

## PHYS 7810 Extreme Physics Spring 2026. Problem Set 2. Due Feb 5

### 1. The mechanism of mass inflation — 20 points

This is essentially [Exercise 21.1](#) of the book. Einstein's equations in a spherically symmetric spacetime imply that the covariant rate of change of the radial 4-gradient  $\beta_m \equiv \partial_m r = \{\partial_0 r, \partial_1 r, 0, 0\}$  in the frame of any radially moving orthonormal tetrad is

$$D_0 \beta_0 = -\frac{M}{r^2} - 4\pi r p , \quad (1.1a)$$

$$D_0 \beta_1 = 4\pi r f , \quad (1.1b)$$

where  $D_0$  is the covariant time derivative,  $p$  is the radial pressure,  $f$  is the radial energy flux, and  $M$  is the interior mass defined by

$$\frac{2M}{r} - 1 \equiv \beta^2 \equiv -\beta_m \beta^m = \beta_0^2 - \beta_1^2 . \quad (1.2)$$

#### (a) Freely-falling stream (4 points)

Consider a stream of matter that is freely falling radially inside the horizon of a spherically symmetric black hole. Let  $u$  be the radial component of the 4-velocity of the stream relative to the “no-going” frame where  $\beta_1 = 0$  (the frame of reference that divides outgoing frames  $\beta_1 < 0$  from ingoing frames  $\beta_1 > 0$ )

$$u^m \equiv \{-\beta_0/\beta, -\beta_1/\beta, 0, 0\} \equiv \{\sqrt{1+u^2}, u, 0, 0\} . \quad (1.3)$$

Note that  $\beta_0$  is negative inside the horizon. The time component  $u^t \equiv -\beta_0/\beta = \sqrt{1+u^2}$  of the 4-velocity is positive (as it should be for a proper 4-velocity), while the radial component  $u \equiv u^1 \equiv -\beta_1/\beta$  of the 4-velocity is positive outgoing, negative ingoing. Show that along the worldline of the stream,

$$\frac{d \ln \beta}{d \ln r} = \frac{1}{\beta^2} \left[ -\frac{M}{r} - 4\pi r^2 \left( p + \frac{\beta_1}{\beta_0} f \right) \right] , \quad (1.4a)$$

$$\frac{d \ln u}{d \ln r} = \frac{1}{\beta^2} \left[ \frac{M}{r} + 4\pi r^2 \left( p + \frac{\beta_0}{\beta_1} f \right) \right] . \quad (1.4b)$$

[Hint: If the stream is freely falling, then the proper time derivative  $\partial_0$  in the tetrad frame of the stream equals the covariant time derivative  $D_0$ . Thus the proper rates of change of  $\ln \beta$  and  $\ln u$  with respect to  $\ln r$  along the worldline of the stream are

$$\frac{d \ln \beta}{d \ln r} = \frac{\partial_0 \ln \beta}{\partial_0 \ln r} , \quad \frac{d \ln u}{d \ln r} = \frac{\partial_0 \ln u}{\partial_0 \ln r} . \quad (1.5)$$

These can be evaluated through

$$\partial_0 \ln \beta = D_0 \ln \beta = \frac{1}{2\beta^2} D_0 \beta^2 = \frac{1}{2\beta^2} D_0 (\beta_0^2 - \beta_1^2) = \frac{1}{\beta^2} (\beta_0 D_0 \beta_0 - \beta_1 D_0 \beta_1) , \quad (1.6a)$$

$$\partial_0 \ln u = D_0 \ln u = D_0 \ln \beta_1 - D_0 \ln \beta = \frac{1}{\beta_1} D_0 \beta_1 - D_0 \ln \beta , \quad (1.6b)$$

$$\partial_0 \ln r = \frac{1}{r} \partial_0 r = \frac{\beta_0}{r} , \quad (1.6c)$$

with Einstein's equations (1.1) substituted into equations (1.6a) and (1.6b).]

