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Notation

Except where actual units are needed, units are such that the speed of light is one, 𝑐 = 1, and Newton’s
gravitational constant is one, 𝐺 = 1.

The metric signature is −+++.

Greek (brown) letters 𝜅, 𝜆, ..., denote spacetime (4D, usually) coordinate indices. Latin (black) letters 𝑘,
𝑙, ..., denote spacetime (4D, usually) tetrad indices. Early-alphabet greek letters 𝛼, 𝛽, ... denote spatial (3D,
usually) coordinate indices. Early-alphabet latin letters 𝑎, 𝑏, ... denote spatial (3D, usually) tetrad indices.
To avoid distraction, colouring is applied only to coordinate indices, not to the coordinates themselves.
Early-alphabet latin letters 𝑎, 𝑏, ... are also used to denote spinor indices.

Sequences of indices, as encountered in multivectors (Chapter 13) and differential forms (Chapter 15), are
denoted by capital letters. Greek (brown) capital letters Λ, Π, ... denote sequences of spacetime (4D, usually)
coordinate indices. Latin (black) capital letters 𝐾, 𝐿, ... denote sequences of spacetime (4D, usually) tetrad
indices. Early-alphabet capital letters denote sequences of spatial (3D, usually) indices, coloured brown 𝐴,
𝐵, ... for coordinate indices, and black 𝐴, 𝐵, ... for tetrad indices.

Specific (non-dummy) components of a vector are labelled by the corresponding coordinate (brown) or
tetrad (black) direction, for example 𝐴𝜇 = {𝐴𝑡, 𝐴𝑥, 𝐴𝑦, 𝐴𝑧} or 𝐴𝑚 = {𝐴𝑡, 𝐴𝑥, 𝐴𝑦, 𝐴𝑧}. Sometimes it is
convenient to use numerical indices, as in 𝐴𝜇 = {𝐴0, 𝐴1, 𝐴2, 𝐴2} or 𝐴𝑚 = {𝐴0, 𝐴1, 𝐴2, 𝐴3}. Allowing the
same label to denote either a coordinate or a tetrad index risks ambiguity, but it should be apparent from
the context (or colour) what is meant. Some texts distinguish coordinate and tetrad indices for example by
a caret on the latter (there is no widespread convention), but this produces notational overload.

Boldface denotes abstract vectors, in either 3D or 4D. In 4D, 𝐴 = 𝐴𝜇𝑒𝜇 = 𝐴𝑚𝛾𝛾𝑚, where 𝑒𝜇 denote
coordinate tangent axes, and 𝛾𝛾𝑚 denote tetrad axes.

Repeated paired dummy indices are summed over, the implicit summation convention. In special and
general relativity, one index of a pair must be up (contravariant), while the other must be down (covariant).
If the space being considered is Euclidean, then both indices may be down.

𝜕/𝜕𝑥𝜇 denotes coordinate partial derivatives, which commute. 𝜕𝑚 denotes tetrad directed derivatives,
which do not commute. 𝐷𝜇 and 𝐷𝑚 denote respectively coordinate-frame and tetrad-frame covariant deriva-
tives.
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Notation 3

Choice of metric signature

There is a tendency, by no means unanimous, for general relativists to prefer the −+++ metric signature,
while particle physicists prefer +−−−.
For someone like me who does general relativistic visualization, there is no contest: the choice has to be

−+++, so that signs remain consistent between 3D spatial vectors and 4D spacetime vectors. For example,
the 3D industry knows well that quaternions provide the most efficient and powerful way to implement
spatial rotations. As shown in Chapter 13, complex quaternions provide the best way to implement Lorentz
transformations, with the subgroup of real quaternions continuing to provide spatial rotations. Compatibility
requires −+++. Actually, OpenGL and other graphics languages put spatial coordinates in the first three
indices, leaving time to occupy the fourth index; but in these notes I stick to the physics convention of
putting time in the zeroth index.
In practical calculations it is convenient to be able to switch transparently between boldface and in-

dex notation in both 3D and 4D contexts. This is where the +−−− signature poses greater potential for
misinterpretation in 3D. For example, with this signature, what is the sign of the 3D scalar product

𝑎 · 𝑏 ?

Is it 𝑎 · 𝑏 =
∑︀3
𝑎=1 𝑎𝑎𝑏

𝑎 or 𝑎 · 𝑏 =
∑︀3
𝑎=1 𝑎

𝑎𝑏𝑎? To be consistent with common 3D usage, it must be the
latter. With the +−−− signature, it must be that 𝑎 · 𝑏 = −𝑎𝑎𝑏𝑎, where the repeated indices signify implicit
summation over spatial indices. So you have to remember to introduce a minus sign in switching between
boldface and index notation.
As another example, what is the sign of the 3D vector product

𝑎× 𝑏 ?

Is it 𝑎×𝑏 =
∑︀3
𝑏,𝑐=1 𝜀𝑎𝑏𝑐𝑎

𝑏𝑏𝑐 or 𝑎×𝑏 =
∑︀3
𝑏,𝑐=1 𝜀

𝑎
𝑏𝑐𝑎

𝑏𝑏𝑐 or 𝑎×𝑏 =
∑︀3
𝑏,𝑐=1 𝜀

𝑎𝑏𝑐𝑎𝑏𝑏𝑐? Well, if you want to switch
transparently between boldface and index notation, and you decide that you want boldface consistently to
signify a vector with a raised index, then maybe you’d choose the middle option. To be consistent with
standard 3D convention for the sign of the vector product, maybe you’d choose 𝜀𝑎𝑏𝑐 to have positive sign for
𝑎𝑏𝑐 an even permutation of 𝑥𝑦𝑧.
Finally, what is the sign of the 3D spatial gradient operator

∇ ≡ 𝜕

𝜕𝑥
?

Is it ∇ = 𝜕/𝜕𝑥𝑎 or ∇ = 𝜕/𝜕𝑥𝑎? Convention dictates the former, in which case it must be that some boldface
3D vectors must signify a vector with a raised index, and others a vector with a lowered index. Oh dear.





PART ONE

FUNDAMENTALS





Concept Questions

1. What does 𝑐 = universal constant mean? What is speed? What is distance? What is time?
2. 𝑐+ 𝑐 = 𝑐. How can that be possible?
3. The first postulate of special relativity asserts that spacetime forms a 4-dimensional continuum. The

fourth postulate of special relativity asserts that spacetime has no absolute existence. Isn’t that a
contradiction?

4. The principle of special relativity says that there is no absolute spacetime, no absolute frame of reference
with respect to which position and velocity are defined. Yet does not the cosmic microwave background
define such a frame of reference?

5. How can two people moving relative to each other at near 𝑐 both think each other’s clock runs slow?
6. How can two people moving relative to each other at near 𝑐 both think the other is Lorentz-contracted?
7. All paradoxes in special relativity have the same solution. In one word, what is that solution?
8. All conceptual paradoxes in special relativity can be understood by drawing what kind of diagram?
9. Your twin takes a trip to 𝛼 Cen at near 𝑐, then returns to Earth at near 𝑐. Meeting your twin, you see

that the twin has aged less than you. But from your twin’s perspective, it was you that receded at near
𝑐, then returned at near 𝑐, so your twin thinks you aged less. Is it true?

10. Blobs in the jet of the galaxy M87 have been tracked by the Hubble Space Telescope to be moving at
about 6𝑐. Does this violate special relativity?

11. If you watch an object move at near 𝑐, does it actually appear Lorentz-contracted? Explain.
12. You speed towards the centre of our Galaxy, the Milky Way, at near 𝑐. Does the centre appear to you

closer or farther away?
13. You go on a trip to the centre of the Milky Way, 30,000 lightyears distant, at near 𝑐. How long does the

trip take you?
14. You surf a light ray from a distant quasar to Earth. How much time does the trip take, from your

perspective?
15. If light is a wave, what is waving?
16. As you surf the light ray, how fast does it appear to vibrate?
17. How does the phase of a light ray vary along the light ray? Draw surfaces of constant phase on a

spacetime diagram.

7
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18. You see a distant galaxy at a redshift of 𝑧 = 1. If you could see a clock on the galaxy, how fast would
the clock appear to tick? Could this be tested observationally?

19. You take a trip to 𝛼 Cen at near 𝑐, then instantaneously accelerate to return at near 𝑐. If you are
looking through a telescope at a clock on the Earth while you instantaneously accelerate, what do you
see happen to the clock?

20. In what sense is time an imaginary spatial dimension?
21. In what sense is a Lorentz boost a rotation by an imaginary angle?
22. You know what it means for an object to be rotating at constant angular velocity. What does it mean

for an object to be boosting at a constant rate?
23. A wheel is spinning so that its rim is moving at near 𝑐. The rim is Lorentz-contracted, but the spokes

are not. How can that be?
24. You watch a wheel rotate at near the speed of light. The spokes appear bent. How can that be?
25. Does a sunbeam appear straight or bent when you pass by it at near the speed of light?
26. Energy and momentum are unified in special relativity. Explain.
27. In what sense is mass equivalent to energy in special relativity? In what sense is mass different from

energy?
28. Why is the Minkowski metric unchanged by a Lorentz transformation?
29. What is the best way to program Lorentz transformations on a computer?



What’s important?

1. The postulates of special relativity.
2. Understanding conceptually the unification of space and time implied by special relativity.

a. Spacetime diagrams.
b. Simultaneity.
c. Understanding the paradoxes of relativity — time dilation, Lorentz contraction, the twin paradox.

3. The mathematics of spacetime transformations.
a. Lorentz transformations.
b. Invariant spacetime distance.
c. Minkowski metric.
d. 4-vectors.
e. Energy-momentum 4-vector. 𝐸 = 𝑚𝑐2.
f. The energy-momentum 4-vector of massless particles, such as photons.

4. What things look like at relativistic speeds.

9



1

Special Relativity

Special relativity is a fundamental building block of general relativity. General relativity postulates that the
local structure of spacetime is that of special relativity.
The primary goal of this Chapter is to convey a clear conceptual understanding of special relativity.

Everyday experience gives the impression that time is absolute, and that space is entirely distinct from time,
as Galileo and Newton postulated. Special relativity demands, in apparent contradiction to experience, the
revolutionary notion that space and time are united into a single 4-dimensional entity, called spacetime.
The revolution forces conclusions that appear paradoxical: how can two people moving relative to each other
both measure the speed of light to be the same, both think each other’s clock runs slow, and both think the
other is Lorentz-contracted?
In fact special relativity does not contradict everyday experience. It is just that we humans move through

our world at speeds that are so much smaller than the speed of light that we are not aware of relativistic
effects. The correctness of special relativity is confirmed every day in particle accelerators that smash particles
together at highly relativistic speeds.
See https://jila.colorado.edu/~ajsh/sr/ for animated versions of several of the diagrams in this Chapter.

1.1 Motivation

The history of the development of special relativity is rich and human, and it is beyond the intended scope
of this book to give any reasonable account of it. If you are interested in the history, I recommend starting
with the popular account by Thorne (1994).
As first proposed by James Clerk Maxwell in 1864, light is an electromagnetic wave. Maxwell believed

(Goldman, 1984) that electromagnetic waves must be carried by some medium, the luminiferous aether,
just as sound waves are carried by air. However, Maxwell knew that his equations of electromagnetism had
empirical validity without any need for the hypothesis of an aether.
For Albert Einstein, the theory of special relativity was motivated by the curious circumstance that

Maxwell’s equations of electromagnetism seemed to imply that the speed of light was independent of the
motion of an observer. Others before Einstein had noticed this curious feature of Maxwell’s equations. Joseph

10
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Larmor, Hendrick Lorentz, and Henri Poincaré all noticed that the form of Maxwell’s equations could be
preserved if lengths and times measured by an observer were somehow altered by motion through the aether.
The transformations of special relativity were discovered before Einstein by Lorentz (1904), the name “Lorentz
transformations” being conferred by Poincaré (1905).
Einstein’s great contribution was to propose (Einstein, 1905) that there was no aether, no absolute space-

time. From this simple and profound idea stemmed his theory of special relativity.

1.2 The postulates of special relativity

The theory of special relativity can be derived formally from a small number of postulates:
1. Space and time form a 4-dimensional continuum;
2. The existence of globally inertial frames;
3. The speed of light is constant;
4. The principle of special relativity.

The first two postulates are assertions about the structure of spacetime, while the last two postulates form
the heart of special relativity. Most books mention just the last two postulates, but I think it is important
to know that special (and general) relativity simply postulate the 4-dimensional character of spacetime, and
that special relativity postulates moreover that spacetime is flat.

1. Space and time form a 4-dimensional continuum. The correct mathematical word for continuum
is manifold. A 4-dimensional manifold is defined mathematically to be a topological space that is locally
homeomorphic to Euclidean 4-space R4.
The postulate that spacetime forms a 4-dimensional continuum is a generalization of the classical Galilean

concept that space and time form separate 3 and 1 dimensional continua. The postulate of a 4-dimensional
spacetime continuum is retained in general relativity.
Physicists widely believe that this postulate must ultimately break down, that space and time are quantized

over extremely small intervals of space and time, the Planck length
√︀
𝐺~/𝑐3 ≈ 10−35 m, and the Planck time√︀

𝐺~/𝑐5 ≈ 10−43 s, where 𝐺 is Newton’s gravitational constant, ~ ≡ ℎ/(2𝜋) is Planck’s constant divided by
2𝜋, and 𝑐 is the speed of light.

2. The existence of globally inertial frames. Statement: “There exist global spacetime frames with
respect to which unaccelerated objects move in straight lines at constant velocity.”
A spacetime frame is a system of coordinates for labelling space and time. Four coordinates are needed,

because spacetime is 4-dimensional. A frame in which unaccelerated objects move in straight lines at con-
stant velocity is called an inertial frame. One can easily think of non-inertial frames: a rotating frame, an
accelerating frame, or simply a frame with some bizarre Dahlian labelling of coordinates.
A globally inertial frame is an inertial frame that covers all of space and time. The postulate that

globally inertial frames exist is carried over from classical mechanics (Newton’s first law of motion).
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Notice the subtle shift from the Newtonian perspective. The postulate is not that particles move in straight
lines, but rather that there exist spacetime frames with respect to which particles move in straight lines.
Implicit in the assumption of the existence of globally inertial frames is the assumption that the geometry of

spacetime is flat, the geometry of Euclid, where parallel lines remain parallel to infinity. In general relativity,
this postulate is replaced by the weaker postulate that local (not global) inertial frames exist. A locally

inertial frame is one which is inertial in a “small neighbourhood” of a spacetime point. In general relativity,
spacetime can be curved.

