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Lester, Brian James (Ph.D., Physics)

Atom-by-atom control and readout for studying spin-motional dynamics and entanglement

in neutral atom arrays

Thesis directed by Prof. Cindy A. Regal

In this thesis, I describe early experiments with a new platform that harnesses control over

the full quantum state of individual 87Rb atoms to study out-of-equilibrium states of a few atoms

placed in tailored optical potentials. We employ an enhanced loading technique that fills each well in

90% of loading attempts, image the configuration of the atoms, and then perform Raman sideband

cooling that results in a 90% three-dimensional ground state fraction. Then, after initializing the

spin of each atom, we can reconfigure the traps to initialize dynamics in a final optical potential of

interest. For example, we can form a double well potential and observe the quantum interference

of two atoms tunneling between the wells. Additionally, we have demonstrated the ability to

coherently transfer atoms between wells and, by preparing two atoms in opposite spin states, have

observed spin-exchange oscillations that periodically entangle the two atoms. I will also discuss

plans and ongoing work to combine these capabilities with new techniques to gain more information

from systems containing more atoms. In such systems, we wish to study how the spin-motional

coupling of independently prepared atoms, in the presence of interactions, will lead to complex

dynamics, such as in the Kondo lattice model.
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Chapter 1

Introduction

1.1 Quantum gas assembly

1.1.1 Background on control of quantum gases

Modern atomic physics experiments have alternately been gaining impressive experimental

control in order to understand properties of complex systems, then using this understanding to

create additional experimental tools for a new generation of experiments. The study of quantum

gases builds on earlier work developing the techniques to cool and trap clouds of atoms at temper-

atures well below 1 mK, eventually leading to the observation of Bose-Einstein condensates and

the production of a degenerate Fermi gas [1, 2, 3, 4]. Shortly thereafter, these clouds of atoms

started to be used to study the complex interactions of ground-state atoms and molecules and,

eventually, to the development of techniques to control the strength of interactions, such as the

s-wave scattering length via Fano-Feschbach resonances and dipole-dipole interactions via Rydberg

excitation [5, 6, 7, 8, 9, 10, 11].

The ability to control interactions and study the effects on bulk properties of clouds of many

atoms has been extremely successful and now it has become routine to use this control in the

presence of an external potential to study different Hamiltonians with the density and interaction

parameters as tunable parameters [12, 13, 14, 15, 16, 17]. Even more recently, there has been a

push toward observing these systems with resolution of individual atoms (or sites of a lattice),

leading to the development of quantum gas microscopy, where ultracold atoms in an optical lattice
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can be observed over a large range of interaction parameters, allowing the direct measurement of

correlations in the lattice [18, 19, 20, 21, 22, 23].

In parallel, there has been a significant amount of progress in the trapping, manipulation, and

interaction of well-separated atoms, with numerous demonstrations of single and two-qubit control

both with trapped atomic ions and neutral atoms via Rydberg blockade [24, 25, 26, 27]. And more

recently, these experiments have been building up to larger systems of strongly interacting atoms,

while maintaining the single-atom control developed for use in quantum information processing [28,

29, 30, 31]. In particular, these systems have the benefit of being able to initialize each atom

independently and, because of the strong interactions, to keep the atoms well-separated throughout

the experiment and read out each atom at the end of the experimental sequence. These systems also

have the flexibility to generate nearly arbitrary trapping geometries that can be tailored for a variety

of experiments and enable the transport of atoms during the course of a single experiment [32, 33,

34, 35].

1.1.2 Using single-atom control to build complex many-body states

The work described in this thesis is a part of the development of a platform that combines

the advantages of experiments that maintain individual-atom control in an array of atoms, but

which also can be used to build a degenerate quantum gas from the ground-up in a custom optical

potential. In particular, we wish to initially set the full quantum state of each atom (including

both the spin and motional degrees of freedom) and allow the atoms to delocalize and interact in

a projected optical potential. This builds on the capabilities afforded in quantum gas microscope

experiments, but turns the process around, such that we could, in principle, build a small degenerate

Bose (or Fermi) gas from individually prepared atoms. Schematic representation of this style of

experiment, highlighting many of the capabilities it would afford and have been developed in my

thesis work, is shown in Figure 1.1.

To start with, atoms are initially loaded into an array of traps using an enhanced loading

technique that results in a 90% probability of loading an atom in each trap [36, 37, 38]. After
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( )

- -
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- -
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Rearrange atoms:
Isolate filled portion of array:Image array, 

determine configuration:

Laser cool atoms to indistinguishability, 
 prepare individual spins:

Load atoms from MOT: Enhanced loading, 90% filling:

Filter imperfect preparation, 
 place into final potential:

Detuning (kHz)

Figure 1.1: A vision of the initialization of experiments via quantum gas assembly, depicting
several of the important capabilities that the optical tweezer platform and the work in this thesis
will afford.
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loading, the array is imaged to measure the occupation of each of the trap, gaining knowledge of

how many atoms are available in that run of the experiment, as well as their location in the array

of traps. This knowledge can either be used during processing of the data set, when it is useful to

performing the same experimental procedure in multiple initial atom configurations, or in real-time

to perform different experiments based on the initial state [39, 31]. For the information to be used in

real-time, it is likely that rearranging the atoms, either to fill holes in an array, or even loading into

a completely separate, customized potential, will allow for faster data taking in configurations that

are of most relevance [40, 41, 42]. After constructing a desired pattern of atoms for initializing a

particular experiment, the entire array is spin-polarized and Raman sideband cooling is performed,

bringing each of the atoms to the three-dimensional ground state of the trapping potential [43, 44].

With all of the atoms in the motional ground state, the spin-state of each atom can then be

initialized by taking advantage of the ability to address individual sites with a beam to shift the

spin flip resonance [45, 39, 46].

After the entire state-preparation protocol has been performed, the atoms are ready to be

placed into the final potential in which the dynamics of interest will be observed. However, this

overlooks the possibility to manipulate the system during this procedure in such a way that im-

perfections in the state preparation can be detected. For example, the process shown in Figure 1.1

will “distill” the motional state preparation by performing an adiabatic passage (discussed more

in Section 5.1) in such a way that atoms in an excited motional state will transfer to a second

well. This extra well is then separated from the remainder of the system and not included in the

final potential; then, by not detecting an atom in the secondary well, it can be inferred that the

atom was in motional ground state. The traps containing these fully initialized atoms are then

dynamically repositioned to place the atoms into a final potential where the many-body quantum

state can evolve. After a period of dynamics, the traps are again rearranged to separate the atoms

for readout. This procedure does not need to be identical to the procedure that assembled the

state, but the goal is to separate the atoms and to measure both the spin and population dynamics

over time.
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In our experiment, we have already demonstrated the ability to control all of the internal

and external degrees of freedom of a single atom and are actively studying the dynamics of systems

of few interacting particles from a pure initial state (in the single-particle basis). In particular, we

have shown that we can create indistinguishable atoms via laser cooling, and observe two-particle

quantum interference in the dynamics of two atoms tunneling in a double well potential [43, 39].

We also have demonstrated the ability to perform enhanced loading, significantly increasing the

probability of uniformly filling arrays of traps. Additionally, the experiments we have performed

with two atoms already demonstrate our ability to dynamically reconfigure atoms and transfer

between trapping potentials while maintaining the purity of the motional state [38]. We have also

used our ability to selectively flip individual spins and coherently transfer atoms between the wells

to observe dynamical spin-exchange and verified that the entanglement generated between the two

spins is maintained upon separation of the atoms [47]. The ability to image a partially filled array

and use optical tweezers to generate a smaller filled array has very recently been demonstrated in

one dimension in Ref. [41] and for two dimensions in Ref. [42], and is a technique that we will be

implementing as we scale to larger arrays of atoms.

We are currently studying what happens when we combine these capabilities to observe spin-

motional coupling in systems of a few interacting atoms. For example, with just three atoms in two

bands of a double well potential, we will be able to construct minimum instances of the bosonic

Kondo-Hubbard model and observe differences in dynamics as we tune the relative strength of the

on-site interactions to the tunneling-rate between the wells. Specifically, in the strongly-interacting

regime, we expect to be able to see that, for certain initial states, the tunneling rate will be reduced

by a factor of two; this is a direct analog to the observation of mass-enhancement in heavy-fermion

materials. On the other hand, for weak interactions, we expect to be able to measure the effect of a

nonlocal spin-spin coupling between the separated ground-state atoms mediated by local exchange

interactions.
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1.2 Work performed as part of this thesis

During my time in Cindy’s lab, I have seen this experiment grow from a single table with

a recently baked vacuum cell and the laser systems for producing a magneto-optical trap (MOT),

to a fully functional optical tweezer system. For my first five years here, I had the pleasure of

working closely with Adam Kaufman to help get this system off of the ground and through that

experience learned a lot of atomic physics. When I arrived, he was getting the MOT set up and

very shortly thereafter began characterizing the details of the setup and implementing the basic

systems required for manipulating the internal states of clouds of atoms.

In parallel, my focus was on designing, testing, and setting up significant portions of the high

numerical aperture (NA) optical system that both generates our optical tweezer potentials and

collects fluorescence scattered from the atom to form an image on our camera. The most impor-

tant requirement for this system is that the optical traps needed to provide sufficient confinement

to enable the ground-state cooling protocol developed in our lab, which means maintaining near-

diffraction limited performance, even with the significant challenges presented by mounting the lens

outside of the science chamber. We started out this process with a first-generation lens and imaging

system that achieved a NA of 0.25, that allowed us to gain experience trapping single atoms and

manipulating their state in tight optical traps, not to mention the debugging and characterization of

the sources of aberrations in the experimental setup, which provided useful information before mov-

ing up to a higher NA system. Once this had been set up and was trapping atoms, I got my hands

on our (first) custom made objective lens and was able to start the process of both characterizing

and optimizing its performance in an external testing setup. Eventually, it was this lens that was

able to provide us with the confinement sufficient for three-dimensional Raman sideband cooling,

followed by coherent tunneling between two optical tweezer potentials and quantum interference

between two atoms. We have more recently used the system to observe dynamical spin-exchange

between the atoms and verify that entanglement is maintained after separation of the atoms.

After helping with the data taking and characterization of the trapping potentials for the
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two-particle quantum interference experiment, I was able to take the lead on characterizing our

imaging system more thoroughly and demonstrating the ability to image single atoms via light

scattered during continuous Raman sideband cooling. While this technique has proven to be less

useful for our system (because sub-doppler cooling is so efficient for 87Rb), it is a technique that is

being used in several quantum gas microscopes for lighter fermionic atoms, and provided us with a

lot of information about the performance of our imaging system [48, 49, 50, 51].

I also worked with a visiting student Niclas Luick to implement an enhanced loading technique

that had not previously been used with traps that are as tightly confining as in our system, as well

as to demonstrate its utility in loading small arrays of traps. Importantly, we were able to optimize

the technique such that we loaded a single atom in ∼90% of attempts, while the length of each

loading cycle was not significantly increased compared to the standard techniques that achieve

closer to 60% loading [38]. This technique is going to play an integral role in improving the data

collection efficiency of future experiments where the system size is larger than a few atoms, and

is likely to be implemented in similar systems that load an array of traps directly from a thermal

cloud of atoms.

Aside from the published work listed in Section 1.3, I have worked to address some of the

limitations present in our initial experiments. Specifically, improving the characterization and con-

trol of the light used for our Raman cooling procedure, switching to using temporally incoherent

light for generating optical tweezers, increasing the dynamic range of our trap intensity control to

access trap depths that vary over 4 orders of magnitude, and implementing the use of completely

arbitrary waveform generator to allow for arbitrary generation of square arrays of optical tweezers

(within the limitations of the optical system). We have additionally tested numerous methods for

correcting aberrations of our objective lens in-situ, which should lead to better tunneling perfor-

mance, but none have been to satisfaction. Therefore, we are planning to switch to a new objective

lens whose aberrations have been measured and corrected externally.

In the meantime, I have also developed an understanding of the physics and experimental

protocols for several upcoming experiments that take advantage of the control that our experiment
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has either already demonstrated or is expected to have in the near future. For example, studies of

the microscopic implementation of the Kondo experiment, which will be discussed in much more

detail in Chapter 6, is an example of an experiment that will take advantage of the improved control

of our optical tweezer potentials, as well as the ability to initialize both the spin and motional states

of atoms and then coherently transfer the atoms between. I will also discuss our plans to use control

over the state-dependence of a double well potential to adiabatically prepare pure singlet or triplet

spin states, which could then be separated to use as a source of maximally entangled atoms that

is less sensitive to experimental fluctuations than the dynamical entanglement demonstrated in

Ref. [47].

Most of the other unpublished ideas are related to gaining more information from our system

than in our current experiments. Specifically, we have recently implemented the ability to perform

spin-selective imaging of our atoms; this can then be used for post-selecting our data to account for

single-atom loss, whereas our current imaging protocol registers loss as a spin-up atom. Addition-

ally, we can use extra tweezers to read out more information about the final state of the system,

similar to the method depicted in Figure 1.1, but which can isolate imperfections in other stages of

preparation or in the readout of the spin state at the end of an experiment. The ability to use these

techniques to gain more information about the state of a system, both before and after a period of

evolution is one of the most important features of this platform for quantum gas assembly.

1.3 List of publications

For reference, I am including a list of the published work that I have been involved in during

the coarse of my thesis work.

(1) A. M. Kaufman, B. J. Lester, and C. A. Regal, ”Cooling a Single Atom in an Optical

Tweezer to Its Quantum Ground State”, Phys. Rev. X 4, 041014 (2012).

(2) A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig,

K. R. A. Hazzard, A. M. Rey, and C. A. Regal, ”Two-particle quantum interference in
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(4) B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, and C. A. Regal, ”Rapid

Production of Uniformly Filled Arrays of Neutral Atoms”, Phys. Rev. Lett. 115, 073003

(2015).

(5) A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal,

”Entangling two transportable neutral atoms via local spin exchange”, Nature 527, 208

(2015).



Chapter 2

Experimental Apparatus for Control of Single Atoms

In this chapter, I will give an overview of our implementation of some of the atomic physics

techniques that are made use of in this thesis to initially trap, cool, spin-polarize, and detect atoms

in the experiments performed. For all of the experiments in this thesis, we use 87Rb, which has

been the workhorse of the cold atomic gas community and along with 133Cs has been the subject of

most neutral atom Raman cooling experiments in free space [52, 53, 54, 55, 56]. By choosing this

species, we were able to focus our attention on the challenges related to cooling and manipulating

ground-state atoms in optical tweezers.

After covering this background information, I will go into more detail on the operational

principles of optical tweezers, including the optical setup used to generate our traps, and how they

are used specifically for single atom trapping experiments. Additionally, I will detail the methods

we have used to carefully align the optics for generating these potentials, as well as methods for

characterizing the trapping potentials that are generated using the atoms. Further information

on the details of the experimental setup, such as the vacuum system and how particular laser

frequencies are generated and referenced to each other, can be found in Adam Kaufman’s thesis [57].

2.1 Trapping and Control of Cold Atomic Gases

The experimental setup is built around a single vacuum chamber that is made from 9 fused

silica windows attached to a machined quartz frame (assembled by Precision Glassblowing). There

is a pair of larger diameter (2.3”) windows (that provide a large optical access to the cell), seven
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0.9” diameter windows along the octagonal edge of the cell (which act as ports for additional beams

to address the atoms), and the final port being occupied by a glass-to-metal transition connecting

to both a rubidium source and a 20 liter-per-second ion pump. The experiment is operated by

loading atoms from the background vapor into optical traps and then manipulating them all in the

same chamber.

Surrounding this glass chamber are four pairs of coils to control the magnetic field environ-

ment for atoms located in the center of the vacuum chamber. There are three pairs of coils in

the Helmholtz configuration, which provide control over the scalar magnetic field, in addition to a

single pair in the anti-Helmholtz configuration, which allows us to apply a tunable magnetic field

gradient through the trapping volume. Importantly, we can tune the scalar magnetic field from 0

to approximately 10 Gauss directed along an arbitrary axis. We can also turn up the gradient coils

to achieve field gradients suitable for loading a magneto-optical trap of 87Rb.

Aside from the vacuum chamber and magnetic field control, the experimental setup consists

of an arrangement of near-infrared (near-IR) laser beams that are used to trap, cool, image, and

spin-polarize the atoms. The majority of these lasers are frequency stabilized via an offset-lock from

a reference laser (which is locked directly to a rubidium vapor cell), which operates by measuring

the beatnote between the laser being locked and the reference, and stabilizes that beatnote to a

particular frequency. Details about the lockpoints for the majority of these lasers are given in Adam

Kaufman’s thesis, Ref. [57]. Additionally, there is a sawed-off waveguide that delivers microwave

radiation to the atoms, allowing us to perform precise rotations of the spin state.

2.1.1 Lasers for cooling and trapping 87Rb

To provide a reservoir of cold atoms, we use standard techniques for generating a magneto-

optical trap (MOT) of 87Rb atoms. Cooling and confinement of atoms in a MOT is supplied by the

combination of a damping force (provided by doppler cooling) and a restoring force (provided by

the magnetic field gradient). A diagram showing the alignment of the MOT beam, as referenced

to the vacuum chamber and other beam paths is shown in Figure 2.5.
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87Rb Level Diagram and Laser Addressing Scheme (not to scale):
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Figure 2.1: Schematic showing all of the relevant electronic levels in 87Rb and their splittings.
Additionally, there are lines indicating the levels being addressed (or detuned from) for each beam
used to gain control of the spin and motional degrees of freedom in our experiment: The two red
beams indicate the cycling (or MOT, solid) and Repump (dashed) beams used during loading and
imaging, the orange and blue lines represent the Depump and 795 beams, respectively, used for
enhanced loading (see Section 3.1), the two purple lines are the Raman beams (the dashed beam
is RB1 and the solid line represents RB2, 3 and 4), the two green lines are the optical pumping (or
OP, solid) and sigma repump (or RP, dashed) beams, and the yellow beam is the probe beam. The
dashed purple, green and yellow beams are all on the same beam path, as shown in Figure 2.5.
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To generate a three dimensional (3D) trapping potential, we use three beam paths that have

a projection on all three dimensions, each path reflected back on itself in the σ+-σ− polarization

configuration. Each beam path is the trap light, which is red-detuned from the cycling transition

(|F,mF 〉 = |2, 2〉 → |F ′,m′F 〉 = |3, 3〉), which is the source of the doppler cooling and generates an

optical molasses in the absence of a magnetic field gradient. The magnetic field gradient ensures

that scattering rate is minimized at the center of the trap and as the atom moves toward any

given beam, that beam is shifted closer into resonance, thus providing a restoring force to the

middle of the trap. In addition to the trap light, we need use a repumper beam on two of the

beam paths (the paths in the x̂ − ŷ plane), which is used to keep atoms in the manifold of the

cycling transition (the F = 2 ground-state manifold). This beam is tuned to be resonant with

the |F,mF 〉 = |1, 1〉 → |F ′,m′F 〉 = |2, 2〉 transition, ensuring any atom off-resonantly scattering

out of the F = 2 manifold (which occurs roughly once every 105 scattering events for our typical

detunings) is rapidly pumped back back out of the F=1 manifold.

2.1.2 Loading directly from a MOT

To load single atoms, we simply overlap the optical tweezer potential with the trapping region

of our MOT, which provides a reservoir of atoms around the optical tweezer. Then, we perform sub-

doppler cooling on the cloud of atoms by further detuning the MOT beams, turning off the magnetic

field gradient, and zeroing the total magnetic field. Sub-doppler cooling techniques, such as the

polarization-gradient cooling (PGC) that we use, can cool atoms to very near the single-photon

recoil limit, which will be very near the ground-state of our deep optical tweezer potentials [58]. In

our case, the cooling brings the atoms to roughly 20 µK, such that any atoms loaded into the trap

ends up near the ground-state of the potential.

Additionally, the same light used for cooling will induce light-assisted collisions between pairs

of atoms [59], which can result in the loss of both atoms when the kinetic energy gained during

the collision is larger than the depth of the trap. Due to the small trapping volume of the optical

tweezer and the relatively low-density of our MOT, we are in the collisional blockade regime, where
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only a single 87Rb atom can remain in the trap and pairs of atoms are lost [60]. This effect is the

basis of parity imaging in many neutral atom experiments [61, 18, 19].

2.1.3 Optical pumping and spin-polarization of 87Rb

An additional beam path is aligned along the typical quantization axis (−x̂), as shown in

Figure 2.5, for which particular care is taken to achieve a very high σ+ polarization purity. This

beam path contains other frequencies of light, but in order to spin-polarize atoms that are trapped

in the optical tweezers, we use two frequencies in particular: The “optical pumping” (OP) beam

is tuned to the F = 2 → F ′ = 2 transition, while the “sigma repump” (RP) beam is tuned to the

F = 1→ F ′ = 2 transition. With this pair of beams on, the atom will continue scattering photons

until reaching the |F,mF 〉 = |2, 2〉 electronic state, which is dark to both of these beams.

This optical pumping procedure is limited by the polarization purity of the beam path, which

is very important for the Raman cooling procedure discussed in Section 4.1.2. The fact that the

optical pumping procedure is limited by the polarization purity also provides us with a tool for

both characterizing and optimizing the polarization purity of this beam. Specifically, we measure

the scattering rate of the OP beam with a tilted quantization axis (and thus completely mixed

polarization), as shown in Figure 2.2(a), to characterize the scattering rate by measuring how long

it takes for the atoms to leave the F = 2 manifold. Separately, we can measure how quickly

atoms that start in the “dark state” (|2, 2〉) are scattered out of the F = 2 manifold with the

quantization in its optimal alignment, which happens because of the residual polarization impurity

of the beam (and is thus a measurement of the “darkness” of the dark state). The ratio of these

two rates is an estimate of the polarization purity of this beam path [62, 57]. This measurement is

shown in Figure 2.2(b), which suggests that the ratio of σ− and π polarization to σ+ is better than

1:1250. Note that by fixing the pulse length, this same measurement can be used to optimize the

parameters relevant for improving the polarization purity, such as the angle of the quantization axis,

by minimizing the survival probability (which would correspond to a lower scattering rate) [57].
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Figure 2.2: These two plots are taken using the same experimental procedure, but in (a) the
quantization axis is intentionally misaligned, effectively mixing the polarization of the light at the
atoms, while the in (b) the quantization axis is optimally aligned to the atoms. In both plots, the
atom is initially prepared in the |F,mF 〉 = |2, 2〉 state before shutting off all other beams, adjusting
the quantization axis, and then applying only the OP light for a variable pulse length. Afterward,
the probability for the atom to have been depumped to the F = 1 manifold is measured and the
exponential decay time fitted. The ratio of these decay times (20 µs to 25 ms) is an indication of
the polarization purity of the beam with the quantization axis well-aligned.

2.1.4 Single-atom spin addressing

After spin-polarizing the atoms in optical tweezers, we need to be able rotate them to ar-

bitrary states to initialize different experiments. Fundamentally, we need the ability to rotate

individual spins in an array of traps, so we take a two-part approach to this: Performing arbitrary

global microwave rotations using a microwave drive (coming through the sawed-off waveguide)

and localized vector light shifts, which can move the microwave resonance for individual traps by

hundreds of kHz [45].

The signal for the global microwave drive is provided by a Rhode and Schwarz microwave

generator (SMF100A), which passes through a voltage-controlled variable attenuator, and finally

is amplified to around 10 W of microwave power before being coupled into a sawed-off guide that

launches the microwave signal toward the atoms in free-space. With this setup, we can drive

Rabi oscillations between the |2, 2〉 and |1, 1〉 hyperfine states at a rate of 2π × 40 kHz, as shown

in Figure 2.3. The variable attenuator also allows us to shape microwave pulses, in particular to

achieve Gaussian-profile pulses, which results in a narrower spectral feature at the expense of longer
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Figure 2.3: This figure demonstrates our ability to drive coherent rotations between the |2, 2〉
and |1, 1〉 spin states of 87Rb by applying a microwave drive at 6.840996 GHz (shifted from the
bare transition because of the quantization axis). By varying the length of a square pulse of this
resonant microwave drive, we observe coherent oscillations between the two spin states of the atom
at a rate of approximately 2π × 40 kHz.

