

Where might new particles live?

Particle Mass

with SM particles

B: Ordinary partices, but heavier (think "supersymmetric particles")

Particle Mass

Interactions strength with SM particles

Interactions strength with SM particles

+

[SM contributions currently up to 5 loops and $O(\alpha^{5})$

+

or, for EDM, < 10⁻³⁴)

Plan: let's measure dipole moment, subtract out SM prediction. Whatever's left is a result of a loop with one "running unicorn" This talk: Mostly on new eEDM result

but I will touch also
on two recent record-setting
results on MDM (= "g minus two")
(one eMDM, on μMDM)
Spoiler: we can think about all three in a unified framework.

How to measure eEDM? First, how do we measure eMDM?

How to measure eEDM?

How to measure eEDM?

Figure-of-merit: What makes a **good** EDM experiment?

Figure-of-merit: What makes a good EDM experiment?

Big Electric Field!

Problem: Big E, long τ . Electron accelerates quickly, and is gone????

Problem: Big E, long τ . Electron accelerates quickly, and is gone????

(Pat Sandars)

Our approach. 1. Use molecule for big E_{eff} (we follow Hinds and Demille in this)

Our approach. 2. Use trapped ion for long τ (coherence time of 3.0 seconds !!!)

Our approach. 3. We want big count rate (= many ions in the trap!)

Solution: Use a really BIG ion trap!!

(Electrodes spaced by centimeters, not microns)

In one shot we trap 1000s of ions, and count 100s of ions on the side of a Ramsey fringe.

experimental procedure

Molecular Alignment

Rotating Fields

- Rotating E-Field:
 - $E_{rot} = 60 \frac{\mathrm{v}}{\mathrm{cm}}$
 - $f_{rot} = 375 \text{ kHz}$
 - Can switch between CW and CCW
 - Molecules rotate with $r_{rot} = 0.5 \text{ mm}$

Rotating Fields

Rotating E-Field:

- $E_{rot} = 60 \frac{\mathrm{v}}{\mathrm{cm}}$
- $f_{rot} = 375 \text{ kHz}$
- Can switch between CW and CCW
- Molecules rotate with $r_{rot} = 0.5 \text{ mm}$
- \vec{E}_{rot} "Rotating" B-Field
 - Static B-field gradient
- $B_{ax} = 200 \frac{\text{mG}}{\text{cm}}$ • $B_{rot} = 10 \text{ mG}$

Science State
$${}^{3}\Delta_{|\Omega|=1} v = 0, J = 1, F = 3/2$$

Using Omega=1 states to cancel many effects, the Demille idea. We have cheerfully stolen it from ACME.

Our approach. 3. We want big count rate (= many ions in the trap!)

In one shot we trap 1000s of ions, and count 100s of ions on the side of a Ramsey fringe.

counting 400 ions at shot noise, we should measure the evolved Ramsey phase to $1/(400)^{1/2}$ 0.05 radians in one shot.

BUT! pulsed lasers ablation, two-photon photoionization, two-photon photo-dissociation. Spin-flips counted affected by 5 pulsed lasers plus 5 seconds worth of E-field and B-field drift.

We were lucky if we could see $\delta < 0.15$ radians in a shot!

Ramsey Interferometry

 ΔE_u

|_>

We reject most common-node noise, get close to QPN limit.

Ramsey Fringes

Experimental Chops

Experimental Chops

Experimental Chops

Data taken blind!

Statistical Result

!!!!Use rotating E-field bias!!!!!

-E-field defines quantization axis

-Excellent rejection of lab-frame residual

Basic scale of Berry's phase related freq shift in our experient 1.1 MHz. Rough place to do 20μ Hz spectroscopy?

