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Research in the field of atomtronics aims to develop a new paradigm for the use of ul-

tracold atomic systems in a manner that mimics the functionality of electronic circuits and

devices. Given the ubiquity of the electronic transistor and its application to a vast array of

signal processing tasks, the development of its atomtronic counterpart is of significant inter-

est. This dissertation presents the experimental studies of two atomtronic circuit elements: a

battery and transistor. Experiments are conducted in an atom-chip-based apparatus utiliz-

ing hybrid magnetic and optical trapping techniques that enable one to “pattern” atomtronic

circuit elements. An atomtronic battery is realized in a double-well trapping potential in

which a finite-temperature Bose-Einstein condensate is prepared in a non-equilibrium state

to generate thermodynamic gradients that drive atom current flow. Powered by the atom-

tronic battery, a triple-well atomtronic transistor is demonstrated, and quasi-steady-state

behavior of the device is characterized. Results are found to be in agreement with a semi-

classical model of the transistor that is also used to study the active properties of the device,

including current gain. Based on these results, future directions regarding signal processing

operations are proposed.
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Chapter 1

Introduction

1.1 Motivation

The historical development of devices for the purpose of generating and manipulating

electronic signals arguably began following Thomas A. Edison’s invention of the lightbulb,

at the end of the 19th century [1]. Shortly after its invention, more complicated light

bulbs enclosing multiple electrically isolated filaments were constructed, leading Owen W.

Richardson to discover thermionic emission from hot bodies, previously known as the Edison

effect [2]. By 1904, John A. Fleming invented the first vacuum tube specifically for the

purpose of measuring AC signals and signal rectification (see Figure 1.1(a)), marking the

beginning of electronic signal processing. Fleming’s thermionic valve gave way to many

successive iterations of vacuum tube amplifier designs, including triodes and pentodes that

can still be found in the amplifiers of today’s audio enthusiast. Signal processing technology

took its next big leap in 1948, with the invention of the semiconductor transistor [3], at

Bell Laboratories (see Figure 1.1(b)), which ushered in the era of integrated circuitry and

contemporary electronics.

Moore’s law observes that the number of transistors on an integrated circuit doubles

approximately every two years. Quite apart from a comment about the remarkable evolution

of electronics and fabrication techniques, Moore’s law highlights the cardinal role of the

transistor in modern technology. What is it that distinguishes the transistor from other

electronic elements? The canonical transistor is a three-terminal device that derives its
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b)a)

Figure 1.1: a) Original thermionic valve invented by J. A. Fleming [4]. When heated by
an alternating electric current (AC), thermally excited electrons are ejected from the coiled
filament in a process known as thermionic emission [5, 6]. The second, straight filament
in the tube acts as a sink to the liberated electrons when charged positively, resulting in
a measurable current between the two wires. b) Original point contact transistor invented
at Bell Laboratory by J. Bardeen, W. H. Brattain, and W. Shockley [3]. This somewhat
haphazard looking device was constructed with a PN-doped slab of Germanium (Ge) resting
atop a gold sheet, which serves as the base contact of the transistor [7]. Two gold additional
gold contacts, named the emitter and collector, are supported by a plastic wedge and seen
pressed against the Ge slab by a vertical metal spring-like structure.
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utility by enabling a small electric current or voltage to control a large current. In particular,

transistors are active devices that provide electrical gain—gain that can be used to amplify a

signal, sustain coherent oscillation, perform switching, provide storage, and implement logic.

Such are a few of the many functions that reflect the ubiquity of the transistor in modern

electronics.

Along with the aforementioned statements about transistors, research thrusts in the

field of quantum signal and information processing (see References [8, 9]) are ongoing. These

endeavors motivate research towards the realization of a device capable of performing the

classical signal processing duties of electronic transistors in the realm of quantum mechanical

signals. Therefore, the road towards developing quantum signal processing technology brings

us back to vacuum tubes, or should I say ultra high vacuum (UHV) chambers, in which we

seek to realize an atomtronic transistor. At the heart of the Anderson lab atomtronics appa-

ratus is the double-MOT vacuum chamber shown in Figure 1.2. The atom chip that forms

the top wall of the vacuum chamber is designed specifically for the experiments described

in this dissertation. In particular, it includes a transparent window that, in conjunction

with external optics, enables the projection of optical potentials with micron length-scale

features onto the magnetic potential generated by the atom chip. Just as the layout of

electronic circuit dictates its functionality, this optical potential determines the flow and

dynamics of ultracold atoms as they propagate through the atomtronic system. The work

described throughout this dissertation represent one vein of research in the growing field of

atomtronics.

1.2 Atomtronics

The field of atomtronics has emerged in tandem with the development of experimental

techniques in the field of atomic, molecular, and optical physics (AMO), that allow one to

create and manipulate the state of ultracold atoms. Utilizing said atoms in place of electrons,

atomtronics lives in a challenging arena of physics involving many-body, interacting, and
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Atom
Chip

3D MOT
Chamber

2 l/s Ion
Pump

Copper 
Pinch-Off

2D MOT &
Source Tube

2 cm

Figure 1.2: Double-MOT vacuum chamber used to conduct atomtronics experiments. The
inset shows the atom chip, which forms the upper wall of the vacuum chamber and is used
to form the confining magnetic potentials in the atomtronics experiments. Once constructed
and baked-out to pressures < 10−10 torr, the vacuum chamber is pinched off from a larger
station, after which the UHV pressure required for experiments is maintained solely by a
2 l/s ion pump and other passive gettering elements. The atom source is located in the
lower of the two glass cells, labeled “2D MOT & Source Tube”, in which initial laser cooling
techniques produce a stream of pre-cooled atoms upwards, into the 3D MOT chamber. The
remainder of the experiment occurs in this upper chamber, which appears dark in the figure
due to an anti-reflection coating. Additional information regarding the construction and
functionality of the Double-MOT vacuum chamber can be found elsewhere [10, 11, 12, 13].
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open quantum systems in non-thermal equilibrium. It is likely not possible to develop

complete descriptions of any but the simplest atomtronic circuits. Indeed, most theoretical

and experimental works thus far involve fully quantum atomtronic circuits, i.e., operating as

a closed system that is described by unitary evolution [14, 15, 16, 17, 18, 19, 20]. Transistor-

like gain, on the other hand, requires an open system approach [21, 22, 23, 24, 25, 26].

Moreover, accepting the connection between information processing and entropy change

suggests that dissipation and heat generation are fundamental aspects to be taken into

account in atomtronic circuit design [27, 28, 29, 30, 31]. In classical circuits, electrons

are strongly coupled to the thermal environment of the medium in which they propagate.

Ultracold atomic systems, by contrast, are isolated from the surrounding environment such

that dissipation and heat generation contribute to the state of the system. To make headway

toward the understanding of atomtronic circuits one can either treat such dissipation as a

perturbation to an otherwise quantum system, or introduce quantum effects to an otherwise

classical system. Both can be instructive.

1.3 The pursuit of an atomtronic transistor

Driving an interest in atomtronics is the possibility of developing a paradigm for ad-

dressing problems in quantum signal and information processing that parallels the power of

electronics in the classical realm. Thus, an atomtronic version of transistor action has been

a central theme of research in atomtronic devices and circuits. Transistor-like behavior has

been studied in both cold and ultracold atomic systems revealing a variety of approaches

for realizing an atomtronic transistor. The mechanisms responsible for transistor action ex-

plored thus far can be distinguished into three categories: (1) interatomic interactions of

a single species in a single state, A, i.e., Ain controls Aout [21, 22, 23, 24]; (2) Interatomic

interactions of two species or states, A and B, i.e., Bin controls Aout [25, 32]; and, (3) an

external coupling field, C, that drives internal state transitions of atom A, i.e., Cin controls

Aout [33, 34]. The atomtronic transistor described in this work falls into the first category
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and follows from the analogy with electronic transistors, which operate based on the flow or

buildup of a single carrier species, namely electrons. The first two categories, both of which

derive functionality from interatomic interactions, are differentiated solely by experimental

implementation. By introducing a second species or state, B, to control the flow of A,

the transistor system becomes more complex, requiring the superposition of two species- or

state-dependent trapping potentials. By contrast, the third category utilizes a coupling, C,

other than atoms to control the flow of A. In such systems the coupling strength of field C

is converted into the flow of atoms A, a process akin to transduction. As in electronics, the

development of various types of transistors for specific applications emphasizes their utility.

1.4 Fundamental atomtronic circuit elements

The experimental work presented in this dissertation characterizes the behavior of

two atomtronic devices and represents a step towards the development of devices that can

be readily applied to the challenges of quantum signal processing. The first device, often

overlooked due to its integral role in nearly every circuit, is a power supply. In the context

of the experiments presented here, a finite-temperature Bose-Einstein condensate (BEC)

of Rubidium 87 atoms (87Rb) is stored in a double-well potential. This devices is more

aptly referred to as a battery, providing both particles and energy to the connected circuit

components in order to maintain circuit functionality, until the stored energy of the BEC is

depleted. The atomtronic battery, when considered as part of the entire circuit, embodies a

system that is far from thermodynamic equilibrium, with many atoms stored in a reservoir,

waiting to be doled out to the rest of the circuit as required. Figure 1.3(a) shows an in situ

image of the atomtronic battery as it outputs a current of ultracold atoms. In the end, all

but the most mundane circuits, electronic or otherwise, operate in a state of non-equilibrium,

and it is the roll of the power supply to provide and sustain the potential gradients that drive

circuit operation. The second device is, of course, an atomtronic transistor, which can be

seen in Figure 1.3(b).
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a)

b)

5 μm

5 μm

Figure 1.3: a) In situ image of the atomtronic battery illustrating the current output from
the reservoir well due to the non-equilibrium distribution of atoms in a double-well potential
(indicated by the red outline of a representative energy contour) that is separated by a
repulsive barrier with finite height. b) A similar image, this time showing the triple-well
transistor, illustrates the transport dynamics between the three wells, separated by barriers
of differing height, result in transistor-like behavior.
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The name “transistor,” an amalgam of “transfer” and “resistor,” refers to the effective

resistance, or transresistance of the device when treated as a two-port, input/output device.

It is precisely that this resistance can be negative that corresponds to the gain that transistors

are known for [35, 36]. More than just a conceptual convenience, the negative resistance of

a transistor is a thermodynamic reality: the transresistance corresponds to negative power

dissipation during current flow [37]. Here, the concepts of negative transresistance and gain

are applied to the atomic system to investigate the principles of an atomtronic transistor

where transistor-like behavior arises due to the interplay of atom currents between the three

wells.

1.5 Dissertation outline

The remainder of this dissertation is organized as follows: Chapter 2 presents the the-

oretical treatment of Bose-Einstein condensates, as it pertains to the experimental system.

Additionally, a semiclassical treatment of the triple-well atomtronic transistor is presented

that analyzes the system in steady-state and calculates relevant transistor-like properties,

such as current gain and negative transconductance. Chapter 3 provides an overview of the

theory and development of a key component in the experimental apparatus, the atom chip.

As executed, the atomtronics experiment presents experimental challenges as far as atom

chip development is concerned. These difficulties were overcome by including an optically

transparent window, which enables the simultaneous use of optical potentials in conjunc-

tion with the magnetic potential generated by the atom chip. Chapter 4 then describes the

processes of both imaging atoms trapped in the magnetic potential as well as the projec-

tion of dynamic optical potentials that define the functionality of our atomtronic devices.

Finally, Chapter 5 presents the experimental realization of an atomtronic battery, which is

characterized according to a Thévenin equivalent circuit. The battery is subsequently used

to power the atomtronic transistor in order to study the transport dynamics of atoms be-

tween the three wells of the potential and the resulting quasi-steady-state behavior of the
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system. Chapter 6 provides some concluding remarks, including the future direction of the

atomtronics experiment.



Chapter 2

Theory

The atomtronic devices studied throughout this dissertation rely on the non-linear

behavior of interacting Bose gases at finite-temperature. This chapter covers the salient

concepts of trapped BEC systems and their role in transistor-like behavior. To start, a

theoretical description of Bose-Einstein condensates is provided, beginning from the idealized

case of a non-interacting BEC. Building upon this simplified description, the influences

of both intraparticle interactions as well as finite-temperature effects are included to the

description of the trapped gas. Next, a semiclassical description of an atomtronic transistor

is presented. Within this theory, we begin by determining the steady-state behavior of

finite-temperature ensembles trapped within a triple-well potential. Based on the steady-

state characteristics, transistor-like current gain and power dissipation are explored. Finally,

the theoretical basis for generating the hybrid magnetic and optical triple-well potential is

provided.

2.1 Theoretical description of Bose-Einstein condensates

Following the experimental realization of BEC, the field of ultracold atomic physics

has burgeoned, experiencing a thrust towards the study of quantum phenomena in many-

body systems, both in the pursuit of fundamental physics research [38], as well as real-world

applications [39, 40]. This chapter begins by introducing the salient equations that describe

trapped, non-interacting BECs that can be found in many statistical mechanics texts [41]
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and others dedicated solely to BEC physics [42, 43]. Corrections to these equations are

then discussed, which account for finite size and temperature effects as well as interatomic

interactions [43, 44]. The expressions provided in this section are then used in Section 2.2

to derive analytic relations that describe steady-state behavior in a triple-well transistor-like

potential.

2.1.1 Non-interacting Bose-Einstein condensates

While the atomic systems studied throughout this dissertation rely heavily on the

interactions between atoms, it is informative to start from the simplest scenario in which

interactions are not considered in order to develop a notion for the behavior of trapped Bose

gases. At temperatures, T , that are well above the onset of BEC, the distribution of particle

energies, ε, within the gas is approximately described by the Boltzmann distribution,

fMB (ε) ' 1

e(ε−µ)/kBT
, (2.1)

where the chemical potential µ� ε and kB is the Boltzmann constant. As the temperature of

the gas is reduced further, quantum statistics become non-negligible and the bosonic nature

of the atoms begins to play a dominant role. In this ultracold regime, the distribution of

particle energies is described by the Bose-Einstein (BE) distribution,

fBE (ε) =
1

e(ε−µ)/kBT − 1
, (2.2)

which accounts for macroscopic occupation of the ground state of the system and the for-

mation of a BEC.

When the gas is confined in an externally applied potential, the density of states of

the trap modifies the distribution and requires the inclusion of the energy level degeneracy,

g(ε). Our atomtronics experiments are conducted in an anisotropic 3-dimensional potential

that can be described by

V (r) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (2.3)
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where xi and ωi are the three spatial coordinates and corresponding harmonic trapping

frequencies, respectively, and m is the atomic mass. The length scales of the potential are

then defined by the harmonic oscillator lengths, ai =
√

~/mωi, and the overall confinement

is characterized by the geometric mean trap frequency ω̄ = (ωxωyωz)
1/3. This potential has

a degeneracy factor

g (ε) =
ε2

2 (~ω̄)3 , (2.4)

where ~ is the reduced Planck constant [43]. Given the degeneracy factor, the total particle

number is obtained by integrating over the distribution of particles,

N =

∫ ∞
0

dε
g (ε)

e(ε−µ)/kBT − 1
. (2.5)

The transition point between a gas that behaves classically and the onset of quantum

statistics, i.e., macroscopic occupation of the ground state, is determined by the critical

temperature, Tc. In the absence of interatomic interactions, T = Tc when µ = 0 and

N = Nth. Solving Equation (2.5) under these conditions, one finds

N = Nth =

∫ ∞
0

dε
g (ε)

eε/kBTc − 1
, (2.6)

=
Γ(3)ζ(3)

2

(
kBTc
~ω̄

)3

, (2.7)

where Nth is the number of thermally excited atoms at the threshold of condensation, Γ is

the gamma function, and ζ is the Riemann zeta function. The integral in Equation (2.6) is

evaluated according to Appendix D in Reference [41]. Solving Equation (2.7) for the critical

temperature yields

Tc =
~ω̄
kB

3
√

N

ζ(3)
. (2.8)

From Equation (2.7) it is clear that the total number of atoms scales relative to the ratio

T̃ ≡ T/Tc and is related to the number of thermally excited atoms by Nth = NT̃ 3, which

leads to the expression for the condensate fraction,

Nc

N
= 1− T̃ 3. (2.9)
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The total energy of the trapped atomic ensemble can be calculated in a similar manner

to the total atom number by including the energy of each state in the integrand,

E =

∫ ∞
0

dε
ε g (ε)

e(ε−µ)/kBT − 1
. (2.10)

Solving Equation (2.10) with µ = 0 yields the energy of the condensed phase,

Ec = 3NkBT
ζ(4)

ζ(3)
T̃ 3. (2.11)

From E, the heat capacity can be calculated according to the relation C = ∂E/∂T . There-

fore, the heat capacity of the condensed phase is

Cc = 12NkB
ζ(4)

ζ(3)
T̃ 3. (2.12)

To determine the energy of the normal phase Equation (2.10) is solved given the approxi-

mation fBE(ε) ' exp[−(ε− µ)/kBT ] + exp[−2(ε− µ)/kBT ] [43], which yields

Eth = 3NkBT

(
1− ζ(3)

16T̃ 3

)
, (2.13)

and the corresponding heat capacity,

Cth = 3NkB

(
1 +

ζ(3)

8T̃ 3

)
. (2.14)

Equations (2.12) and (2.14) behave differently as T → Tc, which causes the heat capacity to

peak at the critical temperature, indicating the transition between normal and condensed

phases. As the temperature becomes large, T � Tc, one recovers the classical limits, E =

3NkBT and C = 3NkB.

In addition to thermodynamic variables of the gas, the in-trap spatial distribution of

the atoms plays a role in the behavior of our atomtronic systems. Furthermore, when imag-

ing atoms in situ, the spatial distribution of the atoms can be used to extract quantitative

information about the atomic ensemble. As one might expect, the condensed and thermal

components of the gas exhibit different spatial distributions. Whereas the thermal gas is
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best described as particle-like, the condensate behavior is wave-like, since the intraparticle

spacing is on the order of the de Broglie wavelength. The thermal cloud density is deter-

mined by Boltzmann statistics, with exp[ε/kBT ] → exp[V (r)/kBT ], and exhibits Gaussian

characteristics,

nth =
N

π3/2σxσyσz
e−x

2/2σ2
x−y2/2σ2

y−z2/2σ2
z . (2.15)

Thus, the spatial extent along each direction of the trap is dictated by the characteristic

width, σi =
√

2kBT/mω2
i , which relates the thermal energy of the atoms to the strength of

the harmonic confinement. The momentum distribution is also Gaussian but isotropic and

determined by the mean thermal energy,

pth ∝ ep
2/2mkBT . (2.16)

Both the spatial and momentum distributions of trapped thermal gases are used extensively

in the simulations discussed in Section 5.4.1. The spatial distribution of the condensate is

addressed in the next section under the Thomas-Fermi (TF) approximation.

Near the critical temperature and below, the gas can be described by the semiclassical

distribution function,

f (r,p) =
1

e(p2/2m+V (r)−µ)/kBT − 1
, (2.17)

in which atoms occupy a phase space drdp. The density of thermally excited atoms is then

given by

nth(r) =

∫
dp

(2π~)3
f (r,p) ,

=
g3/2(z(r))

λth
, (2.18)

where z = exp [−(V (r)− µ)/kBT ] is the fugacity, λth =
√

2π~2/mkBT is the de Broglie

wavelength, and g3/2 is the polylogarithm function for atoms in a 3D harmonic oscillator po-

tential. Whereas the Boltzmann distribution is often trivial to integrate, the same operations

on the Bose-Einstein distribution produce polylogarithm functions, which are described in
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depth in Appendix D of Reference [41] and Appendix B.1 in Reference [45]. Equation (2.18)

provides an intuition to the behavior of Bose gases near the transition temperature where

the effects of Bose enhancement manifest as a peak in the central density of the cloud.

2.1.2 Interacting Bose-Einstein condensates at zero-temperature

While the expressions introduced in Section 2.1.1 are sufficient in describing a non-

interacting gas, the theoretical work described in Section 2.2 and experiments described in

chapter 5 utilize 87Rb atoms. In its electronic ground state, 87Rb is a neutral species, devoid

of long-range interaction mechanisms. However, as a massive boson, short range interactions

via collisions are sufficient to alter the characteristics described in the previous section and

provide non-linear behavior that is fundamental to our atomtronic systems.

The collision process can be understood via scattering theory, which is described thor-

oughly in chapter 5 of Reference [43]. At the low temperatures of the atomic ensembles we

consider, the scattering cross-section is solely s-wave and given by

σs = 8πa2
s, (2.19)

where as = 95.47a0 ≈ 5 nm is the s-wave scattering length of 87Rb atoms in the |F =

2,mF = 2〉 state, and a0 is the Bohr radius. The scattering process can be viewed as an

effective contact interaction between two atoms and is well characterized by the Lippmann-

Schwinger (LS) equation. In the Born approximation, the LS equation predicts an effective

pseudopotential,1 Ueff = gδ(r− r′), with an interaction strength

g =
4π~2as
m

, (2.20)

which is equivalent to the scattering matrix at zero energy [43].

1 The effective interaction due to collisions is typically treated according to the regularized zero-range
pseudopotential, Veffψ = (4π~2as/m)δ(r)∂(rψ)/∂r, which corrects for the divergent behavior of the Dirac
delta function as r → 0 [43, 46]. Treating the collision process in the Born approximation, which neglects
the scattered wave, simplifies the effective interaction to Ueff = (4π~2as/m)δ(r), since the role of ∂(rψ)/∂r
is to eliminate the contribution of the scattered wave to the potential.
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Given this scattering interaction, one can accurately describe the condensed phase

using the effective many-body Hamiltonian,

H =
N∑
i=1

(
−~2∇2

i

2m
+ V (ri)

)
+ g

∑
i<j

δ(ri − rj). (2.21)

Constraining the solution of the wave function by the relation ∂E/∂N = µ ensures consis-

tency between E and N and yields the time independent Gross-Pitaevskii equation,[
−~2∇2

2m
+ V (r) + g|ψ(r)|2

]
ψ(r) = µψ(r), (2.22)

where the eigenvalue for the non-linear condensate eigenstate ψ(r) is the chemical poten-

tial [45]. The GPE is a powerful tool that can be used to model the behavior of zero-

temperature gases, and simulation techniques are well documented [47]. If the contribution

due to the kinetic energy is small compared to the potential or collision pseudopotential,

then Equation (2.22) can be reduced to

µψ(r) =
[
V (r) + g|ψ(r)|2

]
ψ(r), (2.23)

under the well-known Thomas-Fermi (TF) approximation. The TF approximation holds

true for trapped clouds that satisfy Nas/ā � 1, where ā =
√
~/mω̄ is the mean harmonic

oscillator length [43]. Since the atoms are confined within a harmonic potential, the TF

approximation leads to an inverted parabola density profile of the condensate,

nc(r) =
µ− V (r)

g
, (2.24)

with TF widths Ri =
√

2µ/mωi. The total atom number in the condensate can then be

determined by integrating nc across Ri, yielding

Nc =
8π

15

µ

g

(
2µ

mω̄2

)3/2

. (2.25)

Solving for µ, one obtains the TF approximation for the chemical potential,

µ =
~ω̄
2

(
15Ncas
ā

)2/5

, (2.26)

which is used throughout the remainder of this dissertation.
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2.1.3 Corrections due to finite temperature, size, and interatomic interac-

tions

Corrections to the thermodynamic quantities introduced in Section 2.1.1 arise due to

finite number of particles, intraparticle interactions, and finite temperature. Throughout the

work covered in this dissertation, the atomic systems that are considered have temperatures

below the critical temperature yet higher than the effective temperature associated with

interatomic interactions, T0 = 2µ/7NkB. In this regime, Tc & T > T0, the two components

of the cloud can be treated separately under the Hartree-Fock (HF) approximation [43, 45].

