Noisy quantum state redistribution with promise and the Alpha-bit

Anurag Anshu¹, Min-Hsiu Hsieh², Rahul Jain^{1,3,4}

 Centre for Quantum Technologies, NUS, Singapore
 Centre for Quantum Software and Information, University of Technology Sydney, Australia
 MajuLab, UMI 3654, Singapore.
 VAJRA Adjunct Faculty, TIFR, Mumbai, India. arXiv:1803.03414

June 30, 2018

Outline for section 1

1 The framework of Alpha-bit: brief intro

Quantum state redistribution with promise

3 Quantum state redistribution as a resource

4 Conclusion

The task

- Hayden, Pennington [2017]
- A channel $\mathcal{N}_{A \rightarrow B}$ between Alice and Bob.

- **→** → **→**

The task

- Hayden, Pennington [2017]
- A channel $\mathcal{N}_{A \rightarrow B}$ between Alice and Bob.
- Alice receives a quantum state |ψ⟩ ∈ H^d. Bob receives the classical description of a subspace S ⊂ H^d of dimension d^α + 1. Guaranteed that |ψ⟩ ∈ S.

The task

- Hayden, Pennington [2017]
- A channel $\mathcal{N}_{A \rightarrow B}$ between Alice and Bob.
- Alice receives a quantum state |ψ⟩ ∈ H^d. Bob receives the classical description of a subspace S ⊂ H^d of dimension d^α + 1. Guaranteed that |ψ⟩ ∈ S.
- Alice needs to transmit $|\psi\rangle$ to Bob. For every subspace *S*, average error of decoding $|\psi\rangle \in S$ should be small.

The task

- Introduce a Reference.
- Fix an S. Alice and Reference share |Ψ(S)⟩_{RA}, where Ψ_A is maximally mixed in S. Bob receives classical description of S.
- Transmit register A to Bob such that final state $\Psi'(S)_{RA}$ satisfies $\Psi'(S) \stackrel{\varepsilon}{\approx} |\Psi(S)\rangle \langle \Psi(S)|_{RA}$ for all S.

Think of α = 1. Consider n uses of the channel and largest possible d(n) such that decoding is successful with high fidelity.

• Capacity
$$= \frac{1}{n} \log d(n)$$
.

General α. Consider n uses of the channel and largest possible d(n) such that decoding in the subspace S is successful with high fidelity.

• Capacity
$$= \frac{1}{n} \log d(n)$$
.

- General α. Consider n uses of the channel and largest possible d(n) such that decoding in the subspace S is successful with high fidelity.
- Capacity $= \frac{1}{n} \log d(n)$.
- Actual definition: allow many i.i.d. instances and take appropriate limit.
- Smaller α implies higher capacity: smaller α implies less quantum states to decode.

• Entanglement assisted α -bit capacity:

$$rac{1}{1+lpha} \max_{\psi_{\mathcal{A}\mathcal{A}'}} I(\mathcal{B}:\mathcal{A}')_{
ho_{\mathcal{B}\mathcal{A}'}}.$$

• Entanglement assisted α -bit capacity:

$$rac{1}{1+lpha} \max_{\psi_{\mathcal{A}\mathcal{A}'}} I(B:\mathcal{A}')_{
ho_{\mathcal{B}\mathcal{A}'}}.$$

• Entanglement unassisted α -bit capacity:

$$\max_{\psi_{AA'}} \left[\min \left(\frac{1}{1+\alpha} \max_{\psi_{AA'}} I(B:A')_{\rho_{BA'}}, \frac{1}{\alpha} \max_{\psi_{AA'}} I(B>A')_{\rho_{BA'}} \right) \right]$$

• $\rho_{A'B} = \mathcal{N}_{A \to B}(\psi_{AA'}).$

Alpha-bit as a resource

 Entanglement assisted classical capacity of α-bit: largest C such that one can transmit nC bits by the use of n instances of α-bit.

Alpha-bit as a resource

- Entanglement assisted classical capacity of α-bit: largest C such that one can transmit nC bits by the use of n instances of α-bit.
- Answer is C = 1 + α. Reversible theory in asymptotic and i.i.d. setting (recall entanglement assisted capacity).
- Think of $\alpha = 1$. It is a qubit that can be transmitted perfectly. By superdense coding, 2 classical bits can be transmitted.

Features

- Key tool: subspace decoupling duality (a generalization of weak decoupling duality, Hayden, Winter [IEEE IT]) + decoupling via random unitary.
- Used for all above achievability results and converse.
- Several consequences for resource theory of quantum communication.

• Generalize the notion: Quantum state redistribution + quantum channel coding.