3. The speed of light is constant. Statement: “The speed of light 𝑐 is a universal constant, the same in
any inertial frame.”
This postulate is the nub of special relativity. The immediate challenge of this Chapter, §1.3, is to confront

its paradoxical implications, and to resolve them.
Measuring speed requires being able to measure intervals of both space and time: speed is distance travelled

divided by time elapsed. Inertial frames constitute a special class of spacetime coordinate systems; it is with
respect to distance and time intervals in these special frames that the speed of light is asserted to be constant.
In general relativity, arbitrarily weird coordinate systems are allowed, and light need move neither in

straight lines nor at constant velocity with respect to bizarre coordinates (why should it, if the labelling
of space and time is totally arbitrary?). However, general relativity asserts the existence of locally inertial
frames, and the speed of light is a universal constant in those frames.
In 1983, the General Conference on Weights and Measures officially defined the speed of light to be

𝑐 ≡ 299,792,458m s−1, (1.1)

and the metre, instead of being a primary measure, became a secondary quantity, defined in terms of the
second and the speed of light.

4. The principle of special relativity. Statement: “The laws of physics are the same in any inertial frame,
regardless of position or velocity.”
Physically, this means that there is no absolute spacetime, no absolute frame of reference with respect to

which position and velocity are defined. Only relative positions and velocities between objects are meaningful.
Mathematically, the principle of special relativity requires that the equations of special relativity be

Lorentz covariant.
It is to be noted that the principle of special relativity does not imply the constancy of the speed of light,

although the postulates are consistent with each other. Moreover the constancy of the speed of light does
not imply the Principle of Special Relativity, although for Einstein the former appears to have been the
inspiration for the latter.
An example of the application of the principle of special relativity is the construction of the energy-

momentum 4-vector of a particle, which should have the same form in any inertial frame (§1.11).
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1.3 The paradox of the constancy of the speed of light

The postulate that the speed of light is the same in any inertial frame leads immediately to a paradox.
Resolution of this paradox compels a revolution in which space and time are united from separate 3 and
1-dimensional continua into a single 4-dimensional continuum.
Figure 1.1 shows Vermilion emitting a flash of light, which expands away from her in all directions.

Vermilion thinks that the light moves outward at the same speed in all directions. So Vermilion thinks that
she is at the centre of the expanding sphere of light.
Figure 1.1 shows also Cerulean, who is moving away from Vermilion at about half the speed of light. But,

says special relativity, Cerulean also thinks that the light moves outward at the same speed in all directions
from him. So Cerulean should be at the centre of the expanding light sphere too. But he’s not, is he. Paradox!

Figure 1.1 Vermilion emits a flash of light, which (from left to right) expands away from her in all directions. Since

the speed of light is constant in all directions, she finds herself at the centre of the expanding sphere of light. Cerulean

is moving to the right at half of the speed of light relative to Vermilion. Special relativity declares that Cerulean too

thinks that the speed of light is constant in all directions. So should not Cerulean think that he too is at the centre

of the expanding sphere of light? Paradox!

Concept question 1.1. Does light move differently depending on who emits it? Would the light
have expanded differently if Cerulean had emitted the light?

Exercise 1.2. Challenge problem: the paradox of the constancy of the speed of light. Can you
figure out a solution to the paradox? Somehow you have to arrange that both Vermilion and Cerulean regard
themselves as being in the centre of the expanding sphere of light.

1.3.1 Spacetime diagram

A spacetime diagram suggests a way of thinking, first advocated by Minkowski (1909), that leads to the
solution of the paradox of the constancy of the speed of light. Indeed, spacetime diagrams provide the way
to resolve all conceptual paradoxes in special relativity, so it is thoroughly worthwhile to understand them.
A spacetime diagram, Figure 1.2, is a diagram in which the vertical axis represents time, while the

horizontal axis represents space. Really there are three dimensions of space, which can be thought of as
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Figure 1.2 A spacetime diagram shows events in space and time. In a spacetime diagram, time goes upward, while

space dimensions are horizontal. Really there should be 3 space dimensions, but usually it suffices to show 1 spatial

dimension, as here. In a spacetime diagram, the units of space and time are chosen so that light goes one unit of

distance in one unit of time, i.e. the units are such that the speed of light is one, 𝑐 = 1. Thus light moves upward and

outward at 45∘ from vertical in a spacetime diagram.

filling additional horizontal dimensions. But for simplicity a spacetime diagram usually shows just one spatial
dimension.
In a spacetime diagram, the units of space and time are chosen so that light goes one unit of distance in

one unit of time, i.e. the units are such that the speed of light is one, 𝑐 = 1. Thus light always moves upward
at 45∘ from vertical in a spacetime diagram. Each point in 4-dimensional spacetime is called an event. Light

Time

Space

Figure 1.3 Spacetime diagram of Vermilion emitting a flash of light. This is a spacetime diagram version of the

situation illustrated in Figure 1.1. The lines along which Vermilion and Cerulean move through spacetime are called

their worldlines. Each point in 4-dimensional spacetime is called an event. Light signals converging to or expanding

from an event follow a 3-dimensional hypersurface called the lightcone. In the diagram, the sphere of light expanding

from the emission event is following the future lightcone. There is also a past lightcone, not shown here.
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signals converging to or expanding from an event follow a 3-dimensional hypersurface called the lightcone.
Light converging on to an event in on the past lightcone, while light emerging from an event is on the
future lightcone.
Figure 1.3 shows a spacetime diagram of Vermilion emitting a flash of light, and Cerulean moving relative

to Vermilion at about 1
2 the speed of light. This is a spacetime diagram version of the situation illustrated in

Figure 1.1. The lines along which Vermilion and Cerulean move through spacetime are called their world-
lines.
Consider again the challenge problem. The problem is to arrange that both Vermilion and Cerulean are

at the centre of the lightcone, from their own points of view.
Here’s a clue. Cerulean’s concept of space and time may not be the same as Vermilion’s.

1.3.2 Centre of the lightcone

The solution to the paradox is that Cerulean’s spacetime is skewed compared to Vermilion’s, as illustrated
by Figure 1.4. The thing to notice in the diagram is that Cerulean is in the centre of the lightcone, according
to the way Cerulean perceives space and time. Vermilion remains at the centre of the lightcone according
to the way Vermilion perceives space and time. In the diagram Vermilion and her space are drawn at one
“tick” of her clock past the point of emission, and likewise Cerulean and his space are drawn at one “tick” of
his identical clock past the point of emission. Of course, from Cerulean’s point of view his spacetime is quite
normal, and it is Vermilion’s spacetime that is skewed.
In special relativity, the transformation between the spacetime frames of two inertial observers is called a

Time

Time

S

p

a
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e

Space

Figure 1.4 The solution to how both Vermilion and Cerulean can consider themselves to be at the centre of the

lightcone. Cerulean’s spacetime is skewed compared to Vermilion’s. Cerulean is in the centre of the lightcone, according

to the way Cerulean perceives space and time, while Vermilion remains at the centre of the lightcone according to the

way Vermilion perceives space and time. In the diagram Vermilion (red) and her space are drawn at one “tick” of her

clock past the point of emission, and likewise Cerulean (blue) and his space are drawn at one “tick” of his identical

clock past the point of emission.
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Lorentz transformation. In general, a Lorentz transformation consists of a spatial rotation about some
spatial axis, combined with a Lorentz boost by some velocity in some direction.
Only space along the direction of motion gets skewed with time. Distances perpendicular to the direction

of motion remain unchanged. Why must this be so? Consider two hoops which have the same size when at
rest relative to each other. Now set the hoops moving towards each other. Which hoop passes inside the
other? Neither! For suppose Vermilion thinks Cerulean’s hoop passed inside hers; by symmetry, Cerulean
must think Vermilion’s hoop passed inside his; but both cannot be true; the only possibility is that the hoops
remain the same size in directions perpendicular to the direction of motion.
If you have understood all this, then you have understood the crux of special relativity, and you can

now go away and figure out all the mathematics of Lorentz transformations. The mathematical problem is:
what is the relation between the spacetime coordinates {𝑡, 𝑥, 𝑦, 𝑧} and {𝑡′, 𝑥′, 𝑦′, 𝑧′} of a spacetime interval,
a 4-vector, in Vermilion’s versus Cerulean’s frames, if Cerulean is moving relative to Vermilion at velocity 𝑣
in, say, the 𝑥 direction? The solution follows from requiring
1. that both observers consider themselves to be at the centre of the lightcone, as illustrated by Figure 1.4,

and

2. that distances perpendicular to the direction of motion remain unchanged, as illustrated by Figure 1.5.
An alternative version of the second condition is that a Lorentz transformation at velocity 𝑣 followed by a
Lorentz transformation at velocity −𝑣 should yield the unit transformation.
Note that the postulate of the existence of globally inertial frames implies that Lorentz transformations

are linear, that straight lines (4-vectors) in one inertial spacetime frame transform into straight lines in other
inertial frames.
You will solve this problem in the next section but two, §1.6. As a prelude, the next two sections, §1.4 and

§1.5 discuss simultaneity and time dilation.

Time
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e

Figure 1.5 Same as Figure 1.4, but with Cerulean moving into the page instead of to the right. This is just Figure 1.4

spatially rotated by 90∘ in the horizontal plane. Distances perpendicular to the direction of motion are unchanged.
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1.4 Simultaneity

Most (all?) of the apparent paradoxes of special relativity arise because observers moving at different velocities
relative to each other have different notions of simultaneity.

1.4.1 Operational definition of simultaneity

How can simultaneity, the notion of events occurring at the same time at different places, be defined opera-
tionally?
One way is illustrated in the sequences of spacetime diagrams in Figure 1.6. Vermilion surrounds herself

with a set of mirrors, equidistant from Vermilion. She sends out a flash of light, which reflects off the mirrors
back to Vermilion. How does Vermilion know that the mirrors are all the same distance from her? Because the
reflected flash from the mirrors arrives back to Vermilion all at the same instant. Vermilion asserts that the
light flash must have hit all the mirrors simultaneously. Vermilion also asserts that the instant when the light
hit the mirrors must have been the instant, as registered by her wristwatch, precisely half way between the
moment she emitted the flash and the moment she received it back again. If it takes, say, 2 seconds between
flash and receipt, then Vermilion concludes that the mirrors are 1 lightsecond away from her. The spatial
hyperplane passing through these events is a hypersurface of simultaneity. More generally, from Vermilion’s
perspective, each horizontal hyperplane in the spacetime diagram is a hypersurface of simultaneity.
Cerulean defines surfaces of simultaneity using the same operational setup: he encompasses himself with

mirrors, arranging them so that a flash of light returns from them to him all at the same instant. But whereas
Cerulean concludes that his mirrors are all equidistant from him and that the light bounces off them all at the
same instant, Vermilion thinks otherwise. From Vermilion’s point of view, the light bounces off Cerulean’s
mirrors at different times and moreover at different distances from Cerulean, as illustrated in Figure 1.7.
Only so can the speed of light be constant, as Vermilion sees it, and yet the light return to Cerulean all at
the same instant.
Of course from Cerulean’s point of view all is fine: he thinks his mirrors are equidistant from him, and

Time

Space

Time

Space

Time

Space

Time

Space

Time
Space

Figure 1.6 How Vermilion defines hypersurfaces of simultaneity. She surrounds herself with (green) mirrors all at the

same distance. She sends out a light beam, which reflects off the mirrors, and returns to her all at the same moment.

She knows that the mirrors are all at the same distance precisely because the light returns to her all at the same

moment. The events where the light bounced off the mirrors defines a hypersurface of simultaneity for Vermilion.
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Figure 1.7 Cerulean defines hypersurfaces of simultaneity using the same operational setup as Vermilion: he bounces

light off (green) mirrors all at the same distance from him, arranging them so that the light returns to him all at the

same time. But from Vermilion’s frame, Cerulean’s experiment looks skewed, as shown here.

that the light bounces off them all at the same instant. The inevitable conclusion is that Cerulean must
measure space and time along axes that are skewed relative to Vermilion’s. Events that happen at the same
time according to Cerulean happen at different times according to Vermilion; and vice versa. Cerulean’s
hypersurfaces of simultaneity are not the same as Vermilion’s.

From Cerulean’s point of view, Cerulean remains always at the centre of the lightcone. Thus for Cerulean,
as for Vermilion, the speed of light is constant, the same in all directions.

1.5 Time dilation

Vermilion and Cerulean construct identical clocks, Figure 1.8, consisting of a light beam which bounces off a
mirror. Tick, the light beam hits the mirror, tock, the beam returns to its owner. As long as Vermilion and
Cerulean remain at rest relative to each other, both agree that each other’s clock tick-tocks at the same rate
as their own.

But now suppose Cerulean goes off at velocity 𝑣 relative to Vermilion, in a direction perpendicular to the
direction of the mirror. A far as Cerulean is concerned, his clock tick-tocks at the same rate as before, a tick
at the mirror, a tock on return. But from Vermilion’s point of view, although the distance between Cerulean
and his mirror at any instant remains the same as before, the light has farther to go. And since the speed
of light is constant, Vermilion thinks it takes longer for Cerulean’s clock to tick-tock than her own. Thus
Vermilion thinks Cerulean’s clock runs slow relative to her own.
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Figure 1.8 Vermilion and Cerulean construct identical clocks, consisting of a light beam that bounces off a (green)

mirror and returns to them. In the left panel, Cerulean is at rest relative to Vermilion. They both agree that their

clocks are identical. In the middle panel, Cerulean is moving to the right at speed 𝑣 relative to Vermilion. The vertical

distance to the mirror is unchanged by Cerulean’s motion in a direction orthogonal to the direction to the mirror.