π pulses. The Gaussian pulse shaping is key to the single-atom addressing because relatively small

shifts of the microwave resonance (100 kHz or less) can result in a very small probability to flip

the spin of the atom whose resonance is shifted. This is in contrast to the spectral features of a

square-pulse, which extend much farther from the resonance and leading to a higher probability of

flipping the spin of the atom whose resonance is shifted.

The localized vector light shifts are produced by adding a λ = 785.1 nm beam (which we

call the “light shift’, or LS, beam), which is deflected backwards on the imaging path toward the

objective lens, as shown in Figure 2.5. This wavelength is chosen so that with pure σ− polarization,

the |2, 2〉 state remains unshifted while the |1, 1〉 level is shifted.1 This is useful because the energy

of the initial spin state is not perturbed, which minimizes the effects of the LS beam (which

could provide an additional trapping or anti-trapping potential, if that energy was perturbed). An

example spectrum with the light shift beam shifting the resonance of the atom in one of the wells

is shown in Figure 2.4, demonstrating that a single spin can be flipped with high efficiency.

In order to align the LS beam to the atom, we can directly measure, and maximize, the vector

1 Note that this is a change from earlier experiments that used a much closer detuned beam (approximately 50
GHz) and much lower powers to shift the resonance. Importantly, by going to a larger detuning, we can perform
longer microwave rotation pulses (including gaussian shaped pulses) to improve the fidelity of our site-selective spin
rotations.
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Figure 2.4: This is a microwave spectrum taken the light shift beam focused onto one of the wells
(green points). The beam induces a large vector light shift of the atom in the right well (red arrow)
that allows spin of the unshifted atom (orange) to be flipped with high efficiency and with no
significant effect to the spin of the atom shifted out of resonance. The peak of the orange spectrum
is less than unity due to a combination of factors including shot-to-shot magnetic field fluctuations
and single-atom loss to background, but spin flip probabilities of about 95% are achievable [57].
Additionally, the broadening of the shifted atom resonance is likely due to a small intensity noise
on this laser and is not a fundamental limitation.

light shift induced between the |2, 2〉 and |1, 1〉 spin states. To measure this, we perform a microwave

spin-echo pulse sequence (π2 − π − π
2 ) and turn the LS beam on during the hold between the first

two pulses, but not between the second and third pulses. Thus, this is a differential measurement

that cancels out any systematic effects due to stray magnetic fields or vector shift induced by the

trapping light itself. By varying the alignment of the LS beam during this measurement (using a

piezo mirror to adjust the angle), we can maximize the light shift and thus maximize the intensity

at the atom we align the beam to. Once aligned, we can tune the power of the LS beam to reliably

shift the microwave resonance for the selected atom far enough that the spin is not rotated by the

Gaussian pulse, but keeping the power as small as possible to minimize the scattering rate from

that beam (and thus minimizing heating or spin-depolarization).

2.2 Optical System for Single-Atom Trapping

Optical tweezers are a type of optical dipole trap that provide very tight (typically sub-

wavelength) confinement of atoms. Of particular interest are traps containing only a single atom,
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Figure 2.5: Schematic of the optical setup, showing the relative alignment of all the beams for
controlling the full quantum state of atoms trapped in optical tweezers formed by the custom
objective lens outside of the vacuum chamber. For imaging, the same objective lens is used to
collect fluorescence from the atoms, which is then deflected by a dichroic mirror and down an
imaging path with an f = 1 m lens onto our Andor 897 EMCCD camera. In order to manipulate
the spin in a site-selective way, we send another beam back toward the objective lens from the
imaging path (via reflection off of a window blank). The remaining beam paths are used for state
manipulation, addressing the transitions depicted in the level schematic shown in Figure 2.1.
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in principle giving us the control to organize single atoms in arbitrary configurations [32, 63, 35]

and even combine separated atoms into the same trapping potential [64, 65, 47]. The simplicity

of the optical trap also offers many advantages in that many electronic states can be trapped

simultaneously (in contrast to magnetic traps) and the same trap system can generally used for

many different atomic species (possibly with slight modifications to the trapping wavelength).

The optical dipole trap uses light that is far detuned from resonance with any ground-

state transitions and relies on the ability to shift the electronic energy levels of the atom without

scattering a significant number of photons (which would heat the atoms and destroy any coherence

between electronic states). Specifically, we take advantage of the AC Stark shift, which lowers the

ground-state energy of the atom when the light is below resonance, or red-detuned, because the

light induces a dipole moment that is in phase with the electric field of the light. The confinement

of the potential is then formed by the intensity gradient (in all three dimensions) at the focus of the

trapping beam, where the intensity of the light is at a maximum and thus the ground-state energy

is minimized. Alternatively, light that is far above the same transitions, or blue-detuned, can be

used when an intensity minimum is created at the focus (such as with higher order Laguerre-Gauss

beams) because, in this case, the light increases the ground-state energy of the atom.

In our system, we use 852 nm light, which is far detuned from both the wavelengths of the

D1 and D2 transitions in 87Rb (which are around 795 and 780 nm, respectively). We also collect

fluorescence scattered during PGC (at 780 nm), which sets many of the requirements for our optical

system. Ideally, the optical system will be diffraction limited for both of these wavelengths and be

capable of generating a 5×5 array of diffraction-limited traps, each spaced by 1.5 µm.

2.2.1 High-numerical aperture lenses

In the generation of our optical tweezers, the most important element is the high numerical

aperture (NA) objective lens that brings the beam of light to a sub-micron focal point, which,

when used as an optical dipole trap, provides the tight confinement we want. In order to simplify

the system, we use an infinity-corrected objective lens, which will take as input a collimated beam
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(and, for imaging, will collimate light scattered from a point source in the focal plane of the lens).

Because we want to place the lens outside of the vacuum chamber, there are some constraints in

the physical design of the lens, which are set by the dimensions of the glass vacuum chamber and

the diameter of the coil mounts. Specifically, the working distance of the objective lens needs to be

larger than 20 mm to have some space between the front of the lens and the vacuum window and

to preserve the optical access, the half-angle of the cone that the lens can occupy cannot exceed

50◦ from the center of the vacuum chamber.

We are currently using a custom objective that was designed and built by ASE Optics that

provides an effective NA of approximately 0.6. The objective is designed to be achromatic for both

780 and 852 nm and to operate at a NA of 0.64, with a long working distance of ∼ 21 mm and

correcting for the aberrations introduced by focusing through a 6.35 mm thick fused silica window.

The housing of the objective is made out of Ultem because it can be precisely machined and is

nonmagnetic, which is desirable because of the proximity of the field coils. The objective was not

diffraction limited, but we found that we could get acceptable performance only at a NA of 0.6.

Some more details on the characterization of this lens will be given in Section A.1 and there is

additional discussion of this particular lens in Ref. [57].

2.2.2 Sources of light for optical trapping

We have used a number of different lasers to produce light for trapping single atoms, but re-

cently we have switched between two high power laser sources: A highly coherent Titanium:Sapphire

laser (an M2 SolsTiS system) operating at 852 nm and a temporally incoherent laser system con-

sisting of a 1 W tapered amplifier chip (from Eagleyard Photonics) seeded in a double-passed

configuration with light from a super-luminescent light emitting diode, or SLED (supplied by Su-

perlum). Both of these systems can reach similar intensity levels at the atoms, which are sufficient

for the experiments being performed, but have different advantages. While the SolsTiS system is

quite a standard unit, the temporally incoherent source is rather new (we learned about its use in

Markus Greiner’s lab and decided to try it out based on the success in their system) and so I am
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Figure 2.6: Schematic of the optical rail that takes input light from a fiber and then generates a
high-quality beam that is used to generate sub micron optical traps. Note that due to the optical
relays, the two AODs are in conjugate planes of the optical system, which is then passed to the
back focal plane of the 20x telescope, and finally projected onto the back of the objective lens.

adding some of the details of our construction here [66, 67, 68].

Our switch from the SolsTiS system to the temporally incoherent light source was motivated

by our concern that reflections off of any of the beam preparation optics, the cell, or even within the

objective lens itself, could lead to residual amplitude modulation at the focus of our lens, leading

to small (and slow) time-variation of the relative depth between multiple traps. We have some

external data suggesting that there was residual drifitng that has improved by switching to the

incoherent light source, but it is not conclusive and we have yet to verify the improvement with

the atoms directly. I am sure more details on this testing will be discussed in an upcoming thesis

by our new graduate student, Mark Brown.

The main concern about using a broadband source is that there could be “blurring” of the

trap due to the combination of chromatic aberrations, polarization optics working over a narrow

wavelength range, and, potentially most importantly, the acousto-optic deflectors (AODs) having

a slightly different deflection angle for each wavelength component.
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2.2.3 Optical Rail

In order to achieve the expected performance of the optical tweezers, it is important to start

with a high-quality and unaberrated beam. The challenge is that we need a beam with a 1/e2 radius

on the order of 15 mm to fill the input aperture of the long working-distance, high NA objectives

that use. Additionally, we want the beam to pass through two acousto-optic deflectors (AODs),

which will enable some amount of beam steering (more details on the capabilities afforded by these

AODs is given in Section 3.2), which means that the optical system will need several components

that are well referenced to each other.

To achieve these goals, we have designed a custom built “optical rail”, which minimizes the

number of adjustable degrees of freedom such that it becomes a simpler task to align all of the

optical elements using references that are referenced to fixed post locations. Additionally, the rail

is designed to be compact (fitting in the area available near the vacuum chamber) with the output

beam height fixed to be centered on the optical axis of the objective lens and the vacuum cell.

Aside from the mechanical stability and benefits of fixing the location of as many of the optics as

possible, the optics on the rail are designed to provide the best performance for the objective lens.

Fundamentally, the optics of the rail consist of a small set of features that give us the flexibility

and performance required, which are all included in the diagram shown in Figure 2.6. At the input

is a standard fiber launcher setup for a flat-faceted (FC/PC) output fiber connector, which has

been anti-reflection (AR) coated to prevent interferences, and where we have taken special care to

make sure that the output fiber is centered on the collimation lens. Immediately following this is a

polarizing beamsplitter cube (PBS), as well as a λ/2 waveplate (after the first AOD) that is used to

properly align the polarization into each of the AODs (which achieve a higher deflection efficiency

when the polarization is transverse to the accoustic wave propagation). After the first AOD is an

f = 4.5 cm 4-f “optical relay” that brings the deflected beam from the center of the first AOD to

the center of the second AOD. An optical relay is simply a 1:1 telescope that maintains the angle

and position (up to a sign) of the beam between the input and output planes of the telescope,
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Figure 2.7: Diagram to highlight the utility of the optical relay (also known as a 4f -relay or a 1:1
telescope) to keep the beam deflections on-axis through the optical rail (and eventually into the
objective lens). Specifically, by positioning two lenses of equal focal length, f , by twice that focal
length, any two planes located a total of d = 4f apart (with both lenses in between the two planes)
will be conjugate planes. Because the magnification factor is unity, this means that in both planes
both the location of the beam and the angle of the beam (with respect to the optical axis) will be
the same, up to a sign flip (both the angle and the position will be opposite).

as is demonstrated in Figure 2.6.2 Then, there is a longer f = 15 cm optical relay that brings

the deflections from the second AOD to the back focal plane of the final M ' 20 telescope that

magnifies the beam and brings it to the back of the objective lens.

However, before this final telescope is a set of polarization optics that allow us to pick off

a fixed fraction of the total beam power. Specifically, we use the sequence of a PBS (to initially

clean up the polarization after the other optics) followed by a λ/2 waveplate and a second PBS,

which together pick off a fixed fraction of the light transmitted by the first PBS. The first PBS

may not be necessary, but add stability to long-term drift of the polarization after passing through

the two AODs (which are both birefringent and thermally sensitive), two optical relays, and two

λ/2 waveplates. The signal picked off by the second PBS is then used to monitor the power going

into the objective lens, which is directly proportional to the trap depth of a single optical tweezer.

Further, by feeding back on this measured signal, we can stabilize the trap depth (and use the

computer control to ramp this depth to different values during a single experiment).

2 These optical relays are particularly important for our beam preparation because of the large magnification
telescope, which would take a slightly off-axis beam and cause it to completely miss the objective lens.
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In the context of stability, building a completely fixed rail would be ideal, but we do need

to make sure there are enough degrees of freedom to achieve the desired performance. Because

of the sensitivity of our lenses, this performance requires the precision alignment far beyond what

we are likely to achieve with a completely fixed system. For clarity, we have the ability to tune

the alignment of the beam axis and to align with references to the physical axis (built-in pinholes)

of the optical rail, as well as to tune the spacing between lenses in the optical relays (and the

telescope) to maintain a well-collimated beam, which provides the required flexibility to optimize

and align the output beam from the rail to the objective lens. A brief outline of how we performed

this alignment is included in Section A, where we discuss the full alignment procedure.



Chapter 3

Quantum Gas Assembly:

A Platform to Study Tailored Many-Body Systems

As introduced in Section 1.1, the goal of quantum gas assembly is to build up interesting

quantum systems with single neutral atoms as the building blocks. There is a tremendous amount

of control afforded by the use of optical tweezers, which not only allows us to build these systems

from the ground-up, but also gives us the opportunity to access more information about the system

we are preparing along the way, as depicted in Figure 3.1. It is the goal of this chapter to discuss

some of the methods we have developed to take advantage of this control, as well as to highlight

the utility of the information that we have access to, which has been inaccessible, or otherwise not

fully utilized, in many earlier quantum gas experiments.

In our experiment, we have already developed the ability to load atoms in tight optical

tweezers, rearrange the potentials during the coarse of a single experiment, laser cool these atoms to

the three-dimensional ground state, individually manipulate the spin-state of separated atoms, and

the ability to analyze data based on the measured initial and final configurations. The experiments

to date have all been with small arrays of traps and this chapter attempts to address some of

the challenges that need to be overcome to enable these experiments to expand to more than a

few atoms. Specifically, we need to be able to reliably trap a set of atoms that are individually

addressable, can be arbitrarily transported and transferred between potentials, and can each be

initialized into a pure quantum state of both the spin and motional degrees of freedom.
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Rearrange atoms:
Isolate filled portion of array:Image array, 

determine configuration:

Laser cool atoms to indistinguishability, 
 prepare individual spins:

Load atoms from MOT: Enhanced loading, 90% filling:

Filter imperfect preparation, 
 place into final potential:

Detuning (kHz)

Figure 3.1: A copy of the schematic vision showing the initialization of experiments via quantum
gas assembly. Highlighted are a few of the important capabilities that the optical tweezer platform
affords, which will be discussed in more detail throughout this chapter.
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3.1 Enhanced Loading of Single Atoms

The loading procedure discussed in Section 2.1.2, where atoms are efficiently laser cooled

in the vicinity of optical traps, is a reliable method to stochastically load atoms into tightly-

confining optical traps. However, the loading efficiency with these small-volume traps is typically

limited to 50% [60], with the highest efficiencies achieved in optical tweezer experiments reaching

efficiencies of as high as 64% [69, 70]. The understanding of the light-assisted collision process

between tightly confined atoms has allowed us to understand these limitations and dramatically

improve the efficiency of loading techniques [36, 37, 38].

Note that all previous work studying the use of light assisted collisions to improve the load-

ing efficiency were performed using both larger volume optical traps, where multiple atoms could

initially be loaded before initiating light-assisted collisions, and using 85Rb, which has both a dif-

ferent level structure and ground-state scattering properties [71, 36, 37]. Additionally, these studies

found that the collisional process to prepare a single atom in the trap required several hundred

milliseconds, which would have been prohibitive to increasing the repetition rate of these optical

dipole trap experiments. More recently, loading efficiencies around 80% have been demonstrated

with 85Rb in a micron-scale optical tweezer and requiring only 30-60 ms collisional pulses [72].

3.1.1 Background on light-assisted collisions

The process of light-assisted collisions is successfully described by onset of resonant optical

transition between different molecular (interaction) potentials at specific interatomic distances RC ,

as shown in Figure 3.2. The different potentials correspond to the different electronic configurations

of the colliding atoms valence electrons. When the electrons of both atoms are in the s-orbital, then

the atoms are on an attractive electrostatic C6/R
6 potential, but when one of the atoms is excited

to a p-orbital, the dipolar interaction (which can be positive or negative) varies as C3/R
3 [59]. The

difference in these interactions means that for any reasonable detuning from the bare (single-atom)

resonance frequency, there will be a particular distance, defined as the Condon radius, where the
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Figure 3.2: a) Interaction potential for two 87Rb atoms colliding in the presence of near-resonant
light. For reasonable detunings, there will be an internuclear separation, RC , where the light is
resonant with the excitation between the interaction potentials, resulting in a light-assisted collision.
The character of that collision changes depending on the sign of the detuning: For positive (blue)
detuning, the excited potential is repulsive, allowing us to control the maximum kinetic energy
gained by the pair of atoms undergoing to collision. For negative (red) detuning, the excited
potential is attractive. b) Schematic of the relevant energy levels in 87Rb, indicating the detuning
(from the light-shifted energy levels) of the beams used to perform enhanced loading (not to scale,
for full level diagram see Figure 2.1).

transition becomes resonant with the driving frequency. When atoms are in close proximity the

detuning from the bare transition can be quite large (such that the scattering rate from a single

atom is low), even while resonantly driving this collisional process.

Of particular relevance for loading via efficient cooling is that the interaction potential to

which atoms are excited by the red-detuned light that is used for cooling has a strong curvature,

meaning that the atoms will be strongly attracted to each other. The atoms will be accelerated

toward each other on the long-range attractive potential, but the “quasi-molecule” can emit a

photon (now of a different frequency) bringing both atoms back to the s-orbital and giving the pair

of atoms a large amount of kinetic energy. This is the dominant process that will result in the loss

of both atoms from the trap during cooling in the collisional blockade regime. This pair-loss effect

is what leads to the typically 50% loading efficiency (which can be pushed to 60%, in some cases)
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and to parity imaging [70, 38].

Fortunately, there also exists a repulsive interaction potential that is resonant when the

light is blue-detuned (higher in energy) from the bare atomic transition. Importantly, atoms on

the repulsive interaction potential cannot gain more kinetic energy during the collision than the

detuning of the beam (converted into energy units) because the potential curves asymptotically

approach the bare levels. This additional control, combined with our knowledge (and control over)

the depth of the optical trap is used to preferentially expel a single atom at a time (rather than

pairs of atoms). Specifically, by setting the detuning to be equal to the depth of the trap, the

maximum kinetic energy gained by the pair of atoms is only enough for a single atom to be lost!

This enhancement is demonstrated in Figure 3.3(a), where the collisional process allows us to

improve the probability of fully filling of an array with four sites by a factor of four compared to

our best PGC loading procedure. While the process is still stochastic, this is a drastic improvement

for beginning to scale to larger arrays of atoms.

3.1.2 Experimental implementation of enhanced loading

However, there remain some complications to make the repulsive light-assisted collisions

useful for enhanced loading in the experiment: First, we need to be sure that the rate at which

photons are scattered from a single atom in the trap is small enough that a single atom in the

trap is not lost. Additionally, we must be sure that the scattering/collision rate induced by the

blue-detuned collisional photons is much larger than that of any other light that is red-detuned of

the transition. In the end, these effectively require us to use very deep trapping potentials so that

a collisional beam with detuning equal to the trap depth results in a single-atom scattering rate

that is quite small, even with the power necessary to rapidly drive these collisions. In our traps,

using such a deep trap has the side-effect of shifting the D2 transitions used for the MOT well out

of resonance once the atoms are loaded into the trap; this helps in balancing the scattering rates

between the residual MOT light and the blue-detuned collisional light.1

1 I do not think that this is actually necessary for the enhanced loading to work, but it does help to order the
scattering rates as desired. In principle, one should be able to use a trap that uses a magic wavelength for a particular
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Figure 3.3: This figure shows the results of the enhanced loading. a) For a single site, we can
look at the number of photons collected and plot a histogram of the number of photons collected
during an image after each loading attempt; we see two peaks in the histogram corresponding to
zero and one atoms loaded into the trap, with a much larger (approximately 90%) probability for
an atom to be loaded. b) For a small array of optical tweezers, we find that we can achieve similar
loading efficiency at each site. On the right, we compare the probability to load n atoms into the
4 site array when using enhanced loading (blue) and PGC loading (red). Specifically, we already
see over a factor of 4 enhancement in the probability to load 4 atoms compared to using standard
PGC loading.

As mentioned, the most important concern for implementing this enhanced loading scheme

is to consider the rates of the various processes that are happening. Because we have such small-

volume optical potentials (and are thus in the collisional blockade regime), we cannot rely on loading

many atoms and then sequentially applying a collisional pulse to reduce the remaining number to

1. Thus, we need near-resonant (in free-space) beams on to generate a reservoir of atoms that are

being cooled into the trap.2 In our case, these are simply the MOT beams, which address the

D2 F = 2 → 3′ cycling transition and the D2 F = 1 → 2′ repump transition. These beams are

sufficient for loading a single atom in 50-60% of trials, but we will add two additional beams that are

transition and design a scheme around that trap which can have all the rates work out. However we do not currently
have a trap in which to try this.

2 In principle, this could be a blue-detuned set of beams, which could help alleviate some of the requirements for
minimizing two-atom loss events (and possibly improving the final loading efficiency further), but this would require
adding another set of cooling beams on the MOT beam paths (or adjusting the locking setup to allow us to tune
farther blue-detuned than we currently can go), which prohibited exploring this possibility.
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tuned to address atoms that are already loaded into the optical tweezers: The main beam is used

to induce the collisions as described above and is blue-detuned from the D1 F = 1→ 2′ transition.

The final beam is nearly resonant (in the trap) with the D2 F = 2→ 2′ depumping transition. For

a discussion of the reasoning behind the choices of these transitions, refer to Section 3.1.4.1.

For simplicity, we choose to add these collisional beams during the MOT loading stage, which

means we don’t need to add a multi-stage loading procedure that is long and complicated. This

procedure results in one atom remaining in the trap more often than our standard MOT loading

procedure because the primary loss mechanism is single-atom loss induced by the blue-detuned

light-assisted collisions. As seen in Figure 3.4(b), the loading efficiency saturates to around 90% in

about 170 ms, this time being primarily limited by the loading time of our MOT (which could be

improved, but without larger scale changes to the setup would require sacrificing the trap lifetime)

rather than any effects related to the blue-detuned collisions.

a) b)

( ) ( )

Figure 3.4: The loading process is split into two sections: The MOT fill time, which provides the
reservoir of atoms to load into the optical tweezers, and the collisional pulse, which ensures that
there is never more than a single atom at the end of the loading sequence. a) Here, we measure
the loading probability while varying the MOT fill time for a fixed collisional pulse length of 35
ms. The probability for each well in a 2×2 array (blue, red, orange, and purple) is plotted along
with the data taken when loading a single well via PGC (green). b) Here, we look at the effect of
the collisional pulse length on the final loading probability. The blue points were taken using the
optimal collisional beam power, while the purple points were taken with 30% of that beam power.
The black dashed lines indicate a 90% loading efficiency.
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Figure 3.5: a) Loading efficiency as a function of the “795 beam” detuning with the trap depth
highlighted as a green dashed line. The optimum detuning is slightly less than the trap depth, and
larger detunings results reduced efficiency due to pair loss. b) Loading efficiency as a function of the
795 beam power. c) Loading probability as a function of the depump beam detuning. d) Loading
probability as a function of the depump beam power, indicating the relatively high power required
for enhanced loading. Note the drop in efficiency at low, but nonzero, powers (see Figure 3.6).
In all of these figures, the colors (blue, red, orange, and purple) represent the measured loading
efficiency for each of the four sites of the 2×2 array shown in Figure 3.3(b).
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3.1.3 Collisional beam parameters

For our particular implementation of the enhanced loading procedure, we use our standard

MOT beam configuration, as outlined in Section 2.1.1 and add the two additional beams discussed

here. The primary collisional beam, called the “795 beam”, is detuned from the D1 transition

(which is around 795 nm) and is aligned with the atoms along the same path as the top Raman

beam (discussed in Section 4.1.1). The polarization of the 795 beam is linear and aligned along the

propagation axis of the optical tweezer (orthogonal to the polarization of the top Raman beam).

