

Bounding the energy-constrained quantum and private capacities of phase-insensitive Gaussian channels

Kunal Sharma Quantum Science & Technologies (QST) Group, LSU arXiv:1708.07257, New J. Phys. **20** 063025 (Kunal **S**harma, Mark M. **W**ilde, Sushovit **A**dhikari, and Masahiro **T**akeoka)

Bounding the energy-constrained quantum and private capacities of phase-insensitive Gaussian channels

Kunal Sharma Quantum Science & Technologies (QST) Group, LSU arXiv:1708.07257, New J. Phys. **20** 063025 (Kunal **S**harma, Mark M. **W**ilde, Sushovit **A**dhikari, and Masahiro **T**akeoka)

Main Results

- 1. Upper bounds on the energy-constrained quantum and private capacities of all phase-insensitive Gaussian channels
 - Thermal channel
 - Amplifier channel
 - Additive-noise channel

Main Results

- 1. Upper bounds on the energy-constrained quantum and private capacities of all phase-insensitive Gaussian channels
 - Thermal channel
 - Amplifier channel
 - Additive-noise channel
- 2. Improved achievable rates of private communication over bosonic thermal channels.

Main Results

- 1. Upper bounds on the energy-constrained quantum and private capacities of all phase-insensitive Gaussian channels
 - Thermal channel
 - Amplifier channel
 - Additive-noise channel
- 2. Improved achievable rates of private communication over bosonic thermal channels.
- 3. Optimization problem for the energy-constrained, Gaussian channel discrimination.

Background: Quantum theory of information

 $\mathcal{N}_{A \to B}$ is a linear, completely positive, trace preserving map.

Background: Quantum Channel

$$\mathsf{Rate} = \frac{\log M}{n}$$

The capacity of a channel \mathcal{N} is the optimal rate at which that data can be transmitted with high fidelity given a large number of uses of \mathcal{N} .

Background: Quantum Capacity of a channel

Background - Private Capacity of a channel

Private Communication

Background - Capacities

Background - Capacities

m-mode quantum Bosonic system

For $i \in [m]$, let \hat{x}_i, \hat{p}_i denote the position- and momentum-quadrature operators.

Commutation relation

$$\hat{r} = (\hat{x}_1, \dots, \hat{x}_m, \hat{p}_1, \dots, \hat{p}_m)^T : [\hat{r}, \hat{r}^T] = i\Omega, \ \Omega \equiv \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} \otimes I_m$$

Displacement operator

$$D(\xi) \equiv \exp(i\xi^T \Omega \hat{r}),$$

where $\xi \in \mathbb{R}^{2m}$.

Covariance Matrix V_{ρ} , Mean Vector s_{ρ}

$$\begin{split} s_{\rho} &= \langle \hat{r} \rangle_{\rho} = \mathrm{Tr}[\hat{r}\rho], \\ V_{\rho} &\equiv \langle \{\hat{r} - s_{\rho}, \hat{r}^{T} - s_{\rho}^{T}\} \rangle_{\rho} = \mathrm{Tr}[\{\hat{r} - s_{\rho}, \hat{r}^{T} - s_{\rho}^{T}\} \rho] \end{split}$$

Wigner characteristic function and Quantum State

$$\chi_{\rho}(\xi) \equiv \text{Tr}\{D(\xi)\rho\}, \ \rho = \frac{1}{(2\pi)^m} \int d^{2m}\xi \ \chi_{\rho}(\xi) \ D^{\dagger}(\xi).$$

Gaussian State

$$\chi_{\rho}(\xi) = \exp\left(-\frac{1}{4}\left[\Omega\xi\right]^{T}V^{\rho}\Omega\xi + \left[\Omega\mu^{\rho}\right]^{T}\xi\right).$$

Gaussian Channel

$$\mu^{\rho} \longmapsto X\mu^{\rho} + d,$$
$$V^{\rho} \longmapsto XV^{\rho}X^{T} + Y.$$
$$Y + i\Omega - iX\Omega X^{T} \ge 0.$$

Phase-insensitive Gaussian channels:

 $X = \sqrt{\tau}I, Y = \nu I, d = 0.$

- $\tau < 1 \rightarrow$ Thermal bosonic channel
- $\tau > 1 \rightarrow \text{Quantum amplifier channel}$
- $\tau = 1 \rightarrow \text{Additive-noise Gaussian channel}$

where $\nu =$ variance of an additive noise. Moreover, $\nu \ge 0$ and $\nu^2 \ge (1 - \tau)^2$.

