

Christoph Hohmann / MCQS

0 0 0

CREATION OF ULTRACOLD TETRATOMIC MOLECULES FROM A FERMI GAS OF MICROWAVE-SHIELD POLAR MOLECULES

Xin-Yu Luo

0 0

→ Max-Planck Institute of Quantum Optics

The International Conference on Laser Spectroscopy 2023

Estes Park, 27 June 2023

ULTRACOLD POLAR MOLECULES

Dipolar Interaction Tuned by Electric Field

Gadway & Yan J. Phys. B 49, 152002 (2016)

Rich Degrees of Freedom: Blessings and Curses

Jin & Ye Physics Today 64, 5, 27 (2011)

Applications:

. . .

- Cold collisions and chemistry
- Quantum many-body physics
- Quantum information
- Fundamental symmetries

Direct cooling: 1 μ K ~ 10 K **Cold-atom assembly:** 20 nK ~ 10 μ K

Rich (Complex and Unstable) Collisions

Bause et al., J. Phys. Chem. A 127, 729 (2023)

A BOOMING FIELD

A glance of recent progresses

Testing Fundamental Symmetries

ACME III, JILA, ICL, Caltech, Columbia,...

MIT, MPQ, USTC,...

Scattering Resonances

Cold Chemistry

Latest review: Langen et al., arXiv 2305.13445 (2023)

JILA, Harvard,...

Quantum Gas Microscope

Princeton

MPQ | Xin-Yu Luo | ICOLS 2023

Degenerate Quantum Gases

JILA, MPQ, USTC

Tweezer Array

Harvard, Princeton, Durham,...

ULTRACOLD DIPOLAR MANY-BODY SYSTEMS

Magnetic Atoms

Weak dipoles ~ 10 μ_B , stable (10 s)

Kadau et al., Nature 530, 194 (2016)

Itinerating dipoles

Dipolar Molecules

Medium dipoles ~ 3 Debye, alone stable (10 s)

Yan et al., Nature 501, 521 (2013)

Rydberg Atoms

Strong dipoles ~ 10^4 Debye, lifetime ~ $100 \ \mu s$

Bernien et al., Nature 551, 579 (2017)

Fixed dipoles

Fermions: Dipolar BCS-BEC Crossover

Interplay of contact interaction and strong dipolar interaction

NEW POSSIBILITIES IN MOLECULAR QUANTUM GASES

Bosons: Droplets, Supersolids, Crystals

Schmidt et al., Phys. Rev. Research 4, 013235 (2021)

Field-linked resonance $\psi_{\Delta}(k_x, k_y, 0)$ 0.15 0.8 0.1 0.1 0.1 0.1

Fermions: Dipolar BCS-BEC Crossover

Interplay of contact interaction and strong dipolar interaction

ROAD TO A DEGENERATE FERMI GAS OF NAK

Start at MPQ in 2010

Duda, Chen, Schindewolf, Bause, Milczewski, Schmidt, Bloch & Luo Nat. Phys. 19, 720 (2023)

MPQ | Xin-Yu Luo | ICOLS 2023

ROAD TO A DEGENERATE FERMI GAS OF NAK

Duda, Chen, Schindewolf, Bause, Milczewski, Schmidt, Bloch & Luo Nat. Phys. 19, 720 (2023)

MPQ | Xin-Yu Luo | ICOLS 2023

CONTENT

1. Evaporation of microwave-shielded polar molecules

2. Field-linked resonances of polar molecules

3. Ultracold field-linked tetratomic molecules

COLLISIONAL STABILITY OF ULTRACOLD MOLECULES

 $KRb + KRb \rightarrow K_2 + Rb_2$ $NaK + NaK \not > Na_2 + K_2$

MPQ | Xin-Yu Luo | ICOLS 2023

COLLISIONAL STABILITY OF ULTRACOLD MOLECULES

(Near) universal two-body loss for all bi-alkali molecules

 $\mathsf{KRb} + \mathsf{KRb} \rightarrow \mathsf{K}_2 + \mathsf{Rb}_2$

NaK + NaK \rightarrow ?

(Near) universal two-body loss for all bi-alkali molecules

 $KRb + KRb \rightarrow K_2 + Rb_2$

NaK + NaK \rightarrow ?

