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Motivation

• In a quantum computer, as the qubits propagate through the circuit,

they are subjected to noisy unitary gates, and are subjected to

decoherence.

• In general, quantum processor consists noisy quantum gates, also

called quantum channels.

• How is the ability of quantum processors to transmit entanglement

limited?
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Derive tighter bounds on the rate at which entanglement can be

transmitted over finite number of uses of quantum channels in an

unassisted quantum communication protocol.
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Why resource theory of unextendibility?

• Resource theory of entanglement used to give bound on quantum

capacity.

• In prior work, Rains relaxed resource theory of entanglement by using

PPT framework to obtain better bounds on quantum capacities.

• Here we relax resource theory of entanglement in a different way

using framework of resource theory of unextendibility to get tighter

bounds on non-asymptotic quantum capacity.
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Resource theory of

unextendibility



Resource theories

A resource theory consists of three main ingredients (e.g., a resource

theory of entanglement):

• The resource states (e.g., entanglement)

• The free states (e.g., separable state)

• The restricted set of free operations (e.g., LOCC).
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Resource theory of unextendibility

The resource theory of unextendibility constitutes:

Free states : k-extendible states.
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k-extendible states: Definition

For a positive integer k ≥ 2, ρAB is k-extendible w.r.t. system B if

• State extension ∃ a quantum state ωAB1···Bk
such that

TrB2···Bk
{ωAB1···Bk

} = ρAB ,

with Bi ' B ∀i ∈ [k].
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k-extendible states: Definition

• Permutation invariance. The extension state ωAB1···Bk
is invariant

with respect to permutations of the B systems

ωAB1···Bk
= Wπ

B1···Bk
ωAB1···Bk

Wπ†
B1···Bk

,

where Wπ
B1···Bk

is a unitary representation of the permutation

π ∈ Sk, with Sk denoting the symmetric group.

8



k-extendible states: Example

• Consider the state:

1

2
ΦAB1 +

1

2
πA ⊗ πB1

• A 2-extension of this state is

1

2
ΦAB1 ⊗ πB2 +

1

2
ΦAB2 ⊗ πB1

• Only separable states are k-extendible for every k.

• For every finite k, there are k-extendible, yet entangled states.
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k-extendible states

Figure 1: k-extendible states
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Resource theory of unextendibility

The resource theory of k-unextendibility constitutes

Free states : k-extendible states.

Resource states : All k-unextendible states.

Free operations : k-extendible channels.
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Resource theory of 3-unextendibility

Figure 2: Resource states and free states in resource theory of

3-unextendibility.
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k-extendible channels

A bipartite channel NAB→A′B′ is called k-extendible if

• Channel extension. ∃ a quantum channel MAB1···Bk→A′B′1···B′k
that extends NAB→A′B′ , such that for all quantum states θAB1···Bk

:

TrB′2···B′k{MAB1···Bk→A′B′1···B′k(θAB1···Bk
)}
= NAB→A′B′(θAB1

),

with Bi ' B and B′i ' B′ for all i ∈ [k].
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k-extendible channels

• Permutation covariance. For all quantum states θAB1···Bk
:

MAB1···Bk→A′B′1···B′k(Wπ
B1···Bk

θAB1···Bk
Wπ†
B1···Bk

) =

Wπ
B′1···B′k

MAB1···Bk→A′B′1···B′k(θAB1···Bk
)Wπ†

B′1···B′k
,

where Wπ
B1···Bk

and Wπ
B′1···B′k

are unitary representations of the

permutation π ∈ Sk.
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k-extendible channels: Property

• k-extendible channels preserve k-extendible states.

• This definition of k-extendible channel is consistent with the

resource theory of unextendibility as k-extendible channels are free

operations.

15



k-extendible channels: Property

• k-extendible channels preserve k-extendible states.

• This definition of k-extendible channel is consistent with the

resource theory of unextendibility as k-extendible channels are free

operations.

15



k-extendible channels: Example

• Any 1W-LOCC channel is a k-extendible channel.

• Any 1W-LOCC can be expressed as

DC̄B→B′ ◦ PC′→C̄ ◦MC→C′ ◦ EA→A′C
where EA→A′C , MC→C′ is a measurement channel, PC′→C̄ is a

preparation channel and DC̄B→B′ is the quantum channel, and C ′ is

a classical register.
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k-extendible channels: Example

• Any 1W-LOCC channel is a k-extendible channel.

Figure 3: Extension of a 1W-LOCC channel.
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Why resource theory of unextendibility?

• Set of free states in the resource theory of unextendibility is larger

than the set of free states in the resource theory of entanglement.

