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Thesis directed by Prof. Konrad Lehnert

Mechanical systems that combine motion and electricity are often used to process information.

They are employed as compact clocks, filters, and sensors in almost all modern electronic devices.

Yet these devices are limited to processing classical information. To exploit mechanical systems

in emerging quantum communication and computation technologies, such systems must process

fragile quantum bits of information. In this thesis, I experimentally demonstrate the conversion of

quantum bits encoded in electrical signals to the motion of a micron-scale mechanical resonator.

This capability is crucial for harnessing mechanical systems as memories for quantum signals, or

as converters of information between electronic quantum processors and telecommunications light.

Beyond quantum information processing, this work opens up the possibility to test quantum theory

in objects of an unprecedented mass scale.
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Chapter 1

Introduction

Motion contains information. In 1797, this simple idea enabled Henry Cavendish to accurately

measure – for the first time – Earth’s mass using mechanical motion[1]. His approach was to measure

the gravitational interaction between two lead balls. One of the balls was freely suspended, and

its motion was measured using light. Cavendish used the suspended ball to convert the force of

gravity to mechanical motion. From motion, he gained information about the mass of Earth.

Light also contains information. And remarkably, it can be converted to motion. Even a cen-

tury before Cavendish’s famous experiment, Johannes Kepler made the observation that a comet’s

tail points away from the sun[2]. Put in another way, the deflection of the comet’s tail contains

information about the direction of the sun’s rays[3]. This strange behavior was not rigorously ex-

plained until 1873 when Maxwell developed the theory of electromagnetism, which predicted that

light can move objects[4]. By 1901, Maxwell’s prediction was quantitatively verified by experiments

that measured the displacement of vanes mounted on a spindle as they were illuminated with the

gentle touch of light[5, 6]. However, these experiments suffered from thermal effects that obscured

motion due to light.

By the 1970s, the invention of the laser led to a new era of manipulating objects using light.

Because the laser provided high intensity light, it could easily trap and accelerate freely suspended

dielectric spheres micrometers in diameter[7]. This advance inspired proposals aimed at harnessing

light to trap and cool the motion of single atoms[8, 9, 10]. Such ideas were utilized in experiments

that used laser light to damp the motion of a trapped atom[11, 12], which enabled cooling of an
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Figure 1.1: Schematic of an electromechanical device. A mechanical element forms part of a
capacitor (C) which is shunted by an inductor (L). These two elements form an electrical resonant
circuit that is inductively coupled to a transmission line. Propagating electrical signals (green) are
injected into a port.

atom to its lowest possible energy state of motion[13]. This technique of laser cooling is now the

workhorse of many atomic physics experiments in laboratories around the world, including ones

here in Boulder at the National Institute of Standards and Technology (NIST) and JILA.

Apart from laser cooling, converting information between mechanical motion and light was

studied in the context of improving the sensitivity of early gravitational wave detectors. Initial

efforts in the 1960s made detectors using massive vibrating bars coupled to electrical circuits[14,

15, 16]. While controversial, such efforts inspired a new type of gravitational wave detector that

used light to measure motion[17, 18]. The basic idea was to measure the disturbance caused by a

gravitational wave on suspended masses in a laser interferometer. This led to the development of the

Laser Interferometer Gravitational Wave Observatory (LIGO) which would – because of immensely

heroic and resilient efforts – directly measure the amplitude and phase of a gravitational wave for

the first time[19]. This stunning result provided a surprising amount of information about black

holes billions of light years away from Earth[20].

The development of gravitational wave detectors – spanning over 40 years – led to fantastic

progress in the understanding of how light and motion fundamentally affect each other. Experiments

in the 1970s revealed that light shined on a mirror could not only move it, but also damp or

amplify its motion[21]. As experimenters pushed the sensitivity of interferometers, it was discovered

that quantum mechanics may limit how much information can be gained from motion[22, 23,

24]. From these investigations emerged the parallel fields of cavity optomechanics and circuit

electromechanics[25, 26, 27]. Their aim is to advance fundamental science and technology by
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Figure 1.2: Schematic of an early electromechanical device. A microwave cavity (mwr) is covered by
a flexible metal diaphragm (D) which forms a small capacitive gap (d). Mechanical displacements
∆x of the diaphragm modulate microwave fields in the cavity. Image reproduced from Ref. [23].

harnessing light or electricity to manipulate mechanical motion. In this thesis, I will focus on

circuit electromechanics.

A schematic of a circuit electromechanical system is shown in Fig. 1.1. The circuit is formed by

an inductor (L) and capacitor (C) which resonate at the frequency defined by ω0/2π = 1/(2π
√
LC).

The upper plate of the capacitor is a flexible element which is free to vibrate. Because the capaci-

tance depends on the separation of the two plates, motion of the upper capacitor plate will modulate

the electrical resonance. By injecting electrical signals into the circuit and measuring its response,

information about the motion of the capacitor plate can be gained.

The initial goals of circuit electromechanics were to develop methods for measuring small

mechanical displacements of macroscopic objects. In the early 1980s, an early electromechanical

device consisted of a centimeter-sized bulk niobium cavity with a flexible diaphragm[23]. This

device relies on the parametric coupling between motion and electricity in which vibrations of

the flexible diaphragm modulate the resonant frequency of the cavity, as diagrammed in Fig. 1.2.

Remarkably, the level of performance achieved was better than any optical methods for measur-

ing displacements at the time. By the 1990s, advances in microfabrication techniques – due to

the booming silicon industry – led to a drastic miniaturization of mechanical elements to the

nanometer and micrometer scale. These capabilities enabled experiments to construct sensitive

detectors by coupling micrometer- and nanometer-scale mechanical resonators to single-electron
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transistors[28, 29, 30], atomic point contacts[31, 32], superconducting circuits[33, 34, 35], piezoelec-

tric materials[36, 37], and even single-electron spins[38]. Apart from improving detectors, theoret-

ical proposals emerged[39, 40, 31, 41, 42, 43, 44, 45, 46] that aimed to use circuit electromechanics

to observe quantum states of motion in a macroscopic object for quantum information processing

and foundational tests of quantum theory. A prerequisite to accessing quantum states of motion is

the ability to cool mechanical motion to its quantum ground state.

Cooling mechanical motion to its quantum ground state requires minimizing undesired ther-

mal effects that will obscure quantum behavior. For a mechanical resonator that oscillates at ωm

and is at a temperature T , reaching the ground state of motion requires reducing the resonator’s

thermal energy kBT so that it is far below the mechanical quanta of energy ~ωm where kB is

the Boltzmann constant and ~ is the reduced Planck constant. In 2010, experimenters cooled

a piezoelectric mechanical resonator that oscillates at ωm/2π ≈ 6 GHz to an environment tem-

perature of T < 100 mK. This low temperature enabled the single 6-GHz mechanical mode to

occupy its quantum ground state approximately 93% of the time[37]. Instead of simply reducing

the environment temperature of the resonator, one can use optical or microwave fields to cool the

motion to its quantum ground state. This idea spawned intense efforts both theoretically[47, 48]

and experimentally[49, 50, 51, 34, 52] to develop methods – borrowed from early experiments

with trapped ions[13] – for reaching the quantum quantum state of motion in a macroscopic object.

When I started graduate school in 2011, two experiments reached this regime. One experiment used

microwave fields to cool the motion of a micrometer-scale aluminum membrane in a microwave-

frequency superconducting circuit[53]. A separate experiment used optical fields to cool the motion

of a nanometer-scale crystal in a photonic cavity[54].

The ability to prepare mechanical motion in its ground state enabled experiments to probe

profoundly quantum phenomena in macroscopic objects. One of the most basic phenomena is

the inherent fluctuations of a mechanical resonator even while in its ground state. These zero-

point fluctuations have been observed in optomechanical[55] and electromechanical[56, 57] devices,

and then manipulated to produce squeezed states with displacement fluctuations less than the
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resonator’s zero-point motion[57, 58, 59]. Furthermore, the zero-point motion of a mechanical

resonator was entangled with a propagating microwave field.[60].

These experiments enable electromechanical devices to serve as general-purpose signal pro-

cessing elements that could be used in emerging quantum communication[61, 62] and modular

quantum computing architectures[63]. In a single electromechanical device, the parametric cou-

pling between motion and electricity can be rapidly varied. For example, the ability to suddenly

turn off the interaction between electricity and motion allows the state of a propagating field to

be converted to, and trapped in, the motion of the resonator[64]. From this ability emerges fan-

tastic practical applications of the electromechanical device, such as an on-demand memory[64],

a dynamic signal processing element[65], and a pulsed amplifier[60, 66] for propagating quantum

signals. Other experiments have also demonstrated the ability to frequency convert or continuously

amplify microwave fields using an electromechancial device[65, 67, 68].

To exploit the aforementioned signal-processing capabilities of an electromechanical device

in a general quantum information processor, one must work with states that have non-Gaussian

statistics such as a superposition of zero and one photons[69]. These states may enable information

processing that cannot be performed classically[70]. Although Gaussian states can be harnessed for

certain quantum information tasks[71], any process using only Gaussian states can be simulated

efficiently on a classical computer[72]. But in the regime that electromechanical devices operate,

the equations that describe the coupling are linear[27]. This linearity ensures that a Gaussian state

of the microwave field or mechanical resonator will never evolve into a non-Gaussian state.

Accessing non-Gaussian mechanical states requires either a nonlinear detector such as a single

photon counter or a source of non-Gaussian states. In optical systems, single photon counters have

been used to generate and measure single-photon states[73]. This technique relies on ‘heralding’

the presence of a single photon generated by a source of correlated two-photon pairs. In an opto-

and electromechanical device, correlated pairs of mechanical quanta – phonons – and photons can

be produced[60]. Because the pairs of phonons and photons are correlated, detection of a single

photon corresponds to the presence of a single phonon occupying the mechanical resonator[74]. For
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Figure 1.3: A source of quantum information coupled to a mechanical resonator. The source
consists of a qubit with a ground |g〉 and excited state |e〉. Electrical signals (green) propagate in
a transmission line (black). Such signals encode the qubit’s state as superpositions of zero and one
photons where ϕ is the phase of the qubit.

an electromechanical device, correlated single photons can in principle be resolved using a super-

conducting qubit[44, 75, 66]. Similarly, the use of a nonlinear detector has been recently explored

in optomechanical systems[76, 77]. If a nonlinear detector is not used, the mechanical resonator

can be coupled to a source of non-Gaussian states. This approach enabled an experiment in 2010

to take the first pioneering step towards deterministically converting quantum information from

a non-Gaussian source to mechanical motion[37]. Specifically, the source was a superconducting

qubit which strongly coupled to a piezoelectric mechanical resonator. However, the few-nanosecond

lifetime of the mechanical resonator prohibited tomographic measurements of its state.

The strategy I pursue in this thesis is to exploit a superconducting qubit as a source of

propagating photons that carry quantum information to an electromechanical device[78]. A diagram

of the experiment concept is shown in Fig. 1.3. In this approach, the qubit and mechanical resonator

are in two separate modules. As such, each module can be readily characterized and separately

optimized to reach state-of-the-art levels of performance[79, 53]. Communication from the qubit to

the mechancial resonator occurs naturally through the use of the propagating microwave-frequency

photons. In the optical domain, the use of propagating photons has been considered as a route

towards producing non-Gaussian mechanical states[80, 81, 82]. The benefit to working in the

microwave domain is that superconducting qubits can deterministically produce arbitrary quantum

states[83, 84, 85], which can also be encoded in propagating microwave photons[86].

After encoding the quantum state in a propagating photon, it can be converted to the state



7

of the mechancial resonator. As an initial test, I use the electromechanical device to capture,

store, and amplify single photons generated by a superconducting qubit. To efficiently measure the

mechanical state, I developed a new way of operating the electromechanical device as a low-noise

amplifier. I exploit this capability in order to determine the density matrix of the mechanical state.

I find that the quantum state can be stored on a timescale exceeding 100 µs, an improvement of

over four orders of magnitude compared to previous work that demonstrated the storage of a non-

Gaussian state in an electromechanical device[37]. To characterize how the capture process affects

arbitrary propagating qubit states, I use the electromechanical device to capture superpositions

of zero and one photons. The degree to which this process preserves quantum information is

quantified by the average fidelity[87], which I find to be Favg = 0.83+0.03
−0.06 where the limits are

the 90% confidence interval. This level of performance exceeds the fidelity achievable using only

classical resources, indicating that the electromechanical device is suitable for the transduction of

quantum information.

1.1 Thesis contents

Chapter 2 provides a brief introduction to quantum information encoded in continuous and

discrete variables. This chapter is not meant to provide a rigorous derivation of the many rich topics

in quantum information theory, but rather it introduces ideas that are relevant for subsequent chap-

ters. Chapter 3 describes how incorporating a mechanical resonator in an electrical circuit forms

an electromechanical device, which can be used to manipulate propagating microwave fields. Addi-

tionally, it describes the characterization of the electromechanical device. Chapter 4 describes how

a circuit quantum electrodynamics (cQED) system forms a source of propagating single photons.

Additionally, it briefly discusses characterization of the source. Chapter 5 demonstrates the ability

to faithfully convert the propagating single photons to motion of the mechanical resonator. Lastly,

Chapter 6 provides an outlook for future experiments that may utilize this conversion capability.



Chapter 2

Theory of continuous- and discrete-variable quantum information

Emerging quantum processors and quantum communication networks require the ability to

manipulate information encoded in the state of a quantum system[88, 89]. There are numerous

physical implementations of such quantum systems that include photons[90], ions[91], nuclear and

electronic spins[92, 93, 94], ultracold atoms[95], and superconducting circuits[96]. Among these

vastly different systems is a description of quantum information in terms of either a continuous or

discrete variable[71, 69]. This dichotomy is analogous to how classical information can be encoded

as either an analog or digital signal. To efficiently process and distribute information, virtually

all modern computation and communication devices utilize both analog and digital encoding[97].

Similarly, emerging quantum technologies may rely on a combination of discrete- and continuous-

variable quantum systems.

This chapter presents a brief overview of continuous- and discrete-variable systems that are

relevant for subsequent chapters. Section 2.1 introduces classical and quantum harmonic oscillators,

which are continuous-variable systems. Section 2.2 introduces qubits, which are discrete-variable

systems. Section 2.3 describes how incorporating a qubit into an electromagnetic resonator can be

exploited to generate single photons. Section 2.4 describes how quantum states are generated in

stationary modes, and then transmitted using propagating modes in a transmission line. Section 2.5

describes how to characterize a propagating mode using quantum state tomography.
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Figure 2.1: A mass connected to a spring.

2.1 Harmonic oscillators as continuous-variables systems

A continuous-variable system encodes quantum information in states that can have a con-

tinuum of eigenvalues. In this thesis, I employ two such systems: a mechanical resonator and a

microwave field. The mechanical resonator can be described in terms of its position and momentum,

whereas the microwave field can be described in terms of its amplitude and phase quadratures[98].

Although these two systems are physically quite different, they can both be modeled as harmonic

oscillators.

2.1.1 Classical description

In classical mechanics, the prototypical harmonic oscillator is a mass connected to a spring

as diagrammed in Fig. 2.1. The object has a mass m and it experiences a linear restoring force

F = −kx where k is the spring constant. Because of this force, the object is harmonically bound.

The complete state of the object at time t is described by its position x(t) and momentum p(t) =

mv(t) where v(t) is the object’s velocity. Both of these variables are governed by

ṗ(t) = −kx(t)

ẋ(t) =
p(t)

m
(2.1)

which are a set of coupled differential equations written in the Hamiltonian form[99]. If the mass

is initially displaced by x(0), solutions to the above equations reveal that its position oscillates at

an angular frequency of ω =
√
k/m according to x(t) = x(0) cos(ωt).

Hamilton’s equations explicitly couple position and momentum for the spring-mass system.
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To write a pair of equations that are decoupled, complex field amplitudes are used to describe the

state of the system. Specifically, appropriate linear combinations of Eqns. 2.1 yield

ȧ(t) = −iωa(t) and ȧ∗(t) = +iωa∗(t) (2.2)

where

a(t) =

√
mω

2

(
x(t) +

ip(t)

mω

)
and a∗(t) =

√
mω

2

(
x(t)− ip(t)

mω

)
(2.3)

are the complex field amplitudes[100]. These amplitudes have been normalized such that |a(t)|2

describes exactly half of the system’s total energy, given by H = T + V where T = p2/(2m)

and V = ω2x2/2 are the object’s kinetic and potential energies, respectively. The utility of this

approach is that the field amplitudes a and a∗ are classical analogs of the annihilation and creation

operators used in the formalism of the quantum harmonic oscillator.

2.1.2 Quantum description

The quantum analog of a classical harmonic oscillator is described by its total energy, as

discussed in Ref. [101]. Briefly, the quantum harmonic oscillator has a total energy given by the

Hamiltonian

Ĥho =
p̂2

2m
+

1

2
mω2x̂2 (2.4)

where x̂ and p̂ are operators that satisfy the canonical commutation relation given by

[x̂, p̂] = x̂p̂− p̂x̂ = i~ (2.5)

where ~ is Planck’s constant h divided by 2π. Using this commutator relation, the Hamiltonian for

the quantum harmonic oscillator can be cleverly written as

Ĥho = ~ω
(
a†a+

1

2

)
(2.6)

where

a =

√
mω

2~

(
x̂+

ip̂

mω

)
and a† =

√
mω

2~

(
x̂− ip̂

mω

)
(2.7)

are the ‘annihilation’ and ‘creation’ operators, respectively. As written, they satisfy [a, a†] = 1.
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Importantly, the quantum harmonic oscillator has an infinite set of discrete energy states

{|n〉} for any integer n ≥ 0. Such states are defined by

Ĥho |n〉 = En |n〉 (2.8)

where En = ~ω(n+ 1/2) is the energy of each state. A given state can be generated using

|n〉 =
(a†)n√
n!
|0〉 (2.9)

where |0〉 is called the ‘vacuum state’ which is the state with the lowest allowed energy. Although

the vacuum state contains no excitations (n = 0), its average energy 〈0| Ĥho |0〉 = ~ω/2 is not zero.

To describe the time evolution of the quantum harmonic oscillator, I use the Heisenberg

representation[102]. In this representation, the creation and annihilation operators obey the Heisen-

berg equations of motion given by

ȧ(t) =
i

~
[Ĥho, a(t)] (2.10)

and the Hermitian conjugate equation for a†(t). The solutions to these equations are

a(t) = a(0)e−iωt and a†(t) = a†(0)eiωt. (2.11)

In order to remove the free evolution of the amplitudes, it is natural to move into a rotating frame

of reference. By making the transformation a(t)→ a(t)e−iωt, the solutions are a(0) and a†(0).

In an experiment, the operators a(0) and a†(0) are not directly measured. Instead, one can

employ a nonlinear detector (such as a single-photon counter) to measure the average occupancy

〈a†(0)a(0)〉 of the oscillator. Apart from nonlinear detection, one can employ a linear detector (such

as a linear amplifier) to sense linear combinations of a(0) and a†(0) given by

X =
1

2
(a+ a†) and Y =

1

2i
(a− a†) (2.12)

which are written in a rotating frame at ω. The above quantities are ‘quadrature operators,’

and they are essentially dimensionless parameters for the position and momentum of a harmonic

oscillator. In Section 2.5, I discuss two detection methods used to measure them.
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2.1.3 Quantum states

An infinite set of states whose dynamics approach that of a classical harmonic oscillator are

called coherent states. Such states are denoted by |α〉 and satisfy a |α〉 = α |α〉, where the eigenvalue

α is a complex number[98]. This number relates to the average occupation of a coherent state by

〈n〉 = 〈a†a〉 = |α|2. In terms of the measured scatter in the quadrature amplitudes X and Y , a

coherent state yields a variance of Var(X) = 〈X2〉− 〈X〉2 = 1/4 quanta and Var(Y ) = 1/4 quanta,

where ‘quanta’ refers to a single excitation of the harmonic oscillator.

In contrast to a coherent state, the state |n〉 has no analogous representation in the formalism

of the classical harmonic oscillator[98]. This ‘number state’ has n quanta, each with energy ~ω.

Although a number state has a well-defined number of quanta, its phase (the conjugate variable)

is maximally uncertain. Regardless of n, a number state yields quadrature amplitudes X and Y

that have a mean of zero. However, their total variance of Var(X) = Var(Y ) = (2n+ 1)/4 quanta

is non-zero for any integer n ≥ 0.

To represent a statistical mixture of pure number states, one employs the density matrix ρ.

For a single pure number state, the corresponding density matrix is ρ = |n〉 〈n|. However, if an

ensemble of number states is prepared each with a statistical probability P (n), the density matrix

becomes

ρ =
∑
n

P (n) |n〉 〈n| (2.13)

where n labels each number state in the ensemble[98]. To calculate the expectation value of an

observable, such as a quadrature operator X, one takes 〈X〉 = tr(ρX) where tr(· · · ) denotes a trace

operation.

The density matrix provides a convenient description of an ensemble of number states held

at a non-zero temperature T . The density matrix ρth that describes such a system has probabilities

that follow a Boltzmann distribution. As such, they are given by

P (n) =
〈n〉n

(〈n〉+ 1)n+1
(2.14)

where 〈n〉 = (exp(~ω/kBT )−1)−1 is the average occupation[98]. When measured in the quadrature
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basis, a thermal state yields quadrature amplitudes X and Y that have a mean of zero. However,

the quadrature variance is the same as that of a pure number state with Var(X) = tr(ρX2) =

(2〈n〉+ 1)/4 quanta and similarly for the Y amplitude.

2.1.4 Decoherence

Any harmonic oscillator in the laboratory will inevitably experience dissipation. For example,

such dissipation could be a result of a frictional force −cẋ(t) which causes the oscillator to loose

energy where c is a constant coefficient. Because of the fluctuation-dissipation theorem[103], this

damping is also a source of a fluctuating force F0(t) that drives the oscillator. To include these two

effects in the description of the classical harmonic oscillator, one can write Eqns. 2.1 as

ṗ(t) = −kx− cẋ(t) + F0(t) (2.15)

where F0 is the fluctuating variable that obeys a Gaussian distribution with mean zero and has a

correlation function given by 〈F0(t)F0(t′)〉 = 2ckBTenvδ(t− t′) where Tenv is the temperature of the

oscillator’s environment and 〈· · · 〉 represents an ensemble average[104]. This noise term ensures

that the oscillator comes into thermal equilibrium with its environment. Eqn. 2.15 is a specific

case of the Langevin equation, which was originally developed to describe the Brownian motion of

a particle immersed in a fluid[105].

To introduce dissipation in a quantum harmonic oscillator, one can write Eqns. 2.10 in the

form of the Langevin equation. In the presence of dampening κ and a fluctuating field a0(t), the

field operators evolve according to

ȧ(t) = −iωa(t)− κ

2
a(t) +

√
κa0(t) (2.16)

where 〈a†0(t)a0(t′)〉 = Nδ(t − t′) is the correlation function for the fluctuating field a0(t) and

N = (exp(~ω/kBTenv)− 1)−1 is the occupation of the environment. Here, 〈a†0(t)a0(t′)〉 is normal-

ized to have units of photons/sec. Eqn. 2.16 and the Hermitian conjugate equation for a†(t)

constitute the Heisenberg-Langevin equations of motion for a quantum harmonic oscillator[106].
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These equations provide a full description of how a(t) and a†(t) evolve for the oscillator as its energy

decays because of dissipation.