Stick collisions: Mayle et al., PRA 87, 012709 (2013)

COLLISIONAL STABILITY OF ULTRACOLD MOLECULES

(Near) universal two-body loss for all bi-alkali molecules

 $KRb + KRb \rightarrow K_2 + Rb_2$

NaK + NaK \rightarrow ?

Stick collisions: Mayle et al., PRA 87, 012709 (2013)

Photon induced loss: Christianen *et al.*, PRL 123, 123402 (2019) Confirmed in RbCs and KRb molecules (2020)

Bause, Christianen, Schindewolf, Bloch & Luo, J. Phys. Chem. A 127, 729 (2023)

THE MYSTERY OF STICKY COLLISION

Save NaK molecules in dark? No. The loss is independent of light intensity!

Similar results in NaRb and bosonic NaK

THE MYSTERY OF STICKY COLLISION

Molecule Nucl. spin d_0/D $\tau_{\rm exp}$ $au_{ m RRKM}$ The loss is independent of light intensity! $^{23}Na^{39}K$ 2.7 $-3/2, -1/2\rangle$ $> 0.35 \, {\rm ms}$ $6\,\mu s$ 23 Na 40 K 2.7 $|3/2, -4\rangle^{\dagger}$ $> 2.6 \, {\rm ms}$ $18 \,\mu s \ (4.9 \,m s)$ $|3/2, -4\rangle^{\dagger}$ $18 \, \mu s \, (4.9 \, m s)$ $> 1.4 \, {\rm ms}$ 10-2 S $> 2.3 \, {\rm ms}$ 18 µs (54 µs) mixed Complex lifetime $\tau_{\rm stick}$ $> 133 \, \mu s$ 18 µs (54 µs) mixed 10⁻³ 23 Na 87 Rb 3.2 $|3/2, 3/2\rangle * \dagger$ $> 1.2 \,\mathrm{ms}$ $19 \, \mu s$ 10⁻⁴ ${}^{40}\mathrm{K}{}^{87}\mathrm{Rb}$ 0.6-4, 1/2 $360(30) \, \rm ns$ $170(60) \, \rm ns$ 87 Rb 133 Cs 1.2 $|3/2, 7/2\rangle * \dagger$ $0.53(6) \, \mathrm{ms}$ $0.253\,\mathrm{ms}$ 10-5 $|3/2, 7/2\rangle * \dagger$ $0.8(3) \, { m ms}$ $0.253\,\mathrm{ms}$ $|3/2, 5/2\rangle$ $2.1(1.3) \,\mathrm{ms}$ $0.253\,\mathrm{ms}$ 10² 10¹ 10³ 10 10⁵ 10² 10³ 10⁴ 10⁶ Intensity / (W/cm²) $|1/2, 7/2\rangle$ $> 3.3 \, {\rm ms}$ $0.253\,\mathrm{ms}$ Photo-excitation rate (Hz/(W/cm²)) ${}^{40}K^{87}Rb + {}^{87}Rb$ 0.39 ms 1 ns

Save NaK molecules in dark? No.

Similar results in NaRb and bosonic NaK

Ultracold sticky collisions: Theoretical and experimental status

Short-range four-atom collisions is beyond modern quantum dynamics calculation!

Arthur Roman Christianen Bause

eta (10⁻¹¹ cm³/s) 10⁰

Bause, Christianen, Schindewolf, Bloch & Luo, J. Phys. Chem. A 127, 729 (2023)

MICROWAVE SHIELDING

MICROWAVE SHIELDING

LMU LUDWIG-MAXIMILIANS-UNIVERSITÄT MORCHEN

MICROWAVE SHIELDING

HIGHLY TUNABLE INTERMOLECULAR POTENTIAL

Tuning knobs

- Rabi frequency Ω
 Detuning δ_r = Δ/Ω
- Ellipticity ξ

van de Waals shielding core $V_{\text{eff}}(\mathbf{r}) = \frac{C_6}{r^6} \sin^2\theta \{1 - \mathcal{F}_{\xi}^2(\varphi) + [1 - \mathcal{F}_{\xi}(\varphi)]^2 \cos^2\theta \} + \frac{C_3}{r^3} [3\cos^2\theta - 1 + 3\mathcal{F}_{\xi}(\varphi)\sin^2\theta],$