Using this description of the system, the presence of a condensate produces an effective

potential known as the mean field,

UHF (r) = Vtrap(r) + 2g [nc(r) + nth(r)] , (2.27)

which is experienced by the thermal cloud. In typical situations the thermal density of the

trapped gas can be neglected, owing to the fact that nth(r)� nc(r) [45].

One can now consider the in-trap density distribution of an interacting Bose gas at

finite temperature using Equations (2.18) and (2.24). The thermal cloud density depends

on the fugacity,

zHF (r) = e−gnc(r)/kBT , (2.28)

that now includes the repulsive, positive-valued, TF chemical potential within nc(r), the

zero-temperature condensate density from Equation (2.24). Figure 2.1 shows a plot of the

thermal cloud density for various temperatures that exemplify the behavior of the finite-

temperature, interacting gas. The three curves illustrate the stark contrast in behavior at

T > Tc, T = Tc, and T < Tc. At temperatures above the critical temperature, the thermal

cloud density has a Gaussian distribution. However, as the cloud is cooled to the critical

temperature, Bose enhancement is noticeable as the ground state begins to acquire higher

occupancy. Well below the critical temperature, where the chemical potential is positive, the

mean field potential results in the repulsion of thermal atoms by the condensate and reveals
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Figure 2.1: Thermal cloud density for clouds at temperatures T > Tc, T = Tc, and T < Tc.
The density is determined from the fugacity with chemical potentials equal to µ = −kBT/2,
0, and kBT/2, respectively. To compare the three cases, the thermal density is scaled by λ3

th

and the position vector by the Gaussian thermal width, σ =
√

2kBT/mω2.
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an inverted-parabola shaped void. Despite the repulsive interaction with the condensed

atoms, the peak density of the thermal atoms remains well approximated by nth evaluated

at r = 0, or nth,0 = ζ(3/2)/λ3
th; however, the position of the peak density is displaced by the

condensate.

The presence of interactions and thermal excitations results in a depletion of the central

density of the cloud. Subsequently, the critical density required for the cloud to begin to

condense is achieved at a lower temperature. This reduction of the critical temperature

is determined by expanding ε as ε − ε0 in Equation (2.5), where ε0 = 3~ωm/2 + 2ncg and

ωm = (ωx + ωy + ωz)/3 is the arithmetic mean trap frequency. The leading first order

corrections to Tc include terms for ∂N/∂T , ∂N/∂µ, and ∂nc/∂µ, yield the finite-temperature

interacting gas expression for the critical temperature,

Tc = Tc,0

[
1− 0.73

ωm
ω̄

1
3√
N
− 1.33

as
ā

6√
N

]
, (2.29)

where Tc,0 is the non-interacting gas critical temperature from Equation (2.8). The first

corrective term depends on the ratio of arithmetic and geometric mean trap frequencies and

indicates that the reduction in the critical temperature is dependent on the anisotropy of the

potential, with ωm/ω̄ = (2 + λT )/3
√
λT and λT = ω‖/ω⊥ [43]. Therefore, the first term is

minimized by a homogeneous trap with large atom number. The second correction accounts

for the strength of the repulsive interactions on the thermal atoms, which scale as 6
√
Nas/ā.

Next, the finite temperature corrections for the condensate fraction can be addressed.

Expanding Equation (2.5) to first order in the chemical potential, one finds that, in response

to the reduction of the critical temperature, Nth at finite-temperature is larger than the

zero-temperature value. The corrected expression for Nth is

Nth(T, µ) ≈ Nth,0 + µ
∂Nth

∂µ
,

= NT̃ 3

[
1 +

ζ(2)

ζ(3)

µ

kBT

]
, (2.30)

which shows that at a given temperature the number of thermal particles increases according
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to the ratio of interaction and thermal energies. As before, the condensate fraction for an

interacting, finite-temperature Bose gas is given by Nc/N = (N −Nth)/N .

Finally, corrections to the energy and specific heat of the cloud can be addressed. The

contribution to the total energy by the condensate in the TF approximation is given by

Ec = 5µ(T )Nc(T )/7 and includes the temperature dependence shown in Equation (2.30).

The energy of the thermal cloud is again calculated from Equation (2.10), but now the effects

due to interactions are considered by determining ∂E/∂µ and including terms to first order

in µ/kBT . Therefore, the total energy of the cloud is given by

E = NkBTc

[
3
ζ(4)

ζ(3)
T̃ 4 +

5 + 16T̃ 3

7

µ(T )

kBTc

]
. (2.31)

As before, the specific heat can then determined via the relation, C = ∂E/∂T . Equations

for Nth, E, and C can be made to depend solely upon N , T , and Tc by inserting the non-

interacting gas expression for the condensed atom number Nc = N(1 − T̃ ). The equations

are as follows:

Nth ≈

[
T̃ 3 + 2.15

(
N1/6as
ā

)2/5

T̃ 2(1− T̃ 3)2/5

]
N,

E =

[
2.7T̃ 4 + 1.12

(
N1/6as
ā

)2/5

(1 + 3.2T̃ 3)(1− T̃ 3)2/5

]
NkBTc,

C =

[
10.8T̃ 3 + 10.752

(
N1/6as
ā

)2/5

T̃ 2(1− T̃ 3)2/5

− 1.344

(
N1/6as
ā

)2/5

T̃ 2(1 + 3.2T̃ 3)/(1− T̃ 3)3/5

]
NkB.

(2.32)

The set of Equations (2.32) is used extensively in the numerical calculations of the

atomtronic battery and transistor described in chapter 5.

2.2 Theoretical study of a triple-well atomtronic transistor

We now look to apply the characteristics of interacting Bose gases at finite temperature

to the field of atomtronics. In this section, concepts from analog electronics are drawn upon
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to theoretically study the behavior of a trapped, ultracold atomic system in the context of a

three terminal atomtronic device, namely a transistor.2 A semiclassical analysis is presented

that studies the flow of ultracold atoms having finite temperature, T , and chemical potential,

µ, through a triple-well potential designed to mimic the behavior of an electronic transistor.

The theoretical triple-well system that we consider is sectioned by two repulsive poten-

tial barriers, each of which is analogous to the built-in potential in the space charge region of

a semiconductor junction or the work function of the cathode in a vacuum tube [49, 50, 51].

Much like the thermionic emission of electrons across the energy barriers in these electronics

examples, atom currents in our system flow due to those atoms that are energetic enough

to traverse the repulsive barrier. Thus, atom currents can be described using a formalism

common to evaporative cooling. Building upon the work of References [52] and [53], relations

for atomic currents driven by thermal and chemical potentials are defined in Section 2.2.2.

Similar non-equilibrium dynamics have been studied in double-well systems containing cold

and ultracold atoms. These works exemplify the role of gradients in temperature and chem-

ical potential in driving the system towards thermal equilibrium [54, 55, 56, 57, 58, 59]. By

considering one of the three wells open to the surrounding environment, we introduce atom

loss that prohibits the system from equilibrating. The resulting quasi-steady-state chemical

potentials and temperatures of the wells are determined in Section 2.2.3 and analyzed in the

context of an electronic circuit with potential biases between nodes.

Transistor-like functionality of the device is established in Sections 2.2.4 and 2.2.5,

where current gain and maximum power output are calculated given an externally applied

input current to the gate well. Here, transistor action arises due to the interplay between

the input current and the steady-state thermodynamic properties of the gate. Depending

on the Q-point, the current into the drain is either attenuated or amplified in response to

the applied gate current, demonstrating a current gain greater than unity. Additionally, the

transresistance is found to be negative indicating the active nature of the transistor in that

2 The contents of this section are published in Reference [48].
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it draws power from a reservoir to control power output to a load. The maximum power to

an impedance matched load is then shown for a range of Q-points.

2.2.1 The theoretical system

Our semiclassical treatment of an atomtronic transistor begins by borrowing the nomen-

clature of the semiconductor field-effect transistor. The three regions of the triple-well po-

tential, shown in Figure 2.2(a), are labeled the “Source,” “Gate,” and “Drain” wells. In

labeling the regions of the triple-well potential, field-effect transistor nomenclature is used

as it describes the role of each well in an atomtronic transistor: Atoms flow from the source,

through a gate region, and into a drain well where they are removed from the system. This

naming scheme is meant to convey an intuition for the role of each region, rather than imply

the behavior of the triple-well system is more analogous to the behavior of a field-effect

transistor than a bipolar junction transistor. Emulating the experimental system described

in chapter 5 we take the trapping potential to be cigar shaped with corresponding harmonic

trap frequencies ω‖ � ω⊥. This potential is sectioned in the longitudinal direction by two re-

pulsive Gaussian barriers having peak heights VGS and VGD, respectively, to form the source,

gate, and drain wells. The longitudinal profile and separation of the barriers determines the

longitudinal gate well trap frequency. Furthermore, the longitudinal trap axis of the source

well is assumed to be half harmonic for simplicity. The degree of overlap of the two barriers

contributes to a potential bias in the gate, VG,0, with respect to the source and drain. Finally,

the drain well is modeled as a reflectionless output port that would feed into a subsequent

circuit element.

2.2.2 Current flow mechanism

Previous works have modeled the flow of atoms across a potential barrier in order to

study both the selective removal of atoms involved in evaporative cooling as well as the

reverse process in trap loading [52, 53, 60]. Here, the expressions in Ref. [60] are modified
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Figure 2.2: (a) Triple-well potential with source, gate, and drain wells. Chemical potential
levels in each well are depicted in the context of potential biases. The current output into
the drain can then be coupled to the desired ‘load.’ In the model presented here, the flow
of atoms through the potential is controlled by adjusting the source-gate chemical potential
difference via an external current input to the gate. (b) A simplified schematic of an electronic
common-source amplifier circuit with analogous functionality to its atom based counterpart.
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to include the chemical potential due to the presence of a BEC in the source and gate wells.

Under the HF theory, the mean field of the condensate shifts the energies of the thermal atom

distribution up by µ and is conceptually analogous to an applied bias voltage in an electronic

circuit. In the absence of a BEC, the chemical potential can be calculated according to self-

consistent mean field methods [61]. However, in this model the minimum single particle

energy is Vi,0 and thus negative µi are set to zero. Therefore, the atom currents in the

triple-well system are defined by the set of equations:

Isg = γsNth,sexp[−(VGS − µs)/kBTs],

Igs = γgNth,gexp[−(VGS − VG,0 − µg)/kBTg],

Igd = γgNth,gexp[−(VGD − VG,0 − µg)/kBTg],

(2.33)

where the product γiNth,i is the effective collision rate of thermally excited atoms in the

i-th well, and the exponential factor reflects the thermodynamic probability that an atom

possesses sufficient energy to traverse the barrier. Note that the subscript order indicates

the direction of current flow, e.g. Isg describes the atom flux from the source to the gate well,

and capitalized subscripts indicate model parameters. Building upon the collision process

described in Section 2.1.2, the equilibrium collision rate (γ =
√

2/πnthσ0∆v) then depends

only on the peak density of the thermal component, nth = ζ(3/2)/λ3
th, the s-wave collision

cross-section σs, and the mean thermal velocity, ∆v [43]. Thus, the collision rate for the i-th

well is given by

γi = 32π2ζ(3/2)m(askBTi)
2/h3, (2.34)

and the expression for Nth,i is given by Equation (2.30).

As alluded to previously, the currents in Equation (2.33) are reminiscent of the current

in thermionic devices, J = AT 2exp[−(V0 − Vb)/kBT ], where A is the Richardson constant,

which depends on the density of states and other material properties [49]. Devices that derive

their functionality from thermionic emission convert thermal energy into electric current

between a heated filament and an adjacent, charged electrode [62]. The magnitude of the
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bias voltage, Vb, applied to the electrode, relative to the built-in potential, V0, then tunes

the current flow. In both electronic and atomtronic systems, Bose-Einstein and Fermi-

Dirac statistics are approximated by the Maxwell-Boltzmann distribution, given that the

truncation parameter η ≡ V/T is sufficiently large, i.e., η & 3 [49, 52, 53]. Factors prior to

the exponential term in Equations (2.33) as well as the expression for thermionic emission

describe the abundance of particles which may contribute to the current.

2.2.3 Source and gate well ensembles in steady-state

Steady-state circuit operation is analyzed by enforcing particle number and energy

conservation, expressed using analogues of Kirchhoff’s current and voltage laws:

Isg = Igs + Igd, (2.35)

Isg(VGS + κGSkBTs) = Igs(VGS + κGSkBTg) + Igd(VGD + κGDkBTg), (2.36)

where the κ’s, which indicate the average excess energy of atoms traversing the barriers, are

of order unity [60]. It is supposed that some external reservoir supplies atoms to the source

well, maintaining a fixed chemical potential, µs, and temperature, Ts. For barrier heights

that are large compared to the chemical potential and thermal energies, the three wells are

weakly coupled by thermal atoms that have sufficient energy to traverse the barriers. Thus,

as current flows from source to gate and subsequently from the gate to the drain, we assume

that the gate acquires a well-defined chemical potential, µg, and temperature, Tg, once a

steady-state is reached. Additionally, we impose that current into the drain is removed from

the system such that no current flows from the drain back towards the gate. An illustration

of the system is shown in Figure 2.3 that elucidates important model parameters.

With the source well ensemble held constant, we seek steady-state values of the gate

chemical potential and temperature in terms of µs and Ts. It proves useful to define a tem-
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Figure 2.3: Schematic of atom and energy flow across the gate barriers. The atom current
carries with it an energy in excess of the barrier height by the factor κkT relative to each
barrier. Light blue shading indicates the offset in energy of the thermal component, shown
in red, due to the condensate chemical potential. An example steady-state for source and
gate ensembles is shown, in which the temperature drop, τ , is positive and the chemical
potential drop, µsg, is negative.
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perature drop τ and barrier height difference υ, both normalized to the source temperature:

τ ≡ (Ts − Tg) /Ts ≡ ∆T/Ts, (2.37)

υ ≡ (VGD − VGS)/kBTs ≡ ∆V/kBTs. (2.38)

Using the currents defined in Equation (2.33), along with Equations (2.35) and (2.36), it is

possible to derive relations for both the temperature drop,

τ = e−υ/(1−τ) υ + (κGD − κGS)

κGS + κGDe−υ/(1−τ)
, (2.39)

and the normalized chemical potential drop,

µ̂sg = (1− τ) ln
[
(1− τ)4

(
1 + e−

υ
1−τ

)]
− τ

(
V̂GS − µ̂s

)
+ (1− τ) ln

1− τ + ζ(2)
ζ(3)

(
µ̂s − V̂G,0 − µ̂sg

)
1 + ζ(2)

ζ(3)
µ̂s

 , (2.40)

where µsg ≡ µs − µg and the hat (̂ ) indicates quantities normalized to the source temper-

ature. Within these equations, e−υ/(1−τ) represents the ratio of forward current into the

drain relative to current fed back into the source, Igd/Igs. Given its effect on the balance of

currents into and out of the gate well, the value υ is referred to as the feedback parameter.

The impact of the feedback parameter on the gate-drain, normalized to the source-gate cur-

rent, can be seen in Figure 2.4. The ratio of currents is independent of η, but the absolute

magnitude of the Igd depends strongly on µs, Ts, and η due to the exponential nature of

the currents in Equations (2.33). In deriving Equation (2.40) we have used the fact that the

thermal and chemical potential drops are zero at υ =∞ along with the relations introduced

in Section 2.1.3 to determine the ratio of γgNth,g/γsNth,s that satisfies Equation (2.35). Com-

plete derivations of Equations (2.39) and (2.40) are provided in Appendix A. In the absence

of an external gate input, Equation (2.40) shows that the source-gate junction is self-biased

to some Q-point characterized by µsg. The magnitude of this bias is primarily dependent

on the feedback parameter, both directly and through the temperature drop. This self-bias
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Figure 2.4: Log plot of the net drain current relative to the source-gate current, which reflects
the role of the feedback parameter.

is illustrated in Figure 2.2(a) within the atomic system and Figure 2.2(b) for an equivalent,

simplified electronic circuit. Equations (2.39) and (2.40) form the basis of our model and

can be solved self-consistently in order to characterize the thermodynamic variables of the

triple-well system in steady-state.

To calculate the values of τ and µ̂sg, the κ parameters of the trapping potential must

be determined. Trap geometry has a strong effect on the average energy removed by an

atom leaving via a controlled trajectory. For atoms escaping isotropically from a potential

well, as in typical evaporative cooling schemes, κ ' 1 [52, 53]. However, limiting the escape

trajectory to purely 1D, for instance along the loose axis of a cigar-shaped trap, κ ' 2.9

for truncation parameters η ≡ V/kBT = 4 − 7 [60]. The difference in κ factors is a direct

result of allowed escape trajectories. The direct simulation Monte-Carlo (DSMC) method

is used to confirm κ ' 2.9 for the geometry and feedback parameters modeled here. More

information regarding these simulations are given in Section 5.4.1.

The temperature and chemical potential drops are shown as functions of the feedback

parameter in Figure 2.5, with κGS = κGD = 2.9. The behavior shown by the temperature

drop is somewhat non-intuitive in that for values of positive feedback (VGD > VGS), the
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Figure 2.5: Plot of the temperature drop vs. feedback parameter. Insets illustrate power
dissipation due to the static source-gate resistance. Negative υ results in a negative tem-
perature drop in the direction of net current across the source-gate barrier, indicating heat
transfer into the gate and Tg > Ts in steady-state. Conversely, positive υ results in net
cooling (negative power dissipated) and τ increases until µsg peaks. As υ →∞, Igd → 0 and
equilibrium between the gate and source wells is reached.
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temperature of the gate is actually lower than the source, despite current from the source

into the gate having an average energy VGS + κGSkBTs. Furthermore, Figure 2.6 shows that

there will generally exist a range of feedback parameters for which the chemical potential

drop is negative, meaning the source-gate junction is reverse-biased. Also shown in Figure 2.6

are two threshold feedback parameters. The first, υBEC, indicates the formation of a BEC

in the gate well. For υ ≥ υBEC the balance of particle and energy currents leads to a steady-

state gate well ensemble with sufficiently high phase-space density to condense. The second

threshold, υTC, indicates the feedback parameter above which negative transconductance

occurs for the steady-state parameters. Section 2.2.5 provides an in-depth discussion of the

υTC threshold.

To better understand the steady-state results, one can consider the power dissipated

within the gate well of the transistor, Psg = I2
sg,netRsg. Here Isg,net = Isg− Igs > 0 is the total

atom current flowing into the gate. Note that the power dissipated within the gate well does

not include the gate to drain current, as power output to the drain is available to do work

on a connected load. The static source-gate resistance in steady-state is

Rsg ≡ µsg/Isg,net. (2.41)

Given the sign of the chemical potential drop, Rsg can be negative indicating an ohmic cooling

synonymous with the evaporative cooling process, which leads to positive τ . Negative power

dissipation within the gate well peaks at υ ≈ 1, which is consistent with the maximum value

of τ .

2.2.4 Current gain

Within the steady-state model presented, current gain is the most readily studied

quantity since voltage and power gain require more explicit knowledge of the connected

‘load.’ To study gain, we use a method similar to determining the two-port admittance

parameters of an electronic circuit, which is commonly used to describe transistor action in
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Figure 2.6: Chemical potential drop between the source and gate wells, normalized to the
source temperature, versus the feedback parameter. Red, blue, and black curves show the
steady-state value of µ̂sg for truncation parameters of 3, 4, and 5, respectively. Two vertical
dashed lines indicate threshold behavior linked to the feedback parameter. The first, υBEC ,
above which a BEC is predicted to form in the gate well and a second, υTC , where the
transconductance becomes negative.
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electronic transistors [7]. The coupled system of equations for the triple-well atomic system

is given by  dIN,g

dIQ,g

 =

 a11 a12

a21 a22


 dµg

dTg

 , (2.42)

where IN,g and IQ,g are the particle and heat currents into the gate well. The ‘a’ param-

eters relate the currents to either a change in chemical potential or temperature assuming

the other is constant, e.g. a11 = (∂IN,g/∂µg)dTg=0. Equation (2.42) is akin to the On-

sager relations [29, 63] for particle and heat diffusion that have been utilized to describe

non-equilibrium transport dynamics in atomic systems [56, 57]. Here, they are used to de-

scribe the particle and heat currents applied to the gate well in order to elicit the changes

µg → µg + dµg and Tg → Tg + dTg. The particle and heat currents on the left-hand side

of Equation (2.42) are given by the differential of the sum of terms in Equations (2.35)

and (2.36), respectively, with current flow into (out of) the gate taken to be positive (neg-

ative). In steady-state, dIQ,g = 0; thus, the temperature response to a change in chemical

potential is given by ∂Tg/∂µg = −a21/a22. It is not surprising that this quantity is negative,

as the chemical potential varies inversely with temperature at constant atom number, as seen

from Equations (2.9) and (2.26). For small deviations from the steady-state, this relation is

used in conjunction with Equation (2.42) to determine the input current required to change

the gate chemical potential by some dµg:

dIg = dµg

(
a11 − a12

a21

a22

)
, (2.43)

where the quantity in the parentheses is equivalent to the gate well input admittance. The

differential current gain about the Q-point is then defined as the ratio of the resulting change

in gate-drain current and the external gate well input current:

AI ≡
dIgd

dIg

, (2.44)

where dIgd = I ′gd − Igd and the primed current is evaluated at µ′g = µg + dµg and T ′g =

Tg + (∂Tg/∂µg)dµg.
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Figure 2.7: Plot of the differential current gain at the drain terminal of the atomtronic
transistor. Three curves are shown that illustrate the increase in current gain magnitude
with increasing mean trap frequency of the gate well. Horizontal dashed lines indicate unity
gain.