In terms of the density matrix ρ, the quantum master equation provides a full description of

the dissipative quantum harmonic oscillator. This approach takes the quantum harmonic oscillator

as the system of interest and couples it to an external environment. The evolution of ρtot(t) for

this total system is governed by the von Neumann equation, an equivalent form of the Schrödinger

equation, given by

ρ̇tot(t) = − i
~

[Htot, ρtot(t)] (2.17)

where the total Hamiltonian Htot includes the system, its environment, and their mutual inter-

actions. To calculate the state of the dissipative quantum harmonic oscillator, one performs a

partial trace over the environment ρ = trenv(ρtot). By modeling the environment as a collection

of harmonic oscillators, one can derive a master equation for the system of interest. Numerous

derivations exist[107, 108, 109], and so I simply state the result given by

dρ

dt
= − i

~
[Hsys, ρ]− (N + 1)

2
κ
(
a†aρ+ ρa†a− 2aρa†

)
− N

2
κ
(
aa†ρ+ ρaa† − 2a†ρa

)
(2.18)

where N is the average occupation of the environment, and κ is the rate of energy exchange between

the environment and the oscillator. The first term on the right hand side describes the evolution

of the system of interest described by Hsys, and the remaining two terms account for energy decay

and random thermal jumps in the oscillator’s energy states.

2.2 Qubits as discrete-variable systems

A discrete-variable system encodes quantum information in states that form a discrete and

finite set. The prototypical discrete-variable system is a quantum bit (qubit), which is a funda-

mental unit of quantum information[70]. For this thesis, I utilize a qubit to generate quantum

superpositions of harmonic oscillator states that encode the qubit’s state.
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Figure 2.2: Diagram of a Bloch sphere. The red arrow denotes a pure qubit state |ψ〉 parameterized
by ϕ and θ. The qubit’s ground and excited states are denoted by |g〉 and |e〉 . For a pure state, the
arrow has unit length.

2.2.1 Representation on the Bloch sphere

A single qubit is a two-state system, typically taken to be the ground |g〉 and excited |e〉

states of an atom. Because of quantum mechanics, these states can exist in a superposition state

|ψ〉 = a |g〉+b |e〉 where a and b are complex amplitudes such that |a|2 and |b|2 yield the probability

of occupying the |g〉 and |e〉 states, respectively. Because the square of these amplitudes correspond

to probabilities, they must satisfy |a|2 + |b|2 = 1. This normalization condition removes one degree

of freedom, and so the qubit’s state vector can be represented as

|ψ〉 = cos(θ/2) |g〉+ eiϕ sin(θ/2) |e〉 (2.19)

where θ and ϕ parametrize the state’s relative populations and their phase, respectively. Impor-

tantly, these parameters can be conveniently mapped onto spherical coordinates for a ‘Bloch sphere’

as diagrammed in Fig. 2.2.

2.2.2 Rotations on the Bloch sphere

Alterations to the qubit’s state correspond to rotations on the Bloch sphere. For example,

if the qubit state is |ψ〉 = |g〉, it can be rotated by θ = π using σx |ψ〉 = |e〉 where σx is a Pauli

matrix. In general, an arbitrary rotation is represented by a 2 × 2 unitary matrix U . Any such

matrix can be written as exp(iθH/~) where H is a Hermitian matrix that is a linear combination

of the Pauli matrices. This operator corresponds to a rotation on the Bloch sphere. For example,
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to rotate the qubit state about the x axis by an angle of θ, one would use exp(−iθσx/2).

2.3 A qubit coupled to a harmonic oscillator

To deterministically generate arbitrary quantum states of a harmonic oscillator, it must

couple to a discrete-variable system. The archetypal qubit and harmonic oscillator system is an

atom with two energy levels coupled to a single mode of an electromagnetic resonator. Here, I

refer to a ‘qubit’ as one bit of quantum information, and I call the ‘atom’ the physical object that

initially encodes the qubit. For the harmonic oscillator, the resonator is typically taken to be an

optical cavity, and its lower-frequency counterpart is a microwave cavity or circuit. When the atom

is excited, it can decay in such a way as to create a single excitation of the cavity mode–that is,

a single photon. By preparing the atom in an arbitrary superposition state, this qubit can be

transferred to the cavity mode manifest as a superposition of zero and one photons.

2.3.1 Jaynes-Cummings model

The Jaynes-Cummings model describes the interaction between an atom and a single quan-

tized mode of a cavity[98, 109]. This fundamental interaction has been realized using real atoms[110],

quantum dots[111, 112], and superconducting circuits[113, 114]. Regardless of the physical system,

the Hamiltonian for the atom is that of a qubit: Hq = ~ωqσz/2 where ωq is its ground to ex-

cited state transition frequency. In contrast to the qubit, the cavity mode oscillates at ωc and

is a quantized harmonic oscillator with the Hamiltonian Hho = ~ωc(a
†a + 1/2) as described in

Section 2.1.2.

By coupling the atom’s dipole operator d̂ to the electric field operator Ê of the cavity, these

two systems can interact with each other. Here, I take the dipole moment to be the matrix element

d = 〈e|d̂|g〉, and I assume d is real so that d̂ = σxd. Because E ∝ (a† + a), the resulting dipole

interaction −d̂ · Ê is described by the Hamiltonian Hint = ~gσx(a†+a) where g is the coupling rate

between the two systems.

To obtain the Jaynes-Cummings model from Hint, the system must satisfy |ωc−ωq| � ωc+ωq.
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In this regime, the rotating wave approximation is valid and so one can neglect rapidly oscillating

terms at ωq + ωc. Using this approximation and σx = σ− + σ+, one obtains the Jaynes-Cummings

Hamiltonian

HJC = ~ωca
†a+ ~ωq

σz
2

+
~g
2

(aσ+ + a†σ−) (2.20)

where σ+ (σ−) excites (de-excites) the atom and I shifted the energy reference by removing the

term ~ωc/2. If the atom and cavity are detuned by |ωq−ωc| � g, they are resonant with each other

and thus can directly exchange energy. The system can also be engineered to enter the dispersive

regime in which the atom and cavity are not resonant with each other.

2.3.2 Dispersive regime

To extract information from the qubit while minimally altering its state, the qubit-cavity

system must enter the dispersive regime. In this regime the qubit’s transition frequency and cavity

frequency are far-detuned from each other with a detuning of ∆ = ωq − ωc and their coupling rate

satisfies g � |∆|. By expanding the Jaynes-Cummings Hamiltonian to second order in g/∆, one

obtains the dispersive Hamiltonian[115]

Hd/~ = ωca
†a+ ωq

σz
2

+ 2χ
σz
2
a†a (2.21)

where χ = g2/∆ is the dispersive shift. The energy spectrum of the dispersive Hamiltonian is

depicted in Fig. 2.3 assuming ∆ < 0 as is the case for the cQED system discussed in Chapter 4.

The dispersive Hamiltonian reveals how the presence or absence of a single photon in the

cavity substantially alters the qubit’s transition frequency and reciprocally, how the qubit’s state

affects the cavity frequency[116]. By collecting terms with factors of σz/2, one finds that the qubit’s

frequency ωq → ωq + 2χn where n is the number of photons in the cavity. As such, the qubit’s

transition frequency is a function of how many photons are in the cavity. Furthermore, by collecting

terms with factors of a†a, one finds that the cavity frequency depends on the qubit state according

to ωc → ωc + χ〈σz〉 where 〈σz〉 = ±1 depending on the qubit’s state. As such, one can determine

the qubit state by measuring the response of the cavity.
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Figure 2.3: Energy level diagram of the coupled qubit-cavity system. The dashed lines correspond
to the eigenstates of the uncoupled Hamiltonian, where the cavity photon states are denoted by
|n〉 and the qubit levels are denoted by |g〉 and |e〉. When the qubit and cavity are coupled in the
dispersive regime such that |ωq − ωc| � g, the energy levels shift as indicated by the solid lines.

2.3.3 Rabi oscillations

In the presence of a drive field, the qubit’s state |ψ(t)〉 can undergo ‘Rabi oscillations’ between

its two levels. The time evolution of |ψ(t)〉 is given by the unitary operator U(t) = e−iHt/~ where

H is the system’s Hamiltonian. If the center frequency of the drive is near the qubit’s transition,

the system’s interaction Hamiltonian is Hint = 1
2~Ω~n · ~σ where ~n is a unit vector that specifies the

rotation axis on the Bloch sphere, ~σ is a vector of the Pauli matrices, and Ω is the coupling rate

between the drive field and the qubit.

To understand how the drive affects the qubit state, consider the simple case in which ~n = x̂.

The corresponding unitary operator is U(t) = cos(Ωt/2)I2 − i sin(Ωt/2)σx where I2 is the 2 × 2

identity matrix.1 Suppose the qubit is initially prepared in its |g〉 state. After the drive is on for

a time t = T , the probability of the qubit occupying the excited state is

Pe(T ) = | 〈e|U(T ) |g〉 |2 = sin2(ΩT/2). (2.22)

Because the qubit’s population oscillates between its ground and excited states, the qubit can be

prepared in any superposition state |ψ(t)〉 = a(t) |g〉 + b(t) |e〉 using a pulsed drive field with an

1 To derive this expression for a 2× 2 matrix A that satisfies A2 = I2, use the identity
exp(iθA) = cos(θ)I2 + i sin(θ)A where θ is a real angle[102].
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Figure 2.4: Evolution of a stationary mode into a propagating mode. a, The diagram depicts a
single stationary mode a(t) coupled to the modes ain(t) and aout(t) that propagate in a transmission
line. The stationary mode oscillates at ω0 and couples to the propagating mode at a rate of κext.
Additionally, the stationary mode couples to the environment at a rate of κ0. At time t = 0, the
amplitude of the stationary mode is a(0). b, The plot depicts aout(t) emitted from the stationary
mode. This field can be measured using either homodyne or heterodyne detection (see Section 2.5).

appropriate duration T and coupling rate Ω. For instance, the choice of T = π/Ω drives the qubit

into its excited state. Such a drive is called a ‘π-pulse’ because the qubit’s state rotates by θ = π.

2.3.4 Blue sideband transition

The blue sideband transition provides a mechanism for creating an interaction between the

qubit and the cavity[117, 118]. Although these two systems do not directly exchange energy in

the dispersive regime, driving the blue sideband transition at ωb = ωc + ωq creates a simultaneous

excitation of both the qubit and the cavity. For the transmon-style qubit used in this thesis

(see Chapter 4), the blue sideband transition occurs only as a two-photon process[115, 117]. The

simplest method of accessing this transition is to drive it using a strong, detuned tone at ωb/2.

When driven in this manner, the qubit-cavity system oscillates between the joint states |g〉 |0〉 and

|e〉 |1〉. As such, the blue sideband transition enables the creation of a single cavity photon[119].

By coupling the cavity to a transmission line, the photon will decay into a propagating mode.

2.4 Stationary and propagating modes

A quantum state stored in an electromagnetic resonator is confined to a stationary mode.

This mode is essentially a standing wave because it does not, on average, propagate energy in

any net direction. To communicate information contained in the quantum state to a physically-
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separate system of interest, one must release the energy stored in the stationary mode. This release

can be achieved by coupling the electromagnetic resonator to a transmission line as depicted in

Fig. 2.4. If this coupling is constant, the stationary mode will evolve into a propagating mode in

the transmission line at a rate set by the bandwidth of the resonator.

2.4.1 Input-output theory for a one-port resonator

To mathematically describe a single stationary mode of an electromagnetic resonator, I model

it as a harmonic oscillator with dissipation. As such, the evolution of the complex field amplitude

a(t) for this mode is governed by Eqn. 2.16. In a frame rotating at the center frequency of the

resonator ω0, the equation for a(t) becomes

ȧ(t) = −κ
2
a(t) +

√
κextain(t) (2.23)

where κ = κext + κ0 is the total energy decay rate of the resonator, which includes the external

coupling rate κext to the transmission line and the unwanted ‘internal’ decay rate κ0 of energy to

an unmeasured port. The external coupling is set by the resonator design, whereas the internal

loss rate is determined by its fabrication details[120]. Here, I assume ain(t) is in the vacuum state,

and so 〈a†in(t)ain(t′)〉 = 0 and 〈ain(t)〉 = 0 as discussed in Section 2.1.4.

2.4.2 Resonator state evolves into a propagating mode

Upon energizing the resonator, its field evolves into a mode that propagates in the trans-

mission line. The amplitude of this propagating field is described by the input-output relation

aout(t) =
√
κexta(t) − ain(t) where a(t) is defined in Eqn. 2.23. To simplify its solution, I assume

κ0 � κext and so

aout(t) =
√
κa(0)h(t) + κ · (h ? ain)(t)− ain(t) (2.24)

where h(t) = exp(−κt/2), the ? denotes the convolution operation,2 and a(0) is the initial field

amplitude in the resonator.

2 Its definition is (h ? ain)(t) =
∫ t

0
h(t− τ)ain(τ) dτ .
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To extract a(0) from the continuum of modes in the transmission line, one must define a

particular temporal envelope for the mode of interest[121]. Ideally, for a decaying field emitted

from the resonator, this envelope is given by f(t) =
√
κe−κt/2Θ(t) where Θ(t) is the Heaviside

function. By weighting aout(t) with f(t), one obtains the time-independent output mode

A =

∫
f(t)aout(t) dt = a(0) (2.25)

which does not contain the noise term aout(t). Because A = a(0), tomography on mode A reveals

the quantum state of the cavity mode at t = 0.

2.5 Quantum state tomography of a propagating mode

To characterize the state of a propagating mode, I employ quantum state tomography[122].

The goal of quantum state tomography is to determine the density matrix ρ that completely

specifies the quantum state of interest. For a propagating mode, one does not directly measure ρ

in an experiment. Instead, it can be reconstructed from a set of quadrature amplitudes X and Y

measured using either homodyne or heterodyne detection[123]. The set is constructed by performing

repeated measurements on an ensemble of identically prepared states. From this set, one extracts

ρ by using the statistical method of maximum likelihood.

2.5.1 Homodyne detection

Homodyne detection yields a single quadrature measurement of a field. In the optical domain,

a beamsplitter combines the field to be measured and a field called the local oscillator that provides

an adjustable phase reference. Specifically, this phase reference defines an angle φ between the

local oscillator and the field to be measured. At the beamsplitter’s two output ports, a pair of

photodetectors produce a signal that is proportional to the field’s quadrature amplitude X. In

the microwave domain[121, 124], one utilizes a phase-sensitive linear amplifier to measure the

quadrature amplitude of a given field. Because phase-sensitive amplification can ideally add zero

noise during the amplification process, it enables efficient single-quadrature measurements of a
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microwave field[125].

By making repeated single-quadrature measurements of identically-prepared quantum states

described by ρ, one samples from its marginal distribution. For a given local oscillator phase, this

probability density function is given by

Pr(X|φ) = 〈X|U †(φ)ρU(φ) |X〉 (2.26)

where U(φ) = exp
(
−iφa†a

)
accounts for the aforementioned phase reference[123]. To obtain a

complete reconstruction of ρ, one must rotate θ throughout the entire phase space of the quantum

state. This technique is analogous to medical imagining in which a doctor reconstructs a three-

dimensional picture of a person’s tissue using a collection of two-dimensional images acquired from

a known set of angles.

2.5.2 Heterodyne detection

In contrast to homodyne detection, heterodyne detection yields a set of simultaneous quadra-

ture measurements. These joint measurements provide enough information for complete quantum

state reconstruction. In the optical domain, heterodyne detection is performed by splitting a state

of interest on a beamsplitter and measuring a single orthogonal quadrature of each output mode

relative to a common local oscillator[123]. The microwave equivalent of this technique is phase-

insensitive linear amplification[124]. This approach amplifies a signal’s quadratures amplitudes

regardless of its phase relative to the local oscillator.

For quantum-limited heterodyne detection, performing simultaneous measurements of both

quadratures adds at least half a quantum of noise[126]. This noise is accounted for in the probability

density for obtaining a pair of quadrature values X and Y , given by the Husimi Q-function[127]

Q(α) =
1

π
〈α| ρ |α〉 (2.27)

where α = X + iY and Q(α) is normalized to unity such that 0 ≤ Q(α) ≤ π−1 for all complex

values of α. If ρ is in the vacuum state, the Q-function is Gaussian distribution given by

Q(α) =
1

π
e−|α|

2
. (2.28)
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Figure 2.5: Plots of Q-functions for ideal vacuum and single-photon states. To clearly represent
the distributions, the plots show a linecuts through the Q-functions for Y = 0 assuming ρ is in
the a, vacuum state and b, single-photon state. The vacuum state follows a Gaussian distribution,
whereas the single-photon state does not.

A plot of a linecut through this function is presented in Fig. 2.5a. In contrast, if ρ is a single-photon

state, the distribution is given by

Q(α) =
1

π
e−|α|

2 |α|2. (2.29)

The above distribution is not Gaussian as shown in Fig. 2.5b, and so one refers to ρ in this case as

a ‘non-Gaussian’ state.

2.5.3 Method of maximum likelihood

The method of maximum likelihood converts a set of measured quadrature amplitudes into a

density matrix ρ. This technique is a general statistical method used to estimate the parameters of

an assumed model, given a set of observed data. For quantum state tomography, the parameters to

be estimated are the elements of ρ and the statistical model is the assumed probability distribution

that the measured quadrature amplitudes are expected to obey.

The goal of maximum likelihood tomography is to find the density matrix which maximizes

the likelihood function for a given set of measurements. In general, given a set of N measurement

outcomes {xk}, each outcome is described mathematically by a positive-operator valued measure

(POVM) element Ek [128]. If the system is in the state given by density matrix ρ, the probability

of observing measurement outcome xk is Pr(xk) = tr(ρEk). The probability of obtaining the entire

data set is then the product of the probabilities of each measurement outcome. This product defines
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the likelihood function

L =
∏
k

tr(ρEk). (2.30)

Maximizing L may not be computationally efficient because ρ can be a large matrix. Instead, an

equivalent approach is to maximize the log-Likelihood function given by

L =
∑
k

log(tr(ρEk)) (2.31)

where the logarithm converts the product into a sum.

A robust method for maximizing the log-likelihood function is the RρR algorithm[129]. The

algorithm begins with the maximally mixed state ρ(0) = I/d as the initial estimate, where I is

the identity matrix and d is the Hilbert space dimension. With each iteration, ρ is then updated

according to

ρ(i+1) = N R(ρ(i))ρ(i)R(ρ(i)), (2.32)

where N is an overall normalization to ensure that tr(ρ) = 1 at each step, and R(ρ) is a matrix

given by3

R(ρ) =
1

N

∑
k

Ek
tr(ρEk)

. (2.33)

The RρR transformation leaves the maximum-likely state unchanged, and while the algorithm is not

guaranteed to converge[130], it does so in almost all practical cases, including the cases considered

in this thesis.

The choice of Ek in Eqn. 2.33 depends the level of added noise in the detection method. If

the detection employs the heterodyne method and is quantum-limited, the probability density for

obtaining a pair of quadrature values (Xk, Yk) is given by the Husimi Q-function[127]:

Pr(Xk, Yk) = Q(Xk, Yk) =
1

π
〈αk| ρ |αk〉 =

1

π
tr(ρ |αk〉 〈αk|) (2.34)

Here |αk〉 is a coherent state with αk = Xk + iYk. From the above equation, note that the POVM

elements for the measurement outcomes are projections onto coherent states:

Ek =
1

π
|αk〉 〈αk| . (2.35)

3 A heuristic way to understand the R matrix is that it is a derivative of logL with respect to ρ.
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However, if the added noise in the detection method is not quantum-limited, the POVM

elements are no longer projections onto coherent states. For this case, the POVM operators are

projections onto displaced thermal states:

Ek =
1

π
D(αk)ρthD

†(αk). (2.36)

where D(α) = exp
(
αa† − α∗a

)
is the displacement operator and ρth is a thermal state with thermal

occupancy nth. To derive Eqn. 2.36, note that because the added noise of the amplifier is not

quantum limited, the probability density for obtaining quadrature values {(Xk, Yk)} is no longer

the Q-function of the input microwave mode but rather the convolution of the Q-function with the

added thermal noise:

Pr(X,Y ) =

∫
dα′Q(α′)e−|α−α

′|2/2nth

=

∫
dα′

1

π
tr(ρ

∣∣α′〉 〈α′∣∣)e−|α−α′|2/2nth

=
1

π
tr

∫
dα′ρ

∣∣α+ α′
〉 〈
α+ α′

∣∣ e−|α′|2/2nth

=
1

π
trρD(α)

(∫
dα′

∣∣α′〉 〈α′∣∣ e−|α′|2/2nth

)
D†(α) (2.37)

The third equality is from the change of variables α′ → α + α′, and the integral in the fourth line

of Eqn. 2.37 is equivalent to a thermal state ρth with mean excitation number nth. To see how a

thermal state emerges in this calculation, note that the P-representation for a thermal state is[123]

ρth =

∫
d2α |α〉 〈α|P (α) (2.38)

where P (α) = e−|α
′|2/2nth is taken from the fourth line of Eqn. 2.37. Thus, we find

P (αk) =
1

π
tr(ρEk) (2.39)

where Ek is POVM element for a coherent state.



Chapter 3

Theory and characterization of the electromechanical device

An electromechanical device converts information between the motion of a mechanical res-

onator and a microwave field. This device can be exploited in two ways. First, it can capture

the state of a microwave field propagating in a transmission line. Once captured, the state is

mechanically-stored and later released. This ‘capture and store’ capability enables the electrome-

chanical device to be utilized as an on-demand memory for microwave qubits[64]. Second, the

electromechanical device can amplify a feeble signal with quantum-limited noise performance.

While similar types of amplifiers are aggressively being developed for measuring superconducting

circuits[131, 132], the electromechanical device provides the benefit of directly amplifying a signal

that is contained in either a microwave field or the mechanical resonator. This benefit enables a

microwave or mechanical quantum state to be efficiently characterized as shown in Chapter 5.

In this chapter, I introduce a theoretical understanding of the electromechanical device and

its initial experimental characterization. Section 3.1 establishes a mathematical framework that

describes how the device converts information between the microwave and mechanical domains. As

part of this section, I show how a tunable capacitor enables the electromechanical device to enhance

its operation bandwidth. In Section 3.2, I characterize the parameters of the electromechanical

device that are discussed in the theory section.
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3.1 Theory of the electromechanical device

To combine electricity with mechanical motion, the electromechanical device utilizes an

inductor-capacitor (LC) circuit with a variable capacitor. Charge q sloshes back and forth be-

tween the inductor and capacitor, oscillating at about seven billion times a second (a microwave

frequency). One plate of the capacitor is free to move, and so any displacement x alters the

position-dependent capacitance. Because part of the capacitor is flexible, its motion is affected by

the electrostatic force

Fes ∝ q2. (3.1)

From this inherent nonlinearity emerges the ability to damp or amplify the motion of the flexible

capacitor plate, or to control its spring constant.

In this section, I mathematically describe these phenomena. Although the classical dynamics

of the electromechanical device can be calculated by taking the charge on the capacitor plate q and

the plate displacement x as dynamical variables[133], its quantum dynamics are more naturally

modeled using the well-described framework of input-output theory[134, 109, 108]. First, I introduce

the Heisenberg-Langevin equations of motion that model linear electromechanics. Next, I show how

the inherent time-dependence in these equations enables the electromechanical device to capture,

store, and amplify a signal. Lastly, I show how the capacitor plate can be electrostatically actuated

in order to make the center frequency of the electromechanical device tunable.

3.1.1 Heisenberg-Langevin equations of motion

As pointed out in Section 2.1.4, the Heisenberg-Langevin equations of motion provide a frame-

work to describe a harmonic oscillator with dissipation. Because both the mechanical resonator and

LC circuit can be modeled as dissipative harmonic oscillators, the Heisenberg-Langevin equations

can describe the dynamics of the electromechanical device. In this section, I start by modeling the

classical dynamics of the electromechanical device. Specifically, I formulate a set of Heisenberg-

Langevin equations that describe the position of the mechanical resonator and how it couples to
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Figure 3.1: Diagram of a cavity optomechanical system. Two mirrors form an optical cavity, one of
which is harmonically bound. An input field bin probes the cavity, and a circulating field b builds up
in the cavity. The reflected outgoing field bout contains information about the state of the system.

the complex field amplitude of the circuit mode.1 I conclude by replacing the amplitudes with

operators in order to describe the quantum dynamics of the electromechanical device.

