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Quantum Electrodynamics (QED)

Quantum electrodynamics (QED) is one of the most rigorously tested
theories of modern physics for which He - the simplest multi-electron atom -
is a key test-bed (more complex atoms e.g. alkalis, are intractable)

Energy levels can be determined via a power series expansion of the fine-
structure constant a to a high level of accuracy

Ultrahigh resolution lasers and frequency combs have enabled

measurement of He transition intervals with an accuracy exceeding one part
in 10! to test QED theory — and stood the test!

Transition rates are much harder to measure, and theoretical calculations
are similarly constrained in accuracy: difficult to challenge QED — thus far.




QED and the proton radius puzzle

Discrepancies in the proton radius arose in spectroscopy of muonic- and

electronic-hydrogen (involving QED) which differ by ~5c [Pohl et al. Nature
466, 213-216 (2010), H. Fleurbaey et al., PRL 120, 183001 (2018), N. Bezginov
et al., Science 365, 1007 (2019)] — the “proton radius puzzle” — new physics?

Helium also has a nuclear “puzzle,” with 3He and “He isotope shifts of the
235,>23P 41 5 (X. Zheng et al., PRL 119, 263002 (2017)) and 235,->2'S, (R. J.
Rengelink et al., Nat. Phys. 14, 1132-1137 (2018)) transitions disagreeing by
20 in the nuclear charge radius — but recent news: arxiv.org/abs/2306.02333

More stringent tests of QED using different experiments are therefore
important to provide independent validation or otherwise of QED.




Measuring
the He
tune-out
frequency

to test QED

RESEARCH

PHYSICS

Measurement of a helium tune-out frequency:
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work, we measure the tune-cut frequency for the 2°S, state of helium between transitions to the 2'P
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and of every

in the atomic spectrum and provides a precise
constraint on the ratio of transition dipole
matrix elements (DMES). Similarly, “magic”
wavelengths [wherein the light shift of a tran-
sition cancels (15), rather than the light shift
of a level, as is the case for a tune-out wave-
length] have yielded absolute and relative de-
terminations of DMEs (16, 17

As a test of QED, a tune-out frequency is ad-
vantageous because it is a null measurement,
which does not requine calibration of the light
intensity or a messurement of excitation prob-
ability. These factors have previously limited

and 3'P manifolds and compare It with new
value of 725,736.700(260) megahertz

QED) describes

the interaction between matter and light.
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the measurement uncertainty and resolves both the QED

une-out measurements (16, 17, 21-25) have in-
potential for QED effiocts.

the issue lies with QED itself (13). Thus, we

look to challenge QED directly by precision
Itis that y i con- in helium beyond the usual en-
sidered a cornerstone of modem phys- | ergy interval measurements.
s QED has been remarkably predictive An atom in an optical field experiences an

atoms and the lous electron
moment (7). However, as the precision of atomic
approaches the part-per-trillion

3 between such
and experiments have come to light, such as
the “proton radius puzzle” (2). Spectroscopic
[of muonic hyd (), hy-
drogen (4, 5), and muonic deaterium (6)] yiekd
determinations

“puzzle,” with precision measurement of

tope shifts of the 2°S,—2"Pyq,, () and 'S, —2'S,
(10) transitions disagreeing by two standand
deviations in the derived nuclear charge m-
dius. Further, recent measurements of the ion-
ization energy for the helium 2'S, state (11)
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tions to the dynamic polarizability [a(f)) by
all transitions below that frequency are bal-
anced by all those above it [o(f) = 0] (74).
“This balance point is therefore fixed by the
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In this work, we measured the tune-out of
the metastable 2'S, state of helium (denoted
He*) that lies between transitions to the 2°P
and 3"Pmanifolds (dencted 2°S, - 2°P/'P) at
~726 THz (413 nm). We chose this particular
tune-out frequency becanse the two nefghbor-
ing transitions are more than an octave apant
in frequency, causing the gradient of atomic

with optical to be small
at the tune-out. Thus, this tune-out frequency
is especially sensitive to higherorder QED ef-
fects. We achieved a 20-fold improvement in
precision compared with the sole previous
measurement (23).

For an unambiguous comparison, we also
present a new theoretical estimate of the 2°S, —
2°F/3°P mneout in heium. In the wake of the

first prediction (24) and measurement (23) of <

— Fig. L Tune-cut in atomic helium.
o (A) Aomic energy level shft of
the dominant state (maniloids)
around the tune-cut. When an optical
field of frequency f (armows) is
apphed to the atom, the indivicual
levets shift deponding on the difference
between f and the transition
frequency. At the tune-out frequency,
Ty (middle right), e shifts 1 the
2'5; state energy cancel. Energy
spacing and shifts are not 10 scale
(B) Theoeetical frequency-deperdent
polarizabiity of 2°S; helum, for 2
constant light polarization. indicating
that the polarizability vanishes near
726 THz the tune-out frequency
measured in this paper. Verticl
dolted ines show from left 1o right,
the trarsitions to the 2°F, 3%, ard
4'P manitolds. inset shows the
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Tune-out and magic frequencies

A —
|62> _____________________________________________________________________________________________________________________________________ |
|€1> e :: ....................... _‘_ ............................................................
A
AE No
> change in
E No AE
- T S change in
|g) e e __|g> .......................... V_ ..................
No light Red Blue Tune-out Magic

The tune-out frequency is the frequency at which the atom no longer
scatters photons, and so it becomes “invisible”




Metastable Helium

Metastable 23S, helium (He™*) :

