
Bounds on Information Combining
Revisited

Rocky Mountain Summit on Quantum Information, Boulder

Christoph Hirche
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Information Combining
Quick recall!
Given random variables with side information (X1,Y1) and (X2,Y2):

What do we know about X1 + X2 given Y1Y2 and in particular
H(X1 + X2|Y1Y2)?

Here simplest setting: binary random variables.
Without conditioning:

X1 ∼
[

p
1− p

]
, X2 ∼

[
q

1− q

]
⇓

X1 + X2 ∼
[

pq + (1− p)(1− q)
p(1− q) + q(1− p)

]
≡
[

p ? q
1− p ? q

]
Therefore

H(X1 + X2) = h(p ? q) = h(h−1(H(X1)) ? h−1(H(X2)).
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With conditioning

Classical bounds on information combining.
Write H(Xi |Yi) = Hi ,

h(h−1(H1)?h−1(H2)) ≤ H(X1+X2|Y1Y2) ≤ log 2−(log 2− H1)(log 2− H2)

log 2
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h(h−1(H1)?h−1(H2)) ≤ H(X1+X2|Y1Y2) ≤ log 2−(log 2− H1)(log 2− H2)

log 2

Main ingredients:

gc(H1,H2) := h(h−1(H1) ∗ h−1(H2))

is convex in H1 for fixed H2, and vice versa, and

H(X |Y ) =
∑

y

p(y)H(X |Y = y).
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Classical bounds on information combining.
Write H(Xi |Yi) = Hi ,

h(h−1(H1)?h−1(H2)) ≤ H(X1+X2|Y1Y2) ≤ log 2−(log 2− H1)(log 2− H2)

log 2

With H1 = H2 = H,

0.799
H(log 2− H)

log 2
≤ h(h−1(H) ? h−1(H))− H

≤ H(X1 + X2|Y1Y2)− H

≤ H(log 2− H)

log 2
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Channel picture

WiXi Yi H(Xi |Yi) = H(Wi)

W2

W1

W1 � W2

X2

X1 Y1

Y2

H(X1 + X2|Y1Y2) = H(W1 � W2)
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Lower Bound: Summary

Here for the simple H1 = H2 = H case:

H(X1 + X2|B1B2)− H

= I(A : C|B)τ QCMI

≥ −2 log F(τACB,R′B→AB(τCB)) Fawzi − Renner

≥ −2 log cos

[
1
2

arccos[f 2]− 1
2

arccos f
]

∆− ineq.

≥ −2 log cos
[1

2
arccos[(1− 2h−1

2 (log 2− H))2] Concavity

− 1
2

arccos[1− 2h−1
2 (log 2− H)]

]
⇒

{
0.083 · H

1−log H , H ≤ 1
2 log 2

0.083 · log 2−H
1−log(log 2−H) , H > 1

2 log 2.
Duality/Simplify

with f := F(ρ0, ρ1).
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Channel Duality

For every channel W we can define a dual channel W⊥.
Additional uncertainty relation

H(W ) = log 2− H(W⊥)

and symmetry relation

H(W1 � W2)− (H(W1) + H(W2)) /2

=H(W⊥1 � W⊥2 )−
(

H(W⊥1 ) + H(W⊥2 )
)
/2.
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Channel Duality

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.05

0.10

0.15

H

classical upper boundclassical lower bound
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Channel Duality

Proposition 2 in Renes, 2017
For any classical-quantum channel W , (W⊥)⊥ ' Wsym. If W is
symmetric, then (W⊥)⊥ ' W

Theorem
Any bound on H(X1 + X2|Y1Y2) proven for symmetric channels, also
holds for asymmetric channels.
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Channel Duality
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CQMI

Conditional Quantum Mutual Information

H(X1 + X2|B1B2)− H1 = I(X1 + X2 : X2|B1B2)

Lower bounds on CQMI

I(A : C|B)τ ≥ −2 log F(τACB,R′B→AB(τCB))

Wait! What about other recoverability bounds?

I(A : C|B)τ � D(A : C|B)

I(A : C|B)τ ≥ DM(A : C|B)
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Recovery bounds
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Isn’t the D(A : C|B) bound wrong?

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

D(A : C|B1B2)

I(A : C|B1B2)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

D(A : C|B1B2) and DM(A : C|B1B2)

I(A : C|B1B2)

It still is! (Also for A and C classical)
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Conjectured Bounds

Let ρX1B1 and ρX2B2 be cq.-states with H1 and H2. Then:

H(X1 + X2|B1B2)− (H1 + H2)

≥

{
h(h−1(H1) ∗ h−1(H2))− (H1 + H2) H1 + H2 ≤ log 2

h(h−1(log 2− H1) ∗ h−1(log 2− H2))− log 2 H1 + H2 ≥ log 2

and

H(X1 + X2|B1B2) ≤ log 2− (log 2− H1)(log 2− H2)

log 2
.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.05

0.10

0.15
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Renyi entropies
Four conditional quantum Renyi entropies.