Whereas Cerulean thinks his clock ticks at the usual rate, Vermilion sees the path of the light taken by Cerulean’s

clock is longer, by a factor 𝛾, than the path of light taken by her own clock. Since the speed of light is constant,

Vermilion thinks Cerulean’s clock takes longer to tick, by a factor 𝛾, than her own. The sides of the triangle formed

by the distance 1 to the mirror, the length 𝛾 of the lightpath to Cerulean’s clock, and the distance 𝛾𝑣 travelled by

Cerulean, form a right-angled triangle, illustrated in the right panel.

1.5.1 Lorentz gamma factor

How much slower does Cerulean’s clock run, from Vermilion’s point of view? In special relativity the factor
is called the Lorentz gamma factor 𝛾, introduced by the Dutch physicist Hendrik A. Lorentz in 1904, one
year before Einstein proposed his theory of special relativity.
In units where the speed of light is one, 𝑐 = 1, Vermilion’s mirror in Figure 1.8 is one tick away from her,

and from her point of view the vertical distance between Cerulean and his mirror is the same, one tick. But
Vermilion thinks that the distance travelled by the light beam between Cerulean and his mirror is 𝛾 ticks.
Cerulean is moving at speed 𝑣, so Vermilion thinks he moves a distance of 𝛾𝑣 ticks during the 𝛾 ticks of time
taken by the light to travel from Cerulean to his mirror. Thus, from Vermilion’s point of view, the vertical
line from Cerulean to his mirror, Cerulean’s light beam, and Cerulean’s path form a triangle with sides 1,
𝛾, and 𝛾𝑣, as illustrated in Figure 1.8. Pythogoras’ theorem implies that

12 + (𝛾𝑣)2 = 𝛾2 . (1.2)

From this it follows that the Lorentz gamma factor 𝛾 is related to Cerulean’s velocity 𝑣 by

𝛾 =
1√

1− 𝑣2
, (1.3)

which is Lorentz’s famous formula.

1.6 Lorentz transformation

A Lorentz transformation is a rotation of space and time. Lorentz transformations form a 6-dimensional
group, with 3 dimensions from spatial rotations, and 3 dimensions from Lorentz boosts.
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If you wish to understand special relativity mathematically, then it is essential for you to go through the
exercise of deriving the form of Lorentz transformations for yourself. Indeed, this problem is the challenge
problem posed in §1.3, recast as a mathematical exercise. For simplicity, it is enough to consider the case of
a Lorentz boost by velocity 𝑣 along the 𝑥-axis.
You can derive the form of a Lorentz transformation either pictorially (geometrically), or algebraically.

Ideally you should do both.
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Figure 1.9 Spacetime diagram representing the experiments shown in Figures 1.6 and 1.7. The right panel shows a

detail of how the spacetime diagram can be drawn using only a straight edge and a compass. If Cerulean’s position is

drawn first, then Vermilion’s position follows from drawing the arc as shown.

Exercise 1.3. Pictorial derivation of the Lorentz transformation. Construct, with ruler and compass,
a spacetime diagram that looks like the one in Figure 1.9. You should recognize that the square represents the
paths of lightrays that Vermilion uses to define a hypersurface of simultaneity, while the rectangle represents
the same thing for Cerulean. Notice that Cerulean’s worldline and line of simultaneity are diagonals along his
light rectangle, so the angles between those lines and the lightcone are equal. Notice also that the areas of the
square and the rectangle are the same, which expresses the fact that the area is multiplied by the determinant
of the Lorentz transformation matrix, which must be one (why?). Use your geometric construction to derive
the mathematical form of the Lorentz transformation.

Exercise 1.4. 3D model of the Lorentz transformation. Make a 3D spacetime diagram of the Lorentz
transformation, something like that in Figure 1.4, with not only an 𝑥-dimension, as in Exercise 1.3, but also
a 𝑦-dimension. You can use a 3D computer modelling program, or you can make a real 3D model. Make the
lightcone from flexible paperboard, the spatial hypersurface of simultaneity from stiff paperboard, and the
worldline from wooden dowel.

Exercise 1.5. Mathematical derivation of the Lorentz transformation. Relative to person A (Ver-
milion, unprimed frame), person B (Cerulean, primed frame) moves at velocity 𝑣 along the 𝑥-axis. Derive
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the form of the Lorentz transformation between the coordinates (𝑡, 𝑥, 𝑦, 𝑧) of a 4-vector in A’s frame and the
corresponding coordinates (𝑡′, 𝑥′, 𝑦′, 𝑧′) in B’s frame from the assumptions:
1. that the transformation is linear;

2. that the spatial coordinates in the directions orthogonal to the direction of motion are unchanged;

3. that the speed of light 𝑐 is the same for both A and B, so that 𝑥 = 𝑡 in A’s frame transforms to 𝑥′ = 𝑡′

in B’s frame, and likewise 𝑥 = −𝑡 in A’s frame transforms to 𝑥′ = −𝑡′ in B’s frame;

4. the definition of speed; if B is moving at speed 𝑣 relative to A, then 𝑥 = 𝑣𝑡 in A’s frame transforms to
𝑥′ = 0 in B’s frame;

5. spatial isotropy; specifically, show that if A thinks B is moving at velocity 𝑣, then B must think that A
is moving at velocity −𝑣, and symmetry (spatial isotropy) between these two situations then fixes the
Lorentz 𝛾 factor.

Your logic should be precise, and explained in clear, concise English.

You should find that the Lorentz transformation for a Lorentz boost by velocity 𝑣 along the 𝑥-axis is

𝑡′ = 𝛾𝑡− 𝛾𝑣𝑥
𝑥′ = − 𝛾𝑣𝑡+ 𝛾𝑥

𝑦′ = 𝑦

𝑧′ = 𝑧

,

𝑡 = 𝛾𝑡′ + 𝛾𝑣𝑥′

𝑥 = 𝛾𝑣𝑡′ + 𝛾𝑥′

𝑦 = 𝑦′

𝑧 = 𝑧′

. (1.4)

The transformation can be written more elegantly in matrix notation:⎛⎜⎜⎝
𝑡′

𝑥′

𝑦′

𝑧′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝛾 −𝛾𝑣 0 0

−𝛾𝑣 𝛾 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑡

𝑥

𝑦

𝑧

⎞⎟⎟⎠ , (1.5)

with inverse ⎛⎜⎜⎝
𝑡

𝑥

𝑦

𝑧

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝛾 𝛾𝑣 0 0

𝛾𝑣 𝛾 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑡′

𝑥′

𝑦′

𝑧′

⎞⎟⎟⎠ . (1.6)

A Lorentz transformation at velocity 𝑣 followed by a Lorentz transformation at velocity 𝑣 in the opposite
direction, i.e. at velocity −𝑣, yields the unit transformation, as it should:⎛⎜⎜⎝

𝛾 𝛾𝑣 0 0

𝛾𝑣 𝛾 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

𝛾 −𝛾𝑣 0 0

−𝛾𝑣 𝛾 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ . (1.7)
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The determinant of the Lorentz transformation is one, as it should be:⃒⃒⃒⃒
⃒⃒⃒⃒ 𝛾 −𝛾𝑣 0 0

−𝛾𝑣 𝛾 0 0

0 0 1 0

0 0 0 1

⃒⃒⃒⃒
⃒⃒⃒⃒ = 𝛾2(1− 𝑣2) = 1 . (1.8)

Indeed, requiring that the determinant be one provides another derivation of the formula (1.3) for the Lorentz
gamma factor.

Concept question 1.6. Determinant of a Lorentz transformation. Why must the determinant of a
Lorentz transformation be one?

1.7 Paradoxes: Time dilation, Lorentz contraction, and the Twin paradox

There are several classic paradoxes in special relativity. One of them has already been met above, the paradox
of the constancy of the speed of light in §1.3. This section collects three famous paradoxes: time dilation,
Lorentz contraction, and the Twin paradox.
If you wish to understand special relativity conceptually, then you should work through all these paradoxes

yourself. As remarked in §1.4, most (all?) paradoxes in special relativity arise because different observers
have different notions of simultaneity, and most (all?) paradoxes can be solved using spacetime diagrams.
The Twin paradox is particularly helpful because it illustrates several different facets of special relativity,

not only time dilation, but also how light travel time modifies what an observer actually sees.

1.7.1 Time dilation

If a timelike interval {𝑡, 𝑟} corresponds to motion at velocity 𝑣, then 𝑟 = 𝑣𝑡. The proper time along the
interval is

𝜏 =
√︀
𝑡2 − 𝑟2 = 𝑡

√︀
1− 𝑣2 =

𝑡

𝛾
. (1.9)

This is Lorentz time dilation: the proper time interval 𝜏 experienced by a moving person is a factor 𝛾 less
than the time interval 𝑡 according to an onlooker.

1.7.2 Fitzgerald-Lorentz contraction

Consider a rocket of proper length 𝑙, so that in the rocket’s own rest frame (primed) the back and front ends
of the rocket move through time 𝑡′ with coordinates

{𝑡′, 𝑥′} = {𝑡′, 0} and {𝑡′, 𝑙} . (1.10)
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From the perspective of an observer who sees the rocket move at velocity 𝑣 in the 𝑥-direction, the worldlines
of the back and front ends of the rocket are at

{𝑡, 𝑥} = {𝛾𝑡′, 𝛾𝑣𝑡′} and {𝛾𝑡′ + 𝛾𝑣𝑙, 𝛾𝑣𝑡′ + 𝛾𝑙} . (1.11)

However, the observer measures the length of the rocket simultaneously in their own frame, not the rocket
frame. Solving for 𝛾𝑡′ = 𝑡 at the back and 𝛾𝑡′ + 𝛾𝑣𝑙 = 𝑡 at the front gives

{𝑡, 𝑥} = {𝑡, 𝑣𝑡} and

{︂
𝑡, 𝑣𝑡+

𝑙

𝛾

}︂
(1.12)

which says that the observer measures the front end of the rocket to be a distance 𝑙/𝛾 ahead of the back
end. This is Lorentz contraction: an object of proper length 𝑙 is measured by a moving person to be shorter
by a factor 𝛾.

Exercise 1.7. Time dilation. On a spacetime diagram such as that in the left panel of Figure 1.10, show
how two observers moving relative to each other can both consider the other’s clock to run slow compared
to their own.

Figure 1.10 (Left) Time dilation, and (right) Lorentz contraction spacetime diagrams.

Exercise 1.8. Lorentz contraction. On a spacetime diagram such as that in the right panel Figure 1.10,
show how two observers moving relative to each other can both consider the other to be contracted along
the direction of motion.

Concept question 1.9. Is one side of a cube shorter than the other? Figure 1.11 shows a picture
of a 3-dimensional cube. Is one edge shorter than the other? Projected on to the page, it appears so, but in
reality all the edges have equal length. In what ways is this situation similar or dissimilar to time dilation
and Lorentz contraction in 4-dimensional relativity?



24 Special Relativity

Figure 1.11 A cube. Are the lengths of its sides all equal?

Exercise 1.10. Twin paradox. Your twin leaves you on Earth and travels to the spacestation Alpha,
ℓ = 3 lyr away, at a good fraction of the speed of light, then immediately returns to Earth at the same speed.
Figure 1.12 shows on a spacetime diagram the corresponding worldlines of both you and your twin. Aside
from part 1 and the first part of 2, you should derive your answers mathematically, using logic and Lorentz
transformations. However, the diagram is accurately drawn, and you should be able to check your answers
by measuring.
1. On a spacetime diagram such that in Figure 1.12, label the worldlines of you and your twin. Draw the

worldline of a light signal which travels from you on Earth, hits Alpha just when your twin arrives,
and immediately returns to Earth. Draw the twin’s “now” (line of simultaneity) when just arriving at
Alpha, and the twin’s “now” (line of simultaneity) just departing from Alpha (in the first case the twin
is moving toward Alpha, while in the second case the twin is moving back toward Earth).

2. From the diagram, measure the twin’s speed 𝑣 relative to you, in units where the speed of light is unity,
𝑐 = 1. Deduce the Lorentz gamma factor 𝛾, and the redshift factor 1 + 𝑧 = [(1 + 𝑣)/(1− 𝑣)]1/2, in the
cases (i) where the twin is receding, and (ii) where the twin is approaching.

3. Choose the spacetime origin to be the event where the twin leaves Earth. Argue that the position
4-vector of the twin on arrival at Alpha is

{𝑡, 𝑥, 𝑦, 𝑧} = {ℓ/𝑣, ℓ, 0, 0} . (1.13)

Lorentz transform this 4-vector to determine the position 4-vector of the twin on arrival at Alpha, in
the twin’s frame. Express your answer first in terms of ℓ, 𝑣, and 𝛾, and then in (light)years. State in
words what this position 4-vector means.

4. How much do you and your twin age respectively during the round trip to Alpha and back? What is
the ratio of these ages? Express your answers first in terms of ℓ, 𝑣, and 𝛾, and then in years.

5. What is the distance between the Earth and Alpha from the twin’s point of view? What is the ratio
of this distance to the distance between Earth and Alpha from your point of view? Explain how your
arrived at your result. Express your answer first in terms of ℓ, 𝑣, and 𝛾, and then in lightyears.

6. You watch your twin through a telescope. How much time do you see (through the telescope) elapse
on your twin’s wristwatch between launch and arrival on Alpha? How much time passes on your own
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Figure 1.12 Twin paradox spacetime diagram.

wristwatch during this time? What is the ratio of these two times? Express your answers first in terms
of ℓ, 𝑣, and 𝛾, and then in years.

7. On arrival at Alpha, your twin looks back through a telescope at your wristwatch. How much time does
your twin see (through the telescope) has elapsed since launch on your watch? How much time has
elapsed on the twin’s own wristwatch during this time? What is the ratio of these two times? Express
your answers first in terms of ℓ, 𝑣, and 𝛾, and then in years.

8. You continue to watch your twin through a telescope. How much time elapses on your twin’s wristwatch,
as seen by you through the telescope, during the twin’s journey back from Alpha to Earth? How much
time passes on your own watch as you watch (through the telescope) the twin journey back from Alpha
to Earth? What is the ratio of these two times? Express your answers first in terms of ℓ, 𝑣, and 𝛾, and
then in years.

9. During the journey back from Alpha to Earth, your twin likewise continues to look through a telescope
at the time registered on your watch. How much time passes on your wristwatch, as seen by your twin
through the telescope, during the journey back? How much time passes on the twin’s wristwatch from
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the twin’s point of view during the journey back? What is the ratio of these two times? Express your
answers first in terms of ℓ, 𝑣, and 𝛾, and then in years.