Figure 2.7 shows the current gain for the range of feedback parameters shown in Fig-

ure 2.5, illustrating the current gain at various Q-points. Two complementary operating

regimes arise in which the transistor provides either positive or negative differential current

gain. For feedback parameters near zero, AI is positive, indicating that a positive (negative)

dIg leads to an increase (decrease) in Igd. For increasingly negative feedback parameters, i.e.,

υ < υBEC, the current gain becomes nonphysical as dµg becomes ill-defined in the absence of

a condensate in the gate well. At υ ∼ 0.5, the sign of AI flips where the changes in Igd due

to dµg and dTg become equal. Finally, at υ ∼ 1.6, the gain reaches a maximum, negative

amplitude.

Positive and negative differential current gain regimes arise due to the interplay between

µg and Tg. To better understand each regime, consider the scaling of the chemical potential

with respect to the number of condensed atoms in the Thomas-Fermi limit, µ ∝ N
2/5
c . In

the negative differential current gain regime, steady-state µg is larger than in the positive

gain regime. Therefore, a larger number of atoms at T < Tg must be injected into the gate
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well to elicit a positive dµg. The resulting decrease in Tg causes a reduction of Igd that is

more substantial than the increase of Igd due to the additional chemical potential. Thus,

dµg is positive, but the net change in the gate-drain current is negative. The opposite effect

is responsible for positive differential current gain.

With the sign of the current gain understood, the magnitude of the output current is

determined. Multiple traces are shown in Figure 2.7 that indicate the gain for different gate

well geometric trap frequencies, ω̄g, relative to the trap frequencies of the external well that

injects the control current, ω̄c, where ω̄ = (ω‖ω
2
⊥)1/3. The enhancement in the magnitude

of the current gain arises due to the scaling of the specific heat, C ∝ 1/ω̄3, and chemical

potential, µ ∝ ω̄, of a tight well [43]. More specifically, as ω̄ increases, the scaling in µ and

C reduce the number of atoms needed to alter the chemical potential and temperature of

the steady-state gate well population. In the case that the trap frequencies are equal, one

recovers the expected result that AI = 1/2 at υ = 0, as there are two equally probable output

channels from the gate. This behavior indicates that the ratio of trap frequencies is a key

design parameter for achieving greater than unity gain.

2.2.5 Transistor power output and transconductance

Despite a lack of explicit knowledge regarding the load circuit connected to the drain

well, it is possible to determine the maximum power delivered to an impedance matched load.

Stated generally, impedance matching is the process of selecting the input impedance of the

load circuit to be equal to the output impedance of the device such that reflection of the

output signal is minimized. The reflection of particles with a given energy impinging upon

a potential landscape can be calculated using a number of methods (e.g. [64, 65]) and has

been experimentally studied using cold [66] and ultracold atoms [67]. For a matched load,

we borrow the electronics definition for the maximum power at the transistor output [6],

Pmax =
gmdµ2

g

4
, (2.45)
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Figure 2.8: Plot of the transconductance of the atomtronic transistor for η = 5. Three curves
are shown for feedback parameters 10%, 50%, and 100% above threshold. The horizontal
dashed line indicates the chemical potential drop at threshold.

where dµg is the amplitude of the gate chemical potential modulation and gm is the transcon-

ductance, given by

gm ≡ dIgd

dµsg

=

(
∂Ts

∂µsg

)(
∂Igd

∂Ts

)
, (2.46)

where the partial derivatives are evaluated at constant µs. Transconductance is useful in

describing operation of the devices as an active element, i.e., one that supplies power. From

Equation (2.45), it can be seen that if gm is negative, the power dissipated at the transistor

output is negative. Effectively, the transistor converts power supplied by the source well

into power output from the drain controlled by dµg. As alluded to in Figure 2.6, there is a

threshold feedback parameter, υTC, above which the system exhibits negative transconduc-

tance in steady-state. This threshold is determined from the inflection point of gm. Both the

sign and magnitude of gm are determined from the derivative of the transfer characteristic

curves. Examples of these curves are shown in Figure 2.8 for υ = 10%, 50%, and 100%

above υTC.

The maximum power dissipated at the output of the transistor is shown in Figure 2.9 as

a function of the fraction above threshold, (υ− υTC)/υTC. The values of Pmax are calculated
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Figure 2.9: Maximum power dissipated when connected to an impedance matched load,
normalized to the magnitude of the threshold value, |Pmax(υTC)|, as a function of the feed-
back parameter. Above threshold, the transistor exhibits negative transconductance. The
triangle, square, and circle represent the peak power for feedback parameters that are 10%,
50%, and 100% above the threshold value υTC , respectively. Negative dissipated power is
synonymous with power supplied to the load circuit.
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using the same fractional value of dµg with respect to the steady-state µg for all υ. The power

output corresponding to the three transfer characteristic curves in Figure 2.8 are included

in Figure 2.9.

The absolute magnitude of the power depends on the value of dµg; therefore, to better

illustrate the behavior of Pmax it is scaled by Pmax(υ = υTC) in Figure 2.9. The magnitude of

the maximum power dissipated is seen to peak at υ ≈ 1.75× υTC ≈ 2.6. As was the case for

the current gain, the power delivered by the transistor is ultimately limited by the gate-drain

current, which decreases exponentially with increasing υ. However, the power is delivered

in the form of higher energy thermal atoms. As a result, the maximum power dissipation

peaks at a higher value than the current gain.

Negative power dissipation, a familiar concept introduced early in the literature on

electronic oscillators, originates due to the negative transconductance or transresistance of

a device [36]. When coupled to a circuit containing frequency dependent elements, an active

device that exhibits negative transresistance cancels the resistive power loss in the load,

resulting in the buildup of a resonant, oscillatory signal [35, 36]. The oscillator concept is

attractive in the field of atomtronics, given the historical impact of RF and higher frequency

signal generation within the field of analog electronics.

2.2.6 Connection to electronic transistor functionality

Within the semiclassical approach presented in this section, atom currents driven by

chemical potentials and thermal energy are used to describe the particle and energy transport

throughout the system. By varying the height of the barriers that separate the three wells,

it is shown that the steady-state chemical potential and temperature differences between the

source and gate wells can be controlled. This process is analogous to biasing an electronic

transistor to the desired quiescent point. Returning to the analogy with electronics, transistor

functionality largely depends on the bias or quiescent operating point set by the voltages

at each of its three terminals. This steady-state theory indicates that regimes of positive
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and negative potential drops between the source and gate wells exist, which are analogous

to forward and reverse-bias modes in electronic transistors, respectively.

Transistor-like behavior of the triple-well atomic system was investigated by calculating

the current gain given an external current input to the gate well. The device exhibits regions

of both negative and positive differential current gain, depending on the feedback parameter,

that can exceed unity. The magnitude of the gain was shown to depend on the mean trap

frequency of the gate well, a characteristic that arises due to the nonlinear dependence of the

chemical potential and specific heat of the gas on the trap frequency. Therefore, the current

gain is a widely tunable parameter, controlled by both υ and ω̄g.

In addition to transistor-like gain, the maximum power delivered to an impedance

matched load was calculated. For feedback parameters above the threshold value, υTC , the

transistor exhibits negative power dissipation at its output. In other words, the triple-well

potential supplies power to the load circuit. As in analog electronics, active devices, i.e., those

which exhibit negative transresistance behavior, can be coupled with frequency dependent

loads to create an oscillatory output signal. Therefore, if coupled to the appropriate load, the

transistor-like triple-well system described here could be used to generate oscillating atomic

currents.



Chapter 3

Atom chip development

Applications for atom chips in AMO experiments are numerous, including rapid pro-

duction of BEC [68, 69, 70, 71] as well as much of the work within the field of atom op-

tics [72, 73, 74, 75, 76, 77]. In order to realize the atomtronic battery and transistor, pictured

in Figure 1.3, one must first synthesize the multi-well trapping potential. This chapter be-

gins with a brief theoretical discussion of magnetic trapping, followed by an overview of the

various atom chip wire patterns that are utilized in the atomtronics experiment. Finally,

other important issues such as heating of the atomic ensemble due to technical noise, and

resistive heating in the atom chip wires due to current flow are analyzed.

3.1 Magnetic trapping of neutral atoms

Despite the charge neutral nature of 87Rb atoms, they possess a finite magnetic dipole

moment, µmag, generated by their total atomic angular momentum. As a result, in the

presence of a magnetic field, B, the atoms experience an interaction energy,

Umag = −µmag ·B. (3.1)

If the magnetic field is inhomogeneous, the atom will experience a spatially dependent force,

Fmag = −∇Umag = ∇ (µmag ·B) . (3.2)

Due to the behavior of magnetic fields in regions free of charges and currents, it is only

practical to consider fields that force atoms towards a field minimum. More explicitly, local
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maxima of a quasi-static magnetic field occur only at the source of the field, e.g. a current

carrying wire, (see Reference [78] for a rigorous proof). While it is possible to confine

atoms to a Kepler-like orbiting trajectory around a current carrying wire, as was shown in

Reference [73], the resulting trap is not localized and is impractical for many atom trapping

applications, including atomtronics. Therefore, neutral atoms are typically trapped in a

weak-field-seeking atomic state, i.e., µmag > 0, and the magnetic trap is designed about a

minima of the magnetic field.

In the context of magnetic trapping the state of 87Rb atoms is defined by the hyperfine

structure quantum number F , the sum of the nuclear spin angular momentum, I, and total

electron angular momentum, J . The 5S1/2 ground state of 87Rb has I = 3/2 and J = 1/2,

which result in either F = 1 or 2. In the F = 1 ground state manifold, Zeeman split sub-

levels range from mF = −1, 0, 1 with Landé g-factor gF = −1/2. Similarly, the F = 2 ground

state manifold has sub-levels mF = −2, −1, 0, 1, 2 and gF = 1/2. Therefore, the magnetic

dipole moment of these atoms is given by µ = mFgFµB, where µB is the Bohr magneton.

In order to maximize the magnetic trapping force experienced by the atoms, they should be

prepared in the F = 2 ground state manifold, in the mF = 2 Zeeman sub-level, which has

twice the dipole moment of other trappable states.

3.2 Designing an atom chip for atomtronic devices

This section covers the basics of magnetic trapping on an atom chip along with the

chip conductor patterns used for atomtronics experiments. Supplemental derivations of the

magnetic fields generated by these chip patterns can be found elsewhere [10, 11, 12, 72, 76,

79]. Special considerations for high-resolution, through-chip, in situ imaging are described

along with two atom chip design iterations used to complete the work in this dissertation

are discussed.
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3.2.1 Side-guide trap

To begin, consider the most simple configuration used to trap atoms on a chip, the

side-guide. While it does not form a complete, three dimensional trapping potential the side

guide addresses the basic concepts used in all static chip trap designs. A waveguide potential

is formed by the combination of an infinitely long and thin wire carrying a current Ix and a

uniform magnetic bias field oriented perpendicular to the flow of current, By. The magnetic

field generated by the line current is given by

Bwire =
µ0Ix
2πr

, (3.3)

where µ0 is the vacuum permeability, r2 = y2 + z2, and the field circulates according to the

right-hand rule. When combined with the external bias field, a minimum in the magnetic

field forms a distance dz away from the wire, where the magnitudes of Bwire and By are

equal. In order to determine the properties of the trap, one must consider the total magnetic

field:

Bŷ,side =
µ0Ix
2π

z

(y2 + z2)
, (3.4)

Bẑ,side =
µ0Ix
2π

−y
(y2 + z2)

+By, (3.5)

where field components are decomposed along the ŷ and ẑ directions. Figure 3.1 illustrates

magnitude and direction of the magnetic field around the waveguide and current carrying

wire. The distance dz is determined by solving Equations (3.4) and (3.5) for z where the

total field magnitude is zero,

dz =
µ0

2π

Ix
By

. (3.6)

At the position y = 0, z = dz the potential is a linear quadrupole field with a gradient

determined by

B′|dz =
2π

µ0

B2
y

Ix
=
By

dz
, (3.7)

where the relation for dz from Equation (3.6) has been used. The dotted lines in Figure 3.2(a)

and (b) show the magnetic field magnitude along both the ŷ− and ẑ−directions, respectfully.
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Figure 3.1: Illustration of the magnetic field lines in the side-guide configuration, which is
formed by the superposition of a uniform bias field along −ŷ, shown in (a), and the magnetic
field generated by a current carrying wire, shown in (b). c) The resulting waveguide is located
a distance dz below the conductor. Colors indicate the magnetic field strength in the y-z
plane, increasing from a local minimum (purple) to the maximum field at the conductor
(red).
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Figure 3.2: Addition of a bias field along the wire current in the side-guide trap converts the
field gradient near the minimum from quadrupole (dotted) to harmonic (solid). (a) and (b)
show the magnetic field magnitude along the ŷ− and ẑ−directions, respectively.

Equation (3.7) reveals one of the attractive characteristics of atom chips. By enabling atoms

to be trapped in close proximity to a current carrying wire (typically tens to hundreds of

microns) magnetic traps with large field gradients (> 103 G/cm) can be realized with currents

of only a few amperes.

The quadrupole side-guide is an acceptable trap configuration for cold atoms (T &

1µK); however, as the temperature of the trapped atoms reaches lower temperatures (e.g.

near the BEC phase transition) they become more susceptible to Majorana spin flips. At the

zero of the magnetic field, where the Larmor precession frequency of the atoms is lowest, the

atoms are no longer able to adiabatically follow the change in the field gradient and are likely

to undergo a spin-flip transition to an untrapped, strong-field seeking state [80]. However,

this problem can be ameliorated by adding a second bias field, Bx, along the direction of

current flow in the wire. In doing so, the magnetic field minimum is lifted from zero and the

field gradient near the minimum becomes approximately harmonic, forming a Ioffe-Pritchard

(IP) trap [81]. So long as the Larmor frequency, ωLarmor = µBy/~, is much larger than the

harmonic IP trap frequency, ωIP , losses due to Majorana transitions can be considered to

be negligible [76]. Solid lines in Figure 3.2 show the magnetic field of a side-guide IP trap

relative to the same field where Bx is absent.
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Two key figures of merit for IP traps are the trap frequency and depth. The trap depth

is determined by the field magnitude infinitely far away from the wire, which is set by the

bias field perpendicular to the current carrying wire, By. In order to determine the trap

frequency we again look at the field near the trap minimum, this time taking the second

spatial derivative,

B′′|dz =

(
2π

µ0

)2 B4
y

BxI2
x

=
B2
y

Bxd2
z

. (3.8)

Assuming the potential to be harmonic (i.e., Uz,mag = mω2z2/2), Equation (3.8) in conjunc-

tion with Equation (3.1) to yield the side-guide IP trap frequency,

ωIP,side =

√
µmag
m

B′′|dz =
By

dz

√
µmag
m

1

Bx

,

∝
B2
y

Ix
√
Bx

. (3.9)

When designing an atom chip trap, Equations (3.6) and (3.9) are instrumental in under-

standing the interplay between the trap position with respect to the chip surface and the

trap frequency, given control parameters Ix, Bx, and By.

3.2.2 Split-guide trap

The side-guide IP trap is sufficient for many atom-chip-based experiments. However,

the atomtronics experiments described in Chapter 5 require unobstructed optical access to

the atoms in order to project optical potentials down onto the trapped atoms and also image

them in situ. Thanks to the atom chips discussed in Section 3.3, which are constructed from

compound substrates that incorporate co-planar regions of silicon and glass, through-chip

optical access is not an issue. Instead, one is restricted by the fact that the side-guide IP

trap confines the atoms directly beneath one of the chip wires. While the wire is an excellent

conductor, this also means it is completely opaque at the optical wavelengths relevant to our

experiment. To side step this issue, the chip design is modified as follows: a second chip wire

is added that runs parallel to the original side-guide wire and carries the same magnitude
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current but in the opposite direction. Additionally, the external bias field is rotated to point

perpendicular to the plane of the two wires. The resulting magnetic field minimum is shifted

out from under the single wire to a position half-way between the two wires. The total

magnetic field is now described by

Bŷ,split =
µ0Ix
2π

(
z

(y − dw/2)2 + z2
− z

(y + dw/2)2 + z2

)
, (3.10)

Bẑ,split =
µ0Ix
2π

(
y + dw/2

(x+ dw/2)2 + z2
− y − dw/2

(y − dw/2)2 + z2

)
−Bz, (3.11)

where dw is the distance between the two wires. The total split-guide trap configuration is

shown in Figure 3.3.

To determine the distance between the trap and the plane of the two wires, we follow

the same procedure used for the side-guide and solve dz = z where the total field magnitude

is zero. With currents of equal magnitude in both wires this is simplified further, as the trap

is centered along the plane y = 0. The distance dz for the split-guide trap is then given by

dz =

√
µ0

2π

Ixdw
Bz

− d2
w

4
. (3.12)

Upon examination, the expression for dz reveals a subtle issue. If the magnitude of the

current flowing in the wires is not sufficiently large (Ix < πdwBz/2µ0), the solution becomes

imaginary. This occurs when the field from the wires is no longer large enough to cancel the

bias field at dz > 0. Therefore, the trap is located in plane of the two wires, and the single

trap minimum splits, creating two side-guide traps between the wires.

Assuming the chip wire current is large enough to form a single, split-guide trap, the

gradient of the magnetic field at z = dz is then given by the first spatial derivative,

B′|dz =
4π

µ0

B2
z

Ix

dz
dw
. (3.13)

As with the side-guide, the split-guide trap can be made harmonic, i.e., suitable for trapping

ultracold atoms, by adding Bx, and the trap depth is now determined by the magnitude of

Bz. Following the procedure from Section 3.2.1, the trap frequency is calculated using the
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Figure 3.3: Illustration of the magnetic field lines in the split-guide configuration, which
consists of a uniform bias field along ẑ, shown in (a), and the magnetic field generated by
counter-propagating currents in a pair of parallel wires separated by a distance dw, shown
in (b). c) The resulting waveguide is located a distance dz from the plane of the conductors.
Colors indicate the magnetic field strength in the y-z plane, increasing from a local minimum
(purple) to the maximum field at the two conductors (red).
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second spatial derivative of the total magnetic field, given by

B′′|dz =

(
4π

µ0

)2
B4
z

BxI2
x

d2
z

d2
w

, (3.14)

to yield

ωIP,split =

√
µ

m
B′′|dz =

(
4π

µ0

)
B2
z

Ix

dz
dw

√
µ

m

1

Bx

,

∝ B
3/2
z√
IxBx

. (3.15)

Interestingly, ωIP,split = ωIP,side for dw = 2dz, which is satisfied when Ix = 2πdzBz/µ0.

The design process for a split-guide atom chip trap is the same as for the side-guide,

except one must consider the distance between the wires. Since the purpose of the split-

guide trap is to gain unobstructed optical access to the trapped atoms, dw and dz must

accommodate a solid angle larger than that of the primary objective in the optical system.

Assuming the window in the chip substrate has a large enough clear aperture, the chip wire

limited numerical aperture is given by

NAwire = sin

(
arctan

(
dw
2dz

))
,

=
1/d̃z√

4 + 1/d̃2
z

, (3.16)

where d̃z = dz/dw. A schematic illustrating the through-chip optical access is shown in

Figure 3.4(a). To provide context to the optical system described in Chapter 5, Figure 3.4(b)

shows NAwire versus d̃z, which indicates that the maximum ratio of dz to dw for a 0.6 NA

primary objective is ∼ 2/3.

3.2.3 H-wire trap

Thus far, only waveguides that confine atoms along two dimensions have been consid-

ered. Both the side- and split-guide potentials can be modified to form full, three-dimensional

trapping potentials by superimposing another magnetic field with spatially varying magni-

tude along the x̂-direction. This is accomplished by running current through a pair of parallel
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Figure 3.4: a) Illustration of the maximum thru-chip numerical aperture: The maximum
ray angle depends on the chip wire separation, dw, and trap-to-chip distance, dz. b) Plot of
the chip wire limited NA versus d̃z. Dotted lines indicate the maximum d̃z = 2/3 that still
accommodates the imaging and projection system described in Chapter 4, which has an NA
of 0.6.
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conductors oriented perpendicular to the main guide wire(s) to form an ‘H’-shape that gives

the H-wire trap configuration its name. The contribution to the total magnetic field along

x̂ is treated in the same manner as a side-guide. Figure 3.5 shows an example potential

generated by the H-wire configuration with a single side-guide wire. Here, the H-wires are

separated by a distance dH = 2.2 mm, both the H- and guide-wire currents are IH,G = 2 A,

and bias fields along (x, y, z) = (1,−30, 0) G. The resulting trap is ∼ 130 µm below the chip

with trap frequencies ω(x, y, z) ' (25, 2100, 2100) Hz and a depth of ∼30 G.

Design parameters for the H-wire trap are dictated primarily by the ratio of currents,

IH/IG, and the ratio of distances, dz/dH . The potential along the x̂−direction is seen to

be quite anharmonic; however, through careful selection of IH,G and dH,z the anharmonic

contributions can be reduced [11]. Additionally, there is a noticeable twist to the potential

in which the longitudinal trap axis is rotated away from the x̂-axis by θH . This twist arises

due to the perpendicular contribution of the H-wire field and is accentuated at higher field

magnitudes. Near the trap minimum, the twist θH ∝ (dz/dH)2, which indicates that the

twist is minimized by increasing the distance between the H-wires or moving the trap closer

to the chip.

3.2.4 T-wire trap

The primary utility of the H-wire trap is to provide loose confinement along the un-

tapped axis of the guide traps. If instead a potential with tight confinement along x̂ is

desired, as is required for rapid rethermalization during the RF evaporation process used to

form a BEC, a single conductor oriented perpendicular to the guide wire(s) can be added to

the chip wire pattern. By flowing current in the opposite direction of the H-wire current, a

dimple is produced in the longitudinal potential profile. The wire pattern can form either a

‘+’ or ‘>’ relative to the horizontal guide wire, where the former is referred to as a dimple

trap and the latter as a T-wire trap. This section considers the T-wire trap, as the vertical

dimple wire would obscure optical access to the atoms. More information on dimple traps
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Figure 3.5: H-wire trap configuration: The inset at the upper left illustrates the conductor
scheme along with the wire current and bias field directions. The central energy contour plot
shows the highly elongated trap shape. Each contour line is labeled with the field magnitude
in Gauss (G). The dotted red and blue lines through the center of the trap indicate the
position of slices through the trap along the x̂− and ŷ−directions that are shown above and
to the left, respectively.
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can be found in the theses of Salim and Hudek [82, 13]. Figure 3.6 illustrates the T-wire

potential, again with H-wires separated by a distance dH = 2.2 mm, but with wire currents

IH = 1.75 A, IG = 2.5 A, IT = 0.75 A, and bias fields along (x, y, z) = (6.7,−30, 0) G. The

resulting trap is also located ∼ 130 µm below the chip with a depth of ∼30 G, but now has

trap frequencies ω(x, y, z) ' 2π × (350, 2100, 2100) Hz.

