Adaptive Quantum Transduction & Quantum State Transfer via Thermal Channel

Liang Jiang

Yale University
AFOSR MURI Review
3/28/2018

Key questions:

- Transfer quantum states without impedance matching?
- Transfer quantum states via thermal channel?
Mode Converters

Quantum Matching Condition

Can we perform QST without quantum matching condition?

\[\frac{4g^2}{\kappa_1} = \kappa_2 \]

\[\frac{4g_1^2}{\kappa_1} = \frac{4g_2^2}{\kappa_2} \]

Mode Converter

Temporarily ignore intrinsic loss (will be discussed later)
Direct Quantum Transduction

Input

Ancilla

Mode Converter

Idler

Output
Adaptive Quantum Transduction– Protocol

Input

Squeezed vacuum

Ancilla

Mode Converter

Idler

Adaptive Control

Homodyne

Displace

Unitary

Output

Output

Liang Jiang

PRL 120, 020502 (2018)

3/28/2018
Adaptive Quantum Transduction – Information Flow

Input

Mode Converter

Idler

Homodyne

[Partial Info] + [Partial noise]

Displace

Unitary

Output

Information

Ancilla

Squeezed vacuum

Partial Info

Partial noise

Adaptive Control

Need LARGE noise in measured quadrature (to ensure no signal leakage)

Measure x (or p) component

Need VANISHING noise in non-measured quadrature (to ensure complete cancelation of noise)

Cancel noise as much as possible

Partial Info

Partial noise

PRL 120, 020502 (2018)
Adaptive Quantum Transduction – Scattering Matrix Formalism

Given symplectic scattering matrix S:

$$
\begin{pmatrix}
\hat{y}_b \\
\hat{y}_b' \\
\hat{y}_h \\
\hat{y}_h'
\end{pmatrix} =
\begin{pmatrix}
S_{b,a} & S_{b,a'} & S_{b,z} & S_{b,z'} \\
S_{b',a} & S_{b',a'} & S_{b',z} & S_{b',z'} \\
S_{h,a} & S_{h,a'} & S_{h,z} & S_{h,z'} \\
S_{h',a} & S_{h',a'} & S_{h',z} & S_{h',z'}
\end{pmatrix}
\begin{pmatrix}
\hat{x}_a \\
\hat{x}_a' \\
\hat{x}_z \\
\hat{x}_z'
\end{pmatrix}
$$

Gaussian unitary with scattering matrix

$$
\mathbf{R} = \tilde{S}^{-1}
$$

with symplectic \tilde{S}

$$
\tilde{S} =
\begin{pmatrix}
S_{b,a} & S_{b,a'} \\
S_{b',a} & S_{b',a'}
\end{pmatrix} + F
\begin{pmatrix}
S_{h,a} \\
S_{h',a}
\end{pmatrix}
$$

Linear transform to decide displacement

$$
\mathbf{F} = -\begin{pmatrix}
S_{b,z'} (S_{h,z'})^{-1} \\
S_{b',z'} (S_{h,z'})^{-1}
\end{pmatrix}
$$
Adaptive Quantum Transduction – Multiple Modes

Given symplectic scattering matrix S:

$$
\begin{pmatrix}
\hat{y}_b \\
\hat{y}_{b'} \\
\hat{y}_h \\
\hat{y}_{h'}
\end{pmatrix} =
\begin{pmatrix}
S_{b,a} & S_{b,a'} & S_{b,z} & S_{b,z'} \\
S_{b',a} & S_{b',a'} & S_{b',z} & S_{b',z'} \\
S_{h,a} & S_{h,a'} & S_{h,z} & S_{h,z'} \\
S_{h',a} & S_{h',a'} & S_{h',z} & S_{h',z'}
\end{pmatrix}
\begin{pmatrix}
\hat{x}_a \\
\hat{x}_{a'} \\
\hat{x}_z \\
\hat{x}_{z'}
\end{pmatrix}
$$

Linear transform to decide displacement

$$
F = -(S_{b,z'}(S_{h,z'})^{-1}) \left(S_{b',z'}(S_{h,z'})^{-1} \right)
$$

Restore Gaussian unitary with scattering matrix

$$
R = \tilde{S}^{-1}
$$

with symplectic \tilde{S}

$$
\tilde{S} = \begin{pmatrix}
S_{b,a} & S_{b,a'} \\
S_{b',a} & S_{b',a'}
\end{pmatrix} + F \begin{pmatrix}
S_{h,a} \\
S_{h',a}
\end{pmatrix}
$$
It is generally a multi-mode linear unitary evolution.
- Multi-mode: Both the input and ancilla contain multiple (entangled) modes.
- Linear: Bosonic creation and annihilation operators are evolved to their linear combinations.
- Unitary: Canonical quantization condition is preserved.