• By relaxing the resource theory of entanglement, we obtain tighter,

non-asymptotic upper bounds on quantum communication rates of a

quantum channel.
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Quantum communication protocol
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Figure 4: Quantum communication protocol with post-processing by

k-extendible channels.
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Quantum communication protocol

ÂA’
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n n

• (n,M, ε) quantum communication protocol assisted by a

k-extendible post-processing begins with Alice preparing a

state ρRAn .
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Quantum communication protocol

ÂA’
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• She transmits the systems An ≡ A1 · · ·An using the channel N⊗nA→B .
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Quantum communication protocol

ÂA’

A1
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A

B1
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BAlice Bob
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N

N

N
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• Alice and Bob then perform a k-extendible channel KRBn→MAMB
,

and the resulting state satisfies the following performance condition:

F(KRBn→MAMB
(N⊗nA→B(ρRAn)),ΦMAMB

) ≥ 1− ε,

where ΦMAMB
is the maximally entangled state of Schmidt rank M .
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Quantum communication protocols: Converse bound

For all integer k ≥ 2 and for any (1,M, ε) quantum communication

protocol that uses a quantum channel N assisted by a k-extendible

post-processing:

− log2

[
1

M
+
M − 1

Mk

]
≤ sup
ψRA

Eεk(R;B)τ ,

where

Eεk(R;B)τ := inf
σRB∈EXTk(R;B)

Dε
h(τRB‖σRB),

τRB := NA→B(ψRA), and the optimization is with respect to pure states

ψRA such that |R| = |A|, and for ε ∈ [0, 1]

Dε
h (τ‖σ) := − log2 inf

Λ
{Tr{Λσ} : 0 ≤ Λ ≤ I ∧ Tr{(I − Λ)τ} ≤ ε}.
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Converse bound: Proof outline

• An isotropic state ρ
(t,d)
AB is U ⊗ U∗-invariant for an arbitrary unitary

U , where |A| = d = |B|. For t ∈ [0, 1], it can be expressed as

ρ
(t,d)
AB = tΦdAB + (1− t)IAB − ΦdAB

d2 − 1
.

• An isotropic state ρ
(t,d)
AB is k-extendible if and only if

t ∈
[
0, 1

d

(
1 + d−1

k

)]
[JV13].

• The extendibility of a k-extendible state does not change under the

action of U ⊗ U∗ for a unitary U .

• Eεk does not increase under the action of a k-extendible channel.
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Examples: Depolarizing and

Erasure channels



Depolarizing channels

• A qubit depolarizing channel acts on any input density operator ρ as

DpA→B(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ),

where p ∈ [0, 1] is the parameter determining the deviation from a

unitary evolution, and X, Y , and Z are the Pauli operators.

• We want to upper bound the following.

logM ≤ log

(
k − 1

k

)
− log

(
2−E

ε
k(Rn;Bn) − 1

k

)
,

Eεk(Rn;Bn)ρ := min
σRnBn∈EXTk(Rn;Bn)

Dε
h(τRnBn‖σRnBn).
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Depolarizing channel

Eεk(Rn;Bn)ρ := min
σRnBn∈EXTk(Rn;Bn)

Dε
h(τRnBn‖σRnBn),

• τRnBn = τ⊗nRB = (DpA→B (ΦRA))
⊗n

• τRB = (1− p)ΦRB + p
3 (I − ΦRB)

• Choose σRnBn to be a tensor power of qubit isotropic states σ⊗nRB ,

where σRB = (1− t)ΦRB + t
3 (I − ΦRB).

• Eεk(Rn;Bn)ρ ≤ mintD
ε
h ({1− p, p}⊗n‖{t, 1− t}⊗n)
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Depolarizing channels

• We then obtain the following bound:

logM ≤ log

(
1− 1

k

)
−log

(
2−D

ε
h({1−p,p}⊗n‖{t,1−t}⊗n) − 1

k

)
.

• This reduces to calculating the hypothesis testing relative entropy

between Bernoulli distributions.

• The optimal measurement (Neyman-Pearson test) for the resulting

classical hypothesis testing relative entropy between Bernoulli

distributions is then well known, giving an explicit upper bound on

logM .
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Figure 5: Non-asymptotic upper bounds on the number of qubits reliably transferred

over a depolarizing channel with p = 0.15, and ε = 0.05.
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Figure 6: Non-asymptotic upper bounds on quantum capacity of a depolarizing

channel with p = 0.24, and ε = 0.05.
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Erasure channel

• An erasure channel acts on a qubit as

EpA→B(ρA) = (1− p)ρB + p |e〉〈e|B .

where p ∈ [0, 1] is the parameter of the erasure channel and |e〉〈e| is

a pure state, orthonormal to the input state.

• We want to upper bound the following.

logM ≤ log

(
k − 1

k

)
− log

(
2−E

ε
k(Rn;Bn) − 1

k

)
,

Eεk(Rn;Bn)ρ := min
σRnBn∈EXTk(Rn;Bn)

Dε
h(τRnBn‖σRnBn).
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How to choose σRnBn?

• For two channel uses, the output state can be written as

EpA→B(ΦRA) = (1− p)2 (ΦR1B1
⊗ ΦR2B2

)

+ p(1− p)
(
ΦR1B1 ⊗ πR2 ⊗ |e〉〈e|B2

)
+p(1−p)

(
πR1 ⊗ |e〉〈e|B1

⊗ φR2B2

)
+p2

(
πR1 ⊗ |e〉〈e|1 ⊗ πR2 ⊗ |e〉〈e|B2

)
.

