
Widely tunable on-chip microwave circulator for

superconducting quantum circuits

by

Benjamin J. Chapman

B.A., Dartmouth College, 2009

M.S., University of Colorado, 2015

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Physics

2017



This thesis entitled:
Widely tunable on-chip microwave circulator for superconducting quantum circuits

written by Benjamin J. Chapman
has been approved for the Department of Physics

Konrad W. Lehnert

John Price

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



iii

Chapman, Benjamin J. (Ph.D., Physics)

Widely tunable on-chip microwave circulator for superconducting quantum circuits
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This thesis develops theory for and experimentally demonstrates a new way to break Lorentz

reciprocity—the symmetry, in an electrical network, under exchange of source and detector. The

approach is based on the sequential application of frequency conversion and delay; as frequency

and time are Fourier duals, these operations do not generally commute. We apply this method in

the construction of an on-chip superconducting microwave circulator, a critical component for the

unidirectional routing of quantum information in superconducting networks. The device requires

neither permanent magnets nor microwave control tones, allowing on-chip integration with other

superconducting circuits without expensive control hardware. Isolation in the device exceeds 20

dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at

select operation frequencies. Furthermore, the device is linear with respect to input power for signal

powers up to many hundreds of fW (� 103 circulating photons), and the direction of circulation

can be dynamically reconfigured. We demonstrate its tunability with operation at a selection

of frequencies between 4 and 6 GHz. Given the current status of quantum error-correction and

architectures for quantum information processing with superconducting circuits, such scalable non-

reciprocal devices will almost certainly be necessary for construction of a superconducting quantum

computer intended to be more than a proof-of-principle.



iv

Dedication

For my sister, Ellie, and my parents, Frankie and Bill.



v

Acknowledgements

I benefited from the help of a great many people during the course of this thesis. It would be

impractical to recognize now all of those sources of support; I am blessed with thoughtful colleagues

and friends, and singularly blessed in family. Here there is space only to acknowledge those that

have been central to this project.

First, I would like to thank my undergraduate advisors, Alex Barnett and Miles Blencowe,

as well as the NMR group at Schlumberger-Doll Research, in particular Pabitra Sen and Martin

Hürlimann, for their encouragement to attend graduate school and their patience with a fledgling

physicist.

I am also obliged to two of our group’s former graduate students, Will Kindel and Adam Reed,

for speaking with me about joining Konrad’s lab, and helping me learn the basics of microwave

engineering. When I arrived, I was fortunate to begin work immediately on the circulator project

with post-doc Joe Kerckhoff. I am indebted to Joe not only for the rich intellectual ground in

which the work is planted, but also for his mentorship.

Collaboration with the Quantum Devices group at NIST gave a tangible form to our many

hours of design. Leila Vale fabricated the circuits and Gene Hilton and Ben Mates shared their

expertise in superconducting circuit layout. Kent Irwin and Dale Li also shared with us their

considerable experience in this field.

Much of the device design and testing was done in the last two years, with help from my lab

mate Eric Rosenthal. Eric’s creativity and energy have amplified our progress on the project. More

broadly, I would like to acknowledge all of my lab mates. The open culture of ideas, the readiness



vi

of others to offer help or advice, and the general sense of camaraderie make it a pleasure to work

here.

Finally, I would like to thank my advisor Konrad. It’s difficult for me to express how grateful

I am for the chance to work with him. Rather than attempt in this public setting, I will just say

“Konrad: thank you.”



Contents

Chapter

1 Introduction 1

2 Quantum information processing 6

2.1 The road to quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Quantum error correction and hardware architectures . . . . . . . . . . . . . . . . . 8

2.3 Circuit quantum electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Lorentz reciprocity 15

3.1 The scattering matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 The Lorentz reciprocity theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Methods for breaking Lorentz reciprocity . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Magneto-optic devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Nonlinear devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.3 Active devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.4 Connection with time-reversal symmetry . . . . . . . . . . . . . . . . . . . . . 27

3.4 Common non-reciprocal devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Gyrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Isolators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 Circulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



viii

4 Theory of operation 31

4.1 Model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Superconducting implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Multiplying elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.3 Assembly of the full circulator . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Circuit analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Circulator Layout 45

5.1 Design philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 The Nb/AlOx/Nb trilayer process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Josephson junctions in the trilayer process . . . . . . . . . . . . . . . . . . . . 48

5.2.2 SQUID arrays in the trilayer process . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.3 Additional wiring layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.4 Best practices for trilayer process layout . . . . . . . . . . . . . . . . . . . . . 52

5.3 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Capacitor design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Use of normal metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.3 Bias line design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Design iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.1 Generation I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.2 Generation II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.3 Generation III. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.4 Generation IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Experimental results 77

6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Tune-up procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



ix

6.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.1 Device limitations and deviation from theoretical models . . . . . . . . . . . 86

6.4.2 Comparison with the fourth-generation, version b device . . . . . . . . . . . . 89

6.4.3 Filtering, attenuation, and power-consumption considerations, in the context

of scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Conclusion and Outlook 94

Bibliography 98

Appendix

A Graph theory eigenfrequency analysis for a half-circulator 110

B Design rules of the NIST Nb trilayer process 115

C Measurement details 119

D Calibration of network parameter measurements 121

D.1 Transmission calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D.2 Re
ection calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D.3 Calibration of group delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



Tables

Table

3.1 Symbols and scattering matrices for three common non-reciprocal devices . . . . . . 28

5.1 Layer stackup for the NIST niobium trilayer process . . . . . . . . . . . . . . . . . . 47

5.2 Design features and performance of the �rst-generation circulator . . . . . . . . . . . 63

5.3 Design features and performance of the second-generation circulator . . . . . . . . . 65

5.4 Design features and performance of the third-generation circulator . . . . . . . . . . 71

5.5 Design features and performance of the fourth-generation circulator . . . . . . . . . 75

5.6 Design features and performance of the alternate design of the fourth-generation

circulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Power budget for an active circulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B.1 Design rules of the NIST niobium trilayer process . . . . . . . . . . . . . . . . . . . . 115



Figures

Figure

1.1 A single-mode Fabry-Perot cavity exhibits a fundamental challenge of precision mea-

surement: isolating the experimental system from the environment, while maintain-

ing the ability to rapidly control or measure it . . . . . . . . . . . . . . . . . . . . . . 2

2.1 The path to fault-tolerant quantum computation . . . . . . . . . . . . . . . . . . . . 7

2.2 Signal-routing of a circulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Schematic illustrating a simpli�ed measurement setup for readout of a superconduct-

ing qubit in the circuit quantum electrodynamics architecture . . . . . . . . . . . . . 13

3.1 Diagram illustrating a bounded network which electromagnetic signals can enter or

exit through guided modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Faraday rotation and optically active media . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Requirements for non-reciprocity in cascades of linear systems . . . . . . . . . . . . . 23

4.1 Model system which demonstrates gyration with frequency-conversion and delay . . 32

4.2 Superconducting lumped-element implementation of multipliers and delays . . . . . 35

4.3 Model system realized as a lumped-element network of capacitors and dynamically

tunable inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Schematic for a circuit analysis of the circulator . . . . . . . . . . . . . . . . . . . . . 41

5.1 Josephson junctions in the Niobium trilayer process . . . . . . . . . . . . . . . . . . 48



xii

5.2 Layer stack-up of SQUIDs in the Niobium trilayer process . . . . . . . . . . . . . . . 50

5.3 Layout of SQUIDs in the Niobium trilayer process . . . . . . . . . . . . . . . . . . . 51

5.4 Capacitor design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 E�ect of normal metal on the stability of a circulator's resonant modes . . . . . . . . 57

5.6 Bridge circuit design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.7 Optical micrograph of the �rst-generation circulator . . . . . . . . . . . . . . . . . . 62

5.8 Hysteresis in the �rst-generation circulator with respect to sweep-direction of bias

currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.9 AC modulation of the �rst-generation circulator . . . . . . . . . . . . . . . . . . . . . 66

5.10 Optical micrograph of the second-generation circulator . . . . . . . . . . . . . . . . . 67

5.11 Performance of the second-generation circulator . . . . . . . . . . . . . . . . . . . . . 68

5.12 Angular dependence of the \edge" feature in the second-generation circulator . . . . 70

5.13 Optical micrograph of the third-generation circulator . . . . . . . . . . . . . . . . . . 72

5.14 Performance of the third generation circulator . . . . . . . . . . . . . . . . . . . . . . 73

5.15 Optical micrograph of the fourth-generation circulator . . . . . . . . . . . . . . . . . 74

5.16 Optical micrograph of the alternate design of the fourth-generation circulator . . . . 76

6.1 Experimental schematic for circulator measurements . . . . . . . . . . . . . . . . . . 78

6.2 Measurements of the circulator's tunable resonant-delay . . . . . . . . . . . . . . . . 79

6.3 A dynamically recon�gurable circulator . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Scattering parameter measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Circulator tunability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Circulator theory and experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.7 Scattering parameters of the fourth-generation circulator, version b . . . . . . . . . . 89

6.8 Performance of the fourth-generation circulator, version b . . . . . . . . . . . . . . . 90

7.1 Schematic for a lossless broadband superconducting circulator . . . . . . . . . . . . . 96



xiii

A.1 Analytical circuit analysis of a half circulator . . . . . . . . . . . . . . . . . . . . . . 111

C.1 Detailed experimental schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



List of Symbols

The tables below catalogue the symbols used throughout this thesis. They are organized

by the chapters in which the symbols are introduced (and not the chapters in which the symbols

appear). For example,kB is introduced as Boltzmann's constant in Chapter 2 and appears only in

the table of symbols for Chapter 2, despite being used in later chapters as well. Although e�orts

were made to keep notation unambiguous, some symbols are used to represent di�erent quantities

in di�erent chapters.

