

Universität Stuttgart

Dipolar supersolids

Tim Langen

Picture: Manfred Mark

What is a supersolid?

• Open question for > 60 years: **Can a Solid Be "Superfluid"?**

Penrose & Onsager, Andreev & Lifshitz, Gross, Thouless, Leggett + many more

• Counterintuitive: rigid structure of a solid + frictionless flow of a superfluid

• Prime candidate material: solid helium

Finite superfluid fraction from Bose-condensed mobile vacancies

Supersolidity in helium?

- Transition to supersolid should show up as change of **moment of inertia**
- Torsional oscillator: drop in resonance frequency below ~175 mK

Kim & Chan, Nature 427, 225 (2004)

• But: later shown to be related to unexpected change in **sheer modulus**!

Unclear if supersolidity exists (in helium)!

Other way round: Can a (super)fluid be solid?

Analogy: Rosensweig instability of a *classical* ferrofluid

- Nanoscale magnetic particles suspended in a liquid solvent
- Increase magnetization using external magnetic field
- Magnetization breaks the translational symmetry of the system!

What if we add quantum mechanics? Coherent superposition of fluid and crystal structure?

see e.g. Timonen et al., Science 341, 253 (2013)

Quantum ferrofluids

- Ultracold dysprosium atoms: large magnetic moment $\mu \approx 10 \ \mu_B$
- Contact + Dipolar interactions

$$V_{\rm Born} = rac{4\pi\,\hbar^2\,a}{m}\delta({m r}) + rac{\mu_0\mu^2}{4\pi\,r^3}(1-3\cos^2(heta))$$

tunable, short-ranged and isotropic

• Relative strength
$$\varepsilon_{dd} = \frac{a_{dd}}{a} \propto \frac{m\mu^2}{a}$$
 dipolar contact

Significant dipolar interactions, simple cooling and collisional stability!

long-ranged and anisotropic

Quantum ferrofluids

Spontaneously forms crystal structures stabilized by quantum floutuations Kadau et al., Nature 530, 194 (2016)

Can this gas form a solid and be a <u>superfluid</u> at the same time?

> Can this gas form a supersolid?

BEC-to-crystal transition

Experimental observation of 1D droplet crystals

• Probing supersolid coherence via time-of-flight interference

• Strong evidence for supersolidity, but can one "prove" the superfluid nature?

Böttcher *et al.*, PRX **9**, 011051 (2019) see also: Ferlaino & Modugno groups

Superfluidity and elementary excitations

Guo *et al.*, Nature **574**, 386 (2019) Hertkorn *et al.*, PRL **123**, 193002 (2019)

Goldstone and amplitude 'Higgs' modes

Infinite system:

Broken U(1) phase invariance Broken translational invariance

• Two (gapless) Goldstone modes:

Phonon of the superfluid Phonon of the crystal (self-assembled crystal!)

• One (gapped) Higgs mode:

Oscillation between superfluid and crystal

Hertkorn et al., PRL 123, 193002 (2019)

+Related work by Roccuzzo & Ancilotto PRA (2019)

Spectrum of collective excitations

Dispersion relation calculated using Bogoliubov-de Gennes equations for our **finite**, **trapped system**:

Spectrum of collective excitations

Dispersion relation calculated using Bogoliubov-de Gennes equations for our **finite**, **trapped system**:

Observation of some of these modes in related work in Innsbruck and Pisa

Low-energy Goldstone mode

Hertkorn et al., PRL 123, 193002 (2019)

Goldstone mode

- All hallmark features of a supersolid in one experiment ...
- Detect the Goldstone mode in coherent region using correlation analysis: superfluid crystal!

- Higgs mode can also be observed
- The supersolid state of matter exists!

Guo et al., Nature 574, 386 (2019)

Density fluctuations across the phase transition

Hertkorn et al., Phys. Rev. X 11, 011037 (2021)

Something (not entirely) new ...

Phase transitions

- Fourier transform of the density-density correlation function
- Historically important for superfluid He: neutron or X-ray scattering
- Well known in BECs, Fermi gases & dipolar BECs: Bragg spectroscopy

Static structure factor

• Here: Extract directly from in situ density fluctuations / power spectrum

 $S(\mathbf{k}) = \langle \left| \delta n(\mathbf{k}) \right|^2 \rangle / N$

e.g. Pitaevskii & Stringari (2003)

• Linked to excitation spectrum!