The second additional beam, called the “depumping beam”, is used to quickly depump atoms that

have been loaded into the optical tweezer to the F = 1 manifold so that it becomes dark to the

MOT light and can be addressed by the 795 beam. This beams is effectively unpolarized due

to the beam being incident to the optical tweezer axis at an approximately 50◦ angle, and being

retroreflected in the lin⊥lin configuration.

The 795 beam is the primary driver of these light assisted collisions, so it is not surprising

that both the power and detuning are important parameters for achieving the best possible loading

efficiencies. The effect of these parameters is highlighted in Figure 3.5(a,b), which show a clear

optimum in both parameters. It is important to note that these parameters are coupled: The

heating of single atoms due to off-resonant scattering of the light limits both the loading at higher-

power and smaller-detuning. However, the global optimum will occur when the detuning is very

nearly equal to the trap depth, and then the power is tuned such that the loss due to heating of

single atoms is negligible (at least in comparison to the cooling rate from the far-off resonant MOT

beams). Fundamentally, this is because we are maximizing the rate at which the blue-detuned light

assisted collisions will occur, which allows this rate to compete favorably to the pair-loss induced by

the MOT beams that are required to initially cool atoms into the optical tweezers. This behavior is

consistent with earlier work in larger volume dipole traps where the collision rate was smaller (and

which were not in the collisional blockade regime, so more than one atom could be initially loaded

into their traps), and thus much longer collisional pulses at lower powers were required to minimize
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single-atom loss [37], but because we are in the collisional blockade regime, both of the light-assisted

collision rates are much faster and collisional pulses only need to be tens of milliseconds before we

are guaranteed to be left with either one or zero atoms, which is demonstrated in Figure 3.4(b).

While the role of the depumping beam is conceptually simple, it plays an important part in

promoting the processes we care about during our loading procedure. Importantly, we find that

there is a rapid drop in loading performance when moving outside of the range of values that work

well for the detuning and power of this beam, as demonstrated in Figure 3.5(c,d). For the detuning,

problems only occur when detuning red of the light-shifted transition (meaning, red-detuned of the

transition for atoms loaded into the trap) up to at least +50 MHz detuning. However, for the power,

we find that there is a broad “sweet-spot” where optimal loading occurs. Surprisingly, if the power

is too low, we see that the atoms are always kicked out of the trap, in addition to problems when

the power is too high (likely due to the scattering rate becoming high enough to heat single-atoms

out of the trap).

This low power problem is highlighted in Figure 3.6(a), which plots the loading probability as

we vary the depump beam power for a fixed detuning. Notice that at very low powers (or when the

beam is off), we get approximately 50% loading efficiency, which is equivalent performance to not

having a blue-detuned collisional beam on because, without depumping, the atoms are unlikely to

undergo blue detuned collisions. However, as the power is increased, the loading efficiency rapidly

drops to very nearly to 0, before increasing again and saturating at much higher powers. The

resulting conclusion is that we need very large depumping beam powers to achieve optimal

loading efficiencies, however the exact reason is not fully understood. It is likely that it is related to

the competition of rates between various scattering processes, but what is particularly interesting

is that this is a single-particle effect!

That this is a single particle effect is highlighted in the data shown in Figure 3.6(b), where we

see two curves that both exhibit the same dip in the survival: The black points are data taken where

two atoms are placed in the same well before applying the collisional light, while the blue points

demonstrate the same effect when the same experiment starts with only a single atom. Because
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Figure 3.6: a) Measurement of the loading efficiency as a function of depump beam power with
finer resolution than in Figure 3.5(d), comparing the behavior seen when the enhanced loading
procedure is performed as usual (red) and when the 795 beam is blocked (purple). b) Measurement
of the probability for one atom to remain in a single trap, given that it was initially prepared with
one (blue) or two (black) atoms before a collisional pulse (consisting of only the 795 and depumping
beams) was applied to the trap.

this is a single particle effect, it is worth mentioning that this could be due to the exact orientation

of the beams we are using in our setup; we do know that effect requires both the 795 and depumping

beams to be on in order for atoms to be kicked out.

3.1.4 Limitations to the enhanced loading

In the best case, we are currently limited to an approximately 90% loading efficiency using

blue-detuned light assisted collisions, but its worth asking two questions: What are the limitations



36

to improving this optimum rate? And are there any limits when scaling up to larger arrays of

traps?

3.1.4.1 Limitations to the maximum loading efficiency

As has been the theme throughout this section, there will be a fundamental limitation to

the loading efficiency given by the competition of the two-atom loss rate to the single-atom loss

rate when multiple atoms remain in the trap. The fundamental limitation here comes from the

level structure of the atom being loaded into the traps and the relevant interaction potentials for

undergoing light assisted collisions [37]. In 87Rb we benefit from well-isolated hyperfine structure

and the ability to, ideally, isolate a single interaction potential, but this is never perfect for any

real case. Without changing atomic species, this means one has to carefully consider the choice

of beam(s) used for driving these light assisted collisions to minimize the total probability of off-

resonant red-detuned, far blue-detuned, or spin-changing light-assisted collisions from occurring,

which could each result in both atoms being lost from the trap. Because these can never be

completely turned off, the important consideration then becomes maximizing the rate of the desired

single-atom loss channel in comparison to these two-atom loss channels.

Specifically, our scheme in 87Rb is chosen to utilize the D1 F = 1 → 2 transition because

it has no nearby higher-energy transitions that could lead to driving collisions on an attractive

interaction potential. Additionally, the excited hyperfine structure is well-resolved, which means

that we are an extra 816 MHz off-resonant from any blue-detuned collisions that would lead to

large gain in energy (which means that the atoms need to be much closer together to drive this

transition, so the probability is much smaller).3 An additional benefit of using this transition is

that there trap induced light shifts of both the ground and exited state energy levels are mainly

scalar shifts, which means that the detuning is the same for all Zeeman sublevels and, because we

3 To be explicit, even for quite large blue-detunings there will be an internuclear separation where the transition
will be resonant. For such large detunings, this distance is very small and thus the probability of driving this transition
in comparison to the desired transition is likely small. However, when this additional detuning becomes on the order
of the detuning from the desired transition (i.e., the trap depth), which could certainly be the case with different
transitions, other atomic species, or by going to much larger trap depths , then this concern becomes much more
relevant.
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are not spin polarized during loading, this is particularly important for efficient loading [73, 74].

Another major limitation to controlling single versus two particle loss comes from the un-

certainty related to the initial conditions of colliding atoms. In particular, if the temperature of

the atoms is not well known, then the spread in initial energies will lead to a higher probability

of both atoms being lost, even when colliding in the desired channel. If the energy is too high to

begin with, then it is possible for both atoms to be kicked out of the trap, even when the energy

added is only enough for one atom to be removed. This also cannot be mitigated by using a smaller

detuning: If you err on the side of not enough energy, then there will be a larger probability of

neither atom getting kicked out, which means you start with a much higher initial energy during

the next collision.

An additional limitation to the maximum loading efficiency will be set by the competition

of the single-atom loss rate (when only a single atom remains in the trap) to the length of the

collisional pulse required to ensure that there are never multiple atoms remaining in the trap. This

source of single-atom loss will fundamentally be limited by the background (vacuum) collision rate,

but for now is negligible and is mainly limited by the heating rate associated with scattering the

collisional beam photons from the atom in the absence of cooling beams. Standard methods can be

used to mitigate this (larger detunings or lower powers) by lowering the scattering rate, but this has

to be balanced with the primary limitations dictated by the balance of the light-assisted collision

rates. In the end, the combination of both of these concerns points to going to deeper traps such

that larger detunings (as long as they are not so large that the rate of collisions leading to two atom

loss becomes significant) can be used to optimize the single-atom loss rate, and then higher powers

can also be used (thus improving the ratio of the light-assisted collision rates) without increasing

the scattering rate off of single atoms.

It is certainly worthwhile to pursue an even better overall loading efficiency, which in our

case would mean going to larger trap depths (and thus larger blue-detunings), but this pushed us

into two other limitations that complicate efforts to significantly improve the loading efficiency.

The first are a set of technical limitations because going to much higher trap depths requires a
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proportional amount more optical power per trap, as well as a proportionally larger tuning range

for any lasers that need to be resonant with atoms loaded into the trap. Additionally, when going

to larger trap depths, the initial temperature of any atoms initially loaded into the trap will likely

increase because of the larger light shifts at the center of the trap, which, as discussed, also limits

the maximum loading efficiency. In the end, we used several different trap depths ranging from 2

to 4 mK and found that above 3 mK the efficiency saturated around 90%.

3.1.4.2 Limitations when scaling to larger arrays

While our movable tweezers mitigate some of the challenges associated with loading over-

lapping optical tweezers, it is important to consider proximity effects that become relevant when

scaling to larger arrays of traps with a finite accessible field of view (as discussed in Section 3.2.2.1).

In particular, even once we implement the ability to rearrange atoms after loading, the ability to

load atoms with high efficiency will be critical for scaling up to larger arrays. However, this load-

ing procedure relies on our ability to selectively induce light-assisted collisions between atoms in

the same trap without affecting atoms in nearby traps. In the end, we do find that the loading

efficiency becomes compromised as the traps are brought into close proximity, as demonstrated in

Figure 3.7 [38].

The experimental loading probability drops off quickly as the spacing of two wells is reduced

below ∼ 1.7 µm [Fig. 3.7(a)], at which point the barrier between the two wells is reduced. By

comparing the outcome to a separate experiment where we load two atoms into one side of the

double well potential before applying a collisional pulse, we observe that this leads to an increase

in the probability of hopping of at least one of the atoms to the second well. Importantly, we

note that these collisions resulting in the atom hopping to the other well reduces the probability

of completely removing a single atom during each collision event. Using the numbers measured in

the experiment, we can perform a simple Monte-Carlo simulation to estimate the loading efficiency

we would expect if we simply increase the hopping fraction. We find that the reduction in final

loading efficiency is reasonable and compare the results of this Monte-Carlo to two sets of loading
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Figure 3.7: Effect of tweezer spacing on loading efficiency. a) Maximum loading probability
achieved (per tweezer) after optimizing the loading parameters at each well spacing (dark- blue
dashed line) and the loading probability when using the isolated-tweezer beam parameters at each
spacing (light-blue solid line) versus the spacing between the center of two tweezers a. The loading
probability calculated from a Monte Carlo simulation of the loading process (gray band) using the
measured probabilities of the four possible outcomes [three of which are shown in part (b)] during
each collision event and neglecting any single-particle effects. (b) Controlled experiment studying
the effect of collisional light on two trapped atoms in proximity to a second trap. Measured prob-
abilities of a single atom remaining in the right well (dash-dotted green line), one atom remaining
in each well (dashed orange line), a single atom remaining in the left well (dotted red line), and
the total probability for an atom to remain in the right well (solid purple line) as a function of the
spacing between the optical tweezers. Note that this image is reproduced from Ref. [38].

data measured (with different collisional and cooling beam parameters) in Figure 3.7(a).
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3.2 Manipulation of Optical Tweezers

As discussed in the Section 3.1, we use relatively deep traps (typically around 3.5 mK depth)

that are far apart (meaning they are not overlapping) in order to promote processes that enhance

the probability of loosing a single atom at a time for all of the traps in an array. After this

loading process is complete, we need to dynamically modify the trapping potentials so that the

atoms locations can be imaged, the spin and motional degrees of freedom prepared, and then the

atoms transferred into a configuration relevant for the experiment of interest. Within our current

experiments, this can be achieved with the ability to change three quantities: 1) The spacing

between neighboring rows or columns in a rectangular array, 2) The relative intensity between

neighboring rows or columns (the “bias”), 3) The total optical power used to generate all of the

potentials. The remainder of this section discusses how we gain control over the remaining two

quantities within our experimental setup, as well as how it can be improved or extended for future

experiments.

3.2.1 Overall intensity stabilization

To control and stabilize the depth of the optical tweezer array, we control the total optical

power entering the rail for beam preparation. Specifically, this sets the overall depth scale for the

traps, but its important to note that it does not control the actual depth of any given optical tweezer

(which is modified by the total number of traps and their relative intensities, as discussed further in

Section 3.2.3). In the case of our system, there are two concerns for the intensity stabilization: First,

we need to be sure that the shallow science potentials are consistent shot-to-shot (and thus there

is no long-term drift in the absolute power), such that the tunneling and interaction parameters

remain constant. Second, we need to be sure that there is no resonant intensity noise on the trap

light that will lead to heating of the atoms (and thus lead to distinguishability between our atoms,

as discussed in Chapter 4).

The optical power entering the rail is controlled by modifying the RF power sent to an
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accousto-optic modulator (AOM) that deflects light into the optical fiber at the beginning of the

optical setup described in Section 2.2.3. This intensity is stabilized with standard feedback elec-

tronics via the power measured at the pickoff just before the beam expanding telescope in the

optical rail. There are two main considerations for designing this feedback system: We need to

maintain a stable intensity at DC, up to about 10 kHz in bandwidth (for ramping the intensity

during experiments on millisecond timescales) without adding noise at frequencies resonant with

parametric excitation processes (in the range of 10-300 kHz). Additionally, we need to be able to

stabilize the intensity over a very large dynamic range of approximately four orders of magnitude

(e.g., ranging from just a few microwatts to 40 milliwatts of power).

Standard techniques can easily achieve the desired bandwidth requirements, so I will not

go into details about the feedback controller (typically a loop filter containing some amount of

proportional and integral gain). As a part of my thesis work, it was important to go beyond the

limitations of trap depth (both to go to deep traps for enhanced loading and shallower traps for

more reliable tunneling) that were limited by the dynamic range of our previous detection system.

Namely, we were previously completely saturating a linear photodetector for cooling trap depths,

and could not go to shallower traps because we were running into the noise floor of the photodetector

at tunneling depths.

However, to achieve a large dynamic range is a bit of a challenge and is typically limited by

how the response of the system changes at various setpoints. In particular, we have begun using

a logarithmic transimpedance amplifier, which has a very large dynamic range (in principle, the

AD8304 can operate over 8 orders of magnitude in photocurrent). Additionally, to preserve our

ability to use a standard feedback controller, we use a “linear-in-dB” variable gain amplifier that

linearizes the response of the system [75]. Unfortunately, the response of this system changes quite

dramatically as a function of the DC offset, preventing us from simply setting the loop filter as if

this was a truly linear system. Currently, we have found a way to tune the system to give acceptable

performance at most signal levels, but are working on ways to improve this using adaptive feedback

systems, which will be discussed in more detail in future work.
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Another method that we have explored (and may come back to in the future) is to use more

than a single linear photodetector, with separate photodetectors optimized for different, overlap-

ping, dynamic ranges. This has the benefit of a lower noise floor than a single logarithmic amplifier,

and returns to a “simple” feedback system for each segment of the dynamic range. However, the

complication is that we need a smarter controller than can either take more than a single pho-

todiode input, which should be possible by switching to the use of a digital feedback controller.

Alternatively, one could use an external control system to switch between separate control loops,

each containing a single photodetector and feedback system.

3.2.2 Acousto-optic control of optical traps

The actual optical setup that is used to generate the optical tweezer potentials was described

in detail in Section 2.2.3, so we will not go through the entire optical system here. However, it

is important to note that the acousto-optic deflectors (AODs) located in the optical rail are in

the Fourier plane of the trapping potentials (and are in conjugate planes with each other and the

entrance aperture of the high numerical aperture objective lens).4 Importantly, this means that

changing the beam deflection angle with either of these AODs directly translates to motion of the

tweezer in the focal plane of the lens. Further, because the AODs are oriented orthogonal to each

other, we have the ability to steer the optical tweezer potential in both X and Y at the focus by

changing the deflection angles in each of the AODs. However, simply changing the angle of a single

beam is not enough of a reason to use AODs; in principle, we could do the same thing with piezo

mirrors at the same locations with minimal change to the optical rail.

The use of AODs is necessary because of the ability to change the deflection angles very

rapidly, as well as to deflect multiple beams simultaneously (and to change the number of deflections

in real time), all without physically changing the optical setup to scale to larger arrays. Some

4 The main difference between an acousto-optic deflector (AOD) and an acousto-optic modulator (AOM) is in
its design: An AOD is designed to optimize for deflection efficiency and to have a large bandwidth over which the
deflection remains efficient, which allows for efficient beam steering. An AOM is optimized for speed, such that
a beam can quickly be turned on and off, or have its power modulated, but the frequency is expected to remain
relatively constant in order to maintain the optimum deflection efficiency.
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alternative options we have considerred are discussed in more detail in Section 3.2.4. To demonstrate

the utility of this system, we will start by reviewing the operational principles and important

characteristics of these AODs.5

Acousto-optic devices operate by driving a crystal, whose index of refraction is particularly

sensitive to stress, with a piezoelectric transducer and thus coupling an acoustic wave into the

material. This acoustic wave leads to a spatially varying index of refraction, which is to say that

it imprints a periodic index grating into the crystal. When the input angle of an optical beam is

matched to the (acoustic) wavevector of this grating, then efficient diffraction of the input beam

to a different mode (with angle related to the frequency of the acoustic wave and the material

properties of the crystal itself) can be achieved. Because this deflection angle is directly dependent

on the frequency used to drive the AOD, then by changing this driving frequency we can tune the

deflection angle, and thus the location of the tweezer at the focus of out objective lens. Additionally,

this is simply a Fourier optics problem, so by overlapping multiple frequencies into the AOD, we

create a more complex diffraction grating with multiple spatial frequency components, and thus

we end up with multiple deflections out of the AOD. Using the imaging magnification calibrated

in Section A.1.1, and by measuring the spacing of the images of two atoms as a function of the

frequency difference between the two traps, we can calibrate the change in position as a function

of the frequency into the AOD, an example of which is shown in Figure 3.8.

3.2.2.1 Technical design considerations

The ultimate limit to our ability to position optical traps at the focus of the objective is set

by the bandwidth of the AOD, the specific material properties of the crystal, and the details of

the optical system used to move the beam from the AODs to the focal plane (specifically, the total

5 The AODs we use are Gooch and Housego model #: 46080-3-.85-LTD. They have 3 mm aperture longitudinal-
mode TeO2 crystals (4.2 mm/µs acoustic velocity), which allows for the use of a collimated beam in generating
deflections (which is important to put the AOD in the Fourier plane of the focus of the lens). Importantly, they can
achieve about a 90% deflection efficiency into the first mode at the peak response of 80 MHz (the specification is for
> 70%, but measured 88 and 92% for the two in the rail when set up in an external test). They are designed to have
a 30 MHz RF bandwidth, which achieves a ±3 mRad deflection angle about the 16 mRad deflection angle of the 1st
order at 80 MHz (and all at 852 nm).
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Figure 3.8: Plot of the measured spacing between two atoms held in two traps as a function of the
frequency difference between the traps. This in-situ measurement of the spacing calibration gives
(0.204± 0.003) µm/MHz and is consistent with both external measurements and the expectation
based on the properties of the AO crystal and the magnification of the rail telescope.

magnification of the telescopes and the effective focal length of the objective lens). Our optical

system is designed so that we can, in principle, scale up to a 5 × 5 array of tweezers, each spaced

by 1.5 µm, which is sufficiently spaced for resolved imaging (although may not be sufficient for

enhanced loading with the current aberrations). This is a somewhat conservative choice made to

ensure that we are not limited by the frequency difference between adjacent deflections in partially

overlapping traps.6

This is an extremely important consideration: The frequency difference corresponding to the

desired minimum trap spacings should be much larger than the expected trap frequencies that might

be used at these spacings. In our system, we chose to use the AODs discussed in the previous section

(which result in a relatively small available field of view) because we are able to get to 0.5 µm spacing

(on the order of the minimum spot radius we might be able to achieve) at >2 MHz in frequency

difference, which is more than an order of magnitude larger than the trap frequencies we would

encounter at these spacings.7 The reason this is an important consideration is that these beams

6 Recall that the frequency of the beam deflected by the AOD will be shifted by the acoustic frequency, so two
adjacent traps will have optical frequencies that differ by the difference these frequencies.

7 If the frequency of modulation of the trap (due to interference of beams at slightly different frequencies) is large
compared to the trapping frequency of the potentials, then there is unlikely to be significant heating induced by this
modulation of the trap.
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will be copropagating and spatially coherent, so the frequency difference between these beams will

lead to a beating of the intensity of the trapping potential wherever the potentials overlap! In

particular, we need to bring our traps close enough together to couple atoms between individual

wells, which requires the traps to overlap without significantly affecting the atomic temperature.

This requirement is in contrast to other experiments using optical tweezers, such as experiments

with Rydberg atoms, where the atoms remain separated and the overlap between the traps can be

kept to a minimum.

If desired, the maximum array size could be improved in a number of ways, but all of them

will require some modification of the optical system. For a relatively small change, adjusting the

beam size within the AOD would give a slightly smaller trap size, which could allow us to use

more spots within the same field of view (at the expense of more power being clipped into the

objective lens). Alternatively, a larger initial beam size would allow us to use a slightly smaller

magnification in the final telescope, resulting in a larger deflection range (at the expense of a larger

trap spacing for a given frequency difference), which would enable larger arrays of traps. However,

for even larger arrays we would probably need to use a different AOD whose crystal properties

or bandwidth enabled an even larger increase the range of deflection angles available (and thus a

larger number of resolvable spots at the focus of the objective).

As you can see, it is important to balance these design considerations when building the

system initially, but when properly designed, we transfer the complication of controlling the optical

potentials into control of the drive signal for these AODs, which is simply an electronics problem

(and excellent control can be achieved, as discussed in Section 3.2.3). Specifically, by changing the

frequencies in each of the AODs, we can move rows and columns of an array of tweezers. Further,

by changing the relative driving power in each of these frequencies, we adjust the deflected intensity

of the traps in each of these rows or columns (thus, tuning the bias between rows or columns). This

does not give completely arbitratry control over individual traps in larger arrays, but it will be

sufficient in our typical use cases (and, for one-dimensional arrays it does give completely arbitrary

control).
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3.2.3 Generation of radio-frequency drive

We have historically used a few different methods to generate the appropriate frequencies

to drive the AODs, starting with voltage controlled oscillators and then function generators with

more built-in functionality. These were convenient and relatively simple, but each channel could

only provide a single trap and, unless we sacrificed the stability of the signals, we were unable to

trap positions in real-time.8 Further, in order to get more than a single trap, we needed to use

multiple output channels and combine them onto the same line using external RF components (e.g.,

a power combiner), which means there were more components before the amplifier, which could

lead to interferences, and the scheme is not arbitrarily scalable!

With the goal of improving both scalability and stability of the RF intensities, the source

of the RF signals is now a single (dual-channel, one for each AOD) arbitrary waveform generator

(AWG). This AWG has a large onboard memory (2 GB), which can store a set of completely

arbitrary waveforms (at 400 MS/second) along with a script that determines the order of the

waveforms.9 Critically, the script will repeat a base waveform until the generator receives a

trigger to initiate some action, then hold at another waveform before being triggered to go to

another position.

3.2.4 Alternative options for arbitrary trapping potentials

Many methods for generating projected optical potentials have been explored, including the

use of time-averaged potentials [33], as well as spatial light modulators (SLMs) [76, 35] and dig-

ital micromirror devices (DMDs) [77], but none of these can alter the potential with sufficient

bandwidth to fully replace the AODs in our system. Therefore, the AODs described above are an

important and necessary component of the real-time control required for loading individual atoms,

8 In order to change the trap position in real-time, we needed to use a DAC voltage to control the frequency of a
VCO (or, equivalently, as an input to certain function generators), which resulted in a less stable and noisier output
RF frequency.

9 While we designed the system around an AWG that is designed (and specified) to work at 400 MS/s, the
generator we are using (a National Instruments PXIe-5451) cannot actually meet these full specifications while also
using triggers in scripting mode, so we have been operating at 350 MS/s as we work to find an option that will fulfill
all of our specifications.
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performing ground-state cooling, and observing dynamics of atoms tunneling between optical po-

tentials. However, there are limitations (arbitrary two-dimensional control, aberration correction)

that have caused us to consider alternatives for generating the final “science potential” used to

observe dynamics, where we are most affected by these limitations, an dI will outline some of the

basic advantages and disadvantages of these systems here.

