TY - JOUR AU - Mikhail Mamaev AU - R. Blatt AU - Jun Ye AU - Ana Maria Rey AB - Measurement-based quantum computation, an alternative paradigm for quantum information processing, uses simple measurements on qubits prepared in cluster states, a class of multiparty entangled states with useful properties. Here we propose and analyze a scheme that takes advantage of the interplay between spin-orbit coupling and superexchange interactions, in the presence of a coherent drive, to deterministically generate macroscopic arrays of cluster states in fermionic alkaline earth atoms trapped in three dimensional (3D) optical lattices. The scheme dynamically generates cluster states without the need of engineered transport, and is robust in the presence of holes, a typical imperfection in cold atom Mott insulators. The protocol is of particular relevance for the new generation of 3D optical lattice clocks with coherence times >10 s, 2 orders of magnitude larger than the cluster state generation time. We propose the use of collective measurements and time reversal of the Hamiltonian to benchmark the underlying Ising model dynamics and the generated many-body correlations. BT - Physical Review Letters DA - 2019-04 DO - 10.1103/PhysRevLett.122.160402 IS - 16 N2 - Measurement-based quantum computation, an alternative paradigm for quantum information processing, uses simple measurements on qubits prepared in cluster states, a class of multiparty entangled states with useful properties. Here we propose and analyze a scheme that takes advantage of the interplay between spin-orbit coupling and superexchange interactions, in the presence of a coherent drive, to deterministically generate macroscopic arrays of cluster states in fermionic alkaline earth atoms trapped in three dimensional (3D) optical lattices. The scheme dynamically generates cluster states without the need of engineered transport, and is robust in the presence of holes, a typical imperfection in cold atom Mott insulators. The protocol is of particular relevance for the new generation of 3D optical lattice clocks with coherence times >10 s, 2 orders of magnitude larger than the cluster state generation time. We propose the use of collective measurements and time reversal of the Hamiltonian to benchmark the underlying Ising model dynamics and the generated many-body correlations. PY - 2019 SE - 160402 EP - 160402 T2 - Physical Review Letters TI - Cluster State Generation with Spin-Orbit Coupled Fermionic Atoms in Optical Lattices UR - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.160402 VL - 122 SN - 0031-9007 ER -