Concept question 1.11. What breaks the symmetry between you and your twin? From your
point of view, you saw the twin recede from you at velocity 𝑣 on the outbound journey, then approach you
at velocity 𝑣 on the inbound journey. But the twin saw the essentially same thing: from the twin’s point of
view, the twin saw you recede at velocity 𝑣 on the outbound journey, then approach the twin at velocity
𝑣 on the inbound journey. Isn’t the situation symmetrical, so shouldn’t you and the twin age identically?
What breaks the symmetry, allowing your twin to age less?

1.8 The spacetime wheel

1.8.1 Wheel

Figure 1.13 shows an ordinary 3-dimensional wheel. As the wheel rotates, a point on the wheel describes an
invariant circle. The coordinates {𝑥, 𝑦} of a point on the wheel relative to its centre change, but the distance
𝑟 between the point and the centre remains constant

𝑟2 = 𝑥2 + 𝑦2 = constant . (1.14)

More generally, the coordinates {𝑥, 𝑦, 𝑧} of the interval between any two points in 3-dimensional space (a
vector) change when the coordinate system is rotated in 3 dimensions, but the separation 𝑟 of the two points
remains constant

𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 = constant . (1.15)

y

x

Figure 1.13 A wheel.
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Figure 1.14 A spacetime wheel.

1.8.2 Spacetime wheel

Figure 1.14 shows a spacetime wheel. The diagram here is a spacetime diagram, with time 𝑡 vertical and
space 𝑥 horizontal. A rotation between time 𝑡 and space 𝑥 is a Lorentz boost in the 𝑥-direction. As the
spacetime wheel boosts, a point on the wheel describes an invariant hyperbola. The spacetime coordinates
{𝑡, 𝑥} of a point on the wheel relative to its centre change, but the spacetime separation 𝑠 between the point
and the centre remains constant

𝑠2 = − 𝑡2 + 𝑥2 = constant . (1.16)

More generally, the coordinates {𝑡, 𝑥, 𝑦, 𝑧} of the interval between any two events in 4-dimensional spacetime
(a 4-vector) change when the coordinate system is boosted or rotated, but the spacetime separation 𝑠 of the
two events remains constant

𝑠2 = − 𝑡2 + 𝑥2 + 𝑦2 + 𝑧2 = constant . (1.17)

1.8.3 Lorentz boost as a rotation by an imaginary angle

The − sign instead of a + sign in front of the 𝑡2 in the spacetime separation formula (1.17) means that time
𝑡 can often be treated mathematically as if it were an imaginary spatial dimension. That is, 𝑡 = 𝑖𝑤 where
𝑖 ≡
√
−1 and 𝑤 is a “fourth spatial coordinate.”

A Lorentz boost by a velocity 𝑣 can likewise be treated as a rotation by an imaginary angle. Consider a
normal spatial rotation in which a primed frame is rotated in the 𝑤𝑥-plane clockwise by an angle 𝑎 about
the origin, relative to the unprimed frame. The relation between the coordinates {𝑤′, 𝑥′} and {𝑤, 𝑥} of a
point in the two frames is (︂

𝑤′

𝑥′

)︂
=

(︂
cos 𝑎 − sin 𝑎

sin 𝑎 cos 𝑎

)︂(︂
𝑤

𝑥

)︂
. (1.18)



28 Special Relativity

Now set 𝑡 = 𝑖𝑤 and 𝛼 = 𝑖𝑎 with 𝑡 and 𝛼 both real. In other words, take the spatial coordinate 𝑤 to be
imaginary, and the rotation angle 𝑎 likewise to be imaginary. Then the rotation formula above becomes(︂

𝑡′

𝑥′

)︂
=

(︂
cosh𝛼 − sinh𝛼

− sinh𝛼 cosh𝛼

)︂(︂
𝑡

𝑥

)︂
(1.19)

This agrees with the usual Lorentz transformation formula (1.5) if the boost velocity 𝑣 and boost angle 𝛼
are related by

𝑣 = tanh𝛼 , (1.20)

so that

𝛾 = cosh𝛼 , 𝛾𝑣 = sinh𝛼 . (1.21)

The boost angle 𝛼 is commonly called the rapidity. This provides a convenient way to add velocities in
special relativity: the rapidities simply add (for boosts along the same direction), just as spatial rotation
angles add (for rotations about the same axis). Thus a boost by velocity 𝑣1 = tanh𝛼1 followed by a boost
by velocity 𝑣2 = tanh𝛼2 in the same direction gives a net velocity boost of 𝑣 = tanh𝛼 where

𝛼 = 𝛼1 + 𝛼2 . (1.22)

The equivalent formula for the velocities themselves is

𝑣 =
𝑣1 + 𝑣2
1 + 𝑣1𝑣2

, (1.23)

the special relativistic velocity addition formula.

1.8.4 Trip across the Universe at constant acceleration

Suppose that you took a trip across the Universe in a spaceship, accelerating all the time at one Earth
gravity 𝑔. How far would you travel in how much time?
The spacetime wheel offers a cute way to solve this problem, since the rotating spacetime wheel can be

regarded as representing spacetime frames undergoing constant acceleration. Points on the right quadrant of
the rotating spacetime wheel, Figure 1.15, represent worldlines of persons who accelerate with constant ac-
celeration in their own frame. The spokes of the spacetime wheel are lines of simultaneity for the accelerating
persons.
If the units of space and time are chosen so that the speed of light and the gravitational acceleration are

both one, 𝑐 = 𝑔 = 1, then the proper time experienced by the accelerating person is the rapidity 𝛼, and the
time and space coordinates of the accelerating person, relative to a person who remains at rest, are those of
a point on the spacetime wheel, namely

{𝑡, 𝑥} = {sinh𝛼, cosh𝛼} . (1.24)
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Figure 1.15 The right quadrant of the spacetime wheel represents the worldlines and lines of simultaneity of persons

who accelerate in the 𝑥 direction with uniform acceleration in their own frames.

In the case where the acceleration is one Earth gravity, 𝑔 = 9.80665m s−2, the unit of time is

𝑐

𝑔
=

299,792,458m s−1

9.80665m s−2
= 0.97 yr , (1.25)

Table 1.1: Trip across the Universe.

Time elapsed Time elapsed
on spaceship on Earth Distance travelled To
in years in years in lightyears

𝛼 sinh𝛼 cosh𝛼− 1

0 0 0 Earth (starting point)
1 1.175 .5431

2 3.627 2.762

2.34 5.12 4.22 Proxima Cen
3.962 26.3 25.3 Vega
6.60 368 367 Pleiades
10.9 2.7× 104 2.7× 104 Centre of Milky Way
15.4 2.44× 106 2.44× 106 Andromeda galaxy
18.4 4.9× 107 4.9× 107 Virgo cluster
19.2 1.1× 108 1.1× 108 Coma cluster
25.3 5× 1010 5× 1010 Edge of observable Universe
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just short of one year. For simplicity, Table 1.1, which tabulates some milestones along the way, takes the
unit of time to be exactly one year, which would be the case if you were accelerating at 0.97 𝑔 = 9.5m s−2.
After a slow start, you cover ground at an ever increasing rate, crossing 50 billion lightyears, the distance

to the edge of the currently observable Universe, in just over 25 years of your own time.
Does this mean you go faster than the speed of light? No. From the point of view of a person at rest

on Earth, you never go faster than the speed of light. From your own point of view, distances along your
direction of motion are Lorentz-contracted, so distances that are vast from Earth’s point of view appear
much shorter to you. Fast as the Universe rushes by, it never goes faster than the speed of light.
This rosy picture of being able to flit around the Universe has drawbacks. Firstly, it would take a huge

amount of energy to keep you accelerating at 𝑔. Secondly, you would use up a huge amount of Earth time
travelling around at relativistic speeds. If you took a trip to the edge of the Universe, then by the time
you got back not only would all your friends and relations be dead, but the Earth would probably be gone,
swallowed by the Sun in its red giant phase, the Sun would have exhausted its fuel and shrivelled into a
cold white dwarf star, and the Solar System, having orbited the Galaxy a thousand times, would be lost
somewhere in its milky ways.
Technical point. The Universe is expanding, so the distance to the edge of the currently observable Universe

is increasing. Thus it would actually take longer than indicated in the table to reach the edge of the currently
observable Universe. Moreover if the Universe is accelerating, as evidence from the Hubble diagram of Type Ia
Supernovae indicates, then you will never be able to reach the edge of the currently observable Universe,
however fast you go.

Exercise 1.12. Length of a particle accelerator that reaches the GUT or Planck scale. Consider
a linear particle accelerator able to accelerate particles at constant acceleration 𝑔 in the particles’ own
frame.
1. How long must the particle accelerator be to reach a Lorentz gamma factor of 𝛾?

2. Estimate the acceleration 𝑔 for a contemporary accelerator such as the Large Hadron Collider.

3. Estimate the length of a particle accelerator needed to accelerate a proton, rest mass 1GeV, to a GUT
energy of 1016 GeV, or alternatively to a Planck energy of 1019 GeV.

4. Show that a GUT density of 1 GUT mass per (GUT length)3 is about 1081 times the density of water.
Approximately what is the Planck density relative to the density of water?

5. To what Lorentz 𝛾 factor would you have to accelerate two rocks so that they achieve a GUT or Planck
density when slammed together? How long would the particle accelerator be to achieve this 𝛾 factor?

Solution.

1. The rapidity 𝛼 achieved by a particle that accelerates at constant acceleration 𝑔 in its own frame for a
proper time 𝜏 is

𝛼 =
𝑔𝜏

𝑐
. (1.26)

The Lorentz gamma factor 𝛾 is related to the rapidity by 𝛾 = cosh𝛼, equation (1.21). The distance 𝑥
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the particle moves in the background frame is

𝑥 =
𝑐2

𝑔
(cosh𝛼− 1) =

𝑐2

𝑔
(𝛾 − 1) . (1.27)

In the highly relativistic regime, 𝛾 ≫ 1, the distance travelled is

𝑥 ≈ 𝑐2𝛾

𝑔
. (1.28)

The distance 𝑥 increases linearly with 𝛾.

2. The Large Hadron Collider (LHC) accelerates protons and heavier nuclei to energies of order 1TeV,
whereat a proton has a gamma factor of 𝛾 ≈ 103. The acceleration occurs over scales of kilometres, or
103 m. So the acceleration is about one per metre,

𝑔

𝑐2
≈ 1m−1 . (1.29)

3. A GUT energy of 1016 GeV requires a gamma factor of 1016, hence a particle accelerator of length

𝑥 ≈ 1016 m ≈ 1 lyr . (1.30)

A Planck energy of 1019 GeV requires a particle accelerator of length

𝑥 ≈ 1019 m ≈ 1000 lyr . (1.31)

4. The Planck energy 1019 GeV is 103 higher than the GUT density 1016 GeV. The Planck density is then
(103)4 = 1012 times higher than the GUT density of 1081 gm cm−3. The Planck density is 1093 gm cm−3.

5. When two objects are slammed together at Lorentz factor 𝛾, the energy of each object is enhanced by
a factor 𝛾, and the length of each object is contracted along the direction of motion by another factor
of 𝛾, so overall the density is increased by a factor of 𝛾2. To reach a GUT density of 1081 gm cm−3

by slamming together two rocks of initial density say 10 gmcm−3 would require a gamma factor of√
1080 = 1040. Which would require a particle accelerator of length 1040 m, or 1024 lyr, or about 1014

times the size of the observable Universe.

1.9 Scalar spacetime distance

The fact that Lorentz transformations leave unchanged a certain distance, the spacetime distance, between
any two events in spacetime is one the most fundamental features of Lorentz transformations. The scalar
spacetime distance Δ𝑠 between two events separated by {Δ𝑡,Δ𝑥,Δ𝑦,Δ𝑧} is given by

Δ𝑠2 = −Δ𝑡2 +Δ𝑟2

= −Δ𝑡2 +Δ𝑥2 +Δ𝑦2 +Δ𝑧2 . (1.32)
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A quantity such as Δ𝑠2 that remains unchanged under any Lorentz transformation is called a scalar. You
should check yourself that Δ𝑠2 is unchanged under Lorentz transformations (see Exercise 1.14). Lorentz
transformations can be defined as linear spacetime transformations that leave Δ𝑠2 invariant.
The single scalar spacetime squared interval Δ𝑠2 replaces the two scalar quantities

time interval Δ𝑡

spatial interval Δ𝑟 =
√︀
Δ𝑥2 +Δ𝑦2 +Δ𝑧2

(1.33)

of classical Galilean spacetime.

1.9.1 Timelike, lightlike, spacelike

The scalar spacetime distance squared Δ𝑠2, equation (1.32), between two events can be negative, zero, or
positive. A spacetime interval {Δ𝑡,Δ𝑥,Δ𝑦,Δ𝑧} ≡ {Δ𝑡,Δ𝑟} is called

timelike if Δ𝑡 > Δ𝑟 or equivalently if Δ𝑠2 < 0 ,

null or lightlike if Δ𝑡 = Δ𝑟 or equivalently if Δ𝑠2 = 0 ,

spacelike if Δ𝑡 < Δ𝑟 or equivalently if Δ𝑠2 > 0 ,

(1.34)

as illustrated in Figure 1.16.
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Figure 1.16 Spacetime diagram illustrating timelike, lightlike, and spacelike intervals.

1.9.2 Proper time, proper distance

The scalar spacetime distance squared Δ𝑠2 has a physical meaning.
If an interval {Δ𝑡,Δ𝑟} is timelike, Δ𝑡 > Δ𝑟, then the square root of minus the spacetime interval squared

is the proper time Δ𝜏 along it

Δ𝜏 =
√︀
−Δ𝑠2 =

√︀
Δ𝑡2 −Δ𝑟2 . (1.35)

This is the time experienced by an observer moving along that interval.
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If an interval {Δ𝑡,Δ𝑟} is spacelike, Δ𝑡 < Δ𝑟, then the spacetime interval equals the proper distance
Δ𝑙 along it

Δ𝑙 =
√
Δ𝑠2 =

√︀
Δ𝑟2 −Δ𝑡2 . (1.36)

This is the distance between two events measured by an observer for whom those events are simultaneous.