Design parameters for the T-wire trap are almost identical to those of the H-wire trap

and are conceptually quite similar. The T-wire current can be setup to either run parallel

or antiparallel with respect to IG in the main guide wire, resulting in increased or decreased

total current through the shared section of the guide wire, respectively. Both configurations

can be used to generate T-traps, and the radial trap parameters can be tuned to match the

H-wire trap by decreasing or increasing the magnitude of IG, leaving By unchanged. To

account for the magnetic field contribution from the T-wire current that runs antiparallel to

the H-wires, the magnitude of Bx is increased, allowing IH to be decreased. In doing so, the

trap bottom and depth can be tuned to match that of the H-wire trap. Typical T-wire trap

parameters do not require a large current in the T-wire. As Figure 3.6 shows, less than 1

A in the T-wire generates a dimple in the longitudinal trapping potential that is ∼ 5 Gauss

(350 µK) deep and increases the mean trap frequency to ∼ 2.5× that of the H-wire trap.

3.3 Atom chip designs

The previous section covered the basic concepts for both side- and split-guide traps

along with H- and T-wire traps. Each of these trap geometries is used at different stages

of the atomtronics experimental cycle, described further in Section 5.1. The sections that

follow give an overview of the conductor patterns that were designed for and implemented

in the experimental work of this dissertation.
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3.3.1 Atom chip standardization

Atom chip fabrication in the Anderson lab is largely standardized. The historical

evolution of our atom chip construction can be found in the theses of Du [83], Squires [10],

Segal [11], Salim [82], and Hudek [13]. At the heart of our chip technology is the compound

substrate on which the chip conductors are lithographically patterned. Constructed of co-

planar regions of high conductivity silicon and optically transparent Pyrex, the substrate

provides hermetically sealed electrical and optical feedthrough [82, 84]. This co-planar design

enables conductors to be patterned directly atop transparent regions of the chip, and in turn

allows atoms to be trapped below an optical surface. When bonded to one of our double-MOT

cells, the chip then serves as one of the walls of the vacuum chamber, allowing high-numerical

aperture optics to be placed . 1 mm from the atoms.

3.3.2 The V2 window chip for in-trap imaging

The V2 window chip is the second generation of window chip used to produce BECs

and image them through the chip window (the first being the V1 window chip described

in the thesis of Evan Salim [82]). This chip design, shown in Figure 3.7, incorporates the

previously discussed split-guide design patterned directly over the central, 2 mm diameter

chip window. The chip design includes wires for both H- and T-wire trap configurations. As

a design constraint, the infinite wire approximation only remains valid so long as the width

of the wires, ww, is much less than the distance from the wire to the atoms. To combat the

high resistance of thin wires, the width of individual conductors on the vacuum side of the

atom chip is ww = 100 µm.

One caveat to this conductor pattern is the inevitable junction between the guide, T-,

and the H-wires, if all conductors are on the same side of the chip. Multiple intersecting (i.e.,

shorting) wires require independent, floating current drivers for each separate current path.

This is feasible but becomes cumbersome and undesirable for more than two intersecting
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Figure 3.7: a) Bare compound substrate prior to metallization process. b) Vacuum side of
the V2 window chip with copper conductors. c) Ambient side of V2 window chip with gold
conductors. d) X-ray schematic view of the central region of the chip with the chip current
paths used in the V2 window chip. As shown, the lower T-wire is used in the side-guide,
T-wire, and split-guide traps. The current direction in the lower of the two horizontal wires
are labeled IM , IT , and IG, respectively.
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current paths. By running multiple floating current supplies, one runs the risk of developing

high voltages between supplies and therefore across the chip, which can cause breakdown

in the dielectric layer. Therefore, the V2 window chip conductor design places the H-wires

on the ambient side of the chip substrate while the T- and guide-wires are on the vacuum

side. The dielectric coating on the chip provides electrical isolation between the vacuum and

ambient sides of the substrate, so the H- and guide-wires are driven by current supplies with

a common ground reference and the T-wire driver floats. The downside to this configuration

is that the H-wires are now displaced by 420 µm (the thickness of the chip) from the guide

wires. This results in a decrease in the longitudinal confinement that goes as ∼ 1/r. To

account for this decrease, the H-wire width is increased to 150 µm to accommodate larger

currents and doubled up, with two conductors running immediately parallel to one another.

By moving the H-wires to the ambient side of the chip, the overall trapping potential

generated by both the H-and T-wire traps discussed in Sections 3.2.3 and 3.2.4 are modified.

Figure 3.8 illustrates these changes. Here, the conditions are identical except the H-wire

current is doubled and a second pair of H-wires separated by 2.4 mm is added, reproducing

the V2 window chip design. The increased distance between the H-wires and the trap

location, due to the wires being on the ambient side of the chip, causes the magnetic field

generated by the H-wires to appear more like an additional x-bias field, which smooths

out the longitudinal trapping potential and reduces both the trap depth and mean trap

frequency. The trap profiles indicated by the solid lines in Figure 3.8 show the trap in which

the majority of the evaporation is completed during typical experimental cycles.

Once a BEC is created in the T-wire trap, the atoms must be transferred out from under

the wire and into a split-guide potential to gain optical access to the atoms. The vacuum side

conductor pattern is mirrored across the center of the chip, which also provides a redundant

T-wire. This can be seen in Figure 3.7(b), in which the top and bottom halves of the vacuum

side metallization are mirror images separated by dw = 340 µm. Given this separation and

ww = 100 µm, the split-guide wires satisfy the condition that the NAwire > 0.6 for values of
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Figure 3.8: a) Comparison of H-wire traps in which the H-wires are on the same side (dashed)
and opposing sides (solid) of the chip substrate as the guide wire. b) Comparison of T-wire
traps in which the H-wires are on the same side (dashed) and opposing sides (solid) of the
chip substrate as the guide and T-wires. In both (a) and (b) the longitudinal and radial trap
profiles are shown in red and blue, respectively.
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dz . 160 µm.

The imaging trap is generated by running equal currents, IG, antiparallel through the

two guide wires and a vertical bias field, as described in Section 3.2.2. By this point in

the experimental cycle, the atomic ensemble is ultracold and the trap depth, even at low

wire currents, is much greater than the energy scales of the ensemble. Typical experimental

parameters are IG = 2 A, IH = 1 A, and bias fields along (x, y, z) = (1, 0,−30) G. Fine

tuning of the radial and longitudinal trap frequencies is accomplished through small changes

to Bx and IH . These two parameters vary the magnitude of the magnetic field at the trap

bottom, which changes the field curvature without adjusting the position of the trap. In

this way, the trap frequencies are widely tunable from hundreds of Hz to a few kHz radially

and from tens of Hz to hundreds of Hz longitudinally. This chip design is utilized for the

majority of the experimental work described in this dissertation.

3.3.3 The V3 window chip, a double split-guide and other design upgrades

Despite the great success of the V2 window chip, several aspects of the design required

minor adjustments. Modifications include the addition of a second set of H-wires with

increased spacing along with a second pair of guide wires for the split guide trap. The

central window in the chip substrate is also anti-reflection (AR) coated to improve optical

performance. These changes look to improve the utility of the chip without drastic changes

to its overall functionality. The V3 chip design, including the current path schematic, is

shown in Figure 3.9.

Thus far, chip design has been discussed under the approximation of infinitely thin

chip wires. As mentioned previously, this assumption holds when the trap is far from the

conductor dz � ww. Even then, a trap located dz . ww from a straight conductor will only

suffer from a reduced gradient due to the finite spatial extent of the current density in the

conductor, which can be accounted for analytically [13]. However, this issue is accentuated

in the case that atoms are in close proximity to a wire that bends, widens, or intersects
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Figure 3.9: View of the ambient and vacuum sides of the V3 window chip that incorporates
a second pair of guide wires. An X-ray view of the chip is also shown along with the current
direction for various chip trap configurations including H- and T- traps, the split-guide trap,
and the U-trap.
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another wire. The current density within wires at locations such as these is non-trivial and

in order to model the trap correctly, finite element analysis (FEA) is necessary. Modeling

the traps generated by our atom chips is done using FEA software that was developed in

conjunction with Boulder Labs Inc. [85].

The first addition to the V3 window chip ameliorates unwanted kinks in the magnetic

field that occur at the T-wire junctions of the split guide wires. As current flows through each

guide wire, two issues arise. First, a region of reduced current density manifests within the

guide wire as electrons pass through a region of increased cross-section at the wire junction.

Figure 3.10 shows an example of the current density in the central region of the mirrored

T-wires. Second, as a result of the modified current density, a non-zero projection of the

magnetic field is generated perpendicular to the intended direction. These factors result in a

distortion of the magnetic field near the trap minimum. The longitudinal profile of the split-

guide trap, shown in Figure 3.11 as the solid line, is impacted the most and exhibits a ‘kink’

in the potential energy with magnetic field artifacts on the order of ∼ 1/4 G (∼ 20 µK).

The typical temperature of the atomic ensemble in the split-guide trap is . 1 µK. Therefore,

the atoms become trapped in the new minima and the longitudinal trap frequency is no

longer dictated by the H-wires. Instead, the longitudinal trap curvature is determined by

the distance between the atoms and the T-wire junction as well as the relative decrease in

current density within the conductor. The simple solution to this problem is the addition

of a second pair of parallel guide wires that serve as the new split-guide trap. These wires

are colored light blue in the current schematic shown in Figure 3.9. By removing the T-

wire junction from the split-guide wires the longitudinal profile, shown as the dashed line in

Figure 3.11, is once again harmonic and tunable by IH .

The second addition to the V3 window chip is an additional set of H-wires, with

twice the original spacing and a width of ww = 200 µm. The addition of more H-wires

provides flexibility to chip loading schemes as well as the longitudinal confinement of the

chip traps. Use of the wider spaced H-wires enables lower longitudinal trap frequencies (∼ 10
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Figure 3.10: FEA of the current density at the intersection of the chip T-wires. Current
density increases from red to green. The brief excursion of the guide wire current into the
junction leads to a depletion in the current density of ∼ 20%.
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Figure 3.11: a) Comparison of the split guide trap fields for V2 (solid) and V3 (dashed) win-
dow chips. Elimination of the T-wire intersection in the V3 chip enables looser longitudinal
confinement controlled by the H-wire current. Furthermore, the V3 chip includes a second,
wider spaced set of H-wires. The longitudinal profile with this new set of H-wires (V3-w) is
shown by the dot-dashed line for the same chip current and bias field conditions. b) Close up
around the field minimum of the V2 and V3 traps indicated in (a) by the dotted rectangle.
The kink in the longitudinal profile is eliminated when guide wires without a T-wire junction
are used for the split-guide.
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Hz) without also greatly reducing the trap depth. Figure 3.11 includes a comparison of the

longitudinal confinement in the split-guide trap using the inner or outer pairs of H-wires,

with equal IH .

Another important consideration for chip design is the method of initially loading

atoms from the previous, external magnetic trap into the chip trap. To achieve optimal chip

loading efficiency, it is necessary to mode match the quadrupole trap created by external

coils to the magnetic field generated by the chip [71]. The chip trap configurations discussed

thus far do not provide optimal mode matching; however, by running current in a U-shape

on the chip with a single bias field it is possible to generate a trap that mimics the external

quadrupole. This current path is shown in Figure 3.9, labeled IU , and utilizes the inner

H-wires along with one of the main guide wires in conjunction with a bias field oriented

along the same direction as in the side-guide. Systems that load the chip trap directly from

a mirror-MOT commonly use this loading scheme [83, 86].

Lastly, in addition to the updated conductor pattern, the chip window is coated for

several wavelengths (< 0.6% reflectivity from 760− 790 nm and 99.92% reflectivity at 1064

nm at normal incidence). The high-R coating was utilized in conjunction with steering optics

anodically bonded to the chip to demonstrate an on-chip optical lattice by Straatsma and

colleagues at ColdQuanta [87]. In that work, optics were bonded to the atom chip in regions

where the dielectric coating was stripped during chip fabrication.

3.4 Technical considerations for atom chip traps

Once the atom chip design is determined to adequately meet the requirements of the

experimental goals, one must consider other, more technical aspects. These include the

power dissipation within the chip during the experiment cycle and the effect of technical

noise in the wire currents on the atoms trapped in the magnetic potential. While they

impact different parts of the system, both heating related issues require careful attention

when designing and conducting experiments in an atom-chip-based apparatus. The analysis
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provided in the following sections is useful in understanding both topics.

3.4.1 Ensemble heating in the split-guide trap

When implementing any magnetic trap design to produce and study ultracold atomic

systems, one must consider the heating rate of the trapped ensemble due to various mech-

anisms. Heating in magnetic traps can be caused by fluctuating currents in the chip wires,

due to either technical noise or thermal currents, as well as collisional processes such as

dipolar relaxation [76, 88]. This section addresses the role of technical noise in the heating

rate of atoms confined in the split-guide potential and follows the analysis reported on in

References [76, 89, 90].

Under the harmonic oscillator approximation of the atom chip magnetic trap, the rate

at which atoms are excited is given by

Γex =
a2

4~2
SF (ωt), (3.17)

where a is the harmonic oscillator length and SF (ωt) is the noise spectrum of the trapping

force at the oscillator frequency, ωt. From this, the rate of energy transfer to the excited

atom is given by dE = ~ωtΓex. A more accessible parameter than the force exerted by the

magnetic trap is the position of the trap minimum, which are related by F = mω2
t z where z

is the position of the trap relative to the chip. The rate of energy transfer due to fluctuations

in the trap position is

dE =
mω4

t

4
Sz(ωt), (3.18)

and depends strongly on the trap frequency, scaling as dE ∝ ω4
t .

These equations can be applied to the split-guide trap by looking at the trap position

fluctuation spectrum caused by noisy current supplies. The position fluctuation spectrum

is determined from Equation (3.12) for z = dz, in conjunction with measurements of the
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current driver noise spectra. Recalling the form of the trap position in ẑ relative to the chip,

dz =

√
µ0

2π

Ixdw
Bz

− d2
w

4
, (3.19)

one sees that fluctuations in dz depend on both the chip currents as well as the external bias

field. The magnetic field generated by the square z-bias Helmholtz coil pair is given by

Bz =
8µ0NtIb√

125W
, (3.20)

where Nt is the number of turns in each coil, Ib is the current in the coil, W is the half-

width of the coil, and the coil pair is separated by 2W . Combining the current noise spectra

of both the coil and chip currents yields the total position fluctuation spectrum, Sz(ωt) =

(∂dz/∂Ix)SIx(ωt) + (∂dz/∂Ib)SIb(ωt). The current noise spectra for the chip and coil current

drivers, both of which are designed and built in our lab, were measured using a Stanford

Research Systems SR780 spectrum analyzer in a frequency band from 1−2 kHz. Across these

frequencies, the noise spectra are fairly flat with SIx ≈ 35 nA/
√

Hz and SIb ≈ 120 nA/
√

Hz.

The heating rate in the split-guide trap was determined by measuring the temperature

of the atomic ensemble after hold times of various duration, using the temperature fitting

method described in Section 4.2.1. Measurements were made for radial trap frequencies

ranging from ∼ 200−3400 Hz, with an ensemble of ∼ 104 atoms at a temperature T ≈ 1.5Tc.

Results of this measurement are compared to the theoretical heating rate in Figure 3.12.

Disagreement in the measured and calculated heating rates at low trap frequencies is in part

due to the excitation of a slosh mode while loosening the trap and higher values of 1/f

noise of the current drivers. Unfortunately, technical noise limits the trap frequencies used

in the atomtronics experiments to below ∼ 2 kHz. At higher trap frequencies, the resulting

decrease in condensate lifetime is too severe, dropping below ∼ 100 ms for ωt/2π > 2 kHz.

In order to reach higher trap frequencies without sacrificing the condensate lifetime, the

current noise of the coil driver must be decreased, as it contributes more significantly to the

observed heating than the chip current driver.
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Figure 3.12: Comparison of the theoretical and measured heating rate in the split-guide
trap. Red points indicate the measured heating rate. The fit to the data as well as the 95%
confidence interval for the measured heating rate are shown by the black dotted line and
gray band, respectively. At low radial trap frequencies the fit to the heating rate is higher
than the theoretical rate, which is calculated using the measured current driver noise spectra
and shown by the blue dashed line, but the two agree at higher frequencies.
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3.4.2 Wire heating comparison in window and non-window chips

The previous sections have discussed chip conductor pattern designs that achieve the

desired magnetic trap functionality in our atomtronics experiments. However, one of the

primary concerns in chip design is heat management. Compared to other atom chip groups,

whose chips are mounted to large copper blocks [91] and sometimes temperature stabi-

lized [92, 93] to facilitate heat transfer out of the chip substrate, our atom chips have limited

thermal mass and rely on convective cooling. In the event that thermal conduction to the

chip substrate is inadequate, the results can be catastrophic, often resulting in the evap-

oration (burn-out) of the chip wire [94]. Yet, with proper consideration for the thermal

conductivity of the chip substrate, conductor properties, and insulating dielectric layers,

even complex, multilayered chips can be implemented successfully [95]. In this section the

thermal performance of our two-layer, compound substrate atom chip is assessed using mod-

els for fast and slow heating. Chip designs with both 20 µm and 100 µm wide conductors are

compared along with designs that include conductors patterned over the transparent chip

window. Additional measurements provide information relevant to safe operating limits.

Wire heating test setup

Two atom chip designs were tested: A direct evaporation chip used in the thesis of

K. Hudek [13] was chosen to represent the non-window, silicon substrate chips (labeled S),

and the V1 window chip used in the thesis of E. Salim [82] represented the window chip

substrate (labeled W). Each chip was bonded to a standard 3D MOT glass chamber and

pumped down to ∼ 10−6 torr in order to reduce vacuum side convective cooling and emulate

conditions in typical experiments. Electrical connection to the chip was made using pogo

pins rated to 6A continuous current in air. Electrical properties of the chip were monitored

by measuring the resistance of the chip wire in a 4-point probe configuration. Voltage and

current data were recorded by a LabVIEW script and analog input card (NI cRIO-9215).
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Figure 3.13: Pictures of the test setup used to determine the thermal properties of atom
chips during current flow. a) Top side of direct evaporation chip bonded to a 3D MOT
chamber and connected to the vacuum station. Ruby ball bearings epoxied to the cell walls
serve to locate the prototype pogo pin chip connector. b) Underside of chip connector shows
two pogo pins lined up with the gold pads on the top of the chip. c) Electrical breakout
board for the chip connector. d) Complete prototype pogo pin chip connector attached to the
cell and secured with a tap stand. e) Direct evaporation chip used to test non-window chip
properties. Image credit [13]. f) V1 window chip used to test wires over Pyrex substrate.
Image credit [82]. Insets of (e) and (f) show the wires used in the heating tests. Green
arrows indicate current directions in the tests.
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Models for fast and slow chip heating

Heating of the atom chip wires and substrate is modeled following the work of Groth et

al [96]. Both fast and slow time scales are considered. Fast heating is determined primarily

by the resistivity of the wire and the surface conductance, k, of the chip substrate. During

the fabrication process, prior to metallization, a thin dielectric layer (SiO2) is grown on the

wafer in order to electrically insulate the high conductivity silicon of the chip substrate from

the wires. Therefore, the surface conductance is determined by properties of the Cu-SiO2-Si

or Cu-SiO2-Pyrex interface. The relative thermal conductivity of the substrate materials are

kSiO2 ≈ kPyrex ≈ kSi/100 [97]. The change in conductor temperature just after a current, I,

begins to flow is given by

∆Tfast(t) =
hρj2

k − hj2αρ

(
1− e−t/τfast

)
, (3.21)

where j = I/(hw) is the current density, h and w are the height and width of the conductor,

respectively, and ρ is resistivity of the copper, which has a linearly approximated temperature

coefficient α. The time constant associated with the heating is determined by the heat

capacity of the wire, Cw, and is given by τfast = Cwh/(k − hj2αρ). The slow heating

process depends more strongly on the bulk thermal conductivity, λ, of the substrate, which

determines how quickly the heat disperses through the substrate. After the initial fast

temperature increase, the change in temperature is approximated by

∆Tslow(t) ≈ ρIj

2πλ
ln

(
4π2λt

Csw2

)
, (3.22)

where Cs is the substrate heat capacity. Since the substrate material varies across the length

of the conductor, Cs is left as a fit parameter when analyzing the chip heating data.

Chip heating comparison

Chip heating in 100 µm wide wires on both the window and non-window chips is

compared for current densities ranging from j = 1 − 2 × 103 A/cm2. The increase in the
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chip wire temperature is determined from the relative change in the conductor resistance,

R/R0 = 1+α(T −T0), where R0 and T0 are the initial chip wire resistance and temperature,

respectively. Figure 3.14 shows four representative data sets in which the calculated temper-

ature is shown as the black solid line and fits to the data using Equations (3.21) and (3.22)

are shown as dashed lines. Since the fast heating time constant is dominated by the phys-

ical properties of the conductor rather than the substrate, the initial heating behavior of

both the direct evaporation and window chips are similar, with τfast = 41.0(2.6) µs. Fits

to the data also enable extraction of the effective values of k and λ for the two chips. Fits

to the fast temperature increase yield the ratio kS/kW = 8.71(0.73), indicating that heat

transport from the wire, across the SiO2 insulating layer, and into the substrate is nearly

an order of magnitude lower for the window chip. This results in a much more substantial

initial increase in the measured wire temperature within the first few milliseconds. While

the ratio of surface conductivity is nearly flat across the range of current density, the ratio

of bulk heat conductivity shows a strong dependance on the current density, j. For low j,

λU/λW ≈ 3.75, but the ratio increases exponentially as a function of the current density.

Doubling j leads to λU/λW ≈ 14, as λW decreases and λU remains nearly constant. Such

a pronounced decrease in the window chip substrate conductivity reflects saturation of the

heat capacity of the chip substrate. Ultimately, the reduction of the heat capacity sets the

upper limit on the duration for which current can be run through the wire.