H̄↓α(A|B) = −D̄α(ρAB‖1⊗ ρB)

H̄↑α(A|B) = sup
σB

−D̄α(ρAB‖1⊗ σB)

H̃↓α(A|B) = −D̃α(ρAB‖1⊗ ρB)

H̃↑α(A|B) = sup
σB

−D̃α(ρAB‖1⊗ σB)

Reduce classically to:

H↑α(X |Y ) =
α

1− α
log

∑
y

p(y)

(∑
x

p(x |y)α

) 1
α


H↓α(X |Y ) =

1
1− α

log

(∑
y

∑
x

p(y)p(x |y)α

)
,
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Renyi entropies

We have the following equalities:

H↑α(X |Y ) =
α

1− α
log

(∑
y

p(y)e
1−α
α

H↑α(X |Y=y)

)

H↓α(X |Y ) =
1

1− α
log

(∑
y

p(y)e(1−α)H↓α(X |Y=y)

)
.

This motivates us to define the following quantities:

K ↑α(X |Y ) = e
1−α
α

H↑α(X |Y )

K ↓α(X |Y ) = e(1−α)H↓α(X |Y ).
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Renyi entropies

In analogy to the Shannon entropy case, we get

Hα(X1 + X2) = hα(h−1
α (Hα(X1) ? h−1

α (Hα(X2))).

We will see that the crucial quantity in the Renyi setting is the following

k
?
α(x , y) = k?α

(
k?α
−1(x) ? k?α

−1(y)
)

for ? ∈ {↑, ↓}.
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Renyi entropies

Theorem (BSC-bound)
If, for a given α and ? ∈ {↑, ↓}, the function k?α(x , y) is convex in x for
fixed y and vice versa, then one of the two following equations holds:
If α > 1, then

H?
α(X1 + X2|Y1Y2) ≤ hα(h−1

α (H?
α(X1|Y1)) ? h−1

α (H?
α(X2|Y2))).

If α < 1, then

H?
α(X1 + X2|Y1Y2) ≥ hα(h−1

α (H?
α(X1|Y1)) ? h−1

α (H?
α(X2|Y2))).

If k?α(x , y) is concave instead, the inequalities hold with ≤ and ≥
exchanged. These bounds are optimal, in the sense that equality is
achieved by binary symmetric channels.

C. Hirche – Information Combining 17/27



Renyi entropies

Theorem (BEC-bound)
If, for a given α and ? ∈ {↑, ↓}, the function k?α(x , y) is convex in x for
fixed y and vice versa, then one of the following equations holds:
If α > 1, then

H↑α(X1 + X2|Y1Y2) ≥ α

1− α
log

(δ↑α − K ↑α(X1|Y1))(δ↑α − K ↑α(X2|Y2))

1− δ↑α
+ δ↑α

H↓α(X1 + X2|Y1Y2) ≥ 1
1− α

log
(δ↓α − K ↓α(X1|Y1))(δ↓α − K ↓α(X2|Y2))

1− δ↓α
+ δ↓α,

with δ↑α = 2
1−α
α and δ↓α = 21−α. If α < 1, the inequalities hold with ≤ and

≥ exchanged.
If k?α(x , y) is concave instead, the inequalities hold with ≤ and ≥
exchanged.
These bounds are optimal, since equality is achieved by binary erasure
channels.

C. Hirche – Information Combining 18/27



Renyi entropies

Lemma (Convexity result from HASC18)
For α ≥ 2, the function

k↑α(k↑α
−1

(x) ? k↑α
−1

(y))

is convex in x for fixed y and vice versa.
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Renyi entropies

Conjecture
There exists a value α̂, such that

k↑α(k↑α
−1

(x) ? k↑α
−1

(y))

is convex for 0 < α < 1 and α ≥ α̂ and concave for 1 < α ≤ α̂.
Numerics suggests that 1.6 < α̂ < 1.7.
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Renyi entropies

Lemma
The function

k↓α(k↓α
−1

(x) ? k↓α
−1

(y))

is convex for 0 < α < 1 and 2 < α ≤ 3 and concave for 1 < α ≤ 2 and
α ≥ 3.
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Renyi entropies

Lemma
The function

k↓α(k↓α
−1

(x) ? k↓α
−1

(y))

is linear in x and y for α = 2 and α = 3.

