Summation of infinite series
(Morse + Feshback, Vol I pag. 413)

\[S = \sum_{n=-\infty}^{\infty} f(n) \]

We want to show that this is a sum of residues which we can convert back to an integral.

Idea: replace the sum by a contour integral

Observation

1. \(\text{Res} \left(f(z) \pi \cot(\pi z), z = n \right) = f(n) \quad n = 0, \pm 1, \pm 2, \ldots \)

2. \(\text{Res} \left(f(z) \pi \csc(\pi z), z = n \right) = (-1)^n f(n) \quad n = 0, \pm 1, \pm 2, \ldots \)

Let use this for alternating series.

Why:

Note \(\pi \cot(\pi z) \) has simple poles of residue 1 at \(z = n \)

\(\pi \csc(\pi z) \) has simple poles of residue \((-1)^n\) at \(z = n \)

Then:

\[\frac{1}{2\pi i} \oint_C f(z) \pi \cot(\pi z) \, dz = \sum_{n=-\infty}^{\infty} f(n) + \sum_{n=-\infty}^{\infty} \text{Res} \left(f(z) \pi \cot(\pi z), z = n \right) \]

Finding \(C \):

\(\infty \): poles of \(f(z) \)
Take the limit of a box that goes to infinity through points on the real axis exactly halfway the points at \(n \)-integers.

If \(f(z) \) has no essential singularities anywhere on
If \(|z f(z)| \to 0 \) as \(|z| \to \infty \), the infinite contour integral will be zero.
Since \(\pi \cot(n \pi) \) is bounded at \(|z| \to \infty \).

\[
\left| \oint_C \cot(z) \frac{dz}{z} \right| \leq A \implies |f(n)| \to 0 \quad \text{as} \quad |n| \to \infty
\]

So

\[
\sum_{n=-\infty}^{2k} f(n) = \sum_{n=-\infty}^{2k} \text{Res} \left(\cot(z) f(z), \frac{z}{2k} \right)
\]

All poles at \(f(z) \).
Alternating series

\[\sum_{n=0}^{\infty} (-1)^n f(n) = -\sum_{n=0}^{\infty} \text{Res} \left(\frac{\pi \csc(n\pi z)}{z^n} f(z) \right) \]

Example

\[\sum_{n=2}^{\infty} \frac{(-1)^n}{(a+n)^2} \]

\[f(z) = \frac{1}{(z+a)^2} \quad \text{a real integer} \]

Note we do not want the poles of \(f(z) \) to coincide with the poles of \(\csc(nz) \).

\(f(z) \) has 2\text{nd} order pole at \(z = -a \)

\[S = -\text{Res} \left[\frac{n \csc(n^2)}{(a+n)^2}, z = -a \right] \]

Note \(\csc(n^2) = \csc(-n) + \frac{d}{dz} \csc(nz) \)

\[\left. \left(z+a \right) + \frac{d^2 \csc(nz)}{dz^2} \right|_{z=-a} \]

Then

\[S = -\pi \left(\csc(n^2) \right) \left. \left(\cot(nz) \csc(nz) \right) \right|_{z=-a} = \pi^2 \cot(na) \csc(na) \]

So

\[\sum_{n=2}^{\infty} \frac{(-1)^n}{(a+n)^2} = \pi^2 \cot(na) \csc(na) \]
Infinite Products

Consider a succession of positive factors

\[f_1 \cdot f_2 \cdot f_3 \cdots f_n \quad (f_i > 0) \]

\[f_1 \cdot f_2 \cdots f_n = \prod_{i=1}^{n} f_i \]

We define \(P_n \) as a partial product (in analogy to \(S_n \), the partial sum).

\[P_n = \prod_{i=1}^{n} f_i \]

And look at the limit \(\lim_{n \to \infty} P_n = P \)

If \(P \) is finite (but not zero) we say that the infinite product is convergent. If \(P \) is infinite or zero the infinite product is labeled as divergent.

Since the product will diverge to infinity if

\[\lim_{n \to \infty} f_n > 1 \]

or to zero if \(\lim_{n \to \infty} f_n < 1 \) (and \(< 0 \)).

It is then convenient to write our product as

\[P = \prod_{n=1}^{\infty} (1 + a_n) \]

Notes:

1. \(P \) diverges to \(\infty \) if \(\lim_{i \to \infty} a_i > 0 \)

2. \(P \) diverges to 0 if \(-1 < \lim_{i \to \infty} a_i < 0 \)
The necessary condition for convergence of this product is $\lim_{n \to \infty} a_n = 0$.

