribution contributes to the short range instead of to transport. More

generally, the momentum distribution has a mixture of short-range and ballistic effects, as shown

in Eq. (6.9) to leading order. We have found that, in most cases, an accurate estimate of transport

probabilities requires going beyond leading order so as to suitably include momenta k ∼
√

2mV0/~.

In using Eqs. (6.21) and (6.23), we replace ψ̃0(k) with the full ballistic wave function ψ̃
(S)
bal (k, t)

derived in Appendix A and given by Eq. (A.14). For Eq. (6.22), we make this same replacement

and also add in the probability that the atoms remain bound after the quench, since bound atoms

will remain in the central well during the short timeframe of quench-induced transport.7 The

resulting estimates for the case of af = −ai are plotted as dashed lines in Fig. 6.6(b). The

increased transport that occurs for this quench is well described by the semiclassical estimate. This

agreement owes itself to the fact that a wave of energy εk incident on a potential barrier of height

V0 has near unity transmission for εk ≫ V0. These waves dominate the integrals in Eq. (6.23) when

the quench is strong.

It is interesting that the saturation timescale in Figs. 6.6(a)-(b) does not appear to depend

on the final scattering length of the quench. We have found that the saturation time is well

approximated by the time it takes an atom of momentum k =
√

2mV0/~ to travel one lattice spacing.

This supports our semiclassical description of quench-induced transport. For the lattice depth used

in our simulations, the saturation timescale is smaller than the lowest-band tunneling time by more

than two orders of magnitude. The higher-band physics at play in this transport process comes

from our use of strong interactions [95, 46] as well as from the quench itself [121, 122, 141].

6.5 Summary

In this chapter, we have taken a wave-function-based approach to describe the correlation

waves induced by an interaction quench. Our calculations made use of the zero-range approxima-

7 Recall that this binding probability vanishes when the post-quench interactions are repulsive (af < 0).
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tion for particle-particle interactions, represented here with a scattering-length-dependent bound-

ary condition at vanishing particle separation. Within this approximation, the interaction quench

disturbs the boundary and generates a wave that propagates ballistically to nonzero particle separa-

tions. We have derived the leading-order behavior of this wave in momentum space for one, two, and

three spatial dimensions. These results are intuitive in that the amplitude of the correlation wave

depends only on the initial amplitude at the boundary and the scattering length before and after

the quench. In each dimensionality, the ballistic contribution to the wave function dominates the

next-to-leading-order terms that occur in equilibrium systems. Particularly interesting is the fact

that, in one dimension, the k−2 tail of the momentum-space wave function is generally determined

by both short-range and ballistic effects. Similar results can occur in two and three dimensions,

depending on the quench sequence. It is significant that a protocol as simple as a quench can sur-

prise the intuition that usually associates large-momentum behavior exclusively with short-range

physics. On this account, our two-body calculations indicate that one must exercise care when

interpreting the contact out of equilibrium. We note that the contact dynamics we computed in

the previous two chapters are well defined, as ballistic effects were subleading to the short range in

those cases.

Our simulations reveal that quench-induced correlation waves can cause considerable trans-

port in a 1D optical lattice. The amount of transport that takes place is readily tunable by altering

the initial short-range pair probability of the state, as well as the strength of the quench. Our

analytic two-body calculation makes possible a semiclassical framework within which both the

transport and the saturation time can be estimated with surprising accuracy. We expect that

similar results hold for optical-lattice systems in higher dimensionalities whose numerical calcula-

tions are more challenging. It would be interesting to see what role these ballistic dynamics might

play in a quenched many-body system. For example, the system described in Ref. [163], which

was essentially a Mott insulator of molecules in a lattice, might have phase coherence partially

restored by the colliding ballistic waves that a quench might generate. One can expect generally

that ballistic waves should be damped by collisions in a many-body system. This damping is dif-
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ficult to model quantitatively without introducing a certain amount of arbitrariness to the theory

[137, 138, 92, 94, 93]. At the same time, it is the crux of the question of how isolated quantum

many-body systems equilibrate despite the high level of excitation provided by a quench. It may

be possible to shed light on the matter by investigating how ballistic waves collide even at the

few-body level. This remains for future work.