Formally, the electromechanical device is equivalent to an optical cavity with one of its mirrors

harmonically bound as diagrammed in Fig. 3.1. The cavity is analogous to the LC circuit, and the

mechanically-compliant mirror is analogous to the flexible capacitor plate. Because the circuit is

addressed by a transmission line, the cavity also is addressed by a propagating mode. This model of

a ‘cavity optomechanical’ system provides a description of how the mirror’s motion and dynamics

of the cavity field affect each other.

Motion of the mirror alters the resonant frequency of the cavity. When the mirror moves by

a displacement x, the resonant frequency of the cavity shifts by Gx where G = ∂ω0/∂x denotes the

shift in the cavity resonant frequency per change in displacement of the mirror. This shift of the

resonant frequency is due to the parametric coupling between the mirror’s motion and the cavity

mode. For the cavity depicted in Fig. 3.1, G ≈ ω0/L where L is the separation between the two

mirrors and ω0 is the cavity’s resonant frequency[27]. However, for an electromechanical circuit,

G ≈ ω0/2d where d is the static separation between the capacitor plates[136].

To model the dynamics of the cavity field b(t), I incorporate the parametric coupling mech-

anism into the equations of motion for a one-port cavity. Although one of the cavity mirrors

is mechanically-compliant, the other mirror is partially transmissive so that energy in the cavity

1 This complex field amplitude is a properly normalized variable for the electric field in the circuit mode as
discussed in Ref. [135].
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decays out at a rate of κext. The corresponding equation for the cavity is

ḃ(t) =
(
−i (ω0 +Gx(t))− κ

2

)
b(t) +

√
κextbin(t) (3.2)

where κ is the total linewidth of the cavity and bin is the amplitude of an input drive field.

Because the cavity field exerts a force on the mirrors, the displacement x(t) of the mechanically-

compliant mirror depends on b(t). The force per photon is ~G, and for |b(t)|2 photons in the cavity

the total force is F = −~G|b(t)|2. By including F , along with the restoring force of the spring and

mechanical dissipation, the equation of motion for the position becomes

ẍ(t) = −κmẋ(t)− ω2
mx(t)− ~G|b(t)|2/meff + ηm(t)/meff (3.3)

where meff is the effective mass of the mechanical resonator[27], ωm its resonant frequency, and

ηm(t) is a fluctuating force that drives mechanical resonator, as discussed in Section 2.1.4. The

motion of the mechanical resonator is damped because of the dissipative force term with ẋ(t) where

κm is the mechanical resonator’s intrinsic damping rate.

The equations of motion for a cavity optomechanical system are weakly nonlinear in the field

amplitude. The scale of the nonlinear interaction is set by G and the zero-point fluctuations of the

mechanical resonator xzp =
√
~/(2meffωm). In most experiments to date [27], the cavity decay rate

is overwhelming with κ� Gxzp and so the inherent parametric coupling is quite feeble. However,

by pumping the cavity with a strong field, one can boost the coupling rate Gxzp by many orders

of magnitude.

In order pump the cavity, it is driven by an input field of the form bin(t) = b̄ine
−iωpt. This

field induces an average of |b̄|2 circulating cavity photons, which impart a static displacement x̄

on the mechanical resonator. The equilibrium field b̄ and static displacement x̄ are calculated by

solving Eqns. 3.2 and 3.3 with ḃ(t) = ẍ(t) = ẋ(t) = 0, which yield solutions2

b̄ =

√
κext

−i∆ + κ/2
b̄in and x̄ = − ~G

meffω2
m

|b̄|2 (3.4)

2 The relation for x̄ can also be derived by using Hooke’s Law x̄ = −k−1FpNc where k = ω2
mmeff is the spring

constant, Fp = ~G is the force per photon, and Nc = |b̄|2 is the number of photons in the cavity.
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Figure 3.2: Diagram of the coupled propagating modes, electromagnetic resonator, and mechanical
resonator. The propagating modes bin(t) and bout(t) couple to the electromagnetic resonator at
a rate of κext. The resonator mode is b(t), which couples to its environment at a rate of κ0.
Additionally, the resonator couples to the mechanical resonator at a rate of g. The mechanical
resonator couples to an environment at a rate of κm.

where ∆ = ωp − ω0 −Gx̄ has a dependence on b̄ via x̄. This dependence is the analog to the Kerr

effect, and it leads to phenomena such as bistability[137, 138, 139].

Dynamic solutions are obtained by examining fluctuations of the field amplitude b(t) and

position x(t) about their average values. To simplify the equations of motion, I assume steady state

solutions exist[140, 137, 27] and they are of the form b(t) → (b̄ + b(t))e−iωpt and x(t) → x̄ + x(t).

By inserting these replacements into Eqns. 3.2 and 3.3 and assuming |b(t)| � |b̄|, the linearized

equations of motion are

ḃ(t) = (i∆− κ/2)b(t)− iGb̄x(t) +
√
κextbin(t)

ẍ(t) = −ω2
mx(t)− κmẋ(t)− ~G

meff

(
b̄b∗(t) + b̄∗b(t)

)
+ ηm(t)/meff (3.5)

where the parametric coupling is enhanced because every instance of G is scaled by b̄ or b̄∗. Thus,

the simple increase of the pump amplitude boosts the parametric coupling.

To highlight the similarity between the dynamics of the cavity and mechanical resonator,

I recast Eqns. 3.5 in terms of the mechanical resonator’s field amplitude x(t) = xzp (c(t) + c∗(t))

and the pump-enhanced coupling g = Gxzpb̄. In a frame rotating with the pump at ωp, these two
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substitutions yield

ḃ(t) = (i∆− κ/2)b(t)− ig(c(t) + c∗(t)) +
√
κextbin(t) +

√
κ0b0(t)

ċ(t) = (−iωm − κm/2)c(t)− i (gb∗(t) + g∗b(t)) +
√
κmc0(t) (3.6)

where the terms with b0 and c0 are the fluctuating fields that drive the cavity or the mechanical res-

onator (see Section 2.1.4), respectively, and the magnitude squared of such terms is normalized to

have units of photons/second. As pointed out in Section 2.4.2, the propagating mode bin(t) is nor-

malized so that |bin(t)|2 has units of photons/second whereas |b(t)|2 and |c(t)|2 are in units of quanta.

Lastly, b(t) couples to bin(t) and bout(t) by the input-output relation bout(t) =
√
κextb(t) − bin(t).

This equation, together with Eqns. 3.6, describes the linearized behavior of the optomechanical

system shown in Fig. 3.1. A schematic representation of these equations is shown in Fig. 3.2.

To describe the quantum dynamics of an optomechanical system[48], one promotes the field

amplitudes to operators (e.g., take b→ b̂) and demands that they satisfy the canonical commutation

relations (e.g., require [b̂, b̂†] = 1). This procedure results in the Heisenberg-Langevin equations

of motion, which provides a quantum description for the cavity optomechanical system shown in

Fig. 3.1. These equations of motion (i.e., the quantized version of Eqns. 3.6) can be generated[141]

by starting with the Hamiltonian (here, I drop the hats on the operators)

H = ~ω0

(
b†b+

1

2

)
+ ~ωm

(
c†c+

1

2

)
+ ~g0b

†b
(
c+ c†

)
(3.7)

where g0 = Gxzp is the single-photon coupling rate. In the above expression, the first two terms

describe the harmonic modes of the cavity and resonator, and the last term is the coupling between

the field in the cavity and the mechanical resonator.

After writing Eqns. 3.6 in terms of field operators, an asymmetry emerges in the corre-

lation functions for the noise operators. For instance, the fluctuating field that drives the me-

chanical resonator obeys 〈c†0(t)c0(t′)〉 = nmδ(t − t′) where nm is the occupation of the mechani-

cal resonator’s environment. Because of the commutator relations, the field operator also obeys

〈c0(t)c†0(t′)〉 = (nm + 1)δ(t− t′). Such correlation functions account for quantum noise present in
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the system[131]. To recover a classical description of the system, one simply takes ensemble aver-

ages, e.g., take c0(t)→ 〈c0(t)〉 where 〈· · · 〉 denotes an ensemble average.

3.1.2 Time-dependent dynamics

The coupling g = Gxzpb̄ factor in Eqns. 3.6 depends on the time-dependent pump b̄. By vary-

ing its strength b̄ in time, the coupling becomes g → g(t). This time-dependent coupling provides a

simple way to rapidly vary the parametric interaction between a propagating microwave field and

mechanical motion. By rapidly varying this interaction, two key capabilities emerge. First, the

state of a propagating microwave field can be captured and stored in the electromechanical device.

Second, it can amplify both the propagating field and the motion of the mechanical resonator.

3.1.2.1 Optimal capture of a propagating microwave field

A propagating microwave field parametrically couples to motion of the mechanical resonator.

To capture the state of the propagating microwave field, one utilizes a pump that is detuned below

(red-detuned) the microwave circuit resonance with detuning ∆r = −ωm. For this detuning, I elim-

inate the evolution of the field amplitudes in Eqns. 3.6 by using the replacements b(t)→ b(t)e−iωmt

and c(t) → c(t)e−iωmt to move into a frame rotating with the detuned pump. The dynamics are

simplified by making the rotating wave approximation, which neglects terms oscillating at 2ωm

because they oscillate significantly faster than any other rates in the equations of motion. In order

for this approximation to be valid, the condition 4ωm � κ emerges which places the system in the

‘resolved sideband’ regime[142]. In this regime, Eqns. 3.6 reduce to

ḃ(t) = −κ
2
b(t)− ig(t)c(t) +

√
κextbin(t)

ċ(t) = −κm

2
c(t)− ig∗(t)b(t) (3.8)

where I set c0(t) = b0(t) = 0 for brevity.

Eqns. 3.8 can be generated by using the following Hamiltonian

Hr = ~g(bc† + cb†). (3.9)
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This interaction is similar to a beamsplitter Hamiltonian in that it coherently swaps states of the

microwave field and the mechanical resonator. Crucially, the time-dependent coupling g(t) enables

the beamsplitter’s transmission to be rapidly varied. In order to transfer information between a

propagating field, bin(t), and the mechanical resonator, the coupling rate g must be slower than

the energy decay of the circuit κ. For g < κ/2, the dynamics of the circuit follow b(t). Specifically,

the evolution of the field in the circuit is ḃ(t) � b(t)κ/2 and so its dynamics can be adiabatically

eliminated[143, 144].

I make this approximation by setting ḃ(t) = 0 and so Eqns. 3.8 reduce to a single differential

equation given by

ċ(t) = −1

2

(
κm +

4|g|2

κ

)
c(t)− 2ig∗

√
κ

√
κext√
κ
bin(t). (3.10)

The above equation describes how a propagating field couples to mechanical motion. To describe

the converse situation, one must use bout(t) =
√
κextb(t) − bin(t) together with Eqns. 3.8. After

making the adiabatic approximation, one obtains

bout(t) = −2ig

κ

√
κext√
κ
c(t) +

(
2

√
κext√
κ
− 1

)
bin(t) (3.11)

where bout(t) depends on the motion of the mechanical resonator.

Crucially, Eqns. 3.10 and 3.11 reveal that the rate at which energy is transferred between

motion of the mechanical resonator and the propagating field is simply Γ(t) = 4|g(t)|2/κ as depicted

in Fig. 3.3a. In terms of Γ(t), these two equations reduce to

ċ(t) = −1

2
(Γ(t) + κm)c(t)− e−iψ

√
ηΓ(t)bin(t)

bout(t) = eiψ
√
ηΓ(t)c(t) + (2η − 1)bin(t) (3.12)

where η = κext/κ is the coupling efficiency and ψ = Arg(−ig) is the phase of the pump. Eqns. 3.12

concisely describe how a propagating field interacts with the mechanical resonator.

To understand how Eqns. 3.12 reveal the ability to cool the mechanical resonator’s motion,

consider capturing a noisy field bin(t). For this case, I assume that this field is emitted from a
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Figure 3.3: Diagram depicting the capture, storage, release of a propagating field. a, The diagram
depicts the propagating modes bin(t) and bout(t) coupled to the mechanical mode c(t) at a rate
of Γ. In this case, the circuit mode was adiabatically eliminated and the mechanical dissipation
was neglected. b, The plots depict the coupling Γ and propagating modes as a function of time. At
time t < t1, the electromechanical device captures an input field bin(t) and converts it to mechanical
motion. During storage, Γ = 0. After storage, the coupling pulses on at t > t2 and converts the
energy in the mechanical mode back into a propagating field.

source of Johnson noise, and that the mechanical resonator is driven by a noisy field c0(t). The

noise properties of these two fields are succinctly described by[131]

〈b†in(t)bin(t′)〉 = neδ(t− t′) and 〈c†0(t)c0(t′)〉 = nmδ(t− t′) (3.13)

where ne and nm are the average occupations for the electrical and mechanical mode, respectively,

and δ(t − t′) is a delta function. The solutions to Eqns. 3.12 contain integrals that consume the

delta functions, and for constant coupling Γ(t) → Γ they reveal that the mechanical resonator’s

occupation 〈c†(t)c(t)〉 decays in time:

〈c†(t)c(t)〉 = 〈c†(0)c(0)〉e−(Γ+κm)t +
κm

Γ + κm
nm (3.14)

where c(0) is the initial state of the mechancial resonator. Additionally, I assumed that the mi-

crowave mode is in a ‘cold’ vacuum state such that ne = 0, and the mechanical mode is ‘hot’ with

nm � 1. The above expression shows that by capturing a cold microwave field, one can cool the

mechanical resonator to its quantum ground state provided that Γ � κmnm. In this regime, the

electromechanical device is said to be ‘quantum-enabled’ because it can process a quantum signal

with low-added noise.

Beyond capturing a noisy field, one can efficiently capture an arbitrary input field bin(t). For
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this task, one must choose an optimal Γ(t). If bin(t) has a temporal envelope that rises exponentially

in time as depicted in Fig. 3.3b, then Γ(t) is simply a piecewise constant function[64]. However,

efficient capture of a field with an arbitrary temporal envelope requires modulating Γ(t) beyond

that of a piecewise constant function.

For η ≈ 1, efficient capture of an input field is equivalent to minimizing the reflected energy.

To determine the form of Γ(t) required to minimize the reflected energy[144], one can use the

Euler-Lagrange equation to calculate the stationary point of the reflected energy,
∫ T

0 |bout(t)|2dt,

where bout(t) is a functional of Γ(t) given by Eqns. 3.12. The result of this minimization procedure

yields

Γ(t) =
eκmt|bin(t)|2

bin(0)2

Γ(0) +
∫ t

0 e
κmt′ |bin(t′)|2dt′

(3.15)

where Γ(0) is the coupling at t = 0. This expression shows that simply by modulating Γ(t), one

can efficiently capture an arbitrary bin(t). I use this capability to efficiently capture fields emitted

from the photon source discussed in Chapter 4.

3.1.2.2 Pulsed amplification of a microwave field and mechanical motion

To amplify a propagating field and motion of the mechanical resonator, one utilizes a blue-

detuned pump with detuning ∆b = +ωm. For this detuning, Eqns. 3.6 can be recast in terms of

Γ(t) = 4|g(t)|2/κ where g(t) is the coupling between the field in the circuit and the mechanical

resonator due to the blue-detuned pump. As in the previous section, I can reduce Eqns. 3.6 to

ċ∗(t) =
1

2
Γ(t)c∗(t) +

√
ηΓ(t)bin(t)e−iψ

bout(t) =
√
ηΓ(t)eiψc∗(t) + (2η − 1)bin(t) (3.16)

where η = κext/κ is the coupling efficiency and ψ = Arg(−ig) is determined by phase of the

blue-detuned pump.

To generate the equations of motion used to obtain Eqns. 3.16, one employs the Hamiltonian

Hb = ~g(b†c† + bc). (3.17)
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This interaction is similar to that of a two-mode squeezer Hamiltonian[145, 98] which amplifies[44]

the energy in the two coupled modes. For Eqns. 3.16, the mechanical and microwave modes are

coupled through Γ(t). While Γ(t) is pulsed on, the circuit emits a propagating field with a temporal

envelope that rises exponentially at a rate of Γ/2. Crucially, the state of the emitted field depends

on both the states of the mechanical resonator and the input field before amplification.

To see this dependence, I solve Eqns. 3.16 using a piecewise constant coupling Γ(t)→ Γ that

is pulsed on at time t = 0. For this coupling, the output field is

bout(t) = c∗(0)
√
ηΓ · eiψh(t) + Γη · (h ? bin)(t) + (2η − 1)bin(t) (3.18)

where h(t) = exp (Γt/2) and ? denotes the convolution operation. This field depends on both the

initial state of the resonator at t = 0 and the input field while the coupling is pulsed on.

For bin(t) = 0 at t ≥ 0, a field emerges from the circuit that contains the initial state of the

resonator. This state can be prepared by capturing a propagating field while t < 0. After capture,

Γ(t) is pulsed on and the output field is

bout(t) = c∗(0)
√

Γη · eiψh(t) (3.19)

which has a conjugated phase relative to that of the mechanical resonator.

If instead a field bin(t) is injected while the coupling is pulsed on, a pulse emerges from the

circuit that depends on the state of the input field. Consider a propagating field that emerges from

a cavity. This field has a temporal envelope given approximately by

bin(t) =
√
γBe−γt/2Θ(t) (3.20)

where
∫∞
−∞ |bin(t)|2 dt = |B|2 is the total energy contained in the field and γ is its power decay rate.

This field is chosen to be similar to what is emitted by the photon source. While the coupling is

pulsed on, the expression for the output field takes on a simple form when γ = Γ. In this case,

Eqn. 3.18 reduces to

bout(t) = 2
√
ηΓB sinh (Γt/2) + (2η − 1)bin(t) (3.21)
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Figure 3.4: Model of a two-mode parametric amplifier. The electrical mode b interacts with the
mechanical mode c through the two-mode squeezer interaction S(r) where r is the squeezing param-
eter. The output mode is bout. In terms of density matrices, the input electrical and mechanical
states are ρe and ρm, respectively, and the output state is ρout. The cross indicates the output
mechanical mode is not measured.

The above expression shows that the temporal envelope of the output field is approximately a rising

exponential, and the phase of the output field is independent of the blue-detuned pump’s phase.

3.1.3 Operation as a linear amplifier

The two-mode squeezer interaction introduced in the previous section enables the electrome-

chanical device to function as a phase-insensitive parametric amplifier. Such an amplifier increases

the amplitude of a signal regardless of its input phase. For an ideal, phase-insensitive parametric

amplifier, the absolute minimum amount of added noise is half a quantum[126]. Because the added

noise can in principle be limited by Heisenberg’s uncertainty principle, this type of amplifier is

well-suited for measuring a signal at the quantum level[121, 124]. When operating the electrome-

chanical device as an amplifier, the signal to be measured is either a quantum state of the input

microwave field or the mechanical resonator.

A model of the parametric amplifier realized using the electromechanical device is dia-

grammed in Fig. 3.4. This model has two input modes b and c that represent the microwave

field and mechanical resonator, respectively. For the amplifier’s output, we measure the outgoing

microwave field bout. This field relates to the amplifier’s two inputs through the two-mode squeezer

operator S defined by

bout = S†bS = b cosh(r)− c† sinh(r) (3.22)
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where S(r) = exp
(
r(bc− b†c†)

)
and r is the squeezing parameter[146, 147, 148]. Crucially, this

parameter determines the gain of the parametric amplifier.

To model how the amplifier transforms a quantum state, I describe its input and output

in terms of density matrices. Specifically, the input electrical and mechanical states are taken to

be ρe and ρm, respectively, and the output is ρout. Ideally, one of the two input modes is in its

quantum ground state. Prior to executing the two-mode squeezer operation, the second input mode

is in the quantum state of interest. For example, it could be a single-photon state. The result of

the two-mode squeezer operation is a joint entangled state Sρe ⊗ ρmS
† where ⊗ denotes a tensor

product. Because I only measure the outgoing electrical mode, the resulting output state is

ρout = trm

(
Sρe ⊗ ρmS

†
)

(3.23)

where trm denotes a partial trace over the mechanical mode.

Experimentally, one does not measure ρout directly. Instead, it can be determined by using

quantum state tomography as discussed in Section 2.5. In this approach, I simultaneously measure

the quadrature amplitudes X and Y of bout. Repeated measurements of these quadrature ampli-

tudes are sampled from the Husimi Q-function that describe the output state. This function is

given by

Qout(α) =
1

π
〈α| ρout |α〉 (3.24)

where α = X + iY . In order to determine the input state of interest from the above expression, it

must be related to the Q-function of that state.

Conveniently[126], the outputQ-function is a scaled version of the inputQ-function when r � 1.

If the primary mode contains the signal of interest and the secondary mode is in its quantum ground

state, the output Q-function is simply

Qout(α) = Qin(α/
√
G)/G (3.25)

where
√
G = cosh(r). This result demonstrates that obtaining Qout is equivalent to Qin up to a

scale factor. Having obtained Qin, one determines the input state ρin using the method of maximum
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likelihood parameter estimation discussed in Section 2.5.3. Importantly, ρin could either be ρe or

ρm because either the electrical or mechanical mode can be regarded as the primary mode.

The expression given by Eqn. 3.25 is only true if the secondary mode is in its quantum ground

state. When this is not the case, the input Q-function of the signal becomes convolved with the

noise in the second mode. Suppose the input signal is in the primary mode, and the secondary

mode is in a thermal state with a mean occupation of nth. Then the output Q-function is

Qout(α) ∝ (Qin ?N ) (α/
√
G) (3.26)

where ? denotes a convolution operation, N is a Gaussian distribution with a variance of nth in

each quadrature, and the proportionality is made exact by enforcing proper normalization of Qout.

From this expression, one can determine ρin from Qout simply by taking the thermal occupation of

the secondary mode into account.

3.1.4 Frequency-tunable device using electrostatic actuation

The previous two sections showed how a single electromechanical device can mode-convert and

amplify a signal. But these capabilities are limited to a narrow bandwidth if the device is fixed in

frequency. By making the device tunable in frequency, it can manipulate a signal centered anywhere

in its operation band. This tunability enables the electromechanical device to be compatible with

the fixed-frequency photon source discussed in Chapter 4.

The center frequency of the electromechanical device is inherently tunable because it employs

a variable capacitor. By applying a force that pulls the flexible capacitor plate towards its other

plate, the capacitance and thus resonant frequency of the device can be made tunable. A simple

way to generate this force is by imposing a static voltage across the two plates, which results in an

attractive electrostatic potential between them. This design is inherently limited in its tunability

because the electrostatic force can cause the flexible capacitor plate to collapse and stick to the other

plate. A way to circumvent this limitation is to introduce a third electrode into the design[149].
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Figure 3.5: Two-electrode model of a tunable capacitor. a, The diagram shows a capacitor whose
upper plate is a flexible membrane. A source imposes a voltage Vdc across the two electrodes of the
capacitor. b, The plots show the total potential energy Utot of the capacitor as a function of the
membrane deflection, where Um and Ue are the mechanical and electrostatic contributions to the
total energy. When the applied voltage Vdc is less than the pull-in voltage Vp, the total potential
has a stable local minimum near x = 0. But once Vdc > Vp, the local minimum near x = 0 vanishes
and so the membrane collapses towards the lower plate.