An array of additional heating measurements were performed, encompassing the typical

operating parameters of our atom chips during normal operation in experiments. While

neither of the chips failed under typical experimental conditions, it is valuable to determine

the maximum current supported by the chip wires. Measurements of the relative change in

the wire resistance were performed for increasing currents, each run for 3 seconds, i.e., the

typical length of an BEC production cycle, until the conductor failed. The results are shown

in Figure 3.15. In the case of the window chip, 4 A flowing in the 100 µm trace lead to

failure after only 1.39 s, at which point the wire temperature reached 240◦C followed by a
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Figure 3.14: Comparison of the rate at which 100 µm wide chip traces heat up under current
flow for two chips: one with wires patterned only across silicon (S) and the other where part
of the wire is patterned over a 3 mm diameter Pyrex window (W). Green and red dashed
traces indicate fits to the data using the fast and slow heating model equations, respectively,
which are used to extract the surface heat conductance, k, and bulk heat conductivity, λ of
the two chips. It is clear that the presence of the pyrex window reduces the rate at which
heat is removed from the conductor.
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Figure 3.15: Relative increase in the chip wire resistance during a 3 second current pulse.
Data sets for a 100 µm wide wire on the window chip (red square), along with 100 µm (blue
triangle) and 20 µm (green circle) wide wires on the non-window chip are shown. Chip wire
burn-outs for each data set are indicated by stars along with the respective time until failure.



71

rapid increase to > 500◦C. As expected, the wire burned out directly over the chip window

(see Figure 3.16(a)). By comparison, the heat conductivity of the 100 µm trace on the

non-window test chip is sufficient to survive 4 A for > 30 seconds and 7A for > 3 seconds.

Additional tests show that smaller, 20 µm traces on the non-window test chip fail after 30

seconds at 5 A and 2 seconds at 7 A, both near ∆R/R0 ≈ 1.25− 1.4. The failure locations

in these tests are shown in Figure 3.16(b).

Knowledge of the chip wire resistance under repetitive use is of equal importance to

the single shot maximum current. Given insufficient time to cool after an experimental

cycle, the chip wire will reach higher peak temperatures during successive current pulses.

The change in chip wire resistance at various duty cycles was measured for the non-window

chip, and the results are shown in Figure 3.17. During a typical experimental run in the

atomtronics apparatus an average of 2.5− 3 A is run through the main wire for a duration

of 2− 3 seconds. Given the lower heat conductivity of the window chip and accounting for

the currents in the second guide wire along with the H- and T-wires, the experimental cycle

is conservatively limited to a duty cycle of 0.05, or once per minute.
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Figure 3.16: a) Picture of the burned out 100 µm wire that runs across the Pyrex window
on the V1 window chip after 4 A of current was run through the wire for 1.39 s. The wire is
partially lifted away from the window with dislocations in the wire at the points indicated.
b) Picture of the central region of the direct evaporation chip showing two regions of the
burned out 20 µm wire. The two traces failed after 7 A of current run for 2 s in the right-
angle wire, and 5 A of current for 30 s in the straight wire. Note that the failures occurred
in the center of the narrowest region.
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Figure 3.17: Increase in the 100 µm chip wire resistance on non-window chip under various
current loads and a range of duty cycles. Points indicate measured values, while the lines
are guides to the eye. Low currents can safely be run at a near unity duty cycle, as seen for
2A and 2.5 A. In conjunction with the data from Figure 3.15, the maximum safe duty cycle
for a fixed chip current is given by the region to the left of each line.



Chapter 4

High-resolution imaging & optical control of ultracold atoms

Research over the past two decades has ushered in a new paradigm of quantum simula-

tion that utilizes trapped, ultracold gases to study the behavior of complex condensed matter

systems [98]. This research thrust has led to the development of high-resolution imaging sys-

tems to study both collective and microscopic phenomena in ultracold quantum gases. Such

systems include both bosonic [99, 100] and fermionic [101, 102] quantum gas microscopes

that exhibit single atom sensitivity and enable studies of quantum magnetism [103], atomic

correlations [104], and other exotic states [105]. In this chapter, a similar high-resolution

system is presented that enables the study of atomtronic circuit elements.

The organization of this chapter is as follows: First, the atom-light interaction that

enables one to image and optically manipulate atoms is derived in Section 4.1. Building upon

these results, Section 4.2 discusses absorption imaging, the primary technique for observing

our atomtronic systems. Optical trapping and its application to the atomtronic transistor

system are then described in Section 4.3. Finally, Section 4.4 introduces the high-resolution

microscope system, and the remaining sections characterize the microscope system’s ability

to simultaneous project optical patterns onto and image the trapped atoms.

4.1 Atom-light interactions in neutral atoms

The interaction between atoms, e.g. 87Rb, and an applied light field can be understood

according to the classical treatment of a two level atom with a single resonant frequency, ω0.
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In the presence of a light field, the electron distribution of the atom is driven harmonically

about its nucleus leading to a charge displacement governed by the equation of motion,

meẍ+meγẋ+meω
2
0x = −eE , (4.1)

where E is the electric field of the light wave, γ is the classical damping rate, and me and e

are the mass and charge of the electron, respectively [106]. For an electric field of the form

E(t) = E0Re{exp(iωlt− φl)}, solutions to Equation (4.1) are given by

x(t) = XRe{exp(iωlt− φe)}. (4.2)

Here, X and φe are the amplitude and phase of the charge displacement, whereas E and φl

are the amplitude and phase of the light field, with frequency ωl. Solving for X, one finds

X = − eE
me

1

ω2
0 − ω2

l − iγωl
, (4.3)

which can then be used to determine the induced polarization of the atom, p = −eX. The

polarization can also be expressed as p = αE , where α is the complex atomic polarizability,

α =
e2

me

1

ω2
0 − ω2

l − iγωl
. (4.4)

Within X and α, the classical damping rate describes the radiative energy loss as the charge

distribution oscillates,

γ =
e2ω2

6πε0mec3
, (4.5)

where ε0 is the permittivity of free space and c is the speed of light in vacuum [107]. Re-

placing 6πε0c
3γ/ω2

l = e2/me and inserting the on-resonance damping rate Γ = (ω0/ωl)
2γ,

the complex atomic polarizability becomes

α =
6πε0c

3

ω2
0

Γ

ω2
0 − ω2

l − i(ω3
l /ω

3
0)Γ

. (4.6)

In the case of the two-level atom, Γ is equivalent to the natural linewidth of the transition

and is inversely related to the lifetime of the excited state. The following sections show
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that the complex polarizability dictates both the refractive index and absorption coefficient

of a cloud of atoms. These two properties of the atom cloud are integral to experimental

techniques such as imaging and optical trapping.

4.1.1 Refractive index, absorption, and scattering rate of atoms in a light

field

Building upon the classical treatment for the response of a two level atom to an optical

field, the refractive index of an atomic ensemble with density n is determined by nref =
√

1 + 4πnα [108]. By re-expressing the complex polarizability as

α =
3ε0λ

2
l

(2π)2

(
i

1 + δ2 + s0

− δ

1 + δ2 + s0

)
, (4.7)

it is possible to separate the real and imaginary parts of α corresponding to the phase shift

and absorption of light by the atom, respectively [109]. Here, λl = 2πc/ωl is the wavelength

of the optical field. The polarizability is seen to depend on two parameters of the field: the

saturation parameter, s0 = I/Isat, where Isat = ~ω3
0Γ/12πc2, is the saturation intensity, and

the normalized detuning, δ = ∆/(Γ/2), where the detuning, ∆ = ωl − ω0, is a measure of

the frequency difference between the light field and the resonant frequency of the two level

atom [108]. Therefore, both δ and s0 dictate the strength of the atom-light interaction. It

follows that the refractive index of the atoms is

nref = 1 +
σ0nλl

4π

(
i

1 + δ2 + s0

− δ

1 + δ2 + s0

)
, (4.8)

so long as nref − 1 � 1 [108]. As the light field propagates through the cloud of atoms,

the real and imaginary parts of the refractive index cause the field to accumulate additional

optical phase and lose amplitude due to photon absorption, respectively. The resulting phase

shift is calculated by integrating the contribution to the spatially varying refractive index
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due to the atoms along the propagation direction of the optical field (ẑ),

φ(x, y) =
2π

λl

∫ ∞
−∞

dz (nref (x, y, z)− 1),

= −σ0ñ

2

δ

1 + δ2 + s0

, (4.9)

where σ0 = 3λ2
l /(2π) is the on-resonance scattering cross-section and ñ is the column density

along the path of the optical beam [108]. The transmission of the light field through the

cloud is calculated in a similar manner, by considering the attenuation of the beam as it

propagates through the cloud, under the modified Beer-Lambert law,

dI/dz = − nσ0

1 + δ2 + s0

Ii, (4.10)

where Ii is the intensity of the incident optical field. The transmission coefficient,

t(x, y) =
√
If/Ii = exp

[
−σ0

∫ ∞
−∞

dz
nIi

1 + δ2 + s0

]
,

= exp

[
−σ0ñ

2

1

1 + δ2 + s0

]
, (4.11)

then relates the transmitted intensity, If , to the intensity incident on the cloud. There-

fore, the phase shift scales linearly with the column density, while the transmission decays

exponentially [108].

The modifications to the light field described by Equations (4.9) and (4.11) treat only

the transmitted field. However, as alluded to previously, atoms absorb photons from the

light field and subsequently re-emit them. These photons are emitted isotropically into 4π

steradians. The rate of emission, or scattering rate,

Γsc =
Γ

2

s0

1 + δ2 + s0

, (4.12)

has a Lorentzian line shape and depends on both the intensity and detuning of the light field

as well as the natural line width of the atomic transition [110].
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4.2 Imaging methods in the atomtronics experiment

Perhaps one of the most important aspects of cold and ultracold atom experimen-

tation is the extraction of information regarding the state of the atomic system. Com-

mon optical imaging techniques include phase-contrast, absorption, and fluorescence imag-

ing. The governing relations of these methods were derived in the previous section (Equa-

tions (4.9), (4.11), and (4.12), respectively). The goal of this section is to provide an in-depth

treatment of the absorption imaging technique used throughout the atomtronics experiments.

Within this treatment, the use and utility of weak and strongly saturating probe beams are

discussed.

Absorption imaging of 87Rb atoms is performed by illuminating the atomic ensem-

ble of interest with light resonant to the 5S1/2 → 5P3/2 cycling transition, between the

|F = 2〉 → |F ′ = 3〉 hyperfine states. Typically, a resonant probe beam with Ip � Isat is

used to maximize the atom’s sensitivity to the probe light. The transmitted light is then

recorded using a lens system that images the shadow of the atoms onto the sensor of a cam-

era. However, if sufficiently optically thick, the cloud may reduce the light transmission to

levels below the dynamic range of the camera’s sensor, resulting in the loss of information.

Inspection of Equation (4.11) reveals two avenues to side-step this issue, without the use

of more exotic, non-optical imaging techniques, such as scanning electron microscopy [111].

The solution lies in either detuning the probe field from resonance, thus increasing δ, or

saturating the optical transition with an intense probe field to increase s0.

By detuning the beam from resonance, the atoms behave like a spatially varying re-

fractive index, see Equation (4.9), which results in lensing of the probe field. The effective

refraction angle is ∼ 2λlφ0/πd for a cloud with diameter d and peak phase shift φ0 [108].

If the refractive angle is greater than the NA of the imaging system, the refracted portion

of the probe field is lost, resulting in a false absorption signal [112, 113]. In order to avoid

false signals, one can instead saturate the optical transition with an intense probe field. This
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method is discussed further in Section 4.2.2 and was used to image trapped atoms in the

experimental work presented in Chapter 5.

4.2.1 Weak absorption imaging of atomic ensembles in free expansion

Absorption imaging techniques are widely used throughout the AMO community to

image and extract quantitative information regarding atomic ensembles. As a result, the

absorption imaging methods are well documented [42, 108, 114, 115, 116]. When imaging

with a weak probe, Ip � Isat, it is necessary to release the atoms from the trap and allow

them to expand freely for a period of time, tTOF , a method often referred to as time-of-

flight (TOF) imaging. The typical absorption imaging sequence consists of three images:

the first captures the probe beam and shadow due to the atoms (Ip,a), the second contains

only the probe beam (Ip), and a final background shot (Id) after the probe beam has been

extinguished. While this last ‘dark’ image is not strictly necessary, it captures dark counts

inherent to the camera sensor and residual scattered light in the absence of the probe beam.

Since the beam propagates along the ẑ-direction, the intensity patterns are 2D images, e.g.

Ip(x, y). The optical depth is then calculated according to

OD(x, y) = ln

(
Ip − Id
Ip,a − Id

)
, (4.13)

which reflects the exponential relationship between the transmission of the probe beam and

the column density (ñσ0 = OD). From the measured OD, the atom number can then be

calculated using

N =
Apix
σ0

∑
x

∑
y

OD(x, y), (4.14)

where Apix is the area per pixel and σ0 the on-resonance scattering cross section. The

on-resonance scattering cross section depends on the polarization of the probe field and is

given by σ0,π = 1.938 × 10−9 cm2 or σ0,σ = 2.907 × 10−9 cm2 for π- and σ-polarized light,

respectively [110].
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The beauty of imaging after a period of free expansion is that the momentum distribu-

tion of the cloud is translated into the spatial degrees of freedom similar to a far-field Fourier

transform, assuming tTOF is sufficiently long. In fact, one of the most stark signatures of

the BEC phase transition in TOF images, the emergence of a bimodal spatial distribution in

which the narrow momentum spread of the condensate sprouts from the surrounding thermal

distribution of the non-condensate atoms. Once the two components are distinguishable, it

is possible to extract the thermodynamic variables of the atomic ensemble from the spatial

variation in OD(x, y).

Using knowledge of the harmonic trap frequencies of the final confining potential, ωi,

the corresponding temperature along trap axis i is given by

Ti =
m

2kB

(
σ2
i ω

2
i

1 + ω2
i t

2
TOF

)
, (4.15)

and can be extracted from the spatial distribution of thermal atoms by fitting to the Gaussian

distribution given by Equation (2.15) [108]. If a BEC is present, the thermal atoms only

occupy the ‘wings’ of the distribution, and it becomes necessary to only fit the part of the

atomic distribution in which the condensate is absent [108, 115]. When imaging atoms that

were released from a highly asymmetric trap (ω⊥ � ω‖), it is not uncommon for temperature

measurements along the two axes to disagree. In this case, the corrected temperature can be

calculated according to T ≈ 2τ 2
x/(1 + 3τ 2

x)Ty + (1 + τ 2
x)/(1 + 3τ 2

x)Tx, where τi = ωitTOF [117].

At temperatures below Tc, under the TF approximation the chemical potential

µi =
m

2

(
R2
iω

2
i

1 + ω2
i t

2
TOF

)
, (4.16)

is extracted by fitting an inverted parabola, given by Equation (2.24) with half width Ri, to

the portion of the OD profile that contains the condensate [108]. Fits to the cloud can be

improved by using a Bose-enhanced Gaussian fit that accounts for effects due to the Bosonic

nature of the atoms [118]. These methods were used extensively to analyze the evolution of

the atomic ensemble trapped in both the battery reservoir and transistor source well, which

are discussed in Chapter 5.



80

4.2.2 Strongly saturated absorption imaging of trapped atomic ensembles

Whereas imaging after a sufficiently long tTOF ensures the density of the cloud is within

the dynamic range of the sensor, the density of trapped atoms can be ∼ 10− 100× greater.

At such large densities it is necessary to operate with probe powers Ip � Is, in order to

reduce the absorption enough to completely probe the trapped ensemble,. When the probe

transition is saturated, Equation (4.13) is no longer accurate. Following the work of G.

Reinaudi et al. in Reference [114], the corrected OD profile is given by

OD(x, y)sat = ln

(
Ĩp

Ĩp,a

)
+
Ĩp − Ĩp,a
Isat

, (4.17)

and the (̃ ) indicates that Id has been subtracted from a respective image. Equation (4.17)

accounts for the saturating of the atomic transition and the reduction in the on-resonance

scattering cross section. The effective scattering cross section,

σeff =
σ0

1 + s0

, (4.18)

indicates that the saturated absorption imaging technique enables one to probe clouds with

densities that are a factor of (1 + s0) larger than with a weak probe field.

The method for extracting thermodynamic quantities from in-trap atomic distributions

is similar to that of the weak probe. Given knowledge of the trapping potential, both the

temperature and chemical potential can be extracted using the relations for the spatial

density profiles of the thermal and condensed components, respectively, that were derived in

Chapter 2. In the instance that the in-trap spatial profile allows the differentiation of nc and

nth, the chemical potential is determined by fitting to Equation (2.24), and subsequently the

temperature is extracted by fitting to Equation (2.18) using the fugacity calculated with the

fit value for the TF chemical potential. Data extraction from images of trapped atoms in

atomtronic systems is discussed further in Chapter 5.
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4.3 Optical trapping

The treatment of the atom-light interaction from Section 4.1 can also be applied to-

wards optical trapping techniques. This section presents the optical dipole potential experi-

enced by an atom within a light beam that is detuned from resonance. In conjunction with

the magnetic potential generated by the atom chip, optical potentials are implemented in

the atomtronics experiments to realize repulsive barriers according to the transistor system

studied in Section 2.2

Like magnetic trapping, optical trapping techniques have been studied extensively and

are well understood [107]. Whereas the magnetic potential originates from the magnetic

dipole moment, the optical potential is the result of the induced polarization, p = αE , that

was derived in Section 4.1. Therefore, the atom can be treated as a polarized medium in an

electric field and is subject to the interaction potential ∝ 〈pE〉,

Udip =
−Re(α)

2ε0c
I. (4.19)

Here, the intensity I = 2ε0c|E|2 is obtained by time averaging the electric field, and α is

the familiar value from Equation (4.6). As discussed previously, the imaginary part of the

polarizability is responsible for the absorption of photons. In the context of optical trapping,

Im(α) results in heating of the atoms and is discussed in the next section. By re-expressing

the real part of the polarizability as

Re(α) =
3πε0c

3

ω3
0

(
Γ

ω0 − ωl
+

Γ

ω0 + ωl

)
, (4.20)

and assuming that the detuning of the drive field is small compared to ω0, the second term

in the parenthesis can be eliminated by taking the rotating wave approximation [119]. In

doing so, the optical dipole potential experienced by ground state atoms simplifies to

Udip =
3πc2

2ω3
0

Γ

∆
I, (4.21)

and has spatial dependence dictated by the intensity pattern, I = I(x, y, z). In the semi-

classical treatment of the optical dipole potential, the energy shift is referred to as the AC
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Stark shift, and atoms in the ground and excited states experience shifts of the opposite

magnitude [107].

In the case of multi-level atoms, the two-state approximation is no longer accurate.

Due to the fine-structure splitting of the electronic p-orbital, one must account for both

the D1 and D2 transitions of 87Rb atoms between 5S1/2 → 5P1/2 and 5P3/2 states at

ω1 = 2πc/(795 nm) and ω2 = 2πc/(780 nm), respectively. In the case that the detuning

is comparable to the difference in D1 and D2 transition frequencies, the relative detunings

from both transitions must be considered, and the dipole potential becomes

Udip =
πc2

2ω3
0

Γ

(
2

∆2

+
1

∆1

)
I, (4.22)

where ∆1,2 are the respective detunings. Within the limit ∆ � ∆1,2, Equation (4.21)

becomes a valid approximation.

From the relation for the dipole potential, one can see that the sign of the detuning

determines whether the potential is attractive or repulsive, i.e., blue-detuned light is repulsive

while red-detuned is attractive. Therefore, when designing an optical potential, ∆ is a crucial

parameter. Section 4.3.2 provides further discussion regarding the application of the optical

dipole potential towards the generation of repulsive barriers.

4.3.1 Heating in optical dipole traps

Whereas the magnetic potential from Section 3.1 is strictly conservative, the atom-

light interaction includes an imaginary component that results in a finite scattering rate

(see Equation (4.12)). Due to the inherent momentum transfer in this scattering process,

the atom gains an energy proportional to the recoil temperature, Trec. = (~kl)2/2m, where

kl = 2π/λl is the wavenumber of the laser light. In the context of optical trapping in

a detuned light field, the scattering rate is determined in a similar fashion to the dipole
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potential in Equation (4.22), yielding

Γsc =
−Im(α)

~ε0c
I,

=
πc2

2~ω3
0

Γ2

(
2

∆2
2

+
1

∆2
1

)
I. (4.23)

In terms of scaling, it is useful to note that the scattering rate is related to the dipole

potential by Γsc = Udip × Γ/~∆ [107].

In order to determine the heating rate of a trapped atomic ensemble, first consider the

total mean energy of the atoms, which can be expressed as Ē = (3/2)kBT (1 + β). Here, the

factor β ≡ Ēpot/Ēkin dictates the penetration of the atomic wavefunction into the optical

field. For example, a slowly varying harmonic potential has β = 1, while a steep walled

box potential has β = 0. Using the relations for Ē, Trec, and Γsc, the heating rate is given

by [107]

Ṫ =
2/3

1 + β
TrecΓ̄sc. (4.24)

Here, Γ̄sc is the mean scattering rate experienced by the atoms,

Γ̄sc =
Γ

~∆

(
|Udip,0|+

3β

2
kBT

)
, (4.25)

and depends on the maximum potential (height or depth), Udip,0, as well as the temperature

of the ensemble. Equations (4.24) and (4.25) can then be used to determine the heating rate

in both red- and blue-detuned traps:

Ṫred =
2/3

1 + β
Trec

Γ

~

∣∣∣∣Udip,0∆

∣∣∣∣ , (4.26)

Ṫblue =
β

1 + β
Trec

Γ

~∆
kBT. (4.27)

From this set of equations, it is clear that steep, box-like potentials result in larger (smaller)

heating rates for red- (blue-)detuned traps.

4.3.2 Blue-detuned optical barriers

The semiclassical treatment of the atomtronic transistor presented in Section 2.2 does

not specify or depend on the shape of the repulsive barriers, so long as they provide a potential
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barrier with heights VGS or VGD and impede atom currents due to quantum tunneling. The

most straight forward barriers to realize experimentally are anisotropic Gaussian beams with

a spatially dependent intensity,

I = I(x, y, z) =
2P

πwx(z)wy(z)
e−2(x/wx(z))2−2(y/wy(z))2 , (4.28)

where wx,y(z) are the beam waists along the x̂- and ŷ-directions, and the beam propagates

along the ẑ-direction. Highly asymmetric optical fields that are thin along the loose, longi-

tudinal magnetic trap axis and wide along the tight, radial trap axis are used to generate the

barriers for the triple-well transistor structure. This ensures that atoms cannot skirt around

the barriers, and that atom currents obey Equations (2.33). The waist defines how quickly

the beam diverges as a function of the distance along z from the focus, given by

wi(z) = w0,i

√
1 +

(
z

zR,i

)2

, (4.29)

where w0,i are the barrier waists at the focus, and zR,i = πw2
0,i/λl is the Rayleigh range along

the i-th direction [120]. Therefore, the tighter the focus, the faster the beam diverges as it

propagates away from the focal plane. For the beam to serve as a constant height potential

across the radial width of the magnetic trap, the decrease in beam intensity due to its diver-

gence must occur over longer length scales than the increase in the magnetic trap magnitude.