Chapter 7

Conclusion

The recurring theme of this thesis is that dynamically-tuned interactions can lead to in-

teresting nonequilibrium phenomena. Our studies have focused on interaction quenches, where

the scattering length a is suddenly changed and the system is allowed to evolve with the new

interactions. When applied to Bose-condensed systems, this procedure has been used to create

anti-clustered attractive states in 1D [76], generate time-dependent correlation waves in 2D [85],

and probe the resonant limit (a → ∞) of a Bose-Einstein condensate (BEC) in 3D [112]. These

ground-breaking experiments, while advancing our understanding of quantum many-body physics,

inspire further investigations of what an interaction quench does to a quantum state.

Our first results dealt with the short-time dynamics of a BEC that is quenched to unitarity.

We studied this system using a time-dependent, many-body variational approach that encodes

pair correlations. Although we incorporated the resonant interactions with several short-range

model potentials, the time evolution of the momentum distribution was found to be essentially

independent of the model, and it scaled universally with density-derived units. We also studied the

evolution of short-range pair correlations via the dynamical contact, which grows and saturates in

a way that is quantitatively consistent with the largest momentum modes measured in the 85Rb

experiment [112].

We then shifted gears to study the contact dynamics of BECs that are quenched to small

scattering length. Although one might expect time-dependent Bogoliubov theory to be adequate in

this regime, we found that this is not always the case. Fast quenches allow pairs of atoms to project
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nontrivially onto the Feshbach-molecular bound state, and this can lead to short-range dynamics

that are absent in Bogoliubov theory. Our many-body simulations revealed that the contact exhibits

high-contrast oscillations at the frequency of the bound state, and this translates into oscillations of

the condensate fraction. We then set up an intuitive two-body model that yielded a quantitatively

accurate formula for the oscillatory contact, while highlighting the important role played by the

bound state in the dynamics.

Our two-body framework was then applied to investigate the nonlocal correlation waves

that are generated by a sudden quench. We were able to represent these waves analytically in

momentum space for arbitrary initial and final scattering length. Our phase-space analysis revealed

that they travel ballistically, ie. free-particle-like. One unexpected result was that these long-range

correlation waves can contribute to the k−4 tail of the momentum distribution, depending on the

quench protocol. This finding is at odds with the ideas surrounding Tan’s contact, which relate the

large-k asymptotics exclusively to short-range pair correlations. Our result, which came from an

exact solution to the Schrödinger equation, provides a valuable demonstration of how equilibrium-

based intuition about wave functions can break down in a nonequilibrium context. Our analytic

calculation of correlation waves additionally lends itself to quantitative predictions for quench-

induced transport over potential-energy barriers. A possible extension of this work would be to

investigate how ballistic waves collide with each other at the few-body level, as such collisions are

expected to occur in many-body systems and constitute the first steps towards equilibration.

It would be worthwhile to generalize the ideas of this thesis to include three-body effects

related to Efimov physics. Several decades ago, Efimov showed that there is a ladder of three-body

bound states that accumulates near the dissociation threshhold at large scattering length [54, 55].

This effect has been shown to alter the Tan relations by introducing a three-body contact parameter

to account for short-range triplet probabilities [18]. Attempts to measure the three-body contact in

a weakly-interacting BEC yielded a value that was consistent with zero [174]. At large scattering

length, however, one might expect the ladder of Efimov states to play a more significant role in

the physics. In the same sense that we observed growth of the two-body contact after quenching
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to unitarity, the three-body contact might also grow appreciably, albeit over a longer timescale. It

should be possible to describe this growth at short times within a calibrated three-body calculation,

similar to our approach in Chapter 5. Although it is unlikely that an analytical solution will be

found for such a calculation, the problem could still be solved numerically by the methods described

in Ref. [150].
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[137] A. Rançon, Chen-Lung Hung, Cheng Chin, and K. Levin. Quench dynamics in bose-einstein
condensates in the presence of a bath: Theory and experiment. Phys. Rev. A, 88:031601,
2013.
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quantum state with one molecule at each site of an optical lattice. Nat. Phys., 2:692, 2006.

