TY - JOUR AU - Calder Miller AU - Annette Carroll AU - Junyu Lin AU - Henrik Hirzler AU - Haoyang Gao AU - Hengyun Zhou AU - Mikhail Lukin AU - Jun Ye AB -

Polar molecules confined in an optical lattice are a versatile platform to explore spin-motion dynamics based on strong, long-range dipolar interactions. The precise tunability of Ising and spin-exchange interactions with both microwave and dc electric fields makes the molecular system particularly suitable for engineering complex many-body dynamics. Here, we used Floquet engineering to realize interesting quantum many-body systems of polar molecules. Using a spin encoded in the two lowest rotational states of ultracold KRb molecules, we mutually validated XXZ spin models tuned by a Floquet microwave pulse sequence against those tuned by a dc electric field through observations of Ramsey contrast dynamics, setting the stage for the realization of Hamiltonians inaccessible with static fields. In particular, we observed two-axis twisting mean-field dynamics, generated by a Floquet-engineered XYZ model using itinerant molecules in 2D layers. In the future, Floquet-engineered Hamiltonians could generate entangled states for molecule-based precision measurement or could take advantage of the rich molecular structure for quantum simulation of multi-level systems.

BT - Nature, in press N2 -

Polar molecules confined in an optical lattice are a versatile platform to explore spin-motion dynamics based on strong, long-range dipolar interactions. The precise tunability of Ising and spin-exchange interactions with both microwave and dc electric fields makes the molecular system particularly suitable for engineering complex many-body dynamics. Here, we used Floquet engineering to realize interesting quantum many-body systems of polar molecules. Using a spin encoded in the two lowest rotational states of ultracold KRb molecules, we mutually validated XXZ spin models tuned by a Floquet microwave pulse sequence against those tuned by a dc electric field through observations of Ramsey contrast dynamics, setting the stage for the realization of Hamiltonians inaccessible with static fields. In particular, we observed two-axis twisting mean-field dynamics, generated by a Floquet-engineered XYZ model using itinerant molecules in 2D layers. In the future, Floquet-engineered Hamiltonians could generate entangled states for molecule-based precision measurement or could take advantage of the rich molecular structure for quantum simulation of multi-level systems.

PY - 2024 T2 - Nature, in press TI - Two-axis twisting using Floquet-engineered XYZ spin models with polar molecules ER -