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A. Weakly interacting.
Could be Dark Matter?

King plots.

“Fifth force”. “Weird 
gravity.”

axion cavities

time-varying “constants”
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Not all tests of and
extensions to 
SM fall neatly into
“new particle” 
framework

Here be neutrinos

Here be photons

Where might new particles live?
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BANG!

Misc. 
SM stuff

POOF!

“Camera”

Image:
“Unicorn.Guts”
removed for
violation of
community 
standardsX

13.6
TeV

<2
TeV

The Large Hadron Collider (LHC)
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x x
magnetic dipole
moments
MDM or
electric dipole
moments
EDM!

“2”
or 0

“a/p”
or 0 ++ [SM contributions

currently up to 
5 loops and O(a 5 )

or, for EDM, < 10-34)

x

“a/p”

+

e e

Plan: let’s measure 
dipole moment,
subtract out SM
prediction. Whatever’s
left is a result of a loop
with one “running unicorn”



This talk:  
Mostly on new eEDM result

but I will touch also 
on two recent record-setting
results on  MDM  (= “g minus two”)  

(one eMDM,  on mMDM)
Spoiler: we can think about all three in a unified framework.
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How to measure eEDM?   First, how do we measure
eMDM?
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How to measure eEDM?
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What makes a good EDM 
experiment?
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Field!

Big Coherence
Time (narrow 
resonances)!

Large count rate
(split resonance
by        )
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Problem: 
Big E, long t.    Electron accelerates quickly, and is gone????

E
Solution: Attach electron spin to
a big atomic nucleus!

-

E z

Eeff = a Elab Z3
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Problem: 
Big E, long t.    Electron accelerates quickly, and is gone????

E
Solution: Attach electron spin to
a big atomic nucleus!

-

E z

Eeff = a Elab Z3

(Pat Sandars)



Elab
Eeff

|

++
Z

Our approach.  1. Use molecule for big Eeff

(we follow Hinds and Demille in this)

Elab = 20 V/cm Eeff > 2 x 1010 V/cm
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Our approach.  2. Use trapped ion for long t

(coherence time of 3.0   seconds !!!)



Our approach.  3. We want big count 
rate  (= many ions in the trap!)

Solution: Use a really BIG ion trap!!

(Electrodes spaced by centimeters,
not microns)

In one shot we trap 1000s of ions, and 
count 100s of ions on the side of a 
Ramsey fringe.



The Ion Trap

26

Ionization
Lasers



experimental procedure
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Molecular Alignment
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𝐸 = 𝐸𝑒𝑓𝑓

𝐵 = 𝐵𝑙𝑎𝑏

𝐸 = 𝐸𝑙𝑎𝑏



Rotating Fields
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• Rotating E-Field:

• 𝐸𝑟𝑜𝑡 = 60
V

cm

• 𝑓𝑟𝑜𝑡 = 375 kHz
• Can switch between CW 

and CCW

• Molecules rotate with 
𝑟𝑟𝑜𝑡 = 0.5 mm

𝐸𝑟𝑜𝑡
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𝐵𝑟𝑜𝑡

• Rotating E-Field:

• 𝐸𝑟𝑜𝑡 = 60
V

cm

• 𝑓𝑟𝑜𝑡 = 375 kHz
• Can switch between CW 

and CCW

• Molecules rotate with 
𝑟𝑟𝑜𝑡 = 0.5 mm

• “Rotating” B-Field
• Static B-field gradient

• 𝐵𝑎𝑥 = 200
mG

cm

• 𝐵𝑟𝑜𝑡 = 10mG

𝐸𝑟𝑜𝑡



Science State 3Δ Ω =1 v = 0, J = 1, F = 3/2
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〉|

|〉
mF = -3/2 -1/2 1/2 3/2

𝐸 = 𝐸𝑟𝑜𝑡

𝐵 = 0

≈ 100 MHz

〉|

|〉

Δ𝐸𝑢 = 0

Δ𝐸𝑙 = 0
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33mF = -3/2 -1/2 1/2 3/2

𝐸 = 𝐸𝑟𝑜𝑡

𝐵 = 𝐵𝑟𝑜𝑡

≈ 100 MHz
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34mF = -3/2 -1/2 1/2 3/2

