SO(2) and SO(3) rotation groups

For SO(2) there is just one independent generator and it can be found by differentiating the finite rotation matrix and evaluating it at the identity element

\[-\frac{i}{\hbar} \frac{d}{d\phi} R(\phi) \bigg|_{\phi=0} = -\frac{i}{\hbar} \left(\begin{array}{cc} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{array} \right) \bigg|_{\phi=0} = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) = i\sigma_z \]

For SO(3) the finite rotation matrix about the z axis is

\[R_z(\phi) = \left[\begin{array}{ccc} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{array} \right] \]

and the corresponding generator is

\[-\frac{i}{\hbar} \frac{d}{d\phi} R_z = S_z = \left(\begin{array}{ccc} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \]

\[R_z(\hbar \phi) = 1 + i\hbar \phi S_z \]

A finite rotation can be composed of successive infinitesimal rotations

\[R_z(\hbar \phi_1, + \hbar \phi_2) = (1 + i\hbar \phi_1 S_z) (1 + i\hbar \phi_2 S_z) \]
or \(R_x(z) = \lim_{N \to \infty} \left[1 + \frac{i \theta}{N} S_z \right]^N = e^{i \theta S_z} \)

\(R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta + i \sin \theta & 0 \\ 0 & -i \sin \theta & \cos \theta \end{pmatrix} \)

\(R_y(\theta) = \begin{pmatrix} \cos \theta & 0 & -i \sin \theta \\ 0 & 1 & 0 \\ i \sin \theta & 0 & \cos \theta \end{pmatrix} \)

Convention is not arbitrary. Signs are chosen to make the operators cyclic.

\(R_y R_x = i \sin \theta \)

\(R_y R_x = + \sin \theta \)

\(R_z x \quad \text{whereby} \)

\(S_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \)

\(S_y = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \)

Note that \(S_z \) is the generator of the group \(R_z \), which is an Abelian subgroup of \(SO(3) \).

Connection with orbital angular momentum

Let us act the rotation operator \(R \) on a state \(\psi(x, y, z) \) and remember that if we use \(R_z(\theta) \) which rotates the axis \((x, y, z) \) CCW by \(\theta \) about \(\hat{z} \), this is equivalent to rotating the lobes of \(\psi \) by \(-\theta \).

i.e. let \(\vec{r}' = \vec{r} \) and define

\(R \psi(x, y, z) = \psi'(\vec{r}) = \psi(\vec{r}') \)

Going to the infinitesimal limit, the

\(R_z(\delta \theta) \psi(x, y, z) = \psi(x+y \delta \theta, y-x \delta \theta, z) \)
An expansion into a Taylor series gives

\[R_z(\phi) \psi(x, y, z) = \psi(x, y, z) - i \hbar \frac{\partial}{\partial y} \psi + \frac{\partial^2}{\partial x^2} \psi + O(\phi^2) \]

\[= \left(1 - i \phi \Omega \right) \psi(x, y, z) \]

\[\Omega \rightarrow R_z(\phi) = 1 - i \phi \Omega \zeta \rightarrow R_z(\phi) = e^{-i \phi \Omega} \]

This connects with the definition of the orbital angular momentum operator

\[L_z = xy - yx = -i \left(\frac{x}{\partial y} - \frac{y}{\partial x} \right) \]

We can also write

\[L_z = \left(x, y, z \right) S_z \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \]

\[L_x = \left(x, y, z \right) S_x \begin{pmatrix} \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} \end{pmatrix} \]

\[L_y = \left(x, y, z \right) S_y \begin{pmatrix} \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} \]

\[[L_i, L_j] = i \left(\hbar \right) \epsilon_{ijk} L_k \]
The following results are valid for \(SU(n) \) and \(SO(n) \).

To begin, choose a set of linearly independent and mutually commuting operators \(\mathbf{t}_i = \{ \cdots, I \} \), where \(l \) is the maximum number obeying

\[
[t_i, t_j] = 0 \quad \text{think } t_i \text{ as generalizations of } S^2
\]

\(l \): is the rank of the Lie group or its Lie algebra.

