	Author	Title
1	Alban Urvoy	Waveguide-QED with cold atoms and nanophotonic waveguides
		Optical clocks based on highly charged ions for tests of fundamental physics and improved
2	Alessandro Banducci	frequency standards
		Collective-spin dynamics from a single multilevel atom for steady-state generation of
3	Alex Elliott	nonclassical light
		Measurements of Rubidium-Inert Gas Diffusion Coefficients using Coherent Emission from
4	Alex Pouliot	Optical Lattices
5	Alex Staron	A Chip-Scale Atomic Beam Clock
6	Alexander Herbst	Applications of tunable interactions in atom interferometry sources
7	Animesh Datta	Fundamental limits of pulsed quantum light spectroscopy
8	Annie J. Park	ТВА
9	Arthur La Rooij	Commensurate and incommensurate 1D interacting quantum systems
10	Avikar Periwal	Optimization Problems with Programmable Cavity-Mediated Interactions
11	Catie LeDesma	Building a Matter-wave Interferometer in a 1D Optical Lattice via Machine Learning Technic
12	Charles Cheung	ТВА
13	Chengyi Luo	Cavity-Mediated Collective Momentum-Exchange Interactions
14	Chetan Vishwakarma	An improved transportable optical lattice clock at PTB
15	Chirantan Mitra	Machine learning optimization of Strontium MOT
16	Christian Sanner	A novel Yb+ optical clock system for testing fundamental symmetries
17	Chuankun Zhang	Toward Direct VUV Frequency Comb Spectroscopy of the \$^{229m}\$Th Nuclear Clock Trans
18	Damien Bloch	Arrays of dysprosium atoms to study light scattering
19		
		First measurements of the 2P3/2 unresolved hyperfine splitting in 9Be+, using quantum
20	David Fairbank	interference enhanced state selective re-pump spectroscopy.

	David Holzapfel	Ground-state cooling of hydrogen molecular ions.
22	Dmytro Filin	Sr polarizabilities, magic wavelengths, and their applications
		Motion-selective coherent population trapping by Raman sideband cooling in a \$\Lambda\$
23	Donghyun Cho	configuration
		Very Long Baseline Atom Interferometry for tests of fundamental physics - methods and
24	Dorothee Tell	commissioning of the facility
25	Dr David Nadlinger	A Two-Node, Two-Species Ion Trap Quantum Network
26	Dr Sascha Hoinka	Higgs oscillations in a unitary Fermi superfluid
27	Dr. An Tran	Demonstration of time scales steered by NPL and LNE-SYRTE's optical atomic clocks
28	Dr. Antonio Rubio-Abadal	Quantum-gas microscopy of ultracold bosonic strontium
29	Dr. Christopher Gilbreth	Laser Cooling of Trapped Ions in the High-Temperature Regime
30	Dr. Chun Yu Ma	Novel noise contributions in crystalline AlGaAs coatings for ultra-stable optical resonators
31	Dr. Fang Fang	Explorations of critical phenomena with a Cs Rydberg simulator
32	Dr. Hannah Williams	Zeeman Sisyphus Deceleration of Molecules
33	Dr. Jian Jiang	High accuracy ytterbium ion clocks for new physics searches.
34	Dr. Junxin Chen	State estimation of macroscopic mechanical modes in the quantum regime
35	Dr. Kunpeng Wang	Preparation of a large scale heteronuclear neutral atoms array
36	Dr. Leong Wui Seng	Rapid quantum squeezing by jumping quantum harmonic frequency
37	Dr. Linqiang Hua	ultrafast electronic dynamic in XUV comb generation
38	Dr. Mateusz Borkowski	Searching for new physics with molecular lattice clocks
		Towards a Cavity-QED Yb Optical Lattice Clock at NPL's New Advanced Quantum Metrology
39	Dr. Maxime Favier	Laboratory
		Precision spectroscopy and modeling of Yb Rydberg states for neutral atom quantum
40	Dr. Michael Peper	computing
41	Dr. Mingjie Xin	Two-mode squeezing quantum logic in atomic mechanical oscillators
42	Dr. Ravikumar Chinnarasu	A quantum computing platform using a 2D array of Cs neutral atom qubits
43	Dr. Rhys Jenkins	Measuring the Electron's Electric Dipole Moment Using Ultracold YbF Molecules
44	Dr. Ryan Thomas	Feedback cooling collective modes of a Bose-Einstein condensate

