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The extreme ultraviolet (XUV) is a relatively unexplored spectral region for high-resolution

laser spectroscopy. Many atomic and molecular systems of fundamental interest lie in wait of

investigation, but the lack of highly coherent sources has forgone the ability to experiment. The XUV

frequency comb offers exciting new frontiers for fundamental physics and measurement science by

enabling direct and highly coherent laser access to the XUV. Prior to 2012, our group demonstrated

the best levels of phase coherence in the XUV at the 10 MHz level and the most powerful XUV

light source originating from high-order harmonic generation with powers of 220 µW/harmonic.

The work in this thesis improves upon both of these metrics demonstrating coherence at the 62.5

mHz level (eight orders of magnitude improvement) and power levels approaching 1 mW/harmonic

(five times improvement). Our work shows that it is possible to produce XUV light with coherence

properties that rival that of visible light using the high-order harmonic generation process.

Leveraging XUV frequency comb technology, we also extend the work to probe strong field

physics in atomic and molecular systems. We use the phase stable light produced during high-order

harmonic generation to probe attosecond phenomena in atoms manifested in the intensity dependent

dipole phase. We also study strong-field light-matter interactions in molecular systems. Using

our femtosecond enhancement cavities, we perform field-free molecular alignment at unprecedented

repetition rates. This allows for a sensitive study of the strong-field interaction and allows the

high-order harmonic generation process to be performed in an aligned molecular target.

As XUV frequency comb technology continues to mature, further gains in power levels are

anticipated. Additional applications in high-resolution spectroscopy, strong-field physics, solid-state

physics, and laser science will come to fruition.
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Chapter 1

Extreme ultraviolet frequency combs

1.1 Introduction

Optical frequency combs are a remarkable laser technology technology. They seamlessly inte-

grate the disciplines of ultrafast lasers with precision continuous wave (CW) laser stabilization and

frequency metrology. The technology is so powerful, it was recognized by a Nobel Prize awarded to

John L. Hall and Theodor Hänsch in 2005 [1, 2]. That same year, the extreme ultraviolet (XUV)

frequency comb, an extension of the optical frequency comb to wavelengths below 100 nm, was

demonstrated by the Ye group and the Hänsch group virtually concurrently [3, 4]. This marked the

first step to performing laser spectroscopy at wavelengths previously inaccessible to traditional laser

technology. With a few exceptions [5], high-resolution laser spectroscopy below 100 nm is a vastly

uncharted territory. To a large degree, the motivation behind the XUV frequency comb is enabling

high-resolution spectroscopic exploration in this part of the electromagnetic spectrum. Neverthe-

less, the XUV comb bridges the worlds of strong-field physics with that of precision measurement

in much the same way as the original optical frequency comb bridged ultrafast science and precision

metrology.

To put the XUV frequency comb into the broader context of laser technology and the work in

this thesis, it is useful to start at the laser’s origin, the maser. Gordon and Townes were the first to

produce the ammonia maser [6, 7]. To characterize the maser, two versions were built to compare

using heterodyne interferometry, a trick we will also use extensively in this thesis. By comparison of

two such masers, it was immediately apparent that the spectral purity of the microwave signal and
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the stability were quite remarkable. Schalow and Townes followed to show how this demonstration

could be feasibly extended to the infrared and optical domain [8]. The promise of being able to

perform high-resolution spectroscopy at optical frequencies was certainly tantalizing. In 1960, the

first laser was created by Maiman [9]. It was pulsed source that used ruby as a gain medium. This

was followed in 1961 with the demonstration of the first CW laser using a helium-neon mixture

as the gain medium [10]. These two historical breakthroughs in technology essentially lead to,

among many other applications, the birth of nonlinear optics and laser spectroscopy, two seemingly

unrelated fields of research that will coalesce to give optical and XUV frequency comb technology.

As laser technology rapidly advanced, it became apparent that there was a need to be able

to measure an optical frequency in an absolute sense. The current definition of the SI unit the

second, and hence frequency, is based on a hyperfine transition in Cesium-133 at 9,192,631,770 Hz

exactly. Optical frequencies are typically at ∼ 400 THz, which is much too high for direct electronic

measurement. Before the late 1990’s, the only way to bridge this frequency gap was a large,

magnificently complex system of multiple lasers and microwave sources spanning the electromagnetic

spectrum compared at radio frequencies. An example of these heroic efforts is shown in Fig. 1.1.

The device that rendered such frequency chains virtually extinct was the femtosecond optical

frequency comb1 . Ultrashort laser pulses were routinely produced starting in the 1980’s. However,

it was not until the first demonstration of passive, Kerr-lens modelocking that lasers with femtosec-

ond pulse durations became robust [12]. It became apparent that the train of femtosecond pulses

produced by a modelocked laser creates a comb structure in the frequency domain provided that

the repetition rate of the pulses is stable and provided the phase relationship between the successive

pulses’ electric field is stable or slipping regularly from pulse to pulse. Under these conditions, the

frequency νn of each tooth of the comb can be identified by a simple equation νn = n × fr + f0,

where n is an integer, fr is the repetition rate of the pulses, and f0 is the carrier-envelope offset

frequency which is defined as the rate the electric field slips in phase from pulse to pulse. The
1 For this thesis, we will use “femtosecond optical frequency comb”, “optical frequency comb”, and “frequency comb”

virtually interchangeably to refer to frequency combs generated by modelocked, femtosecond pulse duration lasers.
There are various other frequency comb technologies and if we are referring to them, it will be clear from context.
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Figure 1.1: This diagram is of the NIST frequency chain used to directly link an iodine transition
at ∼ 520 THz to the Caesium-133 standard at ∼ 9 GHz. Reproduced from [11].
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beauty of this equation is that fr and f0 are both radio frequencies and can be easily measured with

conventional electronics. The optical frequency comb provides a radio frequency (RF) indexed ruler

for a large bandwidth of optical frequencies. With this laser, there is a way to directly relate an

optical frequency to an radio frequency, the essence of the NIST frequency chain show in Fig. 1.1.

Direct frequency comparison could now be accomplished with a single modelocked laser emitting

ultrashort laser pulses. By making a heterodyne beat between the laser under investigation and the

optical frequency comb (in a way analogous to Gordon and Townes original maser demonstration),

one can precisely know the frequency of a laser to very high degree and be able to directly compare

it to an absolute standard like the cesium atomic fountain clock operating in the microwave domain

(or various other atomic clock technologies).

Spectroscopy in the XUV (10 nm – 100 nm) is a difficult business [13] and it would be great

if we could make it easier with the laser technology that has been developed in the visible and near

infrared parts of the electromagnetic spectrum. However, building a laser in the XUV is no simple

task. The problem is essentially two-fold [14]. The power required to maintain a population inversion

and achieve lasing scales∼ 1/λ4. Since XUV wavelengths are typically an order of magnitude shorter

than their visible counterparts, ∼ 104 times more power is required for their operation. Secondly,

solid materials are typically not transparent below 100 nm, limiting gain media to gaseous samples.

There is also a very severe problem in that high reflectivity mirrors are extremely rare in the XUV.

Despite the apparent difficulty in producing laser light below 100 nm, there is still strong scientific

interest in overcoming this challenge. A quintessential example is atomic hydrogen spectroscoy [15].

Moving spectroscopic investigation beyond hydrogen to hydrogen-like systems, or even helium-like

systems, will offer new insights to bound-state QED because the corrections scale favorably with

the nuclear charge Z [16]. Using the Bohr model as a reference, the energy levels of a hydrogen-like

ion are

En = Z2RE
n2

, (1.1)
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where RE is the Rydberg energy of 13.6 eV and n is the principle quantum number. Simply moving

from hydrogen to singly-ionized helium (a system similar to atomic hydrogen), the n = 1→ n = 2

transition is already at 40.8 eV, deep into the extreme ultraviolet and well out of the reach of

traditional laser technology. Ultimately we are seeking a source of light that has laser-like properties

but we are flexible as to how it is produced. Therefore, we can take advantage of nonlinear frequency

conversion techniques. Immediately following Maiman’s ruby laser demonstration [9], the field of

perturbative nonlinear optics was born with the production of optical harmonics [17]. The high

peak power of the pulsed ruby laser source was used to create a nonlinear polarization in a material

and thus produced harmonics of the driving laser frequency. We can understand such phenomena

by expressing the polarization induced by the laser field in a material or gas by a simple power

series expansion expressed as [18]

P = χ(1)E + χ(2)E2 + χ(3)E3 + . . . , (1.2)

where P is the polarization, χ(k) is the kth order susceptibility, and E is the electric field. The χ(1)

term is describes ordinary, linear optics. The χ(2) and χ(3) susceptibilities give rise to now common

nonlinear phenomena such as second and third harmonic generation, four-wave mixing, and self-

phase modulation. These nonlinearities are routinely exploited to produce optical pulses with nearly

single-cycle durations (∼ 1− 5 fs) and down to wavelengths around 200 nm [19]. One might expect

that as the intensity of the laser is increased, higher and higher optical harmonics will be produced.

To a certain degree, this is true. However, our understanding based on the perturbative expansion of

Eq. 1.2 will quickly run into trouble once the electric fields of the laser pulse become comparable to

the fields that hold the atom together. If we ignore bound-free transitions (ionization) it is possible

to relate the k + 1 order susceptibility to the k order of an atomic system with a resonance at ω0

by using perturbation theory to obtain [19]

χ(k+1)Ek+1

χ(k)Ek
≈ µE

~∆
≈ eEaB

~∆
(1.3)
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where aB is the Bohr radius, the bound-bound transition detuning is ∆ = |ω − ω0|, and µ is the

bound-bound transition dipole. This is not an extremely rigorous equation, but it gives us a sense

for the orders of magnitude with which we are dealing. For a detuning of about 1 eV, the ratio

approaches unity when E is on the V/Å level. This corresponds to laser peak intensities on order

1014 W cm−2. These sorts of field strengths will cause the expansion in Eq. 1.2 to diverge as the

laser field is clearly no longer a perturbation. As it turns out, recent theoretical advances have

shown that this expansion starts to break down at much lower laser intensities [20, 21].

At these intensities, it is impossible to ignore bound-free transitions (ionization) making the

perturbative treatment even further unjustified. Intense electric fields lead to the ability for a bound

electron to quantum mechanically tunnel through the potential barrier and be ionized. There is also

the possibility of multiphoton absorption that will also lead to ionization. It is interesting to note

that the first strong-field laser-atom, multiphoton absorption experiment was performed at JILA

in 1965. An intense laser pulse incident was focused on a beam of I− and the subsequent ionized

electrons were measured [22]. After ionization, the freed electron propagates in the electromagnetic

field. A useful metric for understanding the transition to the strong-field regime was introduced in

1965 by Keldysh [23]. The Keldysh parameter is given by

γ =

√
Ip

2Up
, (1.4)

where Ip is the ionization potential of the atom, see Table 1.1 for a list of common atomic targets

and the values for Ip. The Up is the pondermotive energy defined as

Up =
e2E2

4meω2
, (1.5)

where e is the charge of the electron, me is the mass of the electron, and ω is the laser frequency.

The Keldysh parameter can be understood as a ratio between the laser frequency and the tunneling

rate. For γ >> 1, multiphoton absorption is dominant because the tunnel rate is slow compared to

the laser frequency. This is the case for laser pulses with short wavelengths and high intensities. By
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lowering the laser frequency, thereby increasing the laser wavelength, it is possible to make γ ≈ 1.

This is where the tunnel ionization rate and laser frequency are comparable, a situation found in

many strong-field experiments and where the process of high-order harmonic generation is typically

performed. For γ << 1, the electron can begin to topple over the potential barrier or tunnel ionize.

While this description has its usefulness, a more detailed review and criticism will be mentioned

later in Sect. 3.1.

Atom Ip [eV]
He 24.5874
Ne 21.5645
Ar 15.7596
Kr 13.9996
Xe 12.1298

Table 1.1: A table containing the ionization potentials of the noble gases used for HHG.

When an electron is tunnel ionized in an oscillatory field, to first order, the electron will

propagate in the electromagnetic field like a free, charged particle. At first, the electron will be

driven away from the ion core. Since the field is oscillatory, eventually the field will change sign and

the electron can return to the ion core it originally left. At this point, there is a small chance the

electron will recombine with the ion and emit a very high energy burst of light. This is essentially

the three step semi-classical model of high-order harmonic generation (HHG) [24]. This process is

schematically shown in Fig 1.2. The three step model predicts that the maximum photon energy

(the cutoff) that can be emitted is

~ωmax = Ip + 3.17Up. (1.6)

Since the HHG process is an ionization-related phenomena, it is best performed with pulse dura-

tions comparable to the ionization rates. The ionization rates can be calculated using the theory

of Amosov, Delone, and Krainov (ADK) [25]. For the noble gases assuming a near infrared laser,

it is easily possible to completely ionize a gas target in less that 100 fs if the peak intensity is



8

Figure 1.2: Schematic of the three step model of high-order harmonic generation. Step 1 is ioniza-
tion by an intense electric field. Step 2 is the acceleration of the free electron in the electromagnetic
field. The oscillatory nature of the electromagnetic field will cause the electron to return to the
ion core. Step 3 is the possible recombination of the electron and ion resulting in a burst of high
energy light.
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> 1014 W cm−2. It is therefore necessary to use ultrashort pulse lasers to prevent complete ion-

ization of the gas before the pulse has passed through the target. To show the power of the scaling

of Eq. 1.6, a laser 1070 nm wavelength and at a peak intensity of 1× 1014 W cm−2 focused into

argon can produce photons up to an energy of about 48 eV! Assuming a pulse duration of 100 fs,

<1% of the gas target will be ionized. The harmonic light is at a high enough photon energy to

excite a singly-ionized helium atom between the n = 1→ n = 2 energy levels that were mentioned

earlier. A more detailed description of HHG as it pertains to the work in this thesis will be saved

for Chapter 3.

1.2 Optical frequency combs

We will now turn our attention to the optical frequency comb before moving to how an XUV

frequency comb is produced. A review of the basic femtosecond optical frequency comb technology

can be found in Ref. [26]. The train of pulses coming from a modelocked laser looks very similar to

a Dirac comb

XT (t) =

∞∑
n=−∞

δ(t− nT ). (1.7)

In reality, the pulses of a modelocked laser are typically ∼ 100 fs in duration and are separated by

typically ∼ 10 ns. At 1070 nm, the period of a light wave is 3.57 fs so there are many oscillations

within a single pulse. The Fourier transform of the Dirac comb XT (t) is well known and is given

by

XT (t)
F−→X 1

T
(f) , (1.8)

so it should be of no surprise that the comb-like structure of a modelocked laser in the time domain

will lead to a comb-like structure in the frequency domain. The pulse train coming from the

modelocked laser has an additional complication. The maximum of the electric field need not occur

at the maximum of the intensity envelope. Rather, it can shift from pulse to pulse. The offset of



10

the electric field relative to the peak of the envelope in a single pulse is often referred to as the

carrier-envelope phase ∆φ. For a pulse train, it is more useful to describe the rate at which the

phase slips and this is the carrier-envelope offset frequency f0 defined as

f0 =
∆φ

2π
fr , (1.9)

where ∆φ is the pulse to pulse phase slip of the electric field relative to the envelope. This is

schematically shown in Fig. 1.3. In the frequency domain, this has very important consequences.

All of the comb teeth are uniformly offset from zero by f0. We can therefore identify any comb

tooth at optical frequencies by a combination of two radio frequencies expressed as

fn = n× fr + f0, (1.10)

where n is an integer. Each comb tooth fn can be used as a frequency marker to compare with CW

lasers or it can used in much the same way a CW laser is used. For example, it is possible to perform

spectroscopy with an individual comb tooth or simultaneously with multiple comb teeth [27].

1.2.1 Carrier-envelope offset frequency detection and measurement

Modelocked lasers, the basis for femtosecond optical frequency combs, have been routinely

used since the 1980’s. However, it was not until the year 2000 that an optical frequency comb was

demonstrated [28, 29]. This is because detection of the carrier-envelope phase is quite difficult and

it was not until the realization that the carrier-envelope phase slip had important consequences in

the frequency domain. It also took time to apply the tools of laser stabilization in the frequency

domain to ultrafast lasers. To stabilize the carrier-envelope phase of a modelocked oscillator, one

must be able to detect it, or at least the rate at which it slips, as previously defined in f0. One

method, and the one originally demonstrated in 2000, is an f − 2f interferometer [28]. If we can

compare two comb teeth n and m (or sets of comb teeth) that satisfy the condition 2n = m, we will

be able to detect f0. The problem is that this requires the optical spectrum to be at least one octave
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Figure 1.3: Schematic drawing of an optical frequency comb in the time domain and the frequency
domain. Relevant time scales and frequency scales are identified in the schematic.
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wide. A typical modelocked oscillator spectral width is inversely proportional to the pulse duration

∆ν ∝ 1/tp and for pulses of tp ≈ 100 fs at the 1070 nm central wavelength, the spectrum only spans

∆ν ≈ 4.4 THz (or ∼ 15 nm) which is nowhere near a spectral octave this optical range. To overcome

this bandwidth issue, highly nonlinear optical fibers offered an elegant solution [30]. Currently, the

highly nonlinear fiber technology is very mature, but at the time, it was still in its infancy. Highly

nonlinear fibers rely on a variety of nonlinear optical phenomena (self-phase modulation, Raman

scattering, soliton formation, etc.) to spectrally broaden the pulse to reach an octave. An example

of this approach from our lab [31] is shown in Fig. 1.4. The spectrum is ideally matched for the

strontium optical lattice clock experiments because the octave spanning spectrum covers most of

the near infrared and provides access to telecom wavelengths near 1.5 µm. Currently, it is possible

to directly produce octave spanning spectra directly from a Ti:Sapphire-based modelocked laser,

but they are often not as robust and low maintenance as the fiber-technology counterparts [32, 33].

Once the laser spectrum spans one octave, the long wavelength side of the spectrum can be

frequency doubled (by using nonlinear crystals) to spectrally overlap with the blue side of the same

comb spectrum. Fig. 1.4 contains shaded regions highlighting the relevant parts of the spectrum

used for f0 detection. By doing this, we can overlap comb teeth that satisfy 2n = m. We can then

observe a heterodyne beat that measures f0 by

2× (n fr + f0)− (mfr + f0) = 2n fr + 2f0 −mfr − f0 = f0. (1.11)

With the ability to detect f0 and fr (accomplished with a simple, fast photodetector), there is often

still a need to stabilize these quantities. Once stabilized, the potential of the frequency comb is

clear; there are millions of stable and well defined frequency markers across the optical spectrum

available for use.

1.2.2 Frequency comb stabilization

There are a multitude of ways to stabilize a frequency comb. For the sake of clarity, we will

focus on a situation applicable to modern optical atomic clocks [34]. The laser to be described [31]
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was used for the strontium lattice clock [35] and precision laser comparison experiments [36]. Nev-

ertheless, the techniques are fairly universal. Precision laser and frequency comb stabilization is an

exercise in control systems. It is often joked that you can either engineer a laser system very well,

or just build a good feedback system. In reality, the best system is a combination of good engineer-

ing and good feedback system design. To avoid obfuscating the point by going into the details of

feedback loop design, it is useful to just consider the basic operating principle as it pertains to laser

stabilization.

Imagine we want to stabilize a laser frequency ΩL to a reference laser frequency ΩR. The

first thing we need is some means to measure how far away our laser frequency is from ΩR. We

typically call this a discriminator. Our discriminator will typically give us a signal in the form of

an electrical voltage V that tells us how far off we are from the goal so that V ∝ ΩL −ΩR. We can

take that signal, filter it, invert it, and apply it to the laser to try and steer the laser frequency to

the correct value. Our discriminator then reports how well we have done and the process continues

until the system settles on our desired result or V ≈ 0. The real trick involves filtering the signal

properly and re-applying with just the right strength. While this is a vast oversimplification, there

are a few important subtleties to mention. While, mathematically speaking, a phase-lock and a

frequency-lock are an integral away from each other, the physical processes that can generate phase

noise or frequency noise can be quite different and have very different spectra. The actuators used

for phase-locking or frequency-locking typically typically fall into two categories: fast actuation

with low dynamic range or slow actuation with large dynamic range. Typically, both are needed.

Fast actuators are essential to remove broadband noise (or high-frequency noise) in a phase-lock or

frequency-lock. However, they tend to run out of actuation range very quickly as optical systems

drift and respond to slow (but sometimes large) environmental perturbations such as a temperature

change. Therefore, slow but high dynamic range actuators are employed to keep the fast actuators

within optimal operating ranges.

An optical frequency comb is a complicated laser and it is schematically drawn in Fig. 1.5 with

numerous parts and stabilization components labeled. This laser system is almost identical to the
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front-end of the high power system used for the HHG work in this thesis (see Chapter 2). There are

two fundamental quantities that need to be stabilized in a frequency comb, fr and f0. The first is

possibly the easiest to understand. Two control fr, the simplest method is to change the laser cavity

length. This changes the round-trip time of the pulse in the cavity and hence the repetition rate. A

drawback to this method is that changing the cavity length usually requires moving a macroscopic

mirror. This usually introduces temporal delay in the system’s response and this is the bane of a

feedback loop. In Fig. 1.5, these cavity length changes are accomplished by piezoelectric transducer

(PZT) actuators. One is attached to a saturable absorbing mirror (SAM) to provide fast changes to

the cavity length and a circular PZT stretches some fiber in the cavity to slowly change the cavity

length. However, some applications require feedback to be faster than what a PZT can accomplish.

We can then make use of an electro-optic modulator (EOM) to change the cavity length. This works

by applying a voltage to the EOM crystal to change the index of refraction of the crystal and hence

increase or decrease the optical path making the laser cavity effectively longer or shorter. This can

have feedback bandwidth almost an order of magnitude larger than common PZTs as demonstrated

in Ref. [31].

To stabilize f0, we must refer to more sophisticated laser dynamics. Relative changes in the

intracavity dispersion (relative amounts of group delay and phase delay) will lead to f0 shifts. To

accomplish this in the frequency comb of Fig. 1.5, the fiber Bragg grating (FBG) temperature is

changed. The FBG is responsible for dispersion management inside the laser cavity and by changing

the temperature, the grating’s dispersive properties change. This process is effective but very slow.

Faster control is accomplished by modulating the pump power of the laser. Modulating the pump

power will change the amount of self-phase modulation in the laser and modulate the dispersion of

the gain medium, both of which will cause f0 to change [37, 38]. However, it is often nice to use

the pump modulation actuator to reduce the amount of phase noise in the laser because fiber lasers

typically have large amplitude-to-phase noise couplings [31, 39]. With the pump laser intensity tied

up reducing phase noise in the laser by reducing the laser intensity noise, it is unavailable for direct

f0 control. However, this problem can be circumvented by the use of an acousto-optic modulator
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(AOM) placed outside the laser cavity. An AOM uniformly shifts all the frequency comb teeth by a

given radio frequency which is typically near 40 MHz but can be up to and over 1 GHz. The AOM

can provide high feedback bandwidths and is a nearly perfect f0 actuator.

With detection of f0 described, detection of fr seems almost trivial as a photodetector with

a response faster than fr is sufficient to measure it. However, it is often unwise to use this method

if the highest level of stabilization is required. As an example, stabilizing fr directly will only

fractionally preserve the stability at optical frequencies. Assuming a fr = 100 MHz signal can be

stabilized to 1 Hz, that is a fractional uncertainty of ∆fr/fr = 1 Hz/100 MHz = 10−8. Assuming

a frequency comb at 1070 nm, the central frequency is 280 THz. That means the optical linewidth

∆fopt would become ∆fopt = 280 THz× 10−8 = 2.8 MHz. For some applications, this is sufficient,

but for high-performing optical atomic clocks [35], this is not acceptable.

However, we are not limited to direct detection of fr. CW lasers can routinely be stabilized to

∼ ∆f/f = 10−16 [40]. By making a heterodyne beat between a extremely stable laser and a single

comb tooth we can derive an excellent signal to use for stabilization. The beat frequency with the

f0 dependence removed would be

fb′ = n× fr + f0 − fopt (1.12)

fb = fb′ − f0 = n× fr − fopt (1.13)

The beat frequency fb can then be stabilized to a very stable RF reference frequency by controlling

fr. This accomplishes an important point; the fractional stability of the laser can now be transfered

directly to fr. This has been exploited to generate extremely stable radio frequencies by subsequent

detection of fr on a simple photodetector [41]. This method also facilitates precise comparison of

lasers separated by frequencies too large for direct detection [36].



17

976 nm
10 W

to optical beats

RIN
t

SA
YDF FBG

976 nm
0.6 W

WDM

pump
combiner

double-clad YDF

PZT ISO
EOM AOM

1%

SHG

DM

PCF

ISO

fceo-beat

measuremen
PZT
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1.2.3 Frequency comb performance characterization

After a frequency comb has been stabilized, it is often useful to have multiple methods to

characterize it. Fig. 1.6 shows three possible methods. The first is to use a CW laser to compare

with an individual comb tooth. To get a true sense of how the comb is performing, it is important

that the CW laser is “out-of-loop” (an independent component) meaning that it is not being used

as a part of the stabilization scheme. The beat between the CW laser and the comb will yield

important information about frequency stability and other possible noise sources. As an example,

this method was used to study super continuum processes and how well they preserved the frequency

comb coherence across the optical spectrum [42].

The second method and third method rely on the use of a reference frequency comb with

known stability properties. The second method uses two combs have the same fr but different

f0. The heterodyne beat signal will contain information about f0 stability which can be useful for

measuring noise properties coupled to f0 or to measure optical linewidths across the spectrum by

spectrally resolving the comb before heterodyne beat detection. We will use this method later in

the thesis when we characterize the coherence properties of the XUV comb [43]. The third method

is more complicated, it relies on the two combs having different fr and possibly different f0. By

doing this, the relative spacing between comb teeth of each comb is growing with the comb tooth

number. The heterodyne beat spectrum will contain many signals coming from each pair of comb

teether because they are all at slightly different frequencies. This is the basis for the very powerful

technique of dual-comb spectroscopy [44, 45]. This method is often used to analyze a new class of

frequency combs based on soliton formation in torroidal resonators [46].

There are many figures of merit for frequency comb performance (or CW laser performance)

and the most meaningful often depends on the desired application [38, 47]. For the work pertaining

to this thesis, we are most concerned with the temporal coherence properties or phase stability. A

useful metric for this is the measure of the optical linewidth. Much like an atomic linewidth can give

information on an excited state lifetime, an optical linewidth can give information on the coherence
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Figure 1.6: a) A heterodyne beat between a CW laser and a frequency comb. b) A heterodyne
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beat spectrum.
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time of the light. The coherence time of the light is important because it sets a timescales at which

a laser can phase coherently interact with an atomic system. These long light-matter interaction

times have the potential to reveal very subtle phenomena in quantum systems. As a quick example,

without the ability to resolve sub-Hz features on an atomic transition in strontium, many complex

many-body phenomena would have gone unobserved [48]. The resolving power is only possible

by having very phase stable light. This fact has driven much of the laser and atomic physics

development over the past 50 years – the yearning of high spectral resolution.

