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Distillation of quantum coherence

Quantum coherence 1711.10512 & 1804.09500

Resource theory:

© Free states, e.g. separable states;
© Resource states, e.g. entangled states like |D;,;) = \/Lm X lii);
© Free operations, e.g. LOCC, SEP, SEPP, PPT...

A special case of resource theory:

© Free states: incoherentstates Z :={p > 0: Trp=1,p=A(p) };
© Resource states: coherent state like [V, ) = \/%7 il
© Free operatioins, e.g. SIO, 10, DIO, MIO.

Quantum coherence as a resource:

© Implement the Deutsch-Jozsa algorithm [Hillery, 2016];
©® Quantum state merging [Streltsov et al., 2016];
® Quantum channel simulation [Diaz et al., 2018];

© ..
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Free operatlons 1711.10512 & 1804.09500

MIO

Semidefinite conditions for MIO and DIO:
© MIO: & ([i)(i]) = A(& (Ji)(i])) for all i.
‘ ' ® DIO: MIO and A (& (i)(j[)) = 0 for i # j.
© Maximally incoherent operations (MIO): & (Z) € Z;

© Dephasing-covariant incoherent operations (DIO): [&, A] = 0;

© Incoherent operations (IO):

E;pEt
‘s €Zforallp eZ;

Kraus operators {E;} such that
TrE;pE

© Strictly incoherent operations (SIO): both E; and E? are incoherent.

More about quantum coherence theory refer to [Streltsov, Adesso, Plenio, 2017] and
quantum resource theory refer to [Chitambar and Gour, 2018]...
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Resource Target
state state
o—— o
—
p Wi

The fidelity of coherence distillation under the class of operations Q) is defined by
F, = TrII(p) Wy,.
0 (p,m) = maxTrIT(p) Wy (1)
The one-shot ¢-error distillable coherence under the class of operation Q2 is defined as
e
C;lz; (p) :=logmax{m e N|Fq(p,m)>1-¢}. (2)

The asymptotic distillable coherence can be given as

Ca (p) = lim lim lC(l),s (p®n). )

eo0n—e0 4,0

Similarly we can define the coherence cost of a quantum state C. ¢ (p).
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Capio(p) < Camio (p) < Cemmo (p) < Cepio (p)
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Cr(p):= min D (pllo) =D (pllA (p))

[Winter and Yang, 2016]
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Reversibility for entanglement theory [Brandao and Plenio, 2010] and other resource
theory [Brandao and Gour, 2015] Only known under resource (asymptotically)
non-generating maps. The case of coherence theory set a difference from the others.
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[Winter and Yang, 2016] [Zhao et al., 2017]

r(p)
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[Chitambar, 2017] |

Reversibility for entanglement theory [Brandao and Plenio, 2010] and other resource
theory [Brandao and Gour, 2015] Only known under resource (asymptotically)
non-generating maps. The case of coherence theory set a difference from the others.
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For any state p and operation class Q € {MIO, DIO}, the fidelity of coherence distillation and
the one-shot distillable coherence can both be written as the following SDPs:

FQ(p,m):max{TeriosGSIl,A(G):%IL}, (4)

Cfil;’; (p) = —logmin{n| TrGp>21-¢,0<G<1,A(G)= qIL}. (5)

Proof ingredients: symmetry of W, and semidefinite conditions for MIO.

Then we observe that the optimal operation MIO admits the structure of DIO.
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Theorem
For any state p and operation class Q € {MIO, DIO}, the fidelity of coherence distillation and
the one-shot distillable coherence can both be written as the following SDPs:

FQ(p,m):max{TeriosGSIl,A(G):%IL}, (4)

Cfil;’; (p) = —logmin {1] | TrGp>21-¢,0<G<1,A(G)= qIL} . (5)
Proof ingredients: symmetry of W, and semidefinite conditions for MIO.

Then we observe that the optimal operation MIO admits the structure of DIO.

