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Resource theory:

} Free states, e.g. separable states;

} Resource states, e.g. entangled states like |Φm〉 � 1
√

m

∑m
i�1 |ii〉;

} Free operations, e.g. LOCC, SEP, SEPP, PPT...

A special case of resource theory:

} Free states: incoherent states I :�
�
ρ ≥ 0 : Tr ρ � 1, ρ � ∆

�
ρ

� 	
;

} Resource states: coherent state like |Ψm〉 � 1
√

m

∑m
i�1 |i〉.

} Free operatioins, e.g. SIO, IO, DIO, MIO.

Quantum coherence as a resource:

} Implement the Deutsch-Jozsa algorithm [Hillery, 2016];

} Quantum state merging [Streltsov et al., 2016];

} Quantum channel simulation [Díaz et al., 2018];

} ...



Free operations Distillation of quantum coherence
1711.10512 & 1804.09500

MIO

IODIO

SIO

MIO

IODIO
SIO
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Semidefinite conditions for MIO and DIO:

} MIO: E (|i〉〈i |) � ∆ (E (|i〉〈i |)) for all i.

} DIO: MIO and ∆
�
E

�|i〉〈 j |��
� 0 for i , j.

} Maximally incoherent operations (MIO): E (I) ⊆ I ;
} Dephasing-covariant incoherent operations (DIO): [E ,∆] � 0;

} Incoherent operations (IO):

Kraus operators {Ei} such that
EiρE†i

Tr EiρE†i
∈ I for all ρ ∈ I ;

} Strictly incoherent operations (SIO): both Ei and E†i are incoherent.

More about quantum coherence theory refer to [Streltsov, Adesso, Plenio, 2017] and
quantum resource theory refer to [Chitambar and Gour, 2018]...
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Resource
state

Target
state

Π

ρ Ψm

The fidelity of coherence distillation under the class of operations Ω is defined by

FΩ
�
ρ,m

�
:� max
Π∈Ω

TrΠ
�
ρ

�
Ψm . (1)

The one-shot ε-error distillable coherence under the class of operation Ω is defined as

C(1),ε
d ,Ω

�
ρ

�
:� log max

�
m ∈ N

�
FΩ

�
ρ,m

�
≥ 1 − ε

	
. (2)

The asymptotic distillable coherence can be given as

Cd ,Ω
�
ρ

�
� lim
ε→0

lim
n→∞

1
n

C(1),ε
d ,Ω

�
ρ⊗n �

. (3)

Similarly we can define the coherence cost of a quantum state Cc ,Ω
�
ρ

�
.
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Reversibility for entanglement theory [Brandão and Plenio, 2010] and other resource
theory [Brandão and Gour, 2015] only known under resource (asymptotically)
non-generating maps. The case of coherence theory set a difference from the others.
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Theorem
For any state ρ and operation classΩ ∈ {MIO,DIO}, the fidelity of coherence distillation and
the one-shot distillable coherence can both be written as the following SDPs:

FΩ
�
ρ,m

�
� max

{
Tr Gρ ��� 0 ≤ G ≤ 1, ∆ (G) � 1

m
1

}
, (4)

C(1),ε
d ,Ω

�
ρ

�
� − log min

{
η ��� Tr Gρ ≥ 1 − ε, 0 ≤ G ≤ 1,∆ (G) � η1}

. (5)

Proof ingredients: symmetry ofΨm and semidefinite conditions for MIO.

Then we observe that the optimal operation MIO admits the structure of DIO.

Useless 

resource

Given 

resource



G
D

ε
H
(ρ‖G)

Denote the set of diagonal Hermitian
operators with unit trace,

J �
�
G

�
Tr G � 1, ∆ (G) � G

	
.

Then C(1),ε
d ,Ω

�
ρ

�
� min

G∈J
Dε

H
�
ρ‖G

�
.

Remark: Similar characterizations independently found by Winter’s group.
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For the case of pure states, we go beyond MIO and DIO.

Theorem

For any pure state |ψ〉, we have
FSIO

�
ψ,m

�
� FIO

�
ψ,m

�
� FDIO

�
ψ,m

�
� FMIO

�
ψ,m

�
,

C(1),ε
d ,SIO

�
ψ

�
� C(1),ε

d ,IO
�
ψ

�
� C(1),ε

d ,DIO
�
ψ

�
� C(1),ε

d ,MIO
�
ψ

�
.