1.3 Extreme ultraviolet frequency combs

Creating a frequency comb in the XUV requires performing the aforementioned process of

HHG. Most HHG experiments are not performed in a manner that allows investigation of the co-

herence preserving properties of HHG. Certainly the spatial properties of the light were investigated

and are routinely used for coherent diffractive imaging [49]. Since we are interested in using XUV

frequency combs for high resolution spectroscopy, we are concerned primarily with the temporal

coherence properties. Earlier work has shown that adjacent harmonic orders are locked in phase

relative to each other [50]. This results in the HHG process producing a train of attosecond pulses

in the XUV. However, this does not test or guarantee absolute phase stability, especially over the

time scales of interest.

Before considering coherence properties of the HHG process, it is important to make a tech-

nical distinction between performing HHG with a frequency comb compared to a more “traditional”

laser system. Calling any laser system designed for HHG “traditional” is troublesome. High-power

laser systems are continuously evolving and the technology advances quite rapidly [51]. Neverthe-

less, a typical approach is to use a high pulse energy laser system. Pulse energies are typically in

the few mJ range, repetition rates are in the kHz range or lower, and average powers are in the

few W range. Central wavelengths can vary from 800 nm to 4 µm. Some sources offer the ability

to customize and shape an optical waveform and others do not even have carrier-envelope phase

stability. In principle, even with a very low repetition rate, it would still be possible to observe the
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Figure 1.7: a) Single pulse HHG in the time and frequency domain. b) Multi-pulse HHG and the
XUV frequency comb. The harmonic spectrum is the same as in the single pulse case, but the high
repetition rate nature of the frequency comb creates a comb structure at each harmonic order.
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comb structure, but in reality, when the pulses arrive so infrequently, it makes stabilization of a

low repetition rate system nearly impossible. Further, it is an issue of the bandwidth of the noise

processes. If the noise-induced modulation bandwidth exceeds fr, we have no hope in uncovering a

comb structure.

The harmonic spectrum produced by a single laser pulse is shown in Fig. 1.7. The is what

is observed in low repetition rate laser systems. Near every maximum of the electric field, the

three-step process of HHG (see Fig. 1.2) can initiate. The result is a burst of XUV radiation near

the zero crossing of the laser field. Therefore, a burst of high energy photons will occur every half

cycle of the laser. This is what produces the optical harmonics spaced by 2ω0 where ω0 is the

driving laser central frequency. The harmonics are odd because the sign of the electric field of the

high energy photon burst switches every half cycle. Also, since gas targets are typically inversion

symmetric, even harmonics are not possible. Even harmonics can be produced if the target lacks

inversion symmetry or a multi-color laser field is used to break the electric field symmetry.

The heart of the XUV frequency comb lies with the question of what happens if the HHG

process is driven with a high repetition rate pulse train (a pulse train from a frequency comb for

example). Provided the HHG process is coherent and reproducible, the XUV electric field produced

in a single HHG event will be produced every time by subsequent driving pulses. In this situation,

we are driving XUV emission at stable and well defined intervals much like a modelocked oscillator

produces optical pulses at stable and well defined intervals. We expect the overall harmonic emission

to mimic the single pulse case in terms of the overall spectral shape, but we intend to determine

whether a given harmonic order q should have frequency comb teeth separated by the driving laser

repetition rate fr. We expect the carrier envelope frequency to increase with harmonic order as

the electric field will be oscillating q times as fast. We can then re-write the frequency comb tooth

indexing for the different harmonic orders as

fj = j × fr + q × f0, (1.14)
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where j is an integer and f0 is that of the driving laser. So, provided that the HHG process does

not lead to carrier-envelope phase noise, we hope to find a frequency comb structure in the XUV

that shares similar properties to the driving laser. For instance, it will then be possible to use the

comb structure for high resolution spectroscopy because we can treat each comb tooth similarly to

a CW laser [52].

1.4 Applications

There are many examples of spectroscopic application with < 100 nm light that we will briefly

summarize below. Another feature of the XUV frequency comb has not been stressed thus far: it

is actually one of the highest photon flux sources of XUV radiation available on a table-top. Not

only that, it is also nearly as spectrally bright as a synchrotron, the work horse of XUV and x-ray

science. We will also highlight some applications unrelated to high resolution spectroscopy but for

which the XUV frequency comb is well suited.

1.4.1 Spectroscopic applications

As previously mentioned, precision spectroscopy of atomic hydrogen has been very fruitful and

allowed sophisticated bound-state QED calculations to be compared with experiment. The beauty

of using hydrogen is that the calculations can be carried out exactly [16]. Singly ionized helium is

the next logical step after hydrogen if the goal is to compare to QED calculations [53]. Leading

order relativistic corrections to the 1S − 2S transition scale as Z4. Leading order correction to the

Lamb shift (splitting between 2S and 2P levels) also scales as Z4. This makes QED effects in singly

ionized helium over an order of magnitude larger than in atomic hydrogen. Precision spectroscopy

of these systems will test the limits of current bound-state QED calculations and possibly reveal

new physics.

Helium-like system are also interesting because electron-electron correlations become impor-

tant. There are currently no methods to perform calculations of helium properties exactly as in the

case of hydrogen. Laser spectroscopy on atomic helium has already been performed [54, 55]. At the
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time of the test, the experimental uncertainties were close to the achievable theoretical uncertain-

ties. However, more recent experimental efforts aim to beat down the experimental uncertainties to

justify improvements on the calculations [56].

Highly charged ions are a relatively untapped source of laboratory spectroscopic investigation.

It seems intimidating to trap and cool highly charged ions, but recent experiments are advancing

nicely and it will not be long before routine spectroscopic investigation is possible [57]. Highly

charged ions are a sensitive testbed to look for variations in the fine structure constant [58–60].

The sensitivity typically scales as Z2. Highly charged hydrogen-like ions are also postulated to be a

useful test bed for looking for parity nonconservation and physics beyond the standard model [61].

In these proposed experiments, highly charged ions would be stored at relativistic velocities to

bring the Doppler-shifted resonances into the VUV and XUV where lasers can be used to excite

the 1S − 2S transition and look for circular dichroism. Since the electrons of highly charged ions

are located much closer to the atomic nucleus, looking for strong nuclear affects on the electron

spectroscopy could potentially lead to new insights in nuclear physics.

Another interesting target suitable for high resolution spectroscopy is molecular hydrogen

and its isotopologues (H2, HD, D2). Spectra of molecular hydrogen can be used to constrain the

evolution of the electron-proton mass ratio [62]. Further, basic spectroscopic investigation can be

used as a test bed for QED in a molecular setting and test our fundamental understanding of the

most basic molecular system [63, 64].

A final spectroscopic application of the XUV comb would be a “nuclear” clock. It would work

on the same principles of an atomic clock, but rely on a nuclear isomer transition as the frequency

discriminator (rather than an electronic transition as in optical clocks). Isomer transitions are

typically at x-ray wavelengths. However, thorium is claimed to have a low lying isomer transition

near 7.5 eV. To date there is no concrete experimental evidence of this transition and the transition

energy is still debated. If it does exist, it would likely make a very nice clock [65]. There is a

long-lived isomer transition in uranium with 27 minute lifetime [66, 67] at an energy just under 100

eV. It is unclear whether or not this will be useful for clock operation because the excited state
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decay mechanisms are still unknown.

1.4.2 High-flux extreme ultraviolet source applications

The current workhorse for XUV and x-ray radiation sciences is the synchrotron. It produces

high flux, spatially coherent, and pulsed light [68]. A small list of its applications contain microscopy,

lithography, angle-resolved photoemission spectroscopy (ARPES), crystallography, and structural

biology [69]. Most of these would benefit from a light source with similar properties but in a

compact, user-friendly package that does not rely on a billion dollar user facility with limited

access [69]. For the sake of brevity, we will discuss application to ARPES. What follows will apply

to most photoelectron based spectroscopies that rely on XUV light for photoemission.

Many photoelectron based spectroscopies suffer from an effect known as “space charge.” For

ARPES, the ability to detect photoelectron energy and momentum at high resolution is critical.

If too many photoelectrons are simultaneously ejected from the surface of a sample, as they drift

to the detector, the momenta will change due to Coulomb repulsion and this effectively blurs out

the experimental resolution. To overcome this, scientists usually reduce the brightness of the XUV

source that is generating the photoemission, but this comes at the cost of reduced signal size

leading to worse statistics in the data (since the experimental shots occur at a fixed rate). The ideal

condition is to have a light source that produces maybe only a few photons per pulse but repeats

at a high frequency. This is exactly what the XUV frequency comb does very well. The XUV

frequency comb is of comparable brightness to a synchrotron and operates in a regime where space

charge effects are minimal for ARPES application, or other photoelectron-based spectroscopy. An

example of how powerful a laser-based source for ARPES can be, we refer to the work of Ref. [70].

The data taken with a laser-based ARPES apparatus clearly has better energy resolution and did

not require a trip to the synchrotron. The higher energy resolution was used to observe much more

subtle physical phenomena that would have otherwise gone unnoticed in a more traditional ARPES

apparatus.
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1.5 Thesis outline

For our work, the primary goal of the XUV frequency comb is to combine the precision laser

stabilization required to produce an optical frequency comb with the highly nonlinear process of

HHG to up convert the near infrared frequency comb into the XUV. The rest of the thesis will

describe results of the XUV frequency comb experiments.

• Chapter 2 contains the experimental apparatus including the laser system and the femtosec-

ond enhancement cavities (fsECs).

• Chapter 3 contains a description of HHG as it pertains to power scaling XUV frequency

combs and the microscopic phenomena the XUV comb can probe.

• Chapter 4 contains the construction and operating principles of the XUV interferometer

used to test the temporal coherence properties of the XUV light originating from HHG.

• Chapter 5 contains our results in performing heterodyne interferometry in the XUV to study

the XUV comb phase coherence and how we can use it to probe strong-field phenomena.

• Chapter 6 contains our efforts to use the XUV comb technology to study strong-field effects

in molecular systems.

• Chapter 7 contains conclusions and an outlook for future XUV comb work.



Chapter 2

Experimental apparatus

In this chapter, we cover the main experimental apparatus and its working principles. Details

about the XUV interferometer will be saved until Chapter 3. Here, we present the femtosecond

enhancement cavity, the linchpin of XUV frequency comb generation. We also present the laser

system and its modifications since its original construction. We will also discuss the experimental

vacuum chamber and operations unique to the XUV frequency comb.

2.1 Amplifying ultrafast laser pulses

Most HHG experiments use lasers that have 100 µJ – 10 mJ pulses energies while maintaining

ultrafast pulse durations (< 100 fs). With these parameters, it is very straightforward to focus the

laser beam to achieve peak intensities < 1014 W cm−2, a sufficient intensity for HHG. These high

pulse energies are achieved with low repetition rate amplifiers [71, 72]. The low repetition rate

is necessitated by the amplifier pumping laser (or flashlamp) technology. The XUV frequency

comb requires similar pulse energies of 10 µJ – 100 µJ while still maintaining the full repetition

rate of the initial frequency comb of typically 100 MHz. The amount of average power required

for a 100 µJ frequency comb at 100 MHz would be 100 µJ × 100 MHz = 10 kW! Currently, no

“active” amplification technology can achieve this. However, there is a “passive” approach that

relies on high finesse optical resonators. We call these special resonators femtosecond enhancement

cavities (fsECs). The details of operation will be forthcoming. However, what they achieve is

quite remarkable. By coupling a frequency comb to an enhancement cavity, the pulses resonating
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inside the cavity can have an average power potentially > 200× greater than the injected laser

while preserving the full repetition rate of the frequency comb and its ultrafast pulse duration.

Using this technology, the intracavity pulse is “passively” amplified and can be used for strong-field

experiments. Therefore, only a 50 W average power frequency comb (a power completely within

current technology [73]) can achieve 10 kW of average power while maintaining ultrafast pulse

durations.

2.2 The femtosecond enhancement cavity

An optical cavity is a routinely used piece of instrumentation. Here, we will outline the basic

theory of operation and highlight aspects most relevant for femtosecond pulse enhancement. For

most of the discussion, we will focus on enhancement cavities for continuous wave lasers since it

simplifies the description. However, the extension to coupling frequency combs to enhancement

cavities is quite simple because frequency combs behave as if they were composed of a series of

continuous wave lasers evenly spaced by the repetition rate. The enhancement cavity for a frequency

comb will be referred to as a femtosecond enhancement cavity (fsEC).

The XUV frequency comb relies on Fabry-Pérot ring resonators. Schematics of ring resonators

are shown in Fig. 2.1. Fig. 2.1a is a typical four mirror resonator. We are however not restricted

to a four optic cavity. Fig. 2.1b shows a resonator with a fifth optic placed between the curved

mirrors. This optic, the “Yost grating” [74], is used to outcouple HHG light from the cavity and

will be discussed later in Sect. 2.2.6. For the current discussion, it can be treated as an additional

high reflector in the cavity. As we will discuss, the total length of the cavities shown in Fig. 2.1 are

determined mainly by the frequency comb repetition rate. Therefore, the separation of the curved

mirrors can be used to tune the size of the beam waist in the resonator and the transverse mode

properties.
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a)

b)
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Figure 2.1: a) A four mirror ring cavity is schematically shown. HR, high reflector. CM, curved
mirror. IC, input coupler. b) A five mirror ring cavity is shown. This cavity is equipped with
the Yost grating which acts as a high reflecting mirror at the driving laser wavelength. For shorter
wavelengths, it behaves as a diffraction grating. HR-DG, high reflector diffraction grating aka the
Yost grating [74].



30

2.2.1 Cavity finesse, buildup, and contrast

Referring to Fig. 2.1, we can write the intracavity laser electric field Ecav as it traverses around

the cavity for multiple round trips as a series given by

Ecav(ω) =
√
εE0ti

(
1 + rirce

iφ(ω) + (rirce
iφ(ω))2 + (rirce

iφ(ω))3 + . . .
)
, (2.1)

where E0 is the incident electric field, ri is the reflectivity coefficient1 of the input coupler, ti

is the transmission coefficient of the input coupler, rc is the effective reflectivity coefficient of the

rest of the cavity optics, and φ(ω) is the total phase shift on the electric field after one round trip

through the cavity. The phase shift term includes propagation and dispersive effects of the mirrors

and is therefore sensitive to the laser operating frequency ω. The mirror reflectivity coefficient r

and transmission coefficient t values are also in general laser frequency dependent. However, we

will not explicitly denote this for clarity. The
√
ε term is due to imperfect transverse mode overlap

between the laser beam and the cavity mode. We refer to this term as a “mode matching factor”

and its origin will be discussed in detail later. For now,
√
ε = 1 is for perfect overlap of the laser

beam profile and the cavity mode. Since reflectivity coefficients are less than 1, the series in Eq. 2.1

converges to

Ecav =
√
εE0

ti

1− rirceiφ(ω)
. (2.2)

We perform a similar treatment for the electric field reflected from the cavity. The reflected electric

field Eref is written as
1 The “reflectivity coefficient” is how much of the electric field is reflected. It is more common to refer to a mirror

“reflectivity”, which is how much electric field intensity is reflected. Generally, quantities that refer to electric field
intensity will be capitalized. This is also true for mirror transmission.
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Eref =−
√
εE0ri +

√
εE0rct

2
i e
iφ(ω) +

√
εE0rir

2
c t

2
i e

2iφ(ω) + . . . , (2.3)

=−
√
εE0ri +

√
ε
E0t

2
i

ri

(
rirce

iφ(ω) +
(
rirce

iφ(ω)
)2

+ . . .

)
, (2.4)

=
√
εE0

rct
2
i e
iφ(ω) − ri

1− rirct2i eiφ(ω)
. (2.5)

For optical cavities, we routinely measure laser intensities of the reflected and transmitted light. The

incident, reflected and intracavity intensity is defined as I0,ref,cav = |E0,ref,cav|2. We can express

Iref and Icav as

Iref = εI0

(
(ri−rc)2+4rircsin2(φ(ω)/2)

(1−rirc)2+4rircsin2(φ(ω)/2)

)
, (2.6)

Icav = εI0

(
t2i

(1−rirc)2+4rircsin2(φ(ω)/2)

)
. (2.7)

At this point, we can already extract useful cavity characterization parameters. By inspection, the

intracavity field is largest when φ(ω) = 0 (and modulo intervals of 2π). It is useful to fully express

φ(ω) as

φ(ω) = kL+ φd(ω) =
ω

c
L+ φd(ω), (2.8)

where k is the laser wavevector, L is the round-trip cavity length, c is the speed of light, and φd(ω)

is the phase shift due to mirror dispersion. As mentioned, the intracavity power is maximized when

φ(ω) is periodic in 2π. In the absence of mirror dispersion (we will consider this later), we have

ω

c
L = m 2π, (2.9)

where m is an integer. The frequency spacing at which the cavity repeats itself is thus 2πc/L in

angular frequency units (it is simply c/L in Hz). This is defined as the free spectral range (FSR).

We can solve for φ(ω′) to determine the half maximum intensity, again assuming the absence of

dispersion. We assume the resonant frequency is at ω0 and the frequency detuning required to

achieve half of maximum intracavity intensity is ω′. Thus, we have
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φ(ω′) = 2 sin−1( 1−rirc
2
√
rirc

) , (2.10)

φ(ω′) ≈ 1−rirc√
rirc

. (2.11)

(2.12)

With this manipulation, we solve for twice the frequency detuning required to achieve half trans-

mission and define this as the full-width at half maximum (FWHM).

FWHM ≡ ∆ω1/2 ≡2|ω′ − ω0| , (2.13)

ω0 =mπ
c

L
, (2.14)

ω′ =
c

L

(
(1− rirc)√

rirc
−mπ

)
, (2.15)

FWHM =
c

L

2(1− rirc)√
rirc

, (2.16)

(2.17)

where the FWHM is given in angular frequency units (divide by 2π for units in Hz). The finesse F

is defined as the ratio of the FSR to the FWHM. We have

F = FSR
∆ω1/2

, (2.18)

=
π
√
rirc

1−rirc . (2.19)

This definition of F is much more useful if expressed in terms of mirror reflectivity and not

reflectivity coefficients. The mirror reflectivity is defined as R ≡ r2. Similarly, mirror transmission

is T ≡ t2. Mirror properties also obey

R+ T +A = 1, (2.20)

where A is the mirror loss. This is the fraction of light that is neither transmitted nor reflected. It

usually originates from scatter or absorption of the intracavity elements. If we define a mirrors total
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loss as Lm = Am + Tm, where m is just the mirror label, we can rewrite our definition of finesse is

a very useful way.

F2 = π2 rirc
1−rirc , (2.21)

= π2
√
RiRc

1−
√
RiRc

, (2.22)

≈ π2

[ 1
2

(Li+Lc)]2
, (2.23)

F = 2π
L , (2.24)

where we have implicitly defined the total loss as L = Li + Lc.

Another useful quantity, and possibly the most important for our application, is a cavity’s

buildup β on resonance defined as β = Icav/I0. When a cavity is driven on resonance, the intracavity

power will be greater than the driving laser power. Starting with Eq. 2.7 and performing similar

manipulations used to arrive at Eq. 2.24, we have

β =
Icav
I0

= εTi
F2

π2
. (2.25)

Similarly, we can determine the reflected cavity power expressed as

Iref = εI0

[
(Lcav − Li)

F
2π

]2

. (2.26)

It can be seen that the reflected power goes to zero if the input coupler losses match the rest of the

cavity losses. This is known as impedance matching. If Li > Lcav, this is an overcoupled cavity. If

Li < Lcav, this is an undercoupled cavity. The greatest buildup for a fixed finesse will occur in the

overcoupled case. Looking at Eq. 2.25, for a given finesse (Lcav + Li = constant), the buildup will

be directly proportional to Ti, so bigger Ti is better.

We can also define the cavity contrast C as
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C =
I0 − Iref

I0
, (2.27)

=1− ε
[
(Lcav − Li)

F
2π

]2

. (2.28)

Measurement of C, F , and β constitute a full characterization of the cavity. However, C and β are

dependent on the modematching factor ε. Measurement of F is the best way to determine cavity loss

since it does not depend on mode matching. A straightforward way to measure finesse is to stabilize

the cavity on resonance and then rapidly turn off the laser. The cavity intensity (in transmission or

reflection) will decay exponentially as a function of time. The time constant of decay can be related

to F in the following way. After a field has been stored up in the cavity and then rapidly turned

off, we can write the energy as a function of time E(t) as

dE(t)

dt
= −E0

τ
. (2.29)

We remember that the loss of intensity per round trip is L and the energy lost per round trip is LE .

The energy lost per unit time becomes LEc/L (This is just LE FSR/2π where the FSR is expressed

here in Hz). Plugging this in we have

dE(t)

dt
= −LFSR E0 (2.30)

τ ⇒ 1
LFSR . (2.31)

We can now insert Eq. 2.24, rearrange and obtain

F = 2π τ
c

L
. (2.32)

It is important to note that this is the energy (or intensity) decay time τ . The field decays twice as

slowly, so τintensity = τfield/2.

Sometimes it is not feasible to turn the laser off rapidly or to stabilize the cavity. An alternative

method is to rapidly sweep the laser frequency across the cavity resonance at a rate much faster
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than the cavity lifetime. The cavity field that is briefly resonant will form a heterodyne beat with

the reflected sweeping laser beam. The heterodyne nature (rather than homodyne) is due to the

fact that the resonant field is at a fixed frequency, but the incident beam is frequency chirped.

Therefore, when they are overlapped with the reflected beam from the cavity input coupler, they

form a beatnote. This ringdown signal can be seen in Fig. 2.2. The signal is fit to a damped,

chirped sine wave. A field decay of 1.05 µs (assuming an FSR = 154 MHz) corresponds to a finesse

of about 500. The input coupler for this data was Ti = .008. This finesse measurement implies a

loss of Lcav = 0.0046. Assuming perfect mode matching (ε = 1), the expected cavity contrast would

be C = 0.7 and the expected buildup would be β = 200. An experimentally measured buildup

or contrast can be used to determine the mode matching factor ε. For this example, the cavity

loss Lcav was due to an optic with an hole drilled in the center (see Sect. 2.2.6 for information of

geometric output coupling). When a normal optic is used, it is very routine to have a cavity with

Lcav ≤ 0.0005.

2.2.2 Gaussian beams and gaussian beam manipulation

So far, we have determined that a ring resonator has resonant frequencies evenly spaced by

the FSR, neglecting dispersion. However, we have not considered the transverse mode profile of

the cavity. To do this, we rely on the formalism of Gaussian beam propagation and the ABCD

matrices [14]. The paraxial wave equation is given by

∇2
tu(x, y, z)− 2ik

∂u(x, y, z)

∂z
= 0, (2.33)

where ∇2
t is the transverse Laplacian defined ∇2

t = ∂/∂x+∂/∂y. Eq. 2.33 has well known solutions.

The solution for a Gaussian beam field is

u(x, y, z) =
u0√

1 + (z/zR)2
exp

[
− r2

ω(z)2
− ik

(
z +

r2

2R(z)

)
+ i tan−1

(
z

zR

)]
, (2.34)
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Figure 2.2: Cavity ringdown performed in reflection. A fit using a chirped, damped sine wave is
used to extract the electric field lifetime in the cavity. This is used for determination of the cavity
finesse. A field decay of 1.05 µs is consistent with a finesse of F ≈ 500 (asssuming c/L = 154 MHz).
This should yield a buildup of β ≈ 200.
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where r2 = x2 + y2. The Rayleigh range is zR = πw0/λ, where w0 is the beam waist at the focus

and w(z) is the beam waist at a position z which can be written as

w(z) = w0

√
1 +

(
z

zR

)2

. (2.35)

The wavefront radius at a position z is

R(z) = z

[
1 +

(zR
z

)2
]
. (2.36)

Another important feature of Gaussian beams is that there are two terms that lead to a phase shift

of the beam during propagation in z. They are

φ = ikz − i tan−1

(
z

zR

)
= φprop + φGouy. (2.37)

While the first term is the usual propagation phase, the second is called the Gouy phase. The Gouy

phase shift depends on how tight a Gaussian beam is focused and where the beam is relative to its

focus. While the Gouy phase usually does not have significant consequences in dealing with laser

beams, it will be very important when we consider phase matching between the driving laser and

the high-order harmonics later in this thesis.

While the above discussion is in principle all we need to know about Gaussian beams in

order to use them, it is often much more mathematically convenient to deal with the complex beam

parameter q defined as

1

q(z)
=

1

R(z)
− i λ

πw(z)2
. (2.38)

While at the moment, this may seem arbitrary, it allows us to recast Eq. 2.34 in a slightly different

way

u(x, y, z) =
u0√

1 + (z/zR)2
exp

[
−i
(
P (z) +

k

2q(z)
r2

)]
, (2.39)

where we have defined a new parameter P (z) as
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iP (z) = ln

√
1 +

(
z

zR

)2

+−i tan−1

(
z

zR

)
. (2.40)

The benefit of this substitution is that manipulation of the q parameter and determining it any-

where along a Gaussian beam becomes very straightforward and it contains most relevant geometric

information about the Gaussian beam. At the beam focus q is defined as q0 = i zR. At a further

distance z, q(z) becomes a very simple result

q(z) = q0 + z. (2.41)

Therefore, with knowledge of the q parameter of a beam, the waist w and wavefront curvature R

can be determined. A couple other useful quantities are easy to extract with the q parameter

Distance to waist = −Re[q(z)] (2.42)

w0 =
√

λ
π Im[q(z)]. (2.43)

The most powerful result of this discussion of Gaussian beams is that the q parameter can be

determined and manipulated using simple matrix operations. To go from q1 → q2, simple rules are

followed.

q2

1

 =

A B

C D


q1

1

 (2.44)

A table of useful ABCD matrices for common optics is given in Table 2.1. By careful determination

of a q parameter at a given point in a laser beam, it can be accurately predicted at a later place

even if mode changing optics like lenses are employed.

2.2.3 Cavity geometry

We are now ready to use the briefly outlined ABCD matrix formalism to determine the

transverse mode structure of the cavity. We are able to use the transverse mode structure to



39
Optic ABCD

Free Space
(

1 z
0 1

)
Lens

(
1 0
−1/f 1

)
Curved mirror x-axis

(
1 0

−2/[Rcos(θ)] 1

)
Curved mirror y-axis

(
1 0

−2cos(θ)/R 1

)

Table 2.1: A table of common optical elements and their corresponding ABCD matrices. For this
table, f is the focal length of the lens, R is the radius of curvature of the mirror, θ is the angle of
incidence on the optic.

accurately measure important cavity parameters such as the spot size in the resonator. Assuming a

laser beam with q1 is incident on the input coupler of a cavity like that of Fig. 2.1a, we can multiply

q1 by all the relevant ABCD matrices to describe the intracavity optics. When the beam returns to

the input coupler, in order for the cavity to be stable, the q parameter must return to the original

value. What we have just described is a powerful method to determine where the optics should

be placed so that a stable cavity is possible. This is equivalent to solving the eigenvalue problem

of the ABCD matrix that is product of all the intracavity optics. This will need to be done for

the vertical axis of the cavity and the horizontal axis independently as they do not have identical

ABCD matrices.