Concept question 1.13. Proper time, proper distance. Justify the assertions (1.35) and (1.36).

1.9.3 Minkowski metric

It is convenient to denote an interval using an index notation,

Δ𝑥𝑚 ≡ {Δ𝑡,Δ𝑟} ≡ {Δ𝑡,Δ𝑥,Δ𝑦,Δ𝑧} . (1.37)

The indices run over 𝑚 = 𝑡, 𝑥, 𝑦, 𝑧, or sometimes 𝑚 = 0, 1, 2, 3. The scalar spacetime length squared Δ𝑠2 of
an interval Δ𝑥𝑚 can be abbreviated

Δ𝑠2 = 𝜂𝑚𝑛Δ𝑥
𝑚Δ𝑥𝑛 , (1.38)

where 𝜂𝑚𝑛 is the Minkowski metric

𝜂𝑚𝑛 ≡

⎛⎜⎜⎝
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ . (1.39)

Equation (1.38) uses the implicit summation convention, according to which paired indices, one lowered
and one raised, are implicitly summed over.

1.10 4-vectors

1.10.1 Contravariant 4-vector

Under a Lorentz transformation, a coordinate interval Δ𝑥𝑚 transforms as

Δ𝑥𝑚 → Δ𝑥′𝑚 = 𝐿𝑚𝑛Δ𝑥
𝑛 , (1.40)

where 𝐿𝑚𝑛 denotes a Lorentz transformation. The paired indices 𝑛 on the right hand side of equation (1.40),
one lowered and one raised, are implicitly summed over. In matrix notation, 𝐿𝑚𝑛 is a 4 × 4 matrix. For
example, for a Lorentz boost by velocity 𝑣 along the 𝑥-axis, 𝐿𝑚𝑛 is the matrix on the right hand side of
equation (1.5).
In special relativity a contravariant 4-vector is defined to be a quantity

𝑎𝑚 ≡ {𝑎𝑡, 𝑎𝑥, 𝑎𝑦, 𝑎𝑧} , (1.41)
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that transforms under Lorentz transformations like an interval Δ𝑥𝑚 of spacetime,

𝑎𝑚 → 𝑎′𝑚 = 𝐿𝑚𝑛 𝑎
𝑛 . (1.42)

The indices run over 𝑚 = 𝑡, 𝑥, 𝑦, 𝑧, or sometimes 𝑚 = 0, 1, 2, 3.

1.10.2 Covariant 4-vector

In special and general relativity, besides the contravariant 4-vector 𝑎𝑚, with raised indices, it is convenient
to introduce a covariant 4-vector 𝑎𝑚, with lowered indices, obtained by multiplying the contravariant
4-vector by the metric,

𝑎𝑚 ≡ 𝜂𝑚𝑛𝑎𝑛 . (1.43)

With the Minkowski metric (1.39), the covariant components 𝑎𝑚 are

𝑎𝑚 = {−𝑎𝑡, 𝑎𝑥, 𝑎𝑦, 𝑎𝑧} , (1.44)

which differ from the contravariant components 𝑎𝑚 only in the sign of the time component.
The reason for introducing the two species of vector is that their implicitly summed product

𝑎𝑚𝑎𝑚 ≡ 𝜂𝑚𝑛𝑎𝑚𝑎𝑛

= 𝑎𝑡𝑎
𝑡 + 𝑎𝑥𝑎

𝑥 + 𝑎𝑦𝑎
𝑦 + 𝑎𝑧𝑎

𝑧

= − (𝑎𝑡)2 + (𝑎𝑥)2 + (𝑎𝑦)2 + (𝑎𝑧)2 (1.45)

is a Lorentz scalar, a fact you will prove in Exercise 1.14.
The notation may seem overly elaborate, but it proves extremely useful in general relativity, where the

metric is more complicated than Minkowski. Further discussion of the formalism of 4-vectors is deferred to
Chapter 2.

Exercise 1.14. Scalar product. Suppose that 𝑎𝑚 and 𝑏𝑚 are two 4-vectors. Show that 𝑎𝑚𝑏𝑚 is a scalar,
that is, it is unchanged by any Lorentz transformation. [Hint: For the Minkowski metric of special relativity,
𝑎𝑚𝑏

𝑚 = − 𝑎𝑡𝑏𝑡+ 𝑎𝑥𝑏𝑥+ 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧. Show that 𝑎′𝑚𝑏
′𝑚 = 𝑎𝑚𝑏

𝑚. You may assume without proof the familiar
result that the 3D scalar product 𝑎 · 𝑏 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧 of two 3-vectors is unchanged by any spatial
rotation, so it suffices to consider a Lorentz boost, say in the 𝑥 direction.]

Exercise 1.15. The principle of longest proper time. Consider a person whose worldline goes from
spacetime event 𝑃0 to spacetime event 𝑃1 at velocity 𝑣1 relative to some inertial frame, and then from 𝑃1

to spacetime event 𝑃2 at velocity 𝑣2, as illustrated in Figure 1.17. Assume for simplicity that the velocities
are both in the (positive or negative) 𝑥-direction. Show that the proper time along a straight line from 𝑃0

to 𝑃2 is always greater than or equal to the sum of the proper times along the two straight lines from 𝑃0

to 𝑃1 followed by 𝑃1 to 𝑃2. Hence conclude that the longest proper time between two events is a straight
line. What does this imply about the twin paradox? [Hint: It is simplest to use rapidities 𝛼 rather than
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Figure 1.17 The longest proper time between 𝑃0 and 𝑃2 is a straight line.

velocities. Let the segment from 𝑃0 to 𝑃1 be {𝑡1, 𝑥1} = 𝜏1{cosh𝛼1, sinh𝛼1}, and the segment from 𝑃1 to 𝑃2

be {𝑡2, 𝑥2} = 𝜏2{cosh𝛼2, sinh𝛼2}. The segment from 𝑃0 to 𝑃2 is the sum of these, {𝑡, 𝑥} = {𝑡1+ 𝑡2, 𝑥1+𝑥2}.
Show that

𝜏2 − (𝜏1 + 𝜏2)
2 = 4𝜏1𝜏2 sinh

2

(︂
𝛼2 − 𝛼1

2

)︂
, (1.46)

which is a minimum for 𝛼2 = 𝛼1.]

1.11 Energy-momentum 4-vector

The foremost example of a 4-vector other than the interval Δ𝑥𝑚 is the energy-momentum 4-vector.
One of the great insights of modern physics is that conservation laws are associated with symmetries.

The Principle of Special Relativity asserts that the laws of physics should take the same form at any point.
There is no preferred origin in spacetime in special relativity. In special relativity, spacetime has translation
symmetry with respect to both time and space. Associated with those symmetries are laws of conservation
of energy and momentum:

Symmetry Conservation law
Time translation Energy
Space translation Momentum

Since one-dimensional time and three-dimensional space are united in special relativity, this suggests that
the single component of energy and the three components of momentum should be combined into a 4-vector:

energy = time component
momentum = space component

}︂
of a 4-vector. (1.47)
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The Principle of Special Relativity requires that the equation of energy-momentum conservation

energy
momentum

= constant (1.48)

should take the same form in any inertial frame. The equation should be Lorentz covariant, that is, the
equation should transform like a Lorentz 4-vector.

1.11.1 Construction of the energy-momentum 4-vector

The energy-momentum 4-vector of a particle of mass 𝑚 at position {𝑡, 𝑟} moving at velocity 𝑣 = 𝑑𝑟/𝑑𝑡 can
be derived by requiring
1. that is a 4-vector, and
2. that it goes over to the Newtonian limit as 𝑣 → 0.

In the Newtonian limit, the 3-momentum 𝑝 equals mass 𝑚 times velocity 𝑣,

𝑝 = 𝑚𝑣 = 𝑚
𝑑𝑟

𝑑𝑡
. (1.49)

To obtain a 4-vector, two things must be done to the Newtonian momentum:
1. replace 𝑟 by a 4-vector 𝑥𝑛 = {𝑡, 𝑟}, and
2. replace 𝑑𝑡 by a scalar; the only available scalar measure of time is the proper time interval 𝑑𝜏 along the

worldline of the particle.
The result is the energy-momentum 4-vector 𝑝𝑛:

𝑝𝑛 = 𝑚
𝑑𝑥𝑛

𝑑𝜏

= 𝑚

{︂
𝑑𝑡

𝑑𝜏
,
𝑑𝑟

𝑑𝜏

}︂
= 𝑚 {𝛾, 𝛾𝑣} . (1.50)

The components of the energy-momentum 4-vector are the special relativistic versions of energy 𝐸 and
momentum 𝑝,

𝑝𝑛 = {𝐸, 𝑝} = {𝑚𝛾, 𝑚𝛾𝑣} . (1.51)

1.11.2 Special relativistic energy

From equation (1.51), the special relativistic energy 𝐸 is the product of the rest mass and the Lorentz
𝛾-factor,

𝐸 = 𝑚𝛾 (units 𝑐 = 1) , (1.52)

or, restoring standard units,

𝐸 = 𝑚𝑐2𝛾 . (1.53)
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For small velocities 𝑣, the Taylor expansion of the Lorentz factor 𝛾 is

𝛾 =
1√︀

1− 𝑣2/𝑐2
= 1 +

1

2

𝑣2

𝑐2
+ ... . (1.54)

Thus for small velocities, the special relativistic energy 𝐸 Taylor expands as

𝐸 = 𝑚𝑐2
(︂
1 +

1

2

𝑣2

𝑐2
+ ...

)︂
= 𝑚𝑐2 +

1

2
𝑚𝑣2 + ... . (1.55)

The first term, 𝑚𝑐2, is the rest-mass energy. The second term, 1
2𝑚𝑣

2, is the non-relativistic kinetic energy.
Higher-order terms give relativistic corrections to the kinetic energy.
Einstein did not discard the constant term, but rather interpreted it seriously as indicating that mass

contains energy, the rest-mass energy

𝐸 = 𝑚𝑐2 , (1.56)

perhaps the most famous equation in all of physics.

1.11.3 Rest mass is a scalar

The scalar quantity constructed from the energy-momentum 4-vector 𝑝𝑛 = {𝐸,𝑝} is

𝑝𝑛𝑝
𝑛 = −𝐸2 + 𝑝2

= −𝑚2(𝛾2 − 𝛾2𝑣2)
= −𝑚2 , (1.57)

minus the square of the rest mass. The minus sign is associated with the choice −+++ of metric signature
in this book.
Elementary texts sometimes state that special relativity implies that the mass of a particle increases as its

velocity increases, but this is a confusing way of thinking. Mass is rest mass 𝑚, a scalar, not to be confused
with energy. That being said, Einstein’s famous equation (1.56) does suggest that rest mass is a form of
energy, and indeed that proves to be the case. Rest mass is routinely converted into energy in chemical or
nuclear reactions that liberate heat.

1.12 Photon energy-momentum

The energy-momentum 4-vectors of photons are of special interest because when you move through a scene
at near the speed of light, the scene appears distorted by the Lorentz transformation of the photon 4-vectors
that you see.
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A photon has zero rest mass

𝑚 = 0 . (1.58)

Its scalar energy-momentum squared is thus zero,

𝑝𝑛𝑝
𝑛 = −𝐸2 + 𝑝2 = −𝑚2 = 0 . (1.59)

Consequently the 3-momentum of a photon equals its energy (in units 𝑐 = 1),

𝑝 ≡ |𝑝| = 𝐸 . (1.60)

The energy-momentum 4-vector of a photon therefore takes the form

𝑝𝑛 = {𝐸, 𝑝}
= 𝐸{1, 𝑛}
= ℎ𝜈{1, 𝑛} (1.61)

where 𝜈 is the photon frequency. The photon velocity is 𝑛, a unit vector. The photon speed is one, the speed
of light.

1.12.1 Lorentz transformation of the photon energy-momentum 4-vector

The energy-momentum 4-vector 𝑝𝑚 of a photon follows the usual rules for 4-vectors under Lorentz transfor-
mations. In the case that the emitter (primed frame) is moving at velocity 𝑣 along the 𝑥-axis relative to the
observer (unprimed frame), the transformation is⎛⎜⎜⎝

𝑝′𝑡

𝑝′𝑥

𝑝′𝑦

𝑝′𝑧

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝛾 −𝛾𝑣 0 0

−𝛾𝑣 𝛾 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑝𝑡

𝑝𝑥

𝑝𝑦

𝑝𝑧

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝛾(𝑝𝑡 − 𝑣𝑝𝑥)
𝛾(𝑝𝑥 − 𝑣𝑝𝑡)

𝑝𝑦

𝑝𝑧

⎞⎟⎟⎠ . (1.62)

Equivalently

ℎ𝜈′

⎛⎜⎜⎝
1

𝑛′𝑥

𝑛′𝑦

𝑛′𝑧

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝛾 −𝛾𝑣 0 0

−𝛾𝑣 𝛾 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ℎ𝜈

⎛⎜⎜⎝
1

𝑛𝑥

𝑛𝑦

𝑛𝑧

⎞⎟⎟⎠ = ℎ𝜈

⎛⎜⎜⎝
𝛾(1− 𝑛𝑥𝑣)
𝛾(𝑛𝑥 − 𝑣)

𝑛𝑦

𝑛𝑧

⎞⎟⎟⎠ . (1.63)

These mathematical relations imply the rules of 4-dimensional perspective, §1.13.2.