3.1.4.1 Two-electrode model for static tuning

To understand how a static voltage can tune a capacitor, consider the simple model shown

in Fig. 3.5a. The upper plate of the capacitor is a flexible metallic membrane, and the lower plate

is a fixed electrode. These two plates are separated by a distance d. In order to deflect the flexible

plate by a displacement x, an external source imposes a constant voltage Vdc across the two plates

and thus creates an attractive electrostatic force between them. This force is described by the

electrostatic potential energy Ue = −C(x)V 2
dc/2 where the minus sign is due to the work performed

by the source in order to keep Vdc constant. As the electrostatic force deflects the flexible plate, it

experiences a restoring force that is approximately harmonic given by Um = kx2/2 where k is the

effective spring constant of the membrane. As such, the net force that the membrane experiences

is described by the total energy Utot = Ue + Um. This energy is minimized when the two plates

stick together at x = d. However, the mechanical restoring force of the membrane enables a stable

local minimum to exist near x ≈ 0 as shown in Fig. 3.5b.

Once the electrostatic force overwhelms the mechanical restoring force, the membrane col-
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Figure 3.6: A three-electrode tunable capacitor incorporated in a microwave circuit. The diagram
shows a variable capacitor (C) shunted by an inductor (L). A third electrode electrostatically
actuates the flexible membrane. This electrode is recessed so that d′ > d.

lapses and sticks to the other plate. This effect occurs when the minimum near x ≈ 0 vanishes due

to Vdc exceeding a certain ‘pull-in’ voltage Vp as shown in Fig. 3.5b. Both the capacitor’s geometry

and membrane’s spring constant set the scale for the pull-in voltage. Regardless of this scale, the

equilibrium position of the membrane when Vdc = Vp is x = d/3.

The inherent pull-in effect limits the smallest gap achievable in a two-electrode capacitor to

be no more than 2d/3. As such, if one were to incorporate this capacitor into an inductor-capacitor

(LC) microwave circuit, its resonant frequency ωLC could not be reduced below
√

2/3ωLC or about

80% of its initial value. In practice, parasitic capacitance in the circuit will provide a further

reduction in this dynamic range. To enhance the dynamic range of the tunable capacitor, its

design must be altered.

3.1.4.2 Benefit of a third electrode

The addition of a third electrode can avoid the pull-in effect that limits the tuning of a two-

electrode capacitor. A schematic of this approach is depicted in Fig. 3.6. The variable capacitor

is shunted by an inductor in order to form an LC circuit. To tune its center frequency, a third

electrode creates an electrostatic force on the flexible membrane. The key to the design is a recessed

third electrode. This design choice enables the membrane’s deflection to approach x → d, and so

the circuit’s resonant frequency can in principle assume ωLC → 0. In practice, this tuning is limited

by effects such as the Casmir force and bound charges on the two electrodes[65].
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Figure 3.7: Schematic and micrograph of the electromechanical device. a, The diagram shows a
simplified schematic of the electromechanical device. The upper plate of the capacitor is a thin
(100nm) tensioned membrane, and beneath it is a microwave electrode (center) and an actuation
electrode (annular region). A voltage source imposes a voltage Vdc between the actuation electrode
and the membrane. The circuit elements have parameters of L ≈ 10 nH and C ≈ 40 fF, thereby
creating an inductor-capacitor (LC) circuit that resonates at a microwave frequency. Microwave
power is delivered to the circuit via a port connected to a transmission line, which inductively
couples to the circuit at a rate of κext. b, A false-color scanning electron micrograph of the
aluminium membrane and nearby circuitry. The circuit (gray) is fabricated on a sapphire substrate
(blue).

Figure 3.8: Frequency tuning of the electromechanical device. a, The plot shows the measured
center frequency ωe of the microwave circuit as a function of the applied voltage Vdc. b, The plot
is similar to a but for the mechanical resonant frequency ωm.

3.2 Characterization of the electromechanical device

In order to operate the electromechanical device, it is cooled to a temperature of less than

25 mK in a dilution refrigerator so that its aluminium circuitry superconducts. A diagram and

picture of the electromechanical device is shown in Fig. 3.7. Design and construction methods of

the device are discussed elsewhere[150, 149].
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Table 3.1: Parameters of the electromechanical device. All parameters were measured with an
applied dc voltage of Vdc = 5.83 V.

Symbol Description Value and units

ωLC/2π Circuit resonant frequency 7.283 360 GHz
κLC/2π Circuit decay rate 3± 0.1 MHz
κext/2π Circuit decay rate into the transmission line 2.59± 0.01 MHz
ωm/2π Mechanical resonant frequency 9.345 MHz
κm/2π Mechanical decay rate 14.5± 1 Hz
nm Average occupancy of the mechanical oscillator 42± 2
g0/2π Electromechanical coupling 283± 14 Hz

Parameters of the electromechanical device are determined by measuring its microwave re-

sponse. The device has one port, which provides electrical access to the LC circuit. A microwave

probe with an amplitude Vin is injected into the port. After the probe interacts with the device,

the reflected outgoing field Vout is then measured. This measurement technique enables one to

determine the response of the circuit and properties of the mechanical resonator. The parameters

for the electromechanical device are presented in Table 3.1.

3.2.1 Circuit parameters and frequency tuning

The measured response of the device to a microwave probe tone reveals its circuit parameters.

By injecting a microwave tone into the device and comparing it to the reflected signal, one obtains a

single scattering parameter S11(ω) = Vout/Vin that characterizes the device response at a particular

frequency[151]. This probe is then swept over a range of frequencies that encompass the circuit’s

bandwidth. Fitting the resulting measurements of S11(ω) enables one to extract the resonant

frequency of the circuit (ωLC), its external coupling rate (κext), and total coupling rate (κLC).

Parameters of the electromechanical device are presented in Table 3.1.

To verify the frequency tuning of the electromechanical device, we measure its response while

varying the voltage Vdc applied to the actuation electrode. For both positive and negative voltages,

the resonant frequency of the circuit is reduced as shown in Fig. 3.8a. At the lowest achievable

resonant frequency, the circuit tunes by more than 600 times its total bandwidth. At Vdc ≈ 17 V,
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Figure 3.9: Electromechanical coupling rate and equilibrium occupation of the aluminium mem-
brane. The black points show the average energy of the mechanical resonator (in units of quanta)
as the refrigerator’s base temperature was varied. Error bars show the standard error of the mean
from five consecutive measurements. The solid line represents the expected mechanical occupation
nm assuming the resonator is in equilibrium with its environment at temperatures between 30 mK
and 100 mK and an electromechanical coupling rate g0/2π = 283± 14 Hz.

an instability emerges that causes the membrane to stick to the electrode beneath it as evidenced

by ωm → 0 as shown in Fig. 3.8b. However, when the applied voltage is reset to Vdc = 0, the circuit

returns to within ∼ 5% of its initial center frequency. Operation of the device past the point of

instability is not recommended.

3.2.2 Electromechanical coupling and mechanical occupation

The electromechanical coupling g0 as defined by Eqns. 3.7 is determined by measuring the

microwave response of the electromechanical device. A microwave pump is injected into the device,

and motion of the aluminum membrane modulates the pump and produces modulation sidebands

on the reflected pump. The difference between the upper sideband and pump frequency is the

resonant frequency of the membrane (ωm), whereas the magnitude of the sidebands indicate the

coupling strength between the microwave circuit and the aluminum membrane. The amount of

power in the sideband (Pm) at a frequency ωm above the injected microwave pump is proportional

to the amount of power in the injected microwave pump (Pc):

Pm

Pc
=
g2

0

2

〈
x2
〉

x2
zp

κ2
ext

∆2 + (κext − κ/2)2

1

(∆ + ωm)2 + (κ/2)2 (3.27)
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Figure 3.10: Mechanical relaxation rate. The plot shows the measured effective mechanical damping
Γeff = κm + Γr as a function of the pump strength Γr normalized to the intrinsic mechanical
linewidth κm. The solid line is a fit to the data that yields κm/2π = 14.5 Hz.

where ∆ is the difference between the pump frequency and the microwave circuit’s resonant fre-

quency, xzp is the zero-point fluctuations of the membrane, and
〈
x2
〉

describes the motion of the

membrane. For a membrane in equilibrium with the thermal environment provided by the dilution

fridge,
〈
x2
〉

= 2x2
zpnm, where nm ≈ kBT/~ωm is the average phonon occupation of the membrane

for dilution refrigerator base temperature T .

To determine g0, we vary the refrigerator temperature and monitor the ratio Pm/Pc. We

express this ratio as an effective phonon occupation, nm. At high temperatures (30-100 mK), the

membrane is in thermal equilibrium with the refrigerator as evidenced by the linear relationship

between T and nm shown in Fig. 3.9. From this relationship, we extract an electromechanical

coupling of g0/2π = 283± 14 Hz. At the refrigerator base temperature of approximately 19 mK,

the phonon occupation number saturates to nm = 42 ± 2. Although this occupation is well above

the ground state, it can be further reduced by actively cooling the motion of the membrane as

pointed out in Section 3.1.2.1.

3.2.3 Mechanical relaxation rate

In order to determine the intrinsic mechanical relaxation rate κm, we measure the ringdown

time of the aluminium membrane. We probe the membrane’s motion by injecting a tone with a
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detuning ∆r = −ωm into the circuit. To coherently drive the membrane’s motion, we briefly pulse

on an additional tone centered at the circuit’s resonance. These two tones create a time-varying

force that drives the motion of the membrane at its resonant frequency of ωm. Immediately after the

drive tone pulses off, we measure the amplitude decay of the probe’s upper modulation sideband.

Because this tone also damps the motion of the membrane (see Section 3.1.2.1), we monitor

the ringdown decay time as a function of the probe strength as shown in Fig. 3.10. A fit to this

decay yields the effective mechanical damping Γeff = κm + Γr where Γr is the damping rate that

the probe induces. For Γr � κm, the intrinsic mechanical relaxation rate is obscured because

Γeff ≈ Γr. At low damping, the ringdown measurements reveal that Γeff asymptotes to the intrinsic

mechanical relaxation rate.



Chapter 4

Design and characterization of the photon source

Photons are ideal carriers of quantum information because they can rapidly and efficiently

propagate in cables or optical fibers[152, 153]. At microwave frequencies, photons are electrical

signals[116] that propagate in a transmission line. Such photons are crucial for emerging applica-

tions in quantum information processing using superconducting circuits. As such, single-photon

sources at microwave frequencies are actively under development[154, 155, 121, 156, 124, 157, 158,

159, 119, 160, 86]. Here, I realize a photon source by coupling a quantum bit (qubit) to one mode

of a microwave cavity. The qubit enables a single photon to be created in the cavity mode, which

then decays into a mode that propagates in the transmission line. Crucially, this source enables the

communication of quantum information because it can generate propagating qubits[161] encoded

as superpositions of zero and one photons.

In this chapter, I describe the design and characterization of an on-demand photon source

that is compatible with the electromechanical device. Section 4.1 describes the design of the photon

source, which consists of a cQED system formed by a qubit in a cavity. Section 4.2 presents the

characterization of these two elements. Lastly, Section 4.3 demonstrates that the cQED system

can efficiently emit single photons with spectral and temporal content that is compatible with the

electromechanical device.
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4.1 Design of the photon source

The electromechanical device processes narrow-bandwidth signals at microwave frequencies,

as discussed in Section 5.3. To ensure compatibility of the electromechanical device with a single

photon source, the source must produce propagating microwave-frequency photons with a suffi-

ciently narrow spectrum. As such, entering this regime requires a highly coherent circuit quantum

electrodynamics (cQED) system[115, 96]. This system is a superconducting quantum circuit real-

ized by embedding a transmon qubit in a high-quality microwave cavity[79].

4.1.1 Qubit design

The qubit is formed by an inductor-capacitor (LC) circuit[162, 163]. To operate it as a

qubit, the circuit must have an anharmonic energy spectrum so that individual transitions can be

addressed. Such an anharmonic energy-level spacing is achieved by making the circuit nonlinear.

The linear part of the circuit is described by the Hamiltonian

H =
Q2

2C
+

Φ2

2L
(4.1)

where Q is the charge on the capacitor and Φ is the flux through the inductor. This Hamiltonian

is the same as a harmonic oscillator with

H = ~ω0

(
a†a+

1

2

)
(4.2)

where ω0 = 1/
√
LC and a is a linear combination of charge and flux operators[133]. Because all

the energy levels are equally-spaced by ~ω0 as discussed in Section 2.1, this circuit cannot act as a

qubit. However, it can be made nonlinear by writing Eqn. 4.2 as

H = ~ω0

(
a†a+

1

2

)
− ~

K

2
(a†a)2 (4.3)

where K is the shift in the resonant frequency for each excitation in the oscillator. This parameter

characterizes the circuit’s anharmonanicity at the quantum level[164], and the effect is a direct

analog to the optical Kerr effect[165]. If the nonlinearity in the circuit is sufficiently strong such
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Figure 4.1: Schematic of a Josephson junction. a, The diagram depicts two superconducting
electrodes (S) separated by an insulating layer (I). This device forms a Josephson junction. b, A
circuit model of a Josephson junction with inductance LJ and capacitance CJ . The circuit symbol
for a Josephson junction with the parasitic capacitance is shown on the right.

that |K| is much larger than the effective linewidth of the circuit, then it is possible to individually

address two energy levels and treat them as a qubit. Entering this regime with a circuit requires a

Josephson junction, which functions as a nonlinear inductor that does not introduce dissipation or

dephasing into the circuit.

4.1.1.1 A Josephson junction provides the nonlinearity

The key nonlinear element in a superconducting qubit is a Josephson junction[166]. It is

formed by connecting together two superconducting electrodes with a weak link[167]. A single

Josephson junction is depicted in Fig. 4.1a. In each superconducting electrode, electrons bind

together to form Cooper pairs with charge 2e. All the Cooper pairs in each electrode are in

the same quantum state and can described by a single wave function with a phase. Because the

wave functions overlap in the junction, Cooper pairs tunnel through the weak link. Crucially, the

collective behavior of all the Cooper pairs in the Josephson junction are parameterized by the

difference in the phases δ between the wave functions for each electrode.

A pair of constitutive relations describe the flow of Cooper pairs through the junction[168,

169]. Without any voltage applied across the electrodes, a supercurrent will flow according to

Is = Ic sin(δ) (4.4)

where Ic is the maximum supercurrent the junction can support before it switches to a dissipative
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state. If a voltage V is applied across the electrodes, the phase evolves according to

V =
Φ0

2π

∂δ

∂t
(4.5)

where Φ0 = h/2e is the magnetic flux quantum.

The constitutive relations for a Josephson junction reveal that it is a nonlinear circuit element.

By using the expression for the voltage drop across an inductor, together with Eqn. 4.5, one finds

that the inductance is

L =
LJ

cos(δ)
(4.6)

where LJ = Φ0/Ic is the Josephson inductance and Ic is its critical current. Importantly, Ic

is the sole parameter that determines the strength of the nonlinear inductance. In addition to an

inductance, the junction has capacitance CJ from the electrodes. These two elements form a circuit

as shown in Fig. 4.1b. This circuit is analogous to an LC resonator with a resonant frequency of

ωp =

√
1

LJCJ
, (4.7)

called the ‘plasma frequency’ because charge sloshes back and forth in a way that is similar to that

of a bulk plasma oscillation[170]. For δ � 1, this frequency can be expressed as

~ωp =
√

8EJEC (4.8)

where the Josephnson energy EJ = Φ0Ic/2π is the characteristic energy stored in the Josephson

inductance, and the charging energy EC = e2/2CJ is the energy required to charge the capacitor

with one electron.

Both the charging energy and Josephson energy determine the energy spectrum of the nonlin-

ear circuit shown in Fig. 4.1. The nonlinear contribution to the Hamiltonian is from the Josephson

energy of the junction given by

HJ = −EJ (1− cos δ) . (4.9)

By expanding HJ to fourth order, linear and nonlinear terms for the inductance emerge. The

nonlinear term relates to the anharmonicity K in Eqn. 4.3 by

K

2
=
EJ
4!
δ4 (4.10)
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Figure 4.2: Schematic of a transmon. a, A Josephson junction is shunted by an external capaci-
tance C. b, Incorporating a Josephson junction in a coplanar capacitor realizes a transmon qubit.
The metal paddles above and below the junction form its shunting capacitance, and they provide
the circuit with an effective dipole moment.

This term sets the scale of the nonlinearity, and is responsible for making the circuit’s energy

spectrum anharmonic.

4.1.1.2 Introduction to the transmon qubit

The transmon is a charge qubit with improved coherence times[171, 172]. It consists of a

Josephson junction shunted by an external capacitance, as shown in Fig. 4.2. This capacitance is key

to the circuit design because it reduces the sensitivity of the qubit’s transition frequency to charge

fluctuations on the junction. As such, the transmon suppresses the undesired influence of charge

fluctuations on the qubit’s coherence times[173]. These times have increased from nanoseconds[174,

175, 176] to microseconds[172, 177] because of the transmon circuit design.

Operating a charge qubit in the transmon regime requires EJ/EC � 1, which is well-described

in the literature[171]. Briefly, operating in this regime enables the variation in the circuit’s energy

level spacing to be suppressed exponentially in EJ/EC . As such, the transition frequency used for

the qubit is approximately independent of any charge noise. Fortunately, the anharmonicity de-

creases only as a weak a power in EJ/EC , and it remains sufficiently anharmonic for selective control

over individual transitions. In the transmon regime, the anharmonicity is given by |Kq| ≈ −EC .

4.1.1.3 Transmon qubit parameter constraints

The EJ and EC parameters for my qubit design are constrained for three reasons. First, in

order to have a highly coherent qubit, we want to operate it deep in the transmon regime with
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Figure 4.3: Schematic and picture of the qubit in a cavity. a, A schematic depicts the transmon
qubit incorporated in a superconducting cavity. The cavity has dimensions set by Ly < Lx < Lz.
b, A picture of the assembled cavity with two copper cables connected to the ports. c, The picture
shows the launcher made from a non-magnetic coaxial cable (UT-85C-LL Microcoax). d, Optical
microscope image of a single-junction transmon qubit fabricated on a sapphire substrate. The
chip rests inside the cavity near a region indicated by the dotted box. e, A scanning electron
micrograph of the single-junction transmon qubit. Layers of aluminium (Al), aluminium oxide
(AlOx), and aluminium form the junction. Micrograph courtesy of Luke Burkhart.

EJ/EC ∼ 50. This regime enables the qubit to have coherence times that exceed 10 µs, which

are readily achievable using standard superconducting circuit designs[173]. Second, the qubit’s

transition frequency ωq/2π ≈
√

8EJEC/h must be sufficiently detuned from the cavity so that the

coupled qubit-cavity system can be in the dispersive limit[178, 116]. As part of entering this limit,

we choose a qubit frequency to be in the range of approximately 5.5− 6.5 GHz. Third, we want to

drive individual transitions with fast, transform-limited pulses. In terms of the anharmonicitiy[171],

the minimum pulse duration is τp ∼ |2πK|−1. For τp = 10 ns, the required anharmonicity is

|K|/2π > 10 MHz. These three conditions are satisfied by using EJ/h ∼ 15 GHz and EC/h ∼

300 MHz.

4.1.2 Cavity design

The qubit is embedded in a superconducting cavity, as shown in Fig. 4.3a. This system enables

a narrow-band and efficient photon source for two reasons. First, the cavity protects the qubit from

unintended interactions with the environment. As such, the qubit can have coherence times that

are a hundred times longer than chip-based implementations[79, 179, 180]. Such long coherence
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times are necessary in order to generate photons with high spectral purity[119]. Second, the cavity

provides a well-controlled electromagnetic environment with low dissipation. This environment

couples to a transmission line, thereby enabling single photons in the cavity to evolve into a mode

that propagates in the transmission line as discussed in Section 2.4.

The geometry of the cavity determines its electromagnetic mode structure. For the idealized

cavity depicted in Fig. 4.3, its geometry is essentially that of a rectangular waveguide shorted at

both ends with two metal plates. This ‘waveguide cavity’ has mode frequencies given by

ω`nm
2π

= cπ

√(
`

Lx

)2

+

(
m

Ly

)2

+

(
n

Lz

)2

(4.11)

where `, n,m ≥ 0 are integers for each mode and c is the speed of light[170, 151]. Although the

cavity supports more than one mode, we couple the dipole moment of the qubit to the fundamental

TE101 mode with `, n = 1 and m = 0. This coupling is maximized by placing the qubit in the center

of the cavity[79]. For a cavity with Lx = 50 mm and Lz = 25 mm, the fundamental mode resonates

at ω101/2π ∼ 7 GHz. Because the transmon circuit perturbs the electromagnetic environment, finite

element software packages are used to accurately predict the mode spectrum of the cavity[181].

Two ports provide access to the electromagnetic environment of the cavity[120]. In order

to excite either the qubit or cavity, a weakly-coupled port delivers energy to the cavity at a rate

of κ2. The second port of the cavity is its output, which decays into a transmission line at a rate of

κ2 � κ1. These two couping rates contribute to the total linewidth of the cavity κc = κ0 + κ1 + κ2

where κ0 represents any undesired ‘internal loss’ in the cavity. In order to realize an efficient photon

source, it is important minimize κ1 and κ0 because the probability that a cavity photon decays into

the output port is set by κ2/κc. This ratio is the ‘coupling efficiency’ of the cavity.

The coupling rate for each port is set by two design constraints. First, the total linewidth of

the cavity must be smaller than the bandwidth required to efficiently capture single photons using

the electromechanical device. As discussed in Section 5.3, this bandwidth is . 100 kHz. Second,

the internal loss of the cavity must be small compared to κ2. For a rectangular cavity1 cooled to

1 The cavity was made out of 6061 aluminium alloy and it contained a qubit sample fabricated on a sapphire
substrate.
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Figure 4.4: Cavity spectroscopy at room temperature. a, Measured cavity response of the strongly-
coupled port in reflection. The cavity contains the chip with the transmon qubit. A fit (solid
line) yields the total linewidth κc/2π = 3.2 MHz and the decay rate of the strongly-coupled port
κ2/2π = 70 kHz. The top plot shows the measured power and the bottom plot shows the measured
phase response. b, Measured transmitted power. A fit (solid line) yields the total linewidth and
κ1/2π = 600 Hz with κ2 determined in a held fixed.

less than 25 mK, we experimentally found that the internal loss rate ranges from approximately

5 kHz to 10 kHz. Given these constraints, we set κ2 in the range of 50 kHz to 100 kHz. Because

we cannot make the input coupling rate arbitrarily small, we set κ1 < 1 kHz.

By injecting microwave power into the cavity and measuring its response at room tempera-

ture, we determine the coupling rate for each port. Initially, the reflected power off the strongly-

coupled port of the cavity is measured. A fit to the amplitude and phase response yields κ2 and

κc. Next, the transmitted power through the cavity is measured. Knowing κ2 and keeping it fixed

during the fit yields κ1 to within measurement error. Example measurements for this procedure

are presented in Fig. 4.4.

4.1.3 Coupled qubit and cavity

The qubit couples to a single mode of the cavity. This system can be treated as two harmonic

oscillators with a perturbation introduced by the transmon circuit[181]. The harmonic oscillator

modes for the cavity and transmon circuit are described by a and b, which acquire their non-

linearity from the fourth-order term in the expansion of the Josephson energy relation discussed in
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section 4.1.1.1. By keeping terms up to fourth-order in δ, the Hamiltonian for the cQED system is

H

~
≈ ωca

†a+ ωqb
†b− Kc

2
(a†a)2 − Kq

2
(b†b)2 − 2χa†ab†b (4.12)

where Kc (Kq) is the anharmonicity of the cavity (qubit) mode and χ is the ‘cross-Kerr’ interaction

that causes a state dependent shift between the qubit and cavity mode[164].

