Towards ultracold single neutral atoms in microscale optical dipole traps
Adam M. Kaufman, B. J. Lester, C. A. Regal
JILA, NIST and the University of Colorado, and Department of Physics, University of Colorado, Boulder, CO, 80309

Goals
1) Advance quantum information with neutral atoms in microscale dipole traps
 - Uncontrolled atom motion limits:
 - Rydberg gates
 - Single photon sources
 - Coupling to small optical modes
2) Study few-body neutral atom systems
 - Connections to many-body neutral atom work
 - Double-well, Plaquette systems

Envisioned experiment
- Single atoms in microscale dipole traps
- Define motional state with laser cooling: 3D Raman sideband cooling
- Create a few neutral atoms with individual readout, sub-micron separation, and motional-spin control
- Utilize trapped ion techniques

Single atom and multiple single atom system

Two implemented schemes for Raman sideband Cooling

- Degenerate sideband cooling
 - \(\text{lin}(\theta=40^\circ) \text{lin lattice:} \)
 - \(B_{\text{eff}} \) local lattice-polarization interacts with spin like an effective magnetic field
 - \(\text{Lattice potential localizes atom at lower portion of} \ B_{\text{eff}} \text{ yielding} \ n = 1 \text{ coupling} \)
- Non-degenerate sideband cooling: coupling provided by external Raman beams
 - \(\text{Non-degenerate sideband cooling} \)

Present setup: Proof of principle

Temperature Characterization

- Adiabatic lowering: spectroscopy of energy distribution
 - \(\text{Microscopic objective:} \)
 - 0.61 NA, 780/850 nm diffraction limited

Conclusions

- Apparatus capabilities:
 - Single atom detection
 - Raman cooling in microscale potential
 - Cooling can be provided by external beams or inherent to trapping potential

Relevant References

- A. J. Kerman, Stanford, Dissertation
- Foerster et al., Phys. Rev. Lett. 103, 233001
- Monroe et al., Phys. Rev. Lett. 75, 4011
- Schlosser et al., Phys. Rev. Lett. 89, 023005
- Sackett et al., Nature 404, 256