
PHYS 7810 Extreme Physics Spring 2026. Problem Set 2. Due Feb 5

1. The mechanism of mass inflation — 20 points

This is essentially Exercise 21.1 of the book. Einstein’s equations in a spherically symmetric
spacetime imply that the covariant rate of change of the radial 4-gradient βm ≡ ∂mr =
{∂0r, ∂1r, 0, 0} in the frame of any radially moving orthonormal tetrad is

D0β0 = − M

r2
− 4πrp , (1.1a)

D0β1 = 4πrf , (1.1b)

where D0 is the covariant time derivative, p is the radial pressure, f is the radial energy flux,
and M is the interior mass defined by

2M

r
− 1 ≡ β2 ≡ −βmβ

m = β2
0 − β1

2 . (1.2)

(a) Freely-falling stream (4 points)

Consider a stream of matter that is freely falling radially inside the horizon of a spherically
symmetric black hole. Let u be the radial component of the 4-velocity of the stream relative
to the “no-going” frame where β1 = 0 (the frame of reference that divides outgoing frames
β1 < 0 from ingoing frames β1 > 0)

um ≡ {−β0/β,−β1/β, 0, 0} ≡ {
√
1 + u2, u, 0, 0} . (1.3)

Note that β0 is negative inside the horizon. The time component ut ≡ −β0/β =
√
1 + u2 of

the 4-velocity is positive (as it should be for a proper 4-velocity), while the radial component
u ≡ u1 ≡ −β1/β of the 4-velocity is positive outgoing, negative ingoing. Show that along
the worldline of the stream,

d ln β

d ln r
=

1

β2

[
− M

r
− 4πr2

(
p+

β1

β0

f

)]
, (1.4a)

d lnu

d ln r
=

1

β2

[
M

r
+ 4πr2

(
p+

β0

β1

f

)]
. (1.4b)

[Hint: If the stream is freely falling, then the proper time derivative ∂0 in the tetrad frame
of the stream equals the covariant time derivative D0. Thus the proper rates of change of
ln β and lnu with respect to ln r along the worldline of the stream are

d ln β

d ln r
=

∂0 ln β

∂0 ln r
,

d lnu

d ln r
=

∂0 lnu

∂0 ln r
. (1.5)

These can be evaluated through

∂0 ln β = D0 ln β =
1

2β2
D0β

2 =
1

2β2
D0(β

2
0 − β2

1) =
1

β2
(β0D0β0 − β1D0β1) , (1.6a)

∂0 lnu = D0 lnu = D0 ln β1 −D0 ln β =
1

β1

D0β1 −D0 ln β , (1.6b)

∂0 ln r =
1

r
∂0r =

β0

r
, (1.6c)
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with Einstein’s equations (1.1) substituted into equations (1.6a) and (1.6b).]

(b) Equal outgoing and ingoing streams (4 points)

Consider the symmetrical case of two equal streams of radially outgoing (β1 < 0) and ingoing
(β1 > 0) neutral, pressureless, non-interacting matter (“dust”), each of proper density ρ in
their own frames, freely falling into a charged black hole. Show that

d ln β

d ln r
= − 1

2β2

(
−λ+ β2 + µu2

)
, (1.7a)

d lnu

d ln r
= − 1

2β2

(
λ− β2 + µ+ µu2

)
, (1.7b)

where
λ ≡ Q2/r2 − 1 , µ ≡ 16πr2ρ . (1.8)

Hence conclude that
d ln β

d lnu
=

−λ+ β2 + µu2

λ− β2 + µ+ µu2
. (1.9)

[Hint: The assumption that the streams are neutral, pressureless, and non-interacting is
needed to make the streams freely falling, so that equations (1.4) are valid. The pressure
p in the tetrad frame of each stream is the sum of the electromagnetic pressure pe and the
streaming pressure ps

p = pe + ps . (1.10)

The electromagnetic pressure pe is

pe = − Q2

8πr4
, (1.11)

with Q the charge of the black hole, which is constant because the infalling streams are
neutral. The streaming pressure ps that each stream sees is

ps = ρ(u1
s)

2 , (1.12)

where the streaming 4-velocity um
s between the two streams is the 4-velocity of the observed

stream Lorentz-boosted by the 4-velocity of the observing stream (the radial velocities u1 of
the observed and observing streams have opposite signs)

u0
s = (u0)2 + (u1)2 = 1 + 2u2 , u1

s = −2u0u1 = −2u
√
1 + u2 . (1.13)

The energy flux f in the tetrad frame of each stream is the streaming flux fs

f = fs = ρu0
su

1
s . (1.14)

You should find that the combinations of streaming pressure and flux that go into equa-
tions (1.4) are

ps +
β1

β0

fs = 2ρu2 , (1.15a)

ps +
β0

β1

fs = −2ρ(1 + u2) . (1.15b)
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(c) Reissner-Nordström phase (3 points)

If the accretion rate is small, then initially the stream density ρ is small, and consequently
µ is small. Argue that in this regime equation (1.9) simplifies to

d ln β

d lnu
=

−λ+ β2

λ− β2
. (1.16)

Hence conclude that

β =
C

u
, (1.17)

where C is some constant set by initial conditions (generically, C will be of order unity).

(d) Transition to mass inflation (3 points)

Argue that in the Reissner-Nordström phase, β becomes small, and u grows large, as the
streams fall to smaller radius r. Argue that in due course equation (1.9) becomes well-
approximated by

d ln β

d lnu
=

−λ+ µu2

λ+ µu2
. (1.18)

Treating λ and µ as constants (which is a good approximation), show that the solution to
equation (1.18) subject to the initial condition set by equation (1.17) is

β =
C(λ+ µu2)

λu
. (1.19)

[Hint: λ is positive. In the Reissner-Nordström solution, β would go to zero at the inner
horizon.]

(e) Sketch (3 points)

Sketch the solution (1.19), plotting u against β on logarithmic axes. Mark the regime where
mass inflation is occurring.

(f) Inflationary growth rate (3 points)

Argue that during mass inflation the inflationary growth rate d ln β/d ln r is

d ln β

d ln r
= − λ2

2C2µ
. (1.20)

Comment on how the inflationary growth rate depends on accretion rate (on ρ).
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