In order to understand how the cross-Kerr interaction affects the cavity response, I write

Eqn. 4.12 in terms of the Pauli spin operator σz. First, I restrict the transmon circuit to its ground

and excited states by taking b† |1〉 = 0 and neglecting terms with factors of (b†b)2. In this truncated

Hilbert space, the Pauli spin operate emerges as b†b→ σz/2. Second, I neglect terms with factors

of (a†a)2 because Kc is small compared to the linewidth of the cavity. Applying these substitutions

to Eqn. 4.12 yields

H

~
= ωq

σz
2

+ (ωc + χσz) a
†a (4.13)

where the terms have been rearranged so that its form is of the dispersive limit for the Jaynes-

Cummings Hamiltonian[110, 116]. As pointed out in Section 2.3.2, the effective resonant frequency

of the cavity is ωic = ωc + χσz where i = {g, e} is a function of the qubit in either its ground or

excited states |g〉 and |e〉, respectively. Measuring this effective cavity resonance provides a way to

characterize both the qubit and cavity.

4.2 Characterization of the qubit and cavity

Before we can operate the cQED system as a single-photon source, we first determine the

cavity parameters discussed in Section 4.1.2 and the qubit parameters defined by Eqn. 4.13. We then

calibrate a set of control pulses used to readout and control the qubit state. Lastly, we confirm that

the coherence times of the qubit are sufficiently long for the photon generation protocol discussed

in Section 4.3. The parameters for the cQED system are presented in Table 4.1.
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Table 4.1: Parameters of the cQED system.

Symbol Description Value and units

ωc/2π Cavity resonant frequencya (high power) 7.276 781 GHz
ωg/2π Cavity resonant frequencyb (qubit in ground state) 7.290 156 GHz
ωe/2π Cavity resonant frequencyb (qubit in excited state) 7.283 360 GHz
κ1/2π Weakly coupled cavity port decay rate < 200 Hz
κ2/2π Strongly coupled cavity port decay ratec 50 kHz
κc/2π Total cavity decay ratec 60 kHz
χ/2π Dispersive shift −3.413 MHz
ωeg/2π Ground to excited state transition frequency 5.652 MHz
ωsb/2π Blue sideband transition frequency 2× 6.462 GHz
Kq/2π Qubit anharmonicity 380 MHz
T1 Energy relaxation time ∼ 60 µs
T ?2 Coherence time ∼ 14 µs

a Measured at 104 fW (see Fig. 4.5a).
b Measured at 10−4 fW (see Fig. 4.5b).
c In this chapter, κ2/2π = 70 kHz. For the experiment in Chapter 5, it was reduced

to 50 kHz.

4.2.1 Cavity spectroscopy

Upon cooling down the cQED system, the nonlinearily of the qubit reveals itself in the power-

dependent cavity response[182, 183]. To measure its response, we inject a pulsed probe tone into

the weakly-coupled port of the cavity and monitor the transmitted amplitude from the output port.

This scheme measures the scattering parameter |S21| = |V2/V1| where V1 and V2 are the amplitudes

for the input and output voltage waves, respectively. To observe the nonlinear response of the

cavity, we measure |S21| as a function of the probe power, as shown in Fig. 4.5a. At high powers,

the transmission peaks are at the bare resonant frequency of the cavity ωb/2π = 7.277 GHz. As

the probe power is reduced, the cavity response becomes highly nonlinear because of the dispersive

interaction between the cavity and the qubit.

At low probe powers, the response is linear and it reveals the qubit state-dependent dispersive

shift of the cavity. When the qubit is in its ground state |g〉, the transmission peaks at ωgc = ωc−χ

where ωgc/2π = 7.290 GHz. There is faint transmission centered at ωec/2π = 7.283 GHz because of

residual occupation of the qubit’s excited state |e〉. One can determine the dispersive shift of the
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Figure 4.5: Cavity transmission as a function of probe power and frequency. a, The plot shows
the measured cavity transmission (log magnitude) as a function of the probe frequency and power.
The probe power is referenced to the input port of the cavity. At high probe power (> 10 fW), the
response of the cavity is centered at its bare resonant frequency of ωb/2π = 7.277 GHz (indicated
by the arrow). At low probe power (< 10−3 fW), the cavity response is linear and it exhibits two
peaks corresponding to the qubit in its ground and excited states |g〉 and |e〉, respectively. b, The
plot shows the measured transmission at low power (at 10−4 fW) with the qubit prepared in either
its |g〉 or |e〉 states. The solid line indicates a Lorentzian fit with a linewidth of κc/2π = 80 kHz.
c, The plot shows a line cut of the cavity transmission at ωb as the probe power is varied. When
the probe power exceeds a sufficiently high power, the transmission exhibits a sharp jump that
corresponds to the emergence of the bare cavity resonance. The onset of this sharp jump depends
on the state of the qubit, which was initialized in either its |g〉 or |e〉 state.

cavity χ by taking ωgc − ωec = −2χ. For the data presented in Fig. 4.5b, the visibility of these two

resonant features reveals that χ/2π = −3.5 MHz. Additionally, by probing the low-power response

of the cavity centered at ωgc , we determine its total linewidth κc/2π = 80 kHz and output port

coupling rate κc/2π = 70 kHz. Having determined the parameters that characterize the response

of the cavity, we can now exploit its nonlinear response to measure the qubit state.

4.2.2 Measuring the qubit state

In this thesis, we employ two qubit-state measurement schemes. The first scheme enables a

simple and robust measurement protocol that can determine the qubit state with high fidelity[182].

For this scheme, a high-power tone probes the cavity state to destructively determine the qubit

state. In contrast, the second scheme probes the linear response of the cavity at low powers and
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can be used to project the qubit state via measurement[184, 185, 186].

In order to obtain a comparable signal-to-noise ratio using the low-power scheme, it requires

a relatively low-noise amplifier. Such amplifiers using Josephson junction-based devices have been

developed for qubit readout[187, 188, 189, 119]. However, integrating these amplifiers with the

electromechanical device comes at the cost of additional complexity to the measurement protocol.

We overcome this challenge by using the electromechanical device itself as a low-noise amplifier.

This approach is unique to my experiment because it removes the complexity of the JPA and is

readily integrable with the conversion experiment presented in Chapter 5.

4.2.2.1 High-power readout

The high-power readout scheme uses the nonlinear dispersive interaction to project the qubit

state onto the classical state of the cavity. This approach effectively harnesses the cQED system

an amplifier, and does not require the use of a subsequent low-noise amplifier such as the JPA. To

infer the qubit state, a strong probe tone measures the cavity response in transmission[182]. The

probe tone is centered at the bare resonant frequency of the cavity ωb. When the power of the

probe exceeds a critical value, the onset of a high-transmission ‘bright state’ emerges as shown in

Fig. 4.5a.

Because the power level at which this onset occurs depends on the qubit state, this effect

can be used to determine the initial state of the qubit as shown in Fig. 4.5c. To measure the

qubit’s state, one must choose a probe power that maximizes the difference in transmission for

the two states. Crucially, the difference in transmission can be much larger than the noise in the

detector used to measure the probe signal. While this readout scheme is relatively straight forward

to implement, it is not a non-demolition measurement2 because the high-power probe induces a

substantial photon population in the cavity that drives the transmon qubit out of its |g〉 and |e〉

subspace. In order perform a non-demolition measurement of the qubit’s state, one must use a

low-power probe and a nearly quantum-limited amplifier to detect it[191].

2 A non-demolition measurement leaves the qubit in a state that is unaffected by subsequent measurements[22, 190].
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Figure 4.6: Histograms of single-shot measurements using the JPA. Each single-shot measurement
outcome is the in-phase quadrature I of the transmitted probe signal through the cavity. The
probe signal was pulsed on for 10 µs and it induced ∼ 10 circulating photons in the cavity. a, The
qubit was left in thermal equilibrium with the environment and its state was measured. The red
solid line indicates a fit to a sum of two normal distributions, which reveals a residual excited state
population of P (e) = 2%. The gray solid line indicates the threshold Ith used to discern the two
qubit states. b, When approximately half the qubit population is driven to its excited state |e〉,
the separation between the two distributions becomes evident.

4.2.2.2 Low-power readout

The low-power readout scheme relies on the qubit state-dependent dispersive shift of the

cavity. To infer the qubit state, a weak probe tone measures the cavity response in transmission[178,

192]. This response is probed by either measuring the amplitude or phase of the transmitted tone.

Because my cQED system operates in the regime where the dispersive shift is χ � κc, the ability

to discern the qubit state is optimized by centering the probe frequency at the cavity’s response

and measuring the transmitted amplitude[193]. For example, consider centering the probe at ωec .

When the qubit’s state is |e〉, the cavity response peaks at ωec and the probe will be transmitted.

Conversely, when the qubit’s state is |g〉, the cavity will be at ωgc and the probe will not be

transmitted. Thus, this scheme can discriminate the qubit states by probing the cavity response.

Employing a Josephson parametric amplifier (JPA) at the front end of the detector provides

a way to perform efficient single-shot measurements of the qubit state. To access the single-shot

regime, the measurement duration must be substantially shorter than the excited to ground state

relaxation time of the qubit. The signal-to-noise of this measurement is determined by its duration,

power level, the cavity bandwidth, and the detector efficiency[186]. Because the JPA enhances the

detector efficiency, the measurement duration and power level can be significantly reduced and thus
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Figure 4.7: Single-shot measurements of the qubit state using the electromechanical device as an
amplifier. Each single-shot measurement outcome is the magnitude squared I2 +Q2 of the in-phase
(I) and quadrature (Q) components of the transmitted probe signal through the cavity. a, The
histogram shows the distribution of measurement outcomes when the qubit was either driven or
not using a control pulse. The gray solid line indicates the threshold Ith used to discern the two
qubit states. b, The plot of the cumulative probability indicates a readout contrast of 60% for
discerning the qubit’s two states.

enables single-shot high-fidelity qubit readout.

The ability to effectively discriminate between qubit states is quantified by collecting a re-

peated set of single-shot measurements. The outcome of each single-shot measurement is plotted

in a histogram as shown in Fig. 4.6. Each outcome is the in-phase amplitude I of the transmitted

probe through the cavity. If the probe is not transmitted, then I = 0. Thus, when the qubit

state is |g〉, we expect a normal distribution of measurement outcomes centered at I = 0 as shown

in Fig. 4.6a. However, when we drive approximately half the qubit population to the |e〉 state,

an offset emerges because approximately half the measurement outcomes are from trials in which

the probe was transmitted through the cavity. This case is shown in Fig. 4.6b. Because the two

distributions are resolvable, we define a threshold Ith that separates the outcomes. If an outcome I

is larger than Ith, we assign the outcome to the |e〉 state; conversely for I < Ith. This thresholding

enables one to extract the probability that the qubit occupies its ground or excited states from a

set of measurements.

Apart from using the JPA, low-power and single-shot measurements of the qubit state are

enabled by harnessing the electromechanical device as an amplifier. The theory of operating it as

an amplifier is discussed in Section 3.1.3. To readout the qubit state, we probe the response of the
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cavity using pulsed signals as with the readout method using the JPA. However, in this case, we

use the electromechanical device to amplify the readout pulse. We then collect a set of single-shot

measurements and plot their outcomes in a histogram as shown in Fig. 4.7a. To quantify the ability

to discern the qubit states, we calculate the maximum difference between the cumulative probability

curves as shown in Fig. 4.7. This difference defines the readout contrast, which we calculate to

be about 60%. This contrast level is comparable to what is obtained in the JPA-backed readout

scheme using my cQED system.

4.2.3 Qubit characterization

The qubit readout methods discussed in the previous section enable characterization of the

transmon qubit parameters summarized in Table 4.1. This section presents a characterization of

the qubit’s energy spectrum, control pulses used to alter its state, and its coherence times.

Energy spectrum

By employing either of the two qubit readout schemes presented in Section 4.2.2, we determine

the anharmonicity Kq by measuring the qubit’s spectrum. It is measured by driving the qubit with

a control pulse, and then reading out the qubit state over a range of frequencies as shown in

Fig. 4.8a. This qubit spectroscopy reveals two peaks centered at ωge and ωgf/2, which correspond

to the |g〉 → |e〉 and |g〉 → |f〉 transitions. Because the anharmonicity is defined as Kq = ωge−ωef

where ωge, it can be written asKq/2 = ωgf/2−ωge. The data in Fig. 4.8a shows thatKq = 380 MHz.

As discussed in Section 4.1.1.3, this amount of anharmonicity in the qubit spectrum is necessary

in order to drive the qubit using fast (10 ns) control pulses.

Additionally, measuring the qubit spectrum provides information about the Josephson energy

of the qubit. The Josephson energy EJ can be expressed in terms of transition frequencies by

calculating the eigenenergies of the qubit spectrum using perturbation theory[171]. The result of

this analysis yields

EJ ≈ −
1

8

ω2
ge

EC
(4.14)



62

Figure 4.8: Calibration of the qubit control pulses. a, The plot shows the qubit excited state
probability P (e) as a function of the drive detuning. At low drive power, the qubit |g〉 → |e〉
transition is centered at ωq. This power level is the reference (0 dB). At a higher drive power
(20 dB), the qubit transition broadens and the |g〉 → |f〉 transition emerges centered at ωef/2.
These two frequencies are used to extract the anharmonicity Kq. b, When the qubit is driven at
ωq, the qubit population oscillates between the |g〉 and |e〉 states. c, Similarly, when the qubit is
driven at ωbs/2, the qubit population oscillates as the cQED system oscillates between the |g〉 |0〉
and |e〉 |1〉 states.

where EC ≈ −Kq is the charging energy. Using this result and the data presented in Fig. 4.8a, we

calculate that EJ ≈ 14 GHz. Thus, the spectrum reveals that the qubit is deep in the transmon

regime with EJ/EC ∼ 37� 1.

Calibrated control pulses

Having measured the qubit’s spectrum, we calibrate the amplitude and duration of a pulsed

tone used to control the qubit state. Specifically, these two parameters must be appropriately

calibrated so that we can deterministically place the qubit in its excited state |e〉 or the superposition

state 1/
√

2
(
|g〉+ eiϕ |e〉

)
where ϕ is the phase of the qubit. To calibrate the control pulse, we first

center the tone at ωq. We then choose a fixed amplitude and vary its duration τq. As shown in

Fig. 4.8b, the qubit population oscillates between its |g〉 and |e〉 states. These oscillations provide

evidence that the qubit is indeed an addressable two-level system. By setting τq at half the first

oscillation period, the qubit population can be driven from the |g〉 to |e〉 state. This calibration

sequence realizes a ‘π-pulse’ because we can effectively rotate the qubit by an angle of θ = π on

the Bloch sphere (see Section 2.2). Simply by adjusting the duration (or amplitude) of the pulse,
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Figure 4.9: Time-domain measurements of the qubit coherence times. a, Measured probability
P (e) of the qubit excitated state |e〉 population as a function of delay time ∆τ between a π pulse
and a qubit measurement pulse. A fit to the data (solid line) yields T1 = 145± 3 µs. b, Similar to
a but P (e) is plotted as a function of the delay ∆τπ/2 between two π/2 pulses. A fit to the data
(solid line) yields T2 = 14± 1 µs.

we can rotate the qubit by θ = π/2 thereby placing it in the superposition state where the pulse

phase determines ϕ.

In order to generate single photons, we use a pulsed tone that can control the blue sideband

transition |g〉 |0〉 → |e〉 |1〉 as introduced in Section 2.3.4. To deterministically place the qubit and

cavity in the joint state |e〉 |1〉, we must calibrate an appropriate control sequence. Because the

blue sideband transition is driven via a two-photon process[118], we center the tone at half the

frequency of the blue-sideband transition ωbs/2. After the amplitude of the pulse is set, we vary

its duration τb and measure the qubit state as shown in Fig. 4.8c. The qubit population varies

because the cQED system oscillates between the states |g〉 |0〉 and |e〉 |1〉. As τb increases, photons

decay out of the cavity at a rate of κc and so the oscillations saturate as the qubit settles to its |e〉

state as described in Ref. [118]. In order to create an effective π-pulse on this transition, we set τb

at half the first oscillation period. Using this calibrated pulse, the qubit can be put in the |e〉 |1〉

thereby creating a single photon in the cavity.

To generate a superpostion of cavity photon states, we employ a two-step protocol[116,

121, 194]. In the first step, a π/2-pulse prepares the qubit and cavity in the superposition state

1/
√

2
(
|g〉 |0〉+ eiϕ |e〉 |0〉

)
. In the next step, a π-pulse on the blue-sideband transition swaps the

population in the |g〉 |0〉 and |e〉 |1〉 states without affecting the population in the |e〉 |0〉 state. The
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qubit and cavity are now in the joint state 1/
√

2
(
|e〉 |1〉+ eiϕ |e〉 |0〉

)
. Because the |e〉 state can be

factored out, the photon state is unentangled with the cavity. Thus, the cavity is prepared in the

superposition state 1/
√

2
(
|0〉+ e−iϕ |1〉

)
which decays out of the cavity into a propagating mode of

the transmission line. In order to prepare this state, the protocol’s duration must be substantially

less than the qubit’s coherence times.

Coherence times

We employ a two-step protocol to determine the qubit’s relaxation time from the |e〉 to |g〉

states. This characteristic time is called T1 and it describes energy loss of the qubit. In order to

implement the photon generation protocol discussed in Section 4.3, the qubit’s lifetime must satisfy

T1 � κ−1
c . The protocol used to measure T1 starts with preparing the qubit in its |e〉 state using

a π-pulse. After a delay time of ∆τπ, the qubit state is measured. By varying ∆τπ, the qubit’s

excited state probability P (e) decays as shown in Fig. 4.9a. A fit to the data3 yields T1 = 145 µs.

Because of this relatively long decay time, care must be taken to ensure a wait time > 5T1 between

each execution of the protocol so that the qubit has time to relax to its |g〉 state with a probability

that exceeds 99%.

In addition to determining the qubit’s T1 time, a three-step protocol is used to measure its

dephasing time. This characteristic time is called T ?2 and it describes the random drift in the phase

difference between the qubit states |g〉 and |e〉 in a superposition during an ensemble measurement.

In order to generate coherent superposition states, the qubit’s dephasing time must satisfy T ?2 � τb

where τb is the duration of the blue sideband pulse. The protocol used to measure T ?2 starts with

preparing the qubit in the superposition state 1/
√

2
(
|g〉+ eiφ |e〉

)
using a π/2-pulse. After a delay

time of ∆τπ/2, another π/2-pulse is applied to the qubit. By making repeated measurements of

the qubit state as ∆τπ/2 is varied, one finds that the qubit’s excited state population oscillates

3 For measurements on the same sample, the lowest relaxation time we measured was approximately 60 µs.
Fluctuations in the T1 time at the level of a factor of two have been well-documented[195], and may be explained by
drifts in the quasiparticle density or occupation of two-level systems in the junction.
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according to

P (e) ∝ cos
(
∆d · τπ/2

)
exp
(
−τπ/2/T ?2

)
(4.15)

where ∆d = ωq−ωd is the detuning of the drive centered at ωd from the qubit transition frequency.4

This method is commonly referred to as ‘Ramsey interferometry’ and is often the workhorse of

precision spectroscopy experiments[196]. For the data presented in Fig. 4.9b, the fit to Eqn. 4.15

yields T ?2 = 14 µs. This timescale is sufficient to prepare a superposition state using a π/2-pulse

that is of order 100 ns in duration.

4.3 Generation of propagating single photons

In this section, we provide a rudimentary evaluation of the photon source. We demonstrate

that the source efficiently generates single photons, and we show that their bandwidth is sufficiently

narrow enough to be compatible with the electromechanical device.

4.3.1 Experimental apparatus

We create an experimental apparatus that enables the detection of propagating signals emit-

ted from the cQED system. The main components of the apparatus are shown in Fig. 4.10. Qubit

control and readout signals are injected into the weakly-coupled port of the cQED system. Its

output port strongly couples to a transmission line that connects to a detector. The performance

of the detector is characterized by two parameters: the efficiency ηd and gain Gd. The efficiency

ranges from 0 (no measurement) to 1 (ideal measurement). The gain is a quantity that relates

voltage fluctuations at the output of the detector to those at its input.

In order to efficiently measure single photons, the detector employs a Josephson parametric

amplifier (JPA) as a sensitive preamplifier. We operate the JPA as homodyne detector in order to

have the highest possible measurement efficiency, as pointed out in Section 2.5. Because we want

to measure single photons emitted at the frequency ωe
c when the qubit is in its excited state, we

4 This expression assumes T ?
2 � T1 as is the case in this thesis.
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Figure 4.10: Diagram of the photon generation apparatus. Qubit control and measurement pulses
are injected into the input of the photon source. The photon source consists of a cQED system.
A Josephson parametric amplifier (JPA) serves as the sensitive preamplifier for the detector which
has an efficiency ηd and gain Gd.

operate the JPA with its gain centered at ωe
c. The output of the detector is demodulated and the

voltage trace V (t) is recorded.

The experimental apparatus presented in this section is similar to the one previously con-

structed in our lab[119]. However, we did not include a switch with a calibration noise source

because of two reasons. First, we did not want to add any excess insertion loss between the cQED

system and the detector, which would reduce the fidelity of the propagating single-photon state.

Second, we want to avoid any stray infrared light that could enter in through the switch. Such

light may degrade the coherence times of the qubit[197].

4.3.2 Generation and measurement protocol

We generate single photons by adapting a protocol developed previously in our lab[119].

This protocol creates a photon in the cavity by driving the blue-sideband transition |g〉 |0〉 → |e〉 |1〉

with a π-pulse as diagrammed in Fig. 4.11a. The cavity photon then evolves into a mode that

propagates in the transmission line. For each repetition of the protocol, we measure a voltage trace

V (t) using the homodyne detector discussed in Section 4.3.1. For a control experiment, we execute

the protocol but replace the π-pulse on the blue-sideband transition with a π-pulse on the qubit’s

transition. This sequence prepares the cQED system in the state |e〉 |0〉 instead of |e〉 |1〉. As such,

the cQED system does not emit a photon.

To increase the photon generation fidelity, we measure and condition on the qubit’s state[198].

Prior to generating a photon in the cavity, we measure the state of the qubit using a ‘pre-select’
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readout pulse. Because we want the cQED system to be initialized in the state |g〉 |0〉, we select

the measurements in which the qubit is in its |g〉 state. This selection removes approximately 10%

of the measurement outcomes in which the qubit occupies its excited state. After generating a

single photon in the cavity, the cQED system must be in the state |e〉 |1〉 in order for the photon to

be emitted at the excited state cavity frequency ωe
c. Thus, we ‘post-select’ the data in which the

qubit is in its |g〉 state. This selection removes approximately 60% of the measurement outcomes in

which the qubit decays from its |e〉 to |g〉 state, or in instances when the blue-sideband transition

is not driven because of infidelity in the π-pulse.

4.3.3 Quadrature amplitude extraction

In order to characterize propagating signals at the single-photon level, we express measured

signals in terms of photons per second, or quanta, referred to the input of the detector. For each

voltage trace V (t) measured at the detector, we extract a single quadrature amplitude X. This

quadrature amplitude describes one particular mode of the propagating signal measured at the

detector. To define a particular mode, we use a mode-matching function f(t) that weights each

V (t) in order to produce an optimum estimate of the quadrature amplitude[121]. We choose f(t) so

that it matches the temporal envelope of the photon signal measured at the detector. Specifically,

the form of f(t) depends on the bandwidth of the emitted single-photon signal (set by the cavity

linewidth of the cQED system) and the bandwidth of the detector (set by the JPA). As such, we

use a function defined by

f(t) = h(ωLPF, t) ?