		Ultrafast, sub-nanosecond, laser excitation of ultracold atoms to excited states: towards super-
45	Dr. Takuya Matsubara	radiance studies
46	Dr. Zachary Reed	Comb-locked Cavity Ring-down Spectroscopy
47	Dr. Zeyang Li	Improving Metrology with Quantum Scrambling
48	Dylan Young	Experimental Observation of BCS Dynamical Phases in a Strontium Cavity-QED System
49	Eduardo Oteiza	Fieldable Combs For Remote Sensing Applications Outside the Lab
50	Eliot Bohr	Optical Ramsey Spectroscopy with Superradiance Enhanced Readout
51	Fabian Dawel	Current status of the aluminium ion clock at PTB
52	Fabian Finger	Spin- and momentum-correlated atom pairs mediated by photon exchange
53	Francesca Orsi	Cavity-QED Quantum Simulator of Random Spin Models
54	Gabriela Martinez	A chip-scale atomic beam clock
55	Gar-Wing	Ultrahigh finesse mid-IR cavities exceeding 400,000 at 4.5 um for trace gas sensing
		Progress Towards Laser Cooled Polyatomic Molecules for Beyond-Standard-Model Physics
56	Hiro Sawaoka	Searches
57	Jacob Hines	Spin squeezing by Rydberg dressing in an array of atomic ensembles
58	Jarrod Reilly	Optimal Generators for Quantum Sensing
59	Jean-Samuel TETTEKPOE	Towards assembly of arrays of 1000 atoms
60	Jianing Li	Towards dual atomic interferometry for inertial sensing and differential measurement
61	Joe Goodwin	Ion-cavity node engineering for scalable networked quantum computing
		Progress towards a molecular lattice clock to search for time-variation of the proton-to-electron
62	Jonas Rodewald	mass ratio
63	Joseph Junca	Scale factor variations and point source atom interferometry
64	Joyce Kwan	Realization of 1D Anyons with Arbitrary Statistical Phase
65	Julia Pahl	Double Bragg diffraction atom interferometry with Bose-Einstein condensates in microgravity
66	Justin Burau	Blue Detuned Magneto Optical Trap of YO Molecules
67	Kai Dieckmann	Highly Efficient Creation of Ground State LiK Molecules
68	Kai Dietze	Optical clock stability of the correlation signal in a two ion 40Ca+ crystal
69	Kia Boon Ng	Going beyond the new JILA eEDM result with a multiplexed experiment using ThF+
70	Kyungtae Kim	Towards an accuracy evaluation of the JILA Wannier-Stark optical lattice clock

71	Lee R. Liu	Ergodicity breaking in rapidly rotating C60 fullerenes
72	Lin Su	Dipolar Quantum Solids in a Quantum Gas Microscope
73	Luke Caldwell	A new bound on the electrons electric dipole moment
	Mara Meyer zum Alten	
74	Borgloh	Atom-molecule and molecule-molecule collisions in an NaK quantum gas
		Towards ultrastable lasers based on room-temperature optical reference cavities with
75	Marco Schioppo	fractional frequency instability below 6x10^-17
76	Mark Babin	Controlling the Reaction of Ultracold KRb + Rb
		Linear and nonlinear optical processes tailored by a single glass plate: toward vacuum ultra-
77	Masayuki KATSURAGAWA	vilolet laser spectroscopy
78	Matthew Frye	Shielding collisions of ultracold CaF molecules with static electic fields
		Effect of laser noise on the usable metrological gain in spin-squeezed clocks and clock
79	Mauro Chiarotti	interferometers
		Controlled and collective atomic interactions in thermal vapor cells progressing towards a
80	Max Mäusezahl	unique single-photon source
81	Maximilian J. Zawierucha	Towards high precision quantum logic spectroscopy of single molecular ions
82	Mo Jinchao	Realization of an ultracold Indium gas
83		
84	Mu-Hao Wu	Progress Towards Rydberg Two-photon Spectroscopy of Atomic Helium
85	Muqing Xu	Doping a frustrated Fermi-Hubbard magnet
86	Niels Wolf	Non-Hermitian Phase Transition in a Quantum Gas of Light
87	Pai Peng	Towards fault-tolerant quantum computing using 171Yb metastable state qubits
88	Paul Griffin	Compact cold-atom clock with additively manufactured microwave cavity
89	Pei-Chen Kuan	Four-photon Raman transition
		Mid-infrared time-resolved dual-comb spectroscopy for kinetic and product studies of gas-
90	Pei-Ling Luo	phase reactions
		Engineering Spatial Entanglement and Cluster States of Atomic Ensembles via Photon-Mediated
91	Philipp Kunkel	Interactions
92	Preston Huft	Progress Towards an Efficient Quantum Network with Rubidium Atoms
93	Prof. Christof Wunderlich	3-Qubit Gates in a Microwave-controlled Trapped Ion Quantum Computer