1.12.2 Redshift

The wavelength 𝜆 of a photon is related to its frequency 𝜈 by

𝜆 = 𝑐/𝜈 . (1.64)
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Astronomers define the redshift 𝑧 of a photon by the shift of the observed wavelength 𝜆obs compared to its
emitted wavelength 𝜆em,

𝑧 ≡ 𝜆obs − 𝜆em
𝜆em

. (1.65)

In relativity, it is often more convenient to use the redshift factor 1 + 𝑧,

1 + 𝑧 ≡ 𝜆obs
𝜆em

=
𝜈em
𝜈obs

. (1.66)

Sometimes it is useful to use a blueshift factor which is just the reciprocal of the redshift factor,

1

1 + 𝑧
≡ 𝜆em
𝜆obs

=
𝜈obs
𝜈em

. (1.67)

1.12.3 Special relativistic Doppler shift

If the emitter frame (primed) is moving with velocity 𝑣 in the 𝑥-direction relative to the observer frame
(unprimed) then the emitted and observed frequencies are related by, equation (1.63),

ℎ𝜈em = ℎ𝜈obs𝛾(1− 𝑛𝑥𝑣) . (1.68)

The redshift factor is therefore

1 + 𝑧 =
𝜈em
𝜈obs

= 𝛾(1− 𝑛𝑥𝑣)
= 𝛾(1− 𝑛 · 𝑣) . (1.69)

Equation (1.69) is the general formula for the special relativistic Doppler shift. In special cases,

1 + 𝑧 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√︂
1− 𝑣
1 + 𝑣

velocity directly towards observer (𝑣 aligned with 𝑛) ,

𝛾 velocity in the transverse direction (𝑣 · 𝑛 = 0) ,√︂
1 + 𝑣

1− 𝑣
velocity directly away from observer (𝑣 anti-aligned with 𝑛) .

(1.70)

1.13 What things look like at relativistic speeds

1.13.1 Light travel time effects

When you move through a scene at near the speed of light, the scene appears distorted not only by time
dilation and Lorentz contraction, but also by differences in the light travel time from different parts of the
scene. The effect of differential light travel times is comparable to the effects of time dilation and Lorentz
contraction, and cannot be ignored.
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An excellent way to see the importance of light travel time is to work through the twin paradox, Exer-
cise 1.10. Nature provides a striking example of the importance of light travel time in the form of superluminal
(faster-than-light) jets in galaxies, the subject of Exercise 1.16.

Exercise 1.16. Superluminal jets.

Radio observations of galaxies show in many cases twin jets emerging from the nucleus of the galaxy. The
jets are typically narrow and long, often penetrating beyond the optical extent of the galaxy. The jets are
frequently one-sided, and in some cases that are favourable to observation the jets are found to be superlu-
minal. A celebrated example is the giant elliptical galaxy M87 at the centre of the Local Supercluster, whose
jet is observed over a broad range of wavelengths, including optical wavelengths. Hubble Space Telescope
observations, Figure 1.18, show blobs in the M87 jet moving across the sky at approximately 6𝑐.
1. Draw a spacetime diagram of the situation, in Earth’s frame of reference. Assume that the velocity of

the galaxy M87 relative to Earth is negligible. Let the 𝑥-axis be the direction to M87. Choose the 𝑦-axis
so the jet lies in the 𝑥–𝑦-plane. Let the jet be moving at velocity 𝑣 at angle 𝜃 away from the direction
towards us on Earth, so that its spatial velocity relative to Earth is 𝑣 ≡ {𝑣𝑥, 𝑣𝑦} = {−𝑣 cos 𝜃, 𝑣 sin 𝜃}.

2. In Earth coordinates {𝑡, 𝑥, 𝑦}, the jet moves in time 𝑡 a distance 𝑙 = {𝑙𝑥, 𝑙𝑦} = 𝑣𝑡. Argue that during an

1994
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Figure 1.18 The left panel shows an image of the galaxy M87 taken with the Advanced Camera for Surveys on the

Hubble Space Telescope. A jet, bluish compared to the starry background of the galaxy, emerges from the galaxy’s

central nucleus. Radio observations, not shown here, reveal that there is a second jet in the opposite direction. Credit:

STScI/AURA. The right panel is a sequence of Hubble images showing blobs in the jet moving superluminally, at

approximately 6𝑐. The slanting lines track the moving features, with speeds given in units of 𝑐. The upper strip shows

where in the jet the blobs were located. Credit: John Biretta, STScI.
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Earth time 𝑡, the jet has moved a distance 𝑙𝑥 nearer to the Earth (the distances 𝑙𝑥 and 𝑙𝑦 are both tiny
compared to the distance to M87), so the apparent time as seen through a telescope is not 𝑡, but rather
𝑡 diminished by the light travel time 𝑙𝑥 (units 𝑐 = 1). Hence conclude that the apparent transverse
velocity on the sky is

𝑣app =
𝑣 sin 𝜃

1− 𝑣 cos 𝜃
. (1.71)

3. Sketch the apparent velocity 𝑣app as a function of 𝜃 for some given velocity 𝑣. In terms of 𝑣 and the
Lorentz factor 𝛾, what are the values of 𝜃 and of 𝑣app at the point where 𝑣app reaches its maximum?
What can you conclude about the jet in M87?

4. What is the expected redshift 1+ 𝑧, or equivalently blueshift 1/(1+ 𝑧), of the jet as a function of 𝑣 and
𝜃? By expressing 𝑣 in terms of 𝑣app and 𝜃 using equation (1.71), show that the blueshift factor is

1

1 + 𝑧
=
√︁

1 + 2𝑣app cot 𝜃 − 𝑣2app . (1.72)

[Hint: Remember to use the correct redshift formula, equation (1.69).]
5. In terms of 𝑣app, at what value of 𝜃 is the blueshift (i) infinite, or (ii) zero? What are these angles in

the case of M87? If the redshift of the jet were measurable, could you deduce the velocity 𝑣 and opening
angle 𝜃? Unfortunately the redshift of a superluminal jet is not usually observable, because the emission
is a continuum of synchrotron emission over a broad range of wavelengths, with no sharp atomic or ionic
lines to provide a redshift.

6. Why is the opposing jet not visible?

1.13.2 The rules of 4-dimensional perspective

The distortion of a scene when you move through it at near the speed of light can be calculated most directly
from the Lorentz transformation of the energy-momentum 4-vectors of the photons that you see. The result
is what I call the “Rules of 4-dimensional perspective.”
Figure 1.19 illustrates the rules of 4-dimensional perspective, also called “special relativistic beaming,”

which describe how a scene appears when you move through it at near light speed.
On the left, you are at rest relative to the scene. Imagine painting the scene on a celestial sphere around

you. The arrows represent the directions of light rays (photons) from the scene on the celestial sphere to you
at the center.
On the right, you are moving to the right through the scene, at 0.8 times the speed of light. The celestial

sphere is stretched along the direction of your motion by the Lorentz gamma-factor 𝛾 = 1/
√
1− 0.82 = 5/3

into a celestial ellipsoid. You, the observer, are not at the centre of the ellipsoid, but rather at one of its foci
(the left one, if you are moving to the right). The focus of the celestial ellipsoid, where you the observer are, is
displaced from centre by 𝛾𝑣 = 4/3. The scene appears relativistically aberrated, which is to say concentrated
ahead of you, and expanded behind you.
The lengths of the arrows are proportional to the energies, or frequencies, of the photons that you see.

When you are moving through the scene at near light speed, the arrows ahead of you, in your direction
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Figure 1.19 The rules of 4-dimensional perspective. In special relativity, the scene seen by an observer moving through

the scene (right) is relativistically beamed compared to the scene seen by an observer at rest relative to the scene

(left). On the left, the observer at the center of the circle is at rest relative to the surrounding scene. On the right,

the observer is moving to the right through the same scene at 𝑣 = 0.8 times the speed of light. The arrowed lines

represent energy-momenta of photons. The length of an arrowed line is proportional to the perceived energy of the

photon. The scene ahead of the moving observer appears concentrated, blueshifted, and farther away, while the scene

behind appears expanded, redshifted, and closer.

of motion, are longer than at rest, so you see the photons blue-shifted, increased in energy, increased in
frequency. Conversely, the arrows behind you are shorter than at rest, so you see the photons red-shifted,
decreased in energy, decreased in frequency. Since photons are good clocks, the change in photon frequency
also tells you how fast or slow clocks attached to the scene appear to you to run.
This table summarizes the four effects of relativistic beaming on the appearance of a scene ahead of you

and behind you as you move through it at near the speed of light:

Effect Ahead Behind
Aberration Concentrated Expanded
Colour Blueshifted Redshifted
Brightness Brighter Dimmer
Time Speeded up Slowed down

Mathematical details of the rules of 4-dimensional perspective are explored in the next several Exercises.

Exercise 1.17. The rules of 4-dimensional perspective.

1. In terms of the photon energy-momentum 4-vector 𝑝𝑘 in an unprimed frame, what is the photon energy
momentum 4-vector 𝑝′𝑘 in a primed frame of reference moving at speed 𝑣 in the 𝑥 direction relative to
the unprimed frame? Argue that the photon 4-vectors in the unprimed and primed frames are related
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geometrically by the “celestial ellipsoid” transformation illustrated in Figure 1.19. Bear in mind that the
photon vector is pointed towards the observer.

2. Aberration. The photon 4-vector seen by an observer is the null vector 𝑝𝑘 = 𝐸(1,−𝑛), where 𝐸 is the
photon energy, and 𝑛 is a unit 3-vector in the direction away from the observer, the minus sign taking
into account the fact that the photon vector is pointed towards the observer. An object appears in the
unprimed frame at angle 𝜃 to the 𝑥-direction and in the primed frame at angle 𝜃′ to the 𝑥-direction.
Show that 𝜇′ ≡ cos 𝜃′ and 𝜇 ≡ cos 𝜃 are related by

𝜇′ =
𝜇+ 𝑣

1 + 𝑣𝜇
. (1.73)

3. Redshift. By what factor 𝑎 = 𝐸′/𝐸 is the observed photon frequency from the object changed? Express
your answer as a function of 𝛾, 𝑣, and 𝜇.

4. Brightness. Photons at frequency 𝐸 in the unprimed frame appear at frequency 𝐸′ in the primed
frame. Argue that the brightness 𝐹 (𝐸), the number of photons per unit time per unit solid angle per
log interval of frequency (about 𝐸 in the unprimed frame, and 𝐸′ in the primed frame),

𝐹 (𝐸) ≡ 𝑑𝑁(𝐸)

𝑑𝑡 𝑑𝑜 𝑑 ln𝐸
, (1.74)

goes as

𝐹 ′(𝐸′)

𝐹 (𝐸)
=
𝐸′

𝐸

𝑑𝜇

𝑑𝜇′
= 𝑎3 . (1.75)

[Hint: Photons number conservation implies that 𝑑𝑁 ′(𝐸′) = 𝑑𝑁(𝐸).]
5. Time. By what factor does the rate at which a clock ticks appear to change?

Exercise 1.18. Circles on the sky. Show that a circle on the sky Lorentz transforms to a circle on the sky.
Let the primed frame be moving at velocity 𝑣 in the 𝑥-direction, let 𝜃 be the angle between the 𝑥-direction
and the direction 𝑚 to the center of the circle, and let 𝛼 be the angle between the circle axis 𝑚 and the
photon direction 𝑛. Show that the angle 𝜃′ in the primed frame is given by

tan 𝜃′ =
sin 𝜃

𝛾(𝑣 cos𝛼+ cos 𝜃)
, (1.76)

and that the angular radius 𝛼′ in the primed frame is given by

tan𝛼′ =
sin𝛼

𝛾(cos𝛼+ 𝑣 cos 𝜃)
. (1.77)

[This result was first obtained by Penrose (1959) and Terrell (1959), prior to which it had been widely
thought that circles would appear Lorentz-contracted and therefore squashed. The following simple proof
was told to me by Engelbert Schucking (NYU). The set of null 4-vectors 𝑝𝑘 = 𝐸{1,−𝑛} on the circle
satisfies the Lorentz-invariant equation 𝑥𝑘𝑝𝑘 = 0, where 𝑥𝑘 = |𝑥|{− cos𝛼,𝑚} is a spacelike 4-vector whose
spatial components |𝑥|𝑚 point to the center of the circle. Note that |𝑥| is a magnitude of a 3-vector, not a
Lorentz-invariant scalar.]
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Exercise 1.19. Lorentz transformation preserves angles on the sky. From equation (1.73), show
that the angular metric 𝑑𝑜2 ≡ 𝑑𝜃2 + sin2𝜃 𝑑𝜑2 on the sky Lorentz transforms as

𝑑𝑜′2 =
1− 𝑣2

(1 + 𝑣 cos 𝜃)2
𝑑𝑜2 . (1.78)

This kind of transformation, which multiplies the metric by an overall factor, called a conformal factor, is
called a conformal transformation. The conformal transformation (1.78) of the angular metric shrinks
and expands patches on the sky while preserving their shapes, that is, while preserving angles between lines.

Exercise 1.20. The aberration of starlight. The aberration of starlight was discovered by James Bradley
(1728) through precision measurements of the position of 𝛾 Draconis observed from London with a specially
commissioned “zenith sector.” Stellar aberration results from the annual motion of the Earth about the
Sun. Calculate the size of the effect, in arcseconds. Are special relativistic effects important? How does the
observational signature of stellar aberration differ from that of stellar parallax?

Concept question 1.21. Apparent (affine) distance. The rules of 4-dimensional perspective illustrated
in Figure 1.19 suggest that when you move through a scene at near lightspeed, the scene ahead looks farther
away (and not Lorentz-contracted at all). Is the scene really farther away, or is it just an illusion? Answer.
What is reality? In a deep sense, reality is what can be observed (by something, not necessarily a person).
So yes, the scene ahead really is farther away. Let the observer take a tape measure that is at rest relative
to the observer, and lay it out to the emitter. The laying has to be done in advance, because the emitter
is moving. Observers who move at different velocities lay out tapes that move at different velocities. The
observer moving faster toward the emitter indeed sees the emitter farther away, according to their tape
measure. The distance measured in this fashion is called the affine distance, §2.18, a measure of distance
along the past lightcone of the observer.