One final point of interest relates back to the heating rate given by Equation (4.27). If the

optical barrier waist along the longitudinal trap axis is sufficiently small, i.e., the intensity

increases rapidly compared to the thermal width of the atoms in the magnetic trap, then

the barrier appears to be a step function and the heating due to light scattering becomes

negligible, as β → 0.
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4.4 A high-resolution microscope system for imaging trapped atoms and

projecting optical potentials

The microscope system used for all atomtronics experiments, is schematically illus-

trated in Figure 4.1.1 Consisting entirely of commercially available components, due to the

transparent regions of the atom chip, the imaging and projection system achieves high nu-

merical aperture performance without the need for custom in vacuo optics. The use of an

infinity-corrected objective lens and a beam splitter allow for simultaneous in-trap absorption

imaging and the projection of optical potentials. Detailed descriptions of individual compo-

nents are provided in sections 4.4.1 and 4.4.2. The entire microscope system, including the

camera and optics, are mounted on a precision XYZ translation state (Z Stage: Newport

MVN80, XY Stage: Optosigma 123-0400) that is used to position the microscope relative to

the atoms in the vacuum chamber.

At the heart of the microscope system is the primary objective. The NA of the primary

objective dictates the feature sizes resolved by both imaging and projection beam paths.

Throughout the experimental work contained in this dissertation, a 0.6 NA Zeiss LD Plan

Neofluar 40× objective was used. This off-the-shelf biological microscope objective was

selected for its high-resolution performance and integrated adjustment collar that corrects for

variable thickness coverslips. This second feature is crucial, as it allows for the compensation

of spherical aberration introduced by the finite thickness and refractive index of the chip

window.

4.4.1 Through-chip imaging

Atoms confined in the magnetic potential generated by the atom chip are imaged

using either fluorescence or absorption imaging techniques. The probe beam path for these

two methods are illustrated in Figure 4.2. The fluorescence imaging probe is incident on

1 The work presented in the following sections is partially published in Reference [84] and represents the
first demonstration of through-chip imaging and projection of optical potentials.
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Figure 4.2: a) Schematic of the fluorescence imaging probe beam path (also used for TOF
absorption imaging, with a Basler scA1400 - 17fm CCD camera). b) An expanded view
of the cell, chip, and microscope objective during the fluorescence imaging process that
illustrates the collection of scattered photons. Assuming proper atom chip design, discussed
in Section 3.2.2, the marginal ray half-angle (θM) of the imaging system is dictated by the
NA of the primary objective. c) Schematic of the in-trap absorption imaging probe beam
path in the double MOT cell. The beam is focused through the pinhole separating the 2D
and 3D MOT chambers.
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the atoms from the side, parallel to the surface of the atom chip, such that the scattered

photons are imaged by the microscope system rather than the probe light. By contrast, the

absorption probe beam is oriented vertically in order to image the shadow of the atoms. In

both configurations, light is collected by the Zeiss objective and passes through one port of

an AR coated, 50:50 plate beam splitter (Edmund Optics; 45-853) that connects the imaging

and projection beam paths. The transmitted light is then imaged onto an Andor iXon 897E-

#BV electron multiplying charge-coupled device (EMCCD) by an Infinity Photo-Optical

Model KC InFocus lens system. The resolution limit is given by the Rayleigh criterion,

dmin =
0.61λl

NA
, (4.30)

where λ is the probe light wavelength. Therefore, the 0.6 NA lens has a minimum resolvable

distance between features of 793 nm. Through-chip optical resolution was tested using a

1951 USAF hi-resolution target (Edmund Optics; 58-198) that includes features as small as

780 nm. With the correction collar set to 0.42 µm, i.e., the thickness of the chip, diffraction

limited optical performance is achieved. Coupled with the Andor, which has square pixels,

16 µm on a side, the 40× magnification Zeiss objective followed by the unity magnification

Model KC InFocus lens system results in an object-space pixel size of 0.4 µm.

Fluorescence collection efficiency

Early in the development of the microscope system, fluorescence imaging was used to

image atoms in the chip trap. To acquire a fluorescence image, a resonant probe beam is

flashed on at a set intensity for a time τp, during which photons are scattered isotropically at

a rate according to Equation (4.12). The ratio of the solid angle subtended by the primary

objective, Ω, to the photon emission solid angle, Ωmax = 4π steradian, is

ΩR ≡
Ω

Ωmax

=
1− cos(θM)

2
, (4.31)

where θM is the marginal ray angle of the primary objective. For the 0.6 NA objective,

θM = arcsin(0.6), and ΩR = 0.1; thus, the Zeiss objective collects only 10% of the total
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scattered light. The collected light is then subject to losses in the imaging system itself.

These include 85% transmission through the Zeiss objective at 780 nm, 50% transmission

through the beam splitter, the 99% transmission of the Model KC lens tube, and 80% quan-

tum efficiency of the Andor. Overall, the fluorescence imaging process is ∼ 3.4% efficient. To

improve the signal to noise of the images, the Andor EMCCD is cooled to −70◦C to reduce

dark counts, and the electron multiplying gain setting is set such that several photoelectrons

are generated per photon incident on the sensor [121].

Assuming the net efficiency of the optical system is fixed, the next best way to increase

the signal is to scatter more photons by increasing the probe pulse duration. However, despite

the tight radial confinement of the magnetic chip trap, the recoil imparted to the atoms by

each photon results in a random walk and a root-mean-square (RMS) displacement,

rrms =

√
NP

3
vrec∆t, (4.32)

where NP is the number of photons scattered, vrec ≈ 5.88 mm/s is the recoil velocity, and

∆t is the probe duration [108, 110]. This effect is referred to as recoil blurring and poses a

problem when the spatial position of atoms within the magnetic trap is of interest.

Fluorescence imaging resolution tests using trapped atoms

In order to determine the minimum resolvable feature size in the trapped atom cloud,

fluorescence imaging was performed by exposing the atoms to an interfering probe beam.

Two s-polarized beams were overlapped at the location of the atoms with an included half-

angle of θI . This configuration creates a probe field with a standing wave pattern with

sinusoidally varying intensity with a spatial period of of ΛI = λl/2sin(θI) along the loose

axis of the magnetic trap. Due to the high in-trap atomic density, the probe field was

detuned by several linewidths of the optical transition, Γ ≈ 6 MHz, in order to probe the

entire spatial extent of the trapped ensemble. Since fluorescence imaging detects only the

scattered photons, lensing of the probe beam is not a concern.
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Figure 4.3: a) Superposition of 10 in situ fluorescence images exposed by a standing wave
probe field with ΛI ≈ 2.5 µm. b) An averaged longitudinal slice of the image shown in (a)
illustrates the fringe contrast.

Figure 4.3(a) shows an accumulation of 10 fluorescence images taken with a detuning

of ∆ = 4Γ and θI ≈ 18◦, resulting in a fringe spacing of ≈ 2.5 µm. The fringes are clearly

evident, as seen in Figure 4.3(b), which shows the longitudinal profile of the cloud obtained

by averaging the 2D image along the radial axis. Fourier analysis of the spatial frequency

content in Figure 4.3(a) reveals the periodicity of the probe beam imprinted on the atoms

and the resulting spatial variation in the number of scattered photons. Figure 4.4 shows both

1D and 2D Fourier transforms of the accumulated image. The 1D Fourier transform along

the longitudinal trap axis reveals spatial frequency content at ±0.38(1) µm−1, corresponding

to a spatial period of Λ = 2.63(9) µm. Repeating the measurement using interfering probe

fields with a standing wave period nearer the resolution limit of the imaging system did not

provide measurable spatial frequency content.

When imaging an extended object, the limiting factor is not the transverse, but the
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Figure 4.4: Fourier spectra of the image in Figure 4.3(a). a) Averaged 1D Fourier transforms
along the longitudinal (solid, blue) and radial (dotted, red) trap dimensions. Peaks centered
at ±0.38 µm−1 indicate a fringe spacing of ∼ 2.63(9) µm. b) Corresponding 2D Fourier
transform of the average image.

longitudinal resolution, i.e., the depth of field. An objective operating at a given NA has a

depth of field,

dDOF =
λl

NA2 . (4.33)

For the 0.6 NA Zeiss objective, dDOF = 2.17 µm. The effect of finite depth of field is shown

in Figure 4.3(b), where the fringe pattern contrast is lowest in the region where the radial

extent of the cloud is largest (∼ 15 µm). In this region, the contrast is . 15%, which is

approximately the ratio of the depth of field to the cloud thickness.

In order to improve the resolving power in the cloud using fluorescence imaging tech-

niques, it is necessary to either lower the NA of the primary objective or reduce the cloud

thickness along the imaging direction. Lowering the NA of the objective is unfavorable, as

both the collection efficiency and transverse resolving power suffer. The finite extent of the

cloud in the image is the product of two factors: trap frequency, which determines the initial

radial extent of the cloud, and recoil blurring. The first factor can be improved by increasing
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the radial frequency of the magnetic trap; however, this leads to increased trap heating. The

second factor can be improved by reducing the average distance an atom is displaced as a

result of scattering multiple photons. Ultimately, fluorescence imaging was abandoned in

favor of absorption imaging. The two methods are compared in the following section.

Comparison of in situ absorption and fluorescence imaging techniques

Absorption imaging is attractive due to the large number of photons collected by

the detector relative to fluorescence imaging since the probe beam is imaged directly, as

shown in Figure 4.2(c). In conjunction with a saturating probe intensity, τp can be made

significantly shorter, without suffering a loss of signal. By comparison to the fluorescence

imaging sequence, absorption imaging is more complex. In order to ensure Ip and Ip,a contain

the same probe beam, i.e., displacement in structure on the probe beam is minimized, the

Andor is operated in fast kinetics mode and only a portion of the EMCCD exposed to the

probe light. Andor iXon 897 cameras come stock with an EMCCD array that is 512× 1024

pixels, with an opaque mask shielding half of the array for storage purposes. The camera

reads out pixels from the active array at 10 MHz with 0.9 µs shift time per row. Therefore,

in order to readout the entire 512 × 512 active array into the storage array, the minimum

time between exposures is ∼ 27 ms. This is far too long of a time between exposures and

results in unwanted fringing across the absorption image due to shifting interference patterns

caused by vibrations within the system. To reduce the time between shots, two thirds of

the active detector region are masked off and the Andor is run in fast kinetics mode. The

minimum time between shots is ultimately limited by the vertical shift speed, which for 170

rows is ∼ 170 µs. With this time delay, interference effects are reduced below the level of

other noise sources. As in fluorescence imaging, the Andor EMCCD is cooled to −70◦C to

reduce dark counts, but the electron multiplying gain is reduced such that a single photon

generates a single photoelectron, where the sensor has the highest signal to noise, as the

probe beam contains many more photons.
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Figure 4.5: a) Accumulation of 20 fluorescence images acquired using a 20 µs pulse of 4Γ
detuned probe light. b) Accumulation of three absorption images with 6 µs pulses and
resonant probe light. Atomic ensembles were prepared under identical circumstances in
both (a) and (b), and were imaged with probe light below the saturation intensity.

To combat the issue of recoil blur, the AOM that is used to quickly shutter the probe

beam is triggered using a circuit that generates a train of TTL pulses. This enables probe

pulses shorter than the minimum TTL pulse of 20 µs of the control system DAC. Pulses

as short as 1.4 µs are possible, but little cloud size variation is detected below the typical

probe pulse time of 4− 6 µs. Figure 4.5 illustrates the substantial difference in the recorded

atomic distribution between fluorescence and absorption imaging techniques. The ability to

image the in-trap spatial distribution of atoms is an integral part of data collection in the

atomtronics experiments described in Chapter 5.

4.4.2 Optical potential projection system

The projection system can be broken into two decoupled sub systems, one that gener-

ates the desired optical pattern and another that images the optical pattern and projects the

optical field onto the atoms with a given magnification. Figure 4.6 illustrates the two sys-

tems used to generate repulsive optical potentials. The InfiniProbe TS-160 lens system, also
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from Infinity Photo-Optical, is integrated into the microscope system. The remaining optics

are mounted on a precision XYZ translation stage identical to the one that positions the

microscope system. Optical systems used to generate static and dynamic optical potentials

are discussed in the sections that follow.

Initial alignment of the optical potential is straightforward, owing to the integration

of the imaging and projection optical system. First, the microscope is positioned to image

one of the wires on the vacuum side of the atom chip near the center of the window. With

the wire in focus, the projection system XYZ stage is used to center and focus the projected

optical potential in the field of view, using the video mode of the Andor. The magnification

of the projected optical pattern is controlled via the adjustment collar on the InfiniProbe

TS-160 and its working distance, which is set by the position of the 75 mm achromat.

Information regarding the magnification of the InfiniProbe is available in its data sheet.

Finally, the projection and microscope system translation stages are both displaced the

necessary distance to move the microscope system to the plane of the trapped atoms.

Static optical potential generation

The first projection experiments conducted in the apparatus consisted of the generation

of an array of asymmetric beams, like those described in Section 4.3.2, to split a trapped

BEC into multiple wells. Upwards of 100 mW of blue detuned, 760 nm light is derived from a

Topical DLX110 external cavity diode laser. The light is spatially filtered by an optical fiber

and coupled into the optical system shown in Figure 4.6(a), which was used to generate five

repulsive optical barriers spaced evenly along the longitudinal axis of the atom chip trap. A

5× cylindrical telescope elongates the initial 1.5 mm diameter beam along the radial extent

of the atoms, while a transmission grating creates multiple diffracted orders. The diffraction

pattern is shown in the inset of Figure 4.6(a).

A 75 mm achromatic doublet lens Fourier transforms the output of the transmission

grating to generate the desired optical potential pattern at the front focal plane of an Infinity
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Figure 4.7: a) An array of repulsive barriers generated by a highly asymmetric Gaussian
beam and a 1D transmission grating. The intensity pattern is recorded by imaging the
partial reflection from the vacuum side of the atom chip window. The false color scale is
normalized to the maximum intensity. b) Fluorescence image of a BEC containing ∼ 30×103

atoms trapped in the atom chip trap and exposed to the projected optical pattern in (1).
Areas of reduced atomic density indicate the position of the repulsive barriers.

Photo-Optical InfiniProbe TS-160 lens system. The InfiniProbe images the optical pattern

of the barriers through the reflected port of the 50:50 beam splitter and subsequently the

barriers are projected onto the atoms by the Zeiss objective. This setup was used to demon-

strate the first optical control of atoms through an atom chip [84]. Figure 4.7 shows the

resulting optical potential and a fluorescence image of a BEC split into multiple clouds.

Dynamic optical potential generation

Our atomtronics experiments described in the next chapter require dynamic control of

the optical potential in order to prepare the initial state of the system. Figure 4.6(b) shows

a diagram of the optical system used in said experiments. As in the static potential, 760

nm light from the Topic DLX110 is spatially filtered and coupled into the optical system by
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a single mode optical fiber. The shape and position of the optical barriers is controlled by

the RF waveforms that drive a 2D acousto-optic deflector (AOD) from IntraAction Corp.

(DTD-6010RH29). This AOD has a center frequency of 60 MHz and deflection bandwidth

of 32 MHz. With an input beam diameter of 3.6 mm, the time bandwidth product of the

deflector yields ≈ 170 resolvable spots with an access time of 5.4 µs, i.e., pattern update

frequency of ≈ 185 kHz. Power diffracted into the +1, +1 order of the AOD forms the

desired optical potential. The RF drive signals are generated by either a voltage controlled

oscillator (VCO) or a two-channel arbitrary waveform generator (AWG), (Lecroy ArbStudio:

125 MHz maximum frequency, 16 bit resolution, 1 GS/sec sample rate). To generate the

radial extent of the optical barrier, the AWG RF frequency is rastered about the center

frequency of the AOD. The raster frequency is set to 20 kHz, which is considerably larger

than the radial magnetic trap frequency such that the atoms experience the time averaged

intensity of the rastered field. The longitudinal position of each barrier is then set by the

frequency of two VCO outputs combined using a resistive splitter-combiner.



Chapter 5

Experimental demonstration of atomtronic devices

This chapter presents the results of two experiments that explore the behavior of atom-

tronic analogues to electronic circuit elements. The first is a power supply that sources an

atom current to a connected load and is driven by the thermodynamic potentials of a finite-

temperature BEC, namely a battery. The second experiment utilizes the battery to drive

an atom current through a triple-well potential to study the steady-state behavior of the

atomtronic transistor described in Section 2.2. To begin, an overview of the experimental

procedure used to prepare the finite-temperature BEC that powers these atomtronic devices

is provided. Section 5.2 provides a detailed description of the atomtronic battery, which is

realized in a double-well potential and analyzed according to an electronic Thévenin equiva-

lent circuit. Important experimental and numerical techniques relevant to both the battery

and transistor are also introduced. Finally, experimental results are presented that vali-

date the steady-state behavior of the triple-well atomtronic transistor system presented in

Section 2.2.3.

5.1 BEC production and preparation for atomtronics experiments

Due to the standardization of vacuum chamber and atom chip technologies, BEC pro-

duction is also standardized throughout the experiments in our lab and described thoroughly

in the theses of previous students [10, 12, 13]. A detailed description of the early stages of

the BEC production cycle that lead up to capturing atoms in the chip trap, along with



99

schematics for the optical, electrical, and control systems of the atomtronics apparatus can

be found in the thesis of E. A. Salim [12]. The final stages including the initial process of

capturing atoms on the chip, trap compression, and forced RF evaporation in the V2 window

chip (see Figure 3.7) are described here.

After laser cooling the atoms to ∼ 10 µK, they are optically pumped into the |F =

2, mF = 2〉 state, and captured in a magnetic quadrupole trap generated by external coils.

The atoms are then transferred to a location just below the atom chip window using a

quadrupole ladder scheme. The initial side-guide IP trap is loaded directly from the coil

generated quadrupole field by quickly shutting off the current in the external coils (. 600 µs)

and subsequently ramping on the chip wire currents to IM = 3 A and IH = 4.75 A along

with the necessary bias fields, B(x, y, z) = (14,−24, 0) G, over 10 ms. The initial chip trap

is located 230 µm below the chip and has frequencies ωload(x, y, z) ' 2π × (80, 270, 270)

Hz. This method captures ∼ 20 − 30 × 106 atoms in the initial chip trap at a temperature

of ∼ 50 µK.

The chip trap is then compressed in order to increase the collision rate of atoms in the

trap and improve the efficiency of forced RF evaporation. After a short, 50 ms RF sweep from

40→ 28 MHz in the initial chip trap, the wire currents are ramped to IM = 2.5 A, IT = 0.6 A

and IH = 2.5 A while simultaneously ramping the bias fields to B(x, y, z) = (3.6,−31, 0) G.

The resulting trap is located 130 µm below the chip and has frequencies ωevap(x, y, z) '

2π × (280, 1500, 1500) Hz. This compression stage occurs over 400 ms, during which the

RF knife is ramped from 28→ 19 MHz. The remainder of the evaporation cycle is completed

in four stages that are ∼ 300 ms long by linearly decreasing the RF knife frequency as follows:

19 → 11 → 7 → 5 → 3.8 MHz. This scheme results in a nearly exponential decay of the

RF knife frequency that allows for optimal rethermalization [122, 123]. Prior to the final RF

evaporation sweep, the T-wire current is ramped to zero in order to match the longitudinal

confinement of the split-guide trap (described below) and avoid excitations of the cloud. At

this point in the sequence, a finite-temperature BEC has been produced with a temperature
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and chemical potential that are controlled via the final RF frequency.

The procedure for loading the finite-temperature BEC into the final split-guide chip

trap is much more efficient than the initial chip trap loading stage, since the side- and split-

guides are well mode matched. By linearly ramping the chip wire and bias coil currents

from the final evaporation trap parameters to those that generate the split-guide trap, the

magnetic field is smoothly deformed into the configuration desired for the atomtronics ex-

periments. Parameters for the split-guide trap include chip wire currents IG = 2 A and

IH = 0.5 A along with bias fields B(x, y, z) = (3.2, 0,−21) G. The resulting cigar shaped

magnetic trap is located 130 µm below the chip and has trap frequencies ωexpt(x, y, z) '

2π × (67, 1500, 1500) Hz.1 Transfer to the split-guide trap is accomplished with near-unity

efficiency and little to no heating of the atoms. An image of an initial ultracold atomic

ensemble was shown in Figure 4.5(b). This point in the experimental cycle serves as the

initial condition for the experiments described in the remainder of this chapter.

5.2 The atomtronic battery system

Circuits, both electronic and atomtronic alike, fundamentally require a source of power

to operate. Atomtronic batteries have been proposed in both open quantum systems con-

structed of reservoirs with different chemical potentials connected by a lattice potential [21,

24], as well as mesoscopic systems containing a finite-temperature Bose-Einstein condensate

(BEC) that sources condensate atoms to the connected load [124]. The work presented

in this section describes the realization and characterization of an atomtronic battery that

stores energy in the form of a finite-temperature BEC and sources an atom current to a

simulated load element. A schematic of the experimental system is shown in Figure 5.1.

1 The trap frequencies of the split-guide trap used during the atomtronics experiment were measured
by exciting the center of mass mode along the longitudinal or radial trap axes. The radial slosh mode is
excited by modulating the z-bias coil current with a low amplitude sinusoid and measuring the temperature
of atoms in the trap. The induced heating near resonance can be understood under the discussion of chip
heating in Section 3.4.1. The longitudinal mode is excited by displacing the atoms with an optical barrier
and measuring the harmonic center of mass motion after the barrier is removed.
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Figure 5.1: Schematic of the double-well atomtronic battery potential: The top panel shows
the longitudinal potential energy landscape of the hybrid magnetic and optical potential. A
resonant “terminator” beam removes atoms that flow into the load well from the system.
The bottom panel shows a false color, in situ absorption image of atoms occupying both
wells of the potential.
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5.2.1 Charging the battery

The first step in realizing an atomtronic battery is loading the atomic ensemble into

the reservoir well, i.e., charging the battery. To do so, the cigar shaped magnetic trap

is transformed into a double-well potential. In the process, the finite-temperature BEC

is compressed into one of the two wells, labeled “Battery Reservoir” in Figure 5.1. This

is accomplished by ramping on a repulsive barrier, with a height VS = 100 kHz � kBT ,

at the edge of the longitudinal spatial extent of the cloud and sweeping it adiabatically

to the center of the magnetic trap, as shown in Figure 5.2(a)-(c). When converting from

temperature units to Hz, note that 1 kHz ≈ 50 nK. Dynamic control over the position and

height of the barrier are achieved by adjusting the power and frequency of the RF signal

driving the AOD described in Section 4.4.2. In this way all of the atoms are loaded into

the reservoir well and the battery is considered charged. The stored energy of the battery is

then characterized by the thermal and chemical potentials of the trapped atomic ensemble.