[164] Javier von Stecher, Victor Gurarie, Leo Radzihovsky, and Ana Maria Rey. Lattice-induced
resonances in one-dimensional bosonic systems. Phys. Rev. Lett., 106:235301, Jun 2011.
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Appendix A

Two-Body Solution after a Quench

Several results from Chapters 5 and 6 rely on an analytic solution to the two-body quench

problem in momentum space. Dimensionality does not play a significant role in the strategy of

the derivation. The general idea, already outlined at the beginning of Section 5.3.1, is to expand

the wave function in the eigenstates of the zero-range model. One can always write down energy-

normalized scattering states, and there is also a discrete bound-state solution for a > 0. The difficult

part of the problem involves evaluating the integral that superposes the scattering solutions, but

we will see that some methods from complex analysis can simplify the calculation. These ideas

do not depend directly on the dimensionality of the problem; hence, without loss of generality, we

will work through the details for the case of a quench in 1D. At the end of this Appendix, we will

describe what alterations are necessary to solve the problem in 3D and 2D. We simplify expressions

by scaling distances by an arbitrary length scale ξ and energies by ~
2

2µξ2 , where µ is the reduced

mass for the pair.

A.1 Solving the Problem in 1D

In free space, the time-dependent Schrödinger equation for the relative wave function ψ(x, t)

is

i
∂ψ(x, t)

∂t
= −∂2ψ(x, t)

∂x2
− 2

af
δ(x)ψ(x, t) (A.1)

where af is the 1D scattering length after the quench. Without loss of generality, we will consider

symmetrized initial conditions, such that ψ(x, 0) = ψ(−x, 0). This symmetry is preserved by the
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Schrödinger equation whether or not the two particles are identical bosons. The overall effect of

the interaction is to enforce the log-derivative boundary condition shown in Eq. (6.8), which is

∂xψ

ψ

∣

∣

∣

∣

x→0+

= −1

a
. (A.2)

This can be proved by integrating Eq. (A.1) over a vanishingly small interval [−ǫ, ǫ] and assuming

even symmetry.

We can propagate a given initial condition ψ(x, 0) in time by expanding in the energy eigen-

states that satisfy the post-quench log-derivative boundary condition. The scattering states are

ψ
(S)
k′ (x) = Ak′

[

sin(k′|x|) − k′af cos(k′x)
]

, Ek′ = k′2, (A.3)

where

Ak′ =
1

√

2πk′(1 + k′2a2
f )

(A.4)

is a constant that enforces energy normalization. These states are uniquely defined for k′ > 0. For

af > 0, the bound state solution is

ψB(x) =
1

√
af

e−|x|/af , EB = − 1

a2
f

. (A.5)

It will be helpful to decompose the time-dependent wave function onto its scattering and bound

contributions, which we will treat separately. Thus, we write [117]

ψ(x, t) = ψ(S)(x, t) + ψ(B)(x, t), (A.6)

where

ψ(S)(x, t) ≡
∞

∫

0

dEk′e−iEk′ tψ
(S)
k′ (x)

〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉

(A.7)

and

ψ(B)(x, t) ≡ Θ(af )e−iEBtψB(x)
〈

ψB(x′)
∣

∣ ψ(x′, 0)
〉

, (A.8)

and where 〈·|·〉 denotes a projection integral. The Heaviside function Θ(af ) determines whether or

not the bound state should be included in the dynamics. We will assume that ψ(x, 0) is normalizable

and smooth everywhere except possibly for a nontrivial log-derivative at x = 0.
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It is most convenient to solve for the momentum-space wave function. This requires taking

the Fourier transform of the energy eigenstates. For af > 0, the Fourier transform of the bound

state can be inferred from Eq. (6.4)

ψ̃B(k) =
2
√

af

1 + k2a2
f

. (A.9)