Chapter 1

Tl transmission of the left mirror in Fig. 1.1

Tr transmission of the right mirror in Fig. 1.1

a annihilation operator for the cavity mode in Fig. 1.1

ain incoming �eld in Fig. 1.1

aout outgoing �eld in Fig. 1.1

� external coupling rate for the cavity mode in Fig. 1.1

! c resonant frequency of the the cavity mode in Fig. 1.1

Chapter 2

kB Boltzmann's constant

T temperature

~ Planck's constant divide by 2�

! frequency scale for a weakly anharmonic microwave resonator



xv

! q transmon qubit frequency (frequency separation between the ground and

�rst excited states of the transmon)

! r frequency of the microwave resonator coupled to the transmon qubit

a annihilation operator for the microwave resonator coupled to the transmon

qubit

� z Pauli z operator for the transmon qubit

� frequency scale for the dispersive coupling between the transmon qubit

and the microwave resonator

Chapter 3


 s surface that bounds the network in Fig. 3.1

� mode index for the guided modes in Fig. 3.1

ET;� component of the electric �eld tangential to the waveguide carrying the

� th guided mode

HT;� component of the magnetic �eld tangential to the waveguide carrying the

� th guided mode

eT;� component of the electric �eld tangential to the waveguide carrying the

� th guided mode with transverse dependence

hT;� component of the magnetic �eld tangential to the waveguide carrying the

� th guided mode with transverse dependence

a� complex amplitude of the wave travelling into the network in the � th waveg-

uide

b� complex amplitude of the wave travelling out of the network in the � th

waveguide

� � propagation constant for the � th guided mode

� �� the Kronecker delta

P the net power entering the network in Fig. 3.1



xvi

S the scattering matrix

a0 excitation state of a �rst hypothetical scattering process

a00 excitation state of a second hypothetical scattering process

b0 output state of a �rst hypothetical scattering process

b00 output state of a second hypothetical scattering process

E0 electric �eld of a �rst hypothetical scattering process

E00 electric �eld of a second hypothetical scattering process

H 0 magnetic �eld of a �rst hypothetical scattering process

H 00 magnetic �eld of a second hypothetical scattering process

� (H ) magnetic permeability tensor

� (E) electric permittivity tensor

! frequency of the harmonic �elds

A a general linear system

B a second general linear system

hA impulse response ofA

hB impulse response ofB

u initial state of a linear system

y intermediate state of a linear system

z �nal state of a linear system

t, 0t0, � , � 0, � various variables for time

hBA impulse response for the composite-system formed by the cascade of sys-

tems A and B

hAB impulse response for the composite-system formed by the cascade of sys-

tems B and A

! i resonant frequency of thei th mode in a system of parametrically-coupled

resonant modes



xvii

� i linewidth of the i th mode in a system of parametrically-coupled resonant

modes

H I interaction Hamiltonian for a system of parametrically coupled modes in

the resolved sideband limit

� phase of the beamsplitter interaction between modesi and j

ai annihilation operator for the i th mode in a system of parametrically-

coupled resonant modes

Chapter 4

! p frequency of the input microwave �eld


 frequency of bias signal for the multiplying elements

� phase of a multiplying element's bias signal

� duration of the delay provided by the delay element

l+ inductance of one pair of inductors in a tunable inductive bridge

l � inductance of a second pair of inductors in a tunable inductive bridge

� imbalance parameter for a tunable inductive bridge

l0 base inductance parameter for a tunable inductive bridge

c capacitance of the capacitor in Fig. 4.2b

� u uniform magnetic 
ux created by an o�-chip magnetic coil, used to tune

an inductive bridge realized with SQUIDs

� g gradiometric magnetic 
ux created by an on-chip bias line, used to tune

an inductive bridge realized with SQUIDs

Z0 characteristic impedance of a transmission line

! angular frequency of an input microwave tone

i
p

� 1

l inductance of anN SQUID array threaded by magnetic 
ux �

N number of SQUIDs in an array with inductance l



xviii

� 
ux threading the SQUIDs in an array with inductance l

' 0 reduced 
ux quantum ~=(2e)

I 0 Josephson junction critical current

� phase of the gradiometric bias 
ux

� 0 amplitude of the sinusoidally varying imbalance parameter�

� � � u=� 0

� � � g=� 0

� 0 the 
ux quantum 2 �' 0 = h=(2e)

Jn the nth Bessel function of the �rst kind

\ phase (of a complex number)

! 0 resonant frequency of the resonant delay

I i current through port i

� i branch 
ux across port i

I l;e even current through the left port

I l;o odd current through the left port

I r;e even current through the right port

I r;o odd current through the right port

� l;e even branch 
ux through the left port

� l;o odd branch 
ux through the left port

� r;e even branch 
ux through the right port

� r;o odd branch 
ux through the right port

I + co-rotating current through ports q and p

I � counter-rotating current through ports q and p

� + co-rotating branch 
ux through ports q and p

� � counter-rotating branch 
ux through ports q and p

A , B , C, D block matrices

Y admittance matrix



xix

So odd scattering matrix

Se even scattering matrix

U unitary (change-of-basis) matrix that transforms between numbered ports

and left/right, even/odd ports

Chapter 5

� r relative permittivity of the silicon wafer in the NIST Nb trilayer process

Tc transition temperature of a superconductor

L inductance of a superconducting loop

B0 magnitude of a magnetic �eld

w width of a microstrip

e electron charge

Q quality factor

l length of a resistor parallel to the direction of current 
ow

� c \clean" coherence length

ln mean free path

vF Fermi velocity

� d \dirty" coherence length

I n critical current of an SNS tunnel junction

Rn room-temperature resistance of an SNS junction

l � inelastic scattering length

EJ Josephson energy of an SNS junction

R low-temperature resistance of an SNS junction


 frequency of the on-chip gradiometric 
ux lines

I ind current induced in the microwave lines by the RF bias signals

M A mutual inductance between a bias line and a large circuit loop

M a mutual inductance between a bias line a SQUID loop



xx

A area of a large circuit loop

a area of a SQUID loop

E EMF around a large circuit loop

I g current amplitude in the on-chip bias line

p participation ratio for the large circuit loop

ZA impedance of the large circuit loop

I s critical current of a SQUID

Bg magnetic �eld created by the shielded, on-chip bias line

r distance from the shielded bias line

� separation between the inner and outer lines in the shielded con�guration

� edge
g amplitude of gradiometic 
ux where the \edge" feature appears

Chapter 6

~� u e�ective uniform magnetic 
ux used for the predictions in Fig. 6.2

R re
ection coe�cient

T transmission coe�cient

g frequency splitting of the circulator's resonant modes

SAN
I sideband noise power caused by amplitude 
uctuations of the gradiometric


ux

SPN
I sideband noise power caused by phase 
uctuations of the gradiometric 
ux

I 1dB signal current in the device at its 1 dB compression point

SI Johnson noise current spectral density

n photons of added noise

Chapter 7

Zm impedance transformer in Fig. 7.1

T modulation period 2�= 




xxi

Appendix A

I i current in the i th element of Fig. A.1

Vi voltage in the i th element of Fig. A.1

V b vector of branch voltages

V c vector of chord voltages

I b vector of branch currents

I c vector of chord currents

r resistance of the resistors in Fig. A.1

l1 inductance of the �rst kind of inductors in Fig. A.1

l2 inductance of the second kind of inductors in Fig. A.1

c capacitance of the capacitors in Fig. A.1

F matrix relating chord currents to branch currents through Kircho�'s cur-

rent law

Zb matrix of branch impedances

Zc matrix of chord impedances

s Laplace variable

si i th eigenfrequency of the circuit

Appendix C

Tn Noise temperature of the input lines

Appendix D

Rbal measured re
ection of the circulator when all bridges are balanced

G gain of the re
ection measurement chain

� bal re
ection coe�cient of the circulator when all bridges are balanced

Sbal scattering matrix of the circulator when all bridges are balanced



xxii

l e�ective inductance of one arm of an inductive bridge in the circulator's

balanced (unbiased) state

Rop measured re
ection during operation

� op re
ection coe�cient during operation

� duration of the circulator's resonant delay

� d electrical delay of the measurement chain



Chapter 1

Introduction

The idea to use quantum systems for computation was �rst proposed in the 1980s by notable

scientists such as Feynman [1, 2] and Deutsch [3, 4]. The notion gained major traction in 1994

when Peter Shor showed how such a machine could e�ciently factor composite integers [5]. (The

RSA encryption scheme [6]|a widely utilized encryption method for commerce and other forms

of sensitive communication|is founded on the di�culty of this task.) Factoring large composite

integers is but one example from a list of di�cult problems that could be solved by these e�orts:

others include e�cient search algorithms [7], quantum chemistry and catalyst design [8, 9, 10], and

communication whose security is guaranteed by physical laws [11]. For these reasons, e�orts to

create analog and digital quantum computers, quantum simulators, and quantum annealers span

many realms of physics.

Across all of the proposed platforms for constructing a quantum computer, one of the key

challenges is engineering a quantum system which is both well isolated from its environment (to

protect it from dissipation and decoherence) and rapidly measurable (and controllable). This

challenge is not unique to problems speci�c to quantum computing; rather, its roots extend into

the theory of quantum measurements. According to Heisenberg, measurements of a system are

perturbing, as illustrated famously (and controversially) by his microscope thought experiment [12].

The problem is also present in purely classical systems. Heuristically, oscillators that interact

weakly with their environment respond slowly to control �elds, and oscillators that respond quickly

to control �elds rapidly dissipate energy into their environment. This is no conspiracy: from the
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perspective of the oscillator, the experimentalist is a part of the environment.

To illustrate this issue more quantitatively, consider a system formed by a single electromag-

netic mode in a Fabry-Perot cavity, where the left mirror is perfectly re
ective (vanishing trans-

mission) and the right mirror has a transmission Tr (Fig. 1.1). The quantum Langevin equations

Figure 1.1: A single electromagnetic mode in a Fabry-Perot cavity, characterized by the annihilation
operator a. The left mirror is perfectly re
ective, and the right mirror has transmission Tr , which
couples the cavity mode to an incoming �eld ain and an outgoing �eld aout .

that describe the time-evolution of the cavity �eld a and the outgoing �eld aout are [13]

_a = i! ca �
�
2

a +
p

�a in (1.1)

aout =
p

�a � ain : (1.2)

Here, ! c is the frequency of the cavity mode, and� is a rate determined byTr which describes the

coupling between the cavity and the incoming and outgoing �eldsain and aout .

In this example, the cavity mode is the system of interest, which an experimentalist may

hope to study via measurements of the outgoing �eldaout . The prospects for that aspiration can

be understood by examination of two limiting cases, in which the transmission of the right mirror

is small or large.

When Tr approaches 0, the coupling rate� also vanishes. This is bene�cial from the perspec-

tive of isolating the system of interest from its environment: the dynamics of the cavity mode, given

in Eq. (1.1), are now uncoupled from the external �eld ain . Unfortunately, the experimentalist has

also forfeited the ability to infer the state of the cavity from measurements of the outgoing �eld

aout (Eq. (1.2)).
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In the opposite limit where Tr is large, � may become non-negligible with respect to the

cavity frequency ! c. The outgoing �eld now contains considerable information about the state of

the cavity mode. The cost of this encoding, however, is that the time-evolution of the cavity mode

is now subject to the \slings and arrows" of the environment, in the form of the incoming �eld ain .