1.14 Occupation number, phase-space volume, intensity, and flux

Exercise 1.17 asked you to discover how the appearance of an emitter changes when the observer boosts
into a different frame. The change (1.75) in brightness can be derived at a more fundamental level from the
concepts of occupation number and phase-space volume.
The intensity of light can be described by the number 𝑑𝑁 of photons in a 3-volume element 𝑑3𝑟 of space

(as measured by an observer in their own rest frame) with momenta in a 3-volume element 𝑑3𝑝 of momentum
(again as measured by an observer). The 6-dimensional product 𝑑3𝑟 𝑑3𝑝 of spatial and momentum 3-volumes,
called the phase-space volume, is Lorentz-invariant, unchanged by a boost or rotation of the observer’s frame
(see §10.26.1 for a proof). Indeed, as shown in §4.22, the phase-space volume element 𝑑3𝑟 𝑑3𝑝 is invariant
under a wide range of transformations (called canonical transformations, §4.17).
In quantum mechanics, the phase volume divided by (2𝜋~)3 (which is the same as ℎ3; but in quantum

mechanics ~ is a more natural unit; for example, angular momentum is quantized in units of ~, and spin in
units of 1

2~) counts the number of free states of particles, here photons. Particles typically have spin, and an
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associated discrete number of distinct spin states. Photons have spin 1, and two spin states. The occupation
number 𝑓(𝑡, 𝑟,𝑝) is defined to be the number of photons per state at time 𝑡 and spatial position 𝑟 with
momenta 𝑝. The number 𝑑𝑁 of photons is the product of the occupation number 𝑓 , the number 𝑔 of spin
states, and the number 𝑑3𝑟 𝑑3𝑝/(2𝜋~)3 of free quantum states,

𝑑𝑁(𝑡, 𝑟,𝑝) = 𝑓(𝑡, 𝑟,𝑝)
𝑔 𝑑3𝑟 𝑑3𝑝

(2𝜋~)3
. (1.79)

The number 𝑑𝑁 of photons, the occupation number 𝑓 , the number 𝑔 of spin states, and the phase volume
𝑑3𝑟 𝑑3𝑝/(2𝜋~)3 are all Lorentz invariant.
Astronomers conventionally define the intensity 𝐼𝜈 of light observed from an object to be the energy

received per unit time 𝑡 per unit area 𝐴 (of the telescope mirror or lens) per unit solid angle 𝑜 per unit
frequency 𝜈. Often intensity is quoted per unit wavelength 𝜆 or per unit energy 𝐸 instead of per unit
frequency 𝜈, and the intensity is subscripted accordingly, 𝐼𝜆 or 𝐼𝐸 . The intensity measures are related by
𝐼𝜈 𝑑𝜈 = 𝐼𝜆 𝑑𝜆 = 𝐼𝐸 𝑑𝐸 with 𝜆 = 𝑐/𝜈 and 𝐸 = 2𝜋~𝜈. The intensity 𝐼𝐸 per unit energy is related to the
occupation number 𝑓 by

𝐼𝐸 ≡
𝐸 𝑑𝑁

𝑑𝑡 𝑑𝐴𝑑𝑜 𝑑𝐸
= 𝑐𝑓

𝑔 𝑝3

(2𝜋~)3
, (1.80)

the spatial and momentum 3-volumes being 𝑑3𝑟 = 𝑐 𝑑𝑡 𝑑𝐴 and 𝑑3𝑝 = 𝑝2𝑑𝑝 𝑑𝑜. The 𝑝3 factor in equation (1.80)
reproduces the brightness factor 𝑎3 ≡ (𝐸′/𝐸)3 in equation (1.75).
Stars typically appear to astronomers as point sources. Astronomers define the flux 𝐹𝜈 from a source to be

the intensity 𝐼𝜈 integrated over the solid angle of the source. Again, flux is often quoted per unit wavelength
𝜆 or per unit energy 𝐸, and subscripted accordingly, 𝐹𝜆 or 𝐹𝐸 .

Concept question 1.22. Brightness of a star. How does the flux from a star change when an observer
boosts into another frame? The flux that an observer, or a telescope, actually sees depends on the spectrum
of the light incident on the observer (the flux as a function of photon energy) and on the sensitivity of the
detector as a function of photon energy. But imagine a perfect detector that sees all photons incident on it,
of any photon energy.
Solution. The flux 𝐹𝐸 in an interval 𝑑𝐸 of energy is

𝐹𝐸 ≡
𝐸 𝑑𝑁

𝑑𝑡 𝑑𝐴𝑑𝐸
= 𝑐

𝑔 𝑝3

(2𝜋~)3

∫︁
𝑓 𝑑𝑜 . (1.81)

Since the solid angle varies as 𝑑𝑜 ∝ 𝑝−2, while the occupation number 𝑓 is Lorentz invariant, and the photon
energy and momentum are related by 𝐸 = 𝑝𝑐, the flux 𝐹𝐸 varies as

𝐹𝐸 ∝ 𝐸 , (1.82)

that is, the flux is proportional to the blueshift factor. Physically, the observed number of photons per unit
time increases in proportion to the photon frequency. The flux integrated over 𝑑 ln𝐸 counts the total number



46 Special Relativity

of photons observed per unit time, which again increases in proportion to the blueshift factor,∫︁
𝐹𝐸 𝑑 ln𝐸 ∝ 𝐸 . (1.83)

The flux integrated over 𝑑𝐸 counts the total energy observed per unit time, which increases as the square
of the blueshift factor, ∫︁

𝐹𝐸 𝑑𝐸 ∝ 𝐸2 . (1.84)

1.15 How to program Lorentz transformations on a computer

3D gaming programmers are familiar with the fact that the best way to program spatial rotations on a
computer is with quaternions. Compared to standard rotation matrices, quaternions offer increased speed
and require less storage, and their algebraic properties simplify interpolation and splining.
Section 1.8 showed that a Lorentz boost is mathematically equivalent to a rotation by an imaginary

angle. Thus suggests that Lorentz transformations might be treated as complexified spatial rotations, which
proves to be true. Indeed, the best way to program Lorentz transformation on a computer is with complex
quaternions, §14.5.

tach
yon

Figure 1.20 Tachyon spacetime diagram.

Exercise 1.23. Tachyons. A tachyon is a hypothetical particle that moves faster than the speed of light. The
purpose of this problem is to discover that the existence of tachyons would imply a violation of causality.
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1. On a spacetime diagram such as that in Figure 1.20, show how a tachyon emitted by Vermilion at speed
𝑣 > 1 can appear to go backwards in time, with 𝑣 < −1, in another frame, that of Cerulean.

2. What is the smallest velocity that Cerulean must be moving relative to Vermilion in order that the
tachyon appears to go backwards in Cerulean’s time?

3. Suppose that Cerulean returns the tachyonic signal at the same speed 𝑣 > 1 relative to his own frame.
Show on the spacetime diagram how Cerulean’s tachyonic signal can reach Vermilion before she sent
out the original tachyon.

4. What is the smallest velocity that Cerulean must be moving relative to Vermilion in order that his
tachyon reach Vermilion before she sent out her tachyon?

5. Why is the situation problematic?
6. If it is possible for Vermilion to send out a particle with 𝑣 > 1, do you think it should also be possible

for her to send out a particle backward in time, with 𝑣 < −1, from her point of view? Explain how she
might do this, or not, as the case may be.



Concept Questions

1. What assumption of general relativity makes it possible to introduce a coordinate system?
2. Is the speed of light a universal constant in general relativity? If so, in what sense?
3. What does “locally inertial” mean? How local is local?
4. Why is spacetime locally inertial?
5. What assumption of general relativity makes it possible to introduce clocks and rulers?
6. Consider two observers at the same point and with the same instantaneous velocity, but one is acceler-

ating and the other is in free-fall. What is the relation between the proper time or proper distance along
an infinitesimal interval measured by the two observers? What assumption of general relativity implies
this?

7. Does Einstein’s principle of equivalence imply that two unequal masses will fall at the same rate in a
gravitational field? Explain.

8. In what respects is Einstein’s principle of equivalence (gravity is equivalent to acceleration) stronger
than the weak principle of equivalence (gravitating mass equals inertial mass)?

9. Standing on the surface of the Earth, you hold an object of negative mass in your hand, and drop it.
According to the principle of equivalence, does the negative mass fall up or down?

10. Same as the previous question, but what does Newtonian gravity predict?
11. You have a box of negative mass particles, and you remove energy from it. Do the particles move faster

or slower? Does the entropy of the box increase or decrease? Does the pressure exerted by the particles
on the walls of the box increase or decrease?

12. You shine two light beams along identical directions in a gravitational field. The two light beams are
identical in every way except that they have two different frequencies. Does the equivalence principle
imply that the interference pattern produced by each of the beams individually is the same?

13. What is a “straight line,” according to the principle of equivalence?
14. If all objects move on straight lines, how is it that when, standing on the surface of the Earth, you throw

two objects in the same direction but with different velocities, they follow two different trajectories?
15. In relativity, what is the generalization of the “shortest distance between two points”?
16. What kinds of general coordinate transformations are allowed in general relativity?

48



Concept Questions 49

17. In general relativity, what is a scalar? A 4-vector? A tensor? Which of the following is a scalar/vector/
tensor/none-of-the-above? (a) a set of coordinates 𝑥𝜇; (b) a coordinate interval 𝑑𝑥𝜇; (c) proper time
𝜏?

18. What does general covariance mean?
19. What does parallel transport mean?
20. Why is it important to define covariant derivatives that behave like tensors?
21. Is covariant differentiation a derivation? That is, is covariant differentiation a linear operation, and does

it obey the Leibniz rule for the derivative of a product?
22. What is the covariant derivative of the metric tensor? Explain.
23. What does a connection coefficient Γ𝜅𝜇𝜈 mean physically? Is it a tensor? Why, or why not?
24. An astronaut is in free-fall in orbit around the Earth. Can the astronaut detect that there is a gravita-

tional field?
25. Can a gravitational field exist in flat space?
26. How can you tell whether a given metric is equivalent to the Minkowski metric of flat space?
27. How many degrees of freedom does the metric have? How many of these degrees of freedom can be

removed by arbitrary transformations of the spacetime coordinates, and therefore how many physical
degrees of freedom are there in spacetime?

28. If you insist that the spacetime is spherical, how many physical degrees of freedom are there in the
spacetime?

29. If you insist that the spacetime is spatially homogeneous and isotropic (the cosmological principle), how
many physical degrees of freedom are there in the spacetime?

30. In general relativity, you are free to prescribe any spacetime (any metric) you like, including metrics
with wormholes and metrics that connect the future to the past so as to violate causality. True or false?

31. If it is true that in general relativity you can prescribe any metric you like, then why aren’t you bumping
into wormholes and causality violations all the time?

32. How much mass does it take to curve space significantly (significantly meaning by of order unity)?
33. What is the relation between the energy-momentum 4-vector of a particle and the energy-momentum

tensor?
34. It is straightforward to go from a prescribed metric to the energy-momentum tensor. True or false?
35. It is straightforward to go from a prescribed energy-momentum tensor to the metric. True or false?
36. Does the principle of equivalence imply Einstein’s equations?
37. What do Einstein’s equations mean physically?
38. What does the Riemann curvature tensor 𝑅𝜅𝜆𝜇𝜈 mean physically? Is it a tensor?
39. The Riemann tensor splits into compressive (Ricci) and tidal (Weyl) parts. What do these parts mean,

physically?
40. Einstein’s equations imply conservation of energy-momentum, but what does that mean?
41. Do Einstein’s equations describe gravitational waves?
42. Do photons (massless particles) gravitate?
43. How do different forms of mass-energy gravitate?
44. How does negative mass gravitate?



What’s important?

1. The postulates of general relativity. How do the various postulates imply the mathematical structure of
general relativity?

2. The road from spacetime curvature to energy-momentum:
metric 𝑔𝜇𝜈
→ connection coefficients Γ𝜅𝜇𝜈
→ Riemann curvature tensor 𝑅𝜅𝜆𝜇𝜈
→ Ricci tensor 𝑅𝜅𝜇 and scalar 𝑅
→ Einstein tensor 𝐺𝜅𝜇 = 𝑅𝜅𝜇 − 1

2𝑔𝜅𝜇𝑅

→ energy-momentum tensor 𝑇𝜅𝜇
3. 4-velocity and 4-momentum. Geodesic equation.
4. Bianchi identities guarantee conservation of energy-momentum.
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Fundamentals of General Relativity

As of writing (2013), general relativity continues to beat all-comers in the Darwinian struggle to be top theory
of gravity and spacetime (Will, 2005). Despite its success, most physicists accept that general relativity cannot
ultimately be correct, because of the difficulty in reconciling it with that other pillar of physics, quantum
mechanics. The other three known forces of Nature, the electromagnetic, weak, and colour (strong) forces,
are described by renormalizable quantum field theories, the so-called Standard Model of Physics, that agree
extraordinarily well with experiment, and whose predictions have continued to be confirmed by ever more
precise measurements. Attempts to quantize general relativity in a similar fashion fail. The attempt to unite
general relativity and quantum mechanics continues to exercise some of the brightest minds in physics.
One place where general relativity predicts its own demise is at singularities inside black holes. What

physics replaces general relativity at singularities? This is a deep question, providing one of the motivations
for this book’s emphasis on black hole interiors.
The aim of this Chapter is to give a condensed introduction to the fundamentals of general relativity, using

the traditional coordinate-based approach to general relativity. The approach is neither the most insightful
nor the most powerful, but it is the fastest route to connecting the metric to the energy-momentum content
of spacetime. The Chapter does not attempt to convey a deep conceptual understanding, which I think is
difficult to gain from the mathematics by itself. Later Chapters, starting with Chapter 7 on the Schwarzschild
geometry, present visualizations intended to aid conceptual understanding.
One of the drawbacks of the coordinate approach is that it works with frames that are aligned at each point

with the tangent vectors 𝑒𝜇 to the coordinates at that point. General relativity postulates the existence of
locally inertial frames, so the coordinates at any point can always be arranged such that the tangent vectors
at that one point are orthonormal, and the spacetime is locally flat (Minkowski) about that point. But
in a curved spacetime it is impossible to arrange the coordinate tangent vectors 𝑒𝜇 to be orthonormal
everywhere. Thus the coordinate approach inevitably presents quantities in a frame that is skewed compared
to the natural, orthonormal frame. It is like looking at a scene with your eyes crossed. The problem is not so
bad if the spacetime is empty of energy-momentum, as in the Schwarzschild and Kerr geometries for ideal
spherical and rotating black holes, but it becomes a significant handicap in realistic spacetimes that contain
energy-momentum.
The coordinate approach is adequate to deal with ideal black holes, Chapter 6 to 9, and with the Friedmann-

51



52 Fundamentals of General Relativity

Lemaître-Robertson-Walker spacetime of a homogeneous, isotropic cosmology, Chapter 10. After that, the
book restarts essentially from scratch. Chapter 11 introduces the tetrad formalism, the springboard for
further explorations of gravity, black holes, and cosmology.
The convention in this book is that greek (brown) dummy indices label curved spacetime coordinates,

while latin (black) dummy indices label locally inertial (more generally, tetrad) coordinates.