• The minimizing state is of the form:

σA1B1A2B2 := c0ΦA1B1⊗ΦA2B2 +c2πA1⊗|e〉〈e|B1
⊗πA2⊗|e〉〈e|B2

c1
(
ΦA1B1 ⊗ πA2 ⊗ |e〉〈e|B2

+ ΦA2B2 ⊗ πA1 ⊗ |e〉〈e|B1

)
,

where c0 + 2c1 + c2 = 1.

• Want to find constraints on c0, c1 and c2 such that the state is

k-extendible.
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How to choose σRnBn?

σA1B1A2B2 := c0ΦA1B1 ⊗ ΦA2B2 + c2πA1 ⊗ |e〉〈e|B1
⊗ πA2 ⊗ |e〉〈e|B2

c1
(
ΦA1B1 ⊗ πA2 ⊗ |e〉〈e|B2

+ ΦA2B2
⊗ πA1

⊗ |e〉〈e|B1

)

• Make each individual state in the sum a k-extendible state.

• Replace all the terms ΦAiBi in the above state with the k-extendible

state 1
kΦAiBi

+
(
1− 1

k

)
πAi
⊗ |e〉〈e|Bi

.

• The two-extendible state obtained from σA1B1A2B2
is

c0
4

ΦA1B1⊗ΦA1B1+
(c0

4
+ c1 + c2

) (
πA1 ⊗ |e〉〈e|B1

⊗ πA2 ⊗ |e〉〈e|B2

)
(c0

4
+
c1
2

) (
ΦA1B1 ⊗ πA2 ⊗ |e〉〈e|B2

+ πA1 ⊗ |e〉〈e|B1
⊗ ΦA2B2

)
.
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How to choose σRnBn?

σA1B1A2B2
is two-extendible:b0b1

b2

 =

 1
4 0 0
1
4

1
2 0

1
4 2 · 1

2 1


c0c1
c2

 .
The test state then is:

σA1B1A2B2 := b0ΦA1B1 ⊗ ΦA2B2 + b2πA1 ⊗ |e〉〈e|B1
⊗ πA2 ⊗ |e〉〈e|B2

b1
(
ΦA1B1 ⊗ πA2 ⊗ |e〉〈e|B2

+ ΦA2B2 ⊗ πA1 ⊗ |e〉〈e|B1

)
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How to choose σRnBn

• We then have

min
σ′A1B1···AnBn

∈EXTk

Dε
h

(
ρA1B2···AnBn‖σ′A1B1···AnBn

)
≤ min
b0,b1,...,bn

Dε
h ({a0, a1, . . . , an} ‖ {b0, b1, . . . , bn}) ,

where the distribution {a0, a1, . . . , an} is induced by measuring the

number of erasures in ρA1B2···AnBn .

• The RHS above is a linear program, so we can find the minimizing

bi’s.

• We obtain the following upper bound.

logM ≤ log

(
k − 1

k

)
− log

(
2−D

ε
h({a0,a1,...,an}‖{b0,b1,...,bn}) − 1

k

)
,
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Erasure channels
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Figure 7: Non-asymptotic upper bounds on quantum capacity of an erasure channel

with p = 0.35, and ε = 0.05.
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Erasure channels
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Figure 8: Non-asymptotic upper bounds on quantum capacity of an erasure channel

with p = 0.49, and ε = 0.05. 34



Adaptive protocols and Pretty

strong converse



Adaptive protocols

B2’
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BA k-EXTN

A’

k-EXT n

n

n

n

AM

BM

Figure 9: Each channel use is interleaved with a k-extendible channels.

• If N is a depolarizing channel or an erasure channel (or any

k-simulable channel) then the bounds given above still hold.
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Adaptive protocols: converse bound

For all k ≥ 2 and for any (n,M, ε) quantum communication protocol

employing n uses of a channel N interleaved by k-extendible channels:

− log2

[
1

M
+
M − 1

Mk

]
≤ n sup

ψRA

Emax
k (R;B)τ + log2

(
1

1− ε

)
,

where

Emax
k (R;B)ρ := min

σRB∈EXTk(R;B)
Dmax(ρRB‖σRB),

τRB := NA→B(ψRA), and the optimization is with respect to pure states

ψRA with |R| = |A|.
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Antidegradable channels: Pretty strong converse

• A channel NA→B is antidegradable if the output state NA→B(ρRA)

is two-extendible for any input state ρRA. Due to this property,

antidegradable channels have zero asymptotic quantum capacity.

• Fix ε ∈ [0, 1/2). The following bound holds for any (n,M, ε)

quantum communication protocol employing n uses of an

antidegradable channel N interleaved by two-extendible channels:

1

n
log2M ≤

1

n
log2

(
1

1− 2ε

)
.
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Conclusion

• We introduced the resource theory of unextendibility.

• Improved significantly on the prior non-asymptotic upper bounds for

quantum communication over depolarizing and erasure channels.

• Other directions include

• analyzing these bounds for other noise models such as thermal

channels and pure loss channels

• understanding the structure of the k-extendible channels.

• to link the bounds developed here with the open problem of finding a

strong converse for the quantum capacity of degradable channels.

For more details please refer to: arXiv:1803.10710.
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