TY - JOUR AU - Nicholas Papadopoulos AU - Jarrod Reilly AU - John Wilson AU - Murray Holland AB -
Estimating a quantum phase is a necessary task in a wide range of fields of quantum science. To accomplish this task, two well-known methods have been developed in distinct contexts, namely, Ramsey interferometry (RI) in atomic and molecular physics and quantum phase estimation (QPE) in quantum computing. We demonstrate that these canonical examples are instances of a larger class of phase estimation protocols, which we call reductive quantum phase estimation (RQPE) circuits. Here, we present an explicit algorithm that allows one to create an RQPE circuit. This circuit distinguishes an arbitrary set of phases with a smaller number of qubits and unitary applications, thereby solving a general class of quantum hypothesis testing to which RI and QPE belong. We further demonstrate a tradeoff between measurement precision and phase distinguishability, which allows one to tune the circuit to be optimal for a specific application.
BT - Physical Review Research DA - 2024-07 DO - 10.1103/PhysRevResearch.6.033051 N2 -Estimating a quantum phase is a necessary task in a wide range of fields of quantum science. To accomplish this task, two well-known methods have been developed in distinct contexts, namely, Ramsey interferometry (RI) in atomic and molecular physics and quantum phase estimation (QPE) in quantum computing. We demonstrate that these canonical examples are instances of a larger class of phase estimation protocols, which we call reductive quantum phase estimation (RQPE) circuits. Here, we present an explicit algorithm that allows one to create an RQPE circuit. This circuit distinguishes an arbitrary set of phases with a smaller number of qubits and unitary applications, thereby solving a general class of quantum hypothesis testing to which RI and QPE belong. We further demonstrate a tradeoff between measurement precision and phase distinguishability, which allows one to tune the circuit to be optimal for a specific application.
PY - 2024 EP - 033051 T2 - Physical Review Research TI - Reductive Quantum Phase Estimation UR - https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.033051 VL - 6 ER -