Linear unitary \(\Rightarrow\) **Symplectic** Matrix: \(SJS^T = J, \quad J = \begin{pmatrix} 0_N & I_N \\ -I_N & 0_N \end{pmatrix} \)
Adaptive Quantum Transduction – Practical Imperfections

Imperfect Ancilla Preparation (ν)

\[ν = \langle x_z^2 \rangle - \langle x_z \rangle^2 = e^{-2r} (2n_z + 1) \]

Due to finite squeezing & thermal noise

- 15dB optical squeezing (PRL 104, 251102)
- 10dB mw squeezing (NatPhys 4, 929)

Imperfect Homodyne Measurement (μ)

\[μ = \frac{1 - η}{η} (2n_h + 1) \]

Finite efficiency (η) & thermal noise (n_h)

- η ≥96% (μ ≤-15dB) optical homodyne efficiency
- η ≈50% (μ ≈0 dB) mw homodyne (1712.06535)

Overall Gaussian Quantum Channel:

Ideal:

\[\hat{x} \rightarrow \hat{x} \]

Imperfect:

\[\hat{x} \rightarrow \hat{x} + \hat{\xi} \]

\[V_\xi = νBB^T + μ(-SF)(SF)^T \]

Overall Gaussian Quantum Channel:

\[B = -\left((S^{-1})_{a,h'} \left((S^{-1})_{z,h'} \right)^{-1} \right) \]

\[\left((S^{-1})_{a,h} \left((S^{-1})_{z,h} \right)^{-1} \right) \]
Due to finite squeezing & thermal noise
- 15dB optical squeezing (PRL 104, 251102)
- -10 dB mw squeezing (NatPhys 4, 929)

Imperfect Homodyne Measurement (μ)

$$\mu = \frac{1 - \eta}{\eta} (2n_h + 1)$$

Finite efficiency (η) & thermal noise (n_h)
- $\eta \geq 96\%$ ($\mu \leq -15\text{dB}$) optical homodyne efficiency
- $\eta \approx 50\%$ ($\mu \approx 0 \text{ dB}$) mw homodyne

Inaccessible Ports (e.g., intrinsic loss)
- Added input noise (c.f. poorly prepared ancilla)
- Limited measurement ports (c.f. $\eta = 0$ msmt)
 which can be included in our framework of AQT.
 However, we still need to design optimal recovery...

Imperfect Ancilla Preparation (ν)

$$\nu = \langle x_z^2 \rangle - \langle x_z \rangle^2 = e^{-2r} (2n_z + 1)$$

Liang Jiang

PRL 120, 020502 (2018)

3/28/2018
Quantum Benchmark #1 – Average Fidelity

Average Fidelity: $|\beta\rangle \xrightarrow{\mathcal{E}} \hat{\rho}_\beta^{(E)}$

$$F = \int P(\beta) \langle \beta | \hat{\rho}_\beta | \beta \rangle d\beta$$

Classical Protocol: $|\beta\rangle \xrightarrow{\text{Measure}} \mathcal{C} \xrightarrow{\text{Prepare}} \hat{\rho}_\beta^{(C)}$

Benchmark for Gaussian distributed coherent states $|\beta\rangle$

$$F_{coh}^* (\bar{n}) = \frac{\bar{n} + 1}{2\bar{n} + 1}$$

Uniformly distributed coherent states $\bar{n} \to \infty$

$$F_{coh}^* (\infty) = \frac{1}{2}$$

No Classical protocol can go beyond this.

$$p(\beta) = \frac{1}{\pi \bar{n}} e^{-|\beta|^2 / \bar{n}}$$

Quantum Benchmark #1 – Average Fidelity

\[F = \int P(\beta) \langle \beta | \hat{\rho}_\beta | \beta \rangle d\beta \]

(a) \(T = 0.1 \)

(b) \(T = 0.8 \)

Liag Jiang

PRL 120, 020502 (2018)
Quantum Benchmark #2 – Quantum Channel Capacity

Quantum channel capacity: The maximum number of qubits transmitted coherently per channel use

Lower bound \((\tau \neq 1):\) \(Q(\mathcal{G}) \geq \max\{0, \log \left| \frac{\tau}{1-\tau} \right| - g(2\bar{n} + 1)\}\)

Lower bound \((\tau = 1):\) \(Q(\mathcal{G}) \geq \max\{0, \log \left(1 + \frac{1}{\sqrt{\det Y}} \right) - 1\}\)

\[
\tau := \det X \\
\bar{n} := \begin{cases} \sqrt{\det Y}, & \text{for } \tau = 1 \\ \frac{\sqrt{\det Y}}{2|1-\tau|} - \frac{1}{2}, & \text{for } \tau \neq 1 \end{cases} \\
g(x) := (\frac{x + 1}{2}) \log \left(\frac{x + 1}{2} \right) - (\frac{x - 1}{2}) \log \left(\frac{x - 1}{2} \right) \]
Finite quantum capacity when $\mu \nu < \frac{4}{9(T+T^{-1}-2)}$
Connection with Continuous Variable Quantum Teleportation

EPR pair:
\[q_1 + q_2 = 0 \]
\[p_1 - p_2 = 0 \]