The link between the environment's e�ect on the cavity mode (through ain ) and the cavity

mode's radiation into the environment (through aout ) is an instance of the 
uctuation-dissipation

theorem [14, 15]. The right mirror's transmission creates dissipation in the cavity mode (which

may be measured and recorded by an experimentalist) but also causes 
uctuations in the mode,

driven by the incoming �eld.

As an aside, we note that in this example, measurement of the cavity state requires that it

decays into a propagating mode. This is not a general requirement for measurement of a quan-

tum system. For example, quantum non-demolition measurements [16, 17] allow measurement

without dissipation [18]. Measurements are not necessarily accompanied by dissipation; they are

accompanied by disturbance.

Returning to the measurement of the cavity mode, the examined limiting cases of large

and small � suggest that our measurement dilemma cannot be resolved by optimization of the

cavity's parameters. The solution is external, and involves directing the outgoing �eld aout to

the measurement apparatus, while ensuring that the incoming �eldain is supplied by a very cold

bath. In a classical analysis, this strategy can protect the cavity mode from its environment, while

still allowing an experimentalist to study the state of the mode. Quantum mechanically, vacuum


uctuations persist even at zero temperature. But the in
uence of these vacuum 
uctuations on the

cavity's dynamics are small compared to, for example, the black-body radiation of the measurement

apparatus.

In the vacuum of free-space, however, Maxwell's equations make this kind of directional

signal routing impossible. Practically, an interaction between electromagnetic waves and matter

is required to separate signals based on their direction of propagation. Devices which do so are

called non-reciprocal, in reference to their violation of Lorentz reciprocity [19]. In the context of
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quantum networks, non-reciprocal devices serve a variety of purposes beyond the fundamental one

described above. For example, they enable protocols for the generation of remote entanglement [20,

21, 22] and proposals for the construction of rich quantum many-body systems [23] that rely on

directional signal routing, and allow for the use of quantum-limited re
ection ampli�ers [24, 25].

Such applications impose a strict set of design constraints: for quantum measurements, the ideal

non-reciprocal device has no loss and no added noise. These requirements make familiar non-

reciprocal devices like diodes and op-amps unsuitable for use with quantum systems.

More broadly, enforcing the unidirectional 
ow of energy and information is a critical sig-

nal processing primitive in a variety of networks. A common use in telecommunication networks,

for instance, is antennae duplexing, in which the incoming and outgoing signals from an antenna

are separated, allowing for simultaneous transmission and reception. Given their utility, it should

come as no surprise that commercial non-reciprocal devices have been developed across the elec-

tromagnetic spectrum, and are widely used in a variety of experimental contexts. For example,

in experiments on quantum superconducting circuits|one of the most promising platforms for

the development of a quantum computer|non-reciprocal devices are ubiquitous. State-of-the-art

commercial non-reciprocal devices, however, are constructed with large permanent magnets and

gyrotropic media, precluding their miniaturization for on-chip applications, as well as their con-

struction with superconducting materials.

The optimal architecture for a quantum computer built with superconducting circuits is very

much still an open research question. The surface code, though, is one of the leading contenders,

and would require over a hundred million physical qubits to accomplish the task [26].1 As each

of these qubits must be simultaneously shielded from its environment and controlled in hardware,

the need for a scalable non-reciprocal technology is pressing.

To address that need we have developed an alternative method for routing propagating elec-

tromagnetic �elds with minimal loss or added noise, which uses no permanent magnets and can be

1 This estimate is for a computer that could execute a practical quantum computation|in this case, Shor's
algorithm on an integer with 600 digits|in approximately one day.
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integrated on-chip with superconducting circuits in a scalable way. In this thesis we describe the

design, construction, and measurement of a non-reciprocal device which is based on this method.

Design goals for the circuit were set with a superconducting qubit application in mind, and

in the context of modular quantum networks. But the device will also �nd use in other low-

temperature microwave networks, especially ones which require high measurement e�ciency. Ex-

amples include rapid single 
ux quantum logic [27]; microwave kinetic inductance detectors [28],

transition edge sensors [29] and other astronomical detector arrays; dark-matter searches [30]; and

tests of Lorentz invariance with high-quality microwave resonators [31].

The structure of the thesis is as follows: Ch. 2 gives a brief overview of quantum information

processing, and e�orts to process quantum information with superconducting circuits, broadly

referred to as circuit quantum electrodynamics. The assumptions and consequences of the Lorentz

reciprocity theorem are discussed in Ch. 3, along with other proposals and demonstrations for

creating non-reciprocal devices. Ch. 4 describes the theory of operation for our device, and Ch. 5

describes its realization as a superconducting circuit, as well as relevant layout considerations.

Experimental results are summarized in Ch. 6. Finally, conclusions and an outlook for the work

are presented in Ch. 7.



Chapter 2

Quantum information processing

The enormous computational power of a quantum processor has attracted interest from a

variety of sub�elds within physics and other disciplines. In the atomic domain, work is underway

to store quantum bits of information (qubits) in the electronic states of trapped ions and Ryd-

berg atoms. Notable solid-state platforms include nitrogen (and other) vacancy centers, in which

information is encoded in the composite spin of the vacancy; semiconductor quantum dots, where

the qubit is formed by the singlet state and the projection-less triplet state of two con�ned elec-

tron spins; and superconducting circuits, where information is stored in the ground or �rst excited

state of an anharmonic microwave circuit. Many other platforms are also being investigated (op-

tical, NMR, etc); Refs. [32, 33] provide a high-level overview of these approaches. Even within

the experimental systems noted above, there exist a variety of ways to encode a bit of quantum

information. 1 More exotic proposals also exist, in which the braiding of topological excitations

with non-Abelian statistics provides the basis for computation [37]. While the listed platforms and

physical realizations of a qubit are intended to be representative of the �eld's breadth, they are far

from exhaustive.
1 For example, some researchers in the �eld of superconducting circuits use microwave resonators as the memory

elements, and construct the computational basis fj 0i = j� i + j� � i ; j1i = ji� i + j� i� ig with even superpositions of
coherent states j� i |so-called cat codes [34], named for the cat states [35] that comprise them. Other resonator-based
schemes also exist; Ref. [36] provides an overview and comparison of several prominent codes.
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2.1 The road to quantum computation

Across all of these platforms, however, the ultimate goal of fault-tolerant quantum computa-

tion is shared. Fig. 2.1, from Ref. [38], illustrates one conception of the path to this goal.

Figure 2.1: One conception for the path to fault-tolerant quantum computation, divided into seven
steps. The y-axis of the graphic illustrates the relative complexity of each stage|advancing along
the path requires mastery of the previous steps. The x-axis, time, indicates that active e�orts to
improve at each stage are ongoing. After [38].

The �rst step involves operations (also known as gates) on single physical qubits. This is

followed by algorithms (long sequences of gates) on multiple physical qubits. Completing these

initial two steps requires satisfaction of the �rst �ve DiVincenzo criteria [39] (a list of �ve necessary

conditions for constructing a quantum computer, plus two additional conditions for quantum com-

munication). Following this is a more advanced stage, requiring quantum non-demolition (QND)

measurements of qubits and advanced control. This stage enables, for example, QND measurements

of error syndromes like parity, and the stabilization of arbitrary quantum states. Demonstrations

of this third stage have been made with trapped-ions [40], Rydberg atoms [41], Nitrogen vacancy

centers [42], and superconducting qubits [43, 44, 45].

The fourth step is the creation of a logical memory with a lifetime that exceeds the physical

qubits which comprise it. This step, which entails encoding information redundantly among mul-
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tiple physical qubits and actively correcting for errors in that encoding, is critical, as it allows the

preservation of quantum information for timescales long enough to enable meaningful computation.

Two groups have demonstrated this stage with superconducting circuits [46, 47].

The �nal two stages|operations on single logical qubits and algorithms on multiple logical

qubits|mirror the initial two stages of the progression, but for logical qubits in place of physical

qubits. One caveat for these steps: they must be completed without degrading the lifetime of the

logical qubits. The �rst demonstrations of operations on single logical qubits [48, 49] were made

this year with superconducting circuits. As of yet, no experimental platforms have demonstrated

the sixth stage.

Naturally, the di�erent experimental platforms have their speci�c a�ordances and drawbacks.

The purpose of Fig. 2.1 is not to compare progress among sub�elds, but rather to emphasize the

commonalities among the di�erent approaches, highlight the progress that the �eld as a whole

has made, and motivate superconducting circuits as aviable platform for quantum information

processing. Indeed its promise as a sub�eld has attracted interest outside the academic realm: a

variety of private enterprises (IBM, Google, Rigetti Computing, DWAVE Systems, etc.) are now

actively engaged in the construction of a superconducting quantum computer.

2.2 Quantum error correction and hardware architectures

As e�orts in industry and academic settings look forward and plan their ascent to the upper

echelon's of Fig. (2.1), their hardware requirements will depend strongly on the architectures they

employ, especially in the context of error correction. A detailed review of these proposals is beyond

the scope of this thesis, but a brief overview is helpful in estimating the hardware resources required

for a fault-tolerant quantum computer.

It is now widely accepted that error correction will occupy a majority of the resources of

a fault-tolerant quantum computer [38]. One approach to error-correction involves the use of

stabilizer codes [50, 51, 52], in which a logical qubit is formed by redundantly encoding information

in a register of entangled physical qubits. The Steane code, for example, can be implemented with
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seven physical qubits in its register [51]. Under the assumption that error rates are su�ciently low

such that at most one error occurs during each pass of the code, errors are detected by measuring

collective properties of the register (the eponymous \stabilizer operations"). Additional gates can

then be applied to correct the error, if needed.

The assumption that errors occur singly is, however, quite stringent. For the range of cur-

rently conceivable error rates, its satisfaction requires that the protocol be nested, such that each

element in the error correcting register is itself a logical qubit, stabilized by its own register, which

could itself be composed of logical qubits, and so on. As the stabilizer codes are also fairly op-

eration intensive|that is, they drastically increase the number of gates required to implement

an algorithm|stabilizer codes are recognized as a feasible but challenging way to perform error

correction.