Assuming a generic cavity, we have the following equation

q2 =
Aq1 +B

C q1 +D
, (2.45)

where we now require that q2 = q1 after a full round trip. We can then solve for q directly to obtain

1

q
=
D −A

2B
± 1

2B

√
(A−D)2 + 4BC. (2.46)

Since the ABCD matrix elements are real, we can determine that the first term in the equation

must be real and the second must be imaginary because q is in general complex. Therefore, we have
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R = 2B
D−A , (2.47)

w =

√
2λ|B|

π
√

4−(A+D)2
. (2.48)

It is important to remember that these equations are only valid at the reference point of the cavity

determined before constructing the ABCD matrix. To determine R(z) and w(z) somewhere else

in the cavity, ABCD matrices will be needed to propagate the q parameter to that point. For

example, in order to send in a beam with the correct q parameter to the cavity, the intracavity

beam determined by the ABCD matrices can be propagated to the input coupler. If there is any

spatial mismatch between the intracavity beam and the injected beam, this imperfect overlap leads

to the mode matching factor ε which was first introduce in Eq. 2.1. Any light that is not mode

matched to the cavity will be rejected and is not useful for power enhancement.

It can be seen from Eq. 2.48 that in order to have a real and physical value for the waist, we

have a constraint on A and D being,

Stability Region: |A+D| ≤ 2. (2.49)

Assuming the overall cavity length is fixed 2 , the only way to adjust A and D for our ring resonators

is to change the distance between the curved mirrors. There is only a small range of values that will

satisfy Eq. 2.49 and hence a small range of suitable curved mirror separations and mirror radius of

curvatures. This is referred to as the “stability region.”

The results of an ABCD matrix calculation are shown in Fig. 2.3. Assumed is a cavity with

an FSR of 154 MHz and with curved mirrors with radii of curvature equal to 15 cm and 10 cm.

The angle of incidence on the curved mirrors is 3 deg. Fig. 2.3a shows the focal waist w0 of the

intracavity beam changing as a function of curved mirror separation. The change is most dramatic

at the edge of the stability region. Due to the angle of incident on the mirrors, the horizontal beam
2 This will be required to inject a pulsed laser into the cavity. Typically, the length of the resonator is picked so

the FSR is equal to the repetition rate
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Figure 2.3: a) The effect on the cavity focus and the spot size on the second curved mirror as a
function of curved mirror separation. b) The beam waist as a function of position in the cavity at
a fixed curved mirror separation.
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size is not necessarily the same as the vertical axis thus leading to astigmatism. At first glance,

operating at the outer stability edge would be equivalent to the inner stability edge. However, this

is not true. Operating at the outer stability edge will lead to a weak second focus in the cavity. If

the second beam waist falls on an optic, the increased peak intensity can lead to optical damage.

For the work in this thesis, we generally operate at the inner stability edge. Operating at either

stability edge will increase the beam size on the curved mirrors, which will also help with damage

considerations. Fig. 2.3a also plots the beam waist on the curved mirror immediately after the focus

as a function of curved mirror separation. Fig. 2.3b shows the beam waist as a function of position

in the resonator. Again, the astigmatism cause by the non-normal reflection from the curved mirrors

is apparent. For Fig. 2.3b, a curved mirror separation of 12.59 cm was assumed. This leads to a

focal waist of w0 = (20.4, 22.0)µm. In practice, operating the cavity this close to the stability edge

as shown in this example is routine and often necessary for HHG work.

While it is in principle possible to determine the cavity spot size by measuring the curved

mirror separation, in practice, it is hard to make this very accurate. Instead, we can rely on

another feature of the cavity to determine the spot size. A Gaussian beam is only the lowest order

transverse mode supported by an optical cavity. In general, the cavity supports Hermite-Gaussian

modes [14]. They are denoted by TEMmn where m,n are the transverse mode order. The Gaussian

beam we have discussed thus far is the lowest order mode denoted as TEM00. The spatial mode

structure becomes much more complex as m,n increases. TEMmn modes behave similarly to a

normal Gaussian beam. However, one important difference is that the Gouy phase is modified to

be

φGouy,m,n = (m+ n+ 1)tan−1(z/zR). (2.50)

Since a TEM00 beam will have a different round trip phase shift than a TEMmn, the resonant

frequencies of the cavity will also be different. Depending on the ABCD matrix that describes the

resonator, the resonant frequencies of the qth cavity mode for a TEMmn is written as νqmn



43

νqmn = FSR

[
q + (m+ n+ 1)cos−1

(√
1

4
(2 +A+D)

)]
. (2.51)

It is often difficult to measure exact resonant frequencies unless a calibrated laser or a frequency

comb is employed. However, measuring the relative frequencies of high order transverse modes from

TEM00 is very straightforward. Therefore, if one can measure the relative frequency spacings of

higher order modes, using Eq. 2.51, one can determine to a reasonable degree of accuracy what the

A + D coefficients must be. If this is known, then it is straightforward to determine the spot size.

This is a very important point because it allows for very accurate peak intensity calibrations for

intracavity work. Peak intensity is one of the most important parameters for strong-field physics

experiments and is often quite tricky to measure. In the cavity, because the laser mode profile is

so well-defined, cavity-based strong-field experiments do not suffer from peak intensity calibration

issues; it is very easily inferred from the measurements.

2.2.4 Cavity mirror dispersion and the femtosecond enhancement cavity

We now turn to the effect of mirror dispersion and how it affects cavity operation. This is

ultimately the only conceptual difference between operating an enhancement cavity for continuous

wave lasers and for frequency comb lasers (femtosecond lasers). Mirror dispersion essentially leads to

a different phase shift upon reflection for different wavelengths. For a cavity driven by a continuous

wave laser, this is usually of very little consequence because you typically only excite one cavity

resonance (or a couple nearby cavity resonances) at a single time. For the work in this thesis, our

goal is to inject a frequency comb into the cavity. Recall that the frequency spacing of the comb

teeth is determined by fr. A cavity that has zero dispersion also has perfectly evenly spaced modes

separated by the FSR. So, if one matches the frequency comb’s fr to the FSR, then all of the

comb teeth can be on resonant at the same time. However dispersion-less mirrors with reflectivity

exceeding 99.9% do not exist.

Much in the same way a Gouy phase shift will shift the cavities resonant frequency, so will

a phase shift from reflection off of a mirror or if there are any dispersive materials, like a crystal,
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inside the cavity. So, the resonant frequencies of the cavity will not be evenly spaced by the FSR,

rather they will start to deviate depending on how much dispersion is present. This is a problem

for frequency combs because the spacing is always fr and it is not possible to compensate for the

non-uniformity of the FSR spacing in a dispersive resonator.

Dispersion φd(ω) (originally introduced and dropped from Eq. 2.8) can usually be expanded

in a Taylor series as

φd(ω) = φ0 + φ1(ω − ω0) + φ2(ω − ω0)2 + φ3(ω − ω0)3 + . . . . (2.52)

Each dispersion order affects a laser pulse differently. φ0 will cause the electric field to shift in phase

relative to the pulse envelope and its original value, but will not affect the position of the envelope.

φ1 will cause the pulse envelope to delay in time, but the electric field remains constant (however,

the carrier phase relative to the envelope maximum may change). φ2 causes the pulse to broaden

symmetrically in time. φ3 and higher will start to distort the pulse in more complex ways. If we

consider a cavity with only a φ0, after each round trip through the cavity, the phase of the electric

field will have shifted by some small amount relative to the carrier. The injected pulse must be

adjusted to avoid destructive interference at the input coupler. Since this happens every round trip,

it amounts to setting the carrier-envelope offset frequency f0 = φ0fr. In the frequency domain, this

is a uniform shift of all the cavity resonances from 0. For cavity-comb coupling, φ0 and φ1 can be

compensated by judicious choice of fr and f0 such that

f0 = −(φo − ω0φ1)fr, (2.53)

fr =
c

L
(1− φ1

c

L
). (2.54)

Mirror manufacturers will usually provide group-delay dispersion (GDD) for their mirrors.

By integrating the GDD data (typically measured in fs2), φd(ω) can be determined. Then, φ0 and

φ1(ω − ω0) can be subtracted from the data to simulate proper fr and f0 choice. The remaining
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dispersion can then be plugged into Eq. 2.7. It is useful to express the relation of the intracavity

field to the injected cavity field as a transfer function [75, 76]. We then have

Ecav = B(ω)eiψ(ω)E0, (2.55)

where we have made the following definitions

ψ(ω) = arg
[

ti
1−ri(ω)rc(ω)eiφd(ω)

]
, (2.56)

B(ω) =

∣∣∣∣ Ecav(ω)

ti
F
π
E0(ω)

∣∣∣∣ . (2.57)

where F was calculated for the peak value of the mirror coating. We can interpret ψ(ω) as the

spectral phase of the circulating pulse and B(ω) as the frequency dependent coupling efficiency. The

cavity electric field can be determined by Eq. 2.2. An example of this analysis of a cavity containing

three Layertec high-power, low loss optics plus one low dispersion input coupler of R = 0.985 is

shown in Fig. 2.4. The injected pulses were assumed to be 70 fs transform limited, centered at

1070 nm, and a Gaussian profile in time. Fig. 2.4a shows the total GDD of all four cavity mirrors.

Fig. 2.4b,c shows the phase shift with the zeroth and linear terms removed upon a single mirror

reflection and for the whole cavity. The cavity coupling efficiency (and hence bandwidth) is shown in

Fig. 2.4d and is a plot of B(ω). For a 70 fs, transform limited pulse, the time domain and wavelength

domain comparisons of the injected pulse and circulating pulse are shown in Fig. 2.4e,f respectively.

The bandwidth of the mirrors is quite good and very little spectral filtering is expected. However,

the residual phase shift from the cavity, even though it does not affect coupling bandwidth strongly,

is still strong enough to alter the pulse in the time domain. For this example, the effect is to increase

the pulse duration to about 75 fs. If shorter pulses are used or a cavity with higher finesse, the pulse

distortions will become much more severe because of the increased spectral filtering and sensitivity

to mirror dispersion. To date, mirrors with lower dispersion than the ones considered here are

possible. Cavities with a F = 500 that support 30 fs pulses have been developed [77]. However,

their mirror technology relies on the high index material of their quarter wave stack to be Nb2O5.
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Our mirrors from Layertec use HfO2 which has a slightly lower index3 . The contrast between the

high index layer and the low index layer (usually SiO2) sets the mirrors bandwidth. The main

drawback to using Nb2O5 mirrors is that they have much lower damage thresholds compared to

HfO2 making the cavities less reliable and limit the scalability of the cavity to higher pulse energy.

So, when faced with a trade-off between high bandwidth and day-to-day robustness, we sided with

robustness.

2.2.5 Laser-cavity stabilization

We have already discussed how resonators have resonant frequencies spaced by the FSR and

have a linewidth. If a laser is incident on a cavity with a frequency close to a resonance, but still well

outside the linewidth, the cavity will reject the light. If the laser frequency is tuned into resonance, it

can be effectively injected and transmitted through the cavity. The cavity is essentially a frequency

discriminator. Lasers do not typically stay at a given frequency for very long, but they can be

disciplined to an optical cavity that can be made, relatively speaking, frequency stable. In order

to lock a laser to a cavity, there needs to be a way of determining the cavity resonant frequency

with respect to the laser. The method employed throughout this thesis is the Pound-Drever-Hall

(PDH) approach [79]. It is based on a microwave Pound stabilizer but applied to lasers at optical

frequencies. It relies on the incident laser having phase modulation sidebands and measuring the

reflected cavity light, demodulated at the phase modulation sideband frequency. The approach is

very well established and used all throughout atomic physics. For example, it is used to generate the

most stable lasers ever made [40, 80] and it is used as the laser stabilization method in the recently

successful gravitational wave detectors [81]. Instead of a full derivation (a useful introduction to

the matter can be found in Refs. [82, 83]), we will describe how we implement it in our system.

Our frequency modulation sidebands are generated by driving a mechanical resonance of our

laser cavity’s PZT-driven mirror. The resonance is typically at 700 kHz or 1.3 MHz. After the
3 Layertec has never confirmed their coating material with us and claim it is a secret. However, due to the damage

threshold of these mirrors and their bandwidth, we deduce HfO2 rather than Nb2O5 or Ta2O5. See Ref. [78] for
further discussion.
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Figure 2.4: a) The group delay dispersion (GDD) of a single cavity high reflecting mirror. b) The
phase shift upon a single reflection from a high reflecting mirror with the zeroth and first order
phase terms removed. c) The phase shift of a cavity made with the mirrors in a) with the low order
phase terms removed. d) The spectral bandwidth that will fit inside a cavity made with the mirrors
in a) assuming a low dispersion input coupler of an R = 0.985. e) The top panel shows how an
injected 70 fs pulse is distorted by the mirror dispersion. The bottom panel shows how the pulse
spectrum is modified.
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Figure 2.5: Pound-Drever-Hall error signal and the cavity transmission are shown as the laser is
slowly swept across a cavity.
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comb is injected into the cavity, the reflected light from the resonator is demodulated at the drive

frequency with the correct phase to generate the PDH error signal shown in Fig. 2.5. From there,

the error signal is filtered and then reapplied to one of two places. The correction signal can be

re-applied to the laser using the same PZT that generated the sidebands. Adding these two signals

together is accomplished with a bias-T. Alternatively, a cavity mirror equipped with a PZT can

also be used. In the former case, the laser follows the cavity fluctuations. In the latter, the cavity

follows the laser fluctuations. In either case, the laser can be maintained on resonance with a servo

bandwidth of about 50 kHz. Slow feedback is provided by a PZT stage in the fsEC or by fiber

stretching in the laser cavity. At night, when the lab is very quiet, the cavity-laser stabilization

scheme can stay locked over the course of a few hours without interruption if both fast and slow

feedback loops are active.

The frequency comb has two degrees of freedom, fr and f0. The scheme described above

typically makes fr modifications to maintain lock. The passive stability of f0 is sufficiently good

that it does not require active locking. Rather, f0 is set by tuning the temperature of the fiber

Bragg grating (FBG) in the laser cavity until maximum buildup is achieved. Adjustments by hand

(the graduate student feedback loop), are made every 10 minutes or so if the laser is warmed up.

With both locks engaged, optimal power enhancement can be achieved. Ultrafast lasers with larger

optical bandwidth typically require active feedback on fr and f0 because it is easier for the comb

modes to walk off when the optical spectrum is very broad. However, due to our low finesse cavity

and the relative narrowness of our spectrum, only one active lock is necessary.

If there is a large amount of relative frequency noise between the laser and the cavity, feedback

loops often don’t have enough bandwidth to maintain perfect synchronization. Therefore, frequency

fluctuations of the laser (or cavity) will lead to amplitude fluctuation in the cavity. This can be very

problematic for HHG (which is very nonlinear in intensity) or if the transmitted light needs to be

used for subsequent detection. An example of the transmitted intensity noise for one of our cavities

with F = 1000 is shown in Fig. 2.6. The vertical axis is the residual intensity noise (RIN) power

spectral density (PSD) expressed in decibels below the carrier (dBc). This frequency to amplitude
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Figure 2.6: The residual intensity noise (RIN) power spectral density is shown when a cavity
intensity servo is on and off. The actuator for the servo was an acousto-optic modulator placed
before the cavity that can steal power from the undiffracted beam. The servo bandwidth is limited
by acoustic wave propagation delay in the acousto-optic crystal.
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noise conversion process can be combated in two ways: make the laser and cavity more frequency

stable or make an intensity servo. In Fig. 2.6, we demonstrate an intensity servo. The transmitted

light is taken and compared to a constant value to generate an error signal. The error signal is

filtered and applied to an acousto-optic modulator (AOM) that has the ability to steal power away

from the laser beam. The AOM is placed before the cavity. When the lock is engaged, there is

a 40 dB suppression of noise out to 1 kHz with the unity gain crossing at nearly 100 kHz. This

is extremely powerful for making the laser-cavity system more stable, especially for applications

where the transmitted light needs to be analyzed [84, 85]. We will discuss later that there is an

amplitude to phase noise coupling in the HHG process as well [43, 86, 87]. This makes a quiet cavity

of paramount importance if coherent XUV light is to be generated. This process will be discussed

in detail in Sect. 3.1.3.

2.2.6 Output coupling

We plan to use all of the described cavity technology to perform HHG. Since the HHG process

will be performed inside of the cavity, we need to have some method of getting the XUV light out of

the cavity. Most optical materials are completely opaque at XUV wavelengths. This is problematic

because immediately after the focus, if the XUV light is not directed out of the cavity, it will be

absorbed by the next curved mirror. There are three experimentally verified methods of outcoupling

XUV light from a fsEC. However, others such as crossing two cavities to implement noncollinear

HHG, have been proposed [88]. The first method is to use a thin piece of glass or a crystal and

place it at Brewster’s angle for the driving laser inside of the cavity. Since the index of refraction of

the material is different at XUV wavelengths, there will be a Fresnel reflection for the XUV and the

XUV light can be reflected out of the cavity. Brewster angle operation is essential to not induce any

extra loss to the cavity at the driving wavelength. A common material to use is c-plane sapphire

with a thickness around 300 µm. It is very important that the sapphire is very flat and has a very

low surface roughness, otherwise the XUV beam quality and intensity deteriorate. Another concern

with using Brewster plates is that the sapphire will be nonlinear at the high intracavity powers
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required for HHG. Secondly, sapphire is dispersive, so it will ultimately limit how short a pulse can

be stored inside a cavity. For example, sapphire typically has a GVD of 90 fs2/mm. So, even a 300

µm piece has much worse dispersive properties than our other cavity optics.

The second method is the Yost grating and is described in detail in Refs. [74, 89]. The

method relies on placing an optic at a 70 degree angle of incidence immediately after the focus of

the resonator (See Fig. 2.1b). The optic is actually a high-reflector for the driving laser wavelength.

The topmost layer of the optic is SiO2 with a small period grating etched on it. The period of the

grating is too small for the fundamental light to cause diffraction. Thus, for the driving laser it

behaves just like a normal high-reflecting optic. However, for the shorter harmonic wavelengths, it

behaves like a diffraction grating. It causes the harmonic light to spectrally disperse, separate from

the driving laser, and outcouple from the cavity all in one step. This is a perfect output coupler for

spectroscopy applications because they usually have the requirement that the harmonic light needs

to be spectrally dispersed or filtered before shining it on a target [52]. For ultrafast applications, it

is obviously not ideal. If one were to start with a Brewster plate output coupler and then attempt

to spectrally disperse the light, there will be severe power loss as optics in the XUV are in general

terribly inefficient.

The third method is often referred as “geometric output coupling” or “holey mirror output

coupling.” The method was first proposed in our group immediately after the first demonstrations of

fsEC-based HHG [88] and was recently demonstrated a group in Garching [90]. Since the harmonic

wavelengths diverge at much slower rates than the fundamental wavelength, a small hole can be

drilled in the curved mirror immediately following the focus. The hole must be small enough to not

cause large amounts of additional loss to the cavity, but large enough to allow the XUV light to leak

out of the hole. Our initial attempts were not successful due to a poor effort in drilling that cause

small cracks in the optical coating near the hole. In recent years, new attempts were made inspired

by the results of Ref. [90]. The method for fabrication is to take an optical substrate, laser drill a

hole with a conical shape, re-polish the substrate, and finally coat with a high-reflection coating.

Our initial attempts have been encouraging with output coupling ∼ µW/harmonic power levels,
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Figure 2.7: Output coupling efficiency for different methods. a) The low photon energy efficiencies
are shown. All methods have similar performance. b) The high photon energy region is shown. The
improvement of using a holey mirror output coupler is clearly seen and the efficiency will increase
with wavelength. Only the Yost grating spectrally disperses and outcouples the harmonics in a
single step forgoing the need to filter the harmonics if they are to be used for spectroscopy.



54

but the performance has been far from optimal. Work is still in progress.

A summary of all three output coupling schemes is shown in Fig. 2.7. For the comparison,

the holey mirror has a radius of 50 µm in a curved mirror with radius of curvature (ROC) of 25 cm.

The focusing optic with a ROC of 7.5 cm was chosen to give a similar spot size of about 20 µm,

which is typical for our fsECs and facilitates a fair comparison to the Brewster plate and the Yost

grating. All methods shown are compatible with cavities that have a β = 200. As seen in Fig. 2.7a,

the low photon energy performance from all three methods does not vary greatly. However, in

Fig. 2.7b, the high energy photon comparison is presented. Since the holey mirror does not rely on

a reflection to output couple and since the harmonic beam diverges less at high photon energies, the

output coupling efficiency increases with harmonic order. This is a very promising scheme because

it does not add dispersion to the cavity (good for short pulse operation) and its efficiency increases

with photon energy (great for future work requiring shorter and shorter wavelengths). This is very

enticing for possible applications in isolated attosecond pulse generation experiments or virtually

any other experiments where very high energy photons are needed.

2.3 The laser

The laser technology used for XUV frequency comb generation has rapidly progressed since

the initial demonstration [3, 4]. In the first generation of experiments, Ti:Sapphire oscillators were

used to pump fsECs. For reasons that will be outlined in Chapter 3, it is beneficial to use fsECs with

relatively low finesse which puts a stringent requirement on how much average power the frequency

comb must have. To satisfy the need for high average power frequency combs, Yb:fiber technology

was employed because it offered a platform for robust power scaling.

In the work of this thesis, we used the laser system outlined in Ref. [73]. For completeness,

we will outline the major features of the laser system and its recent modifications. The laser system

starts with a Yb:fiber modelocked, similariton oscillator. This oscillator design is used throughout

the Yb:fiber frequency combs used in our lab [31, 36, 84, 87, 91–93]. The entire laser system,

including the oscillator details, are schematically sketched in Fig. 2.8. Modelocked operation is
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achieved by a combination of nonlinear polarization rotation and a saturable absorbing mirror with

a sub-ps lifetime. The dispersion of the cavity is compensated with a chirped FBG to keep the

net dispersion near zero and in the similariton regime [94]. The FBG also doubles as a cavity end

mirror. The oscillator exhibits exceptional noise properties for a fiber laser and robust day-to-day

operation. The free running f0 linewidth is ∼ 10 kHz [92]. The oscillator produces ∼ 100 mW of

average power and pulses compressible to < 80 fs at a repetition rate of 154 MHz. The spectrum is

centered at 1050 nm and has 45 nm of bandwidth.

After the oscillator, a chirped pulse amplification (CPA) system is employed. Typically, CPA

systems rely on a grating-based stretcher and a grating-based compressor. To make our system

more robust, we replaced the grating-based stretcher with an all fiber solution making it alignment

free. Over 380 m of various fibers were required to stretch the pulses to 870 ps. The various fibers

were chosen so the higher order dispersion of the fiber is matched for the grating compressor used

after the main power amplifier. The group delay dispersion at 1070 nm was 12.4 ps2. Since the

stretching system is very lossy, the pulses were then amplified in two stages up to ∼ 3 W of average

power before being injected into the main power amplifier.

The main amplification stage relies on ∼ 9 m of polarization maintaining large mode area

(LMA) photonic crystal Yb:doped fiber commercially available from NKT Photonics. This stage

of the laser was damaged and rebuilt in 2012. The fiber is pumped by a 250 W, 915 nm diode.

This was upgraded during 2014 to replace an aged diode and allow for > 80 W operation. The long

fiber length and 915 nm pump wavelength were both chosen to allow the laser spectrum to redshift

during amplification. The output of the amplifier is 100 W, but it can be briefly run up to 125

W when additional cooling methods are employed. The pulses are dechirped with a pair of 1600

l/mm transmission dielectric gratings. These were an upgrade from the original polymer gratings

that had 1590 l/mm. The small change in line spacing did not affect the performance, but the

dielectric gratings offer higher damage thresholds and better power handling. After the compressor

80 W (or briefly 100 W) of average power is available for use with a pulse duration of 120 fs. The

amplifier operates with a B-integral of < 0.2 and shows no sign of nonlinearities. The laser system
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runs daily with nearly alignment free operation. Only small tweaks to the grating separation in the

compressor is required for peak performance.

2.3.1 Nonlinear pulse compression

One of the major drawbacks of using fiber-based ultrafast laser systems is that the gain

materials typically do not have large gain-bandwidths and this limits the achievable minimum pulse

duration. In fact, our laser system, up until recently, was unmatched in average power and pulse

duration. Nevertheless, the convenience of fiber-based systems is so compelling that there have

been many work-arounds to the pulse duration problem. The most common way to approach this is

nonlinear pulse compression after amplification [95]. However, new nonlinear amplifiers have been

developed, but they are still untested in XUV frequency comb applications [96, 97].

The nonlinear interaction of a laser pulse with condensed media is typically described by

the non-linear Schrödinger equation (NLSE) [98]. If we ignore higher order effects (self-steepening,

stimulated Raman scattering, etc) and only focus on self-phase modulation and dispersion, the

NLSE is expressed as

i
∂A

∂z
=
β2

2

∂2A

∂T 2
− γ|A|2A, (2.58)

here A is the pulse envelope, β2 is the second order dispersion coefficient, and γ is the nonlinearity.

The equation is easily numerically integrated using the split-step Fourier method. For illustrative

purposes, a normalized version of Eq. 2.58 was numerically implemented and the simulation results

are plotted in Fig. 2.9. The simulation parameters are chosen to simulate injecting 80 W of our 120

fs pulses into 1 cm of commercially available LMA fiber. The injected spectrum broadens by almost

one order of magnitude and the spectral ripples are a hallmark of self-phase modulation. In the

time domain, due to the shortness of the nonlinear medium (and hence small amounts of dispersion)

hardly any perturbation is present on the pulse. However, the self-phase modulation process does

impose a large temporal chirp on the pulse that can be removed. If the pulse is dechirped, the pulse

duration shortens by almost one order of magnitude. The combination of self-phase modulation
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Figure 2.8: Schematic of the 80 W Yb:fiber frequency comb system. PZT, piezoelectric transducer.
SA, saturable absorber. QWP, quarter waveplate. POL, polarizer. YDF, Yb-doped fiber. TEC,
thermoelectric cooler. FBG, fiber Bragg grating. WDM, wavelength division multiplexer. ISO,
optical isolator. PBS, polarizing beam splitter. FRM, Faraday rotating mirror. SC YDF, suspended
core YDF. DC YDF, double clad YDF. LMA YDF, large mode area YDF. The LMA YDF and 240
W 915 nm pump laser were replaced from the original version due to failure and age. The original
polymer grating compressor was upgraded to the dielectric grating compressor for better power
handling. Nonlinear pulse compression was implemented to reduce the pulse duration. The laser
can be operated up to 100 W for periods of time less than 1 hour limited by thermal management.
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with temporal dechirping is a very robust way to decrease the pulse duration of fiber laser systems.

We implemented a version of this nonlinear pulse compression scheme. Instead of broadening

in an optical fiber, we chose bulk sapphire as our nonlinear medium. Nonlinearly broadening in

bulk materials is often met with degradation in beam quality because of the nonuniformity of the

nonlinearity (the nonlinearity is proportional to the intensity profile and hence not homogeneous

across the wavefront). Nevertheless, for our experiments we required only a modest amount of

spectral broadening due to restrictions from our enhancement cavities (See the coupling bandwidth

in Fig. 2.4d). For our implementation, the laser is focused into 3 mm of bulk c-plane sapphire.

The focusing and recollimating objectives are 50 mm air-spaced doublets to ensure tight focusing

and preservation of good beam quality. The chirp imposed by the self-phase modulation process

was removed by 24 bounces on -100 fs2/bounce chirped mirrors purchased from Altechna. After the

chirped mirrors, part of the beam is sent to diagnostics including a frequency resolved optical-gating

(FROG) apparatus for pulse characterization. The rest of the beam is sent to the enhancement

cavities for use in experiments.