94	Prof. Livio Gianfrani	A comb-locked frequency chain for precision mercury spectroscopy and temperature metrology
95	Prof. Samuel Brewer	Absolute frequency measurements of the D-lines in Be+ using a single trapped ion
		Measurement of critical exponents under dimensional crossover by means of Kibble Zurek
96	Prof. Xuzong Chen	mechanism
97	Prof. Yanhong Xiao	Spin squeezing and light squeezing in an atomic ensemble
		Investigation of High-Contrast Rydberg-EIT Spectroscopy in a Thermal Medium: A Systematic
98	Prof. Yi-Hsin Chen	and Universal Analysis
99	Quentin d'Armagnac	Strapdown multi-axis inertial quantum sensor
100	Romain DUVERGER	Quantum metrology of electromagnetic fields with cold Rydberg atoms
101	Rudolf Neuhaus	Laser Stabilization
		Frequency Comb-based Spectroscopy of Thermal Light: Applications to Solar Physics and
102	Ryan Cole	Climate Science
103	Sai Paladugu	Progress Towards a Potassium-39 BEC
104	Sandra Eibenberger-Arias	Coherent rotational state control of chiral molecules
105	Scott Hubele	Towards a Potassium Quantum Gas Microscope
106	Sebastian Geier	Observation of universal relaxation dynamics in disordered quantum spin systems
107	Simon L. Cornish	Second-scale rotational coherence in a gas of ultracold RbCs molecules
108	Sofus Laguna Kristensen	Sub-natural linewidth superradiance on the 7.5 kHz transition of 88Sr
109	Stefan Alaric Schäffer	Coherent control of noise in collective emission
110	Stefan Popa	Towards a measurement of the electron's electric dipole moment with trapped YbF molecules
111	Steven Pampel	Light-assisted Collisions in Optical Tweezers
112	Susi Otto	Towards Rydberg Quantum Information Processing with Ultracold K-Rb
113	Timo Poll	Progress on Zeeman slowing of CaF
114	Timo Zwettler	Competing Orders in a Strongly Interacting Fermi Gas with Photon-mediated Interactions
115	Tony Zhang	Millimeter-wave cavity quantum electrodynamics for scalable long-range entanglement
116	Weikun Tian	Geometrically frustrated Rb atom arrays in Rydberg states for quantum many-body simulation
117	Will Eckner	Spin squeezing in a tweezer-programmable optical clock with Rydberg interactions

118	William Milner	Many-body physics in a 3D optical lattice clock
119	Yi-Wei Liu	Nonclassical motional state excitations in Bose-Einstein Condensates
	Yu-Hsuan Chang	The experimental study of the interaction between Rubidium and Potassium single atoms
	Zheng-Tian Lu	Search for atomic EDM and Gravitational Dipole Moment
	Zhenpu Zhang	A cryogenic neutral atom optical tweezer array
123	Victor Perez	Novel MIR LASER-, LED-, and PD-cascade technologies for high-volume applications