𝐸 = 𝐸𝑟𝑜𝑡

𝐵 = 𝐵𝑟𝑜𝑡

≈ 100 MHz

Δ𝐸𝑢 = 3𝑔𝑢𝜇𝐵𝐵𝑟𝑜𝑡 + 2𝑑𝑒𝐸𝑒𝑓𝑓 ≈ 100 Hz

Δ𝐸𝑙 = 3𝑔𝑙𝜇𝐵𝐵𝑟𝑜𝑡 − 2𝑑𝑒𝐸𝑒𝑓𝑓 ≈ 100 Hz

〉|

|〉

〉|

|〉

𝐸𝑒𝑓𝑓

𝐸𝑒𝑓𝑓 𝐸𝑒𝑓𝑓

𝐸𝑒𝑓𝑓

Using Omega=1 states to cancel many effects, the Demille idea.
We have cheerfully stolen it from ACME.



Our approach.  3. We want big count 
rate  (= many ions in the trap!)

In one shot we trap 1000s of ions, and count 
100s of ions on the side of a Ramsey fringe.

counting 400 ions at shot noise, we
should measure the evolved Ramsey
phase to 1/(400)1/2 0.05 radians in
one shot.

BUT! pulsed lasers ablation, two-photon photo-
ionization, two-photon photo-dissociation. 
Spin-flips counted affected by 5 pulsed lasers
plus 5 seconds worth of E-field and B-field 
drift.
We were lucky if we could see 
d < 0.15 radians  in a shot!



Δ𝐸𝑙

Ramsey Interferometry
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〉|

|〉
mF = -3/2 3/2

〉|

|〉
0.86

Δ𝐸𝑢

Angle-resolved photo-dissociation: help from Tanya Zelevinsky!



Ramsey Fringes
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0.86

We reject most common-node noise, get close to QPN limit. 



Experimental Chops
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+

−

+

−

𝑓0 = 3𝑔𝜇𝐵𝐵𝑟𝑜𝑡 ≈ 100 Hz
𝐵 ∥ 𝐸

Upper Doublet

𝐵 ∥ 𝐸

Lower Doublet

𝐵 ∥ −𝐸

Upper Doublet

𝐵 ∥ −𝐸

Lower Doublet
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𝐵 ∥ 𝐸

Upper Doublet

𝐵 ∥ 𝐸

Lower Doublet

𝐵 ∥ −𝐸

Upper Doublet

𝐵 ∥ −𝐸

+

+

−

−

𝑓0 = 3𝑔𝜇𝐵𝐵𝑟𝑜𝑡 ≈ 100 Hz

𝑓𝐷 = 3𝛿𝑔𝜇𝐵𝐵𝑟𝑜𝑡

Lower Doublet
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𝑓0 = 3𝑔𝜇𝐵𝐵𝑟𝑜𝑡 ≈ 100 Hz

𝑓𝐷 = 3𝛿𝑔𝜇𝐵𝐵𝑟𝑜𝑡

𝑓𝐵𝐷 = 2𝑑𝑒𝐸𝑒𝑓𝑓

𝐵 ∥ 𝐸

Upper Doublet

𝐵 ∥ 𝐸

Lower Doublet

𝐵 ∥ −𝐸

Upper Doublet

𝐵 ∥ −𝐸

Lower Doublet



Statistical Result
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𝛿𝑓𝑠𝑡𝑎𝑡,1𝜎
𝐵𝐷 = 22.8 μHz

𝜒2 = 1.078

550 μHz ∙ hour

600 hours

Data taken blind!



E

A  = solid angle swept out

by changing bias field.
s

Berry’s phase after one cycle:
df = m A

〉| 〉|Δ𝐸𝑢
m=3/2

m=-3/2



!!!!!Use rotating E-field bias!!!!!
-E-field defines quantization axis

-Excellent rejection of lab-frame residual 

B-field.

+

wrott

E

+

+

+

One does Zeeman-level 
spectroscopy then
in the rotating frame.

Leanhardt et al, J. Mol. Spec.
(2011)   [25 typeset pages] 



E

A  = solid angle swept out

by changing bias field.

s

Berry’s phase after one cycle:
df = m A

Basic scale of Berry’s phase related freq shift
in our experient 1.1 MHz. Rough place to do 
20 mHz spectroscopy?