The results of the characterization measurements are displayed in Fig. 2.10. The increased

optical bandwidth is only slightly filtered by the optical cavity as seen in Fig. 2.10a,b. This is in

agreement with the dispersive properties of the mirrors provided by Layertec and the simulation

results presented in Fig. 2.4. The pulse in the time domain (and its corresponding phase) was

measured by FROG and is shown in Fig. 2.10c. The pulse only differs from the transform limit

at the pedestal of the pulse. To verify that the cavity was not distorting the pulse in the time

domain, cavity transmission light was used for second harmonic intensity autocorrelation. Assuming

a Gaussian deconvolution factor, the intracavity pulse duration is 75 fs, consistent again with the

simulation results. The intensity autocorrelation trace is shown in Fig. 2.10d. We are able to achieve

11.5 kW of intracavity average power with 75 fs pulses. We are typically limited to similar average

powers when the Yost grating is used due to thermal heating of the optic. By reducing the pulse

duration from 120 fs to 75 fs, assuming a constant average power and constant beam waist, there
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Figure 2.9: a) The input and output laser spectrum using the Nonlinear Schrödinger equation
calculation assuming 80 W of our frequency comb power into a 1 cm piece of LMA-35 NKT Photonics
fiber. b) The input and output temporal profile are shown in blue and red. There is nearly no
observable difference between the two because the fiber is so short and does not impart dispersion
of its own to the pulse. In black, the compressed pulse is shown if the chirped from the SPM
broadening is removed. A nearly 10× reduction in pulse duration is achieved.
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will be an immediate gain of 1.6× in the peak intensity.

We also succeeded in a nonlinear pulse compression scheme based on a large mode area fiber

as a nonlinear medium. The fiber is a commercially available photonic crystal fiber from NKT

Photonics (LMA-35). We achieved 40 fs pulses at an average power of 30 W. In terms of peak

power, this is still an improvement upon our laser’s nominal operating condition of 120 fs pulses at

80 W. The average power could have in principle been increased, but we were unable to fabricate

fibers < 2 cm in house. Further, 40 fs pulses proved to be too short for our cavity mirrors (Fig. 2.4).

2.4 Typical laser-cavity operating parameters

Typical cavity-laser operating parameters are as follows. With 30 W of average power in 120

fs pulses at 154 MHz repetition rate from the laser system, a cavity with an input coupler of T =

1.5% has a buildup of 200 and does not distort the 120 fs pulse duration. Therefore, the intracavity

power is 6000 W. The resonator usually operates with a 10 cm and 15 cm ROC curved mirror

combination leading to a spot size of ∼ 20µm at the inner stability edge. The peak intensity of the

Gaussian beam can be calculated by

I =
2

π

Pavg
fr τpulsew

2
0

, (2.59)

where Pavg is the average power and τpulse is the pulse duration. With the aforementioned operating

parameters, the peak intensity is 0.52×1014 W cm−2 which is very suitable to make HHG in a

xenon gas target. We have demonstrated up to 14 kW of average power in the cavity (a four mirror

resonator not using the Yost grating) which would correspond to a peak intensity of 1.3×1014 W

cm−2 which is suitable for harder to ionize gases like argon.

2.5 The chamber

Due to the high power cavity operations, the nonlinear and dispersive properties of air will be

problematic for cavity operation. Also, XUV wavelengths (< 100 nm) will not propagate in air and
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Figure 2.10: a) The unbroadened laser spectrum, nonlinearly broadened laser spectrum, and
the cavity transmission spectrum of the nonlinearly broadened laser are shown. b) Same as a)
but on a log scale. c) The time domain profile of the nonlinearly compressed pulse. The pulses
were reduced from 120 fs to 70 fs in duration. The is near the transform limit of the nonlinearly
broadened spectrum shown in a). d) The intracavity second harmonic intensity autocorrelation
trace. Assuming a Gaussian deconvolution factor, the pulse in the cavity is ∼ 75 fs in duration.
The slight increase from c) is because of the dispersion of the cavity mirrors.
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are almost immediately absorbed. So, the entire experiment needs to be performed inside a vacuum

chamber. We do not require ultrahigh vacuum and a pressure of < 1 mTorr is generally sufficient.

This is easily accomplished with turbomolecular pumps. Due to work that involves simultaneous

operation of two enhancement cavities, a large vacuum chamber needed to be constructed and is

schematically shown in Fig. 2.11. The many ports are required for allowing beam access into and

out of the chamber. Despite its holey design, more holes would have been nice. Nevertheless, the

chamber is mainly aluminum in construction with a steel baseplate. There are holes in the chamber

bottom to allow that the breadboard in the vacuum chamber be mechanically decoupled from the

chamber walls. Our cavity optics are mounted on the breadboard. This is very important so that

the inherent vibrations of the turbomolecular pump do not disturb the fsEC. The decoupling scheme

is shown in Fig. 2.12.

We typically inject multiple atmospheres of gas pressure behind a quartz4 nozzle of ∼ 100µm

diameter. This leads to a considerable gas load in the chamber and in order to keep the pressures

below 1 mTorr (to minimize reabsorption in the gas), pumping speeds of ∼ 1000 L/s are necessary.

However, this situation can be improved by implementing a gas dump right below the nozzle. It is

described in more detail in Ref. [89] and is shown in Fig. 2.13. A small aperture catch is placed as

close to the nozzle as possible without clipping the laser beam. The catch is hooked up to a separate

vacuum pump. When operating properly, the gas catch can reduce the background pressure in the

chamber by ∼ 5×. As we will describe later, this is essential for two cavity simultaneous operation

and for XUV power scaling methods. Further improvement is possible, for example, by using a

wider pumping tube for the gas catch thereby increasing its conductance.

2.5.1 Ozone and plasma cleaner

There is often a small amount of residual gas present in a vacuum chamber. Of particular

importance to this work are hydrocarbons. When a hydrocarbon absorbs an XUV photon, it will
4 The nozzle material is important. Because of our extremely large average intracavity power, a borosilicate nozzle

will readily melt when placed close to the laser focus. Therefore, a nozzle with a high melting temperature is needed.
We have found that quartz works very nicely and can be purchased commercially.
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Optical Table

Chamber Wall

Chamber Breadboard

Bellows

Figure 2.12: Schematic drawing of the XUV comb vacuum chamber vibration isolation scheme.
Belows are used in the baseplate to separate the optical breadboard from the vacuum chamber to
mechanically decouple them. This is essential for quiet cavity operation.
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Figure 2.13: Preventing large chamber background pressures is aided by a “gas dump.” A small
aperture hooked up to a scroll pump attempts to catch the gas coming from the injection nozzle.
We routinely observe a 5× reduction in background pressure when the dump is properly installed.
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typically “crack” and stick to chamber walls or optics. After long periods of XUV operation, thin

films of carbon-containing molecules deposit on the mirrors. This typically does not hurt the fsEC

operation, however, the XUV performance of our optics degrades. The Yost grating grooves regularly

get filled up with a film and the optic will eventually stop diffracting. Similar effects have been

observed at synchrotrons for many years [99, 100]. Common cleaning methods include introducing

ozone into the vacuum chamber or running oxygen discharges [101–103]. In the early days of XUV

comb operation (before 2013), carbon contamination was a fact of life. After an optic had become

dirty, it would need to be removed from the vacuum chamber and taken into a clean-room to use

a reactive ion etcher to produce a cleaning RF oxygen discharge. This was a very time consuming

cleaning process, not to mention that a cavity would typically only last about one half hour at full

XUV flux before becoming too dirty to use.

Since this dirty little secret of XUV comb performance would clearly hinder future work,

a solution needed to be reached. Since ozone was routinely used to clean optics, we decided to

deliberately introduce ozone into the vacuum chamber in relatively small quantities during the HHG

work (∼1 mTorr of O2 and ∼0.1 mTorr of O3). This was done by purchasing a ozone generation unit

from Ozone Solutions [104] and injecting it into the vacuum chamber. After the simple modification

of introducing ozone, cavity performance can immediately recover from a contaminated state and

can sustain nearly optimal performance for month timescales. Without this simple trick, some

experiments in this thesis would have become so time consuming as to render them nearly impossible.

While the ozone trick is now a standard piece of our XUV comb operation, additional and

stronger cleaning methods are sometimes needed if the ozone is ever not used or contamination is

so bad that the ozone is no longer effective. The stronger cleaning method is to run an oxygen

discharge. We developed a simple method to run a small RF discharge in the vacuum chamber to

isolate individual dirty optics. A small DC-AC inverter (originally intended to power laptop screen

lamps) converts a 12 V signal into a 1.5 kV signal oscillating at 50 kHz. We place this signal on

a small electrode in the vacuum chamber and place it next to an optic that needs to be cleaned.

There needs to be an electric ground behind the optic in order for the RF to capacitively couple
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Too L

Good oxygen pressure

Bad oxygen pressure

Figure 2.14: Top panel shows the plasma cleaner operation under too low oxygen flow. The bottom
panel shows ideal oxygen flow. A nice, localized plasma is formed on near the mirror to perform
cleaning. The in-situ plasma cleaner reduces the cleaning time of an optic from ∼ 1 hour to ∼ 15
minutes.
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through the optic. A small, steady oxygen flow is introduced to the chamber and the electrode is

then switched on. If the chamber pressure is too low, the plasma becomes very unstable (for our

chamber and flow, too low means < 1 Torr). An image of non-ideal operation is shown in Fig. 2.14a.

Once higher pressures are reached, the plasma stabilizes close to the electrode and the optic tends

to be cleaned. This is shown in Fig. 2.14b. We tested a few optics and as long as good pressure

conditions were maintained for cleaning times of about 2 minutes and electrode-optic separations of

1 cm, we did not observe any additional damage and the optics would become clean. Considering

this can be done in-situ and does not require a specialized piece of equipment like a reactive ion

etcher, it is pretty convenient.



Chapter 3

High-order harmonic generation

In this chapter, we will focus on how a single atom responds to a very intense laser field and

how this interaction relates to HHG. We will focus on aspects most relevant to the XUV frequency

comb experiments. We will also describe macroscopic effects and phasematching of HHG. Special

attention is paid to the unique situation of HHG in a fsEC.

3.1 Single atom response to a strong laser field

Here, we will review strong-field ionization, a simple model for HHG, a quantum descrip-

tion based on the strong-field approximation, and finally, aspects of HHG beyond the strong-field

approximation. We will focus on features most relevant to the XUV frequency comb experiment.

3.1.1 Ionization by an intense laser pulse

High-order harmonic generation falls under the discipline of strong-field physics and extreme

nonlinear optical phenomena. When an atom or molecule is in an intense electric field, the valence

electrons can tunnel through the severely distorted Coulomb barrier and ionize. Here, an intense

electric field has a strength comparable to the Coulomb interaction responsible for binding the atom

or molecule together. This is typically V/Å strengths for the noble gases. In oscillating electric

fields, there is also the potential for multiphoton ionization assuming the photon energy is less than

the ionization potential, a so-called “low frequency” electric field. Here, an atom or molecule will

absorb multiple photons from the laser and an electron will be excited into the continuum. In 1964,
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Leonid V. Keldysh produced a simple means to understand what happens to atoms or solids when

they are placed in intense, low frequency electric fields [23]. The published date of 1964 (1965 in

English) is quite striking. Remember, the laser was still in its infancy. Nevertheless, it pre-dated

even the first observation of multiphoton ionization [105], optical tunneling [106], above-threshold

ionization [107], and high-order harmonic generation [108]. The connection between Keldysh’s

work and these experimental results was not immediately apparent and it took nearly 40 years

after publication for people to realize how useful Keldysh’s physical model actually was [109]. As

expressed earlier in Eq. 1.4, Keldysh derived what we know call the Keldysh parameter γ to show

the transition of the multiphoton ionization to the tunnel ionization regimes. In some sense, the

common interpretation of γ is problematic [23]; an interesting discourse on the meaning of γ in the

case of strong-field laser-atom interactions is givent in Ref. [110].

Nevertheless, Keldysh’s theory was the first implementation of the strong-field approximation

(SFA) which stated that during the interaction of an intense laser field, bound states or resonances

can be neglected during ionization, and the effects of the Coulomb potential on the continuum

electron can be neglected. Using Keldysh’s theory, Perelomov, Popov and Terent’ev developed a

method to calculate ionization rates by intense laser fields (often called PPT rates) [112]. Later,

Ammosov, Delone and Krainov developed a simplified formulation for arbitrary atoms in intense

fields (often referred to as ADK rates or ADK theory) [25]. The ADK rates are known to be poor

in the multiphoton ionization regime of γ >> 1. However, due to the ease of implementation,

experimentalists often prefer ADK to PPT. A very detailed treatment can be found in Ref. [113].

Fig. 3.1 shows the ionization probability for a 120 fs, 1070 nm laser pulse using the ADK rate

modified by Tong and Lin [111] to deal with the shortcomings of the pure ADK rate when in the

barrier-suppressed regime (when over the barrier ionization plays a role). The ionization probably,

or ionized fraction η, is defined as

η = 1− exp
[
−
∫ ∞
−∞

ωADK(t) dt
]
, (3.1)
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Figure 3.1: Ionization probabilities as a function of laser intensity for 1070 nm, 120 fs pulse. The
ionization rate was calculated using the ADK formalism with the modifications made by Tong and
Lin to include the effects of barrier-suppression [111].
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where the integral is performed over the laser pulse duration and ωADK(t) is the ionization rate

calculated using ADK theory. The ionization probabilities are very sensitive to the ionization

potential of the atom and the laser intensity (see Table 1.1 for ionization potentials). As previously

mentioned, ADK rates are generally most applicable in the limit γ << 1, however, the Tong and

Lin’s modification have proven to work well when this limit is not strictly true [114]. For a 1070 nm

laser of 0.8× 1014 W cm−2 and considering xenon’s Ip, the Keldysh parameter is γ = 0.842. As we

will discuss in Sect. 3.2, the ionized fraction of a gas target is very important when one considers

the macroscopic response of HHG and macroscopic phasematching.

3.1.2 Simple model of high-order harmonic generation

As previously mentioned, HHG was first observed as early as 1987. However, there were many

attempts to theoretically understand the phenomena and they often relied on direct integrations of

the time-dependent Schrödinger equation [115–117]. In 1993, Paul Corkum developed a simple 1

model that successfully described double-ionization, above-threshold ionization, and HHG [24]. It

is commonly referred to as the “3-step model”. The three steps for HHG are: (1) ionization with

rates determined by ADK theory or a similar theory, (2) propagation of the electron’s motion using

Newton’s equations and ignoring electron-ion interactions, (3) recombination of the electron and

ion to produce a dipole responsible for the generated XUV field.

The most salient features of the model are presented in Fig. 3.2. For the illustrative calcu-

lation, a single laser period is 2π. After the electron is ionized at a time ti, it propagates in the

oscillating electromagnetic field according to F = ma. Since the field is oscillatory, the electron

will return to the ion at tr with the possibility of recombining and emitting a high energy photon.

Fig. 3.2a shows that there is a one to one correspondence between ionization time and return time.

However, not all trajectories will recombine. If the electron is ionized before the peak of the field,

it will simply drift away. This can be seen in Fig. 3.2c. The trajectories that have the possibility

of recombining typically ionize at the peak of the field or immediately after. Despite the one to
1 “Simple” meaning the calculation is at the undergraduate physics level, something experimentalists love.
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Figure 3.2: Simple man model of HHG. All units of time have been normalized to a phase of
2π. a) The return time of the electron as a function of emission time (time of ionization). There
is a one-to-one correspondence between the two. b) The return kinetic energy (normalized to the
pondermotive energy Up) as a function of emission time. Two emission times correspond to the
same return kinetic energy. The return kinetic energy sets the harmonic photon energy. The two
times are referred to as the long and short trajectory referring to the amount of time the electron
spends propagating in the continuum. c) An example of electron trajectories in the laser field. If
the electron is ionized before the maximum of the wave, the electron drifts away and does not have
the chance to recombine. Electrons ionized after the peak have a chance to return to the ion and
possibly recombine and emit a high energy photon.
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one correspondence between ti and tr, this is not true for the return kinetic energy of the electron.

Shown in Fig. 3.2b is the return kinetic energy (normalized to the pondermotive energy) as a func-

tion of ti. For a given return energy, there are two possible ti’s tr’s. These two paths are commonly

referred to as the long and short trajectories indicative of the difference in the amount of time the

electron spends propagating in the laser field. The maximum return kinetic energy is 3.17Up and

leads to the famous cutoff equation stated earlier in Eq. 1.6.

While Corkum’s simple model was quite successful at capturing much of the essential physics,

it is not a quantum mechanical description of the HHG process and is incapable of describing things

such as the phase of the emitted XUV light and addressing the role of quantum interferences in the

HHG process, if any. This would be addressed later in the work of Lewenstein et al. [86, 118]. While

there is nothing in Corkum’s model that would hinder future XUV comb performance, quantum

effects may shed more light on coherence properties of the XUV light and if temporally coherent

light in the XUV is even feasible.

3.1.3 The quantum description of high-order harmonic generation

The two works of Lewenstein et al. [86, 118] essentially built the quantum mechanical descrip-

tion of HHG within the SFA. The assumptions of the theory are similar to Corkum’s: (1) No bound

states are considered except for the ground state, (2) the ground state is not depleted, and (3) after

ionization, the electron propagates as a free particle with no influence from the ion potential. The

quantum treatment recovers much of the same physical insight as Corkum’s model with the addition

of predictions on the phase of the XUV light.

Lewenstein et al. [86, 118] derived an equation for the dipole moment responsible for the

generated XUV field. For the moment, we switch to atomic units where ~ = |e| = me = 1 [16]. The

phase term in the dipole moment is sensitive to the electron trajectory after it has been ionized and

is written

Φq = S(p, ti, t)− qωt, (3.2)



75

where S is the quasi-classical action defined as

S(p, ti, t) =

∫ t

ti

dτ
(

[p + A(τ)]2

2
+ Ip

)
, (3.3)

where p is the electron momentum, A(τ) is the vector potential of the laser field, and ti is the time

of ionization. Eq. 3.3 is reminiscent of Feynman’s path integral approach. Essentially, the dipole

moment contains a sum over all possible electron paths. Eq. 3.2 is in general a rapidly varying

quantity and only conditions where the dipole contains a stationary phase will contribute to XUV

generation. Looking for the stationary phases is often called the saddle-point approximation.

Where then can write the three saddle-point equation evaluated at the recombination time tr

as

∇pΦq|t=tr =

∫ tr

ti

dτ [p + A(τ)]2 = 0 , (3.4)

∂

∂t
Φq|t=tr =

[p + A(tr)]
2

2
+ Ip − q ω = 0 , (3.5)

∂

∂ti
Φq|t=tr =

[p + A(ti)]
2

2
+ Ip = 0 . (3.6)

Since the form of the vector potential is known, it is straightforward to numerically find the roots

of this set of equations. Each of the saddle point equations gives insight into what is physically

going on during the strong-field process. Eq. 3.4 is simply a statement that the electron must return

to the point from which it was ionized (an assumption also made in Corkum’s model [24]). This

makes sense because the electron must return to the ion to rescatter or recombine. Eq. 3.5 is just

a statement of the conservation of energy enforcing that the emitted photon energy is a sum of

the kinetic energy of the electron plus the ionization potential. It can readily be seen Eq. 3.6 does

not have a solution for real values of ti (because Ip is positive). The imaginary part of ti has been

interpreted as the “tunneling time” which many claim exists and even try to measure. This assertion

may be fanciful and can even be shown to be gauge dependent [110]. One of the cornerstones of

physical theories is that measurable observables should not be gauge dependent. A discourse on the
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idea of “tunneling times” can be found in Refs. [119, 120]. Nevertheless, if complex time values are

assumed, roots to the saddle-point equations can easily be found.

By numerically finding the roots of Eq. 3.4–Eq. 3.6, assuming a xenon target and a 1070

nm driving laser, it is possible to calculate the dipole phase from Eq. 3.2 using the return times

determined from the saddle point equations. Fig. 3.3a shows the return time (emission time) as

a function of harmonic order. Two roots per harmonic order are found, corresponding to the long

and short trajectories. Two sets of solutions are shown corresponding to different laser intensities.

Fig. 3.3b shows the dipole phase (and hence phase of the emitted XUV light) as a function of laser

intensity for the short and long trajectories of the 15th harmonic. The short trajectories have nearly

no dependence on intensity while the long trajectories have a quite strong dependence. The coupling

between intensity and phase is parametrized in atomic units as

φ = −αj
Up(I)

ω
= −αj

I

4ω3
, (3.7)

where j is the index of the short or long trajectory. αj is plotted in Fig. 3.3b in units of π similar

to Refs. [43, 87, 121]. We will use this convention later in our experimental investigation of the

intensity-dependent phase presented in Chapter 4.

3.1.4 Beyond the strong-field approximation

The SFA is not without its shortcomings, but it has nevertheless been a very useful tool. For

the work in this thesis, we are typically in a regime where the SFA is certainly a bad approximation.

Below- or near-threshold harmonics are the harmonics with photon energy less than or comparable

to the ionization potential, respectively. These low order harmonics violate two out of the three

assumptions of the SFA, namely that bound states are not important [122] and that the Coulomb

potential is safe to ignore allowing the electron to be treated as a free particle when propagating

the in the electromagnetic field [121, 123].

The theoretical treatments of below- or near-threshold harmonics are beyond the scope of

this thesis. However, some of the outcomes of the analysis are relevant to our work. First, for
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Figure 3.3: a) The return time (time of XUV photon emission) is plotted versus harmonic order
for two laser intensities using the strong-field approximation. Two trajectories contribute to each
harmonic order. b) The intensity dependent dipole phase for the short and long trajectory as a
function of laser intensity for the 15th harmonic. The inset contains the coupling parameter between
intensity and phase. For all presented here, the laser wavelength was 1070 nm and the target was
xenon.
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Figure 3.4: The effects of considering effects beyond the SFA. The plots were reproduced from
Ref. [121]. a) The calculation shows the density of quantum paths when only tunnel ionization
is considered. There is only one quantum path present. b) The calculation shows the density of
quantum paths when tunnel ionization and over-the-barrier ionization (including uphill trajectories)
are included. The multiple quantum paths for below-threshold harmonics were initially surprising
and they do not originate from tunnel ionization like their above-threshold counterparts.
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below-threshold harmonics, if only the SFA is considered, there is only a single quantum path

relevant for HHG. This is shown in Fig. 3.4a which has been reproduced from Ref. [121]. The plot

shows the distribution of possible αj as a function of laser intensity assuming a xenon target and

a 1070 nm driving laser. What is most apparent is that the single trajectory actually has a very

strong intensity to phase coupling. Work from our group showed that below-threshold harmonics do

indeed have multiple quantum paths leading to harmonic generation [87]. This surprising result has

allowed our collaborators from the Schaeffer/Gaarde group to work out the origin of these harmonic

paths. Fig. 3.4b shows the calculation where instead of relying only harmonics to be initiated by

tunnel ionization (as in the SFA), we included over-the-barrier ionization with uphill trajectories

and downhill trajectories [121]. Now, multiple quantum paths are present, which are consistent with

our initial experimental observation [87]. Subsequent work reported in this thesis (see Chapter 4)

was able to isolate the short quantum path component of these trajectories and make a precision

measurement of the intensity-dependent dipole phase [43], thus confirming the weak intensity to

phase coupling present in below- and near-threshold harmonics. These findings further emphasize

their non-tunnel ionization-based origin. The often ignored below- and near-threshold harmonics

are a rich system for studying strong-field light-matter interactions. Further, the presence of the

short trajectory with a weak intensity to phase coupling in the below- and near-threshold harmonics

is rather fortuitous for future work using the harmonic light for precision spectroscopy applications.

Since the HHG process will be less sensitive to intensity fluctuations, the coherence properties of

the XUV light will be much less sensitive to laser intensity noise.

3.2 Macroscopic response and phasematching

Like most nonlinear optical phenomena, the nonlinearly converted light rarely (if ever) per-

fectly mimics the single-atom response discussed thus far. The macroscopic emission of harmonics

is dominated by phasematching. Phasematching is well understood in typical HHG experiments

and we will review it within the framework of Ref. [124]. The analysis was originally formulated

for HHG experiments performed by very intense, low-repetition rate laser systems. However, the
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XUV frequency comb operates in a very different regime employing a much tighter laser focus and a

repetition rate nearly six orders of magnitude higher than more traditional systems. The fsEC also

complicates the phasematching situation. We will cover how these effects modify phase matching

considerations and, despite the added difficulty, show that the XUV frequency comb is the single

most powerful source of XUV radiation originating from HHG in terms of average power in its

operating spectral region.

3.2.1 Single-pass case

One of the key differences between HHG and other nonlinear harmonic generation (for exam-

ple, in crystals) is that the nonlinear medium is also strongly absorptive at the wavelengths being

generated. Conversion efficiency can then be limited by absorption and not other phase matching

conditions.

Reaching the absorption limit in phase-matching HHG requires a delicate balance of many

macroscopic parameters. Ref. [124] introduced a simple formulation of the phase-matching criterion

that well describes high conversion efficiency results with ∼800 nm [124] and ∼1030 nm [125] laser

systems operating in a regime where the laser is focused only loosely. It was originally anticipated

that it would not be experimentally feasible to reach the absorption limit in cases where the laser

beam is tightly focused (a condition applicable to high repetition rate laser systems like the XUV

frequency comb), but analysis and experiment have shown that it is indeed possible to reach this

limit albeit in low repetition rate laser systems thus far [126, 127].

The primary distinguishing operating characteristics of the XUV frequency comb are the high

repetition rate and tight laser focus needed for performing HHG. Performing HHG inside a fsEC

has led to record high XUV flux from HHG systems, but has come with many additional operating

constraints pertinent to proper phase matching [114, 128].

The one-dimensional model used for analysis follows the work of Ref. [124]. The harmonic

flux of the qth harmonic is Pq(t) given by



81

Pq(t) ∝
4 ρ2(t)A2

q Labs(t)
2

1 + 4π2Labs(t)2/L2
coh(t)

[
1 + e

− Lmed
Labs(t) − 2 cos

(
π
Lmed
Lcoh(t)

)
e
− Lmed

2Labs(t)

]
, (3.8)

where ρ(t) is the neutral density that varies with time as ρ(t) = ρ0(1 − η(t)), with η(t) being the

ionization fraction and ρ0 being the original target gas density. Aq is the atomic dipole of the

qth harmonic obtained quantum mechanically [118] or empirically [129], Lmed is the length of the

gas target, the absorption length is Labs(t) = 1/σρ(t) where σ is the absorption cross-section of

the harmonic of interest. The coherence length Lcoh(t) measures the phase mismatch between the

driving laser and harmonic q as Lcoh(t) = π/∆k with ∆k = |kq − q k0|, k0 is the wave-vector of

the driving laser, and kq is the wave-vector of the qth harmonic. Details of all the relevant phase

matching terms have been covered extensively elsewhere [72] and can be summarized by

∆k = ∆katomic + ∆kplasma + ∆kGouy + ∆kdipole, (3.9)

where ∆katomic is from the un-ionized gas dispersion, ∆kplasma is from the free electron dispersion,

∆kGouy is from the differential Gouy phase shift (Eq. 2.37), and ∆kdipole is from the quantum path

contribution of the HHG process [86] and depends on the laser intensity gradient.