Connection with infinite series

$$P = \exp \left[\ln \prod_{n=1}^{\infty} (1 + a_n) \right] = \exp \left[\sum_{n=1}^{\infty} \ln (1 + a_n) \right]$$

Thus the infinite product converges if the infinite series $\sum_{n=1}^{\infty} \ln (1 + a_n)$ converges.

Moreover, for small $|a_n|$, $\ln (1 + a_n) = a_n - \frac{a_n^2}{2} + \frac{a_n^3}{3} - \ldots$

Therefore, $\sum_{n=1}^{\infty} \ln (1 + a_n)$ converges or diverges exactly as the series $\sum_{n=1}^{\infty} a_n$ is convergent or divergent.

Convergence See A&W

If $|a_n| < 1$

$$\prod_{n=1}^{\infty} (1 + a_n) = \begin{cases} \text{converges} & \text{if } \sum_{n=1}^{\infty} a_n \text{ converges} \\ \text{diverges} & \text{if } \sum_{n=1}^{\infty} a_n \text{ diverges} \end{cases}$$
Some important useful infinite product representations.

Recall that a polynomial can be written as a product of roots, i.e.

\[p_n = c (x-x_1)(x-x_2) \cdots (x-x_n) \]

all roots in the complex plane

This generalizes for many functions having an infinite number of zeros.

e.g. \[\sin(x) = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right) \]

\[\prod_{n=1}^{\infty} \left(1 - \frac{x}{n\pi} \right) \left(1 + \frac{x}{n\pi} \right) \]

Likewise \[\cos(x) = \prod_{i=1}^{\infty} \left(1 - \frac{x^2}{(2n-1)^2 \pi^2} \right) \]

An equivalent form can be seen to be

\[\sin(x) = x \left(1 - \frac{x}{\pi} \right) \left(1 + \frac{x}{\pi} \right) \left(1 - \frac{x}{2\pi} \right) \left(1 + \frac{x}{2\pi} \right) \cdots \]

or \[\frac{\sin x}{x} = \prod_{n=1}^{\infty} \left(1 + \frac{x}{n\pi} \right) \]

However, \[\sum_{n=1}^{\infty} \frac{|x|}{n\pi} \] diverges!
We have gone from an absolutely convergent to a conditionally convergent infinite product

\[
\frac{\sin x}{x} = \left[\frac{(1 - \frac{x}{\pi})^\frac{x}{\pi}}{\pi} \right] \left[\frac{(1 + \frac{x}{\pi})^\frac{-x}{\pi}}{\pi} \right] \left[\frac{(1 - \frac{x}{2\pi})^\frac{x}{2\pi}}{\pi} \right] \left[\frac{(1 + \frac{x}{2\pi})^\frac{-x}{2\pi}}{\pi} \right] \ldots
\]

\[
\frac{\sin x}{x} = \prod_{n=0}^{\infty} \left[\frac{(1 + \frac{x}{n\pi})^\frac{-x}{n\pi}}{n\pi} \right] \text{ which is absolutely convergent in this form}
\]

\[
= \prod_{n=1}^{\infty} \left(\frac{1 + \frac{x}{n\pi}}{n\pi} \right)^{-\frac{x}{n\pi}} \prod_{n=1}^{\infty} \left(\frac{1 - \frac{x}{n\pi}}{n\pi} \right)^{\frac{x}{n\pi}}
\]

Another fundamental infinite product is

\[
\frac{1}{\Gamma(x)} = x^{-x} \prod_{n=1}^{\infty} \left(1 + \frac{x}{n} \right)^{-\frac{x}{n}}
\]

with \(\gamma \) = Euler-Mascheroni constant

\[
\lim_{m \to \infty} \left(\sum_{k=1}^{m} \frac{1}{k} - \ln m \right) = 0.577216...
\]
So choose that

\[
\frac{1}{\Gamma(x)\Gamma(1-x)} = -x^2 \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2} \right)
\]

\[
= -x \left(\prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2} \right) \right)
\]

\[
= -\frac{x}{\pi} \sin(\pi x)
\]

\[
\left(\frac{\Gamma(x)}{\Gamma(-x)} \right) = -\frac{x}{\pi \sin(\pi x)}
\]

or using \(\Gamma(z+1) = z \Gamma(z) \) with \(z = -x \)

\[
\Gamma(x) \Gamma(1-x) = \frac{\pi}{\sin(\pi x)}
\]

Aside: For numerical calculation, infinite products like this are less efficient than series and thus they are rarely used.