There are two main capabilities that we do not currently have in our system that lead us to

search for alternatives to AODs. First is the ability to project nearly arbitrary two-dimensional

potentials onto the atoms, as have been demonstrated in other groups [76, 35, 77], which is not pos-

sible with static potentials constructed with AODs arranged in a square array (and time-averaged

potentials are hard when the trap frequencies are as large as we have in our tweezers). Second, these

holographic beam shaping methods immediately provide the ability to correct for nearly arbitrary

wavefront aberrations in the optical system, which will distort the focus, weaken the tightness of

the traps, and lead to asymmetric overlap of the optical potentials.

A liquid-crystal spatial light modulator (LC SLM) is a device that has many pixels (for the

case of the one we were looking at, 512×512), each of which applies a voltage across that segment

of the LC display. There are multiple ways to operate these devices, but in our case we want to

operate in phase-only modulation mode, which means aligning the polarization of the light in the

direction that is modulated by the birefringent liquid crystal material.10 This is important very

important feature of their operation, because a small misalignment of the polarization to this axis

directly leads to a small polarization rotation of the light, which couples to amplitude modulation

after going through polarizing optics farther down the beam path. Importantly, one technical detail

of this style of SLM is that it has to refresh the voltage on each pixel at a rate of about 1 kHz, which

we found coupled to a small, but measurable, amplitude modulation at 1 kHz. Unfortunately, after

carefully characterizing a test SLM with the best achieved in-situ alignment, we found that the

10 An LC SLM operated by applying a different voltage at each pixel located in a grid across a thin sheet of liquid
crystal. The different voltage leads to different alignment of the LC molecules, which changes the effective index of
refraction of that portion of the SLM. The modulators that we were looking into worked in reflection, where the light
passed through this sheet to liquid crystal twice. The spatial variation of the index of refraction is what is then used
to either holographically generate patterns or gratings, or to shift the wavefront to correct for wavefront aberrations.
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residual amplitude modulation was not small enough to perform tunneling experiments; the refresh

rate becomes near resonant with the trap frequency for very shallow traps and an increased atom

loss rate was observed. This has led us to consider other more static options that will allow us to

observe dynamics of ground-state atoms.

A digital micromirror device (DMD) is a device with many individual mirrors that can be

turned on or off and which can be used to define a diffraction pattern or image, depending on

the optical setup (most DMD chips come from projectors and so have standard screen resolutions,

e.g. 1024×768) [77]. This overcomes the limitation of heating due to the refresh rate because

the mirrors remain fixed for any given pattern. However, the efficiency of the deflection into the

desired mode is very small (on the order of 5%), which means that we will need a laser that is

a factor of 20 larger for any given array size. Additionally, while the DMD is relatively fast (in

comparison to SLMs), the update rate is still below (or on the order of) the trap frequency of our

traps, so we would only be able to use this as a static diffraction grating (that could be changed

experiment-to-experiment).

3.3 Removing entropy from the system

After the loading procedure is complete, we immediately take a fluorescence image by scat-

tering the light used for PGC cooling, which allows us to determine how many atoms have been

loaded into the array [78, 79, 80, 18]. This image provides information about the number of atoms

that have been loaded into an array and their locations, which can be used to post-select experi-

ments based on the atomic configuration or even to rearrange the atoms in real-time. As discussed

in Section 1.1, this is a key technique for quantum gas assembly in that we can gain information

about the system that does not lead to atom loss and then can use this information during final

state preparation to construct a state of interest using the information gained [41, 42].

Specifically, this process of gaining information about the configuration of atoms before per-

forming state preparation and then an experiment with knowledge of the initial configuration, allows

us to remove entropy from the system that would otherwise be inaccessible. For instance, experi-
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ments that start with a Bose condensed gas and generate an array by going to the Mott insulating

regime of the Bose-Hubbard model cannot measure whether there are imperfections in the array

before running an experiment, which is a significant source of entropy in many of these systems. In

our experiment, this means that we can measure the configuration of the atoms, then perform laser

cooling to the ground state of the optical potentials, produce an array of (independently prepared)

ground-state atoms that can then be studied in much the same way as Mott insulators have been

studied in quantum gas microscopes in recent years [18, 19, 81, 22].

3.3.1 Building uniform atom arrays

In past experiments, the information we have gained has strictly been used to separate data

taken in a single run into separate datasets; data starting with a single atom in the left well of a

double-wee potential versus data starting with one atom in each well, for instance [43, 47]. However,

this becomes increasingly inefficient as the number of wells used in a given experiment is increased

and a significant subset of the possible configurations does not provide useful data. Using enhanced

loading, as discussed in Section 3.1, improves the data collection rate, but given the capabilities of

our setup that have been discussed in Section 3.2, we can do better!

Specifically, we can use the information about the number of atoms available to perform

different experiments depending on what we have. For instance, if we are loading 3 wells for a

particular experiment (e.g., one described in Chapter 6), we can perform certain calibration experi-

ments when only one or two of the atoms were loaded, and then only perform the “real” experiment

when all three atoms are present. We can even go a step further by using the configuration informa-

tion provided by the same initial image to rearrange the atoms into a specific desired configuration

for different experiments, as has recently been demonstrated in one dimension in Ref. [41] and two

dimensions in Ref. [42]. Importantly, this style of rearranging will allow us to start each experi-

ment with precisely the desired configuration of atoms, as long as the required number of atoms

was initially loaded.
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3.3.2 Distilling motional state preparation

Aside from the entropy associated with a lack of knowledge of the presence of atoms when a

system is assembled, there is also entropy associated with the imperfect ground state preparation.

When planning techniques for future studies with larger arrays of atoms and, in particular, methods

to gain as much information as possible about the state of our system, it became clear that we

could use our ability to transfer atoms in different motional states between traps to selectively

isolate atoms that are not in the ground state of the optical trap, thereby performing a “controlled

distillation” of the quantum state.

While improving the ground-state preparation will always be the goal, some amount of im-

perfection is inevitable and my vision for future experiments is to use our ability to dynamically

rearrange the optical tweezers to read out imperfect preparation. Specifically, by introducing an

empty trap near a trap containing an atom that has been cooled, we can pull off atoms that are

located in excited states by dynamically shifting the bias between the two wells (a process that will

be described in more detail in Chapter 5). Importantly, this extra well can then be pulled off to

the side and read out at the end of the experiment; an atom in one of these wells indicates that

the cooling was imperfect and the result of that run of the experiment should be ignored.11

In this process, depicted in Figure 3.9, we are purifying the motional state of the single atom

by gaining as much information as we can. Thus, with this new technique, we will be able to

improve our ability to generate indistinguishable atoms after postselection, which is important not

only for the experiments described in this thesis, but also for all future experiments where quantum

statistics play a significant role in the dynamics of the system.

3.4 Improving readout of the final state of the system

So far, the theme of this chapter has been to initially prepare the system as well as we can,

then gain as much information as possible about the system we do prepare before performing the

11 An alternative is to simply drop these extra wells after pulling off atoms in excited states. In this case, we are
transferring imperfection in the cooling to effective loss of that atom, so for experiments where we want to post-select
on atom survival, we loose no significant information in this process.
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Figure 3.9: This is a simple schematic showing how we would be able to further purify the motional
state of a single atom in a tweezer before using that atom in an experiment. By using a second
tweezer to pull excited motional levels out of the original trap, we can distill the state and postselect
the data from experiments where the atom was in the ground state.

experiment. Now, we turn our attention to trying to extract the most information about the state

at the end of an experiment. Specifically, at the end of all experiments, the atoms are separated

into resolved traps and some form of spin readout process is performed. Typically, this consists of

pushing out one of the spin states and performing standard fluorescence imaging on the remaining

population, but two alternative imaging methods that have been implemented will be discussed

here.

3.4.1 Spin-resolved imaging

For future experiments, it will be much more important for us to be able to resolve the

individual spin states at the end of an experiment compared to keeping the atoms, but only being

sensitive to the population. In particular, we would like to expand the imaging sequence to take

a picture of the location of all “spin-up” atoms, immediately followed by the location of all “spin-

down” atoms because this will give us more information about the system compared to kicking out
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all atoms that are in one spin state and imaging the location of the remaining atoms. The ability

to know whether an atom was actually in the spin-up state or lost due to imperfect preparation

(or a collision with a thermal atom) makes a big difference when analyzing data. Specifically,

this spin-sensitive imaging provides additional information during each run of the experiment to

postselect the data on runs of the experiment where known errors did not occur (such as loss or

imperfect spin preparation), giving us a better signal-to-noise in the final dataset.

Aside from the benefits related to postselection, one version of this imaging method is, in

principle, lossless, meaning that we can read out the spin of the atom without loosing the atom

from the trap [82, 83]. In this case, we also would benefit by being able to reuse atoms in several

experiments before reloading, saving a significant amount of time because our loading procedure

currently dominates our cycle time. There are two keys to properly implementing this method:

High polarization purity to preserve the cycling transition (scattering photons only off of one of the

spin states). And a large detection efficiency, since we can only scatter a few hundred photons off

of the atom before it will be heated out of the trap. In our case, we require the high polarization

purity during the optical pumping cycle for Raman cooling, so we can easily achieve this by adding

another beam along the same optical path. Additionally, the large collection efficiency is “for free”

with the high numerical aperture lens we are using to collect the fluorescence. The limitation is

then only the signal-to-noise, which is limited by the readout noise of the EMCCD camera we are

using to detect the collected photons.

3.4.2 Raman-cooling imaging

The work discussed in this section was detailed in Ref. [48] and much of the information

below has been reproduced or adapted from this work.

Imaging 87Rb via the fluorescence from standard PGC cooling light, as discussed in Sec-

tion 2.1.2, is extremely efficient. The signal to noise is very high, even for relatively short images,

and the temperature of the atom scattering these photons typically remains below 50 µK. However,

there may be situations where it would be beneficial to keep the atom very near the ground state



53

of the traps (or if using a different atomic species where standard fluorescence imaging is not as

efficient) and for these cases one can consider collecting and imaging the scattered photons during a

period of continuous Raman sideband cooling. This work in this section was published in Ref. [48]

and several groups have more recently used this in quantum gas microscope experiments [84, 49, 50].

In such situations, efficient continuous Raman sideband cooling can be used to maintain a

significant ground-state fraction of trapped atomsand during the cooling process there are photons

scattered that can be collected to form an image. However, the operational principle of sideband

cooling relies on the existence of a dark state, composed of a spin degree of freedom and the motional

ground state, that is decoupled from the cooling light. Thus, to achieve a sufficient signal to noise

during a period of imaging requires some method by which the dark state is tunably compromised

to allow continuous photon scattering. There are numerous methods which could be chosen, but

for this work we applied a parametric modulation to the trapping potential to couple the atom out

of the dark state during the imaging process. By varying the parameters of this drive, we increased

the detection fidelity and speed of the imaging procedure when a smaller ground-state fraction

could be tolerated.

The full optical tweezer apparatus is shown in Figure 2.5, with the most important elements

highlighted in Figure 4.1(a) for implementing imaging via Raman cooling [Fig. 4.2] [43, 85, 52,

53, 86]. The efficiency of the cooling cycle is determined by our ability to optically pump back to

the initial spin state while preserving the reduced motional state, which is related to the Lamb-

Dicke parameter ηOP = x0k, where x0 =
√
~/2mω is the oscillator length for a particle of mass

m with trap frequency ω, and k is the wavenumber of the optical pumping (OP) light. For our

optical tweezer traps in this work, U/kB = 1.1 mK and the radial (axial) trap frequency is ωr =

2π × 140 kHz (ωa = 2π × 30 kHz), which gives ηOPr = 0.16 (ηOPa = 0.35) [43]. This work uses

continuous Raman cooling, where the OP beams remain on during the entire procedure [39].

Each experimental cycle begins with a single atom that has been stochastically loaded by

overlapping a magneto-optical trap (MOT) with an optical tweezer trap [60, 70]. After 10 ms of

polarization-gradient cooling (PGC), the atom is cooled to near the bottom of the trap, with a final
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temperature of ∼ 15 µK [58, 87, 43]. The trap occupancy is then measured with a standard PGC

fluorescence image [78, 43], which works very well for 87Rb. We use this as a pre-selection image to

indicate the presence of an atom for the studies we present. After the pre-selection image, two more

images are taken in each experimental cycle. The second image is the exposure during continuous

Raman cooling. The final image is another PGC fluorescence image (the post-selection image) that

is used in combination with the pre-selection image to distinguish experiments where the atom was

lost. For all of our data analysis, the recorded signal is the number of photons detected in a single

pixel on which the atomic signal is centered. This represents ∼ 1/3 of the total detected signal.

While the best SNR is achieved when all of the signal is binned onto a single pixel, we operate the

camera with a smaller pixel size to fully separate the signal from atoms in different traps. However,

for absolute comparison of the measured scattering rates (discussed below), we integrate the signal

on the surrounding 3×3 pixels to ensure that the majority of detected photons are counted.

Figure 3.10(a) shows an example of the signal from 25 ms of PGC fluorescence imaging, which

provides a useful benchmark for imaging single neutral atoms [78, 79]. For this comparison, we use a

single pair of PGC beams in the σ+-σ− configuration [shown in Fig. 4.1(a)] with 0.61 mW of power in

a beam with a gaussian waist of 1.66 mm 12 . This configuration minimizes interferometric intensity

gradients near the atom, which reduces fluctuations in the atomic scattering rate [58]. We red

detune the PGC light 38 MHz from the trap-shifted cycling transition, which corresponds to 13 MHz

from the free-space transition [73, 88, 89, 90]. Taking into account the 6% collection efficiency of our

optical system, the measured scattering rate during PGC imaging is (2.6± 0.4)× 105 photons s−1.

This is reasonable in comparison to the estimate of 4.5×105 photons s−1[71], which assumes perfect

alignment of the peak intensity of the PGC beams to the atom, balanced circularly-polarized beams,

and the ideal steady-state spin distribution for an atom at rest in one-dimensional (1D) PGC

light [58].

During Raman cooling imaging, 3D cooling must be performed even if our controlled paramet-

12 Note that the pre- and post-selection images used a six-beam PGC configuration, which we find achieves a
comparable SNR.
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Figure 3.10: Photon detection histograms. The red (blue) bars on the right (left) indicate im-
ages taken with (without) an atom in the trap, as determined by the pre-selection image. The
dashed (solid) black gaussian curve approximates the expected distribution for the atomic signal
(background). (a) Fluorescence signal from 25 ms of PGC imaging. (b) Signal collected during
1 second of continuous Raman cooling. The presence of an atom is triggered using the pre- and
post-selection PGC images. (c) same as in (b), but now applying a sinusoidal parametric drive
with ∆U/U ∼ 0.055, resonant with the radial trap frequency, to the optical tweezer potential.

ric drive affects only one motional axis. This requirement arises from the optical pumping process,

which can heat any motional axis via spontaneous emission. We use three beams to simultaneously

perform continuous Raman cooling along both the radial (RB1+RB2) and axial (RB1+RB4) di-

mensions of the trap. For the radial cooling, we take advantage of the near degeneracy of the two

radial trap frequencies of our trap to cool with only one beam pair and still achieve the necessary
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(albeit slower) cooling along both dimensions.

Figure 3.10(b) shows a histogram of the number of photons detected during 1 second of

continuous Raman sideband cooling. The red (blue) data represent experiments where an atom

was present (absent) in both the pre- and post-selection images, from which we infer that there

was an atom present (absent) during the entire period of continuous Raman cooling. Selecting

experiments where the atom is not lost allows us to directly characterize the imaging procedure,

independent of imperfections (such as the vacuum lifetime) that are specific to our setup. We note

that the signal peak is smaller than the background peak because the trap loading rate was smaller

than experiments in Fig. 3.10(a) (roughly 25% instead of 60%) due to a lower MOT density during

loading. This does not affect the results other than to reduce the available statistics for the signal

data points compared to background.

In principle, we should expect no signal when no parametric drive is applied to the trap

because the atom should remain in the dark state and thus scatter no photons. The main con-

tributions to the signal in Fig. 3.10(b) are from off-resonant carrier [∆n=0 in Fig. 4.1(b)] Raman

transitions, which initiate an optical pumping cycle, and, to a lesser extent, residual coupling of the

dark state to the optical pumping beams. Off-resonant carrier transitions are relevant in these ex-

periments because the ratio of the carrier Rabi rate (the transition linewidth) to the trap frequency

(the detuning from the transition) is non-negligible, leading to a finite population transfer. The

measured scattering rate for the data in Fig. 3.10(b) is (1.9±0.3)×103 photons sec−1. We estimate

the maximum scattering rate from off-resonant carrier transitions to be 2 × 103 photons s−1 by

summing the scattering rates from two 1D calculations of the axial and radial rates.

The fidelity of the imaging is determined by a combination of the signal amplitude and the

ability to separate the signal and background distributions. The expected standard deviation in the

number of detected photons is a combination of shot noise (Poisson statistics) and the readout noise

of our detector (σRO = 6.6 photons√
pixel

). The expected distributions for the atomic signal (background)

are approximated by the dashed (solid) gaussian curves on the histograms in Fig. 3.10. Based on

the overlap integral of two normalized gaussian distributions with means and standard deviations
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from the data in Fig. 3.10(b), we estimate a minimum detection error rate of 1.4×10−2 for 1 second

of integration time [82] 13 . Note that this is a measure of the achievable SNR, but the effects of

atom loss are removed based on the pre- and post-selection images.

To improve the signal detected during continuous Raman cooling, we apply a parametric

drive by modulating the total optical power generating the optical tweezer trap at twice the radial

trap frequency (2ωr = 2π × 280 kHz). This drives the atom out of the motional ground state,

allowing the cooling cycle to restart, and thus more OP photons are scattered during the exposure.

Figure 3.10(c) clearly shows an increase in the atomic signal during Raman cooling imaging with a

parametric drive applied to the trapping potential. The increased signal corresponds to a reduction

of the minimum detection error rate to < 10−4 for the same 1 second integration time. For

comparison, we estimate that 20 ms of our PGC imaging, which has a much higher scattering rate,

can achieve the same minimum detection error rate.

The Raman cooling imaging procedure can be simply understood as the competition be-

tween a variable parametric excitation rate and the (constant) continuous Raman cooling. The

competition of these rates rapidly yields an equilibrium ground-state fraction, and hence non-dark

fraction, which largely determines the measured scattering rate. This simple description is effective

because the parametric drive does not directly interfere with the cooling and the Raman cooling

cycle occurs on sub-millisecond timescales compared to the 1 second image.

The average number of photons detected during Raman cooling imaging is observed to in-

crease as a function of the applied parametric drive amplitude [red circles in Fig. 3.11(a)]. Hence,

increasing parametric drive amplitude reduces the equilibrium ground-state fraction, allowing us

to control the atomic fluorescence rate. The atom signal can be compared to the average number

of background photons detected (blue squares) measured at each drive amplitude. The amplitude

of the parametric drive is defined as the ratio of the peak-to-peak variation of the trap depth ∆U

to the trap depth in the absence of a drive U .

13 The minimum detection error rate δ is half the overlap integral of the two normalized gaussian distributions,
which requires an optimal choice of threshold to achieve. The fidelity of the measurement is then defined to be
F = 1− δ (i.e., δ = εB = εD in Ref. [82]).
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Figure 3.11: (a) Varying the amplitude of the parametric drive applied to the optical tweezer
potential during 1 second of Raman cooling imaging. The green diamonds are the atom survival
probability, as determined using the pre- and post-selection images, and the orange dashed line is
the measured vacuum lifetime limit. The red circles (blue squares) are the signal collected with
(without) an atom in the trap during the entire imaging period. The blue line indicates the average
background value of 16.5 detected photons. The inset displays the equilibrium radial ground-state
fraction (PGS radial) measured via Raman sideband spectroscopy immediately following a period
of Raman cooling imaging [43]. (b) Signal as a function of the parametric drive length, for fixed
total imaging length (1 s) and drive amplitude (∆U/U ∼ 0.04). The red line is a linear fit to the
data. All error bars indicate the standard error of the measurement.

Up to intermediate drive amplitudes, we characterize the equilibrium radial ground-state

fraction during imaging by performing radial sideband thermometry immediately after a period of

Raman cooling imaging. We verify that the equilibrium ground-state fraction varies with the applied
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parametric drive amplitude [inset of Fig. 3.11(a)]. For the lowest drive amplitudes (∆U/U . 0.02),

thermometry is limited by the resolution of our sideband spectroscopy [43], suggesting a radial

ground-state fraction PGS > 80%. We further find that a significant ground-state fraction PGS ≥

55% is maintained for drive amplitudes up to ∆U/U ∼ 0.06 (near the maximum drive without

loss). The scattering rate observed at this drive amplitude is (4.9± 0.7) × 103 photons s−1. We

estimate an expected scattering rate of ≤ 7×103 photons s−1 by weighting the scattering rates from

each of the motional excited states undergoing Raman cooling, assuming a thermal distribution

corresponding to the measured motional occupation at ∆U/U ∼ 0.06 [43].

Further, the survival probability of the atom is measured as a function of the parametric drive

amplitude [green diamonds in Fig. 3.11(a)] by recording the probability for an atom to appear in

the post-selection image, given that it was present in the pre-selection image. The orange dashed

line represents the expected survival probability due to the vacuum lifetime (τ = 7.1 s) over the

course of the 1.023 seconds between the pre- and post-selection images. The atom loss is initially

consistent with background collisions, but at larger drive amplitudes the parametric excitation rate

exceeds the Raman-cooling rate and the atom is quickly heated out of the trap.

In Fig. 3.11(b), we perform 1 second of continuous Raman cooling and apply a parametric

drive for a fraction of the image. The constant drive amplitude of ∆U/U ∼ 0.04 realizes an

equilibrium radial ground-state fraction of ≥ 70% [inset of Fig. 3.11(a)]. The measured data

(red circles) are well fit by a linear increase (red line), which is further evidence that the radial

ground-state fraction rapidly reaches equilibrium. For the same drive amplitude, we estimate that

a minimum detection error of < 10−2 can be reached after about 0.5 seconds of imaging. This is

comparable to the site-resolved imaging used in recent optical lattice experiments [18, 19].



Chapter 4

Preparing and Interfering Indistinguishable Atoms

In Chapter 3, we reviewed the methods by which we can generate an array of atoms for use

in an experiment, as well as ideas for how to read out these atoms efficiently, gaining as much

information as possible about the initial state prepared and the final state after an experiment

for use in the data analysis. However, we left out a crucial step for performing real experiments:

Bringing the atoms to the ground motional state of the traps before initiating dynamics. In this

Chapter, I will review the basics of Raman sideband cooling and how we have implemented it to

cool single atoms trapped in optical tweezers [43]. The Raman cooling is an important technical

aspect of the experiment, for which I provide details here that are not necessarily in any of our

other published work, though reviewed some in Adam Kaufman’s thesis [57]. This work led to the

observation of two-particle quantum interference of independently prepared atoms, verifying the

ability to make atoms indistinguishable via laser cooling alone. This work is described in Ref. [39, 57]

and, hence, I do not cover the details here. However, I do briefly discuss the application of our

ability to measure the indistinguishability of two atoms to improving our initial state preparation.

4.1 Raman sideband cooling

Reliably bringing atoms to the motional ground state of a trapping potential is a hard prob-

lem. In many ultracold atomic gas experiments, a large cloud of atoms is trapped, cooled to the

limit of traditional laser cooling techniques (in the few µK regime), and then initiating some form

of evaporative cooling reach sufficiently small temperatures for Bose condentation (or the genera-
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tion of a degenerate Fermi gas) with the remaining atoms. While this is effective and has led to

significant progress in the field of ultracold gases, it is inefficient both in terms of the number of

ground-state atoms versus number loaded and in terms of the length of the cooling process, and is

not amenable to quantum gas assembly as envisioned in Chapter 1 [1, 2, 3, 4, 12, 91, 92, 18, 19].