The Fourier transform of the scattering states takes a more complicated form, but it can be written

as

ψ̃
(S)
k′ (k) = Ak′

[

−2k′π
(

i + k′af

)

δ(k′2 − k2) +
2k′

k′2 − k2 − iǫ

]

, (A.10)

where we use the convention ǫ → 0+. This formula can be verified by taking the inverse Fourier

transform. The first term can be easily integrated due to the Dirac delta function, and the second

term can be integrated by using the residue theorem [2]. One must close the contour in the upper

half plane for x > 0, and the lower half plane for x < 0. The pole structure in (A.10) leads to the

absolute-value dependence in the position-space scattering state (A.3). With these ingredients, we

can rewrite the time-dependent wave function (A.6)-(A.8) in momentum space:

ψ̃(k, t) = ψ̃(S)(k, t) + ψ̃(B)(k, t), (A.11)

where

ψ̃(S)(k, t) =

∞
∫

0

dEk′e−iEk′ tψ̃
(S)
k′ (k)

〈

ψ
(S)
k′ (x′)

∣

∣

∣ ψ(x′, 0)
〉

(A.12)

and

ψ̃(B)(k, t) = Θ(af )e−iEBtψ̃B(k)
〈

ψB(x′)
∣

∣ ψ(x′, 0)
〉

. (A.13)

Having subdivided the scattering eigenstate as in (A.10), there are thus two parts that com-

pose the scattering contribution ψ̃(S)(k, t) in Eq. (A.12). The first part can be evaluated trivially

in momentum space by exploiting the delta function in Eq. (A.10). We write it as follows:

ψ̃
(S)
bal (k, t) ≡ −2π|k|A|k| (i + |k|af )

〈

ψ
(S)
|k| (x′)

∣

∣

∣ ψ(x′, 0)
〉

e−iEkt . (A.14)
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Figure A.1: Integration contour in the complex k′ plane. The crosses denote the poles of the
bracketed factor in Eq. (A.15). The final leg of the integral is along arg[k′] = −π/4.

We call this the “ballistic” contribution to the wave function due to its free-particle-like f(k)e−iEkt

behavior, similar to Eq. (6.4). The second contribution can be written as

ψ̃(S)
sr (k, t) =

∞
∫

0

2k′dk′e−ik′2t

[

2k′Ak′

k′2 − k2 − iǫ

]

〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉

, (A.15)

and we will see that it generally contributes to the short-range part of the wave function. In sum,

we can write

ψ̃(k, t) = ψ̃
(S)
bal (k, t) + ψ̃(S)

sr (k, t) + ψ̃(B)(k, t). (A.16)

for the full momentum-space wave function.

One can make progress with Eq. (A.15) by exploiting the residue theorem. The integration,

as written, is along the positive real k′ axis. If we close the contour as shown in Fig. A.1, the

contribution from the |k′| → ∞ arc vanishes. The only poles that can contribute residues must

come from the analytic continuation of the scattering projection inside the integration loop. We

have found empirically that, if ψ(x, 0) decays smoothly and without oscillation (such as for a bound

state, a ground-state Busch wave function [22], or forms analogous to Eq. (5.11)), the integrand is

analytic inside the closed contour and the integral vanishes.1 The two straight legs of the integral

1 More generally, the residues from any poles inside the contour can be absorbed into the definition of ψ̃
(S)
bal (k, t).

This occurs, for example, if ψ(x, 0) already has a ballistic component. We will ignore such exotic initial conditions
in our analysis.
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then cancel, and we can rewrite Eq. (A.15) as an integral along k′ = ze−i π
4 for real, nonnegative z:

ψ̃(S)
sr (k, t) = −4ie−i π

4

∞
∫

0

dze−z2t z2

−iz2 − k2

[

Ak′

〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉]

k′ 7→ze−i π
4

=
4ie−i π

4

k2

∞
∫

0

dz
e−z2t

1 + iz2/k2
z2

[

Ak′

〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉]

k′ 7→ze−i π
4

(A.17)

where the factor in brackets has been analytically continued. Mathematica can evaluate this quan-

tity in closed form for several interesting cases, including where ψ(x, 0) takes a form similar to

Eq. (5.11) or is a bound state. Unfortunately, the expressions are usually too lengthy to usefully

write down.