 Along lived (~8000s) state that acts as an
effective “ground state” for atom optics
Hodgman et al. PRL 103, 053002 (2009)

 Has ~20 eV of internal energy enabling efficient
single particle detection e.g. microchannel plate

See: “Metastable helium: Atom optics with nano-

grenades”, K.G.H. Baldwin, Cont. Phys. 46, 105 (2005)

He* BEC apparatus used for :

e Atomic physics: He* lifetimes, QED studies
* Atom lasers and atom guiding

e Quantum statistics and Bell’s inequalities

* Ghost imaging

triplets

1083 nm
trap laser

(metastable:
effective




Tune-out frequency calculation
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He* tune-out theory

PHYSICAL REVIEW A 88, 052515 (2013)

Tune-out wavelengths for metastable helium

The tune-out ratio of transition strengths is
more sensitive to QED contributions

The six longest tune-out wavelengths for the He(ls2s *S¢) metastable state are determined by explicit
calculation. The tune-out wavelength at 413.02 nm is expected to be sensitive to finite mass, relativistic, and
quantum electrodynamic effects upon the transition matrix elements and its measurement would provide a
nonenergy test of fundamental atomic structure theory.

“‘Suppose the tune-out frequency can be determined to an absolute accuracy
of 0.0001 nm, then the fractional uncertainty in the derived structure
information would be 1.8 x 1076, This would constitute the most precise
measurement of transition rate information ever made for helium ........ A
measurement of the 413.02-nm tune-out wavelength at an accuracy of 0.0001
nm would have the potential to probe QED effects in an atomic structure
model of the helium metastable state.”




He* tune-out measurements at ANU

2013 —-PRA 88, 052515 Tune out wavelengths for metastable
helium, J. Mitroy and L.-Y. Tang. Predict test of QED ~220 ppm

e 2015-PRL 115, 043004. First He* tune-out measurement
~5 ppm —insufficient to test QED, and theory only ~220 ppm

* 2018 — Australian Research Council grant with Li-Yan Tang
and Gordon Drake (which improved theory to ~0.012 ppm)

2022 —Science 376, 199. Measurement of He* tune-out at
~0.36 ppm which tests the QED contribution of ~10 ppm




First experimental 413nm detection

PRL 115, 043004 (2015) PHYSICAL REVIEW LETTERS

week ending
24 JULY 2015

2Sta

Precision Measurement for Metastable Helium Atoms of the 413 nm Tune-Out

Wavelength at Which the Atomic Polarizability Vanishes

Experimental accuracy unable to
determine QED contributions

Fics,

We present the first measurement for helium atoms of the tune-out wavelength at which the atomic
polarizability vanishes. We utilize a novel, highly sensitive technique for precisely measuring the effect of
variations in the trapping potential of confined metastable (2°S,) helium atoms illuminated by a perturbing
laser light field. The measured tune-out wavelength of 413.0938 (9, ) (205 ) nm compares well with the
value predicted by a theoretical calculation [413.02(9) nm] which is sensitive to finite nuclear mass,
relativistic, and quantum electrodynamic effects. This provides motivation for more detailed theoretical
investigations to test quantum electrodynamics.

DOI: 10.1103/PhysRevLett.115.043004 PACS numbers: 32.10.Dk, 03.75.Kk, 31.15.ap, 37.10.Vz
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Experimental apparatus

2nd MOT and 1st Magneto Optic Trap
BEC magnetic trap q /
/ Zeeman slower




New 413nm probe laser system
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New atom laser trap frequency measurement

Experimental sensitivity is 1073 Joule!
Precision ~20 better than previously, enabling determination of QED contributions
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Systematic effects
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Effect of laser polarisation
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Experimental error budget (MHz)

Term Estimate Uncertainty
Measured Value 725736810 40
Polarization

- Birefringence -100 200

- Beam Anisotropy | 0 150
Method Linearity 24 30
Hyperpolarizability -30 50
Broadband Light 0 30
DC Electric field 0 <1
Wave-meter 0 4
Mean-Field 0 <1
Total 725736 700 260

16



Contributions — theory and expt.

Theory - Exp B :
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Conclusions

“measurement of the 413.02nm tune-out wavelength at an accuracy of
0.0001 nm [~0.24 ppm] would have the potential to probe QED effects”
— J Mitroy & L-Y Tang (PRA, 2013)

Our theory calculation is now accurate to ~0.012 ppm: 725,736,252(9) MHz
Our experiment is now accurate to ~0.36 ppm: 725,736,700(260) MHz

Experiment has been able to resolve (by a factor of almost 30) QED
contributions ~10 ppm and (by a factor of 2) retardation corrections ~0.7 ppm

The current discrepancy between theory and experimentis ~1.7c
Without retardation correction, discrepancy is ~“0.1c

Using a new and completely independent method, and within the above
uncertainties — QED is alive and well!

ANU GRAND CHALLENGE: ZERO-CARBON ENERGY FOR THE ASIA-PACIFIC
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Andrew Truscott Bryce Henson David Shin Carlos Kuhn

]
§ s. £ ¢
// 3 | ~|‘7 -
3 | < ‘;, Ay

[

(Yong-Hui Zhang)
Li-Yan Tang Ken Baldwin

19 Sean Hodgman Kiaran Thomas Jake Ross

Gordon Drake Aaron Bondy



| Australian
~—=-/ National

" THANK YOU!

Professor Ken Baldwin
Australian National University
T+61-432987 251

E Kenneth.baldwin@anu.edu.au



mailto:Kenneth.baldwin@anu.edu.au