Dipolar interaction

Tao Shi

HIGHLY TUNABLE INTERMOLECULAR POTENTIAL

Tuning knobs

Rabi frequency Ω
 Detuning δ_r = Δ/Ω
 Ellipticity ξ

van de Waals shielding core $V_{\text{eff}}(\mathbf{r}) = \frac{C_6}{r^6} \sin^2\theta \{1 - \mathcal{F}_{\xi}^2(\varphi) + [1 - \mathcal{F}_{\xi}(\varphi)]^2 \cos^2\theta \} + \frac{C_3}{r^3} [3\cos^2\theta - 1 + 3\mathcal{F}_{\xi}(\varphi)\sin^2\theta],$

Dipolar interaction

Deng, Chen, Luo, Zhang, Yi & Shi PRL 130, 183001 (2023)

Tao Shi

MPQ | Xin-Yu Luo | ICOLS 2023

HIGHLY TUNABLE INTERMOLECULAR POTENTIAL

Tuning knobs

Rabi frequency Ω
 Detuning δ_r = Δ/Ω
 Ellipticity ξ

van de Waals shielding core $V_{\text{eff}}(\mathbf{r}) = \frac{C_6}{r^6} \sin^2\theta \{1 - \mathcal{F}_{\xi}^2(\varphi) + [1 - \mathcal{F}_{\xi}(\varphi)]^2 \cos^2\theta \} + \frac{C_3}{r^3} [3\cos^2\theta - 1 + 3\mathcal{F}_{\xi}(\varphi)\sin^2\theta],$

Dipolar interaction

Tao Shi

Deng, Chen, Luo, Zhang, Yi & Shi PRL 130, 183001 (2023)

MPQ | Xin-Yu Luo | ICOLS 2023

STRONG DIPOLAR ELASTIC COLLISIONS AND LOW LOSS

- Thermalization rate saturated to trap frequency.
- Model predicts gamma ratio $\beta_{el}/\beta_{inel} > 1000$.

Andreas Schindewolf

Also demonstrated in bosonic NaCs (Will) and NaRb (Wang) molecules!

EVAPORATION TO QUANTUM DEGENERACY

Schindewolf, Bause, Chen, Duda, Karmann, Bloch & Luo Nature 607, 677-681 (2022)

MPQ | Xin-Yu Luo | ICOLS 2023

EVAPORATION TO QUANTUM DEGENERACY

Evaporation

Shielding and evaporation to degeneracy in 2D (KRb): Valtolina et al., Nature **588**, 239 (2020). Forster resonance shileding (KRb): Matsuda et al., Science **370**, 1324 (2020). Evaporation in 3D (KRb): Li et al., Nat. Phys. **17**, 1144 (2021).

 $U_{\rm dd} \approx 0.05 E_{\rm F}$

New possibilities:

- Fermi sea deformation and collapse
- Lattice spin models
- Electro association of tetramers

Andreas Schindewolf

MPQ | Xin-Yu Luo | ICOLS 2023

Schindewolf, Bause, Chen, Duda, Karmann, Bloch & Luo Nature 607, 677-681 (2022)

CONTENT

1. Evaporation of microwave-shielded polar molecules

2. Field-linked resonances of polar molecules

3. Ultracold field-linked tetratomic molecules

FIELD-LINKED STATES

OH molecules (electric): Avdeenkov & Bohn, PRL 90, 043006 (2003) Bialkali (microwave): Lassablière & Quéméner, PRL 121, 163402 (2018)

Goulven Quéméner

MPQ | Xin-Yu Luo | ICOLS 2023

OBSERVATION OF FIELD-LINKED RESONANCES

Tuning Ellipticity by Dual-Feed Antenna

Xing-Yan Chen Andreas Schindewolf

Chen, Schindewolf, Eppelt, Bause, Biswas, Duda, Karman, Hilker, Bloch & Luo Nature 614, 59 (2023)

OBSERVATION OF FIELD-LINKED RESONANCES

 $\Omega = 2\pi \times 10$ MHz, T = 230 nK

30

Xing-Yan Chen

Andreas Indewolf

Chen, Schindewolf, Eppelt, Bause, Biswas, Duda, Karman, Hilker, Bloch & Luo Nature 614, 59 (2023)