With the barrier present the reservoir well is approximated as a half-harmonic well

with ωx,batt ≈ 2 × ωx,expt = 2π × 134 Hz and a density of states that is reduced by half

relative to the harmonic magnetic potential. The half-harmonic well approximation is used

to determine the chemical potential in the TF limit. Under this approximation, the reservoir

well chemical potential differs by < 5% from the corresponding values determined from 3D

simulations of the Gross-Pitaevskii equation for a BEC in the ground state of the hybrid

magnetic and optical potential. A plot of the relative error in the chemical potential versus

the number of condensed atoms in the reservoir well is shown in Figure 5.3.

5.3 Impedance matching in atomtronic systems

Impedance matching is a fundamental concept in electrical system design, especially

in power transmission applications. The same can be said for atomtronic systems that

supply an atom current to a connected load. Some fraction of the current will be reflected
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Figure 5.2: Battery charging procedure: a) Atoms begin in the split-guide magnetic trap.
b) An optical barrier is turned on at the far-right extent of the atoms and swept towards
the center of the magnetic trap. c) Atoms trapped in one half of the magnetic trap after the
barrier is swept. d) The barrier height is the reduced to connect the battery to the load. e)
Battery output after 30 ms of discharge with VB = 30 kHz.
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Figure 5.3: Error in the TF chemical potential in a half-harmonic well, relative to results
from GPE simulations. Here the % error in µ is defined as (1−µTF/µGPE)× 100. The gray
shaded region indicates the range of condensed atoms in the battery reservoir under typical
experimental conditions.
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back towards the current supply, depending on the characteristics of the load. Therefore,

the input impedance of the load circuit must be matched to the output impedance of the

circuit element supplying the current in order to achieve maximum power transfer. Whereas

electrical impedance, Z(ω), depends on the signal frequency, the transmission spectrum

of massive particles through a given potential is energy dependent, i.e., Z(E) [65, 125].

Examples of Bragg-matching to a periodic potential have been experimentally studied [66,

67]. The impedance of non-trivial potentials such as the Gaussian barriers used in the battery

and transistor experiments can be calculated numerically using the method of generalized

impedances [65, 126].

5.3.1 An atomtronic terminator

In order to study the behavior of the atomtronic battery rather than the reflection

properties of the connected potential, it is necessary to simulate an impedance matched

load. Therefore, during the evolution of the atomtronic battery, the load well is illuminated

with laser light (labeled “terminator” in Figure 5.1) that is tuned to atomic resonance such

that any atoms reaching the load well are removed from the trap. This is accomplished by

optically pumping atoms from the magnetically trapped |F = 2, mF = 2〉 state to any of

the untrapped |F = 2, mF ≤ 0〉 states, as shown in Figure 5.4. To illustrate the effect

of the terminator beam, the harmonic potential in the load well has been flattened out in

Figure 5.1, indicating that atoms entering the load region are effectively coupled to vacuum

modes and escape the system. Therefore, the terminator beam serves an analogous purpose

to termination in RF electronics, where proper termination impedance matches the device

output to the load circuit in order to eliminate signal reflection and possible interference.

Furthermore, the terminator beam introduces localized dissipation that enables the study of

non-equilibrium dynamics in atomtronic systems as they evolve.

In the experimental apparatus, the terminator beam is projected along the same beam

path as the optical barriers, as shown in Figure 4.6, and has a typical power of ∼ 10−12
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Figure 5.4: a) Schematic illustrating the role of the terminator beam. Atoms that flow into
the right-hand load well of the battery system are optically pumped by the terminator beam
into states that experience zero or repulsive magnetic forces and subsequently escape the
trap. b) Energy level diagram illustrating the optical pumping scheme. The terminator
beam is red-detuned from the |F = 2〉 → |F ′ = 2〉 optical transition by ∆ν, the average
Zeeman splitting of mF states.
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W. The quantization axis for the optical transition is determined by the bias field along

the x̂-direction; therefore, the terminator beam must be aligned to have a non-zero field

projection along the longitudinal trap axis. Displacing the terminator beam, which has a

full width at 1/e of 16 µm, 32 µm into the load well ensures that only atoms in the load well

are out-coupled.

5.4 Characterizing the atomtronic battery

The battery is characterized via observations of the atomic ensemble in the reservoir

well and the emitted atom current while the battery supplies current to the load. The

discharge behavior was recorded for several emission rates dictated by the height of the

barrier, which is varied from VB = 20 − 70 kHz, in 10 kHz increments between data sets.

Throughout the following analysis the unit convention of Ref. [124] is followed, and both

energies and particle currents are reported in units of Hz. Evolution of the battery reservoir

is measured using both TOF and in situ absorption imaging techniques. Thermal, Nth,

and condensed, Nc, atom numbers as well as the ensemble temperature are extracted from

two-dimensional bimodal fits to the spatial density profile of atoms in TOF images (see

Section 4.2.1).

One such dataset is presented in Figure 5.5, which shows the time evolution of the reser-

voir ensemble during battery discharge with VB = 50 kHz. In this data set, the reservoir has

an initial population of N = 19.03(97)× 103 atoms, of which Nc = 1170(84) are condensed,

corresponding to chemical and thermal potentials of µ = 2.86(8) kHz and T = 678(24) nK,

respectively. These thermodynamic potentials provide a gradient between the reservoir and

load wells that drives an initial atom current of I = 334(22) kHz. As the battery reservoir

discharges, it cools. After ∼ 30 ms a nearly constant chemical potential of µ = 3.86(16)

kHz is reached and sustained for the remaining ∼ 50 ms. After 80 ms the thermal potential

energy has decreased to T = 440(11) nK, as shown in the inset of Figure 5.5, and the current

to I = 60.8(7.7) kHz. Battery discharge with other barrier heights exhibits similar behavior,
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Figure 5.5: Time evolution of the total (black squares), thermal (red circles), and condensed
(blue triangles) atom numbers in the reservoir for VB = 50 kHz. The temperature of the
reservoir ensemble is shown in the inset. Error bars represent the standard error of the mean
for five experimental realizations. Solid lines show the results from numerical calculation of
the reservoir population described in Section 5.4.1.
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with lower values of VB resulting in a more rapid depletion of both the reservoir atom number

and temperature.

In-trap images are used to probe the spatial distribution of the atoms emitted into

the load well and also to calibrate the height of the repulsive barrier. By extinguishing the

terminator beam ∼ 4 ms prior to imaging (∼ 1/4 × 2π/ωx,expt), atoms emitted into the

load well are allowed to interact with the magnetic potential for a time equal to roughly

one quarter of the longitudinal trap period. As a result, the images serve as a rudimentary

spectrum analyzer, translating the displacement of atoms at their classical turning point

in the load well into a measurement of their longitudinal energy. An example is shown in

Figure 5.2(e). The longitudinal position and spatial distribution yield information regarding

the height of the barrier and the momentum spread of atoms entering the drain well, re-

spectively. The longitudinal momentum spread of the battery output current is determined

by fitting a Gaussian to the longitudinal spatial distribution that peaks at ∼ 40 µm, which

corresponds to a spread in kinetic energy, ∆E. We find that ∆E ≈ kBT , indicating that the

current emitted into the load has an energy spread on the order of the temperature of the

ensemble in the battery reservoir.

5.4.1 Modeling the battery

Presuming that the contribution to the total atom current due to tunneling is negligible,

only atoms in the high energy tail of the distribution can contribute to the output current.

Therefore, the system relies on thermalizing collisions to repopulate energy levels from which

atoms are emitted. Given the tight radial confinement of the magnetic potential, the reservoir

well is in the hydrodynamic regime along the longitudinal dimension of the trap when σ � l,

where σ is the thermal width of the reservoir ensemble from Equation (2.15), and l = 1/nσs

is the mean free path between collisions [43, 127]. Under typical experimental conditions

σ/l ∼ 100, and the collision rate is sufficiently high for the reservoir ensemble to remain in a

state of dynamical quasiequilibrium [128]. Therefore, the atomic ensemble can be described
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in terms of equilibrium thermodynamic variables.

The discharge behavior of the atomtronic battery is modeled using rate equations for

both the atom number and energy stored in the reservoir well:

dN

dt
= −γNthf(η, µ, T ) , (5.1)

dE

dt
=

dN

dt
(η+κ) kBT + βC, (5.2)

which are derived from Equations (2.33) and (2.36), respectively. The magnitude of the

particle current is governed by the probability that an atom has sufficient energy to tra-

verse the barrier, f(η, µ, T ) =1/exp(η − µ/kBT ), where η = VB/kBT is referred to as the

truncation parameter. This probability is scaled by the quantity γNth, which encapsulates

the rate at which the reservoir atoms encounter the barrier. Here, the collision rate, γ, is

given by Equation (2.34). The energy current on the other hand is given by the product of

the particle current and the average energy removed per particle given by (η+κ) kBT . The

κ-parameter indicates the average energy removed from the reservoir in excess of the barrier

height energy, by each particle traversing the barrier. The value of κ is on the order of

unity and depends on the dimensionality of the ensemble’s momentum distribution relative

to the allowed escape trajectories [53, 60]. For the potential studied here, κ ∼ 3, whereas

in isotropic evaporation, e.g., forced-RF evaporation, κ ∼ 1 [122]. Determination of the

κ−parameter is discussed further in the following section.

To account for additional heating or cooling effects external to the flow of atoms, the

rate βC is included. This term does not affect the total atom number, but transfers energy

to or from the reservoir ensemble according to the heat capacity, C, (see Equation (2.32))

and the total external heating or cooling rate, β. In the context of this demonstration, only

heating due to technical trap noise2 is included; however, this term could also be used to in-

corporate heat generation associated with irreversible processes during circuit operation [27].

2 The heating rate due to technical noise, measured with VB = VS , increases the temperature of the
reservoir ensemble by ≈ 80 nK over an 80 ms period.
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Determining the κ-parameter

The excess energy parameter, κ, is determined from battery discharge data across a

range of truncation parameters according to the relation

κ =

(
3

2
+ δ3D

)
(α + 1)− η, (5.3)

where δ3D = 3/2 for a three-dimensional harmonic oscillator [122]. Here, α represents the

energy transfer efficiency,

α =
Ṫ /T

Ṅ/N
. (5.4)

The time derivatives of the temperature and number, Ṫ and Ṅ , respectively, are extracted

from the time evolution of the battery reservoir, shown in Figure 5.5. Values of κ for

various truncation parameters are shown in Figure 5.6. Also shown are results from DSMC

simulations3 for the experimental conditions. The DSMC method is well-documented [129],

and has been used to study collisions and evaporative processes in cold and ultracold atomic

systems [128, 130, 131]. The horizontal and vertical positions of each point indicate η̄ and

κ̄, the mean values of η and κ across the measured discharge time, respectively. Similarly,

error bars indicate the range of η and κ values during discharge and incorporate statistical

uncertainty from five experimental realizations. The horizontal dashed line at κ = 2.9 reflects

the result of molecular-dynamics simulations reported in Reference [60]. As the truncation

parameter is decreased, the κ-parameter determined from experimental data decreases to

∼ 2.34 at η̄ = 1.77, following the trend of the DSMC results. The drop in κ at lower

η reflects the increased coupling between the transverse modes of the reservoir well and

the load, allowing less energetic atoms to traverse the barrier. Therefore, decreasing the

barrier height increases the magnitude of the current, but each emitted particle possesses

less energy in excess of VB. The interplay between the magnitude of the current and κ plays

a determining role in the power output of the battery, which is described in Section 5.4.2.

3 Simulations of the κ-parameter were performed with code developed following References [129] and [130].
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Figure 5.6: Comparison of the κ-parameter from experiment (red circles) and DSMC sim-
ulation results (blue circle). Horizontal and vertical error bars on the red points represent
the standard deviation of η and κ during the time evolution of each experimental data set,
respectively, while the points indicate the mean values, η̄ and κ̄. Results from DSMC sim-
ulations are compiled from 50 ms of evolution time during which κ is determined for each
test particle that traverses the barrier. The data points and error bars at η = 2, 3, and 4
indicate the mean value and standard deviation of κ obtained by averaging over all emitted
test particles. The horizontal, dashed blue line indicates the results of molecular-dynamics
simulations reported in Reference [60].
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Testing the validity of the rate equation model

To compare the battery rate equation model to experimental data, Equations (5.1)

and (5.2) are integrated numerically using the fourth-order Runge-Kutta (RK4) method (see

Reference [132]) in which parameters of the ensemble (e.g. N , E, and C) are updated at each

time step using expressions derived in Section 2.1.3. Experimental parameters including κ̄

and η̄ from Figure 5.6 along with initial reservoir numbers and temperatures are used to

initialize the calculation. Representative results of the numerical calculation for N , Nth,

Nc, and T of the battery reservoir during discharge with VB = 50 kHz are shown as solid

lines in Figure 5.5 overlaying the experimental data. Results of the numerical calculation

show agreement with the evolution of the reservoir ensemble to within the uncertainty of the

experimental data. The numerically calculated state of the reservoir ensemble and output

current are utilized in the analysis of the battery presented in the next section.

Thévenin equivalent circuit

The atomtronic battery is analyzed using the Thévenin equivalent circuit of a non-ideal

electronic battery, shown in Figure 5.7, where equivalent elements of the two systems are

labeled. Of particular interest is the role of dissipation in the atomtronic system. Dissipation

in electronic devices manifests in the form of heat generated during the flow of current, i.e.,

Ohmic heating. Electronic batteries store energy, ε, and necessarily contain a finite internal

resistance, Rint. When connected to a load with resistance RL, current IL = ε/ (Rint +RL)

flows through the combined battery/load circuit. Due to the non-zero internal resistance,

power is dissipated within the battery equivalent to Pint = I2
LRint. These relations are used

to study dissipation in the atomtronic system, where µ replaces ε and dissipation in the

reservoir is represented by an effective internal resistance, Rint.

The power dissipated within the atomtronic battery is calculated using the numerical

results for the evolution of the reservoir ensemble during battery discharge. Here, power
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Figure 5.7: a) Diagram of the atomtronic battery potential showing elements that are con-
ceptually equivalent to those of a non-ideal electronic battery. b) The Thévenin equivalent
electronic circuit. The reservoir well contains the thermodynamic energy that is analogous
to the electromotive force, ε, stored in the battery. Dissipation in the reservoir during dis-
charge is represented by an effective internal resistance Rint. Current, IL, emitted from the
reservoir into the load well carries with it an average energy that is likened to the terminal
voltage, VT , of the electronic battery.
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dissipated in the reservoir is equivalent to the change in internal energy of the ensemble

stored in the reservoir well, given by Pint = Ė − µṄ . Therefore, the internal resistance is

Rint =
Ė − µṄ
I2
L

' µ− (η + κ) kBT

IL
, (5.5)

which has units of [Hz/Hz]. In simplifying the expression for Rint to obtain Equation (5.5),

Ṅ and Ė have been replaced by Equations (5.1) and (5.2), respectively, and IL = −Ṅ .

Additionally, an additive factor of βC/I2
L has been omitted, as it is small compared to other

contributions to the internal resistance. We find that the internal resistance is negative,

synonymous with the observed cooling of the reservoir, and its magnitude increases in time.

Figure 5.8 shows the evolution of the internal resistance as the atomtronic battery discharges

for a subset of the experimental data, denoted by their mean truncation parameter, η̄ =

1.77, 3.18, and 4.57. The magnitude of the internal resistance, |Rint|, increases more rapidly

in time with smaller η̄, but the initial value of |Rint| is smaller. The observed increase in

|Rint| during battery discharge is indicative of an increased impedance to current flow, and

is consistent with the behavior of electronic batteries.

The terminal voltage of the Thévenin equivalent circuit is given by

VT = µ− ILRint

' (η + κ)kBT, (5.6)

where Equation (5.5) has been inserted for Rint. Therefore, VT is the average energy carried

by each atom as it flows into the load, as in Equation (5.2). This result is intuitively satisfying

as VT represents the potential of the emitted atoms to do work on the connected load. The

magnitude of VT of the fully charged atomtronic battery depends on both the height of

the barrier and the reservoir ensemble temperature, and to first order the terminal voltage

evolves according to V̇T ∝ κkBṪ . The time-evolution of VT is shown in Figure 5.9 for the

same subset of η̄ shown in Figure 5.8. Depletion of stored energy, accompanied by increasing
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Figure 5.8: Internal resistance of the atomtronic battery during discharge calculated using
Equation (5.5) for three barrier heights: η̄ = 1.77 (solid, red), 3.18 (dashed, black), and 4.57
(dash-dot, blue). Curves indicate results from the numerical model, while the data points
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Figure 5.9: Effective terminal voltage, VT , of the atomtronic battery during discharge for
three barrier heights with mean truncation parameters: η̄ = 1.77 (solid, red), 3.18 (dashed,
black), and 4.57 (dash-dot, blue). Data points show the corresponding results from the
experimental data, calculated using Equation (5.6). Error bars are propagated from the
standard error of the mean for N , µ, and T .
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Rint, leads to a decrease in the voltage supplied by the battery. Again, this behavior is

consistent with that of electronic batteries.

5.4.2 Battery performance

Performance of the atomtronic battery depends on η̄, and is characterized by both

the capacity of the battery and the peak power delivered to the impedance matched load.4

Electronic battery capacity is characterized in multiple ways; however, two common metrics

are the total current and total energy delivered to the load during the time it takes the

terminal voltage to drop below a set depletion voltage [133]. In the atomtronic battery,

the current capacity, Cc, is determined by integrating the current output from the time the

barrier is lowered (from VS → VB) until the discharge time, td, when VT falls below 90% of

its initial value. The calculated current capacity, which is plotted in Figure 5.10 for data sets

with η̄ ≈ 1.77− 5.28, indicates that increasing the discharge time by an order of magnitude

results in a 1.6(2)× increase in Cc of the atomtronic battery. During the discharge time,

shown as an inset in Figure 5.10, nearly half of the initial ≈ 20× 103 atoms are emitted into

the load. Current capacity in electronic batteries is often characterized in terms of Peukert’s

law, which states that battery current capacity obeys the relationship Cc = IρLtd, where ρ

is the Peukert constant [134]. An ideal battery has ρ = 1 while typical lead-acid electronic

batteries have ρ = 1.1 − 1.5, and ρ > 1 indicates internal power loss [135]. Therefore, by

increasing td the current capacity of a battery can be increased. Using measured values

for the current and discharge time, along with the calculated current capacity, the Peukert

constant of the atomtronic battery is found to be ρ = log(IL)/log(Cctd) = 2.1(3). This large

value of ρ reflects the dissipation within the atomtronic battery reservoir.

The energy capacity, CE, of the atomtronic battery is an extension of Cc, describing

the total energy supplied by the battery, rather than the number of atoms. Figure 5.11

4 Impedance matching implies that PL = V 2
T /RL, where RL = Rint. Using the calculated values of Rint

and VT , the load resistance is calculated using RL = Rint/(µ/VT −1). For all data sets we find |RL| = |Rint|,
confirming that the load well is impedance matched by the terminator beam.
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shows CE, which is calculated in a similar manner to the current capacity, by integrating the

power output to the load during the discharge time. Like the current capacity, the energy

capacity shows an increasing trend with respect to the truncation parameter, in part due to

the linearly increasing terminal voltage. Ultimately, the energy capacity is limited by the

total energy of the ensemble initially stored in the reservoir, Etot = 6.5(9)× 105 kHz.

The peak power output, PL,peak, of the atomtronic battery is determined from experi-

mental data using the relation PL = ILVT , and is shown in Figure 5.11. Output power of the

atomtronic battery varies during the discharge time, providing a peak power immediately

after reducing the barrier height to VB. The battery is capable of supplying a maximum

peak power of PL ≈ 5×104 kHz2 for η̄ . 3. At higher truncation parameters the peak power

output declines due to the exponentially decreasing IL, despite increasing VT . Figure 5.11

encapsulate the performance of the atomtronic battery and illustrates that the battery can

be operated in regimes of either large peak output power or large energy capacity.

5.5 An atomtronic transistor

With its behavior understood, the atomtronic battery can now be used to power other

atomtronic circuit elements. Owing to the importance and ubiquity of its electronic coun-

terpart, the device we seek to emulate is a three-terminal transistor. This is accomplished

by adding a second optical barrier to the atomtronic battery system. In this configuration,

the role of the battery is to maintain the chemical potential and temperature of the source

well, allowing the triple-well system to be treated according to Section 2.2. In the following

sections, the steady-state behavior of the atomtronic transistor5 is explored by varying the

relative height of the two barriers, which sets the feedback parameter, υ ≡ (VGD−VGS)/kBTs.

Measurements of the normalized temperature drop, τ = (Ts − Tg) /Ts, and chemical poten-

tial drop, µ̂sg = (µs − µg) /kBTs, are compared to the analytic results of Section 2.2.3 and are

found to confirm the ability to control the steady-state behavior of the atomtronic transistor

5 The results discussed here are published in Reference [136].
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via the feedback parameter.

5.5.1 The experimental triple-well system

Keeping with the nomenclature of field-effect transistors adopted in Section 2.2.1, the

three regions of the experimental triple-well potential are labeled “source,” “gate,” and

“drain.” These regions are indicated in the longitudinal profile of the hybrid magnetic and

optical trapping potential that is shown in the top of Figure 5.12. The two barriers are

separated by 4.8 µm resulting in a gate well longitudinal trap frequency of ωx,G ≈ 2π ×

850 Hz.6 In conjunction with the Gaussian profile of the barriers, this spacing minimizes the

anharmonicity of the central well. Note that the degree of overlap between the two optical

barriers contributes to an offset in the potential energy of the gate well. The shift in the

minimum energy of each well due to the Gaussian shape of the barriers is denoted by Vi,0. For

the data presented here, the barrier separation of 4.8 µm results in VS,0 ≈ VG,0 ≈ VD,0 ≈ 0.

As in the experimental characterization of the battery, the terminator beam is used to out-

couple atoms that enter the drain well during transistor operation in order to observe the

time dynamics of the source and gate wells.