Quantum State Transfer

- Transfer quantum state
- Adaptive protocol

Continuous Variable Teleportation

- Transfer quantum state
- Adaptive protocol

Similarity:
- Transfer quantum state
- Adaptive protocol

Distinctions:
- One ancilla mode
- Only need prior squeezing
- Works for **generic symplectic scattering matrix**
- Two ancilla mode
- Need prior entanglement
- Require 50:50 beam splitter

Extension to Discrete Variable System

Finite phase space $V = \mathbb{Z}_n \times \mathbb{Z}_n$

Phase space $V = \mathbb{R} \times \mathbb{R}$

Clifford group C

affSp: Symplectic group “+” displacement

Finite Heisenberg-Weyl group H_n

Heisenberg-Weyl group H

Finite symplectic group $\text{Sp}(2, \mathbb{F}_n)$

Symplectic group $\text{Sp}(2, \mathbb{R})$

$\text{Sp}(2, \mathbb{F}_n) \cong C/H$

$\text{Sp}(2, \mathbb{R}) \cong \text{affSp}/H$
Quantum Transduction with *Adaptive Control*

Practical Implication:
- Enhanced quantum transduction by *adaptive control*
- Pathway to go beyond impedance matching condition
- Generalized theoretical framework (including various practical imperfections)

Zhang, Zou, L.J., PRL 120, 020502 (2018)
(Related to experiment at JILA - arXiv:1712.06535)

Quantum State Transfer (QST) via *Thermal Waveguide*

Practical Implication:
- QST via high-Q *thermal* wave guide
- Compatible with bosonic QEC (e.g., binomial code)
- Remote (~100m) mw thermal @4K (Nb) SC waveguide (connecting different dilution fridges across buildings)

Xiang, Zhang, L.J., Rabl, PRX 7, 011035 (2017)
(Related to experiment at Yale - arXiv:1712.05832)
Quantum State Transfer (QST) Protocols in Quantum Networks

Key Idea: Unidirectional QST from atom 1 to atom 2 via shaped photon wave packet

Requirement:
- Zero temperature wave guide \(N_{ch} \ll 1 \)

Questions:
- Can we achieve QST via thermal wave guide \(N_{ch} \gg 1 \)?
- Robust against both excitation loss & thermal noise?

Cirac, Zoller, Kimble, Mabuchi, PRL (1997)
Modified QST Protocols in Quantum Networks

Key Idea: Encode into cavity mode before pitch & catch of shaped wave-packet through the waveguide

Practical Implication:
- Protocol for quantum state transfer (QST) via high-Q thermal wave guide
- Compatible with bosonic QEC (e.g., binomial code)
- Feasible remote (~100m) mw thermal @4K (Nb) superconducting waveguide (connecting different dilution fridges across buildings)
Reliable QST Protocol via (high-Q) *Thermal* Waveguide

Practical Implication:
- QST via high-Q thermal wave guide
- Compatible with bosonic QEC
- Quantum links @4K between fridges

Recent experimental achievements
- Pitch & catch with high efficiency
- Entanglement generation
 (Axline, et al., arXiv:1712.05832)
Comparison between QST Protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Standard CZKM Protocol</th>
<th>Modified Robust Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qubit → Waveguide → Qubit</td>
<td>Oscillator → Waveguide → Oscillator</td>
<td></td>
</tr>
<tr>
<td>Similarity</td>
<td>Shaped pulse for pitch and catch</td>
<td></td>
</tr>
<tr>
<td>Pitch/Catch</td>
<td>Stimulated Raman (assisted by cavity)</td>
<td>Q-switch or Mode conversion between bosonic modes (assisted by Josephson junction)</td>
</tr>
<tr>
<td>Effective Coupling</td>
<td>Nonlinear (spin + boson coupling)</td>
<td>Linear (Effectively, bilinear coupling among bosonic modes)</td>
</tr>
<tr>
<td>Transfer capability</td>
<td>Maximum one excitation</td>
<td>Many excitations</td>
</tr>
<tr>
<td>Thermal waveguide</td>
<td>$N_{th} \ll 1$</td>
<td>$N_{th} \geq 1$</td>
</tr>
<tr>
<td>Bosonic QEC</td>
<td>Limited*</td>
<td>Compatible</td>
</tr>
<tr>
<td>Correct Loss & Gain Noise</td>
<td>Not for single attempt</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Summary

Quantum Transduction with *Adaptive Control*

- Enhanced quantum transduction by *adaptive control*
- Pathway to go beyond impedance matching condition
- Generalized theoretical framework (including various practical imperfections)

Practical Implication:

Zhang, Zou, L.J., PRL 120, 020502 (2018)
(Related to experiment at JILA - arXiv:1712.06535)

Quantum State Transfer (QST) via *Thermal Waveguide*

- QST via *high-Q thermal* wave guide
- Compatible with bosonic QEC (e.g., binomial code)
- Remote (~100m) mw thermal @4K (Nb) SC waveguide (connecting different dilution fridges across buildings)

Practical Implication:

Xiang, Zhang, L.J., Rabl, PRX 7, 011035 (2017)
(Related to experiment at Yale - arXiv:1712.05832)

Li Sang