NOTE: Be sure to show your work and explain what you are doing. (Correct answers, for which we cannot follow the work, are worth no credit).

1. Use the Euler-Maclaurin integration formula to evaluate (10 points:5+5)
 (a) \(\sum_{m=1}^{n} m^3 \)
 (b) \(\sum_{m=1}^{n} m^4 \)

2. Prove that \(\int_{0}^{\infty} \frac{x^n e^x}{(e^x-1)^2} \, dx = n! \zeta(n) \) with \(\zeta(n) \) the Riemann Zeta function (10 points)

3. Problem 5.10.4 (A&W)(10 points)

4. Problem 7.3.4 (A&W)(10 points)

5. Problem 7.3.7 (A&W) (10 points)
 Bonus (10 points): Use the procedure derived in class to generate higher order terms in the steepest descent method to obtain \(a_0 \) and \(a_1 \)