For cooling single atoms to the ground state of tightly confining traps, Raman sideband cool-

ing has been extremely successful, and quite generally applicable, being used for trapped ions [93],

atoms in optical lattices [52, 53, 54, 56, 86, 94], optical cavities [95, 96, 97], and optical dipole

traps [43, 44]. The operational principle is to drive transitions that manipulate both the spin and

the motional degrees of freedom, decreasing the motional quantum number in each step, and even-

tually reaching a state that is dark to the cooling light, which occurs in the motional ground-state

of the trapping potential. Below, I will briefly review the form of pulsed Raman sideband cooling

that we use in our system, but there are many other forms of Raman sideband cooling, such as con-

tinuous sideband cooling and projection sideband cooling, in addition to a large amount of detailed

derivations that I am not going to repeat in this thesis because they are covered very thoroughly

elsewhere, in particular in Refs. [98, 99, 57].

4.1.1 Non-degenerate pulsed Raman sideband cooling

First, note that much of the content of the next two sections is detailed in Refs. [57] and [43],

but certain details have changed since the original publication and are discussed here. Here, we

focus on the current implementation of a nondegenerate, pulsed Raman cooling scheme. Briefly,

this is a two-step process that alternates between driving a coherent, energy-reducing spin-flip

and then driving spontaneous transitions to bring the atom back to its original spin state, while

maintaining the reduced motional level. By repeating such a procedure many times, the population

accumulates in the ground state of the trap with the original spin state.

The key component of this procedure is the ability to drive a coherent, energy-reducing spin-

flip; this is achieved using a two-photon Raman process, where two far-off-resonant beams have

a frequency difference that (nearly) matches the microwave transition frequency for the spin-flip
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Figure 4.1: a) The content of this diagram is contained in Figure 2.5, but here we highlight
the beams used during Raman cooling (RB1-RB4, and OP), as well as the beam used for both
sub-Doppler cooling and imaging (PGC). The PGC beam is used to initially cool the atoms such
that the temperature of the atoms is amenable to Raman cooling. The polarizations of each of
these beams is also indicated in the figure with a dashed line (or circle). b) Diagram depicting two
ground-state spin levels the beams used to perform a Raman transition. The black vertical arrow
represents one of the linearly polarized beams (RB2-RB4), and is far-detuned from the excited
state energy level. The three arrows on the right indicate three possible transitions selected by the
σ+ Raman beam (RB1), all of which flip the spin of the atom, but address transitions between
different motional states (red for ∆n = −1, black for ∆n = 0, and blue for ∆n = +1).

that we want to drive. These two beams then cause the atom to undergo a virtual process, where

a photon is absorbed from one beam and emitted into the other, changing the spin-state of the

atom in the process. As depicted in Figure 4.1(b), by adjusting the frequency difference between

the beams, we can simultaneously change the motional state of the atom in the trap, meaning that

for particular frequency differences, we drive coherent, energy-reducing, spin-flips that are the first

step in the Raman cooling procedure. Then, the spontaneous process that brings the atom back

to its original spin state is simply the optical pumping that was described in Section 2.1.3.

Figure 4.1(a) highlights the relevant beams for performing the Raman transitions in our setup.

In particular, we highlight that the optical pumping beams (OP) are aligned along the quantization

axis and are copropagating with the Raman beam, RB1, which is used when addressing all three

axes (this ensures that all three beams have the same high polarization-purity). The remaining

three Raman beams (RB2, RB3, and RB4) are all aligned orthogonal to RB1 and the three pairs are
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Figure 4.2: This is a schematic representation of the pulsed Raman cooling procedure. a) Along
a single axis, this shows the pulse sequence and how the population of atoms is brought to a lower
temperature. by repeating a single Raman cooling cycle repeatedly (each two-step sequence is
highlighted by the dashed box around it). b) Pulse sequence demonstrating how we sequentially
cool all three axes (each completing a full Raman cycle before the others have a chance to accumulate
population in the three dimensional ground state of the trap.

used to address three orthogonal axes of the trap. Because these beams are pointing along different

axes, there is a net momentum kick imparted to the atom during a two-photon Raman transition,

which then allows us to couple different motional states of the atom. Assuming a nonzero total

momentum kick, then we can selectively address transitions that change the motional state by a

known number of quanta (typically either ∆n = ±1 for the blue and red sidebands, or 0 for the

carrier transitions) while flipping the spin of the atom, as depicted in Figure 4.1(b).

A schematic representation of the full cooling procedure is shown in Figure 4.2(a). After

loading of the optical tweezer with a single 87Rb atom, sub-doppler cooling is performed to lower

the initial temperature of the atom such that the atom starts near the bottom of the trap; this is

important for ensuring that the cooling procedure is effective, as discussed in Section 4.1.2. Then,

before the Raman cooling procedure is initiated, optical pumping is performed to set the spin state

of the atom to the |F,mF 〉 = |2, 2〉 = | ↑〉 Zeeman sublevel. Then, a pair of Raman beams (RB1

plus RB2, RB3, or RB4) is used to drive a coherent rotation of the spin to the |1, 1〉 = | ↓〉 Zeeman

sublevel, while changing the motional level by ∆n = −1 (to be explicit, this is a Raman transition

between the states | ↑, n〉 → | ↓, n − 1〉), as shown in Figure 4.2. The spin state is then optically

pumped back to the original spin state | ↑〉, while preserving the reduction in the motional state,
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and the final two steps can be repeated many times to ensure that the atoms end up in the ground

state at the end of the process. Note that this procedure is shown for a single motional axis, which is

determined by the choice of the pair of Raman beams and the relative frequency difference, but we

actually switch between the different axes for each cycle to bring the atom to the three-dimensional

ground state.

Near the end of a successful Raman cooling procedure, the majority of atoms are in the “dark

state”, meaning that the atom is not affected by the any of the light applied. Specifically, when

applying light for a Raman transition that is designed to reduce the motional state by one quanta

during the spin flip, then no resonant transition will occur when you are already in the ground

state of the trap. Additionally, because of the design of the optical pumping process, the | ↑ spin

state is already dark to the optical pumping light. Therefore, the state | ↑, 0〉 remains the dark

state for the entire Raman cooling procedure.

4.1.2 Efficient cooling in optical tweezers

One of the most important considerations for the successful implementation of ground-state

Raman sideband cooling is to have sufficiently strong harmonic confinement of the atom (or at

least approximately harmonic for the relevant energy scales). Specifically, this confinement is

needed in order to resolve transitions between individual motional states, as well as to ensure the

scattering of a small number of photons (during optical pumping) will not result in the atom’s

motional state being increased more often than it is reduced. The parameter describing used to

describe the confinement of a trap is called the Lamb-Dicke parameter [100]. The Lamb-Dicke

parameter is defined as η = krx0, with kr being the recoil momentum imparted to the atom by

the light addressing a given transition and x0 the harmonic oscillator length of the ground state

wavefunction. Equivalently, this can be written as η2 = ωr
ω0

, with ωr the recoil frequency (where the

energy gained by the atom emitting a photon is given by Er = ~ωr) and ω0 is the trap frequency

of the harmonic potential.

Note that the probability to preserve the reduced motional state is dependent on the average
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number of photons scattered during the optical pumping stage, the Lamb-Dicke parameter ηOP

for scattered optical pumping photons, and the motional state that the atom is in when scattering

photons. There is a fundamental minimum to the number of photons scattered during optical

pumping that is set by the decay pathways from the excited state. Conservatively, we assume 3

scattering events per optical pumping cycle, which would say that if we increase the energy level of

the atoms less than once every three scattering events, then we will have a net cooling effect during

each cycle. Importantly, if there are no mechanisms for heating or scattering out of the dark state,

then, if a net cooling is achieved, arbitrarily high ground-state fractions can be generated with a

long enough period of cooling.

However, there is always some limit to the fidelity of the dark state, either from a mechanism

that can directly heat the atom out of the ground state, or due to the polarization of the optical

pumping light not being perfectly σ+ and causing an undesired spin flip. Heating of the atom can

come from the elastic scattering of photons, possibly from the trap or Raman light, or from intensity

noise modulating the trap at a frequency resonant with motional state changes. In either case, these

will never be completely gone, but can be minimized with relatively standard techniques. On the

other hand, preventing unwanted spin flips from the optical pumping light is more challenging

because this light is designed to bring the atom back to the | ↑〉 spin state quickly, and therefore

has a relatively high scattering rate of ΓOP ∼ 100 kHz. The “darkness” of the dark state then

depends on our ability to prevent unwanted scattering events, which relies on high polarization

purity. To be specific, from the | ↑〉 = |2, 2〉 spin state, the OP light (from Figure 2.1) would be

resonant with transitions to both the |F ′,m′F 〉 = |2, 2〉 and |2, 1〉 states, if the polarization were

not purely σ+. As discussed in Section 2.1.3, we are able to achieve a polarization purity to better

than a part in 1000, which means the scattering rate out of the dark state is less than 100 Hz.

As mentioned above, the probability of the atom heating during a photon scattering event is

also dependent on the motional state of the atom, which we can quantify by defining an effective

Lamb-Dicke parameter as
(
ηOP

eff

)
= (2n̄+ 1)

(
ηOP

)2
. This modification simply means that to achieve

efficient Raman sideband cooling, we need to start with a low thermal occupation before initiating
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the Raman cooling process which the in-trap PGC cooling provides.

The coupling between the motional states is also parameterized by a Lamb-Dicke parameter,

but in this case the momentum is replaced by ∆k, the amount of momentum imparted to the atom

during a Raman transition (the difference in the momenta of a photon absorbed from one beam and

emitted into the other). Therefore, the Raman Lamb-Dicke parameter is defined as ηR = ∆kRx0.

This parameter determines the ability to drive sideband transitions with a given set of beams and,

along with the motional occupation, defines the relative rate at which sideband transitions will be

driven in comparison to the carrier (∆n = 0) transition.1 The strength of this coupling will affect

the spectra resolution of the sidebands from the carrier transitions because it changes the ratio

of the Rabi rates, and thus the widths of the spectral features. This also affects the final cooling

efficiency because a reduction in the spectral resolution leads to a higher probability of driving

an off-resonance carrier transition (instead of a sideband). This directly leads to the scattering of

optical pumping photons without the benefit of reducing the motional state first, directly leading

to heating of the atom.

This highlights another important concern for maximizing the efficiency of the cooling proce-

dure, in that improving the spectral resolution between the sidebands and the carrier is beneficial.

Specifically, there are two things we have changed that improved this in our setup: Changing the

alignment of the axial Raman beam (thus increasing the Lamb-Dicke parameter ηR) and using

Gaussian shaped pulses to narrow the spectral extent of each pulse.

4.1.3 Raman sideband spectroscopy

After performing a sequence or Raman sideband cooling, we can estimate the motional state

occupancy (or, more specifically, the ground-state fraction) by performing Raman sideband spec-

troscopy. In this procedure, we perform a π-pulse for the blue sideband (assuming the sideband

Rabi rate associated with atoms from the ground-state) while varying the relative frequency be-

1 This also has some significant consequences, where atoms with too high a motional occupation will undergo a
2π rotation rather, getting some fraction of the population stuck in higher harmonic oscillator levels. In the end, this
enforces a similar requirement that we need to start with a low enough initial temperature.
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Figure 4.3: These plots show (a) the radial and (b) the axial Raman sideband spectrum taken after
a three-dimensional cooling process that has been optimized by improving the indistinguishability
of the atoms, as discussed in Section 4.2.2. The dashed black lines indicate the expected location
of the red (energy reducing) sideband based on the measured trap frequencies. The lack of a red
sideband (on the right) indicates a large ground state fraction. In (b), the central peak is the
overdriven carrier transition, which adds noise that partially overlaps with the location of both the
sidebands.

tween the two Raman beams. The resulting spectra are shown in Figure 4.3for the radial and axial

dimensions after the cooling procedure. In both of the spectra, the energy-reducing red sidebands

are not noticeable, suggesting that the atoms are in the ground-state of the trapping potential.

The large asymmetry between the sidebands (and especially the absence of the red sideband) is

suggestive of the large ground state fraction after this cooling process.

4.2 Quantum interference of indistinguishable particles

The details of our experiment that led to the observation of two-particle quantum interference

are detailed extensively in Refs. [39] and [57], hence I will only briefly introduce the experimental

sequence and relevant observable before discussing how we have more recently used the results of

this experiment as a tool for optimizing our initial preparation procedure.

4.2.1 Measuring indistinguishability via tunneling in a double well potential

A schematic of the tunneling procedure is shown in Figure 4.4, along with a representative

set of recent single-particle tunneling data that has been post-selected on the single atom not being
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Figure 4.4: Schematic of the tunneling procedure used to observe interference between indistin-
guishable atoms. a) Atoms are loaded into ∼1 mK deep traps that are in separated by 1.57µm to
perform Raman cooling to the motional ground-state. b) The traps are dynamically reconfigured
to both partially overlap and be shallow enough that there is a tunnel coupling between the sides
of the double well potential, in the example shown this means a 0.9 µm separation and 0.9 µK
single-well depth. c) The atom is allowed to evolve in this final trap configuration for a period
of time, during which the atom can coherently tunnel between the two wells. d) The traps are
separated and imaged to measure the population in each well. An example of data taken with the
trap parameters listed above is shown, where the probability for the atom to end in the left well is
shown as a function of time for a single atom initially in the left (red) and right (blue) wells.



69

��

�
�� �

�

�

��

�
�

�

�

�
�

�

�

�

�

0 Π 2Π 3Π 4Π 5Π

0.2

0.3

0.4

0.5

P1
1

Single spin rotation pulse area
P 11

 
0         π         2π      3π        4π       5π

Figure 4.5: In this figure, we observe two-particle quantum interference as a function of the
distinguishability of the two atoms. The black points on this plot show the measured probability
for two atoms to end up in separate wells after tunneling for a period that splits each atom into
both wells. The two-particle quantum interference is the reduction of this probability below the
purple points. The purple points show the expected probability for distinguishable atoms to end
up in separate wells, calculated from the single particle data (as shown in Figure4.4), which would
ideally go to 0.5. In this figure, we are specifically varying the spin state of one of the atoms
before this tunneling procedure occurs. When the atoms are in opposite spin states, they are then
distinguishable and there is no interference “dip” below the distinguishable limit, but when they
are the same spin state, we do see this interference.

lost before the end of the experiment (as discussed in Section 3.4.1). The coherent tunneling of

single atoms between the wells forms the basis of our observation of quantum interference between

two atoms. In this sequence, two optical tweezers are stochastically loaded when separated and

the trapped atoms are prepared in the motional ground state, as described in Section 4.1.1, before

repositioning the wells to initiate a period of tunnel-coupling. After a variable period of evolution,

the wells are separated and the population measured.

When two atoms are initially loaded, one in each of the two tweezers, then they will simul-

taneously experience a tunnel-coupling between the two wells, and periodically both atoms will be

split evenly between the two wells. However, because they started in opposite wells, the phases

between the two atomic wavepackets will be different, which leads to quantum interference that

results in the atoms always being observed in the same well when the atoms are indistinguishable

in all other degrees of freedom [101, 39, 57, 102]. Figure 4.5 demonstrates the change in the nature

of the interference between two atoms split evenly between the two wells, as the distinguishabil-
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ity between the two atoms (in the form of the initial spin state) is tuned via site-resolved spin

addressing.

4.2.2 Using indistinguishability to improve state preparation

As demonstrated in Figure 4.5, the depth of the two-particle interference between particles

evenly split between the two wells of a double-well potential is a good measure of the distinguisha-

bility of the two atoms. Therefore, because the goal of our initial state preparation is to put all

atoms in the motional ground state of their respective traps, we can use this measure of the distin-

guishability to optimize our state preparation. This is equivalent to the experiment demonstrated

in Figure 4.5, except that instead of purposefully rotating one of the spins (and not the other), we

will change the global parameters used during state preparation, such as the cooling frequencies

and Raman beam powers, and choose to use the values which give a minimum in the interference.

An example of the signal from this optimization procedure, as applied to the parameters used

during the Raman cooling procedure, is shown in Figure 4.6. Specifically, for this run, the axial

Raman beam frequency used during cooling was varied to find where the axial cooling rate was

maximal. After tuning this and several other cooling parameters, we achieved the sideband spectra

shown in Figure 4.3.
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Figure 4.6: In this figure, we are observing the quantum interference between two atoms as we
vary the axial Raman beam frequency used during the initial state preparation. We can clearly see
that the interference is maximized for a particle frequency for Axial sideband cooling. This allows
us to set the exact frequency used to the best of my abilities, and is often the best signal around
for optimizing any given Raman cooling parameter.



Chapter 5

Entangling Independently-Prepared Neutral Atoms

We have already seen that the quantum statistics for identical particles can have drastic effects

on the dynamics of indistinguishable atoms in a double well potential. However, in this chapter we

will study effects in a system where we purposefully prepare distinguishable atoms and allow them

to interact in a single tweezer. In particular, we observe how the quantum statistics of the atoms

imposes additional restrictions on the total quantum state, which leads to the correlated degrees of

freedom will become coupled in such a way that they can no longer be described independently [103].

Specifically, by preparing two atoms in different motional states of a single trap and with opposite

spin states, the symmetrization of the total wavefunction will lead to spin-exchange dynamics,

which periodically generated spin-entanglement between the two atoms [39].

We note that this type of coupling forms the basis of many exciting areas of research, includ-

ing quantum information protocols with quantum dots (where dynamics similar to those observed

here are used to entangle and manipulate qubits), to effects observed in unconventional supercon-

ductors, which will be discussed further in Chapter 6. The information presented here thus lays the

foundation for the discussions in Chapyer 6, but certain details will be left out and can be found

in Ref. [47] and [57].

5.1 Dynamical entanglement via spin-exchange

The work discussed in this section was published in Ref. [47] and for for any additional

information see discussions there, as well as in Ref. [57].
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Figure 5.1: a) Starting on the left, two atoms are loaded into separate optical tweezers and prepared
in their motional ground state and in opposite spin states. Then, the tweezers are reconfigured to b)
The on-site contact interactions shift the energy of triplet spin-state (which will be in a symmetric
spatial wavefunction), but due to the symmetrization of the total wavefunction, there is no contact
interaction in the singlet state (which must be in an antisymmetric spatial configuration). The
differential phase accumulation between these spin states thus leads to the spin exchange dynamics
that we wish to observe. (Note that this figure is adapted from Ref. [47].)
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In this section, I will discuss our demonstration of the use of local interactions to entangle

the spins of two atoms that are initially trapped in separate wells. When the two atoms are

placed in the same well, the symmetry of the two-particle spatial wavefunction determines the

interaction energy of the particles. However, assuming the atoms are identical in all other degrees

of freedom, the spatial symmetry of the two-particle wavefunction directly determines the spin-

symmetry, which means that the singlet and triplet spin wavefunctions will experience difference

interaction strengths, as shown in Figure 5.1. It is this difference in interaction strength that leads

to a differential phase accumulation between the singlet and triplet spin states, resulting in the

exchange of spin between the two atoms.

In the experiment, we can observe this effect by preparing an initial state with two atoms

in two optical tweezers, bringing both to the ground state, and then flipping the spin of one of

the atoms. The remainder of the procedure is depicted in Figure 5.2, where we sweep the wells

together in an asymmetric configuration such that we are not resonant with tunneling, and slowly

reconfigure this tilt to couple the ground motional state of the left well to the first excited motional

state of the right well [Fig. 5.2], adiabatically transferring the atom into the right well in a process

I will refer to as an “adiabatic passage”. After a period of evolution, this process is reversed to

separate the two atoms, and the the spin state of the atoms in the two separate wells is measured.

The observed dynamics are shown in Figure 5.2, exhibiting anti-correlated oscillations be-

tween the |↑〉e |↓〉g (green) and |↓〉e |↑〉g (purple) spin configurations. We also verify that, as we

vary the depth of the well during the exchange period (and only during this hold to ensure that

the remaining process is identical), the oscillation rate changes in a way that is consistent with the

expected Hubbard parameters [Fig. 5.2(c)], as calculated using a full three-dimensional model of

our system, as discussed in Refs. [39] and [104].

These measurements show correlations in single-particle spin states. However, to use the

entanglement generated in this process for future quantum information protocols, we must verify

that the phase of the entangled state is preserved after separation of the particles. The entangle-

ment verification protocol for separated atoms is summarized in Figure 5.3(a). For explanatory
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Figure 5.2: a) Schematic representation of the experimental procedure for observing spin exchange
oscillations. Starting with atoms in separate wells and in opposite spin states, we then proceed by
rearranging the traps to couple the atom from the ground-state of the left well to the first excited
state of the right well. Then, we let the system evolve for some period of time before separating
the wells and observing the final spin configuration of the system. b) Time-evolution of the spin
configurations over time. We see the anti-correlated oscillations of the spin states that is indicative
of spin-exchange dynamics. c) Varying the depth of the trap during the period of evolution, we
see that the oscillation rate varies in agreement with the theory calculated for the trap parameters
being used. (Note that this figure is adapted from Ref. [47].)
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purposes, we first focus on the case when the particles are separated after an exchange time of

tent = nπ/2Jex where n is an odd integer. The entangled state after the second adiabatic passage is

|ψ±〉 = 1√
2
(|↓〉L |↑〉R± i|↑〉L|↓〉R), omitting from now on the ground-state (g) motional subscripts

to simplify notation. The |ψ±〉 states correspond to the gray and orange Bloch vectors, respec-

tively, in Figure 5.3(b). We then apply a magnetic-field gradient that imposes a difference, δ~, in

the |↑〉 ↔ |↓〉 single-atom-transition energy between the left and right optical tweezer. By applying

the gradient for a time tg, a transformation |ψ±〉 → 1√
2
(|↓〉L|↑〉R ± ieiδtg |↑〉L| ↓〉R) is achieved. As

a function of tg, the state rotates between the singlet [pink in Figure 5.3(b)] and triplet (blue) with

frequency δ. We then apply a global π/2 pulse in the {| ↑〉, | ↓〉} sub-space. This pulse maps the

singlet back to itself, while it maps the triplet to a Bell state i√
2
(|↑〉L|↑〉R + |↓〉L|↓〉R). Therefore,

by measuring the probability that the spins are aligned or anti-aligned as a function of tg, we can

observe singlet-triplet oscillations whose amplitude characterizes the two-particle coherence. We

quantify this probability with the parity Π(tg) =
∑

j Pj(−1)j , where Pj is the likelihood to mea-

sure j atoms in the spin-down state [105, 106, 27, 26]. The parity is equivalently the projection

of the Bloch vector in Figure 5.3(b) onto the x-axis of the effective two-particle Bloch sphere (in

the Sz = 0 subspace) prior to the π/2-pulse, and hence the gradient is essential because, though

entangled, the states |ψ±〉 (gray, orange) exhibit zero parity after application of a π/2-pulse.

We demonstrate the outcome of the verification protocol on the state |ψ+〉 in Figure 5.3(c).

We plot Π(tg) after the microwave π/2 pulse, and observe oscillations in the parity signal as the

gradient time tg is scanned. The contrast of these oscillations is consistent with what is expected

given the exchange oscillation contrast in Figure 5.2, and non-vanishing parity oscillation would

certify entanglement in the ideal case of perfect spin preparation. However, we have imperfect

spin preparation, and the erroneous spin populations outside the {|↓〉L| ↑〉R, | ↑〉L| ↓〉R} manifold

could lead to parity oscillations even in the absence of entanglement. We have derived a condition

on the parity oscillation contrast that is necessary and sufficient to certify entanglement and is

experimentally the most accessible way to see there is entanglement in our system (for a full

derivation of this condition, see Ref. [47]). We relate the measured parity contrast, C, to the
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Figure 5.3: a) Procedure for performing spin exchange, followed by the entanglement verification
procedure, which consists of apply a magnetic field gradient to the separated atoms and then
performing a spin parity readout sequence. b) Two-particle Bloch sphere representing the Sz = 0
subspace of the spins. The eigenstates of the spin-exchange interaction are along the x-axis (singlet
and triplet), while the eigenstates in separate wells and in the presence of a gradient are along the
z-axis. Then, spin exchange becomes a σx rotation, while the gradient evolution is a σz rotation.
Then, upon application of a microwave π/2 pulse, we map the projection of the Bloch vector onto
the x-axis to parity. c) Evolution of the parity after performing spin-exchange for a time that
should result in an entangled state and then varying the length of the gradient evolution. The
gray bar represents the calculated oscillation bound of oscillation amplitude that would verify the
presence of spin entanglement. d) Varying the length of spin-exchange evolution before performing
the readout sequence for a fixed gradient evolution time. (Note that this figure is adapted from
Ref. [47].)
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measured probabilities (P ↑↑,P ↓↓) that the spins are erroneously prepared in the same spin-state: If

C > Cbnd = 4(P ↑↑P ↓↓)1/2, then the state is entangled. By directly measuring the spin populations

and their associated uncertainty, we ascertain Cbnd = 0.133(25) as indicated by the dashed lines

in Figure 5.3(c). The observed parity oscillation contrast C = 0.49(4) exceeds Cbnd by more

than 7σ, certifying the presence of entanglement in the final state of the separated spins. We verify

entanglement without correcting the measured parity for experimental imperfections, such as single

atom loss due to background collisions.