Our results

- Generalize the notion: Quantum state redistribution + quantum channel coding.
- Quantum state redistribution as a resource: asymptotically reversible theory.
- Reminiscent: Quantum Reverse Shannon Theorem (Bennett, Devetak, Harrow, Shor, Winter [arXiv 2009, IEEE IT 2014]; Berta, Christandl, Renner [CMP 2011]).

Outline for section 2

The framework of Alpha-bit: brief intro

Quantum state redistribution with promise

3 Quantum state redistribution as a resource

4 Conclusion

Quantum state redistribution (QSR)

Devetak and Yard [PRL 2008, IEEE IT 2009]. Communication rate in the asymptotic and i.i.d. setting: I(R : C|B).

Noisy quantum state redistribution

- Channel $\mathcal{N}_{J \to K}$.
- How many channel uses required to perform *n* instances of QSR for $|\Psi\rangle_{RABC}$?

Noisy quantum state redistribution

- Channel $\mathcal{N}_{J \to K}$.
- How many channel uses required to perform *n* instances of QSR for $|\Psi\rangle_{RABC}$?
- Approximately

$$rac{\max_{\mu} I(R:C|B)}{C_{ea}(\mathcal{N}_{J
ightarrow K})},$$

where $C_{ea}(\mathcal{N})$ is entanglement assisted classical capacity of $\mathcal{N}_{J \to K}$. Bennett, Shor, Smolin, Thapliyal [IEEE IT 2002].

Noisy quantum state redistribution

- Channel $\mathcal{N}_{J \to K}$.
- How many channel uses required to perform *n* instances of QSR for $|\Psi\rangle_{RABC}$?
- Approximately

$$rac{\max_{\mu} I(R:C|B)}{C_{ea}(\mathcal{N}_{J
ightarrow K})},$$

where $C_{ea}(\mathcal{N})$ is entanglement assisted classical capacity of $\mathcal{N}_{J \to K}$. Bennett, Shor, Smolin, Thapliyal [IEEE IT 2002].

 Optimal in the asymptotic and i.i.d. setting. Quantum Reverse Shannon Theorem (Bennett, Devetak, Harrow, Shor, Winter [arXiv 2009, IEEE IT 2014]; Berta, Christandl, Renner [CMP 2011]).

同 ト イ ヨ ト イ ヨ ト

A generalization of Alpha-bit task

- Quantum state redistribution with promise (Promise-QSR).
- Alice, Bob and Reference share the state $|\Psi^{y}\rangle_{RABC}$. Reference and Bob know y.

A generalization of Alpha-bit task

- Quantum state redistribution with promise (Promise-QSR).
- Alice, Bob and Reference share the state $|\Psi^{y}\rangle_{RABC}$. Reference and Bob know y.
- Alice needs to send a message to Bob, such that after Bob's decoding, the final state Φ^y_{RABC} satisfies $\Phi^y_{RABC} \stackrel{\varepsilon}{\approx} |\Psi^y\rangle \langle \Psi^y|_{RABC}$ for all y.

A simplification: min-max duality

• Consider the task: for a distribution $\mu(y)$, perform the QSR of

$$\sum_{y} \sqrt{\mu(y)} |y\rangle_{Y} |y\rangle_{R_{Y}} |\Psi^{y}\rangle_{RABC} \,.$$

A simplification: min-max duality

• Consider the task: for a distribution $\mu(y)$, perform the QSR of

$$\sum_{y} \sqrt{\mu(y)} |y\rangle_{Y} |y\rangle_{R_{Y}} |\Psi^{y}\rangle_{RABC} .$$

 Let P_C be the set of all protocols with communication at most C (finite amount of entanglement used).

A simplification: min-max duality

• Consider the task: for a distribution $\mu(y)$, perform the QSR of

$$\sum_{y} \sqrt{\mu(y)} |y\rangle_{Y} |y\rangle_{R_{Y}} |\Psi^{y}\rangle_{RABC} .$$

- Let P_C be the set of all protocols with communication at most C (finite amount of entanglement used).
- Min-max principle [Yao, FOCS 1979]:

$$\max_{\mu} \min_{P \in \mathcal{P}_{\mathcal{C}}} \operatorname{error}(\mu, P) = \min_{P \in \mathcal{P}_{\mathcal{C}}} \max_{\mu} \operatorname{error}(\mu, P).$$

• Promise-QSR \leq QSR for all distributions μ .

Promise-QSR through noisy channel

• Compose the noiseless protocol for QSR with noisy channel coding.

Promise-QSR through noisy channel

- Compose the noiseless protocol for QSR with noisy channel coding.
- Number of channel uses required to achieve one instance of Promise-QSR (in asymptotic and i.i.d. setting) is upper bounded by

$$rac{\max_{\mu} I(\textit{RR}_{Y}: C|BY)}{C_{\textit{ea}}(\mathcal{N}_{J
ightarrow K})}$$

Promise-QSR through noisy channel

- Compose the noiseless protocol for QSR with noisy channel coding.
- Number of channel uses required to achieve one instance of Promise-QSR (in asymptotic and i.i.d. setting) is upper bounded by

$$rac{\max_{\mu} I(RR_Y:C|BY)}{C_{ea}(\mathcal{N}_{J
ightarrow K})}$$

- Similar statements (carefully done) for the one-shot setting.
- But is it optimal?