**(b) Equal outgoing and ingoing streams (4 points)**

Consider the symmetrical case of two equal streams of radially outgoing ( $\beta_1 < 0$ ) and ingoing ( $\beta_1 > 0$ ) neutral, pressureless, non-interacting matter ("dust"), each of proper density  $\rho$  in their own frames, freely falling into a charged black hole. Show that

$$\frac{d \ln \beta}{d \ln r} = -\frac{1}{2\beta^2} (-\lambda + \beta^2 + \mu u^2) , \quad (1.7a)$$

$$\frac{d \ln u}{d \ln r} = -\frac{1}{2\beta^2} (\lambda - \beta^2 + \mu + \mu u^2) , \quad (1.7b)$$

where

$$\lambda \equiv Q^2/r^2 - 1 , \quad \mu \equiv 16\pi r^2 \rho . \quad (1.8)$$

Hence conclude that

$$\frac{d \ln \beta}{d \ln u} = \frac{-\lambda + \beta^2 + \mu u^2}{\lambda - \beta^2 + \mu + \mu u^2} . \quad (1.9)$$

[Hint: The assumption that the streams are neutral, pressureless, and non-interacting is needed to make the streams freely falling, so that equations (1.4) are valid. The pressure  $p$  in the tetrad frame of each stream is the sum of the electromagnetic pressure  $p_e$  and the streaming pressure  $p_s$

$$p = p_e + p_s . \quad (1.10)$$

The electromagnetic pressure  $p_e$  is

$$p_e = -\frac{Q^2}{8\pi r^4} , \quad (1.11)$$

with  $Q$  the charge of the black hole, which is constant because the infalling streams are neutral. The streaming pressure  $p_s$  that each stream sees is

$$p_s = \rho(u_s^1)^2 , \quad (1.12)$$

where the streaming 4-velocity  $u_s^m$  between the two streams is the 4-velocity of the observed stream Lorentz-boosted by the 4-velocity of the observing stream (the radial velocities  $u^1$  of the observed and observing streams have opposite signs)

$$u_s^0 = (u^0)^2 + (u^1)^2 = 1 + 2u^2 , \quad u_s^1 = -2u^0 u^1 = -2u\sqrt{1+u^2} . \quad (1.13)$$

The energy flux  $f$  in the tetrad frame of each stream is the streaming flux  $f_s$

$$f = f_s = \rho u_s^0 u_s^1 . \quad (1.14)$$

You should find that the combinations of streaming pressure and flux that go into equations (1.4) are

$$p_s + \frac{\beta_1}{\beta_0} f_s = 2\rho u^2 , \quad (1.15a)$$

$$p_s + \frac{\beta_0}{\beta_1} f_s = -2\rho(1+u^2) . \quad (1.15b)$$

**(c) Reissner-Nordström phase (3 points)**

If the accretion rate is small, then initially the stream density  $\rho$  is small, and consequently  $\mu$  is small. Argue that in this regime equation (1.9) simplifies to

$$\frac{d \ln \beta}{d \ln u} = \frac{-\lambda + \beta^2}{\lambda - \beta^2} . \quad (1.16)$$

Hence conclude that

$$\beta = \frac{C}{u} , \quad (1.17)$$

where  $C$  is some constant set by initial conditions (generically,  $C$  will be of order unity).

**(d) Transition to mass inflation (3 points)**

Argue that in the Reissner-Nordström phase,  $\beta$  becomes small, and  $u$  grows large, as the streams fall to smaller radius  $r$ . Argue that in due course equation (1.9) becomes well-approximated by

$$\frac{d \ln \beta}{d \ln u} = \frac{-\lambda + \mu u^2}{\lambda + \mu u^2} . \quad (1.18)$$

Treating  $\lambda$  and  $\mu$  as constants (which is a good approximation), show that the solution to equation (1.18) subject to the initial condition set by equation (1.17) is

$$\beta = \frac{C(\lambda + \mu u^2)}{\lambda u} . \quad (1.19)$$

[Hint:  $\lambda$  is positive. In the Reissner-Nordström solution,  $\beta$  would go to zero at the inner horizon.]

**(e) Sketch (3 points)**

Sketch the solution (1.19), plotting  $u$  against  $\beta$  on logarithmic axes. Mark the regime where mass inflation is occurring.

**(f) Inflationary growth rate (3 points)**

Argue that during mass inflation the inflationary growth rate  $d \ln \beta / d \ln r$  is

$$\frac{d \ln \beta}{d \ln r} = -\frac{\lambda^2}{2C^2\mu} . \quad (1.20)$$

Comment on how the inflationary growth rate depends on accretion rate (on  $\rho$ ).