Dark states of multilevel fermionic atoms in doubly-filled optical lattices

Author
Abstract
We propose to use fermionic atoms with degenerate ground and excited internal levels (Fg→Fe), loaded into the motional ground state of an optical lattice with two atoms per lattice site, to realize dark states with no radiative decay. The physical mechanism behind the dark states is an interplay of Pauli blocking and multilevel dipolar interactions. The dark states are independent of lattice geometry, can support an extensive number of excitations and can be coherently prepared using a Raman scheme taking advantage of the quantum Zeno effect. These attributes make them appealing for atomic clocks, quantum memories, and quantum information on decoherence free subspaces.
Year of Publication
2019
Journal
Physical Review Letters
Volume
123
Number of Pages
223601
Date Published
2019-11
URL
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.223601
DOI
10.1103/PhysRevLett.123.223601
JILA PI
Associated Institutes
Journal Article