Decoupling Alice's entanglement

- QSR protocols have the property that Alice's final entanglement is independent of *y*.
- A protocol for Promise-QSR may not have this property.

Decoupling Alice's entanglement

- QSR protocols have the property that Alice's final entanglement is independent of *y*.
- A protocol for Promise-QSR may not have this property.
- But subspace decoupling duality implies that this is the case for Alpha-bit.
- Alpha-bit = Alpha-bit for all μ .

Recovering Alpha-bit capacities

• Consider $\sum_{S} \sqrt{\mu(S)} |S\rangle_{Y} |S\rangle_{R_{Y}} |\Psi(S)\rangle_{RC}$.

- - E

Recovering Alpha-bit capacities

- Consider $\sum_{S} \sqrt{\mu(S)} |S\rangle_{Y} |S\rangle_{R_{Y}} |\Psi(S)\rangle_{RC}$.
- $\max_{\mu} I(RR_Y : C|Y) = (1 + \alpha) \log d$, where d = |C|.

Recovering Alpha-bit capacities

- Consider $\sum_{S} \sqrt{\mu(S)} |S\rangle_{Y} |S\rangle_{R_{Y}} |\Psi(S)\rangle_{RC}$.
- $\max_{\mu} I(RR_Y : C|Y) = (1 + \alpha) \log d$, where d = |C|.
- Number of channel uses per instance of Alpha-bit task

$$= \frac{(1+\alpha)\log d}{C_{ea}(\mathcal{N}_{J\to K})}$$

• Capacity is largest *d* for one channel use.

Recovering Alpha-bit capacities

- Consider $\sum_{S} \sqrt{\mu(S)} |S\rangle_{Y} |S\rangle_{R_{Y}} |\Psi(S)\rangle_{RC}$.
- $\max_{\mu} I(RR_Y : C|Y) = (1 + \alpha) \log d$, where d = |C|.
- Number of channel uses per instance of Alpha-bit task

$$= \frac{(1+\alpha)\log d}{C_{ea}(\mathcal{N}_{J\to K})}$$

- Capacity is largest *d* for one channel use.
- $\log d = \frac{C_{ea}(\mathcal{N}_{J \to K})}{(1+\alpha)}.$
- Similar one-shot results available as well.

Recovering Alpha-bit capacities

• QSR for $\sum_{S} \sqrt{\mu(S)} |S\rangle_{Y} |S\rangle_{R_{Y}} |\Psi(S)\rangle_{RC}$ is actually quantum state merging.

Recovering Alpha-bit capacities

- QSR for $\sum_{S} \sqrt{\mu(S)} |S\rangle_{Y} |S\rangle_{R_{Y}} |\Psi(S)\rangle_{RC}$ is actually quantum state merging.
- Entanglement always gained (for above instance).
- Using protocol for either entanglement assisted or unassisted (Lloyd, Shor, Devetak [1997-2005]) capacities of $\mathcal{N}_{J \to K}$ leads to an optimal protocol for unassisted capacity of Alpha-bit in asymptotic and i.i.d. setting.

Recovering Alpha-bit capacities

- QSR for $\sum_{S} \sqrt{\mu(S)} |S\rangle_{Y} |S\rangle_{R_{Y}} |\Psi(S)\rangle_{RC}$ is actually quantum state merging.
- Entanglement always gained (for above instance).
- Using protocol for either entanglement assisted or unassisted (Lloyd, Shor, Devetak [1997-2005]) capacities of $\mathcal{N}_{J \to K}$ leads to an optimal protocol for unassisted capacity of Alpha-bit in asymptotic and i.i.d. setting.

| 4 同 1 4 三 1 4 三 1

• Weakness: capacity for one instance of Alpha-dit not recovered (feature implicit in Hayden, Pennington [2017] owing to subspace decouping duality).

A classical Alpha-bit

- Bob receives a subset $S \in [1, 2, \dots d]$ and Alice receives an $i \in S$.
- Communicate *i* to Bob.

A classical Alpha-bit

- Bob receives a subset $S \in [1, 2, ..., d]$ and Alice receives an $i \in S$.
- Communicate *i* to Bob.
- Entanglement assisted classical capacity of classical Alpha-bit:

$$\frac{1}{\alpha} \max_{\psi_{JJ'}} I(K:J')_{\mathcal{N}_{J\to K}(\psi_{JJ'})}.$$

Outline for section 3

The framework of Alpha-bit: brief intro

2 Quantum state redistribution with promise

Quantum state redistribution as a resource

4 Conclusion

Definition of simulation

- Fix a quantum state Ψ_{RABC} and a protocol P for QSR of Ψ_{RABC} .
- Alice needs to communicate a message $m \in [1, 2, \dots 2^N]$.