Denote the set of diagonal Hermitian
G operators with unit trace,

we

p J={G| TtG=1, A(G)=G}.

(1), . :
Then  C; ) (p) = min D (pllG).
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SDP characterizations 1711.10512 & 1804.09500

Theorem
For any state p and operation class Q € {MIO, DIO}, the fidelity of coherence distillation and
the one-shot distillable coherence can both be written as the following SDPs:

FQ(p,m):max{TeriosGSIl,A(G):%IL}, (4)

Cfil;’; (p) = —logmin{n| TrGp>21-¢,0<G<1,A(G)= qIL}. (5)

Proof ingredients: symmetry of W, and semidefinite conditions for MIO.

Then we observe that the optimal operation MIO admits the structure of DIO.

Denote the set of diagonal Hermitian
G operators with unit trace,

p J={G| TtG=1, A(G)=G}.
(1),¢ — mi €
Then C, ) (p) = IGI1€1? D (pllG).

Remark: Similar characterizations independently found by Winter’s group.
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Pure state 1711.10512 & 1804.09500

For the case of pure states, we go beyond MIO and DIO.

Theorem

For any pure state |1), we have
Fsio (y, m) = Fio (¢, m) = Fpio (¢, m) = Faio (¢, m),

1 1 1 1
Czio (#) = Caio (¥) = Cyio (#) = Coao (¥)-

Sketch of proof: Fsio (1/; m) = Fmio (zp m)
i © Introduce a intermediate quantity - |||1p>||[m] which

admits max {TryW :0 < W < 1,A(W) < IL};
©® Compare SDPs and have Fyio (w m) < |||1p>||lmj,'
\ J © Construct |n) such that Ay < Ay (P —> n) and

F (1, W) = S I9)I, , thus Fsio (¢, m) = LR, -

More details refer to arXiv: 1711.10512.
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0/1 Resource state: p

TL Target state: Wy,
Garbage state:

P —£ ) I1 B olw 8 @
—/ Flag register: L

For any triple (p, m, ¢), the maximum success probability of coherence distillation
under the operation class Q € {SIO, IO, DIO, MIO} is defined as
Po (p—)‘I’,n, s) ‘=max p (6a)
st TIasrp (p) = plOXO0lL ® 0 + (1 - p) 11|, ® w, (6b)
F(o,Wyn)21-¢,I1€Q, 0<p <1 (6¢)
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0/1 Resource state: p

TL Target state: Wy,
Garbage state:

P —£ ) I1 B olw 8 @
—/ Flag register: L

For any triple (p, m, ¢), the maximum success probability of coherence distillation
under the operation class Q € {SIO, IO, DIO, MIO} is defined as

Po(p— Wy, €) :=max p (6a)
st TIasrp (p) = plOXO0lL ® 0 + (1 - p) 11|, ® w, (6b)
F(o,Wyn)21-¢,I1€Q, 0<p <1 (6¢)

Twitling 7 (p) = % 2.i PipP; where P; is permutation of reference basis.

Simplification without compromising the maximum success probability:

T
©® Garbage state @ L A(p) = 1/m;

T . )
© Optimal output state 0 — W, where Wi, :=(1 - &)W, + e (1 = Wy,) / (m = 1);
©® Po(p—=Wm, e)=Pa(p—>WE,0).
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Geometric interpretation
For any triplet (p, m, €) and operation class Q, the maximal success probability is given by
@)

Po (p—>\I’m,e)_1 =min{t e R, | W5, €t Sy} where

Sp :={&(p) | & € Qsup} is the set of all output operators of p under the operation class Qs

(completely positive and trace-nonincreasing maps (sub-operations)).

~_

Intuition: the closer the state p to \W;; (more coherent) = the less we need to expand

the set S, = the larger success probability we can obtain.
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For any triplet (p, m, €), the maximal success probability of distillation under MIO/DIO are

Pyio (p— Wi, €) = max. TrGp

s.t. A(G)=mA(C), (8a)
0<C<G<1, (8b)
TrCp > (1-¢)TrGp. (8¢)

Ppio (p =Wy, €) = max. TrGp
s.t. Egs. (8a,8D,8¢),
G=A(G).