Berry's Phase: Gravity

34 % prist out member of blocks, chi-2, eman in co. "mean is correction - U.Iwitz user" 35 - mum blocks - size(data, 1); 34 . * total_acquisition time - sum/data.time_str_st. 37- sprintf(l'total number of blocks in dataset bely. 38- sprintf(['total number of blocks in dataset after 405 -'fBD BLINDED = 16101.0957 +/- 22.7935 (stat) +/- 7 (syst) uHs* 39- sprintf(['chi'2 (after cuts applied) = ' memiate 45 - sprintf(('mean is correction - ' mumistr (mean file 41 h sprintf()sin(['total number of hours in datase. Ser. 'fED UNBLINDED = -10,9319 */- 22.7935 (stat) */- 7 (syst) uHs* 43 46 umblinding ASSESSMENT TO ASSESSMENT 0 with properties: HD = freat(fblin 0.1500 0.150 0.1500) COB - BLIND, r(fDB al 1/2 heigt probability

Generation II

Official announcement paper: *arXiv*:2212.11841, submitted to Science

Systematics analyses paper: *arXiv*:2212.11837, submitted to PRA

Experiment	Interrogation time	1 σ statistical	1 σ systematic	1 σ total	90% confidence
JILA Gen. l (2017)	314 hours	$77 \times 10^{-30} e \text{ cm}$	$1.7 \times 10^{-30} e \text{ cm}$	$79 \times 10^{-30} e \mathrm{cm}$	$130 \times 10^{-30} e \mathrm{cm}$
ACME Gen. II (2018)	350 hours	$3.1 \times 10^{-30} e \text{ cm}$	$2.6 \times 10^{-30} e \text{ cm}$	$4.0 \times 10^{-30} e \mathrm{cm}$	$11 \times 10^{-30} e \text{ cm}$
JILA Gen. II (Nov, 2022)	550 hours	$2.0 \times 10^{-30} e \text{ cm}$	$0.6 \times 10^{-30} e \mathrm{cm}$	$2.1 \times 10^{-30} e \text{ cm}$	$4.1 \times 10^{-30} e \mathrm{cm}$

In last two years there have been three new record-setting measurements of lepton dipole moments:

muon magnetic dipole (fermi lab)

electron magnetic dipole (northwestern/harvard)

electron electric dipole (JILA)

How do they compare?

Best electron magnetic moment measurement, 2022

Problems with "standard model background." ζ^{*}

muon MDM also has ongoing question with SM background.

For now, assume SM background issues are resolved.

S

δ $μ_e$	relative precision 0.1 ppt	absolute units 10 ⁻³⁰ e-cm 2 x 10 ⁶	relative mass detectable 1	Recall Jo include "2-loop" 4 GeV	ohn Doyle's talk, and grain of salt ' "1-loop" 40 GeV
$\delta \mu_{\mu}$	1 ppb	5 x 10 ⁷	3	12 GeV	120 GeV
$\delta {\rm d}_{\rm e}$	1	2	1000	4000	40,000 GeV
+			n: let's measure ole moment, otract out SM ediction. Whateve is a result of a lo h one "running u	er's oop nicorn"	LHC: ~2000 GeV (Must always be << nominal collision energy)

Thank you, Marsico foundation Sloan and Moore Foundations NSF, NIST, AFOSR

Luke Caldwell,

Tanya Roussy

Kiaboon No

NIVERSI'

Cassi,

Sunvoor park

Recall Didi Leibfried's talk on shuttling ions!

E

JILA Generation Three:

First ions, June 2022!

	un 2x	its of 10 ^{—30} e-cm	scaled by lepton mass	Relative mass sensitivity	Recall John Doyle's talk, and include grain of salt		
$\delta \mu_{e} = 2.5 \times 10^{-24}$	e-cm	10 ⁶	10 ⁶	1	4 GeV, 40 GeV		
$\delta \mu_{\rm m}$ = 5 x 10 ⁻²³	e-cm	2.5x10 ⁷	10 ⁵	3	12 GeV, 120 GeV		
$\delta d_e = 2 \times 10^{-30}$	e-cm	1	1	1000	4000, 40,000 GeV		
eEDM and MDM are both precision spectroscopy experiments. Why the factor of one million?							
Effective fields.	esla = 3x10 ⁷ V/c	$E = 3 \times 10^{10}$	⁰ V/cm (facto	r of 1000)			
Count rate elec		ns 2x10 ⁻³ /sec	HfF ⁺ 10 ² /sec (" (10 ⁴) ^{1/2} = 100)				
Coherence time	muons	50 microseco	onds 3	B seconds (fa	actor of 10^5)		

Apparatus

Rotating magnetic field: <u>not sensitive to DC fields</u>