Famous approximation: Feynman-Bijl $S(\mathbf{k}) = \hbar^2 \mathbf{k}^2 / 2m\varepsilon(\mathbf{k})$ e.g. Klawunn, Recati, Stringari, Pitaevskii, PRA (2011)

• As roton softens: fluctuations & structure factor dramatically enhanced

Experiment

• Extract hundreds of images across the transition

• Calculate mean image and fluctuations around the mean: $\delta n_j(\mathbf{r}) = n_j(\mathbf{r}) - \langle n(\mathbf{r}) \rangle$

• Obtain mean power spectrum via Fourier transform and, hence, S(k)

$$\hat{k}_y$$

 \hat{k}_x $0.3\mu \mathrm{m}^{-1}$ $\langle |\delta n(\mathbf{k})|^2 \rangle$

Static structure factor

Note: No general finite temperature theory exists so far for these systems!

Principal component analysis: Rotons

- Statistical analysis to find dominant fluctuation patterns over full dataset
- Results can be identified with BdG modes on BEC side Debussy et al., NJP (2014)
- Dominant modes are two Supersolid BEC degenerate roton modes $\mathop{(\mathrm{z}_{\mathrm{H}}}\limits^{(\mathrm{z})}{}_{40}$ Enhanced around the 2π 3 30 transition: precursor for transition 20min/max ratio 0 0.25 0.5 0.75 Goldstone 10 See modes individually: 9596 97 98 99 100 94 $a_{\rm s}$ (a_0) (often) even in single shots Close to transition Single Shot antisymmetric roton symmetric roton 1 + (e)-antisymmetric roton (b)(a)symmetric roton $y (\mu m)$ 0.8 0 weight \mathcal{W} 9.0 proj. (a.u.) (c)(d)0.4BEC SSP 0.2ID -1010 -10 0 10 104 102 100 98 96 94 9290 0 scattering length $a_{\rm s}(a_0)$ $x (\mu m)$ $x (\mu m)$ BdG theorv!

Hertkorn et al., Phys. Rev. X 11, 011037 (2021)

Higher-order modes

Next-strongest modes:

- BEC quadrupole mode
- (anti-)symmetric crystal phonons

Fourier transform explains double peak structure in S(k) !

• Splitting of excitations at the edge of the emerging Brillouin zone

Weights across the transition:

- BEC mode dominant in BEC
- Crystal phonons dominate from the transition

Supersolid region supports both BEC and crystal modes!

Hertkorn et al., Phys. Rev. X 11, 011037 (2021)

More dimensions, more modes!

How about "2D" pancake configurations?

- Radial roton (~ same as 1D rotons)
- Angular rotons
- "Blood cell" ground states (more stable and abundant due to LHY!)

see also without LHY: Bohn group, PRL 98, 030406 (2007)

Repeat similar procedure as in 1D:

 $84.7a_0$ excitation energy $\omega/2\pi$ (Hz) PHYSICAL 400 87.0a $89.6a_0$ dipole Review $S(k = k_{\text{rot}}, \theta) \text{ (a.u.)}$ $000 \quad 000 \quad$ $91.1a_0$ ETTERS 300 30 $93.1a_0$ 20200 $94.5a_0$ $96.4a_{c}$ 0 --1.0-0.50.0 1.084.0 84.5 85.0 85.5 86.0 86.587.0 $\emptyset.5$ Angle θ (π scattering length $a_s(a_0)$ APS Volume 126, Number 19 American Physical Society Softening m=2 and m=3 rotons Mode competition: square vs. triangular (Excited) blood cells

mode

pattern

 $\delta \rho(\mathbf{r})$

2D supersolidity? (Much) larger atom numbers to make m=3 dominant! Non-equilibrium preparation? Ferlaino group, Nature (2021) Schmidt *et al.*,

Schmidt *et al.*, PRL 126, 193002 (2021) Hertkorn *et al.*, PRL 127, 155301 (2021)

There's more than droplet crystals!

Hertkorn *et al.*, Phys. Rev. Research 3, 033125 (2021) Schmidt *et al.*, Phys. Rev. Research 4, 013235 (2022)

Supersolid phase diagram in 2D

Not just supersolid droplets, but honeycomb, stripe, labyrinth, pumpkin/cogwheel patterns!