The physical significance of ψ̃
(S)
sr (k, t) can be seen if one compares it with the zero-range

contribution to the scattered wave function, ψ(S)(0, t). Using Eq. (A.3), we can write the result as

ψ(S)(0, t) =

∞
∫

0

dEk′e−iEk′ tψ
(S)
k′ (0)

〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉

= −af

∞
∫

0

dEk′e−iEk′ tk′Ak′

〈

ψ
(S)
k′ (x′)

∣

∣

∣
ψ(x′, 0)

〉

= 2iafe−i π
4

∞
∫

0

dze−z2tz2
[

Ak′

〈

ψ
(S)
k′ (x′)

∣

∣

∣ ψ(x′, 0)
〉]

k′ 7→ze−i π
4

(A.18)

where we have again exploited the integration contour in Fig. A.1. A direct comparison of Eq. (A.17)

and Eq. (A.18) indicates that

ψ̃(S)
sr (k, t) =

2ψ(S)(0, t)

afk2
+ O

(

1

k4

)

(A.19)

for large k satisfying k2t ≫ 1. This verifies our claim that ψ̃
(S)
sr generally encodes the short-range

behavior of the scattered wave. The Gaussian suppression in Eqs. (A.17)-(A.18) indicates that

this contribution to the wave function vanishes in the t → ∞ limit. This is as expected for an

unconfined wave packet composed entirely of scattering states, which must spread out in space as

time passes. With significantly less work, one can combine (A.5) and (A.9) to show that

ψ̃(B)(k, t) =
2ψ(B)(0, t)

afk2
+ O

(

1

k4

)

(A.20)
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for the bound-state contribution to the dynamical wave function.

We now examine the large-momentum behavior of the ballistic contribution to the wave

function, given by Eq. (A.14). This requires finding the asymptotics of the projection integral

∞
∫

−∞

dx [sin (k|x|) − kaf cos (kx)]ψ(x, 0) (A.21)

for a symmetric wave function whose short range behaves as ψ(x, 0) ≈ ψ(0, 0)(1−|x|/ai), and whose

long range is regular and smooth. The second part of this integral is reminiscent of Eq. (6.7), and

evaluates to

−kaf

∞
∫

−∞

dx cos (kx) ψ(x, 0) = −kaf

∞
∫

−∞

dxeikxψ(x, 0)

= −kaf

[

2ψ(0, 0)

aik2
+ O

(

1

k3

)]

(A.22)

as discussed in Ref. [129]. The first part of the integral can be understood as we integrate by parts

∞
∫

−∞

dx sin (k|x|)ψ(x, 0) = 2

∞
∫

0

dx sin (kx) ψ(x, 0)

= 2

(

−cos (kx)

k

)

ψ(x, 0)

∣

∣

∣

∣

∞

0

− 2

∞
∫

0

dx

(

−cos (kx)

k

)

ψ′(x, 0)

=
2ψ(0, 0)

k
+

2

k

∞
∫

0

dx cos (kx)ψ′(x, 0)

=
2ψ(0, 0)

k
+ O

(

1

k2

)

, (A.23)

where we have assumed that ψ(x, 0) vanishes in the x → ∞ limit, and that ψ′(x, 0) is smooth and

decays at large x. Combining (A.22) and (A.23), we find that

∞
∫

−∞

dx [sin (k|x|) − kaf cos (kx)] ψ(x, 0) =
2ψ(0, 0)

k

(

1 − af

ai

)

+ O
(

1

k2

)

(A.24)

for the projection asymptotics. This leading-order behavior encodes the mismatch between the

initial and final boundary conditions of the quench. Inserting this result into Eq. (A.14), we find

that

ψ̃
(S)
bal (k, t) =

(

af

ai
− 1

)

2ψ(0, 0)

(k2af − i|k|)e
−iEkt + O

(

1

k3

)