While in Figure 5.3(c) we varied the parity detection parameters via tg, in Figure 5.3(d) we

measure the dependence of the parity on the exchange time at fixed tg, thereby observing oscillations

as the exchange interactions periodically entangle and unentangle the two atoms. We fix tg in the

parity detection such that the entangled state |ψ+〉 [gray lines in Figure 5.3(b,d)] is rotated to a

peak in Π, corresponding to the creation of the triplet [blue lines in Figure 5.3(b,c)]. Because this

tg amounts to a π/2 rotation about the z-axis of the Bloch sphere, it will also rotate |ψ−〉 to the

singlet, which corresponds to maximal negative parity. In the lower panel of Figure 5.3(d), we show

how the parity measured under these conditions oscillates at the exchange frequency Jex/(2π~) .

For comparison, in the upper panel, we show the measured exchange oscillations (purple, green)

without the parity detection. At the linear points of the exchange oscillations, one expects maximal

entanglement corresponding to states |ψ+〉 (gray) and |ψ−〉 (orange) and thus the extremal points

of the parity. At the minima and maxima of the exchange oscillations, the atoms are unentangled

and the parity vanishes.

5.2 Spin-entangled states in spin-dependent traps

In the verification protocol discussed in the previous section, we purposefully break the

degeneracy of the |↑L, ↓R〉 and |↓L, ↑R〉 states by using a magnetic field gradient between the two

wells, which initiates a σz rotation on the effective Bloch sphere representing the Sz = 0 subspace of

the two atoms (as shown in Fig. 5.3). The breaking of this degeneracy is useful for such operations,

but when not controlled or zeroed at other times, the fidelity of the initial state preparation can be
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degraded due to the splitting of the eigenstates, which should be degenerate during the adiabatic

passage procedure.

This becomes especially important when considering that our trapping potential during this

state preparation is intentionally unequal between the two wells in order to couple atoms between

the ground band in the left well to the first excited band in the right well (as shown in Fig. 5.2). In

this situation, any imperfection in the state independence of a single trap (meaning, the differential

energy level shifts between the |↑〉 and |↓〉 single particle states on a single site), will directly turn

into a position-dependent spin-selective shift between the two wells, which is equivalent to adding

a magnetic field gradient. In particular, an abundance of σ+ (or σ−) polarization in the trap light

will act as an effective magnetic field for atoms trapped in that potential, but because we are

purposefully making the intensity of light unequal between the traps, this turns into an effective

magnetic field gradient.

Thus, having an extremely pure linear trap polarization (we prefer it to be π polarized

for other reasons, but for this purpose other linear polarizations can work) is very important to

maintain the degeneracy of the |↑L, ↓R〉 and |↓L, ↑R〉 states when initiating spin-exchange dynamics.

To achieve the largest spin-exchange contrast, we add a quarter-wave plate to the trapping light

and use it to minimize the spin dependence of the trapping light. Specifically, we measure the

microwave resonance for the |2, 2〉 → |1, 1〉 transition as a function of trap depth to get a measure

of the spin-dependence of the traps and then adjust the quarter-wave plate to minimize the shift

in the resonance as a function of trap depth. For reference, the data shown in Fig. 5.2 was taken

when the shift in the microwave from a zero-depth trap to that in a kB × 1 mK depth trap of

approximately h× 120 kHz. After adjusting the quarter-wave plate, we were able to null the state

dependence of the trap to better than a h × 1 kHz shift between the free-space transition and a

kB × 1 mK depth, as demonstrated by the microwave spectra in Fig. 5.4(b). The resulting spin

exchange dynamics are shown in Fig. 5.4(a) and have a contrast more than 50% larger than that

seen without polarization correction.

To confirm that these changes are correlated, we used the same quarter-wave plate to make
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Figure 5.4: a) Observation of spin-exchange dynamics in a double well potential after compensating
for imperfect trap polarization and, therefore, improving the state dependence between the two wells
during the spin exchange procedure. Notice that after correcting for the spin dependence of the
trapping potential, we have improved the spin exchange contrast by over 50%. b) Microwave spectra
taken for both deep (red) and shallow (blue) traps, showing that there is no longer a significant
vector light shift induced by the trapping light. For comparison, this same measurement for the
original data shown in Figure 5.2, these peaks were separated by over h× 120 kHz.

the polarization worse. Specifically, we tune the shift from the zero-depth transition to be h× 140

kHz, which translates into a roughly h× 70 Hz difference in the differential shift of the spin states

between the two traps during the adiabatic passage process (at tunneling depths). The resulting

spin-exchange dynamics are shown in Fig. 5.5, demonstrating a reduction of contrast by 50% from

the optimized dynamics. The reduction observed is consistent with a picture where breaking the

degeneracy of these states results in an improper transfer of state population from the state |↑L, ↓R〉

into an equal superposition of the localized singlet and triplet spin-states. Thus, using this state

dependence, we preferentially end up in one of the singlet or triplet spin states.

5.2.1 Adiabatic preparation of entangled states

After observing how large this effect can be, we consider a method that could take advantage

of such a state dependence to reliably generate pure entangled states, without relying on the

dynamics of spin-exchange. In Figure 5.6, we plot the eigenenergies of the system of two atoms in a

tilted double-well potential, both with an external magnetic field gradient (which introduces a spin-

dependent shift between the two wells) and without the magnetic field (such that all spin-states are
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Figure 5.5: A plot of the spin exchange dynamics in the presence of a small circular component
of the trap polarization, which is achieved by turning a λ/4 waveplate by a small angle from its
optimum position, such that the tilt between the two wells leads to breaking of the degeneracy of
|↑〉e |↓〉g and |↓〉e |↑〉g by ∼ h× 70 Hz, which is on the order of the interaction strength in the same
well. We can see that this has the effect of reducing the contrast of the spin exchange oscillations
by roughly a factor of two compared to the optimum case, where this shift is 0.

degenerate when the atoms are in separate wells). We notice that with the magnetic field gradient

on, the |↑〉L |↓〉R (|↓〉L |↑〉R) eigenstate is adiabatically connected to the singlet (triplet) spin state

localized in the right well. Thus, we can transfer from an easy-to-prepare state (|↑〉L |↓〉R) into a

maximally entangled state by performing an adiabatic passage.

The goal is then to separate the two atoms without projecting back into the original state.

Thus, if we can shut off the state-dependent shift between the two wells, a singlet spin state

should not preferentially map into one of the spin eigenstates (due to their being degenerate). This

procedure is depicted in Fig. 5.6, where in part (a) we use an external magnetic field gradient to

preferentially transfer from |↑〉L |↓〉R into a singlet state and then, in part (b), we turn off the

gradient and reverse the adiabatic passage, resulting in a singlet spin state, in separate wells.

The requirements for this procedure are simply that we need to be able to break the degener-

acy of the |↑〉L |↓〉R and |↓〉L |↑〉R spin configurations on-demand, as well as the ability to perform

the transfer of atoms at a rate that is much slower than the spin-exchange coupling. While we
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Figure 5.6: a) Diagram showing the eigenstate energy levels as a function of double-well bias,
highlighting the adiabatic passage procedure (as depicted in Figure 5.2). In particular, this shows
that by sufficiently breaking the degeneracy of the |↑〉e |↓〉g and |↓〉e |↑〉g states in separated wells, for
instance by applying a large magnetic field gradient, we can adiabatically follow a single eigenstate
to a pure singlet or triplet state with both atoms in the same well. b) Importantly, if we can then
shut off the state dependence and separate the traps, then we would be able to separate the pure
singlet or triplet states after the initial preparation.

demonstrated this effect by changing the polarization of the trap light, it is unlikely that doing this

in real-time is going to be stable or reproducible, but we can easily use the magnetic field gradient

that is used in the verification protocol of Section 5.1 and achieve sufficient splitting; this is the

magnitude of the spin-dependence that was assumed in the calculation used to make Figure 5.6.

Alternatively, we may also prefer to use the vector light shift beam localized to one of the wells (at

much lower intensity than is used for microwave spin flips) because it will provide us with much
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larger shifts and faster actuation than the magnetic field gradient, which may become necessary to

increase the speed while simultaneously limiting the coupling to other states during the transfer.

In the end, this procedure will likely be slower than using dynamical spin exchange to entangle

the atoms, but may be much more reliable, as it is not sensitive to many day-to-day fluctuations

of the trapping potential. Additionally, if we truly want to make a pure singlet or triplet for use in

other simulations, as will be discussed in Section 6.3.3, then this may be the most reliable method

of state preparation.



Chapter 6

Assembling the Kondo Lattice Model with Optical Tweezers

In this chapter, I will discuss ongoing work that will combine many of the capabilities dis-

cussed in this thesis toward the goal of implementing a microscopic realization of the bosonic

Kondo-Hubbard model. A future demonstration of this control would be a significant realization of

the utility of this platform for studying the interplay of the spin and motional degrees of freedom

in systems of a few atoms with local interactions, when the individual degrees of freedom are no

longer separable and thus the full quantum state must be considered. It will be particularly inter-

esting to observe how the symmetrization of the many-body wavefunction in the presence of local

interactions manifests in the out-of-equilibrium dynamics of states assembled from a initially pure

single-atom states.

First, we will introduce the Kondo lattice model along with some background and a discussion

of the utility of this model for explaining interesting phases of matter in heavy-fermion systems [107].

Then, we will take a closer look at the bosonic analog of the model and, in particular, its minimal

version that we propose to implement in optical tweezers. For this system, we will take a look

at some preliminary simulations we have been performed to understand the observables related to

interactions of interest and discuss some of the challenges related to implementation, as well as

highlighting regimes in which we will, realistically, be able to work.
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6.1 The Kondo Lattice Model

The development of the Kondo lattice model has a long history in condensed matter physics,

starting with the understanding of the “Kondo effect”, which describes the observations that metals

doped with small fractions of magnetic impurity atoms had a minimum in their resistance as

a function of temperature.1 In this system, the exchange interaction between localized f -shell

electrons (bound to the impurity atoms) and the conduction band electrons result in the creation

of localized quasiparticles when the thermal energy is not enough to overcome the binding of the

energetically favorable singlet states to the localized electrons.2 However, the presence of these

localized states reduce the mobility of the conduction electrons and therefore increase the resistance

at low temperature [108].

The Kondo lattice model is an extension of this model of the Kondo effect, with many of

these impurities arranged in an ordered fashion (typically a square lattice) to study the interplay

of the competing local interactions with the quantum statistics and motion of conduction band

electrons [109, 107]. This model was has the minimum ingredients to explain the complex behaviors

present in heavy-fermion materials, where the spin and motional degrees of freedom of electrons

are coupled via the Coulomb interaction [110, 111]. In particular, the propagation on a lattice of

the type quasiparticles that are described in the Kondo effect can explain the very large effective

masses that these heavy-fermion materials exhibit. The specific form of this model imagines an

array of spins that are fixed, which can interact with mobile electrons that can move between (and

interact with) spins localized in different locations, as shown in the schematic representation given

in Figure 6.1(a). The interaction Hamiltonian is given by

HKLM = −t
∑

〈i,j〉,σ

(
c†iσcjσ + c†jσciσ

)
+ J

∑

i

Sfi · Sci (6.1)

Where here we use the notation defined in Ref. [109], where ci,σ (c†i,σ is the annihilation (creation)

1 These observations were at low-temperature, where the resistance of a normal (not superconducting) metal
would approach a constant minimum value with power-law dependence.

2 This description assumes that the exchange interaction is negative, which will shift the singlet state to lower
energies for fermions. However, for impurities where the interaction coefficient is positive, the resistance decreases
faster at low temperature, as mentioned in Ref. [108].
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Figure 6.1: a) Diagram to depict the Kondo lattice model written out in Equation 6.1. Notice
that the model contains only two terms: The on-site sin-interaction term J (indicated in red), and
the tunneling term t (indicated in green). Note that this is a general model that does not specify
the underlying realization, but is meant to describe, for example, a solid material where each
localized atom contains an inner-shell electron that interacts with the mobile valence electrons.
b) Schematic showing how, in the weakly-interacting regime, the perturbative local interactions
can lead to a second-order coupling between distant fixed spins via virtual excitation of electrons
above the fermi sea. This virtual excitation leads to a distance scale that is set by the Fermi
momentum, kF (indicated by the green dashed line). c) Depiction of the band structure in the
strongly interacting regime, where the flat band representing the fixed spins, and the cosinusoidal
band represents the mobile electrons. The effective mass of the quasiparticles formed in this system
(which is proportional to the slope of the band) will become very large when the lattice filling factor
is near 1/2, such that there can be a single atom per site in the excited band (and thus all ground
spins are paired into singlets).
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operator for the conduction band spins on site i, Sci is the total spin operator for the conduction

band spins on site i, and Sfi is the total spin operator for the localized spins (defined by the creation

operator f †i ) on site i. In this model, J represents the interaction energy between the localized and

conduction band spins, while t represents the energy scale for tunneling of the conduction band

spins between sites. It is important to note that this notation will differ from notation used in

Section 6.2 and beyond (see text after Equation 6.2 for details), but I want to use the original

notation in this introduction.

6.1.1 Limiting cases of the Kondo lattice model

In this model, it is interesting to consider the two limiting regimes of strong and weak

interactions compared to the tunneling term (J � t and J � t, respectively), where interesting

phases of the system develop. In particular, I have already mentioned the strongly-interacting

regime, where the formation of quasiparticles on the lattice leads to measurements of the effective

mass of the conduction band electrons becoming extremely large (up to a factor of 1000 larger

than the bare mass of an electron) [112, 113]. In this regime, the strong interaction between

the localized spins on the lattice and the conduction band electrons results in a hybridization of

the band structure that results in a flattening of regions of the dispersion relation, as depicted

in Figure 6.1(b). As described in band theory, the flattening of this band is a signature of the

increasing effective mass of the electron quasiparticles because the effective mass is defined by the

local curvature of the dispersion relation (specifically, the second derivative of the energy with

respect to the momentum) for a given electron momentum.

In the weakly interacting regime, the interactions are a perturbative effect, so it is appropriate

to expand the Hamiltonian in orders of the on-site interaction energy. At second-order, the ground-

band atoms interact with each other in the same manner as that described by the Ruderman-

Kittel-Kasuya-Yosida (RKKY) interaction that was originally derived when studying the magnetic

ordering of nuclear spins in a metal [114, 115, 116]. Specifically, this effective interaction between

the localized spins will lead to the long-range ordering of these spins in a way that depends heavily
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on the electrons in the conduction band because the process that drives these interactions requires

an effective flipping of a conduction band electron. However, to flip a conduction band electron, it

has to virtually be excited out of the fermi-sea, propagate to the other local spin, and then flip back;

this process, as depicted in Figure 6.1(c), sets the energy (and length) scale of this interaction, which

is the Fermi energy EF (or the inverse of the Fermi momentum kF ). Thus, at low filling fractions,

this direct coupling of the localized spins leads to a ferromagnetic interaction, while at larger filling

fractions there is an oscillatory coupling between local spins that depends on the separation of

these spins. This second-order interaction between the localized spin states is thought to stabilize

long-range ordering of the localized spins in materials that have weaker interactions between the

local and conduction band electrons [111].

6.2 The Kondo-Hubbard Model for Atomic Systems

Despite decades of research invested into studying the Kondo lattice model, its general phase

diagram remains unknown even for a simple case of a 2D square lattice [111], which points to the

complexity of the spin-motional coupling, especially as the array size, and number of particles, is

increased. Hence, any insight into its physical properties obtained within a controlled setting is

valuable. Such an environment is offered by cold atomic gases that have proven to be excellent

candidates for studying condensed matter models [18, 117, 19, 81]. In our work, we will leverage

the additional control afforded with the optical tweezer platform, this seems to be a particularly

interesting model to study with our system.

The Kondo-Hubbard model is a representation of the Kondo lattice model that can be

replicated in a relatively simple system, but describes the complex behaviors present in certain

strongly correlated materials where the spin and motional degrees of freedom of electrons are cou-

pled [110, 111]. The interaction Hamiltonian for the Kondo-Hubbard model, as implemented in a

two-band lattice, is

HKHM = −Je
∑

〈i,j〉

b†ibj +
Ue
2

∑

i

(
nbi

)2
+ 2Veg

∑

i

Sai · Sbi (6.2)



89

Here a†i (ai) are the creation (annihilation) operators for atoms in the ground-band at site i, b†i

(bi) are the same for atoms in the excited-band, nbi is the operator indicating the number of atoms

in the excited band at site i, 〈i, j〉 indicates summation over all pairs of neighboring wells i and

j, Sσi is the total spin operator for atoms in the σ band at site i, and the coefficients Jg, Ug, Je,

Ue, and Veg set the relative tunneling rates and on-site interaction energies for the system.3 Note

also that to be general, we have added a term for on-site interactions within the excited band,

because multiple bosonic atoms in the same state can spatially overlap (unlike the case of fermions

in Equation 6.1, where only one particle per spin state can exist in a single band at each site).

The Hamiltonian in Equation 6.2 also assumes that each site in the ground-band can have

only a single atom per site, that we can neglect the tunneling of atoms within the ground-band

of the lattice, and that we can neglect the presence of any band-changing collisions (which would

require taking into account higher bands of the lattice). Note that the Hamiltonian is written

with simplified notation that may suggest a one-dimensional chain of atoms, but many systems

of interest will actually be two- or three-dimensional, in which case the indices i and j simply

represent coordinates in a higher-dimensional array.4

6.2.1 Studying the Kondo-Hubbard model with bosons

Of course, in our system, we are using spin-1/2 bosons, rather than the fermions considered

for condensed matter systems. However, many of the same effects can be seen in the bosonic

Kondo-Hubbard model, and the understanding of these interactions gained with bosons will only

give more information to aid in understanding the fermionic case (which has been studied ex-

tensively in condensed matter systems, albeit without the level of control afforded to cold atom

3 The notation I am using here will be familiar to those used to working with cold, bosonic quantum gases.
However, the notations differ quite dramatically in the condensed matter literature, where the exchange energy (here
Veg) is written as J and the tunneling rate (here Je) is given by t. Because I am writing this with the simplified model
we work with in our system (and in comparison to past work with effective Hubbard parameters), I have chosen to
stick with this notation, but want to include a warning because this can lead to significant confusion.

4 While the model works with no other modifications, care must be taken in real implementations of the model
to take into account degeneracies between different axes (the first excited band of the lattice have different motional
states along each dimension) or different couplings in each dimension (if you break the degeneracy, then the tunnel
coupling will likely be altered as well).
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Veg>>Je: Localized spin-singlet (triplet) quasi-particles

Microscopic model:
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Figure 6.2: a) Schematic showing the components of the Kondo lattice model, as implemented
in a two-band optical lattice. The diagrams here as shown in one dimension, but can be extended
to two or three dimensions, where the full phase diagrams remain unsolved. In this model, the
excited band (red) contains atoms that can tunnel around the lattice potential with tunneling
coefficient Je. The ground band of the lattice (green) contain atoms that are effectively fixed (the
tunneling rate Jg, is much smaller than all other timescales in the experiment), but which can
interact with the excited band particles through the on-site exchange interaction, characterized by
the interaction coefficient Veg. b) When the tunneling timescale, Je dominates, then the excited
band particles effectively become delocalized, which will lead to mediated exchange interactions
between the localized ground band atoms. For fermions, the different quasimomenta of the atoms
in the excited band can lead to periodic spin-coupling terms, analogous to the RKKY interaction
term. c) When the interaction strength, Veg, dominates over the tunneling, then the energies related
to different on-site spin configurations (singlet vs. triplet) will be split. In this situation, the excited
band tunneling rate will be modified based on these splitting. This modification to the tunneling
rate is an analog to the heavy fermion physics observed certain condensed matter systems.

experiments) [118, 119, 120, 121]. The fundamental difference in these two models comes from

how the quantum statistics affect the configurations of atoms (and the distribution of spin states)

in the excited band: Due to Pauli blocking, there can be no more than two fermionic atoms on

each lattice site (and they would have opposite spin), while bosons will happily bunch many atoms

onto the same site. Thus, the number of particles per site will depend heavily on the ratio of the



91

interaction energy Ue to the tunneling rate Je (in addition to the density of carriers) for the bosonic

case. For example, when Je � Veg, this results in the magnetic ordering becoming ferromagnetic

no matter the filling fraction of the lattice, as opposed to the spin ordering in the fermionic case

that depends on the filling fraction (via the Fermi momentum kF ), where at low filling fractions

the ordering is ferromagnetic, but at higher filling fractions becomes oscillitory (as described by

the RKKY interaction, introduced above) [120, 121]. Importantly, this means that we can apply

studies of low filling-fractions with bosons to the general problem, but certain behaviors that are

observed in condensed matter systems at higher filling fractions will not be apparent with bosons.

6.3 Implementation with optical tweezers

Typical theoretical studies of this model assume are carried out for infinite systems using.

However, in our case, we have the ability to directly study small arrays of atoms placed into a

lattice that is projected into the focal plane of our objective lens. In such systems, the Hilbert

space is already very large, such that detailed theoretical study becomes very challenging, if not

impossible. For initial experiments with just a few atoms, this will be accomplished by reorganizing

and overlapping the optical tweezers themselves, but could also involve transferring the atoms to

an arbitrary potential generated via a DMD, as discussed in Section 3.2.4. Using the techniques

for quantum gas assembly, we have the ability to create and study out-of-equilibrium states of the

system (by preparing a pure state in well-separated potentials and quenching into the final potential

to initiate dynamics) and then by pulling the atoms back to the separated potentials, we can follow

the dynamics of the system from initial state to final state.

For our first experiments, we will concentrate on the minimum requirements to implement

the microscopic Kondo lattice Hamiltonian, which is to use three atoms in a double well potential.

Two of these atoms will occupy the ground-state of the two wells and the third atom will be mobile

and in an excited band of the potential; for the purposes of this discussion, we will use the first

radial excited band along the axis connecting the two wells. As in previous work, we will encode

the spins in the ground state hyperfine levels of 87Rb, and for the study of this system will prepare
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the total spin of the system to have a projection of Sz = ±1/2 (meaning the spin of one atom

will be opposite the other two atoms). The specifics of how we prepare these atoms, as well as the

shape of the final potential we use, will have drastic effects on the dynamics of the system.

The process for initializing these states is depicted in Figure 6.3. Part (a) shows the standard

steps to trap a set of atoms and initialize the spin and motional states before assembling the state

of interest from single atoms, but the crucial differences are highlighted in Figure 6.3(b-d), where

both the shape of the final trapping potential and the method for initiating dynamics are altered

(and in the case of (d), a different spin configuration is used, as discussed in Section 6.3.3). While

these minimum realizations of the Kondo lattice model can be solved analytically, the observation

of these dynamics in our system will serve as a verification of the techniques used to study spin-

motional coupling with optical tweezers, and provides a stepping stone to studying larger systems

where an analytic solution may not be available.

6.3.1 Calculating the expected spin dynamics

Before discussing the different parameters regimes that we want to study, as well as how we

can implement them with our system, I want to recognize the productive collaboration we have had

with Ana Maria Rey’s group for studying this system. In particular, Leonid Isaev derived the ana-

lytic result for a simplified three-spin model, which has been extremely useful for quickly exploring

different parameter regimes, and Michael Wall has performed full three-dimensional calculations of

the potential to extract effective Hubbard parameters that we can use in these calculations [104].