Cross & Hohenberg, RMP (1993)

Analogy to patterns known on vastly different energy and length scales across all the sciences!

Supersolid phase diagram in 2D

→ Lower saturation density!

How to realize this in experiment? Use larger dipoles!

But: Magnetic moment already maxed out in dysprosium?

Use (electrically) dipolar molecules!

Towards molecular BECs

Direct laser cooling of

Heavy: Precision measurements

- Barium monofluoride (BaF)
- Calcium monofluoride (CaF)

BEC / many-body physics

Electric dipole moment

- d ~ 3 Debye, tunable in lab frame
- Up to 10⁴ x more dipolar than dysprosium!

Collisional stability and tunability via microwave dressing

Doyle group, Science **373**, 779 (2021) *Bloch group*, Nature **607**, 677 (2022) + several others

 Independent tuning of contact and dipolar interactions

Albrecht *et al.*, Phys. Rev. A **101**, 013413 (2020) Kogel *et al.*, New J. Phys. **23**, 095003 (2021)

Schmidt et al., Phys. Rev. Research 4, 013235 (2022)

Many exciting experiments ahead!

Lifshitz & Andreev (1970)

- Are supersolids only possible in fine-tuned dipolar atoms?
- What is the nature of the phase transition (less finite size)?
- Systematically check the beyond mean-field dipolar theories
- Connect vacancy-induced supersolids and droplet supersolids?

4000

.15 5 3000

2000

0.45

Droplet

Leverage the tunability of interactions to find a universal picture!

Schmidt et al., Phys. Rev. Research 4, 013235 (2022)

0.65

Gross (1957)

0.70

- Magnetic atoms still have many advantages, if only dipolar interactions were larger!
- Bring atoms closer together in UV lattice Coupling strength > KRb molecules
- Quantum gas microscopy is challenging

Microscope with 266nm spacing (Greiner) Sub-wavelength-spaced 2D layers (Ketterle)

- Magnetic atoms still have many advantages, if only dipolar interactions were larger!
- Bring atoms closer together in UV lattice Coupling strength > KRb molecules

Microscope with 266nm spacing (Greiner) Sub-wavelength-spaced 2D layers (Ketterle)

Quantum gas microscopy is challenging: use shelving!

- Magnetic atoms still have many advantages, if only dipolar interactions were larger!
- Bring atoms closer together in UV lattice Coupling strength > KRb molecules

Microscope with 266nm spacing (Greiner) Sub-wavelength-spaced 2D layers (Ketterle)

Quantum gas microscopy is challenging: use shelving!

- Magnetic atoms still have many advantages, if only dipolar interactions were larger!
- Bring atoms closer together in UV lattice Coupling strength > KRb molecules
- Quantum gas microscopy is challenging: use shelving! ∀∀∀
- Resolves: position, spin, energy ...
- New setup: currently evaporating to form large BECs – stay tuned

Microscope with 266nm spacing (Greiner) Sub-wavelength-spaced 2D layers (Ketterle)

> shelving 1001 nm

Conclusion

Also: 3D printed fiber tweezer traps

Experiments with **dipolar Bose-Einstein condensates** of dysprosium atoms

Formation of a **dipolar droplet supersolid** and observation of the **characteristic Goldstone modes**

Study **excitations** using measurements of fluctuations

Rich phase diagram featuring, e.g. exotic pattern formation

Realize using molecular BECs!

See also: Physics Today, March 2022

Thank you!

http://www.coldmolecules.de http://www.pi5.uni-stuttgart.de

Dysprosium: Mingyang Guo, Jens Hertkorn, Kevin Ng, Jan-Niklas Schmidt, Lucas Lavoine, Ralf Klemt, Hans Peter Büchler (Theory) Martin Zwierlein (MIT) Tim Langen (Co-PI) Tilman Pfau (PI)

Molecules & Fibers: Marian Rockenhäuser Felix Kogel **Einius Pultenevicius** Alexandra Köpf Tatsam Garg **Ole Prochnow** Philipp Groß <u>Tim Langen</u> (PI)

Max Mäusezahl: Poster 80, Thursday

"Hot Rydberg single photon source"

Alexander von Humboldt Stiftung/Foundation