- **→** → **→**

Definition of simulation

- Fix a quantum state Ψ_{RABC} and a protocol P for QSR of Ψ_{RABC} .
- Alice needs to communicate a message $m \in [1, 2, ..., 2^N]$.
- In a simulation via QSR, Alice and Bob have preshared entanglement $|\omega\rangle_{E_A E_B}$.
- Given a *m*, Alice singles out some registers *A_m*, *C_m*, which are subsets of *E_A*.

Definition of simulation

- Fix a quantum state Ψ_{RABC} and a protocol P for QSR of Ψ_{RABC} .
- Alice needs to communicate a message $m \in [1, 2, ..., 2^N]$.
- In a simulation via QSR, Alice and Bob have preshared entanglement $|\omega\rangle_{E_A E_B}$.
- Given a *m*, Alice singles out some registers *A_m*, *C_m*, which are subsets of *E_A*.
- She runs P on A_m , C_m . Communication to Bob is implicit in P.

直 ト イヨ ト イヨ ト

• Bob decodes on his final state, to recover *m*.

Our result

 Any protocol P for QSR of Ψ_{RABC} can be used to communicate a message in [1, 2, ... 2^N] with error ε + 2δ, where N is equal to

$$I^arepsilon_{H}(R:BC)_{\Psi} - I^\delta_{\mathsf{max}}(R:B)_{\Psi} + \log arepsilon \delta.$$

Our result

 Any protocol P for QSR of Ψ_{RABC} can be used to communicate a message in [1, 2, ... 2^N] with error ε + 2δ, where N is equal to

$$I_H^{\varepsilon}(R:BC)_{\Psi} - I_{\max}^{\delta}(R:B)_{\Psi} + \log \varepsilon \delta.$$

- Equal to $I(R : C|B)_{\Psi}$ in the asymptotic and i.i.d. setting.
- Simulation rate equal to communication rate in asymptotic and i.i.d. setting.

Our result

 Any protocol P for QSR of Ψ_{RABC} can be used to communicate a message in [1, 2, ... 2^N] with error ε + 2δ, where N is equal to

$$I_H^{\varepsilon}(R:BC)_{\Psi} - I_{\max}^{\delta}(R:B)_{\Psi} + \log \varepsilon \delta.$$

- Equal to $I(R : C|B)_{\Psi}$ in the asymptotic and i.i.d. setting.
- Simulation rate equal to communication rate in asymptotic and i.i.d. setting.
- Reminiscent: Quantum Reverse Shannon Theorem (Bennett, Devetak, Harrow, Shor, Winter [arXiv 2009, IEEE IT 2014]; Berta, Christandl, Renner [CMP 2011]).

Recovering entanglement assisted classical capacity of Alpha-bit

- Appeal to subspace-decoupling duality: any protocol for Alpha-bit is also a protocol for state redistribution under distribution μ.
- Alice's operations ensure that state is transmitted to Bob with remaining registers independent of *S*.
- Use result in previous slide.

Position-based decoding

Outline for section 4

- The framework of Alpha-bit: brief intro
- Quantum state redistribution with promise
- 3 Quantum state redistribution as a resource

4 Conclusion

Take-home message

Any QSR task can be used as a resource, with optimal simulation cost in asymptotic and i.i.d. setting.

Future work

• Consequences in theory of quantum communication?

Future work

- Consequences in theory of quantum communication?
- What are the communication costs and simulation capabilities of Promise-QSR?
- In general, a protocol for Promise-QSR may not lead to a protocol for QSR with distribution over *y*.

Future work

- Consequences in theory of quantum communication?
- What are the communication costs and simulation capabilities of Promise-QSR?
- In general, a protocol for Promise-QSR may not lead to a protocol for QSR with distribution over *y*.
- Alpha-bit is an exception, also results discussed in Andreas' talk.
- General problem: cost of forgetting *C*? Lauriere, Touchette [ISIT 2017].

Future work

- Consequences in theory of quantum communication?
- What are the communication costs and simulation capabilities of Promise-QSR?
- In general, a protocol for Promise-QSR may not lead to a protocol for QSR with distribution over *y*.
- Alpha-bit is an exception, also results discussed in Andreas' talk.
- General problem: cost of forgetting *C*? Lauriere, Touchette [ISIT 2017].
- Extending above results to multi-party setting.

Thank you!

<ロ> <同> <同> < 同> < 同>

æ

Anurag Anshu¹, Min-Hsiu Hsieh², Rahul Jain^{1,3,4} Noisy QSR with promise