A more recent but related approach is known as the surface code, in which identical physical

qubits are arranged in a rectangular array, which forms a surface [53, 26]. Connecting groups

of four nearby qubits in a particular way allows rapid measurements of their parity to detect

errors. The advantages of this approach are its 
at hierarchy, which can be easily scaled once

demonstrations of a unit cell are made, and its relatively relaxed requirements for single-qubit

error rates (with respect to the stabilizer codes, for example). The drawbacks, however, are that

a very large number of qubits (current estimates are on the order of 108 or 109 physical qubits for

a modest quantum computation [26]) are required to reach a fault-tolerant level with the protocol,

and that these bene�ts do not become substantial in systems with less than hundreds or thousands

of physical qubits [38]. Nonetheless, e�orts to demonstrate proofs-of-principle are already underway

at Google [46] and IBM [54]. Ref. [55] gives a good overview and summary of the technical challenges

relevant to this architecture.

A third strategy, which may be called the modular approach, is based on networks of nested

modules, which rely heavily on hierarchy. In this scheme, information is stored in memory qubits

which interact with the greater network via intermediate communication qubits. Computation is

performed via manipulations of the communication qubits, which distributes entanglement across
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the network. In some sense, this strategy represents the antithesis of the surface code approach: its

a�ordances are the capability to test and iterate individual modules and processes, and possibly a

lower requirement of physical qubits, at the cost of increased architectural and process complexity.

Ultimately, as with the choice of experimental platforms, selection of the optimal architecture

for fault-tolerant quantum computing is an open question. But while the precise structure is yet

to be determined, it seems clear that the necessary hardware resources will be immense.

2.3 Circuit quantum electrodynamics

To provide a more concrete notion of these hardware needs, we specialize now to a discussion

of quantum information processing with superconducting circuits. Detailed reviews on this subject

may be found elsewhere [56, 57]. Here we provide only an informal introduction, intended to give

context for the design of a scalable circulator for superconducting quantum circuits.

The qubits in this platform are usually formed by slightly anharmonic electromagnetic oscil-

lators. At su�ciently low temperatures, kB T < ~! , the quantized energy levels in these circuits are

resolvable. Here,kB is Boltzmann's constant, T is the temperature of the environment,~ is Plank's

constant over 2� , and ! is a frequency scale for the anharmonic oscillator. Modern dilution refrig-

erators allow for experiments at temperatures in the tens of mK, which makes the energy available

from the thermal bath about ten times less than a photon at 5 GHz. Hence, the oscillators are

designed to have resonant frequencies in the microwave range, typically between 1 and 20 GHz.

Like atoms, superconducting qubits come in a variety of forms. Most, though, can be mod-

elled as a network of capacitors, inductors, and Josephson junctions. The Josephson junction [58]

provides a dissipationless nonlinearity to the circuit, which breaks the harmonic spacing of its en-

ergy levels and allows individual transitions to be addressed with coherent microwave tones. A

qubit can then be created by restricting attention to a pair of energy eigenstates (typically, the two

lowest energy levels).

Readout of such a qubit, in the circuit quantum electrodynamics (cQED) scheme [59], is
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accomplished by dispersively coupling the qubit to a microwave cavity.2 In the dispersive limit,

the cavity's resonant frequency is dressed by the state of the qubit, and a transmission measurement

of the cavity can therefore indicate the state of the qubit in a QND manner [60, 61].

For a transmon3 in the dispersive limit, the e�ective Hamiltonian that governs the qubit-

cavity system is given by [62]

H = ~! q� z + ~(! r + �� z) âyâ;

= ~
�

! q + � âyâ
�

� z + ~! r âyâ:
(2.1)

Here ! q is the qubit frequency (the di�erence between the ground and �rst excited states of the

transmon), ! r is the resonator's frequency,â is the annihilation operator for the cavity, � z is the

Pauli z operator for the qubit, and � is the dispersive shift|a parameter that characterizes the

coupling between the qubit and the cavity. In the �rst line of Eq. (2.1), the Hamiltonian is factored

to make explicit the qubit-state-dependent dressing of the cavity's resonant frequency.

The same e�ect, however, also dresses the qubit frequency by an amount proportional to the

photonic occupation in the cavity, as shown in the second line of Eq. (2.1). This allows the qubit

to act as a photon counter/detector [22], and reveals the importance of controlling the photonic

occupation in the cavity: a \hot" cavity, occupied by a high-temperature thermal state, will contain

a broad distribution of Fock states, e�ectively broadening the qubit transition. This e�ect is so

pronounced that superconducting qubits have become the most sensitive thermometers in these

experiments. Measurable reductions in qubit coherence are observed with average cavity-photon

occupations of 10� 3 [63].4

In this light, one can see that the need to enforce the directional propagation of signals

in cQED measurements arises directly from the Hamiltonian in Eq. (2.1). To probe the state of

the qubit, electromagnetic waves departing the resonant cavity must be directed to a microwave

2 Typically a distributed resonator formed, for example, by a quarter-wave transmission line, or a literal (three-
dimensional) metal cavity.

3 One example, chosen from a selection of di�erent superconducting qubits (see, for example, Sec. 2 in Ref. [57]).
4 As an aside, it may be noted that in some implementations this scheme is inverted, and a microwave resonator

serves as the memory element, while a qubit such as the transmon provides a dispersive nonlinearity that allows
individual transitions in the resonator to be addressed [64]. This is advantageous as coherence times in microwave
cavities currently exceed those in superconducting qubits [65].
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receiver. At the same time, however, electromagnetic waves propagating toward the cavity should

originate from a cold bath|in practice, a 50 Ohm resistor to ground, well-thermalized at the base

of a dilution refrigerator|to avoid dephasing the qubit.

Experimentally, this uni-directional signal 
ow is enforced by non-reciprocal circuit elements

known as circulators and isolators. Isolators are impedance-matched two port devices which trans-

mit a signal incident on one of their ports, but absorb signals incident on their other port. Cir-

culators are impedance-matchedn-port devices with three or more ports (n � 3), which transmit

signals incident on port m � n to port 1 + ( m modulo n): they \circulate" an incident signal,

directing it out of one of the two adjacent ports.

Fig. 2.2 depicts this process for ann = 3 port circulator. In Fig. 2.2a, a signal incident on

the circulator's �rst port is transmitted to its second port. In Fig. 2.2b, a signal incident on port

2 is routed to port 3. Fig. 2.2c shows a signal incident on port 3 directed to port 1. A circulator

may be con�gured as an isolator by terminating all but two adjacent ports in 50 Ohms.

Figure 2.2: Schematic displaying the way in which ann = 3 port counter-clockwise circulator (circle
with blue counter-clockwise arrow) routes incident �elds. (a) A �eld incident on the circulator's
�rst port is transmitted out the second port. (b) A �eld incident on the second port is routed out
the third port. (c) A �eld incident on the third port is routed out the �rst port.

To illustrate how circulators and isolators are utilized in the cQED architecture, Fig. 2.3

shows a simpli�ed experimental schematic for readout of a superconducting qubit coupled to a

resonant cavity. To reduce the thermal population of states in the qubit-cavity system, the devices

are mounted at the base of a dilution refrigerator. In the readout procedure, a signal generator at

room temperature �rst creates a microwave tone which propagates to the base of the refrigerator
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and impinges on the weakly-coupled port of the resonant cavity (depicted as a Fabry-Perot cavity

in Fig. 2.3). The tone then traverses the cavity, and a portion of its power exits out the second,

strongly-coupled cavity port. Here the tone is transmitted through an isolator and directed by a

circulator to a \quantum" re
ection ampli�er, where the signal is re
ected with gain of approxi-

mately 20 dB. Here, \quantum" is used to mean an ampli�er with added noise approximately equal

to half a photon [66]|for example, a Josephson parametric ampli�er [24] or a Josephson parametric

converter [25]. Next, the circulator routes the tone through a second isolator, is ampli�ed a second

time by a high-electron mobility transistor (HEMT) ampli�er, and �nally propagates up the fridge

for further room-temperature ampli�cation and digitization. In various schemes, the phase or am-

plitude of the transmitted tone can be made to encode the state of the qubit, via the interaction

described in Eq. (2.1).

Figure 2.3: Simpli�ed experimental schematic illustrating readout of a superconducting qubit in a
dilution refrigerator. Signal �ltering and attenuation, and control lines of the re
ection ampli�er,
are omitted for clarity. The superconducting qubit (green cross with capacitive paddles) is situated
inside a microwave resonant cavity (illustrated graphically by the green Fabry-Perot resonator)
with two ports. A measurement of the transmission through the cavity can encode the state of
the qubit. Circulators and isolators are used to direct the signal that exits the cavity out to a
detector, while ensuring that the reverse-propagating signals originate from a cold-bath (and are
not, for example, carrying the Johnson noise of the HEMT ampli�er, or the strong pump tones in
the re
ection ampli�er).
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In this measurement, the signal routing capabilities of circulators are used in several ways,

as evidenced by the multiple circulators employed in the readout of a single qubit. The �rst

circulator, con�gured as an isolator, directs re
ected signals and the strong pump tones powering

a quantum re
ection ampli�er into a cold bath (serving as an entropy dump), while supplying the

strongly coupled port of the qubit/cavity system with Johnson noise from this cold bath. The

second circulator separates the incoming and outgoing signals for a quantum re
ection ampli�er,

transforming that one-port device into a usable ampli�er. A third circulator, again con�gured as

an isolator, directs the Johnson noise emitted by the HEMT ampli�er into an entropy dump, and

replaces it with the Johnson noise from a cold bath.

It should be emphasized that the schematic in Fig. 2.3 illustrates the need for three circu-

lators in a relatively simple single-qubit experiment. Experiments with multiple qubits, or ad-

ditional requirements for directional signal routing, will employ more circulators. For example,

a recent demonstration of the generation of remote entanglement between two superconducting

qubit/cavities, using a third qubit/cavity as a detector, employed seven circulators [22]. Even with

multiplexed readout and broadband (several GHz) circulators, a surface code quantum computer

with modest capabilities [26] could still easily require millions of circulators.
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Lorentz reciprocity

First observed in optical systems, where it is referred to as Helmholtz reciprocity, Stokes-

Helmholtz reciprocity, or the principle of reversibility, Lorentz reciprocity can be summarized collo-

quially as \if I can see you, you can see me" [67, 68]. In a more general sense, Lorentz reciprocity is

the electromagnetic version of a symmetry common to a variety of physical systems, which implies

that the response at point a due to an impulse at b is identical to the response atb due to an

impulse at a. The prevalence of reciprocity theorems stems from the invariance of many systems

under time-reversal [69].