The initial state of the transistor is prepared in a similar manner to the atomtronic

battery (see Figure 5.2). By sweeping the source-gate barrier, with a height of VS ≈ 100 kHz,

all of the atoms are compressed into the source well before turning on the gate-drain barrier,

leaving the gate and drain wells initially empty. Each experimental realization begins with

a total source well atom number of Ns = 20.0(2) × 103 atoms, at a temperature Ts =

15.0(5) kHz, which corresponds to a TF chemical potential of µs = 3.0(2) kHz in the half-

harmonic trap. At time t = 0 the barrier heights are set to the desired energies, VGS and

VGD, and the system is allowed to evolve for a time ∆t. Measurements on the state of the

6 The longitudinal gate frequency is measured using the same method that was used to determine the
radial trap frequency of the split-guide trap. By displacing the barriers slightly, and in unison, the first order
longitudinal mode of the gate well is excited and the resulting heating is used to map out the excitation
spectrum.
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Figure 5.12: Top panel: Longitudinal potential energy profile of the hybrid magnetic and
optical trap. Center panel: Calculated 2D energy contour. Bottom panel: In situ absorption
image of approximately 4.5× 104 87Rb atoms at T ≈ Tc, revealing the three distinct regions
of the triple-well potential
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system are performed using absorption imaging techniques, either in TOF or in situ.

5.5.2 Transport dynamics in the atomtronic transistor

Quantitative data regarding the thermodynamic evolution of the source ensemble is

extracted using TOF imaging. Figure 5.13 shows the total, Ns, thermal, Nth,s, and condensed,

Nc,s, atom numbers determined from bimodal fits to the momentum distribution of the cloud

in free expansion (see Section 4.2.1), for a representative data set with VGS = 30 kHz and

VGD = 33 kHz. The decay of the total atom number in the source well reflects the flux of

atoms emitted into the gate, and can be used to quantify the source-gate atom current, which

is shown in Figure 5.14. As one might expect, the evolution of the source well mimics that

of the battery reservoir. However, the magnitude of the net source-gate current is reduced

due to the reverse current, Igs, that flows from the gate, back into the source due to the

presence of the gate-drain barrier.

Transport dynamics in the triple-well system are calculated according to the same RK4

numerical integration method that was used to model the battery evolution. The calcula-

tion is expanded to suit the transistor potential by including the three atom currents from

Equation (2.33) and imposing particle and energy conservation given by Equations (2.35)

and (2.36), respectfully. The steady-state solution for source and gate ensemble properties

obtained via the RK4 calculation reproduces the analytical predictions for the temperature

and chemical potential drops shown in Figures 2.5 and 2.6. Numerical calculations of the

time evolution of the source well atom number and temperature are overlaid with the ex-

perimental data in Figure 5.13. The net source-gate current is also calculated and shown in

Figure 5.14. After an initial transient period of ∼ 20 ms, the numerically calculated atom

numbers, temperature, and net source-gate current agree with the experimentally measured

values to within the uncertainty of the data. It is suspected that the disagreement between

the model and data at early evolution times is due to the initial non-equilibrium state of the

gate well.
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is measured using a saturated probe beam intensity and undercounts the true number. Error
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Figure 5.13.
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Transport dynamics are further observed by probing the system in situ. Figure 5.15

presents a series of images showing the in-trap atomic distribution that includes the initial

state, with all of the atoms contained in the source well, followed by the evolution of the

system for ∆t = 0 − 50 ms, during which VGS = 30 kHz and VGD = 33 kHz. This series of

images was recorded using a weak probe beam (Ip . Isat) in order to observe atoms that

have reached the drain. As can be seen in the third frame of the series, atoms become

trapped in the gate well by ∆t = 10 ms. If atoms were not trapped in the gate, but rather

only traversing it, one would expect there to be at most twice the density seen in the drain

well, just to the right of the gate-drain barrier. We note that at early evolution times atoms

that enter the gate well experience a region of substantial population inversion since energy

states lying below the height of the barriers are initially unpopulated. While the route

to steady-state is an analytically difficult problem, the role of interatomic interactions and

manifestation of dissipation are made evident by the population growth in the gate well.

5.5.3 Source and gate wells in steady-state

In order to probe the steady-state behavior of the atomtronic transistor, the system

must first evolve for a sufficiently long time such that the source and gate ensembles reach a

quasi-steady-state. The required equilibration time is determined by measuring the gate well

population as a function of time. In order to extract quantitative data from measured in-

trap atomic density, the probe transition is strongly saturated, as described in Section 4.2.2.

In the saturated probe regime one gains access to the high density source and gate well

ensembles, but loses information regarding the atom current flowing in the drain. The

evolution of the total gate well atom number, Ng is shown in Figure 5.16, for υ = 0.6. Here,

the atom number is calculated according to Equation (4.17). The data shows a rapid rise in

the gate population, increasing to Ng = 1380(55) atoms after 20 ms, after which it settles to

a value that agrees with the steady-state gate population, shown by the blue dashed line in

Figure 5.16, that is calculated using the previously described RK4 method. In conjunction
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with the agreement between the measured and calculated net source-gate current after ∼ 20

ms, equilibration of the gate well population verifies that the system reaches a quasi-steady-

state by ∆t = 30 ms.

The tunability of the steady-state behavior of the atomtronic transistor is explored by

measuring the in-trap atomic distribution with different feedback parameters, after an evolu-

tion time of ∆t = 30 ms. Measurements are made with a gate-source barrier height fixed at

VGS = 30 kHz, while the gate-drain barrier height is varied between data sets. The measured

gate population is plotted in Figure 5.17 as a function of the feedback parameter. The data

shows a rapid increase in the quasi-steady-state population of the gate well beginning at

the feedback parameter υ ≈ −0.25. Population growth in the gate well when VGD < VGS

provides further evidence that dissipation occurs as atoms traverse the gate region. The

source of dissipation is thought to arise due to collisions between particles entering the gate

well. This hypothesis is supported by other works that study the filling rate of an initially

empty well [59] and collision induced decoherence [137].

The temperatures of the source and gate well ensembles are also extracted from in

situ images. Equation (2.15) is fit7 to the thermal tails of the in-trap atomic density profiles

along the radial trap direction to yield the characteristic widths that scale as σi ∝
√
Ti. The

temperature drop, τ ≡ (Ts−Tg)/Ts, is calculated from the measured values of Ts and Tg and

is plotted in Figure 5.18. The data shows that τ > 0 for υ & 0, indicating that atoms in the

gate do in fact become colder than those in the source, just as was predicted in Section 2.2.3.

Experimental measurements of the steady-state gate atom number are compared to

results of the RK4 numerical calculation performed for a range of feedback parameters that

span those of the experimental data. The numerical results are indicated by the solid line

in Figure 5.17. Deviation between the model prediction for the gate population and the

7 Ideally one would fit the thermal distribution using Equation (2.18), which includes g3/2(z(x)), where
z(x) is given by Equation (2.28). Fits using this function were unstable and required care to ensure self-
consistency of µi and Ni. Instead, the temperature is fit using Equation (2.15), which neglects the HF
mean-field but provides a more robust, less hands-on fitting procedure.
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feedback parameter.
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experimental data at large feedback parameters is a result of the increasing atom density

in the gate. Large densities lessen the reduction of the scattering cross section because the

cloud is optically thicker.8 As a result, the experimental data for the gate atom number

at large positive feedback parameters is less than the numerically calculated population.

The temperature drop data is also compared to the numerical calculation. As alluded to

previously, results of the RK4 calculation accurately reproduce τ as a function of υ. The

numerical results are indicated by the solid line in Figure 5.18. We find good qualitative

agreement to within the error bars of the temperature drop data, which represent the 95%

confidence interval of the fit to the in-trap density profile.

Using the gate well atom number from Figure 5.17 and temperature data from Fig-

ure 5.18, the chemical potential in the gate well is calculated in the TF limit in a harmonic

well. The chemical potential drop, µ̂sg ≡ (µs − µg)/kBTs, characterizes the chemical poten-

tial gradient between the source and gate wells, and is shown in Figure 5.19. For values of

υ > 0.2 the chemical potential drop is negative, revealing that the chemical potential in the

gate well exceeds that of the source well. Furthermore, we determine the critical feedback

parameter, υBEC = −0.24, above which a condensate forms in the gate well in steady-state.

Below this threshold (υ < υBEC) the chemical potential drop reflects the positive chemical

potential of the source well relative to VG,0. The same behavior was found in the analytic

model for the steady-state behavior in the triple-well system shown in Figure 2.6 where the

curves are dashed in the absence of a BEC.

5.5.4 Further discussion

It is worth elaborating further on the presence of a negative chemical potential gradient

between the source and gate wells. At first glance it may appear that in order to sustain

8 The saturation parameter, s0 = Ip/Isat, used in the experiment results in a reduction of the effective
cross section (see Equation (4.18)) that is determined to be C = (σ/σeff ) = 9.3(1). Steady-state gate
numbers at higher υ can be determined by further saturating the optical transition, but this also leads to a
decrease in sensitivity to the population at υ . 0.
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a positive net source-gate current in this operating regime, work must constantly be done

on the system. However, current flows due to gradients in both chemical potential and

temperature. Thus, although the chemical potential gradient is negative, there is a positive

temperature gradient that sustains current flow from source to gate. Additionally, a negative

gradient in the chemical potential represents the conversion of thermal energy in the source

to chemical potential energy in the gate. This process decreases the local entropy of the

system; however, the presence of the terminator beam makes this an open system such that

globally the entropy of the system increases and the second law of thermodynamics is upheld.

The data in Figures 5.18 and 5.19 confirm that by tuning the feedback parameter it is

possible to achieve quasi-steady-state ensembles in the source and gate that are related by

temperature and chemical potential drops. Returning to the analogy of electronic transistor

operation, the resulting potential drops are a demonstration of the self-biasing behavior that

were predicted in Section 2.2.3. Electronic transistor functionality largely depends on the

bias or quiescent operating point set by the voltages at each of its three terminals. The

experimental results demonstrated here show that the atomtronic transistor can be tuned to

regions of either positive or negative chemical potential drops between the source and gate

wells, indicating operation in forward and reverse-bias modes, respectively.



Chapter 6

Outlook

This dissertation has described the experimental realization of two fundamental atom-

tronic circuit elements: a battery and transistor. In addition to the demonstration of these

atomtronic devices, a semiclassical analytical model was used to explore the transistor-like

behavior of the triple-well system, explicitly its ability to exhibit current gain. Furthermore,

the atom-chip-based apparatus that was constructed to demonstrate these atomtronic de-

vices provides the experimenter the ability to reconfigure the trapping potential in order

to prototype future atomtronic circuit elements. Building upon this body of work, three

avenues of continued research are outlined in the following sections.

6.1 Current controlled atomtronic transistors

The first research avenue is a direct continuation of experimental work presented in

Chapter 5 towards the goal of demonstrating a current controlled transistor, using the current

gain predictions of the semiclassical model (Figure 2.7) as a guide. Ultimately, the utility

of a transistor lies in the ability to control a large current or voltage at the output of the

device via the application of a smaller control current or voltage. Such an ultracold atom

amplifier would be immediately applicable to the AMO community.

In order to realize a current controlled atomtronic transistor, it is necessary to create a

second reservoir to serve as the source of the control current. This is theoretically possible in

the current experimental apparatus owing to the flexibility of the 2D AOD, though system
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Figure 6.1: Possible experimental potential to study a current controlled atomtronic transis-
tor. A contour of the total potential (solid black curve) is shown that has three wells. The
bare magnetic potential is also shown (red dashed curve). A blue-detuned optical barrier
bisects the original source well to create a control well. The three wells are then separated
by independently controlled barriers, VGS, VGC, and VGD. The initial state would be pre-
pared according to the previously described procedure, followed by ramping up a barrier to
separate the source and control wells.

initialization and actuation must be carefully considered. Figure 6.1 shows an illustration of

one possible design that could be used to study current gain. An alternative approach would

be to utilize the trapping techniques described in References [20, 138] or [139], in which an

all optical potential allows atom currents to flow along two dimensions.

6.1.1 More complex atomtronic devices

Once a current controlled transistor has been realized, it becomes possible to again

draw on the analogy with electronics to construct more complex atomtronic devices. In

two dimensions, the current controlled transistor potential could be realized as is shown in

Figure 6.2(a), which leaves the source, gate, and drain wells relatively unchanged from the

implementation used to conduct the experiments of Chapter 5. One can imagine intercon-

necting multiple transistors to realize atomtronic analogues to logic gates and more complex

transistor based circuits. As an example, a possible implementation of a flip-flop is shown

in Figure 6.2(b). Since the current gain described in Section 2.2.4 is differential, the char-

acteristic behavior of the electronic counterparts to these devices would then appear as a

deviation from the steady-state output of each of the individual atomtronic transistors.
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Figure 6.2: a) A possible two dimensional potential for a current controlled atomtronic
transistor generated using all optical potentials. This geometry also allows the input current
to originate from a separate potential from which the signal to be amplified originates.
The behavior of the current controlled transistor is described in Section 2.2.4. b) One
possible realization of a flip-flop circuit built from two transistor potentials shown in (a).
This configuration would exhibit flip-flop-like behavior about the steady-state operating
conditions determined by the feedback parameter of each transistor. For example, assuming
a small coupling ratio, δ, between the drain current in D1 and the connected control C2, the
drain current in D1 would decrease to I ′gd,1 = (1−δ)Igd,1, while the drain current in D2 would
increase to I ′gd,2 = (1 + δAI)Igd,2. The same behavior would occur in the other transistor,
and the drain output currents of the two transistors would alternate with one higher and the
other lower than the steady-state Igd, and vice versa, depending on the sign of AI set by υ.
As in an electronic flip-flop, set and reset elements are included, here in the form of barriers.
In analogy to grounding the gate input, a large V(re)set shuts off current flow into the control
gate of the respective transistor potential, i.e., δ → 0, returning the drain current to the
steady-state value.
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6.2 Coherent behavior

The work in this dissertation has approached the problem of realizing an atomtronic

transistor from a semiclassical perspective in which the bulk of the quantum behavior is

hidden within interactions that give rise to the positive valued chemical potential. However,

an attractive concept in atomtronics is the ability to influence the coherence of an atomic

signal. In the context of the triple well system studied here, coherence can refer to phase-

locking between condensates in the source- and gate-wells, which is studied theoretically in

Reference [26], or the coherence of the drain current. The remainder of this section discusses

ongoing attempts to control the degree of coherence of the atom current emitted into the

drain.

Conceptually, it should be possible to couple the motional state of the condensate

trapped in the gate well to higher lying energy states, thus establishing coherence between

energy levels that contribute to the gate-drain current. Figure 6.3 illustrates the simplified

model of the gate well that is used to discuss the generation of coherence in the gate-drain

current. Notice that states below the barrier height are considered, indicating the presence

of quantum mechanical tunneling. Also, consider that the properties of the gate barriers

including their widths, heights, and separation have been designed to provide preferential

transmission of atoms in levels |g〉 and |e〉. Methods for designing such a potential are

discussed in Section 6.3. The energy level spacing of |g〉 and |e〉 is given by E/~ = Ω,

and is equivalent to the oscillation frequency of the center of mass dipole mode of the gate

well condensate. Intraparticle interactions, e.g. mean-field effects, lead to the conversion of

energy stored in the collective motion of the condensate to the higher lying states, a process

similar to Landau-damping [43]. In this manner, it is expected that the output modes of the

gate, i.e., γg and γe, develop a coherent relationship to both the condensate in the gate well

and one another. Ongoing theoretical treatment of this model system draws upon methods

from semiclassical laser theory [140] with possible extension to the quantum master equation.
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Figure 6.3: Schematic of the model system for realizing coherent transistor output. Gate
well populations in energy levels |g〉 and |e〉 are pumped by the source-gate current, Pg and
Pe, respectively, and decay by emitting current into the drain, at γg and γe. The gate well
condensate prepared in the dipole mode (center of mass oscillation) then couples the two
states, generating a coherent output current into the drain.
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Coherence properties of atoms can be probed using several methods including spatial

interference [141] and measurements of correlation functions [142, 143, 144]. Images of

the spatial distribution of trapped atoms have been used to show that the correlations

persist within the trap, but require Fourier analysis and well-characterized, high-resolution

imaging [145]. Future implementation of such techniques may prove useful in measuring

spatial correlations in the drain current of the atomtronic transistor.

6.3 Tailored barrier transmission

As alluded to in previous chapters, the ability to design the potential landscape of an

atomtronic circuit element to realize specific behavior of the atomic current and thermody-

namic potentials is an attractive and powerful concept. Ultimately, the relevant character-

istics of the potential are the energy dependent transmission and reflection of matter waves.

While this problem can be approached analytically, e.g. using the WKB approximation, so-

lutions for all but the simplest of potentials are non-trivial and instead require numerical

calculation. Drawing upon the analogy to the propagation of an electromagnetic wave in a

transmission line, the generalized impedance (GI) concept provides an easily implemented

numerical approach to determine the wave transmission and reflection of an arbitrary po-

tential [65].

Originally developed to treat currents due to quantum mechanical tunneling in semi-

conductor electronics [146], the GI concept has been extended to treat wave transmission

through arbitrary potentials [126]. Calculations using this method accurately reproduce the

results of recent experiments that measure energy dependent reflection from a periodic po-

tential synonymous with a Bragg reflector [67]. Synthesized potentials of this type could

be applied towards the realization of resonant atomtronic circuit elements as well as other

systems in the field of atom optics, such as a matter wave Fabry-Pérot interferometer [147].

Theoretical application of the GI concept to the atomtronic transistor system is ongoing and

shows promise towards the experimental realization of previously discussed coherent output
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currents and other interesting behavior that arises due to quantum mechanical tunneling.
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Appendix A

Derivation of the normalized temperature and chemical potential drops

This section provides the derivations of the key relations in the analytic steady-state

model of the atomtronic transistor, the normalized temperature and chemical potential drops

provided in equations (2.39) and (2.40), respectfully. Given that the source well is maintained

at a finite µs & Ts, and there are no external sources of atoms into the system, the potential

drops are derived in a form that depends solely on µs and Ts. The first step in both derivations

is to re-cast the current conservation relation from equation (2.35),

Isg = Igs + Igd,

in terms of the feedback parameter, υ, which controls the ratio of Igd/Igs. Beginning from

the expression for Igd from equation (2.33),

Igd = γgNth,g exp[−(VGD − VG,0 − µg)/kBTg]

and inserting unity as 1 = exp [(VGS − VGS)/kBTg], one finds

Igd = γgNth,gexp [−(VGD − VGS)/kBTg] exp [−(VGS − VG,0 − µg)/kBTg] . (A.1)

Next, inserting the barrier height difference, ∆V = VGD − VGS, and pulling out a factor of

Igs simplifies equation (A.1) to

Igd = Igse
−∆V/kBTg , (A.2)
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which shows that the ratio Igd/Igs = exp [−∆V/kBTg]. Plugging equation (A.2) into the

expression for current conservation and inserting the feedback parameter, υ ≡ (VGD −

VGS)/kBTs ≡ ∆V/Ts, along with Tg/Ts = (1− τ) simplifies equation (A.1) to

Isg = Igs

(
1 + e−υ/(1−τ)

)
. (A.3)

Equation (A.3) is the modified current conservation relation and it is used in derivations of

the transcendental equations for both τ and µ̂sg.

Temperature drop

In the derivation of the transcendental relation for the temperature drop tempera-

ture drop, τ ≡ (Ts − Tg) /Ts, one begins from the energy conservation equation, originally

presented in equation (2.36):

Isg(VGS + κGSkBTs) = Igs(VGS + κGSkBTg) + Igd(VGD + κGDkBTg).

Dividing through by Igs, one then uses equation (A.3) to replace the ratio Isg/Igs and equa-

tion (A.2) to replace to replace the ratio Igd/Igs, yielding

(VGS + κGSkBTs)
(
1 + e−υ/(1−τ)

)
= (VGS + κGSkBTg)

+ (VGD + κGDkBTg) e−υ/(1−τ). (A.4)

The remaining steps include algebraic manipulation of equation (A.4),

κGS (kBTs + kBTg) = e−υ/(1−τ) (∆V + κGDkBTg − κGSkBTs) ,

followed by dividing through by kBTs and inserting τ where appropriate,

κGSτ = e−υ/(1−τ) (υ + κGD(1− τ)− κGS) .

Finally, one obtains the expression for the temperature drop,

τ = e−υ/(1−τ) υ + (κGD − κGS)

κGS + κGDe−υ/(1−τ)
. (A.5)
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Chemical potential drop

The transcendental relation for the normalized chemical potential drop is derived in

a similar manner to the temperature drop. Beginning again from the modified current

conservation relation, equation (A.1), this time insert the expressions for currents from

equation (2.33):

γsNth,sexp

[
−VGS − µs

kBTs

]
= γgNth,gexp

[
−VGS − VG,0 − µg

kBTg

] (
1 + e−υ/(1−τ)

)
(A.6)

To begin, the previous equation is rearranged to group like-terms in the exponentials,

exp

[
µs

kBTs

− µg + VG,0

kBTg

]
=
γgNth,g

γsNth,s

exp

[
VGS

kBTs

− VGS

kBTg

] (
1 + e−υ/(1−τ)

)
. (A.7)

Next, take the natural log of both sides and use the identity: ln[A×B] = ln[A] + ln[B],

µs

kBTs

− µg + VG,0

kBTg

= ln

[
γgNth,g

γsNth,s

]
+

(
VGS

kBTs

− VGS

kBTg

)
+ ln

[
1 + e−υ/(1−τ)

]
. (A.8)

Inserting the definition for the feedback parameter and the temperature drop further sim-

plifies the expression to

µ̂s −
µ̂g + V̂G,0

1− τ
= −V̂GS

(
τ

1− τ

)
+ ln

[
γgNth,g

γsNth,s

]
+ ln

[
1 + e−υ/(1−τ)

]
, (A.9)

where the (̂ ) indicates the quantity is normalized to the source temperature. Using the

expressions for the number of thermally excited atoms in the ensemble, equation (2.30), the

critical temperature, equation (2.8), and the thermal atom collision rate, equation (2.34),

the ratio γNth factors simplifies to

γgNth,g

γsNth,s

=

(
Tg

Ts

)5 1 + ζ(2)
ζ(3)

µg
kBTg

1 + ζ(2)
ζ(3)

µs
kBTs

,

= (1− τ)4
1− τ + ζ(2)

ζ(3)
µ̂g

1 + ζ(2)
ζ(3)

µ̂s

.

Finally, one obtains the expression for the chemical potential drop,

µ̂sg = (1− τ) ln
[
(1− τ)4

(
1 + e−

υ
1−τ

)]
− τ

(
V̂GS − µ̂s

)
+ (1− τ) ln

1− τ + ζ(2)
ζ(3)

(
µ̂s − V̂G,0 − µ̂sg

)
1 + ζ(2)

ζ(3)
µ̂s

 , (A.10)
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after replacing the normalized gate chemical potential by µ̂g = µ̂s − V̂G,0 − µ̂sg.