Background - Pure-loss bosonic channel

Input-output relation in Heisenberg picture

$$\hat{b} = \sqrt{\eta}\hat{a} - \sqrt{1 - \eta}\hat{e},$$
$$\hat{e}' = \sqrt{1 - \eta}\hat{a} + \sqrt{\eta}\hat{e}.$$

Background - Thermal channel

Thermal state

$$\theta(\bar{n}) \equiv \frac{1}{1+\bar{n}} \sum_{n=0}^{\infty} \left(\frac{\bar{n}}{\bar{n}+1}\right)^n |n\rangle \langle n| .$$

Background - Energy-constrained capacities

Energy-constrained quantum capacity [WQ16]

$$Q(\mathcal{N}, H, W) = \lim_{n \to \infty} \frac{1}{n} I_c(\mathcal{N}^{\otimes n}, \overline{H}_n, W),$$

where the energy-constrained coherent information of the channel is defined as

$$I_c(\mathcal{N}, H, W) \equiv \sup_{\rho: \operatorname{Tr}\{\rho H\} \le W} S(\mathcal{N}(\rho)) - S(\hat{\mathcal{N}}(\rho)),$$

and $\hat{\mathcal{N}}$ denotes a complementary channel of \mathcal{N} .

$$\overline{H}_n = \frac{1}{n} (H \otimes I \otimes \cdots \otimes I + \cdots + I \otimes \cdots \otimes I \otimes H).$$

Quantum Capacity of Degradable Channels

Degradable channels

Regularized information quantities are additive!

Quantum Capacity of Degradable Channels

Degradable channels

Regularized information quantities are additive!

 $Q(\mathcal{L}_{\eta,0}, N_S) = \max[g(\eta N_S) - g((1-\eta)N_S), 0], [WHG12, WQ16]$ $g(x) = (x+1)\log_2(x+1) - x\log_2 x.$

Background - Quantum-limited amplifier channel

Input-output relation in Heisenberg picture

$$\begin{split} \hat{b} &= \sqrt{G}\hat{a} + \sqrt{G-1}\hat{e}^{\dagger}, \\ \hat{e}' &= \sqrt{G-1}\hat{a}^{\dagger} + \sqrt{G}\hat{e}, \end{split}$$

where $G \geq 1$

Non-degradable channels

It is hard to compute!

Non-degradable channels

It is hard to compute!

Superadditivity of coherent information

 $nI_c(\mathcal{N}) < I_c(\mathcal{N}^{\otimes n})$

Non-degradable channels

It is hard to compute!

Superadditivity of coherent information

 $nI_c(\mathcal{N}) < I_c(\mathcal{N}^{\otimes n})$

Example: Depolarizing channel.

Non-degradable channels

It is hard to compute!

Superadditivity of coherent information

 $nI_c(\mathcal{N}) < I_c(\mathcal{N}^{\otimes n})$

Example: Depolarizing channel.

Superactivation of quantum capacity

Channels with zero quantum capacities: \mathcal{N}_1 and \mathcal{N}_2 . Use these channels together \rightarrow non-zero quantum capacity. Example: 50% Erasure channel and the entanglement binding channel.

Upper bounds on the energy-constrained quantum capacity

Three different upper bounds:

- Data-processing bound (Q_{U_1})
- ε -degradable bound (Q_{U_2})
- ε -close-degradable bound (Q_{U_3})
- Another data-processing bound (Q_{U_4})

Upper bounds on the energy-constrained quantum capacity

Three different upper bounds:

- Data-processing bound (Q_{U_1})
- ε -degradable bound (Q_{U_2})
- ε -close-degradable bound (Q_{U_3})
- Another data-processing bound (Q_{U_4})

Data-processing bound can be at most be 1.45 bits larger than a known lower bound.

Upper bounds on the energy-constrained quantum capacity

Three different upper bounds:

- Data-processing bound (Q_{U_1})
- ε -degradable bound (Q_{U_2})
- ε -close-degradable bound (Q_{U_3})
- Another data-processing bound (Q_{U_4})

Data-processing bound can be at most be 1.45 bits larger than a known lower bound.