0 t ≤ t0

1− e−κ(t−t0)/2 t0 < t ≤ Tbs

e−κ(t−t0)/2 t > Tbs

(4.16)

where ? denotes a convolution operation, h is the finite impulse response function of a low-pass

filter, ωLPF is the cutoff frequency of the low-pass filter, t0 is the start time of the blue-sideband

pulse, Tbs is its duration, and κ is the power decay rate of the signal. For the bandwidth of the

low-pass filter, we choose it to be ωLPF = κJPA/2, where κJPA is the bandwidth the JPA. A plot
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Figure 4.11: Photon generation and detection. a, A timing diagram depicts the protocol used to
generate propagating photons. The π-pulse (black) at time t ≈ 70 µs either generates a photon
or excites the qubit for the reference vacuum measurement. Qubit readout pulses (pre-select and
post-select) are used to condition the measurement on the qubit state. b, Measured voltage signals
〈V (t)〉 at the detector averaged over 4,798 individual time traces with the π-pulse frequency either
at the blue sideband transition frequency (black) or the qubit’s frequency (gray). c, The plot is
similar to b but for the voltage variance of the time traces. d, The plot shows the filter function
f(t) used to extract the quadrature amplitude for each time trace. The filter function has a power
decay rate of 83 kHz.
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of the mode-matching function is shown in Fig. 4.11d in which we used κJPA/2π = 2 MHz and

Tbs = 250 ns.

After determining f(t), we calculate the quadrature amplitude for a given voltage trace using

the method of least-squares parameter estimation[199], where the parameters to be estimated are

the amplitude, Vq, of f(t) and the amplitude, Vdc, of the background windowing function b(t). We

use a background function to account for the offset in each V (t) that drifts during the acquisition

of a complete data set. The function b(t) is a piecewise-constant function that is non-zero during

the photon generation protocol except when the qubit state is measured. To obtain these two

parameters from each discretized voltage trace {Vk} (containing N samples), we minimize the cost

function

C =

N∑
k=1

[Vk − (Vqfk + bkVdc)]
2 (4.17)

with respect to Vq and Vdc. The result of this minimization yeilds

Vq =

N∑
k=1

Vk · fk −

(
N∑
`=1

V` · b`

)
·

(
N∑
m=1

bm · fm

)
(4.18)

where fk and bk are discretized versions of the mode-matching and background functions, respec-

tively. Eqn. 4.18 yields an uncalibrated quadrature amplitude for each measured voltage trace.

To calibrate the set of quadrature amplitudes, we execute the control sequence in which no

photons are generated. This calibration assumes the convention that one quadrature of a signal

in the vacuum state has a variance of Var(X) = 1/4 quanta as discussed in Section 2.1.3. The

uncalibrated quadrature amplitudes are binned in a histogram, and this data is fit to a normal

distribution with the gain Gd of the measurement apparatus as the only free parameter. The

center of the distribution is zero, and its variance is set to be 1/4 for a vacuum state. We use

the gain determined from the fit to scale the quadrature amplitudes obtained when photons were

generated. The calibrated quadrature amplitudes are presented in Fig. 4.12.
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4.3.4 Density matrix reconstruction

To characterize the quantum state emitted from the photon source, we reconstruct the state’s

density matrix ρ. The density matrix provides a complete description of the state by taking into

account both quantum and statistical uncertainty in the measurement. In the number basis, the

matrix element ρnn conveniently describes the probability of detecting n photons. For an ideal

single-photon state, ρ11 = 1 with all other elements equal to zero. However, imperfections in the

generation and measurement process yield ρ11 < 1.

We estimate ρ by performing a microwave version of homodyne tomography, as discussed in

Section 2.5. This procedure relies on making an ensemble of repeated single-quadrature measure-

ments on a set of identically-prepared quantum states emitted from the photon source. For each

measurement, the outcome is plotted in a histogram. Because we measure in the quadrature basis,

we expect the data to follow the marginal distribution

Pr(X) = 〈X| ρ |X〉 . (4.19)

In the photon-number basis, the density matrix is given by

ρ =
∑
n

Pn |n〉 〈n| (4.20)

where Pn = ρnn is the probability to be in the state |n〉 for an integer n ≥ 0. This form of ρ enables

Eqn. 4.19 to be written in the number basis:

Pr(X) =
∑
n

ρnn |〈X|n〉|2 . (4.21)

By calculating the eigenstates of the quantum harmonic oscillator in the quadrature basis, one finds

〈X|n〉 =
1√

2nn!

(
2

π

)1/4

e−X
2
Hn(
√

2X) (4.22)

where Hn are the Hermite polynomials[101].

After we generate a histogram of the calibrated quadrature amplitudes, we perform a fit

using Eqn. 4.21 in a three-photon number basis. Without conditioning on the qubit state, the fit
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to the marginal distribution yields ρ00 = 0.61 ± 0.01, ρ11 = 0.36 ± 0.02, and ρ22 = 0.02 ± 0.02

(the ρ33 element is indistinguishable from statistical noise). In order to increase the single photon

generation efficiency, we condition on the state of the qubit. This conditioning purifies the state

because we discard measurements in which we expect no photon to be generated. For this case,

the results of the fit yield ρ00 = 0.48± 0.01, ρ11 = 0.49± 0.01, and ρ22 = 0.03± 0.02. A histogram

of the measured quadrature amplitudes is shown in Fig. 4.12.

We model the measured state by taking into account two sources of infidelity. First, because

the cavity has internal loss, the probability of a photon decaying out of the port coupled to the

transmission line is ηc = κ2/κc = 0.87 ± 0.03. Second, the detector has an efficiency that is not

ideal. In a separate cooldown of the apparatus, we used a calibrated noise source and found that

this detector has ηd = 0.60± 0.02. Using these two parameters, we model the expected state as

ρm = (1− ηcηd) |0〉 〈0|+ ηcηd |1〉 〈1| (4.23)

which is a statistical mixture of a pure vacuum and single-photon state[194]. This model predicts

ρ11 = 0.52± 0.02 which is in reasonable agreement with what is measured.

The results in this section show that the cQED system can generate propagating single

photons efficiently and with a narrow bandwidth. As such, the next step is to interface the cQED

system with the electromechanical device discussed in Chapter 3.
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Figure 4.12: Histograms of measured quadrature amplitudes for single photons. The plots show
the plotted probability distribution Pr(X) as a function of quadrature amplitude X scaled in units
of
√

quanta. The solid line indicates a fit to expected distribution for a diagonal density matrix
with a three-photon Fock basis. a, Control experiment (‘no photon’) in which no photons were
generated. The solid line is a normal distribution with a variance of Var(X) = 1/4. b, Experiment
(‘photon’) in which photons were generated. A fit to the measured distribution yields the diagonal
density matrix elements ρ00 = 0.48± 0.01, ρ11 = 0.49± 0.01, and ρ22 = 0.03± 0.02.



Chapter 5

Conversion of propagating single photons to mechanical motion

An electromechanical device converts the state of a propagating microwave field to mechanical

motion, as pointed out in Chapter 3. By using the single-photon source presented in Chapter 4,

the field can be prepared in a superposition of zero and one photons that encodes a quantum bit

(qubit) of information. In this chapter, I combine these two capabilities and demonstrate that the

electromechanical device can capture a state that encodes quantum information. Once captured,

it can be mechanically stored for over a hundred microseconds and then retrieved on-demand. In

order to measure the state of the input field or mechanical resonator, I exploit the electromechanical

device as a nearly quantum-limited amplifier as described in Chapter 3. Using this capability, I

characterize the capture process and find that it can preserve the information contained in an

arbitrary qubit better than what is possible using only classical resources.

This chapter describes the experimental results of converting propagating single photons to

mechanical motion. Section 5.1 describes the experimental apparatus. Section 5.2 demonstrates

that the electromechanical device can function as a low-noise amplifier. Section 5.3 presents two

protocols used to characterize the conversion process from propagating microwave fields to mechan-

ical motion. Section 5.4 demonstrates the ability to capture, store, and amplify single photons.

Section 5.5 presents the conversion of qubits and a characterization of the capture process.



74

5.1 Experimental apparatus

The electromechanical device interfaces with a single-photon source through a network of

microwave-frequency components. The main components of the network are shown in Fig. 5.1a,

and a picture of the experimental apparatus is shown in Fig. 5.2. Microwave pumps and test

signals are injected into the network using a directional coupler (the microwave equivalent of a

beamsplitter), and the photon source is pumped via a separate port. The photon source consists

of the cQED system discussed in Chapter 4. This source emits a signal that is routed to the

electromechaincal device using a circulator, which also provides a sufficient level of isolation to

protect the cQED system from the strong pumps used to control the electromechanical device

(see Section 3.1.1). After the signal interacts with the electromechanical device, it is routed to a

detector. Once detected, the signal is downconverted in frequency with a demodulation mixer and

then digitized. Data collected consist of digitized voltage waveforms V (t). Detailed descriptions of

the detector and remaining components of the measurement network are presented in Appendix A.

A simplified frequency-domain representation of the experiment is shown in Fig. 5.1c. The

photon source emits a signal centered at ωe
c when the qubit occupies its excited state. To capture

the propagating signal at this fixed frequency, the electromechanical device is tuned into precise

resonance with ωe
c using a voltage bias Vdc. This bias is applied to a separate port of the elec-

tromechanical device as shown in Fig. 5.1b and as discussed in Section 3.1.4. To create either the

beamsplitter or two-mode squeezer interactions discussed in Section 3.1.1, microwave pumps are ap-

plied below and above the center frequency ωLC of the electromechanical device by the mechanical

resonant frequency ωm.

5.1.1 Sub-optimal capture of single photons

As an initial test of the beamsplitter interaction between a single photon and the mechanical

resonator, we implement the two protocols diagrammed in Fig. 5.3. Both of these protocols employ

the red-detuned pump to capture a propagating field. For the protocol diagrammed in Fig. 5.3a,
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Figure 5.1: Diagram of the experiment. a, A simplified schematic shows the electromechanical
device connected to a photon source consisting of a transmon qubit in a microwave cavity. Pumps
(arrows) used to create the capture (red) and amplification (blue) interactions are injected into the
transmission line. b, False-color micrograph of the electromechanical device where aluminium films
(gray) are deposited on a sapphire substrate (blue). The spiral forms the inductor and the disc is
the mechanically-compliant capacitor. Micrograph acquired with assistance from Paul Blanchard
at NIST. c, Pumps are detuned below and above the LC circuit’s resonant frequency ωLC by the
mechanical resonant frequency ωm. Using a voltage bias Vdc, the LC circuit’s resonant response
(dashed magenta) is tuned to match the much narrower resonance of the microwave cavity (green
solid) at the frequency ωe

c.

the propagating field consists of a large-amplitude test signal generated by a microwave synthesizer

(see Appendix A.4). Importantly, we tailor this test signal to have spectral and temporal content

similar to that of a single-photon signal emitted from the cQED system. Such a signal has a center

frequency given by ωLC and a temporal envelope of the form

bin(t) ∝ Θ(t)e−κct/2 (5.1)

where κc is the bandwidth of the cQED system and Θ(t) is the Heaviside step function. Because

the red-detuned pump is not optimally shaped to capture a decaying signal (see Section 3.1.2.1),

the efficiency of the capture process is sub-optimal. For the protocol diagrammed in Fig. 5.3b, no

large-amplitude test signal is employed. Instead, a single photon is generated by driving the qubit’s
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Figure 5.2: Picture of the experiment. It is mounted to the based stage of a dilution refrigerator
that provides an environment temperature of Tenv < 25 mK. The magnetic shield for the cQED
system is not shown.
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Figure 5.3: Initial capture protocol. a, The timing diagram depicts the protocol used to capture a
large-amplitude coherent input test signal (green). A constant red-detuned pump is on during the
entire duration of the protocol (bottom). b, The diagram depicts a protocol similar to the one in
a but without employing the test signal. Instead, a qubit control pump drives the blue sideband
transition in order to generate a single photon.

|g〉 |0〉 → |e〉 |1〉 transition using a π-pulse, as discussed in Section 2.3.4.

Conversion results for both a large-amplitude test signal and a single photon are presented

in Fig. 5.4. For the experiment in which the test signal is employed, we measure an average voltage

trace at the detector as shown in Fig. 5.4a. When the pump’s detuning is ∆r = −0.1ωm the

propagating signal is not captured. Instead, it is captured when ∆r = −ωm but with an efficiency

of less than 50%. (This sub-optimal capture is remedied in Section 5.3.) To model the sub-

optimal capture, we numerically integrate Eqns. 3.6. Using the parameters outlined in Table 3.1,

we find good agreement with the model and data. For the experiment in which a single photon is

employed, we measure the variance of voltage traces as shown in Fig. 5.4b. The response is similar

to that of the test case with a large-amplitude signal, indicating partial capture of a single photon.

Additionally, this initial capture experiment reveals that the strong, red-detuned pump adversely

affects the detector (discussed in Appendix A.6). To circumvent this problem, we developed a way

to operate the electromechanical device as an efficient pre-amplifier for the detector.

5.2 Electromechanical device as a low-noise amplifier

Signals at the single-photon level can be efficiently measured by operating the electromechan-

ical device as a low-noise amplifier. A description of how it functions as an amplifier is discussed
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Figure 5.4: Sub-optimal capture of propagating coherent signals and single photons. a, The plot
shows voltage signals V (t) measured at the detector averaged over 102,400 repetitions of each
protocol. Large amplitude (> 106 photons/sec) coherent signals with a power decay rate of 60 kHz
are injected into the electromechanical device. A constant red-detuned pump is also injected into
the electromechanical device. The strength of the pump is Γr/2π ≈ 60 kHz. The top curve
(blue) was acquired when the capture pump was at a detuning of ∆r = −0.1ωm where ωm is
the mechanical resonant frequency. The bottom curve (orange) was acquired when the capture
pump was red-detuned at ∆r = −ωm, the decaying signal is captured with a sub-optimal efficiency.
The dotted line corresponds to the expected behavior using independently measured parameters
for the electromechanical device. b, Propagating single photons were generated using the cQED
system and routed to the device. The plot shows the measured voltage variance σ2

V (t) averaged
over 819,200 repetitions of each protocol. Top and bottom curves were acquired under similar
conditions to those in a. Note: an arbitrary offset is applied to the top curves (blue) in each plot
in order to display them on the same plot as the bottom curves (orange).
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Figure 5.5: Protocols used to amplify thermal states of mechanical motion. a, The mechanical
resonator is left in thermal equilibrium with its environment prior to pulsing on the blue-detuned
amplification pump. A signal with a rising temporal envelope emerges from the electromechan-
ical device. b, A red-detuned pump cools the motion of the mechanical resonator. When the
blue-detuned pump pulses on, a signal with a rising temporal envelope emerges from the electrome-
chanical device. The amplitude of the emitted signal is smaller than the amplitude in a because
the resonator was cooled, and so it started with an occupation near its ground state.

in Section 3.1.3. In this section, we demonstrate that the electromechanical device can amplify

thermal states, and that its noise performance approaches the quantum limit[126].

5.2.1 Amplification of thermal states

As a first test of the electromechanical device’s performance as an amplifier, we use it to

amplify thermal states of mechanical motion. By measuring thermal states of two different tem-

peratures, we can determine the mechanical resonator’s occupation nth after it is cooled. This

approach is analogous to a Y -factor measurement[151] used to determine the noise temperature

of an amplifier by measuring Johnson noise emitted from a resistor held at two or more known

temperatures. For the electromechanical amplifier, we can either cool the motion of the resonator

or leave it in equilibrium with the environment.

In the first set of measurements, we execute the protocol shown in Fig. 5.5a. For this protocol,

the mechanical resonator is left in thermal equilibrium with its environment for a duration of at

least 30/κm where κm is the mechanical resonator’s linewidth. We then pulse on a blue-detuned

pump to both amplify the state of the resonator and convert it into a propagating microwave field.

The detector measures this output field, which we express in terms of its quadrature amplitudes X

and Y (see Section 5.3.2). These amplitudes have a total variance described by Var(Sh) where the

sub-script denotes ‘hot’ because the resonator was not cooled using the red-detuned pump.
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Figure 5.6: Amplified thermal states. a, The figure shows scatter plots of measured quadrature
amplitudes S = X + iY of signals at the detector where S is in units of

√
quanta. Without cooling

the mechanical mode, the thermal motion of the mechanical resonator is amplified while the blue-
detuned pump is pulsed on. The quadrature amplitudes (Sh, hot) are shown in the ‘without cooling’
plot. Cooling the mechanical mode results in a reduced scatter in the quadrature amplitudes (Sc,
cold) as shown in the ‘with cooling’ plot. b, The plot shows the ratios of the total variance of
the quadrature amplitudes without cooling, Var(Sh), and with cooling, Var(Sc), as r = Γbτb was
varied. For these measurements, Γb/2π = 60 kHz while τb was varied from 5 µs to 55 µs. Once
r � 1, the plotted ratio approaches the expression given by Eqn. 5.2. Error bars correspond to the
statistical uncertainty in estimating the variance of 2,048 measurements.

In the second set of measurements, we execute the protocol shown in Fig. 5.5b. For this

protocol, we cool the mechanical resonator to nearly its quantum ground state by using the red-

detuned pump. We then turn on the amplification interaction and measured signals at the detector.

For these measurements, we obtain a total variance Var(Sc) where the sub-script denotes ‘cold’

because the resonator was cooled using the red-detuned pump. Once r � 1, the ratio of the

variances approaches

Var(Sh)

Var(Sc)
=
nm + 1

nth + 1
. (5.2)

If the mechanical mode is ideally in its ground state, then nth = 0 and Eqn. 5.2 yields nm +1 where

nm is the mechanical resonator’s equilibrium occupation that is discussed in Section 3.2.2. We

observe that the ratio in Eqn. 5.2 is slightly reduced from nm +1 as shown in Fig. 5.6. We attribute

this reduction to a small residual occupation in the mechanical mode that is nth = 0.09±0.01 quanta.

Such a low occupation enables the electromechanical device to function as a nearly quantum-limited

amplifier.
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5.3 Two protocols used to characterize the capture process

Exploiting the electromechanical device as an amplifier enables characterization of the capture

process. Because the process maps states of fields at the input of the electromechanical device to

the resonator, we must determine the input state and compare it to the captured state. To this

end, we have developed ‘calibration’ and ‘capture’ protocols that are used to determine the input

and captured states, respectively. Timing diagrams of the protocols is presented in Fig. 5.7a.

The two protocols are initially tested with coherent signals whose center frequency and band-

width are chosen to match those created by the cQED system, as shown in Fig. 5.7b. To optimally

capture the input field, the red-detuned pump is modulated as prescribed by Eqn. 3.15. For a field

with a decaying temporal envelope of the form given by Eqn. 5.1, optimally capturing it requires

Γr(t) =
γe−γt

1− e−γt + γ/Γr(0)
Θ(t) (5.3)

where γ is the power decay rate of the signal to be captured and Γr(0) is the coupling rate at t = 0.

For a high capture efficiency, Γr(0)� γ. As discussed in Section 3.1.2.1, the maximum attainable

coupling rate is limited by the circuit’s bandwidth Γr(t) < κLC. For our system, the decaying signal

has γ/2π = 60 kHz, and Γr(0)/2π ≈ 1 MHz. Using these parameters, we optimally capture signals

with decaying temporal content. For the data presented in the lowest plot in Fig. 5.7, the fraction

of the input signal’s energy reflected off the LC circuit is 4.7%, which is in good agreement with

the predicted value of 4.5% obtained by numerically integrating Eqns. 3.6.

5.3.1 Calibration and capture protocols

To determine the field at the input of electromechanical device, we use the calibration pro-

tocol. We implement it by applying the blue-detuned pump coincident with the input field. In

this case, the electromechanical device functions as a linear phase-preserving amplifier whose input

and output are the incident and reflected microwave fields, respectively. These pulsed fields have

different envelopes; nevertheless, they are related by an energy gain of cosh2 (r/2) where r = Γbτb

and τb is the pump’s duration as discussed in Section 3.1.3. If we regard the input of the amplifier
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as the incident microwave field, the fluctuations of the resonator’s motion are the source of the

amplifier’s added noise, reaching the quantum limit[126] if the resonator is in its ground state[53].

After obtaining the input state, we use the capture protocol to determine the resonator

state. We first apply the red-detuned pump coincident with the input field. Once it is captured, we

then apply the blue-detuned pump to amplify the resonator’s state. In contrast to the calibration

protocol, the amplifier’s input can now be regarded as the state of the resonator. The output is

still the reflected field, but the added noise is due to the vacuum fluctuations of the incident field.

When interpreted this way, the electromechanical device functions as a linear phase-conjugating

amplifier with an energy gain of sinh2 (r/2).

The gain is inherently tunable by adjusting r = Γbτb. For the data presented in Fig. 5.7b, We

obtain the gain by calculating the total energy of the amplified signal, Eout =
∫∞
−∞〈V (t)〉2 dt when

the pumps were on. We then normalize Eout to the energy of the input signal, Ein =
∫∞
−∞〈V (t)〉2 dt

when the pumps were off. During these measurements, Vdc = 0 and the LC circuit was tuned out

of resonance with the input signal. In Fig. 5.8, we plot the energy gain as a function of Γb. The

model prediction was generated by discretizing and numerically integrating Eqns. 3.6 for the total

input and output energies as Γb was varied. For the model prediction, we used the parameters

outlined in Table 3.1. We find that the behavior of the amplification process (for large amplitude

coherent signals) agrees well with the model.

5.3.2 Quadrature amplitude extraction

In order to characterize signals at the single-photon level, we express them in terms of a pair

of quadrature amplitudes X and Y . During the amplification portion of either the calibration or

capture protocol, the electromechanical device emits a signal that is routed to the detector. This

signal has a known temporal envelope given by f(t) = exp (Γbt/2) as discussed in Section 3.1.2.2

and is mixed down to a frequency of ωIF/2π = 1 MHz. We digitally sample the mixed down signal

at a rate of Rs = 5 MHz and form a discrete set of time-stamped voltages {tk, Vk} where tk = k ·Ts

and Ts = R−1
s is the sampling period. Because the signal’s spectral and temporal content is known,
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Figure 5.7: Calibration and capture protocols. a, Timing diagrams depicting the input coherent
signal (green) of amplitude Vin and the pulse shapes of the pumps, Γr(t) and Γb(t), used to create
the capture or amplification interaction. For the calibration protocol (top), the amplification pump
is coincident with the signal pulse. The capture protocol (bottom) has a timing diagram similar to
the calibration protocol, but the input signal is coincident with a capture pulse that is temporally
shaped for optimal capture of the signal. At t = 30 µs, the mechanical state is amplified and
converted back into a microwave field. b, The plots show the voltage signals, V (t), measured at
the detector and averaged over 500 repetitions of each protocol when the pumps were either off or
on. During amplification, Γb/2π = 60 kHz which results in a gain of 53 dB.

Figure 5.8: Adjustable gain of the mechanical amplifier. The plots shows the measured energy gain
as r = Γbτb was varied. The measurements were acquired using the capture protocol. For these
measurements, τb = 30 µs was held constant while Γb/2π was varied from 15 kHz to 55 kHz. The
solid line indicates the expected performance obtained by numerically integrating Eqns. 3.6 with
all parameters determined separately.
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we can define a pair of quadrature amplitudes[65]

X =

√
2Ts

GC

N∑
k=1

Vkf(tk)cos(ωIFtk)

Y =

√
2Ts

GC

N∑
k=1

Vkf(tk)sin(ωIFtk) (5.4)

where C =
N∑
k=1

|f(tk)|2, N is the total number of samples, and G is the gain that relates quantum

fluctuations at the input of the electromechanical device to voltage fluctuations at its output.

5.3.3 Scaling the quadrature amplitudes

To scale the quadrature amplitudes, we determine G using reference measurements from

a noise source of known variance. For each repetition of the calibration and capture protocols

discussed in Section 5.3, we make a reference measurement in which vacuum fluctuations of the

microwave field are injected into the electromechanical device. For this reference, the input to the

electromechanical device is Johnson noise emitted from a 50 Ω load that is thermally anchored to

the base stage of the dilution refrigerator held at a temperature T . For T < 25 mK and near the

frequency ωLC, the fluctuations in the microwave fields emitted from the load approach that of a

vacuum state with an average occupation of approximately 0.06 quanta[131]. As such, this input

microwave mode can be approximated as an ideal vacuum state described by the density operator

ρ0 = |0〉〈0|.