This lemma is interesting as it tells us that the BSC-bound and the
BEC-bound both hold with equality. We have

H↓2 (X1 + X2|Y1Y2) = h2(h−1
2 (H↓2 (X1|Y1)) ? h−1

2 (H↓2 (X2|Y2)))

H↓3 (X1 + X2|Y1Y2) = h3(h−1
3 (H↓3 (X1|Y1)) ? h−1

3 (H↓3 (X2|Y2))).

These equations are remarkable as they give an equality in the conditional
case, something we usually only get for unconditioned entropies.
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Renyi entropies

And quantum?
Difficult to make a conjecture! For symmetry from duality we needed two
main tools:

Uncertainty:
H(W ) = log 2− H(W⊥)

Chain rule for mutual information leading to:

H(X1 + X2|Y1Y2) + H(X2|X1 + X2,Y1Y2) = H(X1|Y1) + H(X2|Y2),
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Entropy optimization

Alternative way of investigating convexity?
Witsenhausen and Wyner (1975) investigated the following optimization
problem:

F(x) = min
p(w |x)

H(X |W )≥x

H(Y |W ) .

It was furthermore shown that F(x) is always convex and that when
p(y |x) is given by a binary symmetric channel with channel parameter δ,
then the following holds

FBSC(x) = h(h−1(x) ? δ).

Due to the convexity of F(x), this substitutes an important step in the
information combining proofs.
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Information Bottleneck

The task can be expressed by the following rate function:

R(x) = max
p(w |x)

I(W ;X)≤x

I(W ; Y ).

First note, that an equivalent rate function is given by (in the sense, that is
describes the same curve)

R̂(x) = min
p(w |x)

I(W ;Y )≥x

I(W ; X),

which is a very common alternative formulation.
It can easily be seen that

R(x) = H(Y )− F(H(X)− x). (1)

It follows that R(x) has to be concave (and R̂(x) convex).
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Information Bottleneck

And quantum information?
Quantum versions of the information bottleneck have recently been
investigated by Salek, Cadamuro, Kammerlander and Wiesner (2017). In
particular an information theoretic task was given with optimal rate given
by a quantum generalization of the information bottleneck. The given
generalization is as follows:

RQ(x) = min
NX→W

I(W ;Y )ρWY≥x

I(X ′; W )τX ′W ,

with τX ′X a purification of ρX .
Unfortunately the result was not fully proven, but relies on the conjecture
that RQ(x) is convex in x . Note that in the classical case this convexity
leads to the convexity which is a crucial step in proving information
combining inequalities.
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leads to the convexity which is a crucial step in proving information
combining inequalities.
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Lower bound

Main ingredient

gc(H1,H2) := h(h−1(H1) ∗ h−1(H2))

is convex in H1 for fixed H2, and vice versa.

H(X1 + X2|Y1Y2)

=
∑
y1,y2

pY1=y1pY2=y2H(X1 + X2|Y1 = y1Y2 = y2)

=
∑
y1,y2

pY1=y1pY2=y2h(h−1(H(X1|Y1 = y1)) ? h−1(H(X2|Y2 = y2)))

≥
∑

y1

pY1=y1h(h−1(H(X1|Y1 = y1)) ? h−1(H(X2|Y2)))

≥ h(h−1(H(X1|Y1)) ? h−1(H(X2|Y2))).
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Concavity of von Neumann Entropy

Let ρi ∈ B(Cd ) and {pi}n
i=1 be a probability distribution.

H

(
n∑

i=1

piρi

)
−

n∑
i=1

piH(ρi)

≥ H({pi})− log
(

1 + 2
∑

1≤i<j≤n

√
pipjF(ρi , ρj)

)
.
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Evidence

States with Equality.

Numerics:
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Recovery bounds
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What are polar codes?
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What are polar codes?
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Speed of Polarization

# steps to reach [0, ε] ∪ [log 2− ε, log 2]: n ≈ 1
κ log 1

ε
⇒ Rate R = I(W )− ε with polynomial blocklength ≈ poly(1/ε).

C. Hirche – Information Combining 6/8



Speed of Polarization

# steps to reach [0, ε] ∪ [log 2− ε, log 2]: n ≈ 1
κ(log 1

ε )2

⇒ Rate R = I(W )− ε with subexponential blocklength ≈ (1/ε)log(1/ε).
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Non-stationary channels

Also:
Bounds for H1 6= H2 give

a conceptually simple proof of polarization (without martingales),

that also works for non-stationary channels.

C. Hirche – Information Combining 8/8


	Appendix