Closeness of these upper bounds with a known lower bound for different parameter regimes.

$$\mathcal{L}_{\eta,N_B} = \mathcal{A}_G \circ \mathcal{L}_{\eta',0},$$

where $G = (1 - \eta)N_B + 1$, and $\eta' = \eta/G$ [WPG06, SS07, CGH06, GPNBLSC12, KS13].

Theorem

An upper bound on the quantum capacity of a thermal channel \mathcal{L}_{η,N_B} with transmissivity $\eta \in [1/2, 1]$, environment photon number N_B , and input mean photon number constraint N_S is given by

$$Q_{U_1}(\mathcal{L}_{\eta,N_B},N_S) \equiv g(\eta'N_S) - g[(1-\eta')N_S],$$

with $\eta' = \eta/((1 - \eta)N_B + 1)$.

Theorem

An upper bound on the quantum capacity of a thermal channel \mathcal{L}_{η,N_B} with transmissivity $\eta \in [1/2,1]$, environment photon number N_B , and input mean photon number constraint N_S is given by

$$Q_{U_1}(\mathcal{L}_{\eta,N_B},N_S) \equiv g(\eta'N_S) - g[(1-\eta')N_S],$$

with $\eta' = \eta/((1 - \eta)N_B + 1)$.

Theorem

 $Q_L(\mathcal{L}_{\eta,N_B},N_S) \le Q_{U_1}(\mathcal{L}_{\eta,N_B},N_S) \le Q_L(\mathcal{L}_{\eta,N_B},N_S) + 1/\ln 2$.

Data-processing bound

Data-processing bound

Proof sketch

 $\Delta(\mathcal{L}_{\eta,N_B},N_S) = Q_{U_1} - Q_L$. Take limit $N_S \to \infty$.

$$\begin{split} \omega_{B_2E_1E_2} &= (\mathrm{id}_{E_1} \otimes \mathcal{V}_{B_1 \to B_2E_2}^G) \circ \mathcal{U}_{A \to B_1E_1}^{\eta'}(\theta(N_S)) \\ Q_{U_1}(\mathcal{L}_{\eta,N_B}, N_S) &= S(B_2E_2)_\omega - S(E_1)_\omega \\ Q_L(\mathcal{L}_{\eta,N_B}, N_S) &= S(B_2)_\omega - S(E_1E_2)_\omega \\ \Delta(\mathcal{L}_{\eta,N_B}, N_S) &= S(E_2|B_2)_\omega + S(E_2|E_1)_\omega. \end{split}$$

Invariance of conditional entropy under local unitaries, displacement covariance of the channels, and concavity of conditional entropy.

Another data-processing bound Q_{U_4}

Let $\eta > (1 - \eta)N_B \rightarrow$ not entanglement breaking. $\mathcal{L}_{\eta,N_B} = \mathcal{L}_{\eta',0} \circ \mathcal{A}_G,$ where $G = \eta/\eta'$, and $\eta' = \eta - (1 - \eta)N_B,$ [*RMG18, SWAT18, NAJ18*].

 $A \qquad G \qquad B_1 \qquad f' \qquad B_2$

Theorem

An upper bound on the energy-constrained quantum capacity of a thermal channel \mathcal{L}_{η,N_B} with transmissivity $\eta \in [1/2, 1]$, environment photon number $N_B \ge 0$, such that $\eta > (1 - \eta)N_B$, and input mean photon number constraint $N_S \ge 0$ is given by

$Q_{U_4}(\mathcal{L}_{\eta,N_B}, N_S) = g(\eta N_S + (1-\eta)N_B) - g[(1/\eta' - 1)(\eta N_S + (1-\eta)N_B)],$ with $\eta' = \eta - (1-\eta)N_B$, [SWAT18, NAJ18].

Figure: The figure plots the data-processing bound (Q_{U_1}) , the upper bound (Q_{U_4}) and the lower bound (Q_L) on the energy-constrained quantum capacity of thermal channels.

Figure: The figure plots the data-processing bound (Q_{U_1}) , the upper bound (Q_{U_4}) and the lower bound (Q_L) on the energy-constrained quantum capacity of thermal channels.

Figure: The figure plots the data-processing bound (Q_{U_1}) , the upper bound (Q_{U_4}) and the lower bound (Q_L) on the energy-constrained quantum capacity of thermal channels.