\(H \): raising and lowering operators

\(\mathbf{E} \): the other generators besides the \(t_i \)

\([H, \mathbf{E}] = \alpha \mathbf{E} \)

where we call \(N \): the order of the Lie group

\(\# \) of linearly independent generators.

\begin{align*}
\text{Lie Algebra} & \quad A_\ell \quad B_\ell \quad D_\ell \\
\text{Lie group} & \quad SU(2\ell + 1) \quad SO(2\ell + 1) \quad SO(2\ell - 1)
\end{align*}

\begin{align*}
\text{Rank} & \quad \ell \quad \ell \quad \ell \\
\text{Order} & \quad \ell (2\ell + 2) \quad \ell (2\ell + 1) \quad \ell (2\ell - 1)
\end{align*}

eg \(SU(2) \): spin \(\frac{1}{2} \) angular momentum

\(\text{Order } 3, \text{ Rank } 1 \) (one commuting generator)

\(SO(3) \): \(\text{Order } 3, \text{ Rank } 1 \) (one commuting generator)

It is not surprising that \(SU(2) \) and \(SO(3) \) are homomorphic.

The \(SU(2) \) rotations for spin \(\frac{1}{2} \) involve half angles.
\[\text{e.g. } U_3(d) = \begin{pmatrix} e^{i\frac{\alpha}{2}} & 0 \\ 0 & e^{-i\frac{\alpha}{2}} \end{pmatrix} \]

"parameter" \(\alpha/2\) ranges from 0 to \(\pi\).

where as for \(SO(3)\) rotations for vectors involve

\[R_3(d) = \begin{pmatrix} \cos d & \sin d & 0 \\ -\sin d & \cos d & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

"parameter" \(d\) ranges from 0 to \(2\pi\).

The correspondence is 2-to-1 not 1-to-1 and therefore it is a homomorphism not isomorphism.

\(SU(2)\) describes rotations in a 2D complex space \(\mathbf{C} = \binom{z_1}{z_2}\) that leaves \(|z_1|^2 + |z_2|^2\) invariant.

Determinant +1 and thus 3 independent real parameters.

\(SO(3)\) Real orthogonal group describes rotations in 3D space letting \(x, y, z\) invariant: \(x^2 + y^2 + z^2 = \text{const.}\)

3 independent real parameters.

All these suggest there is a correspondence between \(SO(3)\) and \(SU(2)\).
\[R = U : \text{unitary transformation} \]

\[M' = U M U^* \quad \text{M: 2x2 matrix} \]

\[M = x\sigma_1 + y\sigma_2 + z\sigma_3 = \begin{pmatrix} x & -iy \\ ix & y \end{pmatrix} \]

Here we have excluded any projection on identity since we want \(M \) traceless.

\(M' \) should then be

\[M' = x'\sigma_1 + y'\sigma_2 + z'\sigma_3 \]

Determinant is invariant during unitary operations so \((x^2 + y^2 + z^2) = (x'^2 + y'^2 + z'^2) \)

Operations of \(su(2) \) on \(M \) must produce rotations of the coordinates \(x, y, z \) appearing therein. This suggests \(su(2) \) and \(so(3) \) or homomorphic.

This is in fact the case.