Proof ingredients: symmetry of W}, and semidefinite conditions for MIO and DIO.
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Zero-error case: Pyvio (p = Wiy, 0)

Pyio (p—= W, €) = max. TrGp
st. A(G)=mA(C),0<C<G<1, TrCp=(1-¢)TrGp.

For any triplet (p, m,0) with a full-rank state p, it holds that Pxgo (p— Wi, 0) = 0.
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Zero-error case: Pyvio (p = Wiy, 0)

Pyio (p—= W, €) = max. TrGp
st. A(G)=mA(C),0<C<G<1, TrCp=(1-¢)TrGp.

For any triplet (p, m,0) with a full-rank state p, it holds that Pxgo (p— Wi, 0) = 0.

© Any generic density matrix has full rank;
©® Non-continuity: |Pyio (W, = Wi, 0) = Pyvio (Wi =Wy, 0) [ =1;

© Depolarizing noise: a - p + (1 — @) 1/m is full rank;
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Zero-error case: Pyvio (p = Wiy, 0)

Pyio (p— Wi, €) = max. TrGp
st. A(G)=mA(C),0<C<G<1, TrCp=(1-¢)TrGp.

For any triplet (¢, m,0) with a coherent pure state |p) = Y| @ili), p; # 0, n > 2, it holds

=il nz
>—>0,
) m (2:1:1 |(Pi|_2)

n2

n-m—- n(im-1)
IR 4@

n—l(p n-1

Pyio ((p - \Pm,O) >

where Q) = % Z;‘:] l(r)(i"‘z liy with s= 2;7:1 |(p/-|‘2.
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1
©® Pyio (\yz — \1’106,0) > 067
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© Pyio (W2 = Wi, 0) > 102_1. Gambling! @




Distillation of quantum coherence
1711.10512 & 1804.09500

Zero-error case: Pyvio (p = Wiy, 0)

Pyio (p— Wi, €) = max. TrGp
st. A(G)=mA(C),0<C<G<1, TrCp=(1-¢)TrGp.

For any triplet (¢, m,0) with a coherent pure state |p) = Y| @ili), p; # 0, n > 2, it holds

=il nz
>—>0,
) m (2:1:1 |(Pi|_2)

n2

n-m—- n(im-1)
IR 4@

n—l(p n-1

Pyio ((p - \Pm,O) >

where Q) = % Z;‘:] l(r)(i"‘z liy with s= 2;7:1 |(p/-|‘2.

© Pyio (W2 = Wi, 0) > 102_1. Gambling! @

Fundamental difference between MIO and DIO, contrast to the deterministic case:

© Pmio(Wn = Wy41,0) 2 n’_;l -1
© Ppio(Wn—W,41,0)=0.
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Zero-error case: Ppio (p = Wy, 0)

Recall some results in entanglement theory:

® |p)= 2?21 V@ilii), @; nonincreasing, Ay, = ((Pf)i;
) = Z;’Zl \/Eh‘i), Y; nonincreasing, Ay := (1/;,»)1;

LOCC
© [Nielsen, 1999] ¢ —— P iff Ay < Ay ;
_ ) i 9
® [Vidal, 1999] PLocc ((p -, 0) = minge[,y] —Z{,_I; w; .
i=k 7
For any pure state lp) = Z?:l V@ili), it holds [Chitambar and Gour, 2016; Zhu et al, 2017]

0 if rank A () < m,

Pyio (¢ = Wi, 0) = ()

ke[l m] k Z @; otherwise.

i=m—k+1



Distillation of quantum coherence
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Recall some results in entanglement theory:

© |p)y= X", V@ilii), ; nonincreasing, Ay := (¢;),;
vy =%", \/Eh‘i), ; nonincreasing, Ay := (l,l;i)i;