The plots in the remainder of this chapter that show the expected spin dynamics are generated

using the analytic solutions to the restricted three-spin model that we are implementing by taking

advantage of the simplifying assumption that the ground-state atoms are fixed in their respective

wells, as well as knowledge of the symmetries associated with the trapping potential and the spin

interactions.5

Many of these systems were also numerically solved by propagating the initial states in the full

5 This derivation is contained in a set of notes written by Leonid Isaev and is briefly summarized in Appendix B.
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Veff
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b) c)

Ramp bias to 
delocalize atom

Sweep wells together
to initiate dynamics

Figure 6.3: Diagram showing how to implement the microscopic Kondo lattice model with optical
tweezers. a) Starting with three isolated atoms, we bring all atoms to the ground state of their
optical tweezer and prepare the spins of each atom according to the requirements for any given
experiment (one specific preparation is shown). The traps are then repositioned to form two double
well potentials and, as was done for a single pair in Section 5.1, we perform an adiabatic passage
that transfers atoms in the outer wells into the excited band of the inner wells. Note that this same
process results in motional distillation on the two ground-band atoms (as described in Section 3.3.2),
which will improve the final state preparation. b,c) After the initial state preparation from (a),
we can rearrange the two central wells (of the four total wells) and initiate dynamics a central
double well potential. For different trap parameters, we will initiate the dynamics in this potential
differently: b) In the weakly-interacting regime, we will want to delocalize the excited atom, which
is achieved by performing half of an adiabatic passage after the wells are close. c) In the strongly-
interacting regime, we start with a localized excited particle, and thus will sweep the traps together
at zero bias to initiate dynamics.
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Hilbert space via the Schrödinger equation (with the full Hamiltonian given in Equation 6.2). The

numerical propagation produced nearly identical results, aside from the presence of the superex-

change interaction between the ground band atoms, which is neglected in the analytic solution.

However, the timescale for superexchange is much longer than all other dynamical timescales of

interest, which justifies neglecting that term initially. While the analytic solution is much faster

for this particular system, the parallel development of these two models is important because the

analytic solution is specific to this system and will not hold for larger systems of atoms; that is not

to say an analytic solution cannot be found, but it becomes less likely (and certainly much more

complex to connect the eigenstates of the system back to the experimentally prepared states). On

the other hand, the numerical propagation can be very simply extended to larger arrays with more

atoms, where the complexity of the system is dramatically increased.

6.3.2 Weakly interacting regime (Veg � Je)

To understand the parameter space of this problem, we will first look at extreme cases, where

one energy scale dominates, and observe the resulting dynamics. In these cases, with the appropriate

choice of the initial state we can effectively restrict ourselves to a smaller subspace of the system,

where the observed dynamics have clear interpretations. In the case where the interaction energy

Veg is small compared to the tunneling rate Je, the separated subspaces are the delocalized states

of the excited atom, one that has positive (and the other negative) inversion symmetry; these are

the eigenstates of a single atom under a tunnel coupling, as discussed in Ref. [39]. Each of these

subspaces is spanned by three spin states of the two ground-state atoms (assuming no external

forces that can change Stotz ). For now, we will work in the subspace with with Stotz = −1
2 and use

the single-particle measurement basis for the ground-state spins: |↑L, ↓R〉, |↓L, ↑R〉, and |↓L, ↓R〉.

Figure 6.4(a,b) shows the population of the |↑L, ↓R〉 and |↓L, ↑R〉 spin configurations over time. We

can immediately see that the spin dynamics in this system are relatively complex, so let’s look

closer at the Hamiltonian to see how to extract the information we want.

In this regime, we are looking for evidence of a second-order, direct-coupling term between
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Figure 6.4: a) Plot of the population in the |↑L, ↓R〉 (red) and |↓L, ↑R〉 (blue) ground state spin
configurations as a function of time in the weakly interacting regime. The initial state was in
the |↓L, ↑R〉 ground-state spin configuration (the ground-state spin configuration indicated in the
blue box), with the excited band atom in the symmetric parity state. b) Plot of the same spin
population dynamics, but not with the excited band atom in the anti-symmetric parity state. c)
Looking at the difference in the time evolution of the spin populations between the symmetric (|+〉)
and antisymmetric (|−〉) parity states of the excited band atom. The envelope of these oscillations
is a manifestation of the direct spin-interaction term in Equation 6.3.

the ground-state spins (e.g., SR · SL), which is due to the third atom being in the excited band.

The effective spin Hamiltonian, up to second-order in the perturbative spin-interaction, is written

in Equation 6.3 where Se represents the spin-1
2 operator for the excited atom and the sign of

the second term is positive (negative) for the symmetric (antisymmetric) delocalized state of the

excited atom. In order to derive this Hamiltonian, we look at how the presence of an atom in the

excited band perturbs the spin eigenstates of the ground-band atoms.6 Notice that the second

6 The symmetric and antisymmetric delocalized states of the excited atom are the parity eigenstates related to
the tunnel-coupling between the two wells. A localized atom in one well of the excited band becomes a superposition
of these two parity states, and since they have different energies, the phase evolution results in tunneling. The
addition of interactions further splits these manifolds, and it is a difference in the sign of this splitting, as indicated
in Equation 6.3, that we want to measure in this experiment.
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term of the effective Hamiltonian is simply the Heisenberg model on a triangle, which includes the

direct coupling term that we wish to detect. The problem is that the dynamics will be dominated

by the direct coupling between the two ground-state atoms and the excited state atom at a rate

∝ Veg � Je. Thus, to isolate the relevant signal we will use the change of sign and compare the

dynamics between identical initial spin states with opposite parity of a delocalized excited atom,

as shown in Figure 6.4(c); this will reveal the shift of the energy levels due to the second-order

coupling term.

Heff = 2Veg Se · (SR + SL)±
V 2
eg

4Je
[SR · SL + Se · (SR + SL)] (6.3)

Specifically, we start by observing the dynamics of the ground state spins for both parity

states, as shown in Figure 6.4(a,b). The simulated evolution is performed using “idealized” pa-

rameters of Veg = h × 50 Hz and Je = h × 1000 Hz, to ensure that the perturbative model is

justified. The initial spin state is prepared using the combination of the pure single-atoms spin

states |↓R, ↑L; ↓e〉, and we measure joint probability for the ground state atoms to have swapped to

the state |↑R, ↓L〉 during the evolution. Figure 6.4(c) shows the difference in the dynamics between

the two initial states and it is the slowly varying envelope signal that signifies the presence of the

second term in Equation 6.3. The faster oscillation is the result of a direct coupling between multi-

ple spin states, which we will explore in more detail below, and because it is not a pure sinusoidal

term, indicates that there are at least three levels involved in these dynamics.

While this initial state (and measurement basis) will be the easiest to use experimentally, we

will look at the more natural spin basis of the singlet [ 1√
2

(|↑L, ↓R〉− |↓L, ↑R〉)], triplet [ 1√
2
(|↑L, ↓R〉−

|↓L, ↑R〉)], and down (|↓L, ↓R〉) states to understand the spectrum of the energy levels. This infor-

mation also gives us the information to explore ways to expose a cleaner signal, even if it is harder

to implement in the experiment. Specifically, we take a closer look at the case where we initialize

a triplet state between the two ground-band atoms in Figure 6.5, measuring the probability to be

in the down state as a function of time. Importantly, this gives a single frequency of oscillation,
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Figure 6.5: These are an analogous set of plots to those in Figure 6.4, but now both mea-
suring and initializing in the typical basis for a two-spin system. Note that the singlet state
[ 1√

2
(|↑L, ↓R〉− |↓L, ↑R〉)] is an eigenstate and will remain constant on these plots. Hence we have

chosen to initialize the two ground band atoms in the triplet state [ 1√
2

(|↑L, ↓R〉+ |↓L, ↑R〉], indi-

cated in the orange box) and are plotting the triplet and down (|↓L, ↓R〉, indicated in the cyan box)
state fractions over time. This plot demonstrates that when preparing the right initial state (and
measuring in the same basis), we can simplify the dynamics such that we are effectively measuring
the difference in exchange frequency for initial states with the excited atom in the symmetric (a) or
antisymmetric (b) parity state. The difference signal (c) shows the same envelope as in Figure 6.4,
but the frequency of this demonstrates that the frequency of this envelope is simply the difference
in frequencies of the oscillations in (a) and (b).

which is a measure of the splitting between the triplet and down states, which will be changed as

the sign of the second term in Equation 6.3 is changed. Importantly, this means that rather than

subtracting amplitudes, which are affected by noise and dephasing experimentally, we would be able

to measure a change in the frequency of oscillations to detect the presence of this second-order term

and this would likely be a more robust signal to the noise typically encountered in our experiments.

While simply measuring the difference of frequencies is sufficient to detect the shifts (and

thus the presence of the second-order interaction), we can also directly look at the analogous
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difference in the dynamics, as shown in Figure 6.5(d), which exhibits the same envelope as the

dynamics in Figure 6.4. Further, we observe that when initially preparing the singlet state, we are

in an eigenstate of the spin-interaction Hamiltonian, so we will not observe any dynamics. This

explains the more complex dynamics in Figure 6.4 as being due to the interference of all three

of the singlet, triplet, and down states. It also suggests that, while the oscillation amplitudes

will be reduced by a factor of two, we can measure the down state when starting with the initial

state |↓R, ↑L; ↓e〉, as shown in Figure 6.6. This gives us the option of measuring the difference in

oscillation frequency even when starting with the easier-to-prepare initial state, which may prove

to be useful experimentally.

6.3.3 Interaction dominating regime (Veg � Je)

At the other extreme, we can observe dynamics in our system when the interaction energy

between the atoms dominates the tunneling rate. In this regime, there is a separation of the energy

spectrum for the spin states within a single well, so we choose the natural basis in the Stotz = −1
2

spanned by the singlet [ 1√
2

(|↑g, ↓e〉− |↓g, ↑e〉)], triplet [ 1√
2

(|↑g, ↓e〉+ |↓g, ↑e〉)], and down(|↓g, ↓e〉)

states. In this section, we will also simulate the dynamics using “idealized” parameters, but now

with the scales reversed: Je = h × 50 Hz and Veg = h × 1000 Hz. In this regime, we are looking

for evidence of “mass enhancement” of the excited band particle, which will manifest itself as the

slowing of the tunneling rate of the excited band atom. Thus, we initialize states with the excited

atom localized to one of the wells, as depicted in Figure 6.3(d) and observe the tunneling of this

atom for various spin configurations. In particular, we first measure the baseline tunneling rate by

using a spin-polarized state (Stotz = −3
2) to get a baseline for the excited band tunneling in the

absence of interactions; these dynamics are shown in blue on in Figure 6.7. Equivalently, we can

measure the tunneling of the excited atom in the absence of ground-band atoms and would observe

the same tunneling rate.

In comparison, we initiate dynamics after preparing the initial spin states of a localized singlet

(green) and triplet (purple) states in the right well of the potential. These each have significantly
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Figure 6.6: This is just a proof-of-principle that by mixing the preparation and measurement
bases, we can actually simplify the state preparation, while also potentially improving our ability
to read out the shift by measuring the change in oscillation frequencies. In this set of plots, we
initialize the |↑L, ↓R〉 state, as in Figure 6.4, while measuring the down state |↓L, ↓R〉 (cyan). While
we sacrifice a factor of two in the amplitude of the signal because half out state is stuck in the
singlet, shown in red in (a) and (b) (which has the side effect of preventing us from easily measuring
the triplet state as well), we may win because we are less sensitive to further amplitude reduction
due to the dephasing of the state (as long as the dephasing time is long enough that we can get a
precise enough measurement of the frequency).

different dynamics from the baseline tunneling rate, but importantly the singlet state exhibits pure

oscillation at half the frequency of the bare tunneling. This is precisely what we expect in the

Kondo lattice model with a single mobile spin, and is a manifestation of the preference to generate

localized singlet states [109]. The dynamics in the case of the localized triplet state is more complex

due to the coupling between the triplet and down states (as seen in Figure 6.8), but qualitatively we

see that there appears to be dynamics occurring at both rates, but the atom never fully transfers

to the other well.

While not experimentally feasible, in the simulation we can also look at the spin states in
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Figure 6.7: Probability for the excited band atom to be in the left well (highlighted in red) as
a function of time, plotted for three different initial spin configurations, and artificially choosing
the parameters to be deep in the interaction dominated regime (Je = h × 50 Hz, Veg = h × 1000
Hz). In all three initial states, the excited atom is initially localized to the right well, but the
initial spin states change: In blue, we are in the fully spin-polarized case, where the excited atom
tunnels between the wells at rate 2Je, as if there are no ground band atoms. In green, we show the
case where the two atoms in the right well form a spin singlet state [ 1√

2
(|↑g, ↓e〉− |↓g, ↑e〉)], which

tunnels at full contrast but at half the rate of a bare atom. This reduction in the tunneling rate
can be translated to an effective mass enhancement factor of 2. In purple, we show the excited
atom dynamics when the atoms in the right well form a triplet state [ 1√

2
(|↑g, ↓e〉+ |↓g, ↑e〉)], and

we can see that there are multiple frequencies due to the mixing of the triplet manifold states, as
discussed in Figure 6.8.

the transferred well to get a better understanding of how the states evolve over time. Specifically,

in Figure 6.8 we plot the probability of the three relevant spin states localized to the right well

(depicted at the bottom of the figure) as a function of time for different initial spin configurations.

In all four cases, the excited atom is initially localized to the right well and the total spin is set

to Stotz = −1
2 ; we then vary only the combined spin state of the two atoms the right well (and, if

relevant, the spin of the atom in the left well to preserve the total spin). In (a,b), we show the

dynamics for atoms starting in the triplet and down state, respectively, demonstrating that the

two states are coupled as the atom tunnels between the wells. In particular, notice that when the

atoms starts in the triplet state, it tends to transfer first to the down state in the right well, and

vice-versa; it also is the interference of these couplings that leads to the imperfect transfer between

the two wells. In part (c), we show the spin dynamics when we start with a singlet spin state, which
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Figure 6.8: These plots show the evolution of the two-atom spin states in the left well for the
same parameters as in Figure 6.7. This information gives some insight into the different behaviors
for varied spin configurations. a) However, if we start with a triplet [ 1√

2
(|↑g, ↓e〉+ |↓g, ↑e〉)], we can

see that the probability to be in the triplet and |↓g, ↓e〉 state is mixed over time. (Note that these
states are both in the triplet manifold, but for clarity in notation I only refer to the Sz = 0 state
as the triplet state.) b) A similar evolution occurs when we start in the |↓g, ↓e〉 state, but with
slightly different mixing. c) When starting with a singlet state [ 1√

2
(|↑g, ↓e〉− |↓g, ↑e〉)], the singlet is

transfered between the wells at unit peak probability and at a single frequency. d) Now, if we start
with the state |↑g, ↓e〉, the dynamics will be a combination of the singlet and triplet states, meaning
we project into all three spin states. This complex dynamics also includes some fast oscillations
that are due to the large splitting between the singlet and triplet manifolds.

demonstrates that the singlet state transfers completely; this suggests that the localized singlet can

be thought of as a quasiparticle that tunnels between the wells, which has an effective mass twice

that of the bare atom in the excited band. Additionally, we show that starting with a mixed initial

spin state, |↑g, ↓e〉, we see a superposition of the same dynamics, but it is important to note that, in
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the measurement basis, we would see very fast spin-exchange dynamics whenever there are nonzero

components of both the singlet and triplet states.

6.3.4 Summary of ideal theoretical investigations

The above simulations have been useful to understand how the different interactions affect

the dynamics observed in the minimum instance of the bosonic Kondo-Hubbard model (two sites

with three atoms). Importantly, we see that it is possible to observe interesting dynamics related to

both extremes of the model, given the ability to arbitrarily set the interaction and tunneling energy

scales. Additionally, we note that the observables in such systems are experimentally accessible.

Unless noted above, the simulations shown were either projecting out the population distribution

in the excited band between the two wells (for the mass-enhanced regime), or the observed ground-

band spin states in the (observable) basis of |↑〉 and |↓〉 on individual sites.

With knowledge that these interesting dynamics can be observed in our system, it is also

worth considering the state initialization to understand a specific experimental procedure that

would result in this observation. In particular, we must be conscious of other interactions and

dynamics that will prevent us from quenching into the pure initial state that we want. In general,

this means we must always have spin eigenstates during the preparation (before initiating the

dynamics); for example, in Figure 6.3(c), we would not be able to initialize to opposite-spin atoms

in the left pair of wells because they would undergo spin-exchange during the sweep that initializes

the tunneling dynamics of the excited band atom. Additionally, when delocalizing an atom in the

excited band, the adiabatic ramp would need to be slow compared to the tunneling rate, but fast

compared to the exchange rate, setting a bound on the separation of energy scales that we can

experiment with and dictating an optimal rate for the best possible state preparation.

With this in mind, I would aim for two specific implementations of the experiment, one ex-

ploring each of these extremes. To observe the ground-state spin coupling in the weakly interacting

regime, I think simply measuring the probability for both atoms to be in the same spin state, as

shown in Figure 6.6, will give the cleanest signal. While the signal amplitude is smaller than it
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could be, there are only two frequencies of oscillation, which will simplify the analysis; the main

question is what the absolute timescale will be in comparison to the tunneling dephasing.

The most promising experiment, in my opinion, is to first implement the adiabatic preparation

of a singlet state, as discussed in Section 5.2 (which is a spin eigenstate), but leave the atoms in

the same well after shutting off the magnetic field gradient. Then, by sweeping the spacing of the

middle two wells [as shown in Figure 6.3(c)], we can initiate mass-enhanced tunneling dynamics,

which can be compared to the exact same procedure, but with spin-polarized atoms (if all spins are

the same, we would observe the bare tunneling rate), which should be a factor of two slower. In this

experiment the state preparation is more complicated, but the ability to separate the challenge of

preparation from the initialization of dynamics, combined with the very clear signal of the tunneling

rate, makes this an attractive first experiment to demonstrate the coupling of the spin and motional

degrees of freedom in our system.

6.3.4.1 Experimental limitations and available parameters

Now that we have an idea of the signals we are looking for, its important to discuss the

prospects for actually observing them in our experiment with the accessible trap parameters, rather

than the idealized parameters used in the simulations. In principle, we can tune the shape of the

trapping potential to cover the range of parameters extending all the way from the weakly to

strongly interacting regimes (achieving ratios of
Veg
Je

from 0.1 up to 10) simply by tuning the overall

trap depth and spacing between the traps. Generally speaking, there are two limitations that we

need to balance: The fidelity for preparing and initializing dynamics with the desired state, and

the stability of the trapping potential setting the interaction parameters in the Hamiltonian. For

example, we can make Veg � Je; however, the absolute value of each of these will be small because

we can only reasonably achieve Veg ∼ h × 100 Hz (without going to extremely large trap depths)

and then would need to adjust the trap spacing to make the tunneling rate even smaller. However,

with these parameter, the dynamics of interest will occur over hundred’s of milliseconds, during

which time noise in the system (e.g., fluctuations of the magnetic field or the bias between the
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Figure 6.9: a) Spin dynamics shown for realistic trap parameters that should allow us to observe
the ground-state spin coupling in the weakly interacting regime. Specifically, this simulation was
run for a trap separation of 900 nm and single-well depth of h× 75 kHz, trap parameters that are
expected to result in the interaction parameters Veg = h× 48 Hz and Je = h× 310 Hz. b) Excited
atom dynamics for a different set of parameters that should be sufficient to observe dynamics in
the strongly interacting regime. Specifically, the trap separation is 905 nm and the single-well trap
depth is h × 150 kHz, which should result in the interaction parameters Veg = h × 93 Hz and
Je = h× 38 Hz.

wells) will likely cause dephasing of the system.

Fortunately, both of these regimes have very clear observables, which should allow us to see

the effects described above, even without long coherence times or moving far into the limits of

strong or weak interactions. Specifically, in the weakly interacting limit we simply need to see a

deviation of the difference between the dynamics with a symmetric and antisymmetric excited atom

state (or, equivalently, a difference in the frequency of oscillation of the probability for the ground

atoms to be in the |↓R, ↓L〉 state, as shown in Figure 6.6). And in the limit of strong interactions,

we simply need to see a single oscillation to see the difference compared to the bare tunneling rate.

Examples of the dynamics we hope to observe (in the absence of dephasing), for parameters that

approach both of these regimes, are shown in Figure 6.9.

For observing the dynamics in the weakly interacting regime, we plan to set the spacing

between the tweezers that define the final double-well potential to 900 nm and a single-well trap

depth of h×75 kHz (using the same definitions given in Ref. [39]). Based on calculations taking into

account the full three dimensional shape of our tweezer potentials, this configuration is expected
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to achieve the effective Hubbard parameters parameters Veg = h × 48 Hz and Je = h × 310 Hz,

putting us very close to the weakly interacting regime. Figure 6.9(a) shows the signal observed

on shorter timescales when initiating the ground atoms in the |↓R, ↑L〉 state and measuring the

probability to end in the |↓R, ↓L〉 over time (as demonstrated in Figure 6.6). In this parameter

regime, there are two experimental concerns that might reduce, or even wash out, the signal we are

searching for: First, we must reliably be able to prepare the delocalized excited atom states. The

plan for achieving this is to simply perform an adiabatic passage halfway and stop when the wells

are in resonance. We have received positive results with some initial testing of this procedure in

the experiment, but need to confirm that it is a coherent process (and not simply thermal) before

we can be confident it will work reliably. Additionally, the timescale for the second-order coupling

is very long, which likely means that the dephasing will occur before we see anything close to a full

oscillation. However, we note that any significant deviation between the oscillation frequencies (or,

equivalently, the deviation of the difference in spin probabilities from zero) is sufficient to verify the

second order coupling. So, as shown in Figure 6.9, with dephasing times in the tens of milliseconds

(as we can typically achieve for tunneling experiments, and even longer is possible for exchange

experiments) we should be able to observe this deviation.

On the other hand, to observe dynamics in the strongly interacting regime, we plan to set

the spacing between the tweezers to 905 nm with the single-well trap depth of h× 150 kHz, which

should provide the effective Hubbard parameters parameters Veg = h × 93 Hz and Je = h × 38

Hz. As can be seen in Figure 6.9(b), atoms in this trap clearly exhibit tunneling the characteristic

slowing of the excited particles motion, however with some additional fast oscillations on imposed

on the tunneling. In this case, the fast oscillations are not going to be problematic for differentiating

between the two cases. However, there are also two concerns in this regime: First, we need to be able

to generate a pure singlet on a single site before initiating the dynamics. This is another experiment

that we think is possible, as discussed in Section 5.2, but the fidelity of this operation needs to be

high, which has not been verified. And second, the dephasing time need to be longer than a single

oscillation, meaning ∼30 ms or longer. While we have certainly achieved these dephasing times
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in specific trap configurations, it is not yet clear that this particular trap configuration can reach

those dephasing times because the larger depth will increases the absolute amplitude of the noise

compared to the tunneling rate (which may cause rapid dephasing).
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[9] A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet,
A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms
in the Rydberg blockade regime,” Nat. Phys. 5, 115 (2009).

[10] T. Lompe, T. B. Ottenstein, F. Serwane, A. N. Wenz, G. Zürn, and S. Jochim, “Radio-
Frequency Association of Efimov Trimers,” Science 330, 940 (2010).

[11] R. Schmidt, H. R. Sadeghpour, and E. Demler, “Mesoscopic Rydberg Impurity in an Atomic
Quantum Gas,” Phys. Rev. Lett. 116, 105302 (2016).



108

[12] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition
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[13] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T. Esslinger, “A Mott insulator of
fermionic atoms in an optical lattice,” Nature (London) 455, 204 (2008).

[14] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, “Creating, moving and merging
Dirac points with a Fermi gas in a tunable honeycomb lattice,” Nature (London) 483, 302
(2012).

[15] S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, and T. Esslinger, “Observation of quan-
tized conductance in neutral matter,” Nature (London) 517, 64 (2014).

[16] R. A. Hart, P. M. Duarte, T.-L. Yand, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar,
N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antiferromagnetic correlations in
the Hubbard model with ultracold atoms,” Nature (London) 519, 1 (2015).