We saw it for rotations along \(z \):

\[U_z = \begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix} \]

\[U_z \sigma_1 U_z^+ = x (\sigma_1 \cos(\theta) - \sigma_2 \sin(\theta)) \]

\[U_z \sigma_2 U_z^+ = y (\sigma_1 \sin(\theta) + \sigma_2 \cos(\theta)) \]

\[U_z \sigma_3 U_z^+ = z \sigma_3 \]
\[x' = x \cos \theta + y \sin \theta \]
\[y' = -x \sin \theta + y \cos \theta \]
\[z' = z \]

More generally, a sequence of 3 Euler rotations in \(\text{SU}(2) \) looks like
\[
e^{-\frac{i}{2} \sigma_3} e^{-i \beta \sigma_2} e^{-i \alpha \sigma_1}
\]

\[
\begin{bmatrix}
 -U(\alpha, \beta, \gamma) = U_3(\gamma) U_2(\beta) U_1(\alpha) \\
 \begin{pmatrix}
 \cos(\beta/2) & -i \sin(\beta/2) \\
 -i \sin(\beta/2) & \cos(\beta/2)
 \end{pmatrix}
\end{bmatrix}
\]

Defining \(x + y = \phi \), \(-x + iy = \psi\), \(\beta/2 = \theta \)

\[
\begin{pmatrix}
 \cos(\phi) & -i \sin(\phi) \\
 -i \sin(\phi) & \cos(\phi)
\end{pmatrix}
\begin{pmatrix}
 \cos(\psi) & i \sin(\psi) \\
 -i \sin(\psi) & \cos(\psi)
\end{pmatrix}
= \begin{pmatrix}
 \alpha & \beta \\
 -\beta & \alpha
\end{pmatrix}
\]

This is the form of a generic element in \(\text{SU}(2) \):
\(\det(u) = 1 \), \(u^* u = uu^* = 1 \)
There are 0 invariant operators, i.e., called Casimir operators, which commute with all
generators and are generalizations of J^2

Schur's Lemma

An operator \mathcal{H} that commutes with all
group generators \mathcal{H}_i of the Lie group G, and all group operators has as eigenvectors
all states of the multiplet and is degenerate
for all multiplet eigenvectors.

Moreover \mathcal{H} commutes with all Casimir invariants

$[\mathcal{H}, C_i] = 0$

$SO(3)$ has $l = 1 \implies 1$ cosimir operator $L_x + L_y + L_z$
and $l = 1 \implies 1$ commuting generator $= L^2$

\implies on Spherically symmetric Hamiltonian \mathcal{H}
will have the same energy (eigenvalue $\lambda + l$)
for all $2l+1$, i.e., states of a given l

Example of $SO(4)$ $l = 2$, $N = 6$

Let the independent variables be x, y, z, t

The generators can be chosen as

$M_1 = \frac{2}{t} \frac{\partial}{\partial y} - \frac{y}{2} \frac{\partial}{\partial t}$
$M_2 = \frac{2}{t} \frac{\partial}{\partial x} - \frac{x}{2} \frac{\partial}{\partial y}$
$M_3 = \frac{2}{t} \frac{\partial}{\partial z}$

$N_1 = \frac{2}{t} \frac{\partial}{\partial x} - \frac{x}{2} \frac{\partial}{\partial t}$
$N_2 = \frac{2}{t} \frac{\partial}{\partial y} - \frac{y}{2} \frac{\partial}{\partial t}$
$N_3 = \frac{2}{t} \frac{\partial}{\partial z}$
And the commutators are readily found to be

\[[M_i, M_j] = E_{ij} M_k \quad [N_i, N_j] = 0 \]

\[[M_i, N_j] = E_{ij} M_k \quad [N_i, N_j] = E_{ij} M_k \]

And they are usually replaced by

\[S_i = M_i + N_i \quad \frac{1}{2} \]
\[S_i = M_i - N_i \quad \frac{1}{2} \]

\[[S_i, S_j] = E_{ij} S_k \quad [N_i, N_j] = E_{ij} N_k \]

\[[N_i, N_j] = 0 \]

Note \((S_1, S_2, S_3)\) are closed under commutation

\[(N_i, N_j, N_k) \]

These each form an \(SO(3)\) (subalgebra of \(SO(4)\))

and we say that the Lie group \(SO(4)\)

is isomorphic to

\(SO(3) \times SO(3)\)

Two Casimir operators for \(SO(4)\) are

\[\lambda^2 + \bar{\lambda}^2 \]