MIO

IODIO

SIO

MIO

IODIO
SIO

PIO

Sketch of proof: FSIO
�
ψ,m

�
� FMIO

�
ψ,m

�

} Introduce a intermediate quantity 1
m ‖|ψ〉‖2

[m] which
admits max

�
TrψW : 0 ≤ W ≤ 1,∆ (W) ≤ 1

m1
	
;

} Compare SDPs and have FMIO
�
ψ,m

�
≤

1
m ‖|ψ〉‖2

[m];

} Construct |η〉 such that λψ ≺ λη (ψ
SIO
−−−→ η) and

F
�
η,Ψm

�
�

1
m ‖|ψ〉‖2

[m], thus FSIO
�
ψ,m

�
≥

1
m ‖|ψ〉‖2

[m].
More details refer to arXiv: 1711.10512.
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Resource state: ρ

Target state: Ψm

Garbage state: ω

Flag register: L

For any triple
�
ρ,m , ε

�
, the maximum success probability of coherence distillation

under the operation class Ω ∈ {SIO, IO,DIO,MIO} is defined as

PΩ
�
ρ→Ψm , ε

�
:� max p (6a)

s.t. ΠA→LB
�
ρ

�
� p |0〉〈0|L ⊗ σ +

�
1 − p

� |1〉〈1|L ⊗ ω, (6b)

F (σ,Ψm) ≥ 1 − ε, Π ∈ Ω, 0 ≤ p ≤ 1. (6c)

Twirling T
�
ρ

�
�

1
d!

∑
i PiρPi where Pi is permutation of reference basis.

Simplification without compromising the maximum success probability:

} Garbage state ω
∆
−→ ∆

�
ρ

� T
−−→ 1/m;

} Optimal output state σ
T
−−→ Ψεm whereΨεm :� (1 − ε)Ψm + ε (1 −Ψm) / (m − 1);

} PΩ
�
ρ→Ψm , ε

�
� PΩ

�
ρ→Ψεm , 0

�
.
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Theorem

For any triplet
�
ρ,m , ε

�
and operation class Ω, the maximal success probability is given by

PΩ
�
ρ→Ψm , ε

�−1
� min

�
t ∈ R+

�
Ψεm ∈ t · Sρ

	
where (7)

Sρ :�
�
E

�
ρ

� �
E ∈ Ωsub

	
is the set of all output operators of ρ under the operation classΩsub

(completely positive and trace-nonincreasing maps (sub-operations)).



t 

m



 m

Intuition: the closer the state ρ toΨm (more coherent)⇒ the less we need to expand
the set Sρ ⇒ the larger success probability we can obtain.
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Theorem

For any triplet
�
ρ,m , ε

�
, the maximal success probability of distillation under MIO/DIO are

PMIO
�
ρ→Ψm , ε

�
� max. Tr Gρ

s.t. ∆ (G) � m∆ (C) , (8a)

0 ≤ C ≤ G ≤ 1, (8b)

Tr Cρ ≥ (1 − ε)Tr Gρ. (8c)

PDIO
�
ρ→Ψm , ε

�
� max. Tr Gρ

s.t. Eqs. (8a , 8b , 8c) ,
G � ∆ (G).

Proof ingredients: symmetry ofΨεm and semidefinite conditions for MIO and DIO.
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PMIO
�
ρ→Ψm , ε

�
� max. Tr Gρ

s.t. ∆ (G) � m∆ (C) , 0 ≤ C ≤ G ≤ 1, Tr Cρ ≥ (1 − ε)Tr Gρ.

Theorem
For any triplet

�
ρ,m , 0

�
with a full-rank state ρ, it holds that PMIO

�
ρ→Ψm , 0

�
� 0.

} Any generic density matrix has full rank;

} Non-continuity: |PMIO (Ψεm→Ψm , 0) − PMIO (Ψm→Ψm , 0) | � 1;

} Depolarizing noise: α · ρ + (1 − α)1/m is full rank;
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ρ→Ψm , ε

�
� max. Tr Gρ

s.t. ∆ (G) � m∆ (C) , 0 ≤ C ≤ G ≤ 1, Tr Cρ ≥ (1 − ε)Tr Gρ.

Theorem
For any triplet

�
ϕ,m , 0

�
with a coherent pure state |ϕ〉 � ∑n

i�1 ϕi |i〉, ϕi , 0, n ≥ 2, it holds

PMIO
�
ϕ → Ψm , 0

�
≥

n2∑n
i�1 |ϕi |−2


n − m
n − 1

ϕ̃ +
n (m − 1)

n − 1
∆

�
ϕ̃

�

−1

∞

≥
n2

m
�∑n

i�1 |ϕi |−2
�> 0,

where |ϕ̃〉 :� 1
√

s

∑n
i�1

ϕi
|ϕi |2 |i〉 with s �

∑n
j�1 |ϕ j |−2 .

} PMIO
�
Ψ2 → Ψ106 , 0

�
≥

1
106−1

. Gambling!

