Molecular Lattice Clocks

Tanya Zelevinsky Columbia University, New York

ch, ch

\<u>t</u>

Quantum science with molecules

Fundamental chemistry

Quantum materials

Fundamental physics & metrology

J. L. Bohn et al, Science 357, 1002 (2017)

Quantum science with molecules

Molecular clocks:

Limits of precision and coherence with molecular states

- Metrology with atoms & molecules
- Precise measurements of fundamental phenomena
- Coherence in optical traps for clocks, qubits, cold chemistry
- New level of precision for molecular physics and QED

Skomorowski et al., JCP 136, 194306 (2012) McGuyer et al., Nature Phys. 11, 32 (2015) _. ≅ ≥

Two-body subradiant states Coherent control

Molecule-light coherence, Q>3×10¹²

5.5 ms lifetime

B. McGuyer et al., Nature Phys. 11, 32 (2015)

Ultracold photodissociation

Ultracold photodissociation State-resolved photochemistry

Side-view camera

Line-of-sight camera: quantum interference

Ultracold molecule dissociation

Produce ultracold gases of photofragments from precursor molecules?

 $CaH + \gamma \rightarrow Ca + H$

I. Lane, PRA 92, 022511 (2015)

Dissociation of CaH molecules

Natural predissociation + 3D laser cooling

Dissociation of CaH molecules

Controlled dissociation

Q. Sun *et al.*, arXiv:2306.01184

Science with molecular clocks

Newtonian gravity at large scales: Well-understood

Gravity at nanometer scales: Nearly unknown

Science with molecular clocks Nanoscale mass-dependent forces

Science with molecular clocks Nanoscale mass-dependent forces

Science with molecular clocks Nanoscale mass-dependent forces

$$V = -\frac{GM^2}{r} (1 + Ae^{-r/\lambda})$$

Hypothetical
"Yukawa" correction

Isotopes of strontium atom

Explore a range of masses

5th force with molecular clock

Current experimental capability

E. Tiberi, *Ph.D. thesis* (2023)B. Heacock *et al.*, *Science* **373**, 1239 (2021)

E. J. Salumbides *et al.*, *PRD* 87, 112008 (2013)M. Borkowski *et al.*, *Sci. Rep.* 9, 14807 (2019)

Molecular lattice clock

N. Poli, *Nature Phys.* **15**, 1106 (2019)

Magic wavelengths

Trap light scattering limits coherence: Choose best λ !

Magic wavelengths

Trap light scattering limits coherence: Choose best λ !

Molecular lattice clock Coherence in magic lattice : ×10⁴!

 $Q = 3 \times 10^{12}$

Q (intrinsic) > 10^{26}

Clock precision & accuracy

Systematic effects:

What can cause the clock frequency to shift? $\times 10^{-14}$

_	Systematic	Correction	Uncertainty
	Lattice Stark $(E1, M1, E2)$	100.1	3.4
	Lattice Stark (hyperpolarizability)	-50.8	1.9
	Probe Stark (total)	31.5	2.2
	BBR	-2.2	0.4 ×
	Density	-0.6	0.3
	Quadratic Zeeman	0	0.05
	dc Stark	0	< 0.1
	Doppler and phase chirps	0	< 1
	Lattice tunneling	0	< 0.1
	Line pulling	0	< 0.1
	Scan-and-fit	0	< 0.6
	Total	77.9	4.6

K. H. Leung et al., Phys. Rev. X 13, 011047 (2023)

Clock shifts: Lattice light intensity

K. H. Leung et al., Phys. Rev. X 13, 011047 (2023)

Clock shifts: BBR Purely vibrational BBR shifts?

Wojtek Skomorowski

Molecular polarizabilities DC to infrared

IR Stark shift measurement (2 μm) using clock transitions

IR Stark shifts, all vibrational states: Measurement & calculations

Molecular polarizabilities

DC to infrared

IR Stark shifts, all vibrational states: Measurement & calculations

B. Iritani et al., arXiv:2306.00981

Molecular polarizabilities

Physicists' vs. chemists' molecules

Frequency standards 2017 recommendations

F. Riehle et al., Metrologia 55, 188 (2018)

ZLab

IMM

Sr theory: Robert Moszynski *et al.*

Not pictured:

Jianhui Li

Clockwise, from top left: Qi Sun, Isaac Pope, Mateusz Borkowski, Jinyu Dai, Brandon Iritani, Emily Tiberi, Perry Zhou, TZ, Debayan Mitra

Poster presenters

Mateusz Borkowski

Eliot Bohr

Sr₂ lattice clock (Monday #38) Superradiance-enhanced Ramsey spectroscopy (Tuesday #50)

Sofus L. Kristensen

Superradiant optical line narrowing (Thursday #108) Stefan A. Schäffer

Coherent control of noise in collective emission (Thursday #109)