As in the electromagnetic case, breaking reciprocity can be of fundamental scienti�c interest

and great technological use. E�orts to generate non-reciprocity are therefore also underway in, for

example, acoustical and mechanical systems [70, 71]. Connections between non-reciprocity and the

one-way propagation of edge-states in topological systems have also been observed, and are driving

research in topological acoustics [72, 73], metamaterials [74], and non-reciprocal devices based on

the quantum Hall e�ect [75, 76, 77].

In the electromagnetic context, Lorentz reciprocity is essentially a statement about the time-

reversibility of Maxwell's equations [19], which occurs under certain assumptions: in a framework

where electromagnetic �elds propagate in guided modes into and out of a bounded network at ports,

Lorentz reciprocity implies that the scattering between a pair of ports is invariant upon exchange

of the source port and the detection port [78, 79]. This statement can be proven and expressed

succinctly in a scattering matrix formalism, which we now introduce, following Ref. [80].
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3.1 The scattering matrix

Consider a bounded region of space, enclosed by the surface 
s, which contains a linear

electrical network with time-independent components (Fig. 3.1). Energy can be exchanged between

the network and the environment (the region outside 
 s) only through lossless and reciprocal

waveguides, which we refer to as ports. (We assume the surface is su�ciently large such that

radiative modes may be neglected, and shaped such that each waveguide is normal to 
s).

Figure 3.1: Model of an electrical network as a region of space bounded by the surface 
s. Electro-
magnetic signals can propagate into and out of the network in guided modes, referred to as ports.
After [80].

For each waveguide, we imagine a coordinate system with thez-axis oriented along the

waveguide, and directed into 
 s. These waveguides carry guided modes which are eigensolutions

of Maxwell's equations, propagating in the +ẑ and � ẑ directions. The components of the electro-

magnetic �elds tangential to 
 s have the form

ET;� (x; y; z) =
�

a� e� i� � z + b� ei� �
�

eT;� (x; y); (3.1)

H T;� (x; y; z) =
�

a� e� i� � z � b� ei� �
�

hT;� (x; y):

Here � is the mode index,a� and b� are the complex amplitudes of the waves travelling into and

out of the network, and � � is the propagation constant. The modes are normalized such that
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Z


 s

(e� � h �
� ) dA = 2 � �� ; (3.2)

where � indicates complex conjugation and� �� is the Kronecker delta.

Eq. (3.2) has two interesting consequences. First, at the surface 
s the tangential components

of the �elds have the simple form

ET =
X

�

(a� + b� ) eT;� ; (3.3)

H T =
X

�

(a� � b� ) hT;� ;

which is useful in deriving one of the principal consequences of the Lorentz reciprocity theorem for

networks.

Second, the powerP carried into the network is just the di�erence of the wave power entering

the surface and the wave power exiting the surface:

P =
X

�

�
ja� j2 � j b� j2

�

= a� t a � b � t b:

(3.4)

Here in the second line we've introduced a vector notationa and b for the complex amplitudes a�

and b� , and superscript t indicates vector transposition.

Our assumption that 
 s encloses a passive and linear network ensures that the vectorb is

completely determined bya. If this were not the case, the network could scatter an excitationa into

distinct outputs b and b0. The linearity of the network implies that a null excitation ( 0 = a � a)

could therefore scatter into b � b0. Eq. (3.4) shows that the power carried out of the network in

this event is non-zero, in violation of the assumption that 
 s encloses a passive network.

As the network is assumed to be linear, there is thus a unique matrixS which maps a to b:

Sa = b: (3.5)

The matrix element S�� is the ratio of the outgoing �eld at port � to the incident �eld at port � .

The matrix S is known as the scattering matrix, for its description of how the network bounded by


 s scatters incident �elds.
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3.2 The Lorentz reciprocity theorem

Consider two scattering processes, with excitation statesa0, a00, output states b0, b00, and

their corresponding �elds E0, E00and H 0, H 00. With no electromagnetic sources, the time-harmonic

form of Maxwell's equations for the �elds of the �rst scattering process is

r � E0 = � i! � (H 0)H 0; (3.6)

r � H 0 = i! � (E0)E0: (3.7)

Here � (H ) and � (E ) are the magnetic permeability and electrical permittivity tensors of the media

in 
 s. Taking the inner product [ �] of Eq. (3.6) with H 00and Eq. (3.7) with E00and summing them

yields

H 00�
�
r � E0� + E00�

�
r � H 0� = i!

�
E00� � (E0)E0� H 00� � (H 0)H 0� : (3.8)

Repeating this procedure with the second scattering process yields the same result, with inter-

changed primes. When the two equations are subtracted, one obtains

r �
�
E0� H 00� E00� H 0� = i!

�
E00� � (E0)E0� E0� � (E00)E00� H 00� � (H 0)H 0+ H 0� � (H 00)H 00� :

(3.9)

A vector identity for the divergence of the cross-product of two vectors was used to simplify the

left-hand side of this expression. It may be further simpli�ed to have a vanishing right-hand side,

if the two following conditions are met:

(1) � and � are symmetric tensors: � = � t and � = � t .

(2) � and � describe linear media.
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To see this, consider one of the terms on the right-hand side:

E00� � (E0)E0 = E00� � E0

=
�
E00� � E0� t

=
�
E00t � E0� t

=
�
E0t � t E00�

=
�
E0� � E00�

= E0� �
�
E00� E00: (3.10)

Here we've used the linearity of� in the �rst line and the the fact that scalars are invariant under

transposition in the second line. The second to last line follows from the symmetry of� . A magnetic

term can be similarly commuted, to obtain the Lorentz reciprocity theorem:

r �
�
E0� H 00� E00� H 0� = 0 : (3.11)

Eq. (3.11) gains a clear physical interpretation when it is expressed in the scattering matrix

formalism. Integrating it over the volume enclosed by 
 s and applying the divergence theorem

yields
Z


 s

�
E0� H 00� E00� H 0� � dA = 0 : (3.12)

When the modal expansions in Eq. (3.4) are substituted into Eq. (3.12), the minus sign ensures

that the cross-terms add constructively, while the other terms add destructively:

0 = 2
X

�;�

�
b0

� a00
� � a0

� b00
�

� Z


 s

e� � h � dA ; (3.13)

= b0t a00� a0t b00;

= a0t �
St � S

�
a00

Here we've used the orthogonality condition in Eq. (3.2) and the de�nition of the scattering matrix

in Eq. (3.5). As a0 and a00are arbitrary, the scattering matrix must be symmetric:

S = St : (3.14)
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This symmetry ensures that the scattering between a pair of ports is invariant under exchange of

the source port and the detection port: S�� = S�� .

3.3 Methods for breaking Lorentz reciprocity

Concepts for non-reciprocal devices may be broadly divided into categories, based upon which

assumption of the Lorentz reciprocity theorem they violate.

3.3.1 Magneto-optic devices

Virtually all the circulators and isolators currently used in cQED experiments are constructed

with magneto-optic materials. A common example of this is the Faraday-e�ect [81], in which left

and right circularly polarized �elds propagating in a gyrotropic material (which is biased by a

magnetic �eld parallel to the propagation direction) have di�erent group velocities. Careful choice

of the propagation length and or magnetic �eld strength therefore allows the polarization of the

�eld to be rotated by the desired angle.

Critically, the polarization's sense of rotation depends only on the orientation of the magnetic

�eld, and not on the direction of propagation. Fig. 3.2a and Fig. 3.2b illustrate this process. The

e�ect, from the perspective of an observer receiving the propagating �eld, is therefore a propagation-

direction-dependent rotation of the polarization. The observer's perspective is relevant here as this

represents the perspective of a detector receiving the propagating �eld, and Lorentz reciprocity is

an invariance upon exchange of source and detector.

In optical applications, this phenomenon is combined with a pair of polarizers to create an

isolator. In the microwave domain, it is commonly used to couple signals (non-reciprocally) between

orthogonally-polarized waveguides, realizing a circulator. Ref. [83] provides a detailed description

of ferrite-junction circulators that operate via the Faraday e�ect.

The Faraday e�ect may be contrasted with a similar (and reciprocal) phenomenon in optically

active materials [81], in which the chirality of the crystal structure rotates the polarization of the

propagating �eld. This causes the polarization vector's sense of rotation to reverse when the
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Figure 3.2: Faraday rotation and a seemingly similar but distinct phenomenon observed in optically
active media. (a) An electromagnetic wave propagating from left to right through a Faraday-active
medium in the presence of an applied on-axis magnetic �eldB . From the perspective of an observer
(or a detector) receiving the �eld, the polarization of the wave rotates clockwise by an angle� . (b)
If the signal is re
ected and propagates back through the medium (from right to left), the observer
perceives a counter-clockwise rotation of the wave's polarization by the same angle� . Transmission
is non-reciprocal. (c) A wave propagating left to right through an optically active medium, where a
material chirality (depicted as a helix) determines the sense of rotation. An observer receiving the
wave perceives a clockwise rotation of the polarization. (d) Re
ection of the wave and right to left
propagation results in the same clockwise rotation of the polarization, and reciprocal transmission.
After [82].

propagation direction is inverted, in the same way that pushing or pulling on a right-handed screw

will induce clockwise or counter-clockwise rotation. From the perspective of an observer receiving

the propagating �eld, however, the rotation-direction is independent of the propagation direction,

as depicted in Fig. 3.2c and Fig. 3.2d.

Magneto-optic devices are unconstrained by reciprocity because the permeability tensor� is

not symmetric in the presence of a static magnetic �eld. This leads to a non-vanishing right-hand

side of Eq. (3.9), and a breakdown of the reciprocity theorem.

With respect to the design needs of superconducting qubit applications, magneto-optic non-
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reciprocal devices are attractive in that they may have broad operation bandwidths, low (but

not vanishing) insertion loss on the order of several tenths of a dB, and they are passive devices.

Their drawbacks include their roughly 10 cubic cm volumes, and their reliance on large permanent

magnets, which makes them di�cult to miniaturize (despite many e�orts [84, 85, 86, 87, 88, 89])

and integrate with superconducting circuits, and precludes the elimination of their insertion loss

by replacing their metallic components with superconductors.

3.3.2 Nonlinear devices

Nonlinear devices can break reciprocity because the intensity-dependence of their material

properties prevents the cancellation of terms like

E00� � (E0)E0� E0� � (E00)E00: (3.15)

As in the case of magneto-optic devices, this leads to a non-vanishing right-hand side of Eq. (3.9).