LOCC
©® [Nielsen, 1999] ¢ —— ¢ iff )\ql < /\¢ ;
. TP
® [Vidal, 1999] PLocc (¢ — 1, 0) = minge[q,n] —Zir: wi
i-
For any pure state |p) = 1-1:1 V@ili), it holds [Chitambar and Gour, 2016; Zhu et al, 2017]

0 if rank A () < m,

Z @; otherwise.
i=m—k+1

For any pure state ¢ and any m, we have

Psyio (¢ = Wi, 0) = )

ke[l m] k

Ppio (=W, 0) = Pgio (p—Wu,0). (10)

Sketch of proof: to show Ppio ((p -, O) < Psyo ((p -V, 0), use the minimization
problem for DIO and construct feasible solutions.
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For any pure state |@) = I, ;i) with nonzero coefficients ¢;, it holds that

Success probability
o o o
IS > >

S
S}

0
0

Ppio (¢ =W, €) {

— MIO

- - DIO

O~
0.2 0.4 0.6 0.8 1

Distillation fidelity

9 . 3 n
>0 ifn>morifn <mande >1-,

=0 ifn<mande <1-%.

(10 +3]1)) /10— W3
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For any pure state |@) = I, ;i) with nonzero coefficients ¢;, it holds that

Success probability
o o o
IS > >

S
S}

0
0

Ppio (¢ =W, €) {

— MIO

- - DIO

O~
0.2 0.4 0.6 0.8 1

Distillation fidelity

9 . 3 n
>0 ifn>morifn <mande >1-,

=0 ifn<mande <1-%.

(10 +3]1)) /10— W3

This is “analogous” to the (pretty)
strong converse theorem in channel
coding theory: the coding success
probability goes to zero if the cod-
ing rate exceeds the capacity of the
channel.



Distillation with catalytic assistance BELE eI E TG

1711.10512 & 1804.09500

p/—obutp®y —o®y |L
4 B

Po(p®y =Wy ®y,0)> Pq(p = Wy, 0) P&y (T > 0®y/o
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0/1
p/—obutp®y —o®y |L
B
Pa(p®y = ¥n©y,0>Palp > Wy, 0) POy —A=| 11 fE ooy

0/1

L
A B 4
p_>—>—>0/w Pa(p = Wi, €) > Po(p = Wi, €)
e C c

o
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0/1
p/—obutp®y —o®y |L
B
Po(p@y > Wn®7,00>Palp > W,,0)  pOr == 1 |Fsoeyie
0/1
A_s L B
g olo Po(pl—)\y7”'£)>PQ(P_)\ymr5)
Y ———> —
(o8 C,
055
2 os| | Cotalyst-assisted Taking as an example the two-qubit state
% — - Unassisted . p=q-v1+(1-q)v2and y =V, with
<045 .
5 1
2 04 o1) = 5 (100) — [01) — [10) +[11))
g
2035 1
- [02) = —= (2|00) + 6]01) - 3[10) + [11))
03== 5v2
0.1 02 0.3 04 05

State parameter
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Summary

MIO=DIOin general
MIO = DIO =10 = SIO for pure states

[y

MIO>DIO
DIO =10 = SIO for pure states

achievable ____ |
region

1 F

©® SDP characterizations for one-shot distillation rate and maximum success
probability under MIO and DIO;

1),¢ . .
© For Q € {DIO,MIO}, C}') (p) = min Df; (pl|G)

© No-go theorem: no full-rank state can be perfectly transformed into W, under free
operations, not even probabilistically!

© There is a non-tradeoff phenomenon between fidelity and success probability
under DIO.
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Discussions 1711.10512 & 1804.09500

© Can we recycle the garbage state w if the distillation process fails?
© Any interesting phenomenon for probabilistic coherence dilution?

© More detailed analysis of catalytic scenario?



Thanks for your attention!

See arXiv:

1711.10512 & 1804.09500

for more details



