ASTR 5770 Cosmology Fall 2025. Problem Set 6. Due Wed Oct 15

1. Equation of motion (8 points)

The Euler-Lagrange equations of motion for a particle whose Lagrangian is $L(x^{\mu}, dx^{\mu}/d\lambda)$ are (this is equation (4.5) of the book),

$$\frac{d}{d\lambda} \frac{\partial L}{\partial (dx^{\kappa}/d\lambda)} = \frac{\partial L}{\partial x^{\kappa}} . \tag{1.1}$$

In equation (1.1) the coordinates x^{μ} and velocities $dx^{\mu}/d\lambda$ in the Lagrangian are to be interpreted as independent quantities, so the velocity partial derivatives $\partial L/\partial(dx^{\kappa}/d\lambda)$ are done with the coordinates x^{μ} held fixed, and conversely the coordinate partial derivatives $\partial L/\partial x^{\kappa}$ are done with the velocities dx^{μ}/λ held fixed. In general relativity, the effective Lagrangian of a free particle of mass m can be taken to be (this is eq. (4.25) of the book)

$$L = \frac{1}{2} g_{\mu\nu}(x) \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = \frac{1}{2} g_{\mu\nu}(x) p^{\mu} p^{\nu} , \qquad (1.2)$$

where p^{μ} is the particle's 4-momentum,

$$p^{\mu} \equiv \frac{dx^{\mu}}{d\lambda} = m\frac{dx^{\mu}}{d\tau} , \qquad (1.3)$$

with λ the affine parameter along the path of the particle, related to the particle's proper time τ by

$$d\lambda = \frac{d\tau}{m} \ . \tag{1.4}$$

The metric $g_{\mu\nu}$ in the free-particle Lagrangian (1.2) is a function only of the coordinates x^{μ} , not the velocities p^{μ} . Show that Lagrange's equations (1.1) are equivalent to the usual equations of motion

$$\frac{d\mathbf{p}}{d\lambda} = 0 \ . \tag{1.5}$$

[Hint: First argue that $e^{\kappa} \cdot e_{\mu} = \delta^{\kappa}_{\mu}$. Then from $\partial(e^{\kappa} \cdot e_{\mu})/\partial x^{\nu} = 0$ and from the definition of the connection coefficients, $\partial e_{\mu}/\partial x^{\nu} \equiv \Gamma^{\kappa}_{\mu\nu}e_{\kappa}$, deduce that $\partial e^{\kappa}/\partial x^{\nu} = -\Gamma^{\kappa}_{\mu\nu}e^{\mu}$. Show that the equation of motion (1.5), with $\mathbf{p} = e^{\kappa}p_{\kappa}$, becomes $e^{\kappa}(dp_{\kappa}/d\lambda - \Gamma_{\mu\kappa\nu}p^{\mu}p^{\nu}) = 0$, where $\Gamma_{\mu\kappa\nu} \equiv g_{\mu\lambda}\Gamma^{\lambda}_{\kappa\nu}$. Now argue that $\partial L/\partial p^{\kappa} = p_{\kappa}$, and that $\partial L/\partial x^{\kappa} = \Gamma_{\mu\nu\kappa}p^{\mu}p^{\nu}$. To complete, you'll need to invoke the no-torsion symmetry $\Gamma_{\mu\nu\kappa} = \Gamma_{\mu\kappa\nu}$.]

2. Geodesics in the FLRW geometry (12 points)

This is Exercise 10.5. The Friedmann-Lemaître-Robertson-Walker metric of cosmology is

$$ds^{2} = -dt^{2} + a(t)^{2} \left[dx_{\parallel}^{2} + \frac{\sin^{2}(\kappa^{1/2}x_{\parallel})}{\kappa} \left(d\theta^{2} + \sin^{2}\theta \, d\phi^{2} \right) \right]$$
 (2.1)

where κ is a constant, the curvature constant. Note that equation (2.1) is valid for all values of κ , including zero and negative values: there is no need to consider the cases separately.

(a) Conservation of generalized momentum

Consider a particle moving with comoving 4-momentum $p^{\mu} \equiv dx^{\mu}/d\lambda$ along a geodesic in the radial direction, so that $d\theta = d\phi = 0$. Argue that the Lagrangian equations of motion

$$\frac{d}{d\lambda} \frac{\partial L}{\partial p^{x_{\parallel}}} = \frac{\partial L}{\partial x_{\parallel}} \tag{2.2}$$

with effective Lagrangian

$$L = \frac{1}{2} g_{\mu\nu} p^{\mu} p^{\nu} \tag{2.3}$$

imply that

$$p_{x_{\parallel}} = \text{constant}$$
 (2.4)

Argue further from the same Lagrangian equations of motion that the assumption of a radial geodesic is valid because

$$p_{\theta} = p_{\phi} = 0 \tag{2.5}$$

is a consistent solution. [Hint: Some components of the metric $g_{\mu\nu}$ depend on the coordinate x_{\parallel} , but for radial geodesics with $p^{\theta} = p^{\phi} = 0$, the possible contributions from derivatives of the metric vanish.]

(b) Proper momentum

Argue that a proper interval of distance measured by comoving observers along the radial geodesic is $a dx_{\parallel}$. Hence show from equation (2.4) that the proper momentum $p_{\text{proper}}^{x_{\parallel}}$ of the particle relative to comoving observers (who are at rest in the FLRW metric) evolves as

$$p_{\text{proper}}^{\mathbf{z}_{\parallel}} \equiv a \frac{dx_{\parallel}}{d\lambda} \propto \frac{1}{a} \ .$$
 (2.6)

(c) Redshift

What relation does your result (2.6) imply between the redshift 1 + z of a distant object observed on Earth and the expansion factor a since the object emitted its light?

(d) Temperature of the CMB

Argue from the above results that the temperature T of the CMB evolves with cosmic scale factor as

$$T \propto \frac{1}{a}$$
 (2.7)