In practice, this is leveraged by introducing some kind of spatial asymmetry into the design

of the device. A simple example of this is a �nite-length rectangular waveguide which is �lled by

distinct dielectrics on its two ends [90]. The device is reciprocal, but careful choice of the dielectrics

and the relative fractions of the waveguide that they �ll makes the spatial pro�le of the electric

�eld dependent on the propagation direction of an incident signal. By positioning a nonlinear

resonator at a location within the waveguide where the intensity of the electric �eld is strong when

a signal is incident on one port of the waveguide but weak when a signal is incident on its other

port, a propagation-direction-dependent loss-channel can be introduced to the system|usually

by arranging the frequency-pulling of the nonlinear resonator to move the resonator in or out of

resonance with the incident signal. Di�erent implementations of this general scheme have resulted

in a variety of realizations for optical diodes constructed with silicon [91, 92, 93, 90].

The advantages of this approach include ease of miniaturization, and compatibility with

superconducting circuits and fabrication methods. The disadvantages are an inherent restriction

on linearity (such schemes only work when higher-power incident �elds or pump tones activate a
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material nonlinearity), and typically narrow operation bandwidths.

3.3.3 Active devices

Given the intimate connection between reciprocity and time-reversal, it seems intuitive that

active devices|that is, devices with parameters that vary in time|could break reciprocity. This

can be seen explicitly with a simple example of two general cascaded linear systemsA and B ,

which we describe following Ref. [94], and depict in Fig. 3.3. The impulse responses ofA and B

are denotedhA and hB , and u, z, and y describe the input, intermediate, and output states of the

system.

Figure 3.3: A cascade of two linear systems. The impulse response of the composite system is non-
reciprocal when the impulse responses of the individual systems are time-dependent. After [94].

The output y can be written in terms of the input u and the impulse responseshA and hB :

y(t) =
Z 1

�1
hB (t; � )z(� )d� (3.16)

z(t) =
Z 1

�1
hA (t; � )u(� )d�: (3.17)

Eliminating z in Eq. (3.16) yields

y(t) =
Z 1

�1

� Z 1

�1
hB (t; � )hA (�; � )d�

�
u(� )d�; (3.18)

and the bracketed term in that expression may be identi�ed as the impulse responsehBA of the

composite systemBA .

When A and B are time-invariant systems, their impulse responses depend only on the

di�erence of their arguments,

hBA =
Z 1

�1
hB (t � � )hA (� � � )d�: (3.19)
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Changing integration variables to t0 = t � � and � 0 = � � � , Eq. (3.19) becomes

hBA =
Z 1

�1
hB (t0� � 0)hA (� 0)d� 0: (3.20)

which is a convolution. In this form (or from the convolution theorem), it is clear that the system

is reciprocal: hBA = hAB . For the time-dependent case, though,hBA is not in general equal to

hAB .

The dependence of reciprocity on time-invariance is re
ected in the arguments of Sec. 3.1

and Sec. 3.2, which respectively assume passive networks and harmonic �elds. E�orts in the 1960s

extended these arguments to time-dependent systems, and showed that reciprocity also places

symmetry and time-invariance constraints on the scattering matrices of time-variable networks [95].

Since then, a variety of schemes have been developed for generating non-reciprocity with actively

modulated circuits. We do not attempt a complete catalogue of them here, and instead limit

discussion to two particular approaches.

3.3.3.1 Parametric coupling of resonant modes in the resolved sideband limit

The �rst of these involves the parametric coupling of resonant modes in the resolved sideband

limit, which is a widely used strategy in radio frequency [96, 97], superconducting microwave [82, 98,

99, 100, 101], electroacoustic [102], electromechanical [103, 104, 105], and optomechanical [106, 107]

devices. Excepting the circulator discussed in this thesis, most state-of-the-art non-reciprocal

circuits for superconducting circuits are implemented with this approach.

An excellent conceptual description of this strategy is given in Ref. [108], which provides a

graph-theoretical description for the Langevin equations of parametrically coupled resonant sys-

tems. Rather than reproduce that treatment here, we attempt a succinct and general summary of

the concept.

Consider a system of two or more resonant modes (frequenciesf ! i g and linewidths f � i g) in

the resolved sideband limit. By this, we mean the frequencies in the setf ! i g are separated by many

times their respective linewidths, and that the linewidths of each resonator are narrower than all
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the resonant frequencies. Now imagine a parametric interaction, which allows variation of a system

parameter to shift the frequencies of the resonant modesf ! i g by approximately their linewidths

� ! i � � i . Varying this parameter at the di�erence frequency ! i � ! j between a pair of modes

induces a beam-splitter interaction, allowing excitations to be exchanged between the two resonant

systems:

H I / ei� ai a
y
j + e� i� ay

i aj : (3.21)

Here, ai is the annihilation operator of the i th resonant mode, and� is the phase of the parametric

interaction. In practice, this phase can be adjusted by tuning the phase of the electrical signal

which is controlling the parametric interaction.

Examination of Eq. (3.21) shows that the phase of the beamsplitter interaction depends on

the direction in which excitations are exchanged. For example, if the phase� = �= 2, excitations

which originate in mode i and are transferred to modej will be � out of phase with excitations

which originate in mode j and are transferred to modei . If desired, a frequency diplexer can then

be used to route the di�erent resonant modes out separate physical ports of the device.

There is a complication, though, in generating non-reciprocity in this way: the phase reference

of the parametric interaction is arbitrary. Said another way, a gauge may always be chosen in which

the phase� is zero, making the beamsplitter interaction reciprocal. This di�culty may be resolved

with the introduction of another parametric interaction between modes i and j (or to a third mode

k). Experimentally, this can be accomplished by cascading a duplicate of the original device in series

with the original [101]. The second parametric interaction also has a phase, and while its phase

reference is also arbitrary, the di�erence between the phases of the two parametric interactions is

a gauge-invariant.

A description of this approach can also be couched in the language of geometric phases created

by synthetic magnetic �elds [109, 110, 111, 102, 99, 107]. In that framework, the coupled resonant

modes are viewed as nodes of a lattice, with a hopping interaction determined by the system's

parametric modulation. The phase of the parametric modulation sets a Peierls's phase [112], and
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a Berry curvature (synthetic vector potential) is quanti�ed by the total Peierls's phase acquired in

the circumnavigation of one plaquette of the lattice.

The a�ordances of using parametrically coupled modes to generate non-reciprocity are the

relative simplicity of the circuit designs, and a wide versatility in function: in addition to realizing

elementary non-reciprocal devices such as isolators [103] and circulators [99, 100], the parametric

interaction can also be used to drive parametric down-conversion, enabling processes like directional

ampli�cation [98, 99, 100, 113]. This 
exibility, and the ability to dynamically switch between the

various modes of operation, has led some groups to refer to these devices as \�eld-programmable,"

in reference to multi-function �eld-programmable gate arrays [100]. The major drawback inherent

to this method is its reliance on resonant modes in the resolved sideband limit, which constrain

the device's bandwidth. A second drawback, in some situations, is the frequency-conversion which

accompanies some implementations of this approach [99, 100].

3.3.3.2 Frequency conversion and delay

A second approach for the generation of non-reciprocity with active devices is enabled via

successive translations in frequency and time, or in other words, a combination of frequency conver-

sion and delay. As frequency and time are Fourier duals, successive translations in these quantities

do not, in general, commute. Signals traversing a network in which a series of these translations

are made may encounter them in a di�erent time-ordering, depending on the port of the network

at which they are arrive. Such a dependence on propagation direction violates Lorentz reciprocity.

The promise of generating non-reciprocity in this way was �rst observed in the 1960s, in

cascades of symmetric lattices with dual arms of time-varying inductors and capacitors [114]. In

these networks, a tank circuit resonance provides the delay, and the active modulation of the

circuit elements create frequency sidebands on the input signal. In more recent years, the idea

has been leveraged in a general-purpose circulator proposal which is amenable for implementation

in superconducting circuits [115]. The realization of that proposal is the subject of this thesis.

Related proposals in the microwave [116], millimeter [?], and optical [117, 118, 119, 120] domains
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have utilized the same concept with non-resonant delays.

The a�ordances of the frequency-conversion and delay approach are a general absence of

bandwidth constraints, stemming from the potential to implement the approach without any res-

onant physics. Related to this, resonant-based implementations are in general not subject to the

constraints of the resolved sideband-limit, allowing low-frequency modulation of the active compo-

nents. This is an especially attractive feature for superconducting circuits, where high-bandwidth

dilution-refrigerator lines are a precious resource.

Its drawbacks are the care required in coherently erasing (or otherwise suppressing) sidebands

created by the frequency converting elements, and the general circuit complexity which is some-

times needed for this task. An additional drawback, which is also common to circuits based on the

parametric coupling of resonant modes, or in general any active device, is the power consumption

of the control signals. This is not a problem for some applications, but in a cryogenic setting addi-

tional heat loads on the mixing chamber of a dilution refrigerator are an important consideration,

especially in light of the large number of circulators which may be required in a superconducting

fault-tolerant quantum computer.

3.3.4 Connection with time-reversal symmetry

As reciprocity arises in physical systems which are invariant under time-reversal, another way

to classify non-reciprocal systems is via the mechanism by which they break this invariance. This

perspective is utilized in recent demonstrations [107] and proposals [121, 122, 123], which break

Lorentz reciprocity with judicious use of dissipation, referred to as reservoir engineering.

Generating non-reciprocity, however, does not in general require dissipation, or a complete

absence of time-reversal symmetry. For example, many approaches break Lorentz reciprocity by

coupling electromagnetic �elds to matter with an interaction that is odd under time-reversal. Ex-

amples of this are magnetic �elds, as in circulators built with gyrotropic media and quantum Hall

e�ect circulators [75, 76, 77]; linear momentum [124, 125, 126, 127], for example through disper-

sion engineering [125, 126, 127] or radiation pressure in an optomechanical interaction [124]; and
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angular momentum [96, 70, 115], for example, by coupling electromagnetic �elds to non-degenerate

clockwise and counter-clockwise propagating modes in a ring resonator. The degeneracy of these

modes can then be lifted with physical rotation, as in a Sagnac interferometer [128] (or in acoustic

demonstrations, with the motion of the acoustic medium [70]). It may also be lifted in other ways,

such as active modulation of circuit parameters, which can simulate a sense of rotation [115] or a

synthetic gauge �eld [96].