(A.25)

after some algebra. Combining Eqs. (A.19), (A.20), and (A.25), we arrive at Eq. (6.9).
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A.2 Generalizing to 3D

The solution described in the previous section generalizes naturally to three dimensions. The

reason for this is that the 1D wave function ψ1D(x, t) and the 3D wave function rψ3D(r, t) satisfy

the same equations of motion and log-derivative boundary conditions. One can compare the 3D

eigenstates in Eqs. (5.4)-(5.5) to those in 1D, given by Eqs. (A.3)-(A.5). The main difference is in

the definition of the Fourier transform in 3D, which leads to slightly different expressions for the

bound and scattering states in momentum space:

ψ̃B(k) =

√

8πa3
f

1 + k2a2
f

(A.26a)

ψ̃
(S)
k′ (k) = Bk′

[

2π2

k
(1 − ikaf ) δ(k − k′) +

4πk′af

k′2 − k2 − iǫ

]

(A.26b)

where the normalization constant is given by

Bk′ =
1

√

4π2k′
(

1 + k2a2
f

)

. (A.27)

Otherwise, the solution proceeds as outlined in Section A.1. The results of Chapter 5 can be found

by following the steps of the derivation up to Eq. (A.17) and performing the necessary integrals with

the initial conditions given in Eq. (5.11). To derive the large-k asymptotics shown in Eq. (6.13),

one finds from the contour integration that

ψ̃(S)
sr (k, t) =

4π
(

rψ(S)(r, t)
)∣

∣

r→0+

k2
+ O

(

1

k4

)

(A.28a)

ψ̃(B)(k, t) =
4π

(

rψ(B)(r, t)
)∣

∣

r→0+

k2
+ O

(

1

k4

)

(A.28b)

in analogy with Eqs. (A.19)-(A.20).

A.3 Generalizing to 2D

The generalization to two dimensions is more subtle. First, the scattering and bound wave

functions are defined in terms of Bessel functions, so there is no immediate functional connection
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between the 2D and 1D eigenstates. As an added complication, there are a couple different conven-

tions in the literature for defining the 2D scattering length for zero-range interactions. We choose

to follow the convention of Ref. [114], in which the bound state has energy EB = − ~
2

2µa2
f
. Within

this framework, the bound state can be written as

ψB(ρ) =
1

√

πa2
f

K0

(

ρ

af

)

, (A.29)

and the scattering states can be written as

ψ
(S)
k′ (ρ) = Dk′

[

J0(k
′ρ) − π/2

ln (k′af )
N0(k

′ρ)

]

, (A.30)

where

Dk′ =

[

4π

(

1 +

[

π/2

ln (kaf )

]2
)]−1/2

(A.31)

enforces energy normalization.2 We write them as

ψ̃B(k) =

√

4πa2
f

1 + k2a2
f

(A.32a)

ψ̃
(S)
k′ (k) = Dk′

2π

ln (k′af )

[

δ(k − k′)
k

(

ln
(

k′af

)

+ i
π

2

)

− 1

k′2 − k2 − iǫ

]

(A.32b)

in momentum space. These transforms can be verified with the aid of Mathematica. The solution

of the quench problem then proceeds as in Section A.1. To derive the large-k asymptotics shown

in Eq. (6.12), the contour integration in Fig. A.1 reveals that

ψ̃(S)
sr (k, t) = −

2π
(

ψ(S)(ρ,t)
ln(ρ/b)

)∣

∣

∣

ρ→0+

k2
+ O

(

1

k4

)

(A.33a)

ψ̃(B)(k, t) = −
2π

(

ψ(B)(ρ,t)
ln(ρ/b)

)∣

∣

∣

ρ→0+

k2
+ O

(

1

k4

)

(A.33b)

where b > 0 is an arbitrary length scale that makes the argument of the logarithm dimensionless.

These relations are analogous to Eqs. (A.19)-(A.20).

2 For small ρ, these states behave as ψ(ρ) ∝ ln
h

ρeγ

2af

i

+ O(ρ). The logarithms that appear in 2D constrain the

scattering length to be strictly nonnegative. See, for example, Ref. [133].
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