Berry’s Phase: Gravity

45

Upper Doublet

Lower Doublet

Upper Doublet

Lower Doublet

−4mHz

+4 mHz

+4 mHz

−4mHz

𝑓𝐵𝑅 = −4mHz+

−

−

+
𝑓𝐵𝐷 = 0





Generation II
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Experiment Interrogation time 1𝝈 statistical 1𝝈 systematic 1𝝈 total 90% confidence

JILA Gen. I 
(2017)

314 hours 77 × 10−30 𝑒 cm 1.7 × 10−30 𝑒 cm 79 × 10−30 𝑒 cm 130 × 10−30 𝑒 cm

ACME Gen. II
(2018)

350 hours 3.1 × 10−30 𝑒 cm 2.6 × 10−30 𝑒 cm 4.0 × 10−30 𝑒 cm 11 × 10−30 𝑒 cm

JILA Gen. II 
(Nov, 2022)

550 hours 2.0 × 10−30 𝑒 cm 0.6 × 10−30 𝑒 cm 2.1 × 10−30 𝑒 cm 4.1 × 10−30 𝑒 cm

Official announcement paper: 
arXiv:2212.11841, submitted to Science

Systematics analyses paper:
arXiv:2212.11837, submitted to PRA



In last two years there have been three
new record-setting measurements of 
lepton dipole moments:

muon magnetic dipole   (fermi lab)

electron magnetic dipole (northwestern/harvard)

electron electric dipole (JILA)

How do they compare?



FIG. 1. This Northwestern determination (red) and our 
2008 Harvard determination (blue) [37]. SM predictions 
(solid and open black points for slightly differing C10 
[40,41]) are functions of discrepant α measurements 
[38,39]. A ppt is 10−12

Best electron magnetic moment measurement, 2022

e

x

e

me= 2  + alpha/pi

dme= alpha/pi
(standard model
background)

this diagram adds

Problems with “standard model background.”

muon MDM also has ongoing question with
SM background.

For now, assume SM background issues are resolved.



d me

d mm

d de

relative
precision

0.1 ppt

1 ppb

1

absolute
units 
10-30 e-cm 

2 x 106

5 x 107

2

relative
mass
detectable

1

3

1000

Recall John Doyle’s talk, and 
include   grain of salt
“2-loop”    “1-loop”

4 GeV      40 GeV

12 GeV 120 GeV

4000        40,000 GeV

LHC:  
~2000 GeV
(Must always be 

<<  nominal 
collision energy)

x

“a/p”

+

Plan: let’s measure 
dipole moment,
subtract out SM
prediction. Whatever’s
left is a result of a loop
with one “running unicorn”



Thank you,
Marsico foundation
Sloan and Moore Foundations
NSF, NIST, AFOSR



Recall Didi Leibfried’s
talk on shuttling ions!







JILA Generation Three:

First ions, June 2022!





d me =  2.5 x 10-24      e-cm    106

d mm =  5    x 10-23 e-cm          2.5x107

d de =  2    x 10 -30 e-cm     1

units of 
2x10—30 e-cm

scaled by 
lepton mass

106

105

1

Relative 
mass sensitivity

1

3

1000

Recall John Doyle’s 
talk, and include 
grain of salt

eEDM and MDM are both   precision spectroscopy experiments.  Why the factor of one million?

MDM                              JILA EDM
Effective fields.                B=   10 Tesla = 3x107 V/cm      E = 3x1010 V/cm   (factor of 1000)

Count rate                            electrons 2x10-3/sec                      HfF+ 102/sec  (  “   (104)1/2 = 100) 

Coherence time       muons   50 microseconds                   3 seconds     (  factor of 105)

4 GeV,  40 GeV

12 GeV, 120 GeV

4000, 40,000 GeV



Apparatus

Secular trap motion at 𝜔𝑆𝑒𝑐~ 2𝜋(2 𝑘𝐻𝑧)
“RF” micromotion at 𝜔𝑟𝑓 = 2𝜋 50 𝑘𝐻𝑧

Rotational micromotion at 𝜔𝑟𝑜𝑡 = 2𝜋(375 𝑘𝐻𝑧)

Rotating magnetic field: not sensitive to DC fields