OBSERVATION OF FIELD-LINKED RESONANCES

 $\Omega = 2\pi \times 10$ MHz, T = 230 nK

Xing-Yan Chen Andreas Schindewolf

Chen, Schindewolf, Eppelt, Bause, Biswas, Duda, Karman, Hilker, Bloch & Luo Nature 614, 59 (2023)

A NEW TYPE OF SCATTERING RESONANCE

Chen*, Schindewolf* et al., Nature **614**, 59 (2023)

Universal to Polar Molecules

Lassablière & Quéméner, PRL 121, 163402 (2018)

Resonance	Field-linked	Feshbach
Tuning	Electric	Magnetic
Channel	Single	Two
Bound state size	~ 1000 a0	~ 40 a0
Bound state lifetime	Up to 100 ms	~ 1 µs
Dipole moment	~ 1.6 Debye	0 Debye
Apply to most UPMs?	Yes	No

Feshbach resonances (Ketterle): Atoms: Nature 392, 151 (1998) GS Molecules: Nature 614, 54 (2023)

CONTENT

1. Evaporation of microwave-shielded polar molecules

2. Field-linked resonances of polar molecules

3. Ultracold field-linked tetratomic molecules

ULTRACOLD POLYATOMIC MOLECULES

Additional degrees of freedom for e.g., self-error-corrected qubit, edm...

However much more difficult to cool!

Direct cooling techniques to Kelvin regime

- Buffer gas cooling
- Stark deceleration
- Cryofuge deceleration

Ultracold Polyatomic Molecules for Quantum Science and Precision Measurements Doyle et al., JPS Conf. Proc. 37, 011004 (2022)

ELECTROASSOCIATION OF THE FL TETRAMERS

Theory:

Quéméner, Bohn & Croft, arXiv:2304.09525 (2023)

Deng et al., Formation and dissociation of field-linked tetramers (in preparation)

ELECTROASSOCIATION OF THE FL TETRAMERS

Theory:

Quéméner, Bohn & Croft, arXiv:2304.09525 (2023)

Deng et al., Formation and dissociation of field-linked tetramers (in preparation)

BINDING ENERGY AND LIFETIME OF TETRAMERS

- Spontaneous dissociation
- Suggest collisionally stable
- 8(2) ms near threshold
- Expect >100 ms lifetime at circular polarization and 90 MHz Rabi frequency

ASSOCIATION AND DISSOCIATION PROCESSES

TEMPERATURE AND PHASE SPACE DENSITY

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

ANGULAR DISTRIBUTION OF TETRAMER WAVEFUNCTION

Tetramer Wavefunction in Momentum Space k_z k_V **3D** distribution 6 $k_y (10^{-3}a_0^{-1})$ b(10⁵a² Top view 0 0 -1 -1 0 1 $k_x (10^{-3}a_0^{-1})$

ANGULAR DISTRIBUTION OF TETRAMER WAVEFUNCTION

ANGULAR DISTRIBUTION OF TETRAMER WAVEFUNCTION

OUTLOOK

OUTLOOK

OUTLOOK

MPQ | Xin-Yu Luo | ICOLS 2023

SUMMARY

- ✓ Stable dipolar Fermi gases of NaK molecules
- ✓ Resonant tuning of molecular interactions
- ✓ Assembled bosonic tetratomic molecules (NaK)₂
- □ Dipolar *p*-wave superfluid Tetramer BEC?
- \Box Scalable assembly?

. . .

□ Spin models and extended Hubbard models

Schindewolf et al., Nature 607, 677-681 (2022)

Chen et al., arXiv:2306.00962 (2023)

ACKNOWLEDGEMENT

MPQ NaK team

Marcel Duda (OHB)

Former members:

Christoph Gohle, Tobias Schneider, Nikolaus Bucheim, Zhenkai Lu, Frauke Seesselberg, Scott Eustice, Renhao Tao, Akira Kamijo, Benedikt Heizenreder. STIRAP and Magic trap Eberhard Tiemann Svetlana Kotochigowa Ming Li

Theory

Richard Schmidt Jonas von Milczewski Collisions/Shielding

Tijs Karman

nan Arthur Go Christianen Qué **Field-linked tetramers**

Goulven Quéméner

Tao Shi

Fulin Deng

Su Yi