For the reference data set, we acquire a set of uncalibrated quadrature amplitudes that have

a total voltage variance σ2
V. If both the microwave and mechanical modes of the electromechanical

device were in pure vacuum states, then the voltage fluctuations measured at the detector would

have a total variance that corresponds to 1 quanta. For this case, one would calculate G so that

G−1σ2
V = 1. However, even after cooling the mechanical resonator, we observe that it is in a weak

thermal state with an average occupation nth. We take into account this estimate by calculating G

so that

G−1σ2
V = 1 + nth.
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We then use G to scale the quadrature amplitudes (defined by Eqns. 5.4) for both data sets to have

units of
√

quanta. To minimize systematic errors in the estimate of G due to potential drifts during

the measurement, we alternate between the vacuum reference and single photon measurements

every 512 executions of each protocol.

5.4 Capture, storage, and amplification of single photons

The calibration and capture protocols enable the capture, storage, and amplification of a

propagating microwave field as shown in Fig. 5.7. To verify that these two protocols can process

a non-Gaussian quantum state, we prepare the propagating field in a mixed vacuum and single-

photon state (see Section 4.3). Once the field is either directly amplified or captured, its state must

be determined. This task requires the ability to perform quantum state tomography on both the

input field and the mechanical resonator.

5.4.1 Tomographic procedure

By operating the electromechanical device as a low-noise amplifier as discussed in Section 5.2,

we can perform full quantum state tomography on both the input microwave field and the mechan-

ical resonator. For each repetition of the two protocols depicted in Fig. 5.10, we record a voltage

signal, V (t), at the detector during the amplification portion of each protocol. For each voltage

record, we use Eqns. 5.4 and extract a pair of quadrature amplitudes, X and Y , for the state of

either the resonator or input field. By making repeated measurements of V (t), we obtain a set of

quadrature amplitudes. We then use this information to extract a density matrix ρ via the method

of maximum likelihood state tomography discussed in Section 2.5.3 and in Ref. [121]. We refer to

the states of the input microwave field and of the mechanical resonator as ρe and ρm, respectively.

5.4.2 Tomographic results

After developing a tomographic procedure for determining the states of the input field and

mechanical resonator, we test the calibration and capture protocols (see Section 5.3) using single
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Figure 5.9: Correlated transmon qubit and mechanical states. The plot shows the probability of
the qubit occupying the excited state P (e) and the ρ11 component of the mechanical state’s density
matrix as a function of the qubit’s blue sideband drive detuning ∆bs = ω − ωbs.

photons generated by the cQED system. To avoid obscuring the single-photon signals with thermal

fluctuations of the mechanical resonator, we employ sideband cooling to prepare the mechanical

resonator near its quantum ground state of motion[53]. We execute this cooling step prior to the

start of each protocol, thereby cooling the resonator’s motion to a remaining occupancy of approx-

imately 0.1 quanta (see Section 5.2.1). In addition to cooling, we perform a reference measurement

in which no single photons are generated. This reference measurement enables proper scaling of

X and Y in units of
√

quanta as discussed in Section 5.3.3. Additionally, it serves as a control

to verify the scatter in X and Y increases in the case that single photons are employed. Such an

increase is expected for single-photon signals (see Section 2.1.3).

As a first test of the capture protocol with single photons, we verify that the qubit state and

reconstructed mechanical state ρm are correlated. Because we drive the transition |g〉|0〉 → |e〉|1〉 to

produce a single photon, the qubit excited state probability P (e) and the single-photon component

of ρm should depend on the sideband drive detuning ∆bs = ω − ωbs. Specifically, we expect that a

detuning of ∆bs = 0 will maximize the single-photon component of ρm. As shown in Fig. 5.9, these

two quantities are indeed correlated.

Next, we execute the calibration and capture protocols together with the tomographic proce-

dure discussed in Section 5.4.1. For both protocols, the tomography yields density matrix estimates
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Figure 5.10: Capture, storage, and amplification of single propagating photons. a, The diagram
shows the calibration protocol where the green decaying sinusoid represents an input microwave
field in the state ρe. Prior to injecting an input state, the mechanical mode described by ρm is
cooled close to its quantum ground state. A red cross indicates a mode was not measured. b,
Histograms of 512,000 measured quadrature amplitudes X and Y for the input state are plotted
such that the histograms form a discretized and normalized joint probability distribution Pr(X,Y ).
The labels ‘no photon’ and ‘photon’ indicate whether single photons were generated or not. c, The
diagonal elements of ρe are obtained using a maximum likelihood state tomography (Supplemental
Information). d, The diagram shows the capture protocol where ρm,i is the initial mechanical
state and τs is an adjustable storage time. After storage, the mechanical mode is in the final
state ρm,f. During amplification, the electrical mode is in a vacuum state ρ0. e, The figure shows
the difference of the ‘photon’ and ‘no photon’ histograms acquired using the capture protocol,
highlighting the phase symmetric character of a single phonon state. f, Diagonal elements of ρm

obtained at τs < 3 µs. g, The diagonal elements of ρm decay toward their thermal equilibrium values
as a function of τs. A model (solid lines) of ρm yields a characteristic storage time of τm = 137±6 µs
as discussed in Section 5.4.4.
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containing significant elements only on the diagonals as shown in Fig. 5.10c. In particular, we find

that the probability of detecting a single photon is [ρe]11 = 0.33+0.02
−0.01, where the limits are the

90% confidence interval as discussed in Appendix B. After capture, the probability of a single

phonon occupying the mechanical mode is [ρm]11 = 0.26+0.01
−0.02. In addition to performing tomogra-

phy on the mechanical mode, we confirm that the captured state is nonclassical and that it can be

mechanically-stored for an adjustable time.

5.4.3 Characterizing nonclassicality

To distinguish the captured state from a thermal or coherent state, we calculate the degree

of second-order coherence g
(2)
m for the mechanical state. This quantity is often used to characterize

the statistical properties of photons emitted from a source[98]. For example, an ideal single photon

source has ρ11 = 1 with all other elements equal to zero. This state yields g(2)(0) = 0. In general,

g(2)(0) =
〈n̂2〉 − 〈n̂〉
〈n̂〉2

(5.5)

where n̂ is the number operator. In terms of the density matrix elements, Eqn. 5.5 becomes

g(2)(0) =

∑
n
n(n− 1)ρnn(∑
n
nρnn

)2 (5.6)

where ρnn = 〈n|ρ|n〉. Here, we use Eqn. 5.6 and the density matrix elements presented in Fig. 5.10f

to calculate g
(2)
m = 0.89+0.05

−0.17 where the limits are the 90% confidence interval as discussed in

Appendix B. For comparison, a thermal or coherent state of motion yields g
(2)
m ≥ 1.

5.4.4 Characterizing the storage time

After capturing single photons, we vary the storage time τs and test the ability to mechanically

store a non-Gaussian state. The results of this test are shown in Fig. 5.10f. To quantify the storage

time, we use a master equation formalism to model the evolution of ρm with the characteristic

storage time τm as the only free parameter. The master equation is discussed in Section 2.1.4 and
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in Ref. [108]. In the number basis, it becomes a set of coupled ordinary differential equations given

by

dPn
dt

= −κ [(N + 1)nPn(t) +N(n+ 1)Pn(t)− (N + 1)(n+ 1)Pn+1(t)−NnPn−1(t)] , (5.7)

where Pn = 〈n|ρm|n〉 describes the probability of observing n excitations in the mechanical mode

and N = nm is the average occupation of the mechanical resonator’s environment. Because N � 1

as discussed in Section 5.2.1, we make the approximation N + 1 ≈ N . This approximation allows

one to parametrize Eqn. 5.7 using the decoherence rate, γm = κN , as a single parameter. By

discretizing and numerically integrating Eqn. 5.7, we obtain Pn(t). In this model, the mechanical

decoherence rate γm is a free parameter and the estimated density matrix elements of the initial state

are used to fix Pn(0). Simultaneous fits to the inferred diagonal elements presented in Fig. 5.10g

yields a characteristic storage time for a mixed photon state of τm = γ−1
m = 137 ± 6 µs, which is

about ten times longer than the time used to capture the input photon state.

As a control experiment, we do not capture and store single photons. For this experiment, we

execute the protocol depicted in Fig. 5.10 of the main text but without producing single photons

using the cQED system. The results of this experiment and fits to the model are shown in Fig. 5.11.

To model the data, we assume the mechanical resonator is initially in a thermal state and remains

thermal but with increasing average occupation

〈n〉 =
∑
n

nPn

as it equilibrates with the thermal bath. In this case, Eqn. 5.7 can be simplified by using

d

dt
〈n(t)〉 =

∑
n

n(t)
dPn(t)

dt
(5.8)

and Eqn. 5.7 to obtain

d

dt
〈n(t)〉 = −κ (〈n(t)〉 −N) . (5.9)

Using the solutions to this rate equation, and the thermal distribution

Pn =
〈n〉n

(〈n〉+ 1)n+1 , (5.10)
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Figure 5.11: Evolution of a mechanical thermal state. The plot shows the first three diagonal
density matrix elements of the extracted mechanical state ρm as a function of the storage time
τs. The plot is similar to the one in Fig. 5.10g, but for the control experiment in which no single
photons were generated and captured. The solid lines indicate a model of a thermal state that uses
τm as a free parameter. The fit yields τm = 137± 8 µs. For comparison, the dashed line indicates
the evolution of P1 for the initial mixed phonon state presented in Fig. 5.10g. In this case, a single
photon was captured and stored in the mechanical resonator.

We simultaneously fit the estimated density matrix elements shown in Supplementary Fig. 5.11 and

extract τm = 137± 8 µs, which agrees with the storage time obtained using single photons.

5.5 Characterization of the capture process

Having demonstrated the ability to capture single photons, we now characterize how the

capture process affects an arbitrary qubit state. In general, the process of converting a quantum

state from a propagating photon to motion of the mechanical resonator can be thought of as a

‘black box’ with an input and output[70], as depicted in Fig. 5.12. This black box takes an input

electrical state ρe and converts it to an output mechanical state ρm. These two states are related by

the quantum operation E where ρm = E(ρe). Ideally, the black box does not corrupt the converted

quantum state. In this case, E is the identity matrix and so ρm = ρe. However, in any real

experiment, there is loss and noise that corrupt the conversion process and so E will not simply be

the identity matrix. To characterize the quality of the map E , we use the average fidelity.



91

Figure 5.12: Black box model of the conversion process. The input (green) is described by the
state ρe. A process E converts ρe to mechanical motion described by the output state ρm.

5.5.1 Average fidelity characterizes process

In general, a quantum process is described mathematically by a completely-positive trace

preserving (CPTP) map

E : ρ→ E(ρ).

The average fidelity of a process is a measure of how well that process preserves quantum informa-

tion. It is defined as

Favg =

∫
dΨ 〈Ψ| E(|Ψ〉 〈Ψ|) |Ψ〉 (5.11)

where
∫
dΨ = 1. That is, the average fidelity gives the average overlap of the output of the process

with the initial state, averaged over all pure states. A related quantity is the entanglement fidelity,

which is defined as follows: let |φ〉 = 1
d2

∑
i
|i〉 |i〉 denote a maximally entangled state. Here, {|i〉}

is an orthonormal basis and d is the dimension of the Hilbert space on which the process E acts.

Then the entanglement fidelity is

Fe = 〈φ| (E ⊗ I)(|φ〉 〈φ|) |φ〉 . (5.12)

The entanglement fidelity measures how well a system’s entanglement with another system is pre-

served when the quantum process acts only on the first system. The entanglement fidelity can be

calculated by expanding Eqn. 5.12 in terms of its basis states:

Fe =
1

d2

∑
ij

〈i| 〈i| (E(|i〉 〈j|)⊗ |i〉 〈j|) |j〉 |j〉 . (5.13)

Because 〈i|j〉 = δij , the above expression simplifies to

Fe =
1

d2

∑
ij

〈i| E(|i〉 〈j|) |j〉 . (5.14)
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Figure 5.13: A set of linearly independent states. Converting this set of states is sufficient to
determine the average fidelity of the conversion process that acts on states of dimension d = 2.

The utility of the entanglement fidelity is that it is easy to calculate, and there is a simple formula

relating the average fidelity to the entanglement fidelity [87]:

Favg =
d× Fe + 1

d+ 1
(5.15)

Because quantum processes act as linear operators on the space of operators, the fidelity can be

determined if the outputs E(ρi) are known for each of a set of input states ρi that span the space

of operators on Hilbert space. For a Hilbert space of dimension d, d2 linearly independent density

matrices are required[128]. A set of four linearly independent states for d = 2 are shown Fig. 5.13.

5.5.2 Classical bound on the average fidelity

There is a bound of Favg = 2/3 for converting a single qubit state using only classical re-

sources. This bound is achieved as follows. Suppose we have two people, Alice and Bob, who want

to share quantum information with each other. Imagine Alice has a qubit prepared in state ρA,

which she wishes to send to Bob through a classical communication channel (e.g., a telephone). If

Alice and Bob share a maximally entangled Bell state, then this transmission of quantum infor-

mation can be achieved via a teleportation protocol[200]. However, the use of such an entangled

state would constitute a quantum resource and is thus not allowed in this consideration. The best

Alice can do then is measure the qubit in some basis, and report the outcome to Bob, who then

prepares his qubit in the eigenstate corresponding to Alice’s measurement outcome. The quantum

operation describing this process is

E(ρ) = P0 |0〉 〈0|+ P1 |1〉 〈1| (5.16)
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where P0 = 〈0| ρA |0〉 is the probability that Alice measures |0〉, and simlarly for P1. To calculate

the average fidelity, I insert this process into Eqn. 5.14:

Fe =
1

4

∑
ij

〈i| E(|i〉 〈j|) |j〉

=
1

4

∑
ij

〈i| 〈0|i〉 〈j|0〉 |0〉 〈0|+ 〈1|i〉 〈j|1〉 |1〉 〈1|) |j〉

=
1

2
.

Using Eqn. 5.15 and the above result, we find that Favg = 2/3. This bound can be generalized

by considering the problem of guessing the state of a qubit given an optimal measurement on

an ensemble of N identical copies of that qubit[201]. In this case, maximum possible fidelity is

(N + 1)/(N + 2), which equals 2/3 for an ensemble consisting of a single qubit, N = 1.

5.5.3 Conversion of qubits

Qubits are encoded as superpositions of zero and one photons that propagate in a transmis-

sion line connected to the electromechanical device. As discussed in Section 5.5.1, the process of

capturing a propagating state is described by a map E between incident and captured states whose

quality is characterized by the average fidelity Favg. To determine Favg, it is sufficient to capture

a set of states that includes a single photon state and superpositions of zero and one photons as

pointed out in Section 5.5.1. we can create superposition states by first preparing the transmon

qubit in the superposition 1√
2

(
|g〉+ eiϕ|e〉

)
, with varying phase ϕ, as shown in Fig. 5.14a.

To perform tomography on the qubit as shown in Fig. 5.14b, we measure the qubit’s ex-

cited state population P (e) using the electromechanical device as a low-noise amplifier (see Sec-

tion 4.2.2.2). Achieving full state tomography can be achieved by first preparing the qubit in a

superposition state and then measuring its Pauli components[202]. To determine the qubit’s −σz

component, we simply measure P (e). Next, to determine the −σy component, we apply a π/2 ro-

tation about the x-axis and then measure P (e). Lastly, we obtain the +σx component by applying

a π/2 rotation about the y-axis and then measuring P (e).



94

By driving the transition |g〉|0〉 → |e〉|1〉, we can transfer the superposition state from the

transmon to the cavity and then let the cavity state evolve into the propagating field. Operating

the capture protocol on this set of states shows that the phase of the qubit state is converted to

the motion of the mechanical resonator as shown in Fig. 5.14c.

To perform tomography on the input and captured states, we follow the procedure illustrated

in Fig. 5.10 and determine both ρe and ρm. To calculate the fidelity of the capture process in this

experiment, the estimated input and output density matrices are truncated to a Hilbert space

dimension of d = 2. The input states are obtained by estimating the density matrix of the input

microwave field after executing the calibration protocol. Similarly, the output states are obtained

by estimating the density matrix of the mechanical resonator state after executing the capture

protocol. A set of basis states is formed by using the following input states: a vacuum state, a

mixed vacuum and single-photon state, and mixed superposition states with phases chosen from the

set {0, π/2}. We expand operators |i〉 〈j| in this basis. The average fidelity Favg is then calculated

using the known input and output states presented in Table B.2 together with Eqns. 5.14 and 5.15.

The input and captured density matrices provide enough information to calculate Favg = 0.83+0.03
−0.06

for arbitrary qubit states. Crucially, the average fidelity exceeds 2/3, the highest possible fidelity

for transferring qubits using only classical resources as pointed out in Section 5.5.1.

5.5.4 Model of the capture process

The capture process maps the state of a propagating microwave field to the motion of the

mechanical resonator. This process can be viewed as implementing a beamsplitter interaction be-

tween the microwave and the mechanical modes of the electromechanical device[64]. A rudimentary

model of the capture process therefore involves sending the state of the microwave field through

one port of a beamsplitter and the state of the mechanical mode through the other input port.

The transmissivity of the beamsplitter models imperfect capture of the propagating mode. For an

ideal capture of the propagating microwave mode, there would be no reflected microwave power

off of the electromechanical device. After tracing over the output microwave mode, the mechanical
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Figure 5.14: Conversion of propagating qubits. a, The transmon qubit was prepared in the super-
position state 1√

2

(
|g〉+ eiϕ|e〉

)
with a phase ϕ chosen from the set {0, π/2, π, 3π/2}, as denoted by

the green arrow plotted on a Bloch sphere. b, The plot shows measured Pauli component ampli-
tudes, 〈σk〉, of the qubit state as a function of its phase where k = {x, y, z}. Single-shot readout
of the qubit state was achieved by using the electromechanical device as a nearly quantum-limited
amplifier. The solid lines are fits with the readout contrast of 60% as the only free parameter. c,
Difference between the ‘photon’ and ‘no photon’ histograms (similar to Fig. 5.10e) show the me-
chanical quadrature amplitudes, X and Y , as the transmon qubit’s phase was varied. d, The plot
shows the argument of the off-diagonal density matrix element, ρ01, for both the input microwave,
ρe, and captured mechanical, ρm, states as a function of ϕ. The mechanical state changes linearly
in ϕ, indicating that the conversion process is coherent. The apparent opposite dependence of ϕ
of the input and captured states is a result of the phase conjugate amplification of the mechanical
state compared to the direct amplification of the input microwave state (solid lines indicate the
expected behavior).
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Figure 5.15: Model of the capture process. The diagram depicts the three modes and the two
beamsplitter interactions used to model the capture process. The input state of the electrical mode
is ρe and the ancilla state ρan describes the state of the additional electrical mode. The mechanical
mode is in the thermal state ρth. The electrical modes couple via a beamsplitter interaction B1

and the states ρ′ and ρth couple via another beamsplitter interaction B2. A red cross denotes a
partial trace.

resonator would contain the state of the input propagating microwave mode.

A limitation of this model is that it does not take into account the non-zero occupancy of

the mechanical mode that is observed in this experiment. Ideally, an input vacuum state of the

microwave field to a beamsplitter with perfect efficiency would result in a vacuum state of the

mechanical mode. This model would describe the ideal cooling of the mechanical mode to its

quantum ground state. However, we observe a small residual occupation in the mechanical mode

nth. A possible source of this residual occupation is the internal loss of the LC circuit due to a

surface layer of two-level system fluctuators[203]. This internal loss couples the microwave mode

to a thermal bath with a non-zero occupation.

We incorporate imperfect capture efficiency and internal loss of the LC circuit into a heuristic

model, as shown in Fig. 5.15. This model contains two beamsplitters, B1 and B2, which model the

internal loss of the LC circuit and the capture efficiency, respectively. The input electrical state ρe

and an ancillary electrical thermal state ρan are sent through a beamsplitter B1, and the reduced

state of the output electrical mode is then mixed with a thermal state of the mechanical mode ρth

on beamsplitter B2. Explicitly, this complete process is

ρout = tre(B2 ρ
′ ⊗ ρthB

†
2) (5.17)

where ρ′ = tran(B1 ρan⊗ ρeB
†
1). The ancilla state ρan is taken to be a thermal state whose thermal

occupancy is determined implicitly by the requirement that a vacuum input state ρe = |0〉 〈0|

yields a thermal intermediate state ρ′ = ρth with mean occupancy nth = 0.1 quanta, as discussed
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in Section 5.2.1. In the Heisenberg picture[102, 98], a beamsplitter transforms the annihilation

operators for its two input modes a1 and a2 as B†a1,2B = a′1,2, wherea′1
a′2

 =

cos θ − sin θ

sin θ cos θ


a1

a2

 . (5.18)

Under this convention, θ = 0 gives the identity whereas θ = π/2 corresponds to perfect capture.

The beamsplitters in the model are thus each parametrized by an angle θi where i = {1, 2}, which

in turn is related to the reflection coefficient Ri = sin2θi.

For the data presented in Fig. 5.7, the fraction of energy reflected from the electromechanical

device is approximately 5%. As such, we use R2 = 0.95 for B2. Note that a low amount of reflected

energy corresponds to a large value of the beamsplitter reflection coefficient, because the reflection

coefficient models the efficiency of mode swapping. As discussed in Chapter 3, the fractional

resonator energy loss is measured to be approximately 0.14 and so we use R1 = 0.14 for B1.

This cascaded beamsplitter model provides a way to predict the captured mechanical states

from the known input states obtained using the calibration protocol. For example, using the

mixed single photon input state described in the main text, the model predicts [ρm]00 = 0.67,

[ρm]11 = 0.27, and [ρm]22 = 0.05, whereas the 90% confidence intervals for these quantities obtained

from tomography and bootstrapping are [0.68, 0.69], [0.24, 0.27], and [0.05, 0.06], respectively. The

model developed in this section is also used to estimate the bias in the average fidelity calculation.

This bias is due to truncating the input and output density matrices to dimension d = 2, as

discussed in Appendix B

The mathematical description of the capture process should be viewed as a heuristic model.

This model relies on two free parameters, the measured circuit loss and capture efficiency, which

were measured independently and may vary for each experimental run. Nevertheless, to the degree

that this model accurately describes the process, it provides prospects for improving the capture

process fidelity. For example, it is conceivable that reducing the circuit loss, increasing the capture

efficiency, and minimizing the occupation of the mechanical mode should yield a capture process

that approaches unit fidelity.
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Conclusion

In this thesis, I describe the conversion of signals that encode quantum information to the

motion of a micrometer-sized mechanical resonator. Such macroscopic resonators are appealing

for use in quantum science and technology because they can interface diverse physical systems

that include signals at optical and microwave frequencies[27], superconducting qubits[37], and even

single electronic spins[38]. Yet it has been an outstanding challenge to interface mechanical motion

with a propagating signal comprised of a single photon, which is essential in emerging quantum

communication and modular quantum computation architectures. To address this challenge, I use

the mechanical system discussed in Chapter 3 to capture single photons emitted from the cQED

system described in Chapter 4. Importantly, the cQED system generates superpositions of zero

and one photons that can encode a single quantum bit of information – that is, a qubit.

Converting propagating qubits to mechanical motion is a crucial step towards storing more

complex states for use in protocols that require the feedforward of information, such as certain

quantum teleportation[204] and quantum error correction schemes[205, 206]. For example, tele-

porting a quantum state utilizes shared entanglement[200]. To generate entanglement, one can use

the cQED system to produce the Bell state

|ψ〉 = (|g〉 |1〉+ |e〉 |0〉)/
√

2

where the first (second) ket represents the transmon qubit (propagating photon) state[207]. By

converting the Bell state to the motion of the mechanical resonator, its motional state can be en-

tangled with the transmon qubit. To verify entanglement, one must use quantum state tomography
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to determine the density matrix of the joint qubit and mechanical resonator system[208]. As part

of this tomographic procedure, one must determine not only the 〈σz〉 component of the qubit, but

also its 〈σx〉 and 〈σy〉 components. Determining these components requires a protocol that includes

a π/2 pulse to rotate the qubit[202] followed by a measurement pulse to probe the qubit state-

dependent shift of the cavity[164, 209]. A standard approach to efficiently probing the cavity state

is through the use of a cQED system that employs a separate qubit-readout resonator[180, 86]. To

efficiently measure the mechanical resonator’s state, it must be reconstructed using quantum state

tomography as pointed out in Section 2.5.