Phase-matching occurs when ∆k ≈ 0 and only transiently over ultrashort laser pulses as

Lcoh(t) evolves with the ionization fraction η(t). Absorption limited phase matching is generally

achieved when

Lmed > 3Labs, (3.10)

Lcoh > 5Labs, (3.11)

ensuring the macroscopic yield is more than half of the maximum yield [124]. An illustration of

how the harmonic yield is affected by relative sizes of Lmed, Lcoh, and Labs is in Fig. 3.5. If Lcoh

and Labs are comparable in size, oscillations in the harmonic yield as a function of target length
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will be present. These are often called “Maker fringes”. If no absorption is present, a quadratically

increasing harmonic yield is expected. However, even a slight amount of absorption will lead to a

saturation of the harmonic yield as a function of target length. The reason is that for every emitter

added to the target, an absorber is also added and the net harmonic flux does not increase.

While the one dimensional model was originally intended to apply in the case where the laser

beam is only loosely focused, Refs. [126, 127] showed that it is still applicable to the case where

the laser beam is tightly focused. A balance of the Gouy phase shift, ionization fraction, and gas

density can result in ∆k ≈ 0. Fig. 3.6a shows the required density to achieve phase matching as a

function of beam radius for different ionization conditions. The critical ionization fraction ηcrit is

the ionization fraction where the neutral atom dispersion cancels the free electron dispersion in the

plasma. An important feature of Fig. 3.6a is that a tight laser focus requires commensurately high

target densities (and hence nozzle backing pressure). Current fsEC technology limits the feasible

spot size to the shaded region and shows that multi-atmosphere backing pressures will be required

for phasematching.

3.2.2 Enhancement cavity case

One would hope that these previously discussed conditions could readily be applied to the

case of HHG in fsECs. However, the cavity is very sensitive to nonlinear phase shifts present inside

the resonator because the cavity effectively increases the nonlinear interaction length [114, 128, 130].

Since the repetition rate of the laser is high, the plasma does not have time to clear the focus of the

laser beam, leading to a steady-state plasma during the generation process that can be ∼ 5× larger

than the single-pass case. The steady-state plasma leads to an intensity-dependent phase shift in

the resonator and the resonator become bi-stable. The phase shift can be quantified by

φNL = 2 r0ρηLmedF/k0, (3.12)

where F is the cavity finesse and r0 is the classical electron radius. While there are methods to deal

with this [114, 130], they require detuning the laser from the cavity and reducing the enhancement
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med

Figure 3.5: The harmonic yield plotted as a function of medium length for various ratios of the
coherence and absorption lengths. In the limit that the coherence length is much larger than the
absorption length, harmonic flux does not increase with increasing target length. This is in stark
contrast to other nonlinear optical phenomena like second harmonic generation where absorption
usually does not play a role. A typical quadratic scaling is also predicted in the absence of absorption
which is what is expected when the emitters add coherently.
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of the cavity. To illustrate the immediate impact of the fsEC on phase matching, Fig. 3.6b shows the

nonlinear phase shift under phase matched conditions. Operating too close to the critical ionization

and with too small of beams results in a cavity that will not be stable and makes reaching the

phase-matched condition nearly impossible unless the thickness of the target is greatly reduced.

The process of HHG has been shown to be scale invariant suggesting our operating conditions can,

in principle, reach absorption limited phasematching [131]. Nevertheless, it is important to keep

the nonlinear phase shift φNL ≤ π to avoid this. We impose an additional optimization conditions

and require

φNL ≤ π. (3.13)

Fig. 3.6b contains two shaded regions corresponding to feasible spot sizes obtainable in the resonator

and the region where the nonlinear phase shift is small enough to allow stable, reliable operation.

The overlap of the two shaded regions is clearly very small highlighting how important effects of

the cavity are for achieving phasematched operation.

To further complicate the matter, when femtosecond pulses propagate through field-ionizing

media, the laser pulse spectrum shifts to higher frequencies [114, 130, 132]. Usually this effect is

small for optimal HHG conditions, but in the cavity-enhanced approach, small spectral shifts cause

notable effects due to the high cavity finesse [114, 130]. When the blue-shift becomes severe, the

intracavity spectrum no longer matches the injected laser spectrum and the enhancement is reduced.

Until now, there was no suitable method to reduce the spectral blue-shifting besides reducing the

cavity finesse and requiring larger driving lasers. We speculate about a potential method at the end

of Chapter 6.

To apply the one dimensional model (Eq. 3.8) to HHG in fsECs, extra considerations are

required. First, the ionization fraction includes a steady-state value determined by the intracavity

intensity [114, 128]. Second, the plasma ramp across the laser pulse leads to an energy loss and

spectral blue shifting that reduce the intracavity intensity. The direct energy loss has little effect
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Figure 3.6: a) Phase matching conditions. For a given ionization fraction, the beam radius and
target gas density can be tuned to achieve phase matching conditions when ∆k ≈ 0. b) Nonlinear
phase shift in the cavity. The phase shift from the neutral/plasma target must be kept less than π
in order to keep the fsEC stable. For the phase matching conditions in a), the nonlinear phase shift
is shown as a function of beam radius and ionization fraction. The gray shaded regions correspond
to regions where the beam waist in the fsEC is feasible to operate for HHG. The purple shaded
region in b) is the region where the nonlinear phase shift is small enough for operation.
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under our operating conditions. Most of the reductin in laser intensity comes from the mismatch

between the blue-shifted intracavity field and the unshifted field we inject into the resonator [114].

Third, the nonlinear phase shift due to the steady state plasma is maintained to be small enough

for practical implementation. To achieve reliable operation, we impose Eq. 3.13.

3.3 Power scaling

Up until recently, armed with the just described phasematching knowledge, it was possible to

generate ∼ 200µW/harmonic. This already makes the XUV frequency comb about 1/10 as bright

as the ALS synchrotron [69]. This amount of power was sufficient to perform the first spectroscopy

experiments [52]. However, as is often true in any laser-based experiment, having more power is

beneficial. The greatest hindrance to further power scaling the system is the troublesome persistent

plasma that remains in the laser focus for many cavity round trips. Reducing the steady state

plasma will improve conversion efficiency and make the system more reliable and stable.

3.3.1 Methods

Our method for power scaling beyond the 200 µW/harmonic level is straightforward. For our

investigations, we use our fsEC equipped with a diffraction grating output coupler [74], a system well

suited for spectroscopy [52]. The cavity and HHG detection is schematically sketched in Fig. 3.7.

To improve performance, we modify the properties of our gas target using tricks often employed in

supersonic beam experiments [133]. A simple estimate and demonstration of our scheme is shown

in Fig. 3.8a. For a beam waist of w0 = 20 µm and a peak intensity of 0.5 × 1014 W cm−2, the

radial profile of the beam and the ionized fraction of the gas (calculated using ADK theory) are

shown in Fig. 3.8a. We can estimate the speed of the beam using Ref. [133] and we find that the

time it would take to replenish the previously ionized region is 35 ns, or about 5 cavity round trips.

This is consistent with previous observations and modeling [114]. Seeding a heavy gas (like xenon)

into helium molecular beam is a common method to increase the jet velocity of the heavier gas.

Following Ref. [133], we can estimate the speed increase of a xenon beam mixed with helium and this
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Figure 3.7: Schematic of the apparatus. The harmonics are out-coupled from the cavity using a
high reflector/diffraction grating optic. The 11th and the 17th harmonic can optionally pass through
the sodium salicylate detection plate by apertures. They can then be sent to independent detectors.
The inset shows a typical harmonic spectrum with all orders incident on the sodium salicylate
plate with various harmonic orders identified. The relevant harmonic orders can be identified by
their horizontal spacing on the plate since this is determined by the line spacing of the diffraction
grating. The image was taken with a simple CCD located outside of the vacuum chamber. CM,
curved mirror. HR, high reflector. DG, diffraction grating output coupler. IC, input coupler.
DET1, aluminum coated silicon photo-diode. DET2, NIST calibrated vacuum photo-diode. SS,
sodium salicylate plate. Au, gold mirrors.
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is shown in Fig. 3.8b. For large helium fractions, we can greatly speed up the beam and replenish

the previously ionized region much more quickly. This will in turn lead to a reduced steady state

ionization fraction and hence better phase matching and stability. Since we operate at intensities

much too low to effectively ionize helium, we will only maintain harmonic yield from xenon. The

potential cost is a reduced xenon density or requiring unfeasible backing pressures for the gas nozzle.

3.3.2 Results

In a sweeping cavity mode, a cavity mirror with a PZT sweeps the cavity resonance across

the comb teeth. The cavity operates with an enhancement factor of ∼ 200. The cavity is equipped

with a 10 cm and a 15 cm ROC mirror and the cavity is set to near the middle of the stability range

to achieve a focal beam waist of w0 = 25 µm. The beam waist is determined by measuring the

frequency spacings of higher order transverse modes of the cavity (see Sect. 2.2.3). Gas is injected

into the focus of the cavity via a quartz nozzle. The harmonics are outcoupled from the cavity using

the Yost grating (See Sect. 2.2.6 and Ref. [74]). We detect the 11th harmonic and the 17th harmonic

independently and simultaneously. The 11th harmonic is detected on a NIST calibrated vacuum

photodiode [134, 135]. The photodiode was biased to -100 V, but the photocurrent was insensitive to

the bias voltage between -60 and -120 V. The photocurrent was dumped over a resistor of 10 kOhm

and the voltage was amplified using a low noise voltage amplifier. The NIST calibrated diode was

used to calibrate the 17th harmonic detector which is an aluminum-coated silicon photodiode [136].

The calibration is performed by comparing photo-currents on both diodes and comparing the relative

yields on a sodium salicylate plate. The sodium salicylate acts as a uniform scintillator [13] and the

fluorescence is easily measured with a camera, as seen in the inset of Fig. 3.7. The reflectivity of the

gold mirrors is calculated with knowledge of the photon energy, angle of incidence, polarization and

the optical constants of gold [137]. While the optical properties of gold are well known, the specific

characterization of the gold mirrors employed in our measurements are unknown. It is likely that

the reflectivity is lower than the theoretical value. Similarly, the performance of the NIST vacuum

photodiode is assumed to be perfect. We have no way of independently verifying this, so all power



89

0

In
te

n
si

ty
 [

T
W

/c
m

2
]

50

25

0

C
a
v
it

y
 R

o
u
n
d
 T

ri
p
s

0.025

0.0125

0.000

Helium Fraction
040 20 4020

Io
n
iz

a
ti

o
n
 F

ra
ct

io
n

S
p
e
e
d
 [

m
/s

]

Beam Radius [μm]

a)

0.5 1

3

6

200
0

1000

1800
b)

--

Figure 3.8: a) Beam radial profile and the ionization fraction radial profile. The ionization fraction
is estimated by using ADK theory covered in Sect. 3.1.1. b) The speed of the xenon gas jet as a
function of helium seeding and the number of round trips the ionization profile shown in a) will
take to replenish the interaction region. The jet speeds were estimated following Ref. [133] and
effects like velocity lag were ignored. Replenishment was defined by when the ionized fraction move
at least one ionized fraction width away. This figure should only be interpreted as an estimate to
the replenishment. More sophisticated fluid flow simulations could in principle be performed. The
round trips assumed a laser with a repetition rate of 154 MHz. The round trip estimate can be
easily scaled to compared with other systems by the ratio of the repetition rates under consideration.
Simply dividing the repetition rate by two should lead to nice improvements on the steady state
ionization problem.
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levels reported here should be interpreted as lower bounds and the power levels may very likely

be higher. While we have taken precaution to ensure the detector was never contaminated, these

detectors are known to degrade due to air exposure or other surface contamination [135]. All

detectors were verified to be blind to the driving laser.

To determine if we are reducing the steady state ionization fraction by using a faster atomic

beam, we can sweep the driving laser across the cavity resonances and observe the self-locking

phenomena described throughly in Ref. [114]. Simply, the more steady state ionization, the more

the cavity will follow the laser as it is sweeping across the resonance, leading to a lineshape that

looks similar to a saw-tooth shape and not a Lorrentzian as in the case of a normal, linear cavity

(for an empty cavity, see Fig. 2.5). Fig. 3.9 illustrates this mechanism. Fig.3.9a shows the result

of injecting pure xenon into the cavity through a 100 µm nozzle. The intracavity power, the 11th

and the 17th harmonic power are monitored as a function of time while the resonance is swept. The

departure from the Lorrentzian lineshape of the cavity resonance is a manifestation of self-locking.

By simply switching to a 11:1 helium to xenon mixture and increasing the nozzle backing pressure

until approximately the same partial pressure of xenon is achieved, the distortion becomes less

severe and the harmonic yield is greatly enhanced, as seen in Fig. 3.9b.

Fig. 3.10 documents the maximum achievable harmonic yield for various mixing conditions

and nozzle diameters. The laser peak intensity was kept approximately the same in all cases (∼

0.67 × 1014 W cm−2, or 12.2 kW of average power) and gas pressure was chosen empirically to

maximize yield. We also observe a systematic increase of harmonic yield with decreasing nozzle

diameter. Decreasing the nozzle diameter requires much larger backing pressures on the nozzle,

making it difficult to experimentally realize with the large mixing ratios. We also verified that no

measurable harmonic yield (< 0.05 µW outcoupled) was observed when using pure helium as our

peak intensities were too low to effectively ionize helium.

As a final demonstration of power scaling, we moved to conditions that we have experimentally

determined to optimize yield; the data is also presented in Fig. 3.10. By using a 100 µm quartz

nozzle, backed by 100 psi of a 4:1 He:Xe gas mixture, we are able to outcouple 60 µW in the 11th
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Figure 3.9: The data in both panels was aquired by sweeping the laser across the cavity resonance.
A piezo on a cavity high reflector used for the sweep. All the data was recorded on photodetectors
simultaneously and averaging with the oscilloscope was performed. a) Data for a pure xenon target.
b) Data for an 11:1 He:Xe mixture. The harmonic yield is greatly enhanced and the self-locking
phenomena is reduced compared to a). The xenon densities in these two cases is approximately the
same. The nozzle diameter was ∼ 100 µm. The beam waist was w0 = 25 µm. The driving laser
power was also approximately the same. However, due to the reduction in steady state plasma,
b) sweeps to a slightly higher intracavity power. However, harmonic power levels at identical
intracavity power levels show a clear improvement for the case of the 11:1 He:Xe mixture so the
boost in harmonic yield is not an artifact of sweeping to a larger intracavity power and is due to
improving phasematching conditions by reducing the steady state plasma.
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and the 17th harmonic order simultaneously. Assuming the diffraction grating output coupler is

performing as well as theory predicts [74], this would correspond to a generated harmonic yield

of 0.7 mW and 0.63 mW at the 11th and the 17th harmonic order respectively. By switching to

a 50 µm quartz nozzle and applying 400 psi with a 4:1 gas mixture, we are able to outcouple 71

µW at the 11th harmonic, corresponding to 0.84 mW generated at 12.7 eV photon energy (4× 1014

photons/s). Further improvements are achieved with 275 PSI applied with the 9:1 mix resulting

in 78 µW at the 11th harmonic, corresponding to 0.93 mW generated at 12.7 eV photon energy

(4.8× 1014 photons/s).

We also performed HHG with nonlinearly compressed pulses (See Sect. 2.3.1). By broadening

in bulk sapphire and compressing with chirped mirrors, we delivered 70 fs pulses at up to 53 W of

average power to the fsEC. This method yields an optical spectrum and beam profile suitable to

maintain intracavity buildups of 200. The intracavity pulse duration was 75 fs, measured by second

harmonic intensity autocorrelation of the intracavity field. We are able to outcoupled harmonic

flux at the 50 µW/harmonic level and we observed a 25% boost in conversion efficiency (average

driving laser power to average XUV power). By using nonlinearly compressed pulses, we observed

a decrease in the self-locking phenomena at similar target densities and peak intensities confirming

that the shorter pulses are ionizing less of the gas at equivalent peak intensities.

It is useful to compare our results with high-flux results obtained with titanium-sapphire based

XUV frequency comb generation. Ref. [138] reports outcoupled power levels of 45 -77 µW over a

similar wavelength range. When one considers the inherent ∼ λ−6 wavelength scaling of HHG [139],

it becomes clear that the improvement obtained in this work is very encouraging. If we scaled our

60 µW at the 17th harmonic result (1070 nm driver) to directly compare with the titanium-sapphire

results (800 nm driver), this would amount to a scaled power of 342 µW, implying generation levels

of ∼3.4 mW. For applications that do not require very high photon energies (lower harmonic cutoff),

it is worth reconsidering driving HHG at 800 nm or even possibly the second harmonic of Yb:fiber-

based laser systems at ∼ 532 nm. It is important to note that the outcoupled power of fsEC-based

XUV sources is in principle totally deliverable on target for experiments, without the need for extra
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Figure 3.10: System scaling. Output coupled harmonic yields are shown as a function of nozzle
diameter and mixing ratio. The laser intensity was approximately the same in all cases and the
pressure was choses to maximize yield.
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filtering to remove parasitic driving laser light, which is typically very lossy for the XUV light [137].

This is in sharp contrast to more traditional approaches to HHG. Therefore, for direct comparison

with lower repetition rate systems, it is more useful and informative to compare generated power

levels for both cases. The fsEC-based approach is much higher [125]. For implementation of the

XUV light in experiments, filtering out the driving laser is almost always necessary. In the fsEC

system described here, the driving laser light is effectively removed by output coupling of the XUV

light from the cavity. A broad comparison of HHG sources is plotted in Fig. 3.11. The figure

contains the generated XUV power as a function of repetition rate. It should be obvious that for a

nominally fixed conversion efficiency, the generated power increases with repetition rate (although,

pulse energy commensurately goes down). For linear spectroscopy, average power is the relevant

quantity and the XUV comb clearly leads the pack.

The only drawback to our demonstrated method is the increased gas load to the vacuum

chamber. However, by having sufficient pumping speed (∼700 L/s) and proper gas dump design

(see Sect. 2.5 and Ref. [130]), we are able to operate under safe conditions for the turbomolecular

pumps and at low enough background pressures that re-absorption of the harmonics is minimal.

The improvements outlined in this chapter are simple to implement and can easily be extended to

other collinear output coupling techniques [88, 90] and possibly non-collinear geometries [88, 150].

A simple estimate suggests that by using the geometric output coupling technique [88, 90], we can

increase output coupling efficiency by 3× and deliver ∼ 180 µW at 19.7 eV. This will greatly aid

application of XUV frequency combs for precision spectroscopy, strong-field physics, and any other

application where a high photon flux source of XUV radiation is needed.
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Figure 3.11: Generated power levels are plotted as a function of laser repetition rate. The
XUV frequency combs clearly has the advantage in terms of photon flux. The very low XUV
pulse energies delivered by the XUV frequency comb are inconsequential for linear spectroscopy.
Benko [140], Cabasse [141], Cingöz [52, 130],Constant [124], Hädrich1 [125], Hädrich2 [142], Her-
gott [143], Lee [138], Lorek [144], Pupeza [90], Rothhardt [126], Rudawksi [145], Takashi1 [146],
Takahashi2 [147], Wang [148], Willner [149].



Chapter 4

Interferometry in the extreme ultraviolet

In this chapter, we will focus on aspects related to performing interferometry in the XUV.

Various components of the XUV interferometer will be discussed along with some design consider-

ations.

4.1 Motivation and brief history

The goal of building an interferometer in the XUV is to test the temporal coherence properties

of the XUV light originating from HHG. Often, we will refer to the temporal coherence level by

quoting the inverse of the temporal coherence time and refer to it as the frequency resolution. 1

Prior to this work, temporal coherence was tested at the 10 MHz frequency resolution level

by multiple experiments. The first attempt by Bellini et al. [151] only tested coherence at the

few fs level, but the experiment nevertheless showed the temporal coherence was indeed there (at

least within a single pulse) [151]. Future applications in high resolution spectroscopy will require

coherence at a much higher level that will potentially extend over billions of pulses.

After the pioneering work by Bellini et al. [151], it was not until much later that pulse-to-pulse

coherence was demonstrated. Two methods were employed to test the temporal coherence. Our

group employed an interferometric approach by constructing a time-delayed homodyne interferom-

eter to measure the 7th harmonic of our 1070 nm fiber laser [87]. The group of Eikema developed a
1 This is not a rigorous definition of frequency resolution, but nevertheless useful for our discussion. In Chapt. 5,

we will discuss how optical phase noise and temporal coherence are related to laser linewidth and hence frequency
resolution.
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spectroscopic approach akin to Ramsey spectroscopy. There, the 15th harmonic of an 800 nm laser

was used to perform spectroscopy in helium [56, 152]. The spectroscopic signature is evidence of

pulse to pulse coherence. Both groups established frequency resolution at the ∼10 MHz level.

In a heroic experimental effort, our group also established the ability to use the frequency comb

to perform absolute frequency measurements deep into the XUV by performing direct frequency

comb spectroscopy on atomic argon and neon [52, 89]. This, however, still only demonstrated

coherence at the ∼10 MHz level but did establish the efficacy of using XUV frequency combs for

high resolution spectroscopy. Ultimately, the fractional frequency uncertainty of the transition in

argon was measured to about 10−10 (∼ 500 kHz) which is about four orders of magnitude better

than a typical spectrograph operating in the XUV can achieve [13].

The method we employ to directly measure the fundamental limits of temporal coherence in

the XUV was essentially established in our group with the first XUV comb demonstration [3] with a

concurrent demonstration in Garching [4]. Our original method relied on generating two UV combs,

one in a gas target and one using traditional methods by tripling in crystals. The two sources had

different f0’s which upon recombining would form a heterodyne beat (see Fig. 1.6c). By measuring

the linewidth of the heterodyne beat, coherence properties could be determined. While this result

may not be surprising since it was applied to only the 3rd harmonic, it demonstrates the principle

we will rely on to test coherence at harmonics much higher than the third. For our work, we will

construct a heterodyne interferometer capable of operating between 1070 nm and 56 nm.

4.2 The extreme ultraviolet interferometer

Our interferometer is an extension of a traditional interferometer design known as a Mach-

Zehnder interferometer shown schematically in Fig. 4.1a. A laser beam is split with a 50:50 beam

splitter and then recombined, after traversing independent paths, on an additional 50:50 beam

splitter. It is possible for these beam splitters to be polarizing, but it is not necessary. There are

two output ports where detectors can be placed. The output ports will change from bright to dark

depending on the relative phase between the two paths. In general, the two ports are anticorrelated:
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meaning that if one port is bright, the other is dark such that the total optical power out of the

interferometer is conserved.

The XUV version of the Mach-Zehnder interferometer is shown schematically in Fig. 4.1b.

The first beam splitter will be an AOM. This will spatially split the driving laser beam and put a

frequency shift on one arm relative to the other. A cavity-based HHG apparatus will be placed in

each arm of the interferometer and the resulting HHG beams will be recombined in the XUV. One

detection port will be available in our scheme and the interference pattern will oscillate from bright

to dark at a rate proportional to the frequency set by the AOM. This is the beat frequency, or the

beatnote, that we aim to detect. While what we are trying to achieve is conceptually very simple,

the practical implementation is far from it.

The full schematic of the interferometer is shown in Fig. 4.2. Our driving laser is the pre-

viously described Yb:fiber comb (See Chapter 2). There are optional modulators (amplitude or

phase) placed in one arm of the interferometer. Inside the vacuum chamber, each arm contains

an independently stabilized fsEC. The harmonics are outcoupled using sapphire Brewster plates.

The harmonic beams are then recombined on a beam combiner in space and time. The combined

beam is then sent to a spatial filter and finally an XUV photodetector. There is also an optional

monochromator to analyze the performance of the HHG process and XUV optics. Since this is a

very non-trivial interferometer, each of the components will be described in detail.

4.2.1 The acousto-optic modulator

The first component of the XUV interferometer is the AOM. When used in conjunction with

a frequency comb, the AOM acts as an f0-shifter. The AOM can be used for high-bandwidth

stabilization of f0 with servo bandwidths of up to 250 kHz, typically limited by the propagation

delay of the acoustic wave in the AOM crystal [31]. For this implementation, it will just produce a

static, relative f0 shift between the driving laser of the two arms. We would like to have the AOM

put a small frequency shift between the arms since the frequency shift of the harmonics will grow

as fq,0 = q × f0 where q is the harmonic order. Therefore f0 needs to be kept low so it will be
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Figure 4.1: Schematics of a Mach-Zehnder interferometer and an XUV Mach-Zehnder interferom-
eter shown in a) and b) respectively.
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Figure 4.2: Detailed schematic of the XUV interferometer. The Yb:fiber comb is split in two with an
acousto-optic modulation (AOM). One patch contains an additional AOM to act as an amplitude
modulator. Each cavity is independently stabilized using the PDH method. The XUV beams
are outcoupled with sapphire Brewster plates. The XUV beams are recombined (see Sect. 4.2.2)
and detected after being spatially filtered (see Sect. 4.2.3 and Sect. 4.2.4). The optional spherical
grating is for operation of the Seya-Namioka monochromator (see Sect. 4.2.6). Temporal overlap of
the XUV pulses is achieved by temporal delay of the driving laser using a simple delay stage. PMT,
photomultiplier tube.
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within a possible XUV photodetector bandwidth. We settle on a 1 MHz relative detuning between

the arms. However, AOMs do not operate at such low frequencies.

To overcome this, we use an AOM that operates at frequencies near fr such that fr - faom = 1

MHz. When a frequency comb is split by an AOM with a frequency of fAOM and interferometrically

recombined on a photodetector, there will actually be two beat frequencies below fr. The possible

beat frequency fb can be fb = fAOM , fr-fAOM . This can be seen by referring back to Fig. 1.6. The

latter option is typically referred to as the conjugate beatnote. If we simply detect the conjugate

beatnote fb = fr-fAOM , any fluctuations in fr will couple into the signal. Since we do not want this,

it is removed by a phase-lock trick shown schematically in Fig. 4.3 for the black signal pathway. To

remove the fr dependence of the low frequency beatnote, we enforce fr-fAOM= 1 MHz by phase

locking it to an ultrastable Wentzel crystal oscillator. By doing this, the fr dependence is transferred

to the higher frequency beatnote which is left undetected in our case.

As is true of any interferometer, any acoustic noise, mechanical vibrations, or air current

fluctuations that are not common to both interferometer arms will cause the relative phase of the

interferometer arms to fluctuate. This can be very problematic if the goal is to test the phase

stability of the optical signal; it can easily be corrupted by a poorly constructed interferometer.

Since it is very difficult to construct an interferometer like ours that is passively stable to less than

an optical fringe over many seconds, we must resort to actively stabilizing the interferometer.

To accomplish this, we need a method to detect fluctuations between each arm of the inter-

ferometer. When we ultimately detect XUV beatnotes in the interferometer, a small amount of

our driving laser light will also make it to the detection plane. For the driving laser, there is a

beatnote at 1 MHz that will be sensitive to any phase fluctuations due to the interferometer not

being perfect. We use our driving laser beatnote at 1 MHz and compare it to another stable 1 MHz

Wentzel source. This comparison signal is referred to as the interferometer error signal. The error

signal is sensitive to any phase fluctuations and they are actively removed by slight adjustment to

the AOM drive frequency phase. To accomplish this, the additional phase lock is implemented as

schematically shown in Fig. 4.3 with the blue signal pathway added. With this additional phase
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Figure 4.3: The radiofrequency drive scheme for the AOM and the optional stabilization method.
An fr signal is derived from a photodetector and compared with a voltage-controlled oscillator
(VCO). The difference is then compared to 1 MHz and that is used to produce an error signal
for the phase lock that sets the AOM frequency to be fr-1 MHz exactly. When the interferometer
stabilization is required, the blue signal path is added. A second error signal at 1 MHz is produced
from the interferometer that is proportional to phase fluctuation in the interferometer. This is error
signal is filtered with a loop filter (LF) and applied to the AOM stabilization scheme to cancel out
the fluctuations.
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lock, we can be free of technical noise of the interferometer and focus on the ultimate stability of

the XUV light.