[17] S. Baier, M. J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z. Cai, M. Baranov, P. Zoller, and
F. Ferlaino, “Extended Bose-Hubbard models with ultracold magnetic atoms,” Science 352,
201 (2016).
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Appendix A

Alignment and Characterization of Optical System

Alignment of an optical system should be a straightforward task, where the goal is simply

to align the light to the optical axis of each element and set the spacings properly to maintain

collimation, where appropriate, as well as generating images that are in focus. However, this

procedure can be complicated and, in particular for high numerical aperture (NA) systems, the

sensitivity of the system performance to this alignment may be extremely high. In our system, we

have worked to separate these problems into the alignment of our optical rail system, described

above, and then the alignment of the output beam to both the lens and the cell (which must be

aligned with respect to each other).

For the optical relay rail, depicted in Figure 2.6, we have designed a system where the optical

axis is mechanically defined via a precision machined rail, on which we mount fixed-height optics

holders. This mechanical definition of the optical axis works well for the low-NA optics that are

used on the rail (aside from the initial collimation lens, the shortest focal length lens lens is f = 15

mm for an input beam of w0 = 0.68 mm, which would be an effective NA<0.05) and simplifies

the setup significantly. In particular, because the optical axis is mechanically defined, we can add

reference pinholes along the two telescope arms of the rail (the first with M = 1, the second with

M = 20), as indicated in Figure 2.6, and use the mirrors to align the collimated beam along this

axis before adding the lenses to these paths. One the beam is aligned through these references,

the lenses can be mounted to generate an output beam that is collimated and that will be directed

toward the cell and objective lens using a single mirror.
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In fact, the most critical alignment in the system is that of the objective lens to the window

through which the beam is focused (and scattered light imaged). This is a fundamental challenge

imposed when focusing a high NA lens through a thick (6.35 mm) window because the objective is

designed to compensate the optical path lengths for each part of the beam passing symmetrically

through this window, but when the cone of rays is tilted through the window, these path lengths

become asymmetric and there will be a mismatch of the phase-fronts at the focus. This mismatch

primarily results in the third-order aberration coma, but also includes higher-order terms and, for

real misaligned systems, will likely introduce other aberrations such as astigmatism. Because of

this sensitivity to angle, it can be challenging to achieve a sufficiently high-precision alignment

of the optical axis to the beam using transmission of the light through the objective, so we have

instead turned to using a beam reflected off of the flat front-facet of the lens as one of our alignment

references.

Unfortunately, simply adding this alignment reference to the others would result in over-

constraining the system and, in the case of our lenses, these alignment references are often not fully

consistent. In particular, this is likely due to the known presence of aberrations in the objective

lens (discussed more in Section A.1, below), which makes the optimal alignment of the lens not

occur when the optical axis is aligned to the cell. In this case, we typically choose two references

that are reproducible and can be referred to an alignment that give optimal performance in an

external testing setup, for example: 1) Setting a specific angle between the front facet of the lens

and the cell window through which it is focusing (ideally this would be 0◦, but as discussed below

does not have to be) and 2) That a small beam transmitted through the lens remains on-axis at

a given point behind the lens. Unfortunately, for aberrated systems where the angle of the lens is

nonzero, this second metric will not be unique (in that it will likely depend on exactly where the

reference point is located behind the lens), but the important thing is that it gets the lens very

close to centered on the beam, since there is a larger tolerance to transverse displacement of the

objective than to tilting of the lens.1

1 In principle, a better alignment reference would be to ensure that a small beam passing through the objective
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ø=350 nm

Window and objective lens

CCD

f = 1 m

Figure A.1: In this testing setup, we are directly imaging the point spread function of the objective
lens (and thus the imaging system used in the experiment) by illuminating a sub-wavelength (350
nm diameter) aperture with 852 nm light. This results in a uniform illumination of the objective
lens aperture as a spherical wave diverges from the aperture. The beam that is collimated and then
imaged onto a CCD camera (using the standard imaging system from the experiment) will exhibit
the best-focus that can be generated by the imaging system for the alignment of the imaging system.
This provides the opportunity to adjust the alignment of the objective lens in-situ to optimize the
performance, and then measure the optimal alignment using external references (which can then
be used to align the objective to the cell).

A.1 External lens testing and alignment procedure

We have relied on two particular types of external testing to optimize the performance of our

optical system, as well as to estimate the remaining aberrations present in the system. Importantly,

we were able to use these testing setups to determine the proper method for aligning the optical

system and to achieve the best optical tweezer performance, which has since been verified using by

measuring trap properties with the atoms while varying parameters of the alignment.

A.1.1 Measurement of the point spread function (PSF) via pinhole imaging

The first measurements we performed (and the basis for our external characterization of the

ASE lens) was to measure the point spread function (PSF) of the objective lens by imaging a

sub-wavelength pinhole (which is small enough that we can effectively consider it a point-source)

through the objective and onto a CCD camera. A simple schematic of this setup is shown in

propagates parallel to the optical axis in the absence of the objective (meaning it is going through the optical axis of
the system, even if that is tilted and imparts a displacement on the beam). However, experimentally observing this
is harder because it requires using multiple reference points along the path after transmission through the lens, and
making sure that the offset of the beam from the center of each reference is identical at different points.
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Figure A.1. The main benefit of this setup is that we can directly observe the optimal performance

achievable with the objective lens, assuming a completely aberration-free source, and can change

the alignment in-situ while directly observing the change in the focal shape.

As in the experiment itself, the alignment of this system is critical. However, if we set up the

remainder of the system properly, we can leave the degrees of freedom relevant to the objective lens

free to be manipulated while knowing that we continue to observe the effective spot size. Briefly,

this alignment starts by defining the optical axis from the source to the CCD camera and aligning

that optical axis to be normal to the window that acts as our cell. Next, we will align the imaging

lens both to the optical axis, and ensure that the focal plane is in the plane of the CCD array.

Then, we will add the objective lens and roughly align it to the optical axis (in this case, we use

an iris between the objective and the imaging lens, as well as the location of the beam on the CCD

to ensure that the transmitted beam follows the optical axis). Finally, we add a relatively small

focal length lens before the window, which will focus light onto the back of the pinhole, and use

it to recollimate (as much as possible) the beam after the objective lens. Then, we can simply

add the pinhole at the focus between the two lenses, and position it by aligning it to the optical

axis (when its image on the CCD is where the initial beam was located) and, at this point, we

are measuring the point-spread-function (PSF) with the lens optical axis of the lens aligned to

the window. However, to optimize the performance, we can adjust the combination of the lens

alignment and pinhole location (using both to keep the focal spot at the same location on the

camera) to find an alignment that gives a focus with minimum aberrations.

At the end of this procedure, once we have found the optimum performance of the lens, we

can remove the pinhole and focusing lens and measure the angle of the lens with respect to the

window for use in the alignment procedure in the experiment. Note that there are a couple of ways

to measure this angle, but the optimum will use a long focal length lens, placed roughly one focal

length away from the lens, and then the separation between the two foci will indicate the relative

angle with very high precision. This is also the method that we use in the experimental setup to

make sure the alignment is identical.
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This setup also has the benefit of quantifying the magnification of our imaging system, which

allows us to calibrate the spacing of our traps in situ. Specifically, we have used different test

targets that consist of multiple pinholes arranged in close proximity, with known distances between

these apertures (measured with a scanning electron microscope). In particular, our final calibration

for the ASE objective was been performed with a test target that has two apertures, each 350 nm

in diameter, separated by 6.861 µm, giving a magnification of 48.8(5) for the imaging system (the

infinity-corrected objective and an f = 1 m achromat.

A.1.2 Wavefront measurement testing

More recently, we have put together a few different setups that are able to directly measure

the wavefront aberrations introduced by the objective lens. For fully understanding and attempting

to correct the wavefront aberrations present, this is the best method to isolate effects due to the

objective lens itself. Previously, we tried to perform measurements with a Thorlabs Wavefront

Sensor, but the results were unreliable. However, it is possible to set up a Michelson interferometer

with the objective lens in the arm under test, which produces an interference pattern containing

the wavefront aberrations introduced by the objective lens.

A.2 Characterization of the trapping potential

After setting up the system in-situ, we are able to use the atoms to characterize certain

properties of the trapping potential. This is not a direct measurement of any aberrations, but a

local probe of the harmonic potential that is generated for the atoms. The goal of this alignment

procedure is, again, to achieve the highest harmonic confinement for a given power into the back

of the lens, which will likely correspond to a minimum in the overall aberrations.

The key part of this procedure is to be able to measure the trap depth that the atom

experiences, which is a measure of the intensity of light at the focus of the trap, as well as the

trap frequency that the atoms experience. Combined, we can estimate the size of the trap, given a

few assumptions about the intensity profile based that is based on the clipping of the input beam
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Window and objective lens

SiN Sphere

Reference mirror

Observe and record
interferogram on CCD

Figure A.2: In this testing setup, an interference pattern that contains information about the
wavefront aberrations of the objective lens is generated using a Michelson interferometer. The
reference path is defined with a reference mirror whose flatness has been verified on a commercial
Zygo interferometer. Thus, the interference pattern arises solely from aberrations introduced on
the lens arm of the interferometer and appear with twice the magnitude because the beam passes
through the lens twice. By recording the interference pattern and calculating the Fourier transform,
we can extract the wavefront curvature, and thus have full knowledge of the wavefront aberrations
that need to be corrected for optimal performance.

and the expected PSF from our Zemax model. Note that the main role of the Zemax model here

is used to estimate an effective gaussian waist that is representative of the actual size of the trap,

given that for a clipped gaussian beam, the trap frequency is noticeably lower than that of an ideal

gaussian beam of similar extent (meaning, if you fit the actual profile with a gaussian profile, a

trap with that waist would have trap frequencies larger by more than 10%).

In the end, we estimate that we have an effective Gaussian waist of w0 = 0.7(1) µm based

on the measured trap depth, trap frequency, and ratio of the harmonic component of the PSF

calculated by Zemax (which is an approximation of the intensity profile) to that of a gaussian fit to

the same calculated PSF. Notably, this estimate is consistent with the waist used in the full three-

dimensional theory calculations given in Ref. [39] to understand the interactions and tunneling

rates in a double-well potential.
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Figure A.3: This figure shows how we can optimize the trapping frequencies that the atom
experience by adjusting the alignment of the lens to the cell, as well as the collimation of the beam
into the back of the objective lens. In particular, we note that the angle optimum angle of the
lens with respect to the cell window is consistent with the optimum angle measured in the external
testing setup.
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Figure A.4: This figure shows the method by which we characterize the intensity of the light at
the atoms, where we measure the cycling transition resonance at different trap depths, then match
the slope of this line with the expected light shift as a function of intensity of light at the atom.
The key capability here is to use a pure σ+ polarized beam, which simplifies the analysis of the
light shift. In this case, we assume a pure linear polarized trapping potential, which is a reasonable
assumption based on the additional vector light shifts being at most 100 kHz at full depth (as
shown in Figure 5.4).



Appendix B

Derivation of eigenstates in minimal Kondo model

On the following pages, I am reproducing notes written by Leonid Isaev (from Ana Maria

Rey’s group), in which the exact eigenstates are derived for the model system composed of a

double-well potential with one fixed spin in the ground-band of each well, as well as a single atom

in the excited band of the double-well potential. The eigenstates are derived using arguments of

symmetry, which lead to conserved quantities in the form of the total spin of the system, as well

as the parity the wavefunction under exchange of the two well indices. Note that the notation

for fermionic systems (e.g., the Kondo lattice model) was used when writing these notes, but for

reference the energy scales are given by t = Je and V = 2Veg.

The exact solutions can then be used to perform fast simulations with arbitrary interaction

and tunneling parameters from any initial state (by projecting into the eigenbasis of the system,

propagating in time, and then projecting back into observable basis states); this was the process used

in simulations shown in Chapter 6. Importantly, this allows us to rapidly change the parameters

of the simulation and calculate the change in the expected dynamics (as compared to numerically

solving the Schrodinger equation, which is computationally intensive).

After deriving the exact eigenstates, the effective Hamiltonian given in Equation 6.3 is found

using second-order perturbation theory in the weakly-interacting limit (V � t, in this notation, or

Veg � J in the notation of Section 6.2).
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Kondo box and geometric frustration with cold atoms

MODEL

We consider a double-well system shown in Fig. 1(a).
The lowest levels are strongly localized, while the higher
band splits due to particle tunneling between the wells
[see Fig. 1(b)].

The double-well is populated with three spin- 1
2 atoms:

one in the excited band, and two localized in the lowest
levels of individual wells. This system can be modeled
by a Hamiltonian:

H = t
∑

σ

(c†1σc2σ + c†2σc1σ) + V
(
S1 · sc1 +S2 · sc2

)
. (1)

The first term describes the hopping (hybridization) be-
tween wells 1 and 2 with an amplitude t which we assume
to be real and positive. The operator c†iσ creates a parti-
cle (the statistics does not matter) in the i-th well with

spin projection σ: |1iσ〉 = c†iσ|vac〉 (|vac〉 is an empty
state). The second term is the exchange coupling be-
tween local atoms in each well and the mobile atom. We
assume that V > 0 but this is not a crucial assumption
because we will not be interested in the ground state
properties. Si is the local spin- 1

2 operator in i-th well,

and sci = 1
2

∑
αβ σαβc

†
iαciβ is the spin of the mobile par-

ticle (σ is the vector of Pauli matrices). Below we will
use implicit summation over repeated spin indices.

EIGENSTATES OF THE MODEL HAMILTONIAN

The Hamiltonian (1) has two important symmetries.
First, there is the spin SU(2) continuous symmetry that
guarantees conservation of the total spin Stot = S1+S2+
sc1+sc2 of the system. Stot can be either 1

2 or 3
2 . The sec-

ond one is a discrete “lattice” symmetry that corresponds
to a mirror plane interchanging the wells (i.e. 1↔ 2) and
leads to the conservation of parity P̂ : [H, P̂ ] = 0. The
parity transformation can be defined as P̂S1P̂ = S2 and
P̂ c†1σP̂ = c†2σ. Since P̂ 2 = 1, the parity operator has
two eigenvalues P = ±1 (no hat). The corresponding
three-particle states are schematically shown in Fig. 1(c)
and (d). With the aid of these symmetries one can easily
determine all eigenstates of the model (1).

In the following it will be convenient to diagonalize the
hopping term in H by introducing symmetric (f) and
antisymmetric (a) combinations of the mobile particle:

(
fσ
aσ

)
=

1√
2

(
c1σ ± c2σ

)
, (2)

t

V

1 2P̂

|f〉

|a〉 |a〉= |1〉−|2〉

|f〉= |1〉+|2〉
2t

|f〉

P = +1

|a〉

P = +1

|f〉

P = −1

|a〉

P = −1

(a) (b)

(c) (d)

FIG. 1. Panel (a) The double-well setup with two local atoms
(red arrows) and one mobile atom (blue arrow). The par-

ity operator P̂ interchanges the two wells. (b) Hybridization
splitting 2t of the mobile band. |f〉 and |a〉 denote symmet-
ric and antisymmetric states (2). (c) Schematic illustration
of different states with P = +1. The gray ellipse indicates
a spin-singlet state across the wells. Parallel local spins cor-
respond to a spin-triplet. (d) Same as in (c), but for totally
antisymmetric states with P = −1.

and rewrite the Hamiltonian (1) as

H =t(f†σfσ − a†σaσ)+

+
V

2
(S1 + S2) · (Tff + Taa)+

+
V

2
(S1 − S2) · (Tfa + Taf ). (3)

Here Tff = 1
2σαβf

†
αfβ , Taa = 1

2σαβa
†
αaβ , Tfa =

1
2σαβf

†
αaβ and Taf = T †fa.

We will denote local spin states as |↑i〉 and |↓i〉 and use
Clebsch-Gordan coefficients of build wavefunctions with
a definite total spin out of the mobile S = 1

2 and local
two-spin states. When writing the three-particle states
we will follow the naming scheme

|Stot, S
z
tot;P ; a〉,

where a is the index of a state with other quantum num-
bers fixed. Since the number of particles in the lowest
levels is exactly one/level, the Hilbert space of Eq. (1)
has dimension 2× 23 = 16.

Sector Stot = Sz
tot = 1

2
, P = +

There are two ways to have a state with total spin
S = 1

2 : (i) local particles form a S = 0 singlet, so the
spin comes from the mobile atom, and (ii) local spins
are in the S = 1 triplet and we have to couple it to the
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2

mobile spin using angular momentum addition theorems.
Hence, there are two basis states:

∣∣∣∣
1

2
,

1

2
; +; 1

〉
=

1√
2
|↑1↓2 − ↓1↑2〉 ⊗ a†↑|vac〉,

∣∣∣∣
1

2
,

1

2
; +; 2

〉
=

1√
6

[
2|↑1↑2〉 ⊗ f†↓ |vac〉−

− |↑1↓2 + ↓1↑2〉 ⊗ f†↑ |vac〉
]
.

The first ket is built from antisymmetric local-spin sin-
glet and an antisymmetric fermion combination, while
the second one is constructed using all symmetric states.
In this basis the Hamiltonian matrix has the form

H 1
2 ,

1
2 ;+ =

(
−t −

√
3

4 V

−
√

3
4 V t− 1

2V

)
.

On the diagonal, t originates from the kinetic energy, and
−V2 from the interaction of the mobile atom with a mean
local magnetization in the 2nd state. The eigenvalues and
corresponding eigenfunctions are:

E1,2 = −V
4
∓R

with R =

√(
t− V/4

)2
+
(√

3V/4
)2

, and

|ψ1〉 = cos
ϑ

2

∣∣∣∣
1

2
,

1

2
; +; 1

〉
+ sin

ϑ

2

∣∣∣∣
1

2
,

1

2
; +; 2

〉
,

|ψ2〉 =− sin
ϑ

2

∣∣∣∣
1

2
,

1

2
; +; 1

〉
+ cos

ϑ

2

∣∣∣∣
1

2
,

1

2
; +; 2

〉
,

where cosϑ =
(
t− V/4

)
/R and sinϑ =

√
3V/4Rt.

Sector Stot = Sz
tot = 1

2
, P = −

In complete analogy with the previous subsection, we
have the basis:

∣∣∣∣
1

2
,

1

2
;−; 1

〉
=

1√
2
|↑1↓2 − ↓1↑2〉 ⊗ f†↑ |vac〉,

∣∣∣∣
1

2
,

1

2
;−; 2

〉
=

1√
6

[
2|↑1↑2〉 ⊗ a†↓|vac〉−

− |↑1↓2 + ↓1↑2〉 ⊗ a†↑|vac〉
]
.

The Hamiltonian matrix can be obtained from that in
the previous subsection by replacing t→ −t:

H 1
2 ,

1
2 ;− =

(
t −

√
3

4 V

−
√

3
4 V −t− 1

2V

)
.

The spectrum and eigenstates can be written as before,
but with a small change in labeling,

E1,2 = −V
4
±R

with R =

√(
t+ V/4

)2
+
(√

3V/4
)2

, and

|ψ1〉 = cos
ϑ

2

∣∣∣∣
1

2
,

1

2
;−; 1

〉
+ sin

ϑ

2

∣∣∣∣
1

2
,

1

2
;−; 2

〉
,

|ψ2〉 =− sin
ϑ

2

∣∣∣∣
1

2
,

1

2
;−; 1

〉
+ cos

ϑ

2

∣∣∣∣
1

2
,

1

2
;−; 2

〉
,

where cosϑ =
(
t+ V/4

)
/R and sinϑ = −

√
3V/4Rt.

Sector Stot = 1
2
, Sz

tot = − 1
2
, P = ±

The basis states can be chosen as∣∣∣∣
1

2
,−1

2
; +; 1

〉
=

1√
2
|↑1↓2 − ↓1↑2〉 ⊗ a†↓|vac〉,

∣∣∣∣
1

2
,−1

2
; +; 2

〉
=− 1√

6

[
2|↓1↓2〉 ⊗ f†↑ |vac〉−

− |↑1↓2 + ↓1↑2〉 ⊗ f†↓ |vac〉
]
,

∣∣∣∣
1

2
,−1

2
;−; 1

〉
=

1√
2
|↑1↓2 − ↓1↑2〉 ⊗ f†↓ |vac〉,

∣∣∣∣
1

2
,−1

2
;−; 2

〉
=− 1√

6

[
2|↓1↓2〉 ⊗ a†↑|vac〉−

− |↑1↓2 + ↓1↑2〉 ⊗ a†↓|vac〉
]
.

The Hamiltonian matrices and their eigenstates are the
same as in corresponding parity sectors with Sztot = 1

2 .

Sector Stot = 3
2
, all Sz

tot, P = +

There are 2Stot + 1 = 4 states with different Sztot:∣∣∣∣
3

2
,−3

2
; +

〉
=|↓1↓2〉 ⊗ f†↓ |vac〉,

∣∣∣∣
3

2
,−1

2
; +

〉
=

1√
3

[
|↓1↓2〉 ⊗ f†↑ |vac〉+

+ |↑1↓2 + ↓1↑2〉 ⊗ f†↓ |vac〉
]
,

∣∣∣∣
3

2
,

1

2
; +

〉
=

1√
3

[
|↑1↑2〉 ⊗ f†↓ |vac〉+

+ |↑1↓2 + ↓1↑2〉 ⊗ f†↑ |vac〉
]
,

∣∣∣∣
3

2
,

3

2
; +

〉
=|↑1↑2〉 ⊗ f†↑ |vac〉.

Of course, these states are not mixed by the Hamiltonian,
hence they are already eigenstates with an energy

E = t+
1

4
V.

Sector Stot = 3
2
, all Sz

tot, P = −

This sector can be obtained from the previous one by
replacing f → a and t→ −t.
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It is instructive to build a low-energy effective Hamil-
tonian for the case of small exchange coupling (compared
to the bandwidth). In this regime, the model (1) can be
seen as a frustrated triangular plaquette with two local
and one mobile spin being at the vertices. The sign of the
effective exchange coupling can be controlled by populat-
ing either symmetric (f -type) or antisymmetric (a-type)
band.

When V = 0, there are two 8-fold degenerate sec-
tors corresponding to the mobile atom being either in a
symmetric or antisymmetric state (the degeneracy comes
from spins). For small but finite V , this manifold is split
by the exchange interaction. Hence, we start from Eq.
(3) whose first two terms are diagonal and do not mix
the hybridized states in the upper band, and the last line
is an off-diagonal perturbation. We will call the diag-
onal terms in Eq. (3) as H0 and the last off-diagonal
exchange correction – as H1. The latter can be removed
in each order on V/t by a Schrieffer-Wolff transforma-
tion H → eΛHe−Λ ≈ H0 + 1

2 [Λ, H1] with Λ chosen so
that [H0,Λ] = H1. To the lowest order in V we have

Λ =
V

2

∑

E′
0,E0

S12 · P ′0TfaP0

E′0 − E0
− h.c. = U − U†,

where S12 = S1 − S2. In the summation, E0 (and E′0)
denotes the full set of quantum numbers that characterize
a degenerate state of H0 (here only the kinetic energy).

P0 (and P ′0) are projectors on this subspace.
If the mobile particle is in the lowest-energy antisym-

metric state [see Fig. 1(b)], the 2nd order correction
[Λ, H1] = [U,H1] + h.c. is

1

2
〈vac|aσ′ [Λ, H1]a†σ|vac〉 =

= −V
2

4

∑

E′
0,E0

Si12S
j
12

E′0 − E0
〈vac|aσ′T iafP

′
0T

j
faP0a

†
σ|vac〉 =

= −V
2

32t
Si12S

j
12(σiσj)σ′σ =

= −3V 2

64t
+
V 2

16t

[
S1 · S2 + τ · (S1 + S2)

]
.

Adding the linear contribution [second line in Eq. (3)],
we obtain an effective spin Hamiltonian (up to a constant
energy shift)

Hef = V τ · (S1 + S2) +
V 2

16t

[
S1 · S2 + τ · (S1 + S2)

]
,

where ταβ = 〈vac|aαTaaa†β |vac〉 is the spin-1
2 operator

of the antisymmetric mode. The quadratic term in this
expression is an antiferromagnetic Heisenberg model on
a geometrically frustrated triangle.

The case when the mobile atom is in the symmetric
state can be treated in exactly the same way. The re-
sulting effective Hamiltonian can be obtained from Hef

by replacing Taa with Tff and t → −t. In this case
the effective Heisenberg model is ferromagnetic and the
triangle is non-frustrated.
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