Efficient tomography of the mechanical state underscores the need for harnessing the mechan-

ical resonator itself as part of a low-noise amplifier. In this thesis, I use the mechanical resonator

to realize a phase-insensitive amplifier. As pointed out in Section 2.5.2, this type of amplifier in-

evitably adds 1/2 quanta of noise while simultaneously detecting both quadratures of a signal. In

contrast, achieving ideally noiseless detection requires the use of a phase-sensitive amplifier[131].

A route towards this goal is to use the actuation electrode (see Section 3.1.4) to parametrically

drive the mechanical resonator at twice its resonant frequency. Such an approach has been used

to amplify thermal states of a mechanical resonator[210], but has not yet been used to amplify

non-Gaussian quantum states. By pulsing the parametric drive, it may be possible to achieve

phase-sensitive gain that exceeds 30 dB. To add nearly no noise during this amplification process,

it must be performed on a timescale that avoids unwanted mechanical decoherence. Furthermore,

voltage fluctuations from the actuation line must be minimized so that they do not incoherently

drive the mechanical resonator.

Apart from demonstrating phase-sensitive mechanical amplification of a quantum state, an

outstanding challenge is to faithfully convert it to telecommunications light. Such light can ef-

ficiently distribute quantum information over distances that can easily exceed a few kilometers.

In contrast, microwave systems can only distribute quantum signals over tens of meters[211]. To

achieve conversion between microwave and optical light, emerging devices couple a mechanical

resonator to both microwave circuitry and an optical cavity[212, 213, 214, 215]. Yet the device
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currently under development in our lab is restricted to a narrow bandwidth of ∼ 10 kHz. To inter-

face the narrow-bandwidth photon source presented in Chapter 4 with this device, its bandwidth

must be boosted by at least two orders of magnitude. Furthermore, achieving high-fidelity trans-

duction requires that the added noise during the conversion process must be much less than 1/2

quanta[216]. Progress is already underway to combat this undesired added noise[217]. To this end,

microfabrication advances provide prospects for boosting mechanical lifetimes to the minute time

scale[218, 219].

Beyond advancing quantum information processing, this thesis takes a step towards probing

quantum phenomena in a fundamentally new regime[220]. In particular, recent proposals contend

that macroscopic mechanical resonators may serve as a testbed for quantum theory in massive

objects[221, 82, 222, 223, 224, 225, 226, 227, 228]. Yet many of these proposals face the extraordi-

nary challenge of accessing superpositions of macroscopically distinguishable mechanical states. By

converting superposition of zero and one photons to the motion of a macroscopic mechanical res-

onator, its center-of-mass motion can be delocalized over a distance of order the mode’s zero-point

motion xzp. To create more delocalized states of motion, the next step is to convert superpositions

with larger average photon numbers such as Schrödinger cat states[85]. Such an experiment is

daunting because the mechanical cat state can be easily thwarted by decoherence. But if carried

out successfully, it may provide an empirical way to falsify speculative conjectures that quantum

theory somehow breaks down for sufficiently massive objects.
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[197] A. D. Córcoles, J. M. Chow, J. M. Gambetta, C. Rigetti, J. R. Rozen, G. A. Keefe,
M. B. Rothwell, M. B. Ketchen, and M. Steffen, “Protecting superconducting qubits from
radiation,” Applied Physics Letters, vol. 99, no. 18, p. 181906, 2011. [Online]. Available:
http://dx.doi.org/10.1063/1.3658630

[198] J. E. Johnson, C. Macklin, D. H. Slichter, R. Vijay, E. B. Weingarten, J. Clarke, and
I. Siddiqi, “Heralded state preparation in a superconducting qubit,” Phys. Rev. Lett., vol.
109, p. 050506, Aug 2012. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.
109.050506

[199] G. B. P., Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook.
New York: John Wiley and Sons, 2011.
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Appendix A

Measurement network

A diagram of the measurement network is shown in Fig. A.1. The network consists of five

main parts: A transmon qubit is embedded in a microwave cavity (cQED system) with two ports

(Fig. A.1a). The cQED system is connected to an electromechanical device, which is mounted to

the base stage of a dilution refrigerator (Fig. A.1b). The center frequency of the electromechan-

ical device is controlled by a voltage bias provided by an actuation line (Fig. A.1c). Microwave

pumps and signals are synthesized and used to control and probe both the cQED system and the

electromechanical device (Fig. A.1d). Microwave signals are measured using a detector (Fig. A.1e).

A.1 Electromechanical device

The electromechanical device is mounted to the mixing chamber of a dilution refrigerator and

cooled to < 25 mK. The construction and operation of the electromechanical device is described in

Ref. [65].

A.2 Transmon qubit and microwave cavity

The transmon qubit consists of an Al/AlOx/Al Josephson junction shunted by a supercon-

ducting aluminum coplanar capacitor. This circuit is lithographically fabricated on a single-crystal

sapphire substrate and the coplanar capacitor acts as a dipole antenna. The Josephson inductance

is approximately 11 nH and the total capacitance is approximately 69 fF.

We embed the transmon qubit in a three-dimensional microwave cavity, as described in
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Figure A.1: Detailed schematic of the measurement network. a, Circuit quantum electrodynamics
(cQED) system. b, Electromechanical device. c, Actuation line. d, Microwave pumps and signal
synthesis. e, Detector.

Ref. [79]. The cavity is milled from a two pieces of extruded T6061 aluminium and the inner

surfaces of the cavity walls are mechanically polished. Two holes that serve as microwave coupling

ports are drilled into the cavity. One of the ports is weakly coupled to a pump line, which we use

to excite either the qubit or cavity. The other cavity port is strongly coupled to a transmission line
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which is routed to components connected to the electromechanical device.

To reduce stray magnetic fields that can affect the qubit’s coherence times, we use non-

magnetic materials such as copper and brass to construct components that are in close proximity

to the qubit and cavity. For additional magnetic shielding, we enclose the cavity in a Cryoperm

magnetic shield (Amuneal Manufacturing). At room temperature and inside the magnetic shield,

we measure an ambient magnetic field of ∼ 20 mG near the cavity. During operation of the

experiment, the magnetic shield is wrapped in absorptive microwave material (Eccosorb) and a

thin layer (< 100 µm) of aluminium.

Signals emitted from the cavity are routed using copper cables to the input of two low insertion

loss circulators and a directional coupler. These custom cryogentic and magnetically shielded

circulators (Raditek, Inc.) are used to route signals emitted from the cavity to the electromechanical

device, while also providing isolation from the high power (< 1 nW) red- and blue-detuned pumps.

At 300 K and near 7.283 GHz, the isolation of the two circulators connected in series was measured

to be −43 dB. A similar level of isolation was measured at 4 K. Each circulator is specified by the

manufacturer to have an insertion loss of 0.2 dB (at 100 mK). Following the circulators, the output

of the directional coupler is connected to the electromechanical device using a superconducting

niobium-titanium (NbTi) cable.

A.3 Actuation line

The voltage on the actuation line controls the center frequency of the electromechanical

device. A stable and low noise voltage source (Yokogawa 7651) provides a constant Vdc during the

operation of the experiment. Filtering on the actuation line is nearly identical to the configuration

described in Ref. [65].

A.4 Arbitrary microwave pump and signal generation

The red- and blue-detuned pumps at ωLC−ωm and ωLC+ωm, respectively, are generated using

two separate microwave synthesizers (Agilent PSG). However, these synthesizers by themselves can-
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not produce microwave pulses with programmable temporal envelopes as required by the protocols

depicted in Fig. A.2. To generate such pulses, we shape the temporal envelopes of microwave tones

emitted by the synthesizers. To this end, we use a double-balanced mixer (Marki MM1-0625HS)

driven by waveforms with a programmable amplitude provided by an arbitrary waveform generator

(Tektronix AWG 5014c). Waveforms generated by the AWG are shown in Fig. A.2. The shaped

microwave pulses have a dynamic range of approximately 50 dB, set by the LO-RF isolation of

the double-balanced mixer. Additional isolation (80 dB) is achieved by pulsing off the microwave

synthesizers when the pumps are not needed. The shaped pulses are then amplified (Mini-Circuits

ZVA-183V) and filtered[229]. Additionally, the pumps have Gaussian-smoothed edges given by a

characteristic time of σt > 200 ns. Such smoothed edges reduce spectral content at ωLC ± ωm that

could drive the mechanical resonator.

The red- and blue-detuned pumps carry enough power that could adversely affect the qubit’s

state. To reduce the pump power incident on the cQED system, we use variable attenuators and

phase shifters to create cancellation signals that reduce the pump power incident on the cQED

system by 30 to 40 dB. We monitor and adjust the relative cancellation of the pumps at the

detector.

To test the calibration and capture protocols, we inject a large amplitude coherent signal into

the electromechanical device (shown in Fig. 5.7). This test signal is generated using a microwave

synthesizer, and then shaped using a double-balanced mixer. Its temporal envelope is shown in

Fig. A.2. While executing the protocols for the experiments depicted in Fig. 5.7, the test signal

was not injected into the network.

Qubit pumps and the experiment’s local oscillator (LO) are generated using a set of phase

coherent microwave synthesizers (Holzworth HS9002A) that are modulated on and off using the

AWG. Two channels of the microwave synthesizers are dedicated to producing the experiment’s

LO and a pulse at half the qubit’s blue sideband transition frequency ωsb/2. The remaining two

channels are dedicated to producing microwave pulses (300 ns in duration) at the qubit’s ground to

excited state transition frequency ωge. The phase coherent microwave synthesizers are necessary for
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Figure A.2: Temporal envelopes of the microwave pumps and signals. a, The timing diagram
depicts the calibration protocol. Initially, a red-detuned ‘capture’ pump at ωLC − ωm cools the
motion of the mechanical resonator. After the capture pump turns off, a blue-detuned ‘amplify’
pump at ωLC +ωm is pulsed on for a duration τb. Input signals are coincident with the start of the
amplify pump. b, The timing diagram for the capture protocol. For this protocol, the red-detuned
pump is modulated for optimal capture of a signal with a decaying temporal envelope. The input
signals (either generated by the microwave synthesizers or the cQED system) are coincident with
the start of the modulation. The programmable storage time τs is set by the delay between the end
of the capture and the start of the amplification pump.

generating coherent propagating microwave fields (emitted from the cQED system) that encode the

state of the qubit. However, these microwave synthesizers have frequency accuracy errors (at the

1 mHz level) that lead to phase drifts relative to the Agilent PSG synthesizers. Additionally, timing

errors between the synthesizers and the AWG lead to additional phase errors. To reduce timing

errors, all synthesizers are set to frequencies that are integer multiples of the protocol repetition

rate (500 Hz). For constant phase drifts due to frequency accuracy errors, we separately measure

and correct for such phase drifts after acquiring a set of measurements.

A.5 Detector

Microwave signals incident or reflected off the electromechanical device are measured using a

sensitive microwave detector. The detector consists of a Josephson parametric amplifier (JPA), high

electron mobility transistor (HEMT) amplifier, a low noise room temperature amplifier (Miteq with
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+30 dB gain), a downconverting mixer, and a digitizer. For the protocols presented in Fig. A.2,

we use the electromechanical device as the low-noise preamplifier instead of the JPA. The down-

converting mixer is driven by a local oscillator detuned by 1 MHz from ωLC, and the inphase and

quadrature channels of this mixer are sampled using a high speed digitizer (AlazarTech ATS 9462).

A.6 Strong pumps saturate the JPA

Strong control pumps for the electromechanical device can saturate the JPA. In order to

efficiently capture a signal with a power decay rate of γ < 100 kHz, we use Γr > 1 MHz. For a

pump detuning of ∆r = −ωm and the parameters presented in Table 3.1, achieving such ∆r requires

a pump power of ∼ 10 nW at the input of the electromechanical device. This power can be reduced

by at least 30 dB using cancellation, which results in a power level of ∼ 10 pW at the input of the

JPA. When operating the JPA near ωLC, its 1 dB compression point is ∼ 30 fW in the presence of

the red-detuned pump. Thus, we expect the strong pump to saturate the JPA.

In contrast, we do not expect the red-detuned pump to adversely affect the transmon qubit

because it is sufficiently isolated from the strong pump. This isolation is at least 40 dB and is

primarily provided by the circulators placed between the electromechanical device and the cQED

system, as discussed in Appendix A.2. After cancelling the pump, we expect the total reduction

in its power to be > 70 dB. Thus, for a ∼ 10 nW pump, we expect the power at the input of the

cQED system to be ∼ 1 fW. For a pump detuning of ∆r = −ωm and the parameters presented

in Table 4.1, we expect the circulating power in the cQED system to be < 0.02 photons. For

comparison, non-destructive qubit readout powers are typically at the level of tens of photons. As

such, we do not expect the red-detuned pump to significantly affect the cQED system.
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Error analysis

B.1 Density matrix estimation

We use a parametric bootstrap method to analyze the statistical error in the density matrix

elements estimated by the maximum likelihood (ML) tomography. The estimated density ma-

trix ρest is used to generate synthetic data sets, and ML tomography is performed on each of the

synthetic data sets, building a histogram of values for each density matrix element. Example his-

tograms showing the bootstrapped diagonal density matrix elements for the mixed states obtained

using the calibration and capture protocols are shown in Fig. B.1. These histograms reveal an

asymmetry in the bootstrapped distributions, as well as bias in some of the density matrix element

estimates. It is therefore more appropriate to analyze the statistical error in terms of confidence

intervals rather than the standard error. The reported error bars indicate 90% basic bootstrap

confidence intervals obtained from these histograms [230]. The basic bootstrap confidence interval

is obtained as follows: let θ be the estimated parameter and let θlo and θup be the lower and upper

percentile values obtained from the bootstrapped histogram. That is, θlo (θup) is the value for

which 5% of bootstrapped values are less than (greater than) θlo (θup). The differences α = θ− θlo

and β = θup − θ between the estimated parameter value and the lower and upper percentile values

are then inverted around the estimated parameter θ to obtain the confidence interval [θ−β, θ+α].

For each inferred density matrix we create 1,000 synthetic data sets, with each data set

containing 102,400 simulated measurement outcomes. The ML tomography algorithm is applied

to each synthetic data set with the same number of iterations and Hilbert space truncation as was
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Figure B.1: Bootstrapped histograms. a, This figure shows the histograms of the ρ00, ρ11, and ρ22

density matrix elements obtained via bootstrapping on the estimated state of the input microwave
field in the single photon data set. The red bars indicate the values obtained by ML from the
experimental data. Each histogram is obtained by performing ML on 1,000 synthetic data sets
with 102,400 measurements each. b, This figure shows similar histograms, but for the mechanical
resonator state.

used on the experimental data generated by executing either the calibration or capture protocols.

To generate synthetic data sets, we use a Monte Carlo method to sample pairs of joint

quadrature values (Xk, Yk) from the Husimi Q-function Q(Xk, Yk) corresponding to the estimated

density matrix ρest. A uniformly distributed set of random points (Xk, Yk) all lying within a

sufficiently large radius from the origin in phase space is generated. The Q-function is computed

for each of these points, and points are then discarded with probability

1− Q(X,Y )

max
k

Q(Xk, Yk)

so that the remaining points are distributed according to the Q-function. For the data sets obtained

from the calibration protocol, the additional thermal noise nth in the mechanical mode must be

taken into account. In this case, the measured joint quadrature values are sampled not from the Q-

function of the microwave mode, but from the Q-function convolved with the added thermal noise
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Table B.1: Estimated density matrix elements assuming different values of nth in the quadrature
amplitude scaling and tomography procedures.

nth [ρe]00 [ρe]11 [ρe]22 [ρm]00 [ρm]11 [ρm]22

0.08 0.655 0.328 0.014 0.694 0.266 0.038
0.09 0.652 0.331 0.014 0.689 0.265 0.044
0.10 0.649 0.334 0.015 0.683 0.264 0.050
0.11 0.645 0.337 0.015 0.677 0.264 0.056
0.12 0.642 0.340 0.015 0.672 0.263 0.062

in the mechanical mode. We account for this added noise in our Monte Carlo sampling method by

simply adding Gaussian noise to each sample.

Our finite precision in calibrating the thermal noise in the mechanical mode is a source of

systematic error in the tomographic estimate of density matrix elements. Both the procedure for

rescaling histograms as well as the tomography assume a mechanical thermal occupancy of nth = 0.1

quanta. We therefore investigate how the density elements would change if the value of nth were

different. We let nth range from 0.08 to 0.12 in steps of 0.01, and for each step we obtain the

density matrix for both the input electrical and converted mechanical states. The diagonal density

matrices obtained with different values for nth are shown in Table B.1. We find that these density

matrix elements change linearly and by not more than ∼ 0.02 over the range in nth that we explore.

We use Eqn. 5.6 with the diagonal density matrix elements obtained via tomography to

calculate g
(2)
m = 0.89. We use the bootstrap error analysis described in Appendix B.1 to obtain a

90% confidence interval of [0.72, 0.94]. A histogram of bootstrapped values of g
(2)
m is displayed in

Supplementary Fig. B.2. The density matrix obtained via tomography acts on a truncated Hilbert

space with maximum Fock number n = 15. While the first 3 diagonal elements are presented in

Fig. 5.10, all 16 elements are used in the calculation of g
(2)
m . These elements rapidly become smaller

with increasing n such that both g
(2)
m and the bounds of the confidence interval are independent of

the Hilbert space truncation. We find that they converge to within 1% of our reported values once

n > 8.
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B.2 Average fidelity calculation

The formula for the average fidelity given by Eqn. 5.15 is actually only true if the process

maps all states into a Hilbert space of dimension d, the same dimension as the domain of the

process. In our experiment, the weak thermal occupation of the mechanical resonator leads to

output states with small but non-zero density matrix elements for n ≥ 2, in which case truncating

the output density matrices to dimension d = 2 leads to a systematic overestimation of the average

fidelity. We can account for this by using a more general expression Favg which is valid in the case

where the process takes states into a higher dimensional space than its domain:

Favg =
d

d+ 1
(Fe +A(E)) (B.1)

where

A(E) =
1

d2

∑
ij

〈i| E(|j〉 〈j|) |i〉 . (B.2)

Eqn. B.1 can be motivated by observing that for a process which does not map states into a

higher dimensional space, Eqn. B.2 is a sum of traces of density matrices (which each have unit

trace) and Eqn. 5.15 is recovered. That Eqn. B.1 is correct for processes which map states out

of their domain can be directly verified for simple processes such as the ‘erasure channel,’ given

by E(ρ) = (1− p)ρ+ p |ψex〉 〈ψex| , where |ψex〉 is some external state. For our data the correction

obtained by using Eqn. B.2 rather than Eqn. 5.15 is small, reducing the average fidelity from 0.84

to 0.83.

We obtain a 90% confidence interval on the value of the average fidelity by a bootstrap analysis

similar to the one described in Appendix B.1. We generated 1,000 synthetic data sets, where each

data set consists of 20,480 measurement outcomes on each of the four input and output states

obtained via tomography. We then run ML on these data sets and compute Favg. A histogram

of the results is shown in Supplementary Fig. B.3. Our final result is Favg = 0.83 with a 90%

confidence interval of [0.77, 0.86].

To estimate the systematic error in our average fidelity calculation which results from trun-

cating the input Hilbert space dimension, we employ the model of the capture process described
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Figure B.2: Bootstrapped histograms of the calculated g(2) function. The figure shows a histogram

of g
(2)
m for the captured mechanical state, obtained via bootstrapping on the density matrices

estimated by ML tomography. The red bar indicates the value calculated from the estimated
density matrices. The histogram is obtained by performing ML on 1,000 synthetic data sets with
102,400 measurements each.

in Section 5.5.4. Our model is a process whose average fidelity can be computed exactly; we find

Fmodel
avg = 0.82. We then simulate the entire experiment, using the model instead of the physical

capture process. Specifically, we use the four known input states to generate synthetic data which

we perform tomography on. We then send the estimated states through the model process and

use the output states to generate synthetic data which we again perform tomography on, before

finally calculating Favg. After 200 repetitions of this procedure we obtain a histogram of average

fidelities with mean F avg = 0.83. Our estimate of bias is then F avg −Fmodel
avg = 0.01, which is small

compared to the width of our 90% confidence interval of [0.77, 0.86].
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Figure B.3: Bootstrapped histograms of the average fidelity. The figure shows a histogram of
average fidelities calculated with 1,000 simulated experiments. Each simulated experiment involves
generating a synthetic data set of 20,480 Q-function measurements from the known input and output
states given in Supplementary Table B.2. ML tomography is then performed on each synthetic data
set and Favg is computed. The red bar indicates the value obtained from the experimental data.

Table B.2: Estimated density matrices used to calculate the average fidelity. The states were
estimated using 500 iterations of the RρR algorithm, which yields estimated density matrices of
dimension d = 16. We present the first 3× 3 elements of these matrices. The input states ρe were
estimated from 20,480 measurements of the input microwave fields after executing the calibration
protocol. For the capture protocol, measurements of amplified mechanical resonator state yield ρm.
The states labeled with a ‘1’ (‘2’) correspond to a vacuum (single photon) input. Similarly, states
labeled with a ‘3’ and ‘4’ correspond to the an input mixed state of a superposition of zero and one
photons, with a phase set by ϕ = 0 and ϕ = π/2, respectively.

Label Input state ρe Mechanical state ρm

1

0.994 + 0.000i 0.007 + 0.005i 0.005− 0.026i
0.007− 0.005i 0.004 + 0.000i −0.000 + 0.001i
0.005 + 0.026i −0.000− 0.001i 0.001 + 0.000i

 0.919 + 0.000i 0.005 + 0.001i 0.010− 0.006i
0.005− 0.001i 0.0620 + 0.000i −0.016 + 0.001i
0.010 + 0.006i −0.016− 0.001i 0.017 + 0.000i


2

 0.660 + 0.000i −0.013− 0.039i 0.030− 0.010i
−0.013 + 0.039i 0.283 + 0.000i 0.040− 0.021i
0.030 + 0.010i 0.040 + 0.021i 0.042 + 0.000i

  0.636 + 0.000i 0.004− 0.016i −0.034− 0.008i
0.004 + 0.016i 0.281 + 0.000i 0.021− 0.012i
−0.034 + 0.008i 0.021 + 0.012i 0.075 + 0.000i


3

0.826 + 0.000i 0.256− 0.019i 0.020− 0.003i
0.256 + 0.019i 0.173 + 0.000i 0.010− 0.005i
0.020 + 0.003i 0.010 + 0.005i 0.001 + 0.000i

 0.763 + 0.000i 0.180− 0.035i 0.018− 0.015i
0.180 + 0.035i 0.197 + 0.000i 0.024− 0.011i
0.018 + 0.015i 0.024 + 0.011i 0.036 + 0.000i


4

 0.775 + 0.000i 0.0451 + 0.294i −0.037− 0.015i
0.0451− 0.294i 0.217 + 0.000i −0.027 + 0.018i
−0.037 + 0.015i −0.027− 0.018i 0.006 + 0.000i

  0.759 + 0.000i 0.000 + 0.21i −0.031− 0.014i
0.000− 0.21i 0.234 + 0.000i 0.019− 0.017i
−0.031 + 0.014i 0.019 + 0.017i 0.004 + 0.000i
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