The choice of AOM optical material is also critical for the experiment. Initially, an AOM

constructed of fused silica was chosen. Most AOMs are not designed to operate with up to 80 W of

average laser power. Therefore, large beam diameters are needed as well as large RF powers in order

to maintain a minimum of 50% diffraction efficiency. A fused silica AOM worked, however, at high

laser power, the optical mode strongly distorts due to thermal lensing. This is a common problem

with high average power laser systems like ours. To overcome thermal lensing, the laser beam waist

can be made larger or additional telescopes can be used to try and manipulate the beam at high

power. As it turns out, fused silica just did not have good enough thermal properties. Therefore,

we had to switch to a tellurium oxide (TeO2) AOM. It had much better thermal properties at

the expense of more optical dispersion. The extra dispersion is easily compensated with the laser

compressor and the residual thermal lensing was manageable with telescopes. An additional TeO2

AOM is optionally used as an amplitude modulator in one arm of the interferometer.

4.2.2 Construction of the beam combiner

As previously discussed, there simply is not suitable optical material in the XUV that is trans-

parent. This poses a great challenge for building an interferometer than can operate in the XUV.

Beam combination is usually achieved with partially reflecting/transmitting optics or polarization

beam splitters. These do not exist in the XUV. The aforementioned beam splitters are typically

referred to as amplitude division beam splitters. However, there is another class of beam splitters,

wavefront division beam splitters, that are suitable for application in the XUV as they only require

reflections.

To combine two XUV beams, we rely on a mirror with a hole in it. This is a common trick

in the XUV world. By using a mirror with a hole in it, one XUV beam is focused and transmitted

through the hole while a second XUV beam reflects off the surface. The two beams will have partial

overlap in the far field. To construct such a mirror, we first started with a silicon wafer with a
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reflected

transmitted combined Silicon beam combiner

Figure 4.4: Images of the XUV beam combiner. The transmitted (XUV2), reflected (XUV1),
and combined beam images were all taken with the driving laser at 1070 nm (see Fig. 4.2 for the
relevant beam paths). In order to observe fringes like these with a simple CCD, the frequency
detuning between XUV1 and XUV2 must be set to zero. This can be achieved by driving the AOM
with the repetition rate (obtained from a simple photodetector).



105

100 µm square, pyramidal aperture shown in Fig. 4.4. The pyramid structure is important because

it allows a larger acceptance angle for the beam that will be focused through the hole. Such a

silicon wafer is an “off the shelf” item and is produced by KOH etching, but it needs to be altered

to perform well as an XUV mirror. First, the silicon wafer is only 3 mm x 3 mm. To make this

more robust and to facilitate polishing it later, we anodically bond the silicon wafer to a pyrex

substrate that also has a large hole in it of about 1 mm diameter. It is important the substrate is

pyrex or else the anodic bonding process will not work well. To anodically bond the two pieces,

they are sandwiched together with a large voltage (∼ 1.5 kV) applied across them and under a high

temperature (∼ 300 C). There is a small current that flows between the electrodes which can be

monitored. Once the current has almost stopped (after a couple hours), the two optics should be

bonded together after the optic cools.

After the anodic bond is formed, the silicon wafer needs to be polished so it can later be

coated with a material that reflects well in the XUV. The anodic bond is strong enough to survive

polishing. After the silicon is polished to an ∼Å rms roughness level and the surface is determined

to be optically flat, it is ready for coating. We chose to coat the optics with boron carbide (B4C)

because it has a high reflectivity of about R = 0.3 out to 55 nm at normal incidence. This is a “high

reflector” at normal incidence in the XUV. The coating was performed by Rigaku [153] and further

discussion of XUV optics is in Sect. 4.2.5.

The nominal performance at 1070 nm wavelength is shown in Fig. 4.4. The transmitted beam

retains its normal Gaussian structure. However, the reflected beam does not look quite as nice.

Despite the structure on the beam, the wavefront phase is still relatively flat. When the beams are

recombined, a bull’s-eye fringe is present in the far-field profile. The bull’s-eye structure is due to

the fact that the reflected beam and transmitted beam have different wavefront curvatures. If this

beam was incident on a detector, the total interference pattern would average to zero. To overcome

this, the central fringe is selected out with another aperture before detection. This throws away a

small amount of optical power, but it ensures a high contrast interference fringe for detection.
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4.2.3 Beam combiner theory and scaling

To begin to describe the beam combiner operation, we rely on Babinet’s principle (principle

of complementary apertures) to describe the reflected beam. The far-field reflected beam uR can be

written as combination of a Gaussian beam and the beam generated by the inverse of the aperture.

For our consideration, we will assume a circular aperture of radius a. The schematic used for

calculation is in Fig. 4.5a. For the reflected beam amplitude, we have

uR = uG − uH (4.1)

where uG is just a Gaussian beam with the focus of ω1 at a distance L from the hole mirror. The

functional form of the Gaussian beam can be found in Eq. 2.34. The contribution of the aperture

is [14]

uH(r, z)/u0 = iπNe−iπN(r/a)2
∫ 1

0
d
(
r′

a

)
uG(r′)e−iπN(r′/a)2 r

′

a
J0

(
2πrr′

a2

)
, (4.2)

where N is the Fresnel number defined as N = a2/zλ. While this equation is quite cumbersome, it

can easily be treated numerically. The full far field combination is a sum of all three contributions

utotal = uR + uT , (4.3)

where uT is the transmitted beam, which is also a Gaussian of form Eq. 2.34 with a focus at z = 0

and a beam waist of ω2.

As an illustrative example, the results of a numerical simulation are shown in Fig. 4.5b,c with

L = 10 cm, z = 40 cm, λ = 83 nm, ω1 = ω2 = 25µm and the beam combiner aperture a was left

to vary. The spatial filter aperture was chosen to isolate the central fringe. The signal to noise was

estimated by considering the contrast of the signal illustrated in Fig. 4.5c with the in and out of

phase beam profile of the combined beams. The contrast is C = (Imax − Imin)/(Imax + Imin) and

assuming a shot-noise-limited detection, the signal to noise is
√

2
√

(Imax + Imin)C.
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Figure 4.5: a) Schematic of the beam combination geometry relevant for calculation. A roughly
collimated beam is used in reflection and a tightly focused beam is used for transmission. The beam
combiner is assumed to have an aperture of width a. The detection plane will contain a spatial filter
to select the central interference fringe. The degree of beam collimation, beam combiner aperture
size, and spatial filter aperture size were all choses to maximize interference contrast and signal-
to-noise. For b,c) the following parameters were chosen. z = 40 cm, L = 10 cm, λ = 83 nm, and
ω1 = ω2 = 25µm. The parameter a was varied and the spatial filter size was chosen to isolate
the central fringe. b) Shown is the compromise of SNR, power used and contrast as a function of
aperture size. The bottom panel shows the optimal spatial filter size. c) The electric field is shown
in for the transmitted and reflected beam for a ≈ 50µm. The in and out of phase profile of the
combined beam is also shown.
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If briefly we ignore the effect of the aperture on the reflected beam and analyze how the

different wavefront curvatures of the two combined beams affect the spatial fringe, we find that

the distance from the center of the beam to the first interference minimum actually scales as
√
λ.

This can be seen by looking at Eq. 2.34 and realizing the wavefront phase scales inversely to λ

but proportionally to the radial distance squared. This rather favorable scaling implies that the

interferometer should work over a wide range of wavelength ranges without having to constantly

modify experimental parameters such as z, L, ω1 or ω2. By setting the aforementioned parameters, a

single spatial filter at the interference plane can also be chosen to maintain near optimal performance

for harmonics 7–17. As will be presented later, we observed the heterodyne beats between 56 nm

and 1070 nm without changing anything but the detector.

4.2.4 Extreme ultraviolet detectors

To detect heterodyne beats in the XUV, we need a detector that is both sensitive at XUV

wavelengths and has a fast response since the beatnotes will be at multi-MHz frequencies. The most

common approach to detecting XUV photons is to use a scintillating material. Sodium salycilate

is a good material because it absorbs light below 355 nm and fluoresces around 420 nm. Detecting

420 nm light is straightforward with a photomultiplier tube (PMT) or even a CCD camera. The

upper state lifetime of sodium salycilate is also ∼ 10 ns allowing for high bandwidth detection. An

additional benefit is that the quantum efficiency is nearly perfectly flat between 5 eV and 15 eV

making comparisons between harmonic orders very straightforward [13].

Another option is to use an electron multiplier or an multi-channel plate (MCP). Electron

multipliers work in a similar way to PMTs. They can have very large internal gains (up to 107) and

can operate directly in a vacuum chamber (unlike PMTs). The work function of common electron

multipliers is typically 9 eV or higher, making them “solar blind”. For us, that means they do not see

the driving laser or the 3rd harmonic, which is a huge benefit, and can thus allow for very sensitive

detection without saturating the detector on the abundant 1070 nm or the 357 nm light. Electron

multipliers can also have ∼ 10 ns response times again allowing for high bandwidth detection.
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In the power scaling effort reported in Chapter 3, two other detection methods are employed.

A windowless silicon diode with a thin metallic coating can be used [136]. The metallic coating

filters out low photon energy light and the silicon behaves in much the same way as it does with

visible light. The second was a NIST calibrated vacuum photodiode [134]. The photodiode was a

polished piece of aluminum oxide that serves as a photocathode. Photoelectrons emitted from the

aluminum oxide are collected on a biased anode ring. The device was calibrated by NIST. These

two detection methods are often the most accurate. However, they are also very difficult to operate

with high gain and high bandwidth. They are therefore not ideal for the heterodyne interferometry

experiment.

4.2.5 Extreme ultraviolet optics

One of the most common optical coating materials for XUV radiation is gold. At grazing

incidence, gold can have excellent reflectivity from the XUV out to hard x-ray wavelengths [137].

However, for our interferometer, it is impossible to build it with only grazing incidence optics. The

actual optical layout in reality is close to what is shown in Fig. 4.2. For the path of XUV2 in the

figure, a 70 deg grazing incidence reflection and one normal incidence reflection will be required to

get the beam to the combiner. Fig. 4.6 show the expected reflectivity if gold optics are used. The

net reflectivity of both optics combined is only ∼ 2% for the wavelengths of interest.

Another, less commonly used optical material is B4C. At normal incidence, B4C has a re-

flectivity 2×-3× that of gold [154–156]. Fig. 4.6 also shows the expected reflectivity for XUV2 if

all B4C mirrors are used. The advantage is clear. When one considers that the heterodyne beat

between XUV1 and XUV2 will be proportional to the product of their fields, enhancing the net

reflectivity by 5× for each arm of the interferometer will give 5× more heterodyne beat power. The

reflectivity reported in Fig. 4.6 was calculated by the known optical constants of both materials.

One drawback to using B4C or other boron-based optical coatings is that they tend to decay over

time and primarily limit the reflectivity at short wavelengths at normal incidence. We have indeed

observed this decay and a mirror that was used over the course of a year experienced almost a factor
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Figure 4.6: The reflectivities of boron carbide and gold. a) The reflectivity of both optics in the
path of XUV2. b) The net reflectivity of both optics for XUV2 assumes both gold mirrors or both
B4C mirrors. The improvement by choosing B4C is very clear. In all cases, the reflectivity was
calculated with knowledge of the optical constants of the materials.
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of 3 drop in reflectivity at 200 nm. We were unable to determine the loss at shorter wavelengths,

but suspect it was even more severe.

4.2.6 The Seya-Namioka monochromator

The final piece of the experiment is not actually required for interferometer operation. How-

ever, it is a very useful tool for diagnosing the HHG process and confirming proper operation of our

XUV optics. The Seya-Namioka monochromator is a simple and robust method of detecting HHG

radiation [13]. We added a Seya-Namioka monochromator to our apparatus by having a removable

spherical grating placed near the detection plane as seen in Fig. 4.2. The monochromator only works

for the XUV2 beam path. The beam combiner acts as an entrance slit to the monochromator. The

spherical grating diffracts and re-focuses the light to an exit slit. After the exit slit is a sodium

salycilate coated light pipe fed to a PMT. A DC stepper motor drives a ferrofluidic feedthrough that

is connected to a rotation stage that holds the grating. A key feature of the Seya-Namioka design is

that the angle between the entrance slit and exit slit is fixed (∼ 70 deg) and only the grating needs

to rotate. This makes for easy implementation and easy interpretation. The achievable resolution

is in principle a few Å.

The results of a monochromator scan are shown in Fig. 4.7. The monochromator is operated

in low resolution mode (∼ 1 mm exit slit) but all the harmonics orders are clearly resolved. The

scan takes about 30 seconds. Harmonics 7–21 are clearly visible (and possibly the 23). The relative

heights of all the harmonic orders are strongly influenced by our choice of optics. For the XUV2

path, Fig. 4.8 contains the reflectivity of all the optics. The trace labeled B4C accounts for the

normal incidence reflection and the grazing reflection in the beam path. The grating efficiency was

given by the grating manufacturer. The total throughput of the system is not that great, being only

0.2% at maximum. Nevertheless, we can use this information to reconstruct the harmonic spectrum

that is generated and how much will be present at the beatnote detection plane (with the grating

removed). The scaled harmonic spectrum is shown in Fig. 4.9. The raw spectrum is taken from

the data in Fig. 4.7. The exit plane data represents the light that will be available for heterodyne
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Figure 4.7: The harmonic spectrum measured with a Seya-Namioka monochromator. The spherical
diffraction grating is rotated about its center while the photocurrent from a photomultiplier tube
is measured. Signals that do not fall on harmonic orders are due to second order diffraction of the
grating. The data is the result of a single scan that took about 30 seconds to acquire.
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detection. The generated data is the inferred harmonic spectra at the focus of the cavity. Clearly,

we make an enormous amount of 7th harmonic, but this is consistent with previous observations

and is relatively unexplained [89]. Our harmonic spectra exhibits a “traditional” plateau shape, one

of the early and intriguing features of the HHG spectrum.

4.3 Putting it all together

With all of the key operating components discussed, the final operation mode can be estab-

lished. The output of the Yb:fiber comb is split 50:50 by the AOM operating at fr-1 MHz. Each

path, XUV1 and XUV2, has an independent set of mode matching optics. The two arms are slightly

different due to the fact that the 1070 nm beam traverses different directions in the ring resonators.

The light is coupled into independent fsECs. The input coupler is R = 0.985 so the finesse

is ∼ 400, and the buildup is ∼ 200. Since the Yb:fiber comb only has two degrees of freedom and

both cavities require a total of four degrees of freedom for simultaneous stabilization, the Yb:fiber

comb is left free running and all the servo actuation to maintain stabilization is performed with the

fsECs. The PDH lock is actuated on by two PZTs in each fsEC. One PZT is a fast, low voltage

PZT attached to the cavity HR mirror. A second, slow but long travel PZT pushes a translation

stage located underneath the same HR mirror. The servo loops for each cavity are independent.

Fortunately, since both cavities have identical optics, the required f0 was the same for both cavities

(including the 1 MHz offset by the AOM) and could be adjusted by manipulating the temperature

of the fiber Bragg grating inside the laser oscillator. Generally, no active feedback was necessary

for f0.

The focal spot size is 19 µm × 22 µm in both cavities, so average powers between 4 kW

and 6 kW are necessary for good HHG conversion. The focal spot is determined by measuring the

frequency spacing of higher order transverse modes as discussed in Chapter 2. Xenon is injected

through quartz nozzles with 150 µm diameter. The light in XUV1 and XUV2 is outcoupled using

a 330 µm thick sapphire Brewster plates (see Fig. 2.7 or Fig. 4.8 for expected performance). Each

of the XUV beams are steered inside the vacuum chamber by motorized B4C coated mirrors. After
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Figure 4.8: The reflectivities of various optics in the XUV interferometer and monochromator.
This data is used to back out the relative amount of harmoinc power at the generation location.
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Figure 4.9: The relative harmonic powers at different points in the interferometer. The data in
both figures is the same but shown in linear and log scales for a) and b) respectively. The large
amount of 7th harmonic is consistent with previous observation and its origin is not completely
clear.
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recombination in space and time, the beams are directed to a spatial filter of a 100 µm square

aperture before detection. The time overlap between the XUV pulses is achieved by delaying the

time of the Yb:fiber comb pulses using a delay stage in the XUV2 beam path.

Because fsECs XUV1 and XUV2 are both pumped by a common NIR laser, the noise in the

radio frequency (RF) beatnotes is immune to the common-mode frequency noise of the Yb:fiber laser.

Thus, the apparatus directly measures noise from the HHG process or the cavity-plasma dynamics.

However, because the interferometer is not actively stabilized, there are small amounts of relative

noise induced by vibrations in the optics, giving the two sources a non-zero relative linewidth that

is technical in origin. This tecnical contribution can be removed by the active stabilization scheme

previously discussed.

Harmonics 3–7 could be detected using a sodium salycilate screen with a PMT. Harmonics 9–

19 were detected directly with an electron multiplier. The photocurrent coming from the detectors

is expected to have the form

I(t) = I1(t) + I2(t) +
√
I1I2cos(qfAOM t+ q(fr − fAOM )t+ φ(t)), (4.4)

where φ(t) are any relative phase fluctuations. However, we have enforced ∆f = fr − fAOM = 1

MHz and qfAOM is far too fast for our detector’s response time, Eq. 4.4 reduces to

I(t) = I1(t) + I2(t) +
√
I1I2cos(q∆ft+ φ(t)). (4.5)

The output of the detectors is amplified and sent to an RF spectrum analyzer. Fig. 4.10

contains the RF heterodyne beats for harmonics 3–17. The harmonic beatnotes were heterodyne

translated from their 3 MHz, 5 MHz, 7 MHz, etc. tones to lower frequencies for display on an FFT

analyzer. There is also a beatnote from the fundamental laser at 1 MHz, but this is not shown.

It is separately detected by picking off a small fraction of the edge of the beam that would be

otherwise wasted by the spatial filter. The B4C optics and the Brewster plate still have a very small

reflectivity at 1070 nm facilitating this detection. There iss also a beatnote at 19 MHz, however,
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Figure 4.10: Heterodyne beats from harmonics 3–17. The harmonics were originally detected at 3
MHz – 17 MHz but were frequency shifted to much lower frequencies using RF mixing to help high
resolution display on an FFT analyzer. The data is presented on a 30 Hz resolution bandwidth.
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the signal-to-noise is very poor. We suspect this is due to a reduction in the B4C reflectivity, which

is hard to accurately characterize in our system [154–156]. The relative heights of the beatnotes in

Fig. 4.10 also resembles the expected relative heights from Fig. 4.9.

The data in Fig. 4.10 is already great news for the XUV comb. The f0 scaling of each

harmonic order is exactly fq,0 = q × f0. Also, the beatnotes are clearly sub-kHz. Already this is a

huge improvement over previous work and shows that nothing drastic is happening to destroy the

coherence in the XUV. With each harmonic order individually accessible in the RF domain, it is

now possible to analyze them independently and use them to investigate strong-field physics with

phase-sensitive techniques.



Chapter 5

Phase noise and phase sensitive detection in the extreme ultraviolet

In this chapter, we will discuss and answer the basic question of “How good is the XUV

frequency comb?” Here, “goodness” is referred to as a long coherence time or a narrow optical

linewidth. Further, in this chapter we will describe how phase noise scales in the harmonic generation

process and test the limit of XUV coherence by measuring sub-Hz linewidths at various harmonic

orders. We will also demonstrate how we can use phase-sensitive detection in the XUV to probe

strong-field physics which occurs at attosecond timescales.

5.1 Optical phase noise

Phase noise in periodic signals is a very well studied problem. Much of the work well pre-

dates laser development and finds most of its development in the context of RF signals and RF

communications. We will focus mainly on how phase noise affects oscillators or waves (specifically,

their power spectrum), but we refer to Ref. [157] for thorough investigation of amplitude, phase and

frequency noise processes. For discussion related to RF oscillators, Ref. [158] is quite useful. In the

context of laser stabilization, a thorough discussion is in Refs. [47, 159]. For the purposes here, we

will review the most important aspects as they relate to the XUV comb experiments.

Before establishing the characteristics of optical phase noise, it is useful to consider how a

coherently phase modulated wave behaves and then move to a wave modulated by random phase

fluctuations. A phase modulated wave is written as
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E = E0 e
−iω0t−iφ(t). (5.1)

the instantaneous frequency is ω = ω0 + dφ(t)/dt. If we assume that φ(t) = β sin(Ωt), where β is

the phase modulation depth 1 and Ω is the modulation frequency, we can expand Eq. 5.1 in a series

of Bessel functions as

E = E0J0(β)e−iωt +
∞∑
n=1

E0Jn(β)
(
e−i(ω+nΩ)t + (−1)ne−i(ω−nΩ)t

)
, (5.2)

where Jn is a Bessel function of order n. An interesting property that is preserved and is not

immediately obvious from the expansion is that EE∗ = E2
0 , meaning a phase modulation process

does not add to or remove from the total power of an oscillating wave. The expansion in Eq. 5.2

tells us that the sinusoidal modulation creates symmetric “sidebands” about the carrier wave at

ω0. However, the sign of the electric field amplitude at frequencies below the carrier changes with

order n. If the modulation depth β is large, there will be multiple sidebands generated at integer

multiples of the modulation frequency Ω. We can represent the amount of power in the first order

sideband PSB relative to the power in the carrier PC by

PSB
PC

=

∣∣∣∣J1(β)

J0(β)

∣∣∣∣2 . (5.3)

In the limit that β is small, PSB/PC ≈ β2
rms/2 where βrms is the root-mean-square of β. This

is an instructive result because it shows that the amount of power moved from the carrier to the

sidebands is nonlinear in the size of the phase modulation. To illustrate why this can be problematic

in the context of optical harmonic generation, consider the second harmonic gerneration process in

a crystal. The second harmonic field intensity will be proportional to the square of the driving laser

electric field 2 E2ω ∝ E2
ω. Explicity, we have

1 Previously, we used β to refer to enhancement cavity buildup. In this chapter, we use β to mean phase modulation
depth. The choice of using β is based on convention. The meaning of β will be clear from context.

2 Note that this is E2 and not |E|2, a subtle but extremely important difference.



121

E2ω ∝ E2
ω, (5.4)

E2
ω = E2

0e
−i2ω0t−i2β sin(Ωt). (5.5)

There are two important results here. First, the modulation frequency did not change by the

harmonic generation process. Second, the phase modulation depth changed and β → 2β meaning

the amount of power taken from the carrier also changed to PSB/PC → 4PSB/PC . This can be

generalized to higher order harmonics (assuming they are proportional to powers of the electric field)

to be (PSB/PC)qω = q2 (PSB/PC)ω where q is the harmonic order. If the harmonic order becomes

too high, eventually all of the power can be taken away from the carrier. If we imagine that the

φ(t) is no longer a pure sinusoid, but a random process, we can still decompose it into its Fourier

components and we can have a similar expansion as in Eq. 5.2 but for each Fourier component

(we will make this claim more rigorous shortly). What we realize is that with increasing harmonic

order, the amount of power in the noise relative to the carrier will grow quadratically for frequency

doubling.

Instead of dealing with discrete phase modulation frequencies, we can generalize to the case

where φ(t) is a normal, random process. If we want to know how the random phase modulation

affects the pure wave, we often look at the frequency power spectrum to analyze how much power

is at frequencies other than the carrier. The Wiener-Khintchine theorem states that the frequency

power spectrum is just the Fourier transform of the temporal autocorrelation. Explicitly, the electric

field autocorrelation is

R(τ) ≡ 〈E(t)E∗(t+ τ)〉t. (5.6)

Invoking the Wiener-Khintchine theorem, the power spectrum is

PE(ω) =
1√
2π

∫
dτ e−iωτR(τ). (5.7)

We can insert Eq. 5.1 into R(τ) to get
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R(τ) = E2
0 e

iω0τ 〈ei(φ(τ+t)−φ(t))〉t, (5.8)

and using the Gaussian moment theorem [158, 159], we can make the final manipulation

R(τ) = E2
0 e

iω0τeRφ(τ)−Rφ(0), (5.9)

where

Rφ(τ) = 〈φ(t)φ(t+ τ)〉t. (5.10)

Before moving forward, we can identify important characteristics of Rφ(τ). First, if the noise

is random and uncorrelated, Rφ(τ) has an important limiting form of

lim
τ→∞

Rφ(τ) = 0. (5.11)

Secondly, for τ = 0, we have

Rφ(0) = 〈φ(t)φ(t)〉t = 〈φ(t)2〉t = ∆φ2
rms. (5.12)

These conclusions allow us to rewrite R(τ) in the limit of large τ in a very suggestive way. We have

lim
τ→∞

R(τ) = E2
0e
−∆φ2rmseiω0τ . (5.13)

This shows that the amount of power in the carrier is just exp
(
−∆φ2

rms

)
.

We can also define the phase noise power spectral density of the electric field Sφ(ω) using the

Wiener-Khintchine theorem. It is

Sφ(ω) =
1√
2π

∫
dτe−iωτ Rφ(τ) . (5.14)

The phase noise power spectral density is a very useful quantity. Note that is has units of [rad2/Hz].

To illustrate its utility, we assume that our wave has small phase fluctuations. This means that
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both Rφ(τ) and Rφ(0) are small. Starting with Eq. 5.7 and expanding the exponent in R(τ), we

have

PE(ω) =
E2

0√
2π

∫
dτ e−i(ω−ω0)τ (1 +Rφ(τ)−Rφ(0)),

=
E2

0√
2π

[∫
dτ e−i(ω−ω0)τ (1−Rφ(0)) +

∫
dτ e−i(ω−ω0)τRφ(τ)

]
,

=E2
0 [(1−Rφ(0))δ(ω − ω0) + Sφ(ω − ω0)] ,

(5.15)

where δ(ω − ω0) is a Dirac delta functional for ω = ω0. Therefore, we see that the power spectrum

has a coherent carrier at ω = ω0 that is reduced by an amounts ∆φ2
rms. The second part of the

power spectrum is just proportional to the phase noise power spectral density centered at ω = ω0.

The coherence properties of a laser are often parametrize by its linewidth (inverse of the

coherence time). The linewidth is usually defined as the FWHM of the power spectrum. However,

the meaning of FWHM is usually restricted to cases where the function form of the power spectrum

is known (for example, Gaussian or Lorrentzian. See Ref. [158] for limiting cases). A more general

definition of the laser linewidth is therefore desirable. One proposed metric [47, 160] is that the

linewidth is the frequency from the carrier at which half of the power spectrum is located in the

noise and half is in the carrier. We can make this more explicit by using the phase noise power

spectral density

∫ ∞
δω

dωSφ(ω) ≈ 1 rad2. (5.16)

when δω is chosen so the integral totals to 1 rad2, approximately half of the optical power is in the

noise and half in the carrier frequency. We can then define the FWMH as being FWHM= 2δω.

Returning to our earlier example of how the phase modulation depth scaled with harmonic

order, if we start with the premise that φqω0 = qφω0 , that is that the phase of the qth harmonic

advances at q× the phase of the fundamental frequency, our analysis results in that the phase noise

power spectral density of the harmonic tone Sqω0,φ will grow quadratically with harmonic order.