Approximate Degradable Channel [SSWR14]

ε -degradable

A channel $\mathcal{N}_{A\to B}$ is ε -degradable if there exists a channel $\mathcal{D}_{B\to E}$ such that $\frac{1}{2} \left\| \hat{\mathcal{N}} - \mathcal{D} \circ \mathcal{N} \right\|_{\diamond} \leq \varepsilon$, where $\hat{\mathcal{N}}$ denotes a complementary channel of \mathcal{N} .

ε -close-degradable

A channel $\mathcal{N}_{A \to B}$ is ε -close-degradable if there exists a degradable channel $\mathcal{M}_{A \to B}$ such that $\frac{1}{2} \|\mathcal{N} - \mathcal{M}\|_{\diamond} \leq \varepsilon$.

Approximate Degradable Channel [SSWR14]

ε -degradable

A channel $\mathcal{N}_{A\to B}$ is ε -degradable if there exists a channel $\mathcal{D}_{B\to E}$ such that $\frac{1}{2} \left\| \hat{\mathcal{N}} - \mathcal{D} \circ \mathcal{N} \right\|_{\diamond} \leq \varepsilon$, where $\hat{\mathcal{N}}$ denotes a complementary channel of \mathcal{N} .

ε -close-degradable

A channel $\mathcal{N}_{A\to B}$ is ε -close-degradable if there exists a degradable channel $\mathcal{M}_{A\to B}$ such that $\frac{1}{2} \|\mathcal{N} - \mathcal{M}\|_{\diamond} \leq \varepsilon$.

 $\|\mathcal{N}-\mathcal{M}\|_{\diamondsuit}$

 $= \max_{|\psi\rangle_{RA}} \| (\mathrm{id}_R \otimes \mathcal{N}_{A \to B}) (|\psi\rangle \langle \psi|_{RA}) - (\mathrm{id}_R \otimes \mathcal{M}_{A \to B}) (|\psi\rangle \langle \psi|_{RA}) \|_1$

Uniform Continuity Bound (UCB)

UCB for the conditional quantum entropy with energy constraints [Win15]

For a Gibbs observable G, $\frac{1}{2} \|\omega_{AB} - \tau_{AB}\|_1 \leq \varepsilon < \varepsilon' \leq 1$, $Tr\{(G \otimes I_B)\omega_{AB}\}$, $Tr\{(G \otimes I_B)\tau_{AB}\} \leq W$, where $W \in [0, \infty)$, and $\delta = (\varepsilon' - \varepsilon)/(1 + \varepsilon')$, the following inequality holds

 $|H(A|B)_{\omega} - H(A|B)_{\tau}| \le (2\varepsilon' + 4\delta)H(\gamma(W/\delta)) + g(\varepsilon') + 2h_2(\delta).$

ε -close-degradable

ε -close-degradable

$$\frac{1}{2} \left\| \mathcal{L}_{\eta, N_B} - \mathcal{L}_{\eta, 0} \right\|_{\diamond} \le \frac{N_B}{N_B + 1}$$

ε -close-degradable bound

Theorem

An upper bound on the quantum capacity of a thermal channel \mathcal{L}_{η,N_B} with transmissivity $\eta \in [1/2,1]$, environment photon number N_B , and input mean photon number constraint N_S is given by

 $Q(\mathcal{L}_{\eta,N_B},N_S) \le Q_{U_3}(\mathcal{L}_{\eta,N_B},N_S) \equiv g(\eta N_S) - g[(1-\eta)N_S]$ $+ (4\varepsilon'+8\delta)g[(\eta N_S + (1-\eta)N_B)/\delta] + 2g(\varepsilon') + 4h_2(\delta) ,$

with $\varepsilon = N_B/(N_B + 1)$, $\varepsilon' \in (\varepsilon, 1]$ and $\delta = (\varepsilon' - \varepsilon)/(1 + \varepsilon')$.