3.4 Common non-reciprocal devices

As both Lorentz reciprocity and scattering matrices have now been discussed, we introduce

in this section the scattering matrix description of several common non-reciprocal devices. Tab. 3.1

shows the microwave circuit symbols and scattering matrices for a gyrator, an isolator, and a

circulator.

gyrator isolator circulator

microwave circuit symbol

ideal scattering matrix
�

0 1
� 1 0

� �
0 0
1 0

�
2

4
0 0 1
1 0 0
0 1 0

3

5

Table 3.1: Symbols and scattering matrices for three common non-reciprocal devices

3.4.1 Gyrators

Gyrators are impedance-matched two-port devices that transmit signals in the forward direc-

tion without changing their phase, but impart a � phase shift to signals transmitted in the reverse

direction [78]. This action is visible in their scattering matrix: for a gyrator, S21 and S12 are � out

of phase. Gyrators were �rst proposed in 1948 by Tellegen as a hypothetical �fth element of basic

circuit theory, supplementing the resistor, inductor, capacitor, and transformer [129]. Addition of
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the gyrator to this set allows for the realization of passive non-reciprocal networks, and also reduces

the number of basic circuit elements to three: the gyrator can replace the transformer and either

the capacitor or the inductor.

In practice, gyrators are used frequently in the design of active �lters, and in the construction

of other non-reciprocal circuits, such as isolators and circulators. This can be done directly, by tieing

together the grounds of the gyrator's two ports and de�ning a third port as the di�erential voltage

between them, resulting in a three-port circulator. Alternatively, the gyrator can be inserted

between two beamsplitters (or microwave hybrids) to create a four-port circulator. This procedure

is known as the Hogan construction of a circulator [130].

3.4.2 Isolators

Isolators are impedance-matched two-port devices that act as one-way valves for classical

electromagnetic signals. Signals propagating in the forward direction through an isolator are trans-

mitted unchanged, while signals propagating in the reverse direction are completely absorbed. This

action is visible in the o�-diagonal elements of the scattering matrix: S21 = 1, while S12 = 0.

Isolators are used in a variety of ways across the electromagnetic spectrum: in optical exper-

iments, they are commonly employed as a way to prevent re
ections in an optical network from

disturbing the source laser. In telecommunication networks, where signals are frequently ampli�ed

and attenuated by many orders of magnitude, isolators serve as a way of protecting sensitive (and

lower signal-amplitude) components in the network from ampli�er re
ections. More generally, as

discussed in Ch. 1, isolators are of fundamental use in precision measurement.

3.4.3 Circulators

Circulators are impedance matched devices with three or more ports, that provide the direc-

tional signal routing needed for a variety of electromagnetic networks. As the scattering matrix in

Tab. 3.1 shows, signals incident on one of the circulator's ports will be routed counter-clockwise

around the device and transmitted out the subsequent port.
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Circulators can be used to make isolators (by depositing the signal at all but two of the

circulator ports into an entropy dump) or gyrators (by combining them with 180-degree microwave

hybrids/beamsplitters). The need for a high-quality and scalable circulator which could supplant

the ferrite-based commercial circulators currently used in superconducting qubit experiments is the

motivation for this thesis.



Chapter 4

Theory of operation

The circulator presented in this thesis may be understood in terms of \synthetic rotation"

created by the active modulation of the circuit, and analyzed rigorously with a lumped-element

circuit theory or an input-output formalism [115]. Before performing a formal analysis we provide

a complementary explanation for its operation based upon the frequency-domain dynamics of an

analogous model system.

4.1 Model system

The model is a lumped-element network of multipliers and delays (Fig. 4.1a) which creates

a gyrator (see Sec. 3.4.1). Gyration in the model system arises from the non-commutation of

successive translations in frequency and time [116]: the multiplying circuits operate as frequency

converters, translating an input signal up and down in frequency, and the delays translate �elds

forward in time. As frequency and time are Fourier duals, the time-ordering of these translations

matters (the two operations do not generally commute). Transmission through the network thus

depends on the propagation direction of the incident signal, breaking Lorentz reciprocity.

To see that non-reciprocity explicitly, frequency-phase diagrams are used to calculate the

model's scattering parameters. The diagrams follow an incident signal at frequency! p as it prop-

agates through the device, tracking its amplitude, frequency, and phase in a frame rotating at

! p.

The insets in Fig. 4.1a depict the way that the model system's two constituent elements|
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Figure 4.1: Conceptual diagram of non-reciprocity generated with frequency conversion and delay.
(a) Lumped-element network that forms a gyrator. The insets show how �elds are transformed by
the network's two components: multiplying elements and delays. In the upper inset, an input �eld
at frequency ! p (top panel) is multiplied by cos(
 t) to create a �eld with spectral components at
! p � 
 (bottom panel). The real and imaginary axes of the plot shows the phase of these spectral
components in a frame rotating at ! p. In the lower inset, a delay of length � = �= (2
) advances
(retards) the phase of spectral components at! p + 
 ( ! p � 
) by �= 2. (b) Calculation of the
forward-scattering parameter for the network in (a), by following an incident �eld at frequency
! p as it propagates through the device. Purple (green) arrows indicate �elds propagating in the
left (right) arm of the network. Fields are forward transmitted with amplitude and frequency
unchanged, but phase shifted by� . (c) Backward transmission through the network in (a). Fields
are transmitted with amplitude, frequency, and phase unchanged.

multipliers and delays|transform input �elds to output �elds. In the multiplying elements, that

transformation occurs via multiplication by a bias signal|in this case, cos(
 t). The trigonometric

product-to-sum identity states

cos(! pt) cos(
 t + � ) =
1
2

�
cos ([! p + 
] t + � ) + cos ([! p � 
] t � � )

�
; (4.1)

which has a simple interpretation in the frequency domain: multiplication creates two sidebands,

each detuned from! p by the bias frequency 
. Importantly, the phases of these sidebands depend

on the phase� of the multiplier's bias signal. We choose a phase reference such that multiplication

by cos(
 t) creates two sidebands with the same phase.

In the delay elements, inputs are transformed to outputs by way of a phase shift. In the
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rotating frame, a delay of length � = �= (2
) leaves the phase of spectral components at! p un-

changed, while advancing the phase of spectral components in the upper sideband! p + 
 by �= 2,

and retarding the phase of components in the lower sideband! p � 
 by �= 2.

With the action of the multiplying and delay elements de�ned, calculation of the scatter-

ing parameters is straightforward. Forward transmission through the model system is shown in

Fig. 4.1b. A signal incident on port 1 with frequency ! p (Fig. 4.1b, i.) is �rst divided equally

into the network's two arms. Fields in both arms encounter a �rst multiplying element, a delay, a

second multiplying element, and are then recombined.

Critically, the modulation sidebands at ! p � 2
 created in the network's two arms are � out of

phase and interfere destructively at the device's output (Fig. 4.1b, iv). Conversely, the components

at the frequency ! p interfere constructively. Comparison of Fig. 4.1b, iv. with Fig. 4.1b, i. shows

that the incident signal has been transmitted through the device with its frequency and amplitude

unchanged, but its phase shifted by� . The scattering parameter S21 for the network is therefore

� 1.

The reverse path is traced out in Fig. 4.1c, for a signal incident on the network's second port.

As with forward transmission, destructive interference occurs at! p � 2
 (Fig. 4.1c, iv.). Likewise,

this is accompanied by constructive interference at the frequency! p. Now, however, comparison of

Fig. 4.1c, iv. with Fig. 4.1c, i. shows that the frequency, amplitude, and phase of the incident signal

were unchanged by the network. Therefore, in contrast to the forward transmission, the backwards

transmission is characterized by a scattering parameterS12 = 1. The network in Fig. 4.1a is thus

described by the gyrator scattering matrix in Tab. 3.1, and forms an ideal gyrator.

In the model system, the convert-delay-convert process happens simultaneously in both arms

of the network. Consequently, each arm is individually non-reciprocal. Alone, though, a single arm

creates unwanted modulation sidebands. To create an ideal gyrator, two arms, with the bias signals

of their multiplying elements separated in phase by�= 2, are connected in parallel. This balanced

architecture engineers destructive interference of the spectral components at! p � 2
.

Such a strategy for suppressing the creation of spurious sidebands, which we refer to as \co-
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herent cancellation," may be contrasted with that used in non-reciprocal devices that operate with

the parametric coupling of resonant modes in the resolved-sideband limit, discussed in Sec. 3.3.3.1.

In that scheme, parametric modulation of a resonant system creates sidebands at the parametric

drive frequency, and a second resonant mode is used to enhance the density of states at the de-

sired frequency, while simultaneously diminishing it at the undesired frequency. To work in the

resolved sideband limit, however, the parametric modulation must be many times the resonant sys-

tem's linewidth. In microwave frequency implementations, this typically requires GHz modulation

tones. In contrast, the coherent cancellation approach lifts the resolved-sideband constraint, and

can therefore be used with lower-frequency control tones.

4.2 Superconducting implementation

We make use of the unique properties of superconducting circuitry to realize compact on-

chip multiplier and delay elements. Speci�cally, Josephson junctions form widely tunable inductors,

while vanishing conductor loss permits high-quality on-chip microwave resonators. Fig. 4.2 shows

how a single arm of the model system (Fig. 4.2a) is made with a network of capacitors and dynam-

ically tunable inductors (Fig. 4.2b).

4.2.1 Multiplying elements

The multiplying elements in the circuit representation are created with reactive bridge circuits

(also known as symmetrical lattices [114]), built with two tunable pairs of nominally identical

inductors l+ and l � arranged opposite one-another (gray box in Fig. 4.2b). Two di�erential ports

are de�ned by the left-and-right and top-and-bottom bridge nodes. Importantly, the inductors

tune in a coordinated fashion: when one pair of inductors increases, the other pair decreases. We

parametrize this tuning with a base inductance l0 and an imbalance variable� , by writing

l � = l0=(1 � � ): (4.2)
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Figure 4.2: Multiplying elements and delays realized in a superconducting lumped-element circuit.
(a) The model system (Fig. 4.1a) is constructed from two parallel instances of this network. (b)
A lumped-element version of the network in (a), created with capacitors and tunable inductors
arranged in a bridge geometry. (c) To create an inductive bridge circuit in a superconducting
microwave environment, four series-arrays of SQUIDs are arranged in a �gure-eight geometry, and
tuned with an o�-chip magnetic coil producing a uniform 
ux � u and an on-chip bias line creating a
gradiometric 
ux � � g. (d) Simulated group delay for the circuit in (b) when its ports are connected
to 50 Ohm transmission lines. The bridge inductors are parametrized according to Eq. (4.2), with
c = 1 pF, l0 = 1 nH, and � = 0 :2.