That is
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Sqω0,φ(ω) = q2Sω0,φ(ω). (5.17)

It therefore follows that the linewidth will also grow quadratically with harmonic order. Further,

if Sω,φ(ω) is not sufficiently small before the harmonic generation process, the coherent carrier will

eventually disappear for large q. This is known as carrier collapse [160] and is discussed in detail in

the context for RF oscillators in Ref. [161].

5.2 Noise scaling of high-order harmonic generation

As we have just discussed, in harmonic generation of oscillating signals, the phase noise power

spectral density (and hence the linewidth) is expected to grow quadratically with harmonic order

from the phase noise of the driving laser, even if the harmonic generation process is noiseless [161].

With the XUV interferometer described in Chapter 4, we use the resulting heterodyne beatnotes

presented in Fig. 4.10 to test this assertion for the case of optical HHG. The relative linewidth

between the two XUV sources (refer to Fig. 4.2 for the schematic of the apparatus) is presented in

Fig. 5.1. The linewidth as a function of harmonic order is fit to a quadratic function and excellent

agreement is obtained. For this data, the interferometer is not phase-stabilized and all the beatnotes

are shifted from the MHz frequencies to audio frequencies and analyzed on a FFT machine so a

high resolution signal could be obtained allowing numerical fitting for the linewidth.

For the data in Fig. 5.1, it is worth mentioning that we approximated the linewidth using a

Lorentzian function. However, nearly identical scaling results were obtained if a Gaussian was used.

In reality, neither function perfectly matches our observed power spectrum. This is not surprising

since the relative noise in the interferometer can arise from a wide variety of sources. We refer to

Ref. [158] for examples of when a Gaussian versus a Lorentzian power spectrum is expected. In

general, the power spectrum will be a convolution of these or even more complicated [159, 160].

The phase noise scaling was also tested in an independent way utilizing coherent phase modu-

lation instead of noise. By placing phase modulation sidebands on the driving laser, we observe how
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Figure 5.1: Beat linewidth versus harmonic order to show phase noise scaling. The data is the
same as presented in Fig. 4.10. The interferometer was not actively stablized for this measurment.
The linewidth was approximated with a Lorentzian function, but a similar results was obtained
assuming a Gaussian. The shown fit is to a simple quadratic equation.
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the power in the sidebands changes at various harmonic orders. By phase modulating one arm of

the interferometer and using the heterodyne beat of the driving laser, the phase modulation depth

is determined to be βP1 = 0.049. At the 17th harmonic, we expect this to be β17 = 17 × P1. The

heterodyne beat at the 17th harmonic with the modulation on and off is displayed in Fig. 5.2. A

clear reduction in the carrier power is observed and large phase modulation sidebands are present.

We use Eq. 5.3 to determine that the sideband should be at -6.8 dBc which is in good agreement

with the measured -6.5 dBc. This sort of measurement was repeated at harmonics between 7–17

with good agreement.

The observations with the linewidth scaling and the modulation sidebands indicates that the

HHG process is not adding any additional noise to the laser beyond what is expected by frequency

multiplication. With this, we already have very strong predictive power on what sort of levels of

coherence can be expected in the XUV. For example, if we start with a comb that has a 1 Hz

absolute linewidth, we can expect to have a XUV comb with a linewidth of 441 Hz at the 21st

harmonic or a linewidth of 10.2 kHz at the 101st harmonic.

With our interferometer not actively stabilized, it is equivalent to performing a relative phase

noise characterization between two lasers that have a relative linewidth of about 1 Hz. The 1 Hz

relative linewidth was not deliberate but just the natural manifestation of our apparatus. What

remains to be tested is the following. Imagine our lasers had a relative linewidth of 1 mHz, what

is the linewidth in the XUV? What about 1 µHz? At what level does the HHG process start to

add phase noise beyond what pure frequency multiplication dictates? To answer these questions,

we need the interferometer to be completely phase stable so that the relative linewidth between the

two sources at the driving laser wavelength is non-existent (at least to the degree that we can make

a good phase lock). Fortunately, we have the ability to do exactly that.

5.3 Testing the limits of coherence in the extreme ultraviolet

As previously described in Sect. 4.2.1, we use the heterodyne beat from the driving laser at

1 MHz to actively phase stabilize the relative path lengths of the two arms in the interferometer.
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Figure 5.2: The 17th harmonic with and without the presence of phase modulation on the driving
laser. A clear reduction in the carrier is present. The size of the phase modulation sidebands at
the 17th harmonic is consistent with the measured sidebands of the driving laser. The modulation
sidebands were places on the driving laser by the AOM used as a beam splitter for the interferometer.
The data is shown on a 30 Hz resolution bandwidth.
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The feedback loop parameters were chosen to have a deliberately low feedback bandwidth as to

not interfere with any subsequent and deliberate laser modulation (amplitude or phase). Since the

noise in the interferometer was already made small at low frequencies due to its passive stability,

a high bandwidth feedback loop was not necessary to remove most of the noise. Fig. 5.3a,b show

the heterodyne beat between the driving laser with the interferometer unstabilized and stabilized,

respectively. Only a subtle change is observed due to the action of the phase lock, but it is clear

that the fluctuations have been removed. Fig. 5.3c,d show the results of the heterodyne beats for

the 17th harmonic with the interferometer unstabilized and stabilized. The change is much more

dramatic and note the difference in the x-axis of the plot. The beat in Fig. 5.3d appears to be a

δ-function and its narrowness is limited by the observation time. This is often referred to as being

limited by the resolution bandwidth. For this data, the resolution bandwidth was 1 Hz and this

level of coherence was confirmed at all harmonics from the 3rd to the 19th. We can further increase

the observation time of the heterodyne beat to 16 seconds. Fig. 5.3f shows a near resolution limited

beat of 62.5 mHz. This linewidth implies a coherence time of 16 seconds. This also demonstrates

that we were able to maintain perfect phase stability for over 109 optical pulses at our repetition

rate of 154 MHz. At this level of investigation, we do not observe any deleterious effects to the

phase coherence from the HHG process, a testament to its coherence maintaining properties despite

its enormous nonlinearity. We also confirmed that our observation was not a coincidence of picking

the same nonlinear medium for both cavities (in this case xenon). By injecting xenon into XUV1

and krypton into XUV2, we observed a 1 Hz resolution limited beat at the 15th harmonic, again

limited by the resolution bandwidth of this measurement.

Coherence at the 62.5 mHz level is great news for future prospects of performing high-

resolution spectroscopy in the XUV. The best available lasers in the near IR have linewidths down

to 30 mHz [80]. Assuming we discipline our driving laser to this, we can expect to start with a

frequency comb with comparable linewidth. Due to the quadratic scaling of the phase noise, we

expect to have a linewidth of 8.7 Hz at the 17th harmonic. The data presented in Fig. 5.3 shows

that the XUV frequency comb can indeed support this level of coherence. Current laser technology
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Figure 5.3: Ultra narrow heterodyne beats test XUV comb coherence at long time scales. a) and
b) show the beatnote between the driving laser with the interferometer unstabilized and stabilized
respectively. A subtle change to the IR heterodyne beat power spectrum is observed. c) and d)
show the beatnote between the 17th harmonic with the interferometer unstabilized and stabilized
respectively. A dramatic difference is observed. Note the difference in the x-axis of the plots. We
can further zoom in to d) and uncover an ultranarrow beat, resolution limited at 62.5 mHz in
f). To show that the observed heterodyne beats were possible if different gases were used, the
15th harmonic beat between XUV1 making harmonics in xenon and XUV2 making harmonics in
krypton is shown in e) with a 1 Hz resolution bandwidth limited heterodyne beat. At 1 Hz, the
XUV frequency comb already exceeds the capabilities of current laser stabilization techniques in
the visible and near-infrared. RBW, resolution bandwidth.
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(in terms of linewidth) would need to improve by nearly two orders of magnitude to justify testing

the XUV comb linewidth beyond the level presented here. Our result of no additional noise at the

62.5 mHz level is eight orders of magnitude better than previous demonstrations [52, 56, 87].

5.4 Measurement of intensity dependent dipole phase

Access to phase-stable light in the XUV opens up many exciting possibilities. For example,

two-dimensional spectroscopy in the XUV, XUV holography, and of course, high-resolution spec-

troscopy. To demonstrate the power of having access to optical phase in the XUV, we decided

to investigate one of the most salient features of HHG presented in Sect. 3.1.3. The quantum

description of HHG predicts that the phase of the XUV light will be linked to the driving laser

intensity. The relationship is parametrized as φ = −αjI/4ω3, where αj is the coupling constant

and the index j refers to the index of the different possible quantum paths (typically, just the short

and long trajectories). Ref. [87] established that below threshold harmonics contained both long

and short trajectory contributions to the overall HHG yield. The investigation relied heavily on

theory to extract values for αj but was nevertheless successful. Most investigations of the intensity

dependent dipole phase of above threshold harmonics rely on the interference of the long and short

trajectories with each other, and rarely direct, independent investigation of an isolated trajectory

was performed [87, 162]. Our heterodyne interferometry scheme has the ability to isolate the short

trajectory by observing the heterodyne beats directly on axis where the contribution from the long

trajectory is expected to be very negligible due to its much larger diffraction angle in the far field

and its reduction due to macroscopic phasematching. With systematic variation of the laser inten-

sity, phase shifts on the heterodyne beats can be linked directly to this sub-laser cycle (and hence

attosecond timescale) physics of HHG.

To illustrate the principle of this measurement, Fig. 5.4 shows the heterodyne beats at the

15th harmonic and at the fundamental at two different intracavity laser powers. The 15thharmonic

in Fig. 5.4a shows a clear phase shift (and slight reduction in beat power) as a laser intensity is

changed while there is hardly a difference in fundamental shown in Fig. 5.4b. The phase shift in the
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Figure 5.4: Heterodyne beats at 15th harmonic and fundamental in the time domain for two
differrent laser powers shown in a) and b) respectively. The phase shift in the XUV is clearly
present while there is virtually no detectable phase shift at the fundamental beat (due to the
phaselock).
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15th harmonic originates from the intensity dependent phase. However, one must be very careful in

a measurement like this. For example, by changing the laser intensity, we may inadvertently change

the driving laser phase. Since we have already established that small phase shifts at the fundamental

scale with harmonic order in the XUV, small perturbations can be very important. Therefore, we

will rely on modulation techniques and lock-in detection methods to make measurements of the

intensity dependent phase. Simultaneous monitoring of the XUV beats and the fundamental beat

will be necessary to correct the signal for any parasitic phase modulation on the fundamental. The

schematic for the modulation/demodulation scheme is shown in Fig. 5.5. As describe earlier, an

additional AOM is placed in the beam path to act as an amplitude modulator. The following section

will describe the signal extraction and analysis scheme.

5.4.1 Theory of measurement

By trying to measure the intensity dependent phase that results from HHG, we are effectively

measuring the AM-PM coupling with the AM (amplitude modulation) being on the driving laser

and the PM (phase modulation) being on the XUV light. We can mathematically describe a beat

signal as

S(t) = (1 + ASin(Ω t+ φm))Cos(ω t+ PSin(Ω t+ φm)). (5.18)

ω is the frequency of the beat and Ω is the frequency of the applied modulation and φm is its phase.

A is the amplitude modulation depth and P is the phase modulation depth. The phase response

is directly proportional to the amplitude response, when we assume that these two response are

in phase with each other. Each beatnote is characterized by its own values for A and P. To avoid

confusion, the subscripts will refer to the signal it represents. For example, AIR is for the amplitude

modulation of the driving (fundamental) laser and Pq is the phase modulation of the qth harmonic.

Our task is to determine the values for A and P at the fundamental and the harmonics. By taking the

ratio of Pq to AIR and using proper units, we can extract the intensity dependent phase coefficient
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Figure 5.5: Detailed schematic of the measurement scheme for the intensity dependent dipole phase.
AOM, acousto-optic modulation. AM, amplitude modulation. Ω, the modulation frequency. DET,
photodetector. φ, a phase shifter in the RF signal chain. The dashed lines represent the signal chain
for the fundamental detection and the solid lines represent the signal chain for harmonic detection.
It is very important that the interferometer is phase stabilized during the data detection process lest
the double demodulation scheme will not work. It is also important that all RF sources involved in
the heterodyne beats and interferometer stabilization are mutually phase coherent.
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αj .

We need to extract the relevant parameters of Eq. 5.18 at both the harmonic of interest and

the driving laser simultaneously. To do this, we use a two step demodulation process. By taking

Eq. 5.18 and mixing it with a stable RF signal (LO1) at a frequency of ω and relative phase offset

φ, we get

S(t)⊗ V1Cos(ω t + φ) = S1(t) (5.19)

S1(t) ≈ V1(Cos(φ)− AP
2

Sin(φ) + ACos(φ)Sin(Ω t+ φm)− PSin(φ) Sin(Ω t+ φm)). (5.20)

Where we have ignored terms at 2ω. We can further low pass the signals at Ω and obtain a “DC"

signal

S1(t)
Low Pass→ SDC = V1(Cos(φ)− AP

2
Sin(φ)). (5.21)

Eq. 5.21 will be one of our primary signals. Note that the phase is set by the phase of LO1. This

also assumes that the phase of the XUV beat is stable. This is true if we phase stabilize our

interferometer which we do for this measurement.

The signal S1(t) contains terms that oscillate at the applied modulation frequency Ω. We can

demodulate our signal once more at the correct phase φm and ignore terms at 2Ω to obtain

S1(t)⊗ V2Sin(Ωt+ φm) = SLIA ≈ V1V2A (Cos(φ) − P
A

Sin(φ)) (5.22)

SLIA is our second signal. With Eq. 5.21, Eq. 5.22 and some independently measured parameters,

we can extract our parameters of interest.

By applying AM to the pump laser on one arm of the interferometer, we can control AIR very

well. It is also easily measured with a photodetector. By varying the phase of LO1, we can measure

SDC and SLIA (Eq. 5.21 and Eq. 5.22) simultaneously. With the modulation (A,P) turned off, SDC
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tells us the phase of the beat. With the modulation on, the relative phase between SDC and SLIA

can tell us the ratio of A/P. Since A can be measured independently, we can extract the amount

of phase modulation, P. This procedure needs to be done with the IR signal and the XUV signal

simultaneously recorded to prevent any systematic errors. Due to the nonlinear nature of HHG,

simply measuring AIR and PIR does not give us enough information about the XUV light. This is

because AIR 6= Aq. However, as we discovered in our linewidth studies Pq = q × PIR. This will be

an important point for calibrating our signal.

To measure the AM-AM coupling, we can use our beat signals. Our XUV beatnotes are

directly proportional to the amount of XUV power in each beam. The amount of beat power can

also be easily measured on an RF spectrum analyzer. By changing the amount of power in one of

the fsECs and observing how the beat power changes, we can determine how much the XUV power

must have changed for a given laser intensity change. Since Aq is no longer a fit parameter, we can

use the measurements of SDC and SLIA with the XUV signal to extract Pq. Once we have both Pq

and AIR, we need to correct the measurement of Pq to account for any small amount of PIR that

may have been in the system. We do this by simply Pq → Pq − q × PIR. This is to remove any

residual phase modulation that does not originate from the dipole response in HHG. From here, we

can take the ratio of Pq/AIR and scale by appropriate units to determine αj .

5.4.2 Measurement systematics

In order to determine αj , we need to determine AIR, PIR, φIR, Aq, Pq, and φq. It is easy

to directly control and measure AIR, but due to various imperfections in the system, attempts

to put pure amplitude modulation on the IR light results in small amounts of PIR. However, by

measurements of SDC and SLIA with the IR signal, we can extract the amount of PIR and use it to

correct our system. This is important to do because Pq = q×PIR and this Pq does not originate

from the atomic dipole phase of interest. This is just a manifestation of how the phase of the XUV

light is tied to the phase of the IR light via the harmonic process. Modulating the intensity has

notable effects on the neutral/plasma density ratio inside the fsEC. However, the modulation is slow
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(at 2 kHz) and the PDH lock can easily follow it to maintain resonance. Due to the neutral/plasma

density changes, there is a small amount of PM induced by AM on the driving laser. This was verified

by measuring the effect of AM with gas present and absent. This can easily corrupt the intensity-

dependent phase measurement and necessitates the correction described previously. Furthermore,

any cavity oscillation due to bistability [114] can render the signals too noisy. Further, to avoid

the aforementioned bistability, we deliberately lock the laser off the peak of the cavity resonance by

adding a small DC offset to the PDH error signal. This is problematic because as the amplitude

of the driving laser is modulated, so will the size of the PDH error signal be modulated. The

effective detuning from the laser to the cavity resonance is set by the ratio of the DC offset value

to the peak-peak value of the PDH signal. This is now dynamically modulated by our imposed

AM and thus the cavity/feedback loop is now converting this to PM by modulating the cavity-laser

relative detuning. This was systematically measured on both the fundamental and harmonic light to

ensure proper correction and no nonlinearity. A final systematic check was performed with “dummy

signals” originating from RF synthesizers. The dummy signals were injected into the electronics at

the location of the photodetectors. The signals were then analyzed by the electronics to ensure no

artificial AM-PM couplings due to nonlinearities in either the lock-ins or the RF mixers. Similarly,

AM-PM conversion of the photodetectors was also verified to be of negligible sizes by studying their

response to controlled light amplitude variations.

5.4.3 Results and data analysis

The results of the intensity dependent phase measurement for harmonics 3–17 are shown in

Fig. 5.6. This is the main result of our attempt to measure the intensity dependent dipole phase.

The laser peak intensity was 0.34× 1014 W cm−2 with an intensity modulation of 15%. Each data

point is determined by fitting ∼ 10 runs of beat measurement. By combing multiple runs of data,

we can construct a weighted average and determine a final value for αj at a given harmonic. The

case of the 15th harmonic is shown in Fig. 5.7. The error bars seem to be larger than the actual

scatter of the data. This just means there is some “over-scatter” indicating we did not make a large
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Figure 5.6: Data summary of the intensity dependent dipole phase as a function of harmonic
order. The purple regions is where the SFA predicts the values to lie for above-threshold harmonics.
The gray regions is where the near-threshold harmonics are expected to lie. The sign depends on
contributions from uphill or downhill over-the-barrier ionization trajectories.
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enough statistical average for each run, but clearly the systematics were small. Normalizing the

final error bar by the χ2
red will account for this. An example of an individual run of data for the

IR and the 15th harmonic data is shown in Fig. 5.8. The data is displayed as signal voltages as a

function of φ (the phase of the LO1). From these two traces and the measured value of AIR, we can

measure any unintended PIR. Each run yields a value of αj with an error bar determined by the

statistical noise in the data. All the data is then fit to a standard mean, weighted by the standard

uncertainty of the individual fits to αj , and an error bar is given by the standard error of the pooled

data normalized to the χ2
red of the fit to a constant.

5.4.4 Conclusion

Our data, summarized in Fig. 5.6, shows the intensity dependent dipole phase as a function

of harmonic order from below-threshold to above-threshold. Our method of measurement is unique

because it directly determines the contribution of the short trajectory by sampling of optical phase

and does not rely on spatial interference between multiple pathways. It is complementary to RAB-

BITT and related methods based on photoelectron spectroscopy [72, 163], which seek to determine

the time delay (or equivalently phase shift) between adjacent harmonic orders at a given intensity.

Our data also has the ability to help distinguish important aspects of near-threshold harmonic

generation. For example, in the theory work of Ref. [121], the treatment of the atomic potential and

ionization dynamics is very important for determining the intensity dependent phase of the near-

threshold harmonics. By using the semi-classical model (SCM) or using over-the-barrier corrections

(OTB), the sign of the intensity dependent phase parameter αj can change and the trajectory

contributions are modified. Our data is more consistent with theory when the OTB corrections

are included. This confirms the claim that short trajectories of the below-threshold case do not

originate from tunnel ionization, unlike short trajectories of the above-threshold harmonics which

do originate from tunnel ionization. We previously presented Fig. 3.4 that shows the difference

between the SCM and OTB case.

Our phase measurement technique is able to resolve phase shifts with uncertainties at the 10−2
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Figure 5.7: A dataset for the intensity dependent dipole phase measurement at the 15th harmonic.
a) The raw phase modulation depth of the 15th harmonics. b) The scaled phase modulation depth.
The scaling factor is determined from the amount of phase modulation present on the fundamental
light which is shown in c). d) The total dataset for the 15th harmonic with a fit shown in red. The
mean values and the χ2

red normalized standard error is reported in the inset.
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LO1 Phase [rad] LO1 Phase [rad]

LO1 Phase [rad]LO1 Phase [rad]

Figure 5.8: An example of a single data run measuring the intensity dependent dipole phase at
the 15th harmonic. The phase of LO1 is scanned as the voltages from the DC detector and the LIA
are measured. a,b) contains the DC signal for the fundamental and the 15th harmonic respectively.
c,d) contains the LIA signal for the fundamental and the 15th harmonic respectively.
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rad level, which corresponds to a time uncertainty of 6 as. In contrast to typical experiments that

utilize direct attosecond timing resolution, we measure the attosecond electron dynamics imprinted

on the phase of the emitted XUV light originating from HHG. With system improvements, it is

feasible to extend this into the ≤1 as regime, rivaling the highest achievable temporal resolution

of attosecond electron dynamics provided that a direct link between XUV phase and time can be

established.

To conclude this detour into attosecond physics, our apparatus provides a unique ability to

directly sample optical phase in the XUV. We performed a proof of principle experiment where

we measure the intensity dependent dipole phase from below-threshold to above-threshold. Our

technique can be further extended to probe attosecond physics in other atomic samples or aligned

molecules.



Chapter 6

Strong-field physics with molecules

The motivation for studying strong-field physics of molecules is based on the success of Chap-

ter 5 where we were able to extract the intensity dependent dipole phase, a signature of the strong-

field light-matter interaction responsible for HHG. The hope is that we can do similar work with

molecules and investigate HHG physics as a function of molecular alignment and laser intensity,

for example. The work of Ref. [164] essentially started the field of high-harmonic spectroscopy

for molecular orbitals. The current status of the HHG spectroscopy/attosecond science is well

summarized by a series of review articles [165–168]. An interesting perspective of high harmonic

spectroscopy from someone at the frontline of the high harmonic spectroscopy battleground is in

Ref. [169]. We seek to offer a clean, highly sensitive measurement of HHG phenomena and without

the need to invoke too complicated theories.

6.1 Impulsive stimulated Raman scattering

Raman scattering and stimulated Raman scattering (SRS) [170] are ubiquitous processes in

optical science. Some notable examples include manipulation of ultracold molecules [171], nonlin-

ear spectroscopy [172] and microscopy [173], and ultrafast molecular phase modulators [174]. Of

particular interest for ultrafast science is the use of SRS as an ultrafast phase modulator capable

of generating multi-octave spanning optical spectra [174, 175]. The resulting spectrum is capable

of supporting sub-fs optical pulses [176] or generating complex optical waveforms [177]. In these

experiments, intense, short laser pulses are ideally suited to investigate SRS and use SRS as a tool
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to manipulate optical fields. SRS generates a coherent vibration or rotation in a molecular sys-

tem (typically H2 or isotopologues). The molecular vibration or rotation modulates the index of

refraction in the gas, producing sidebands at the corresponding frequencies.

In some SRS experiments, two separate pulses of∼ns−ps durations at two different frequencies

are used to stimulate the Raman responses from the molecules. These long pulses operate in the

adiabatic regime where the modulation process persists during the entire laser pulses. However,

with a broad spectrum being generated from the modulation process, trains of ultrashort (possibly

sub-fs) pulses may emerge within the long parent pulses [174]. It is also possible to perform SRS with

pulses of ∼fs durations. In this regime, known as impulsive stimulated Raman scattering (ISRS), a

single pulse has a sufficiently wide spectral bandwidth to provide Raman coherence. Unlike the case

with longer pulses, the coherent vibration or rotation can persist long after the pulse has passed

through the molecular sample [178]. On a rotational excitation, this is field-free molecular alignment

(FFMA) in the ISRS limit [179, 180].

Impulsive, field-free molecular alignment has greatly aided the study of molecular systems

because it is a simple and robust way to create an aligned molecular sample in the absence of

any electromagnetic fields [179, 181]. The impulsive molecular phase modulation has also been

demonstrated to produce ultrashort laser pulses [182]. More importantly, this technique has led to

major advancements in strong-field physics with high-order harmonic generation (HHG) experiments

performed in molecules [163, 164, 183, 184]. In the impulsive regime, the pulse duration is much

shorter than the characteristic vibrational or rotational period of the system. Therefore, assumptions

made in describing adiabatic SRS are no longer valid. The impulsive nature has important effects

on the driving laser [178, 185, 186]. The laser pulse experiences a self-phase modulation-like process,

which leads to a red-shifting of the original optical spectrum. This features is distinct from SRS

in the adiabatic regime [178, 185, 186]. Impulsive FFMA also has important consequences for

strong-field physics [163, 164, 179, 183] since the HHG-producing laser pulse will experience spectral

and phase shifts related to ISRS during the HHG process. Indeed, we can now provide a clean

measurement of this effect with our fsEC approach.
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6.2 Field-free molecular alignment

Field-free molecular alignment is an elegant way to use ultrashort laser pulses to coherently

excite molecules such that at later times after the initial excitation the molecular axis will become

periodically aligned with respect to the laser polarization. This method is not restricted to linear

molecules, but for this work we will focus on those solely. Here, we briefly outline the basic formalism

of FFMA for linear molecules as it pertains to our experiments. A more detailed treatment can

be found in Ref. [179, 180]. During the laser pulse interaction with the molecules, the effective

Hamiltonian is,

Heff (t) =
B

~2
J2 − 1

4
∆αE2(t)cos2θ. (6.1)

Here, B is the rotational constant, J is the angular momentum operator, E(t) is the electric field,

and θ is the angle between the primary molecular axis and the laser polarization. The anisotropic

polarizability ∆α is defined as ∆α = α||−α⊥, where α||−α⊥ are the polarizabilities of the molecule

parallel and perpendicular to the molecular axis, respectively. The time-dependent Schrödinger

equation can be solved by expanding the wave function in the rigid rotor basis, and the degree of

alignment can be quantified by the expectation value of 〈cos2θ〉 = 〈ψ(t)|cos2θ|ψ(t)〉. To compare

with experiments, gas samples usually begin in thermal equilibrium, so the expectation value of

〈cos2θ〉 needs to be thermally averaged, denoted as 〈〈cos2θ〉〉 (this will be described shortly). In

the rigid rotor basis, the cos2θ operator can connect only J → J ′ = J, J ± 2 in a two-photon,

Raman-like process. The molecules receive an impulsive kick from the field, and many rotational

states are coupled owing to the large bandwidth associated with the short pulse. After the pulse

has passed through the gas target, the molecular wave function then evolves freely as

ψ(t) =
∑
J,M

a′J,Me
−iB~ J(J+1)t|J,M〉, (6.2)
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where a′J,M is the amplitude of the |J,M〉 state right after the interaction with the pulse has ended.