Fundamental difference between MIO and DIO, contrast to the deterministic case:

} PMIO(Ψn→Ψn+1 , 0) ≥ n−1
n → 1;

} PDIO(Ψn→Ψn+1 , 0) � 0.
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} PMIO
�
Ψ2 → Ψ106 , 0

�
≥

1
106−1

. Gambling!

Fundamental difference between MIO and DIO, contrast to the deterministic case:

} PMIO(Ψn→Ψn+1 , 0) ≥ n−1
n → 1;

} PDIO(Ψn→Ψn+1 , 0) � 0.
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Recall some results in entanglement theory:

} |ϕ〉 � ∑n
i�1
√
ϕi |ii〉, ϕi nonincreasing, λϕ :�

�
ϕi

�
i ;

|ψ〉 � ∑n
i�1

√
ψi |ii〉, ψi nonincreasing, λψ :�

�
ψi

�
i ;

} [Nielsen, 1999] ϕ
LOCC
−−−−−→ ψ iff λϕ ≺ λψ ;

} [Vidal, 1999] PLOCC
�
ϕ → ψ, 0

�
� mink∈[1,n]

∑n
i�k ϕi∑n
i�k ψi

.

For any pure state |ϕ〉 � ∑n
i�1
√
ϕi |i〉, it holds [Chitambar and Gour, 2016; Zhu et al, 2017]

P(S)IO
�
ϕ → Ψm , 0

�
�




0 if rank ∆
�
ϕ

�
< m ,

min
k∈[1,m]

m
k

d∑
i�m−k+1

ϕi otherwise.
(9)

Theorem

For any pure state ϕ and any m, we have

PDIO
�
ϕ→Ψm , 0

�
� P(S)IO

�
ϕ→Ψm , 0

�
. (10)

Sketch of proof: to show PDIO
�
ϕ→Ψm , 0

�
≤ P(S)IO

�
ϕ→Ψm , 0

�
, use the minimization

problem for DIO and construct feasible solutions.
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Theorem
For any pure state |ϕ〉 � ∑n

i�1 ϕi |i〉 with nonzero coefficients ϕi , it holds that

PDIO
�
ϕ→Ψm , ε

� 


> 0 if n ≥ m or if n < m and ε ≥ 1− n
m ,

� 0 if n < m and ε < 1− n
m .
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strong converse theorem in channel
coding theory: the coding success
probability goes to zero if the cod-
ing rate exceeds the capacity of the
channel.



Non-tradeoff phenomenon Distillation of quantum coherence
1711.10512 & 1804.09500

Theorem
For any pure state |ϕ〉 � ∑n

i�1 ϕi |i〉 with nonzero coefficients ϕi , it holds that

PDIO
�
ϕ→Ψm , ε

� 


> 0 if n ≥ m or if n < m and ε ≥ 1− n
m ,

� 0 if n < m and ε < 1− n
m .

  0 0.2 0.4 0.6 0.8   1

Distillation fidelity

  0

0.2

0.4

0.6

0.8

  1

S
u

cc
es

s 
p

ro
b
ab

il
it

y

(|0〉 + 3|1〉) /√10→Ψ3

This is “analogous” to the (pretty)
strong converse theorem in channel
coding theory: the coding success
probability goes to zero if the cod-
ing rate exceeds the capacity of the
channel.



Distillation with catalytic assistance Distillation of quantum coherence
1711.10512 & 1804.09500

ρ 6−→ σ but ρ ⊗ γ −→ σ ⊗ γ

PΩ
�
ρ ⊗ γ → Ψm ⊗ γ, 0

�
> PΩ

�
ρ → Ψm , 0
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1 − q
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v2 and γ � Ψ2 with

|v1〉 � 1
2
(|00〉 − |01〉 − |10〉 + |11〉)

|v2〉 � 1
5
√

2
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F

p

1

1

0

achievable
region

MIO=DIO in general
MIO = DIO = IO = SIO for pure states

MIO>DIO
DIO = IO = SIO for pure states

} SDP characterizations for one-shot distillation rate and maximum success
probability under MIO and DIO;

} For Ω ∈ {DIO,MIO}, C(1),ε
d ,Ω

�
ρ

�
� min

G∈J
Dε

H
�
ρ‖G

�
;

} No-go theorem: no full-rank state can be perfectly transformed intoΨm under free
operations, not even probabilistically!

} There is a non-tradeoff phenomenon between fidelity and success probability
under DIO.
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} Can we recycle the garbage state ω if the distillation process fails?

} Any interesting phenomenon for probabilistic coherence dilution?

} More detailed analysis of catalytic scenario?



Thanks for your attention!

See arXiv:
1711.10512 & 1804.09500

for more details