When a bridge is coupled to transmission lines of characteristic impedanceZ0, its forward scattering

parameter at angular frequency! is

S21 =
2i�!l 0Z0

� Z 2
0 (1 � � 2) � 2i!l 0Z0 + ! 2l20

= � �
2i!l 0Z0

(Z0 + i!l 0)2 + O(� )2: (4.3)

As the imbalance in the bridge determines its transmission, changing� allows the circuit to act as

a switch or a multiplying element [131, 132].

The bridge circuit's tunable inductors are realized with series-arrays of superconducting quan-
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tum interference devices (SQUIDs), formed by the parallel arrangement of two Josephson junctions.

Arrays are used in place of individual SQUIDs to increase the linearity of the inductors [115]. The

inductance l of an N SQUID array depends on the magnetic 
ux � that threads through each

SQUID [58]:

l = N
' 0

2I 0

�
�
�
�sec

�
�

2' 0

� �
�
�
� + O(I=I 0)2: (4.4)

Here ' 0 = ~=2e is the reduced 
ux quantum, and the Josephson junctions in each SQUID are

assumed to be identical with critical current I 0 and negligible geometric inductance. The SQUIDs

are also assumed to be identical.

To realize the coordinated tuning of inductors described in Eq. (4.2), we arrange the SQUID

arrays in a �gure-eight geometry (Fig. 4.2c). Two 
ux controls determine the imbalance in the

bridge. First, an o�-chip coil threads a uniform magnetic 
ux � u through all the SQUIDs. Second,

an on-chip bias line, which bisects the �gure-eight, threads a gradiometric 
ux � g through the

SQUIDs. SQUIDs on the left side of the bias line therefore experience an overall magnetic 
ux

which is the sum of the uniform and gradiometric contributions, whereas SQUIDs to the right of

the line are threaded by the di�erence of the uniform and gradiometric 
uxes.

When the gradiometric bias line is driven with a sinusoidal current source at frequency 
, the


ux through the SQUIDs varies in time as � = � u � � g cos(
 t + � ). This process creates a bridge

of inductors which tune according to Eq. (4.2), with a simple sinusoidal variation in the imbalance

� = � 0 cos(
 t + � ) and a rescaling of the base inductancel0. Such a periodic variation in � makes

SQUID bridges biased in this way into dissipationless multiplying elements. The precise mapping

between the 
ux controls � u & � g and the circuit parameters l0 & � 0 is [133]

� 0 = � 2 tan(� )
J1(� )
J0(� )

+ O(� 2);

l0 = N
' 0

2I 0

1
cos(� )J0(� )

+ O(� 2); (4.5)
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with

� � �
� u

� 0
;

� � �
� g

� 0
; (4.6)

and Jn the nth Bessel function of the �rst kind.

4.2.2 Delays

The second primitive needed for the model system is a delay, realized in our circuit with

a resonant mode. Conveniently, the SQUIDs in the bridge circuits are inductive, so the addition

of a single capacitor is enough to create a resonance. This resonance delays �elds near its center

frequency by a timescale� characterized by the inverse of its linewidth. More quantitatively, when

a harmonic �eld incident on port � of a resonant network is scattered to port � , it acquires a

group delay � = d\ S�� =d! [78]. Here ! is the frequency of the harmonic �eld, and \ S�� is the

phase ofS�� . Fig. 4.2d shows delay as a function of frequency, simulated for the resonant circuit in

Fig. 4.2b. Fields near the circuit's resonant frequency experience a delay of several nanoseconds.

As a con�rmation of these simulations, an analytical study of the same circuit was also made, using

a graph theoretical approach [134, 135] to solve for the circuit's eigenfrequencies with Kircho�'s

current and voltage laws. This is described in App. A.

Delays realized with resonant modes allow for a deeply sub-wavelength implementation, which

is critical for the \coherent cancellation" approach. While these lumped-element delays are neces-

sarily narrower in bandwidth than those created with, for example, a length of transmission line,

their �nite bandwidth is mitigated by the tunable inductance of the bridge circuits, which allows

the frequency ! 0 of the resonant delay to be tuned (over several GHz) with the uniform magnetic


ux � u . As the multiplying elements are broadband [132], this tunability of the delay is inherited

by the full circulator. Likewise, the duration � of the delay depends on the imbalance in the bridges,

and may be tuned with the gradiometric 
ux � g, facilitating satisfaction of the requirement that

� = �= (2
).
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Tuning of the resonant delay takes a simple form when expressed in terms of the circuit

parameters l0 and � 0. When two of the arms in Fig. 4.2b are combined in parallel to create the

fully assembled circuit, the resonant delay occurs at the frequency [115]

! 0 =

s
4 � � 2

0

2l0c
; (4.7)

and its duration � is approximately the inverse of the resonant mode's linewidth,

� �
8Z0c

� 2
0

: (4.8)

Here Z0 is the characteristic impedance of the surrounding transmission lines.

4.2.3 Assembly of the full circulator

Construction of a superconducting version of the model system requires the parallel com-

bination of two of the circuits shown in Fig. 4.2. This process is depicted Fig. 4.3, which shows

the model system (Fig. 4.3a) alongside a lumped-element schematic of an equivalent network made

with variable inductors and capacitors (Fig. 4.3b).

In principle, a circulator could be created from the gyrator shown in Fig. 4.3b using any

of the methods detailed in Sec. 3.4.1. Alternatively, the same circuit could be designed without

di�erential ports, where instead each of the four nodes de�ne their own port via comparison to

a common ground, as shown in Fig. 4.3c. Such a design allows direct realization of a four-port

circulator, without any additional embedding network. The ideal scattering matrix for this four-

port clockwise circulator is

S =

0

B
B
B
B
B
B
B
B
@

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1

C
C
C
C
C
C
C
C
A

; (4.9)

and reversing the direction of gyration also allows the same network to act as a counterclockwise

circulator with scattering matrix ST . This device is the four-port version of the circulator described

in Tab. 3.1.
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Figure 4.3: (a) The model system of Sec. 4.1 forms a gyrator, which breaks Lorentz reciprocity
with a combination of frequency conversion and delay. (b) A realization of the network shown in
(a), made with tunable, reactive circuit elements. (c) When four ports are formed by comparing
the nodes of the circuit in (b) to a common ground, the network forms a four port circulator.
Circulation is accomplished through the interference of the common and di�erential modes of the
\left" (ports 1 & 3) and \right" (ports 2 & 4) circuit ports. This is analogous to the circulation
generated by a Hogan circulator (d), which comes from the interference between two arms of an
interferometer, one of which contains a gyrator, and the other of which is a direct short between
ports.

The transformation between gyrator and circulator can be understood in the following way:

driving any one of the four ports in Fig. 4.3c involves simultaneously exciting the common and

di�erential modes of the circuit. The gyrating di�erential mode is non-reciprocal, whereas the

prompt scattering of the non-resonant common mode is reciprocal. The interference of these two

scattering processes results in circulation [115].
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In a sense, this method for realizing a four-port circulator is a virtual form of the Hogan

construction [130] depicted in Fig. 4.3d. In (a physical implementation of) the Hogan construction,

an incident signal is routed through a 180� hybrid and directed out its di�erential (�) and common

(�) ports. The di�erential port leads to a gyrator and then to the di�erential port of a second

hybrid, whereas the common port is directly connected to the second hybrid's common port. The

result is an interferometer with two arms: the � arm contains a gyrator (and is therefore non-

reciprocal), and the � arm is a direct connection between the two microwave beamsplitters, which

is reciprocal. The circulator in Fig. 4.3c relies on the same interference e�ect, but in this case

the two \arms" of the interferometer are not spatially separated. Instead, they are encoded in

the even and odd excitations of ports 1 & 3 and 2 & 4. In both cases, however, the circulation is

accomplished through the interference of a non-reciprocal (gyrating) signal pathway and a reciprocal

signal pathway.

4.3 Circuit analysis

We have attempted in the preceding sections to establish intuition for how the circuit in

Fig. 4.3c realizes a four-port circulator. To support that argument we now directly calculate the

elements of its scattering matrix using circuit theory, following Ref. [115].

Consider the bridge circuit shown in Fig. 4.4a. The constitutive relations for this circuit are

1
l

0

B
@

1 � (t)

� (t) 1

1

C
A

0

B
@

� 1(t)

� q(t)

1

C
A =

0

B
@

I 1(t)

I q(t)

1

C
A : (4.10)

The matrix on the left-hand side of Eq. (4.10) is the reluctance of the circuit. The reluctance matrix

gives the current responseI i to an applied 
ux � i , de�ned as the time integral of the voltage at

port i : � i �
Rt

�1 Vi (� )d� . It is a sort of inverse inductance, what was historically called \magnetic

resistance" before the term \reluctance" was coined by Heaviside [136].

When four of these circuits are connected together, in the manner shown in Fig. 4.4b, the
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Figure 4.4:

constitutive equation for the network is
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:

(4.11)

Analysis is simpli�ed by changing to a left-right, even-odd basis for ports 1-4, and a rotating,

circular basis for ports p and q:
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; (4.12)
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C
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0
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I q(t)

I p(t)

1

C
A ; (4.13)

and similarly for the branch 
uxes. In these new bases, Eq. (4.11) separates into two uncoupled

systems of equations:
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A ; (4.14)

1
l

0

B
B
B
B
B
B
B
B
@

2 0 � 0 i� 0

0 2 � 0 � i� 0

� 0 � 0 4 0

� i� 0 i� 0 0 4

1

C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
@

� + (t)

� � (t)

� l,o(t)

� r,o(t)

1

C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
@

I + (t)

I � (t)

I l,o(t)

I r,o(t)

1

C
C
C
C
C
C
C
C
A

: (4.15)

To complete the circulator, we shunt ports p and q with capacitancesc. This �xes the relation

between the currents and the branch 
uxes at these ports:

� c
d2

dt2 � q;p = I q;p; (4.16)

or equivalently in the circular, rotating basis,

� c(
d
dt

� i 
) 2� � = I � : (4.17)

With this constraint, Eq. (4.15) has a simple representation in the frequency domain, which we

indicate with square brackets [�]:
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: (4.18)

At this point we pause and comment on the constitutive relations for the even and odd

excitations of the left and right ports of the circuit, given in Eq. (4.14) and Eq. (4.18), respectively.

Even excitations of the left and right ports are uncoupled from nodesp and q, and are therefore

non-resonant. Contrastingly, odd excitations of the left and right ports depend on the branch 
uxes

across nodesp and q, and on the value of the capacitorsc. These dynamics are resonant. To show

that they are also non-reciprocal, we write Eq. (4.18) as a 2� 2 system of block matrices

1
l

0

B
@

A B

C D

1
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I l,r
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C
A ; (4.19)
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