Eq. 6.2 shows that the laser pulse has created a coherent superposition of rotational states that

evolve coherently after the pulse. It is evident that at time t = 2π ~/B and its integer multiples,

the wave function will repeat itself. At these wave-packet revival times, the 〈〈cos2θ〉〉 expectation

value will be maximized. The thermal average to obtain 〈〈cos2θ〉〉 is performed in the usual way by

〈〈cos2θ〉〉 = Z−1
∑
J

exp
[
−BJ(J + 1)

kBT

] M=J∑
M=−J

〈cos2θ〉J,M , (6.3)

where Z is the rotational partition function, kB is the Boltzmann constant, and T is the rotational

temperature. The rotational partition function is given by

Z =
∑
J

wJ(2J + 1)exp
[
−BJ(J + 1)

kBT

]
, (6.4)

where wJ is the weight of the J th energy level determined by nuclear statistics. Despite the thermal

nature of the gas jet we are attempting to align, the coherences are still present as manifested by the

dynamic evolution of 〈〈cos2θ〉〉. There may be times of strong alignment at fractions of t = 2π ~/B

that depend on the molecule under investigation [179, 180].

To illustrate the alignment phenomena, a numerical implementation is shown in Fig. 6.1. For

Fig 6.1a,b a 5 TW cm−2 laser pulse of 130 fs duration and a rotational temperature of 70 K was

assumed for N2 and N2O respectively. The field-free evolution is shown after the laser pulse at t = 0.

A list of common molecular parameters is shown in Table 6.2 for reference. It is clear that the N2

and N2O have quite different behaviors. The obvious features are the different timescales for the

dynamics which is due to the difference in rotational constants. Further, the degree of alignment is

stronger in N2O because of the larger anisotropic polarizability. A more subtle differences is that

N2O only has full and half revivals while N2 has full, half, and quarter revivals. This difference is

due totally to nuclear statistics.

Impulsive FFMA can also have important consequences for precision studies of strong-field

physics [163, 164, 179, 181, 183, 184, 187] in aligned molecules since the HHG-driving laser pulse
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N2

N2O

Figure 6.1: Rotational revivals shown for N2 and N2O in a) and b) respectively at 70 K interacting
with a 5 TW cm−2, 130 fs pulse. The expectation value 〈〈cos2θ〉〉 is plotted as a function of field-free
evolution time.
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XUV

IR
1/154 MHz = 6.5 ns

~ 10 ps

~ 120 fs

HR

PR

QWP

PBS

a)

b)

Figure 6.2: a) Schematic of the experiment. A high repetition-rate train of dual pulses, one
for alignment and the second for HHG, are coherently coupled into a high-finesse, femtosecond
enhancement cavity. At the focus of the cavity, the molecules are aligned by the first pulse and
high-order harmonic generation is performed by the second pulse. The XUV light can be extracted
from the cavity using a sapphire plate placed at Brewster’s angle for the driving laser. b) The dual
pulse feature of femotsecond pulse train is produced from a Gires-Tournois interferometer, with a
tunable delay between the two pulses. HR, high reflector. PR, partial reflector. QWP, quarter
waveplate. PBS, polarizing beamsplitter.
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Molecule B(cm−1) Trot(ps) ∆α(Å3) Ip (eV) wJ (even J) wJ (odd J)

N2 1.9896 8.383 0.93 15.58 2 1
O2 1.4297 11.67 1.099 12.07 0 1
N2O 0.4190 39.8 2.8 12.89 1 1
CO2 0.3902 42.74 2.11 13.78 1 0

Table 6.1: A table containing the rotational constants, rotational periods, anisotropic polarizabil-
ities of common molecules used in field-free molecular alignment.

will experience spectral and phase shifts related to ISRS during the HHG process. Despite FFMA

being a well understood phenomenon [179, 181], the effects on the driving laser originating from

ISRS are often ignored in HHG and FFMA experiments due to their small effects when thin,

freely expanding gas targets are used at low densities. However, in the cavity-enhanced approach

described here, we are more sensitive to the effects of ISRS on the driving laser due to the cavity

effectively increasing the interaction length of our sample by a factor proportional to the cavity

finesse. Indeed, we can now provide a clean measurement of the effects of ISRS with our fsEC

approach while maintaining otherwise similar experimental conditions to conventional molecular

HHG experiments. Our measurements indicate that modulations (amplitude and phase) of the

driving laser cannot be ignored in future experiments utilizing fsECs and must be characterized to

properly describe the XUV frequency comb spectral amplitude and phase.

6.3 Field-free molecular alignment experiments

The apparatus is schematically shown in Fig. 6.2. The intracavity pulse duration is veri-

fied with second-harmonic intensity autocorrelation. The intracavity spectrum is measured with

an optical spectrum analyzer using the light transmitted through a cavity high-reflecting mirror.

Performing HHG with aligned molecules requires two successive pulses, the first to rotationally

excite the molecules and the second to drive HHG (henceforth, pump and probe respectively). To

accomplish this goal, we use a mirror combination similar to a Gires-Tournois interferometer (GTI)

to convert the original laser pulse train into two with a tunable timing delay, schematically shown in

Fig. 6.2 b). The combination of a partial reflector (R ≈ 0.1) and a high reflector (R ≈ 1) along with
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a quarter (λ/4) waveplate and a polarizing beamsplitter cube generates the dual-pulse train. This

combination of optics also generates weaker pulses after the probe pulse, but these do not affect the

rotational dynamics generated by the pump and observed by the much larger probe. Additionally,

the GTI combination of optics is more efficient in generating the pulse train than a more traditional

Michelson-type interferometer that relies on polarization optics. By tuning the value of the partial

reflector, the relative heights of the pump and probe can be adjusted. By simply changing the dis-

tance between the partial and high reflector, the timing delay between the pulses can be tuned. The

pulse train after the GTI combination was analyzed with second-harmonic intensity autocorrelation

to ensure the pulse separation and ultrashort pulse durations were maintained. For our experiment,

the intensity ratio of alignment pulse (pump) to HHG-driving pulse (probe) is 1:8; however, this

value can easily be varied from 1:3 to 1:30 limited only by the available PR mirrors. The pulse train

is coherently coupled into the fsEC, and at the cavity focus we inject N2O gas through a quartz

nozzle with a ∼ 120 µm diameter with up to ∼ 3 atmospheres (atm) of constant backing pressure.

XUV light produced with HHG is outcoupled from the cavity using a 250 µm thick sapphire plate

placed at Brewster’s angle for the fundamental driving laser.

6.3.1 Single-pulse case

We begin with investigating the effects of a single pulse propagating and interacting with an

N2O gas jet inside the fsEC. N2O was chosen because of the relatively large anisotropic polarizability

to facilitate alignment, the small rotational constant to create a large delay between revivals, and

the low ionization potential to facilitate observation of above-threshold harmonics. We estimate

the rotational temperature of the N2O gas to be 30-60 K [133]. The pulse has a peak intensity

of 0.7× 1014 W cm−2 in the absence of molecules. We monitor both the intracavity spectrum and

power as a function of the applied pressure to the gas nozzle. As shown in Fig. 6.3, we observe a

clear red shift of the spectrum, accompanied with a systematic decrease of the power. The power

decrease results from spectral red-shifting decreasing the enhancement of the cavity and not from

light scattering out of the cavity. The red shift by ISRS is contrary to what is usually observed
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Figure 6.3: a) Pressure dependence of the buildup power when a single pulse is interacting with
molecules inside the cavity. As the N2O pressure is increased, a decrease in the intracavity power is
observed due to loss of power enhancement in the cavity. A trend line is shown with the data. The
loss is due to the spectral red-shift from ISRS. b) The intracavity spectrum exhibits a clear shift to
the red when gas is present, a signature of impulsive stimulated Raman scattering. The red shift
is dominant even in the presence of strong ionization, which would shift the spectrum to the blue.
The red shifted spectra corresponds to the data in a) at 1.7 atm of applied pressure. An interesting
application of the spectral red-shift could be to counteract the spectral blue-shift of ionization to
aid in maintaining high buildup during HHG in atomic systems.
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– spectral blue shift – when a femtosecond pulse propagates through field-ionizing media [114]. This

demonstrates that ISRS has a more dominant effect on the pulse when interacting with N2O at these

intensities and densities. The red shift is a manifestation of energy transfer from the field to the

molecular rotations.

6.3.2 Multi-pulse case

We proceed to inject two pulse trains into the fsEC. The first pulse (pump) excites a rotational

wave-packet. The second pulse (probe) is of greater intensity and generates high-order harmonics.

We observe two important features as a function of delay between the two pulses. First, the HHG

yield of the probe pulse is modulated at the revivals of N2O (more on this in Sect. 6.4). Second,

thanks to the cavity-based measurement and the multi-pass effect, we observe clear effects of the

pump pulse on the probe pulse that occur at the rotational revivals of N2O. We observe these effects

by monitoring the intracavity spectrum and power relying on the fact that the intracavity spectrum

is dominated by the much more intense probe pulse and that the delay-dependent effects can only

affect the probe. The effects on the probe pulse persist even if the probe intensity is too weak for

appreciable HHG ( < 0.2× 1014 W cm−2) further showing that the observed modulations are not

purely an ionization related phenomena.

The effects on intracavity power are presented in Fig. 6.4. At ∼20 ps and ∼40 ps of delay

between the pump and probe, the half- and full-revival of N2O alignment, respectively, modulate

the intracavity power of the probe, as shown in Fig. 6.4a,b. The intensity uncertainty is ∼ 1%. This

power modulation is related to spectral shifts of the intracavity spectrum, shown in Fig. 6.5a,b as a

function of pump-probe delay for the half- and full-revival respectively. The dominant contribution

to the modulations in the power arises from the reduced overlap between the intracavity comb and

the incident probe. The center of the intracavity spectrum shifts as the delay is scanned, along with

the corresponding intracavity power, as shown in Fig. 6.5a,b. The conditions for the half-revival

and full-revival data were the same as Fig. 6.4a,b at 2 atm of nozzle backing pressure. The increase

in intracavity power occurs with a slight blue-shift in the spectrum and the decrease with a slight
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Figure 6.4: a,b) The effects of the half-revival (a) and full-revival (b) on the probe pulse as a
function of pressure on the intracavity power. The signal is normalized to the baseline (∼ 16 ps and
∼ 36 ps, respectively) and offset vertically for clarity. The pressure reflects what is applied to the
120 µm diameter quartz nozzle. c,d) The size of the half (c) and full (d) revival signals, determined
with |max(signal)-min(signal)| of the revival structure. The dependence of the signal size on sample
density is fit to a linear function.
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red-shift. When the laser spectrum shifts to the blue, the spectrum becomes closer to the empty

cavity case. The improved overlap leads to an increase of the intracavity power. Conversely, a

red-shift reduces the spectral overlap further and the intracavity power decreases. It is important

to note that in the single pulse case (e.g., Fig. 6.3), only red shift of the spectrum is observed

because only one laser pulse interacts with the target. However, with the combination of pump and

probe pulses, we measure the effects on the probe field. The molecular alignment/coherent rotation

can transfer energy back and forth between the molecule and the probe field, depending on the

pump-probe delay time [178].

To provide a systematic investigation of the intracavity response, we have measured its de-

pendence on a number of important parameters including the target gas density and pump/probe

intensities. As the molecular density is increased, we observe a linear increase in the size of the

revival effect on the intracavity power (measured by |max(signal)-min(signal)| of the revival struc-

ture), as shown in Fig. 6.4c,d. This dependence is consistent with ISRS [178]. We also see a linearly

increasing response as either the pump or probe is increased independently. This effect is also con-

sistent with ISRS and the degree of alignment 〈〈cos2θ〉〉 increasing linearly in the small intensity

limit. These observations have been verified by numerically simulating the alignment process.

To complete our investigation of the field-molecule interaction, we use the observed spectral

shifts to estimate the effects of ISRS on the phase of the probe pulses. We determine the phase shifts

by analyzing the measured central wavelength of the intracavity spectrum as a function of pump-

probe delay. The delay dependent spectral shifts are smaller than the red-shift observed when the

gas is introduced (see Fig. 6.3b.). The spectral shifts and their corresponding intracavity power are

shown in Fig. 6.5a,b for the half- and full-revival respectively. Using the relation ω(t) = ω0 +dφ/dt,

we extract the phase dependence as a function of delay [188]. The phase shift results are shown in

Fig. 6.5c,d for half- and full-revival respectively. Large phase shifts are introduced to the driving

laser. This will be important to understand and control for experiments with HHG because small

phase shifts on the pump will be transferred to the harmonic light and scale with harmonic order

(as discussed in Chapter 5).
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Figure 6.5: a,b) The intracavity central wavelength and the intracavity power are shown as a
function of pump-probe delay for the half-revival (a) and full-revival (b) of N2O. c,d) The phase as
a function of delay for the half-revival (c) and full-revival (d) of N2O respectively using the relation
ω(t) = ω0 + dφ/dt. The conditions for the data were the same as Fig. 6.4a,b with 2 atm of pressure
for the half-revival and full-revival data.
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6.4 High-order harmonic generation with molecules.

With this clear determination of the molecular alignment effect on the probe pulse that is

used to drive HHG, we now turn our attention to the measurement of the HHG yield as a function of

molecular alignment. A pump pulse of 7.5× 1012 W cm−2 is used to prepare a rotational wavepacket

before a probe pulse of 0.6× 1014 W cm−2 is used to perform HHG. The total yield of harmonics

15 - 19 is detected simultaneously with an electron multiplier as the delay between the pump and

probe pulses is scanned. These harmonics are isolated with an aluminum filter and the bandwidth

of our B4C optics. The data is documented in Fig. 6.6. The XUV yield is normalized to the baseline

at t ∼ 5 ps. The delay is scanned continuously at a rate of at 1 ps/s and no averaging of the data

is performed besides low-pass filtering at 300 Hz. Further averaging could be performed to improve

signal to noise and is not presented here. In Fig. 6.6b, we report the observation of a nearly 50%

modulation in the XUV yield. The XUV yield is shown with the 〈〈cos2θ〉〉 expectation value for

reference. The similarity between the data and 〈〈cos2θ〉〉 is expected when the harmonics are far

from an interference region [189, 190]. This XUV yield does not mimic the effect on the driving

laser, meaning that the modulation in the XUV yield are not driven by modulation in the driving

probe power but is an intrinsic signal from the molecular dynamics. With our fsEC apparatus we

are easily able to achieve probe intensities of 1 × 1014 W cm−2 and we have also performed HHG

experiments with molecules of higher ionization threshold such as CO2 or harder to ionize molecules

like O2 and observed similar modulations in the HHG yield arising from rotational revivals. We

also observed a weaker harmonic modulation from O2, but O2 proved to be much harder to ionize

than the Ip suggests resulting in lower harmonic yields and a much noisier signal.

6.5 Future potential of cavity-based field-free molecular alignment

Observing HHG from aligned molecules at high repetition rates opens exciting avenues for

probing molecular rotational dynamics [184, 191] with more rapid data acquisition and increased

measurement precision. It may also be possible to enhance the degree of alignment with repetitive
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Figure 6.6: a) High harmonic signal generated from aligned N2O molecules. Harmonics 15-19 are
measured as a function of pump-probe delay. The half and full revival of N2O is shown at ∼19 and
∼ 39 ps of delay, respectively. Revival signals on the harmonic yield are observable out to ∼ 80
ps. b) The amplitude modulation on the XUV yield is shown in detail. The 〈〈cos2θ〉〉 expectation
value is shown for reference. It is assumed that the harmonic yield will approximately follow the
〈〈cos2θ〉〉 value if the harmonic order is far from a resonant feature. Strong harmonic modulations
were also present down to the 3rdharmonic. The harmonic modulations are not identical to the IR
modulations shown in Fig. 6.4.
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impulsive kicks [192]. With the demonstration of heterodyne interferometry with XUV combs [43]

we expect to measure both the amplitude and phase of XUV light from aligned molecules [164].

There are also a few open questions about the system. First, we observed the higher fractional

revivals in N2O than what is predicted by 〈〈cos2θ〉〉. These are shown in the highlighted section

of Fig. 6.7a. The higher order fractional revivals could be used to probe additional light-molecule

interaction dynamics [179]. Second, the coherence decays much faster than we expected. The decay

of the driving laser revival signal is shown in Fig. 6.7b. It is possible that the presence of the

plasma is affecting the rotational coherence at these fast timescales. The collisional dynamics of

the molecules and the plasma are potentially interesting to study. Third, there is a possibility

to use the modulations from the molecule to tune the nonlinearities in the cavity. This can be

used to compensate for plasma blue-shifting or to tune phase shifts for possible attosecond pulse

generation experiments. This effect is shown in Fig. 6.7c. We tested the hypothesis by measuring

the intracavity spectrum using pure xenon, pure N2O, and a mix of xenon and N2O such that the

xenon density was the same as in the pure xenon case. The inset to the figure shows the differential

spectra relative to the empty cavity case.

Another possibility is to use the cavity-enhanced FFMA signals to non-resonantly detect

molecules. An example of where this could be useful is detecting OH in the presence of H2O. OH

and H2O have very close and congested absorption spectra in the mid-IR, however they have very

different rotational constants. Therefore, the revival features of the two molecules would be very

different. It should then be possible to pick a pump-probe detuning to focus on OH rather than H2O

and use highly-sensitive detection techniques (such as lock-in detection on intensity modulations or

polarization modulations) to look for the revival signal. Using a much higher finesse cavity than

the one used for this work can also increase the sensitivity. An added benefit of a method like this

is that it can also be very flexible with the specific molecule to be detected since the wavelength

of the laser is essentially irrelevant and only the pump-probe delay is selected in order to isolate a

certain molecule. It may also be possible to use multiple probe pulses at different times to multiplex

the detection. It is unclear whether absolute concentrations can be determined, but if polarization
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modulation is used for detection, it should be possible.
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Figure 6.7: a) The data is the IR intensity modulations from N2O. The highlighted regions show
revival struction at the quarter of the full rotational period. These do not originate from the 〈〈cos2θ〉〉
expectation value. b) The decay of the revivals as a function of time. The lifetime is much shorter
than is expected. This could be a method to determine if there is collisional decoherence in the
jet. c) Use of molecules and a traditional HHG target, xenon. The xenon causes an ionization
blue-shift. The N2O causes a ISRS-induced red-shift. Together, they can cancel each other. The
insert is the difference spectra of each case relative to no gas. The small reduction in blue-shift can
be seen in the cyan trace which corresponds to the mixed gases. Further optimization could yield
more dramatic results.



Chapter 7

Conclusion and Future Prospects

The riddles of God are more satisfying than the solutions of man.

–G. K. Chesterton

7.1 Conclusion

We have shown that the XUV frequency comb is not only one of the brightest sources of XUV

light originating from HHG, it is also by far the most temporally coherent of all available XUV

light sources. Certainly, it is now in an excellent position to leverage both of these properties for

future spectroscopy application. Picking the perfect spectroscopy target will be left up to future

generations of the experiment. We have also shown that there is a good amount of strong-field

physics that can be investigated with the XUV comb apparatus. Certainly there will be more

opportunities in the future. For instance, measuring harmonic phases as a function of molecular

alignment is completely feasible and the XUV comb promises a level of sensitivity not reached in

any other effort to date. Further, the possibility of turning the XUV comb into an attosecond pulse

machine is intriguing (if not for the amazingly short pulse duration but for the continuous XUV

spectrum these pulses require). We have helped show a few tricks that may help in future efforts,

but progress is being made in other groups around the world. It seems only a matter of time before

it becomes a reality. Another interesting avenue is using an optical parametric oscillator (OPO)

to pump the enhancement cavity [93]. The OPO is a tunable source outputing at wavelengths of

3-5 µm. Due to the favorable scaling of HHG with driving laser wavelength, building a soft X-ray
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frequency comb seems within reach. A modest power scaling of the OPO technology would be

required from the current 1 W of power to about 10 W of power. However, the OPO pumping laser

technology is certainly available. The only remaining question would be if an enhancement cavity

that can support 10 kW of average power in the mid IR is possible [193].

The fact that there are femtosecond pulses circulating inside the fsEC is definitely under

utilized. We made an effort to exploit this with the field-free molecular alignment work, but beyond

using them for just making harmonics, little work has been done in the time domain. This is set to

change with recent experiments in transient-absorption spectroscopy and should start a whole new

wave of cavity-based ultrafast experiments [194]. There are a whole host of possible pump-probe-

style experiments that can now be envisioned with increased power, sensitivity, and statistics. This

will definitely be a very exciting direction if not completely orthogonal to our groups efforts focusing

on high-resolution spectroscopy.
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Appendix A

Numerical Code Repository

Github During the course of this work, a decent amount of code was generated to numer-

ically simulate various things relevant to the XUV frequency comb project. The numerical code

is stored on Github at https://github.com/c-benko. A very brief description of the repositories

relevant to this work are below. It is written almost entirely in Python.

Cavity

This contains an implementation of ABCD matrices for ring resonators. It also contains

simulations of how dispersion affects the fsEC intracavity spectrum and pulse duration. This code

was used in Chapter 2.

crankyc

This contains a small library of functions to load data from various experimental equipment

used in lab. It also contains simple functions for commonly used mathematical manipulations such

as Allan deviations and FFTs.

HHG

Contains a numerical implementation of Corkum’s three step model [24] and the quantum

version of Lewenstein [86, 118]. It also contains an implementation of and ionization rate calculation

using ADK theory. This code was used in Chapter 3.

HHG_Phasematching

A general HHG phasematching simulation in a single-pass geometry. It is based on the

absorption-limited phase matching work of Constant [124] and can be applied to a wide variety of

https://github.com/c-benko


174

experimental conditions. This code was used in Chapter 3.

HHG_phasematching_fsEC

A general HHG phasematching simulation in a single-pass geometry. It is based on the

absorption-limited phase matching work of Constant [124] and can be applied to a wide variety of

experimental conditions. This code attempts to include the effects of the fsEC.

Molecular_Alignment

A variety of numerical implementations of FFMA using various methods within the Python

programming language. The code highlights methods to integrate C/C++ with Python for faster

computation. This code was used in Chapter 6.

NLSE

A simple implementation of the normalized nonlinear Schrödinger equation to simulate non-

linear broadening of ultrashort pulses in optical fibers or materials. This code was used in Chapter 2.

XUV

A set of scripts to calculate mirror reflectivity in the XUV. This was used in Chapter 4
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Appendix B

Publication list

Since I spent almost two years of my graduate career on the strontium lattice clock experi-

ments, I have added my full list of publications which includes a handful of papers relevant to the

strontium experiments in context of many-body physics, clock operation, frequency comb develop-

ment, and laser stabilization.

Publications

[B.1] J. R. Jameson, D. Ngo, C. Benko, J. P. McVittie, Y. Nishi, and B. A.Young, “Dielectric

relaxation study of hydrogen exposure as a source of two-level systems in Al2O3,” Journal of Non-

Crystalline Solids 357, 2148–2151 (2011).

[B.2] C. P. Weber, C. Benko, and S. C. Hiew, “Measurement of spin diffusion in semi-insulating

GaAs,” Journal of Applied Physics 109, 106101 (2011).

[B.3] A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong,

J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum

frequency comb,” Physical Review A 84, 011806 (2011).

[B.4] M. Bishof, M. J. Martin, M. D. Swallows, C. Benko, Y. Lin, G. Quéméner, A. M. Rey, and

J. Ye, “Inelastic collisions and density-dependent excitation suppression in a 87Sr optical lattice

clock,” Physical Review A 84, 052716 (2011).

[B.5] C. Benko, A. Ruehl, M. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full

phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,”

Optics Letters 37, 2196–2198 (2012).
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[B.6] A. Ruehl, C. Benko, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Phase

stabilization of a Yb:fiber frequency comb via high-bandwidth transducers,” in “CLEO: Science and

Innovations,” (Optical Society of America, 2012), pp. CTh1J–1.

[B.7] M. D. Swallows, M. J. Martin, M. Bishof, C. Benko, Y. Lin, S. Blatt, A. M. Rey, and J. Ye,

“Operating a 87Sr optical lattice clock with high precision and at high density,” IEEE Transactions

on Ultrasonics, Ferroelectrics and Frequency Control. 59, 416–425 (2012).

[B.8] M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stretcher, A. M. Rey,

and J. Ye, “A quantum many-body spin system in an optical lattice clock,” Science 341, 632–636

(2013).

[B.9] T. K. Allison, A. Cingöz, C. Benko, D. C. Yost, A. Ruehl, M. Fermann, I. Hartl, and J. Ye,

“High brightness XUV frequency combs via intracavity high harmonic generation,” EPJ Web of

Conferences 41, 11006 (2013).

[B.10] A. M. Rey, A. V. Gorshkov, C. V. Kraus, M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang,

C. Benko, J. Ye, N. D. Lemke, and A. Ludlow, “Probing many-body interactions in an optical lattice

clock,” Annals of Physics 340, 311–351 (2014).

[B.11] W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr,

F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1× 10−6

for frequency modulation and laser stabilization,” Optics Letters 39, 1980–1983 (2014).

[B.12] C. Benko, T. K. Allison, A. Cingöz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, “Extreme

ultraviolet radiation with coherence time greater than 1 s,” Nature Photonics 8, 530–536 (2014).

[B.13] C. Benko, L. Hua, T. K. Allison, F. Labaye, and J. Ye, “Cavity-enhanced field-free molecular

alignment at a high repetition rate,” Physical Review Letters 114, 153001 (2015).

[B.14] C. Benko, N. Dörre, and J. Ye, “Power scaling extreme ultraviolet frequency combs to the

mW level,” in preparation. (2016).


	Extreme ultraviolet frequency combs
	Introduction
	Optical frequency combs
	Carrier-envelope offset frequency detection and measurement
	Frequency comb stabilization
	Frequency comb performance characterization

	Extreme ultraviolet frequency combs
	Applications
	Spectroscopic applications
	High-flux extreme ultraviolet source applications

	Thesis outline

	Experimental apparatus
	Amplifying ultrafast laser pulses
	The femtosecond enhancement cavity
	Cavity finesse, buildup, and contrast
	Gaussian beams and gaussian beam manipulation
	Cavity geometry
	Cavity mirror dispersion and the femtosecond enhancement cavity
	Laser-cavity stabilization
	Output coupling

	The laser
	Nonlinear pulse compression

	Typical laser-cavity operating parameters
	The chamber
	Ozone and plasma cleaner


	High-order harmonic generation
	Single atom response to a strong laser field
	Ionization by an intense laser pulse
	Simple model of high-order harmonic generation
	The quantum description of high-order harmonic generation
	Beyond the strong-field approximation

	Macroscopic response and phasematching
	Single-pass case
	Enhancement cavity case

	Power scaling
	Methods
	Results


	Interferometry in the extreme ultraviolet
	Motivation and brief history
	The extreme ultraviolet interferometer
	The acousto-optic modulator
	Construction of the beam combiner
	Beam combiner theory and scaling
	Extreme ultraviolet detectors
	Extreme ultraviolet optics
	The Seya-Namioka monochromator

	Putting it all together

	Phase noise and phase sensitive detection in the extreme ultraviolet
	Optical phase noise
	Noise scaling of high-order harmonic generation
	Testing the limits of coherence in the extreme ultraviolet
	Measurement of intensity dependent dipole phase
	Theory of measurement
	Measurement systematics
	Results and data analysis
	Conclusion


	Strong-field physics with molecules
	Impulsive stimulated Raman scattering
	Field-free molecular alignment
	Field-free molecular alignment experiments
	Single-pulse case
	Multi-pulse case

	High-order harmonic generation with molecules.
	Future potential of cavity-based field-free molecular alignment

	Conclusion and Future Prospects
	Conclusion

	 Bibliography
	Numerical Code Repository
	Publication list