ε -degradable

Recall:
$$\frac{1}{2} \left\| \hat{\mathcal{N}} - \mathcal{D} \circ \mathcal{N} \right\|_{\diamond} \leq \varepsilon.$$

Degrading channel

ε -degradable

$$\begin{aligned} & \operatorname{Recall:} \frac{1}{2} \left\| \hat{\mathcal{N}} - \mathcal{D} \circ \mathcal{N} \right\|_{\diamond} \leq \varepsilon. \\ & \operatorname{id}_{R} \otimes \hat{\mathcal{N}}_{A \to E_{1}E_{2}}, \operatorname{id}_{R} \otimes (\mathcal{D} \circ \mathcal{N})_{A \to E_{1}'E_{2}'} \end{aligned}$$

Degrading channel

ε -degradable bound

Theorem

Fix $\eta \in [1/2, 1]$. Let \mathcal{L}_{η, N_B} be a thermal channel with transmissivity η , and let $\mathcal{D}_{(1-\eta)/\eta, N_B}$ be a degrading channel. Then

$$\frac{1}{2} \left\| \hat{\mathcal{L}}_{\eta, N_B} - \mathcal{D}_{(1-\eta)/\eta, N_B} \circ \mathcal{L}_{\eta, N_B} \right\|_{\diamond} \leq \sqrt{1 - \eta^2 / \kappa(\eta, N_B)} \,,$$

with

$$\kappa(\eta, N_B) = \eta^2 + N_B(N_B + 1)[1 + 3\eta^2 - 2\eta(1 + \sqrt{2\eta - 1})].$$

ε -degradable bound

Theorem

An upper bound on the quantum capacity of a thermal channel \mathcal{L}_{η,N_B} with transmissivity $\eta \in [1/2,1]$, environment photon number N_B , and input mean photon-number constraint N_S is given by

 $Q_{U_2}(\mathcal{L}_{\eta,N_B}, N_S) \equiv g(\eta N_S + (1-\eta)N_B) - g(\zeta_+) - g(\zeta_-)$ $+ (2\varepsilon' + 4\delta)g([(1-\eta)N_S + (1+\eta)N_B]/\delta) + g(\varepsilon') + 2h_2(\delta) ,$

with

$$\varepsilon = \sqrt{1 - \eta^2 / \left(\eta^2 + N_B(N_B + 1)[1 + 3\eta^2 - 2\eta(1 + \sqrt{2\eta - 1})]\right)},$$

 $\varepsilon' \in (\varepsilon, 1]$, and $\delta = (\varepsilon' - \varepsilon)/(1 + \varepsilon')$, and ζ_{\pm} are well behaved non-negative functions of η, N_B and N_S

Figure: The figure plots the data-processing bound (Q_{U_1}) , the ε -degradable bound (Q_{U_2}) , the upper bound (Q_{U_4}) , and the lower bound (Q_L) on the energy-constrained quantum capacity of thermal channels.

Conclusion

- A systematic study of upper bounds on the energy-constrained quantum and private capacities of non-degradable Gaussian channels.
- Established several upper bounds on energy-constrained quantum and private capacities of all phase-insensitive quantum Gaussian channels.
- Our results establish strong limitations on any potential superadditivity of coherent information of a thermal channel in the low-noise regime.

Improved lower bound on the energy-constrained private capacity

$$P^{(1)}(\mathcal{N}, H, W) \equiv \sup_{\bar{\rho}_{\mathcal{E}_{A}}: \text{Tr}\{H\bar{\rho}_{\mathcal{E}_{A}}\} \leq W} [S(\mathcal{N}(\bar{\rho}_{\mathcal{E}_{A}})) - S(\hat{\mathcal{N}}(\bar{\rho}_{\mathcal{E}_{A}})) - \int dx \ p_{X}(x) [S(\mathcal{N}(\rho_{A}^{x})) - S(\hat{\mathcal{N}}(\rho_{A}^{x}))]],$$

Strategy

$$\begin{split} \mathcal{E} &\equiv \{p_{N_S^1}(\alpha), D(\alpha) \; \theta(N_S^2) \; D(-\alpha)\}, \\ p_{N_S^1}(\alpha) &= \frac{1}{\pi N_S^1} \exp(-|\alpha|^2/N_S^1), \end{split}$$

where $N_S^1 + N_S^2 = N_S$, which is the mean number of photons input to the channel.

Improved lower bound on the energy-constrained private capacity

Figure: The figures plot the optimized value of the lower bound on the private information $P_L(\mathcal{L}_{\eta,N_B}, N_S)$ (dashed line) and coherent information $I_c(\mathcal{L}_{\eta,N_B}, N_S)$ (solid line) of a thermal channel versus transmissivity parameter η .