2.1 Motivation

Special relativity was unsatisfactory almost from the outset. Einstein had conceived special relativity by
abolishing the aether. Yet for something that had no absolute substance, the spacetime of special relativity
had strikingly absolute properties: in special relativity, two particles on parallel trajectories would remain
parallel for ever, just as in Euclidean geometry.
Moreover whereas special relativity neatly accommodated the electromagnetic force, which propagated

at the speed of light, it did not accommodate the other force known at the beginning of the 20th century,
gravity. Plainly Newton’s theory of gravity could not be correct, since it posited instantaneous transmission
of the gravitational force, whereas special relativity seemed to preclude anything from moving faster than
light, Exercise 1.23. You might think that gravity, an inverse square law like electromagnetism, might satisfy
a similar set of equations, but this is not so. Whereas an electromagnetic wave carries no electric charge, and
therefore does not interact with itself, any wave of gravity must carry energy, and therefore must interact
with itself. This proves to be a considerable complication.
A partial solution, the principle of equivalence of gravity and acceleration, occurred to Einstein while

working on an invited review on special relativity (Einstein, 1907). Einstein realised that “if a person falls
freely, he will not feel his own weight,” an idea that Einstein would later refer to as “the happiest thought of
my life.” The principle of equivalence meant that gravity could be reinterpreted as a curvature of spacetime.
In this picture, the trajectories of two freely-falling particles that pass either side of a massive body are caused

Figure 2.1 Particles initially on parallel trajectories passing either side of the Earth are caused to converge by the

Earth’s gravity. According to Einstein’s principle of equivalence, the situation is equivalent to one where the particles

are moving in straight lines in local free-fall frames. This allows the gravitational force to be reinterpreted as being

produced by a curvature of spacetime induced by the presence of the Earth.
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to converge not because of a gravitational force, but rather because the massive body curves spacetime, and
the particles follow straight lines in the curved spacetime, Figure 2.1.
Einstein’s principle of equivalence is only half the story. The principle of equivalence determines how

particles must move in a spacetime of given curvature, but it does not determine how spacetime is itself
curved by mass. That was a much more difficult problem, which Einstein took several more years to crack.
The eventual solution was Einstein’s equations, the final version of which he set out in a presentation to the
Prussian Academy at the end of November 1915 (Einstein, 1915).
Contemporaneously with Einstein’s discovery, David Hilbert derived Einstein’s equations independently

and elegantly from an action principle (Hilbert, 1915). In the present Chapter, Einstein’s equations are simply
postulated, since their real justification is that they reproduce experiment and observation. A derivation of
Einstein’s equations from the Hilbert action is deferred to Chapter 16.

2.2 The postulates of General Relativity

General relativity follows from three postulates:
1. Spacetime is a 4-dimensional differentiable manifold;
2. Einstein’s principle of equivalence;
3. Einstein’s equations.

2.2.1 Spacetime is a 4-dimensional differentiable manifold

A 4-dimensional manifold is defined mathematically to be a topological space that is locally homeomorphic
to Euclidean 4-space R4. A homeomorphism is a continuous map that has a continuous inverse.
The postulate that spacetime is a 4-dimensional manifold means that it is possible to set up a coordinate

system, possibly in patches, called charts,

𝑥𝜇 ≡ {𝑥0, 𝑥1, 𝑥2, 𝑥3} (2.1)

such that each point of a chart of the spacetime has a unique coordinate.
It is not always possible to cover a manifold with a single chart, that is, with a coordinate system such

that every point of spacetime has a unique coordinate. A simple example of a 2-dimensional manifold that
cannot be covered with a single chart is the 2-sphere 𝑆2, the 2-dimensional surface of a 3-dimensional sphere,
as illustrated in Figure 2.2. Inevitably, lines of constant coordinate must cross somewhere on the 2-sphere.
At least two charts are required to cover a 2-sphere.
When more than one chart is necessary, neighbouring charts are required to overlap, in order that the

structure of the manifold be consistent across the overlap. General relativity postulates that the mapping
between the coordinates of overlapping charts be at least doubly differentiable. A manifold subject to this
property is called differentiable.
In practice one often uses coordinate systems that misbehave at some points, but in an innocuous fashion.

The 2-sphere again provides a classic example, where the standard choice of polar coordinates 𝑥𝜇 = {𝜃, 𝜑}
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Figure 2.2 The 2-sphere is a 2-manifold, a topological space that is locally homeomorphic to Euclidean 2-space R2.

Any attempt to cover the surface of a 2-sphere with a single chart, that is, with coordinates 𝑥 and 𝑦 such that each

point on the sphere is specified by a unique coordinate {𝑥, 𝑦}, fails at at least one point. In the left panel, a coordinate

grid draped over the sphere fails at one point, the south pole, where coordinate lines cross. At least two charts are

required to cover the surface of a 2-sphere, as illustrated in the middle panel, where one chart covers the north pole,

the other the south pole. Where the two charts overlap, the two sets of coordinates are related differentiably. The right

panel shows standard polar coordinates 𝜃, 𝜑 on the 2-sphere. The polar coordinatization fails at the north and south

poles, where lines of longitude cross, the azimuthal angle 𝜑 is not unique, and a person passing smoothly through the

pole would see the azimuthal angle jump by 𝜋. Such misbehaving points, called coordinate singularities, are however

innocuous: they can be removed by cutting out a patch around the coordinate singularity, and pasting on a separate

chart.

misbehaves at the north and south poles, Figure 2.2. A person passing smoothly through a pole sees the
azimuthal coordinate jump discontinuously by 𝜋. This is called a coordinate singularity. It is innocuous
because it can be removed by excising a patch around the pole, and pasting on a separate chart.

2.2.2 Principle of equivalence

The weak principle of equivalence states that: “Gravitating mass equals inertial mass.” General relativity
satisfies the weak principle of equivalence, but then so also does Newtonian gravity.
Einstein’s principle of equivalence is actually two separate statements: “The laws of physics in a

gravitating frame are equivalent to those in an accelerating frame,” and “The laws of physics in a non-
accelerating, or free-fall, frame are locally those of special relativity.”
Einstein’s principle of equivalence implies that it is possible to remove the effects of gravity locally by going

into a non-accelerating, or free-fall, frame. The structure of spacetime in a non-accelerating, or free-fall, frame
is locally inertial, with the local structure of Minkowski space. By locally inertial is meant that at each point
of spacetime it is possible to choose coordinates such that (a) the metric at that point is Minkowski, and (b)
the first derivatives of the metric are all zero1. In other words, Einstein’s principle of equivalence asserts the
existence of locally inertial frames.
1 Actually, general relativity goes a step further. The metric is the scalar product of coordinate tangent axes, equation (2.26).
General relativity postulates, §2.10.1, that in a locally inertial frame the first derivatives not only of the metric, but also of
the tangent axes themselves, vanish. See also Concept question 2.5.
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Since special relativity is a metric theory, and the principle of equivalence asserts that general relativity
looks locally like special relativity, general relativity inherits from special relativity the property of being a
metric theory. A notable consequence is that the proper times and distances measured by an accelerating
observer are the same as those measured by a freely-falling observer at the same point and with the same
instantaneous velocity.

2.2.3 Einstein’s equations

Einstein’s equations comprise a 4× 4 symmetric matrix of equations

𝐺𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 . (2.2)

Here 𝐺 is the Newtonian gravitational constant, 𝐺𝜇𝜈 is the Einstein tensor, and 𝑇𝜇𝜈 is the energy-
momentum tensor.
Physically, Einstein’s equations signify

(compressive part of) curvature = energy-momentum content . (2.3)

Einstein’s equations generalize Poisson’s equation

∇2Φ = 4𝜋𝐺𝜌 (2.4)

where Φ is the Newtonian gravitational potential, and 𝜌 the mass-energy density. Poisson’s equation is the
time-time component of Einstein’s equations in the limit of a weak gravitational field and slowly moving
matter, §2.27.

2.3 Implications of Einstein’s principle of equivalence

2.3.1 The gravitational redshift of light

Einstein’s principle of equivalence implies that light will redshift in a gravitational field. In a weak gravita-
tional field, the gravitational redshift of light can be deduced quantitatively from the equivalence principle
without any further assumption (such as Einstein’s equations), Exercises 2.1 and 2.2. A fully general rel-
ativistic treatment for the redshift between observers at rest in a stationary gravitational field is given in
Exercise 2.9.

Exercise 2.1. The equivalence principle implies the gravitational redshift of light, Part 1. A
rigorous general relativistic version of this exercise is Exercise 2.10. A person standing at rest on the surface
of the Earth is to a good approximation in a uniform gravitational field, with gravitational acceleration 𝑔.
The principle of equivalence asserts that the situation is equivalent to that of a frame uniformly accelerating
at 𝑔. Assume that the non-accelerating, free-fall frame is Minkowski to a good approximation. Define the



56 Fundamentals of General Relativity

A

B

L
ig
h
t

equivalent
acceleration

gravity

A

B

L
ig
h
t

equivalent
acceleration

gravity

Figure 2.3 Einstein’s principle of equivalence implies the gravitational redshift of light, and the gravitational bending

of light. In the left panel, persons A and B are at rest relative to each other in a uniform gravitational field. They

are shown moving to the right to bring out the evolution of the system in time. A sends a beam of light upward to

B. The principle of equivalence asserts that the uniform gravitational field is equivalent to a uniformly accelerating

frame. The right panel shows the equivalent uniformly accelerating situation as perceived by a person in free-fall. In

the free-fall frame, the light moves on a straight line, and has constant frequency. Back in the gravitating/accelerating

frame in the left panel, the light appears to bend, and to redshift as it climbs from A to B.

potential Φ by the usual Newtonian formula 𝑔 = −∇Φ. Show that for small differences in their gravitational
potentials, B perceives the light emitted by A to be redshifted by (with units restored)

𝑧 =
Φobs − Φem

𝑐2
. (2.5)

Exercise 2.2. The equivalence principle implies the gravitational redshift of light, Part 2. A
rigorous general relativistic version of this exercise is Exercise 2.11. Consider a person who, at rest in
Minkowski space, whirls a clock around them on the end of string, so fast that the clock is moving at near
the speed of light. The person sees the clock redshifted by the Lorentz 𝛾-factor (the string is of fixed length,
so the light travel time from clock to observer is always the same, and does not affect the redshift). Tugged
on by the string, the clock experiences a centripetal acceleration towards the whirling person. According to
the principle of equivalence, the centripetal acceleration is equivalent to a centrifugal gravitational force. In a
Newtonian approximation, if the clock is whirling around at angular velocity 𝜔, then the effective centrifugal
potential at radius 𝑟 from the observer is

Φ = − 1
2𝜔

2𝑟2 . (2.6)

Show that, for non-relativistic velocities 𝜔𝑟 ≪ 𝑐, the observer perceives the light emitted from the clock to
be redshifted by (with units restored)

𝑧 = −Φ

𝑐2
. (2.7)
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2.3.2 The gravitational bending of light

The principle of equivalence also implies that light will appear to bend in a gravitational field, as illustrated
by Figure 2.3. However, a quantitative prediction for the bending of light requires full general relativity. The
bending of light in a weak gravitational field is the subject of Exercise 2.17.

2.4 Metric

Postulate (1), §2.2.1, of general relativity means that it is possible to choose coordinates

𝑥𝜇 ≡ {𝑥0, 𝑥1, 𝑥2, 𝑥3} (2.8)

covering a patch of spacetime.
Postulate (2), §2.2.2, of general relativity implies that at each point of spacetime it is possible to choose

locally inertial coordinates

𝜉𝑚 ≡ {𝜉0, 𝜉1, 𝜉2, 𝜉3} (2.9)

such that the metric is Minkowski,

𝑑𝑠2 = 𝜂𝑚𝑛 𝑑𝜉
𝑚𝑑𝜉𝑛 , (2.10)

in an infinitesimal neighbourhood of the point. Infinitesimal neighbourhood means that the metric is the
Minkowski metric 𝜂𝑚𝑛 at the point, and that the first derivatives of the metric vanish at the point. The
spacetime distance squared 𝑑𝑠2 is a scalar, a quantity that is unchanged by the choice of coordinates.
Whereas in special relativity the Minkowski formula (1.32) for the spacetime distance Δ𝑠2 held for finite
intervals Δ𝑥𝑚, in general relativity the metric formula (2.10) holds only for infinitesimal intervals 𝑑𝜉𝑚.
General relativity requires, postulate (1), that two sets of coordinates are differentiably related, so locally

inertial intervals 𝑑𝜉𝑚 and coordinate intervals 𝑑𝑥𝜇 are related by the Leibniz rule,

𝑑𝜉𝑚 =
𝜕𝜉𝑚

𝜕𝑥𝜇
𝑑𝑥𝜇 . (2.11)

It follows that the scalar spacetime distance squared is

𝑑𝑠2 = 𝜂𝑚𝑛
𝜕𝜉𝑚

𝜕𝑥𝜇
𝜕𝜉𝑛

𝜕𝑥𝜈
𝑑𝑥𝜇𝑑𝑥𝜈 , (2.12)

which can be written in terms of coordinate intervals 𝑑𝑥𝜇 as

𝑑𝑠2 = 𝑔𝜇𝜈 𝑑𝑥
𝜇𝑑𝑥𝜈 , (2.13)

where 𝑔𝜇𝜈 is the metric, a 4× 4 symmetric matrix

𝑔𝜇𝜈 = 𝜂𝑚𝑛
𝜕𝜉𝑚

𝜕𝑥𝜇
𝜕𝜉𝑛

𝜕𝑥𝜈
. (2.14)

The metric is the essential mathematical object that converts an infinitesimal interval 𝑑𝑥𝜇 to a proper
measurement of an interval of time or space.
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Figure 2.4 (Left) The tetrad vectors 𝛾𝛾𝑚 form an orthonormal basis of vectors tangent to a set of locally inertial

coordinates 𝜉𝑚 at a point. (Right) The coordinate tangent vectors 𝑒𝜇 are the basis of vectors tangent to the coordinates

at each point. The background square grid represents a locally inertial frame, the existence of which is asserted by

general relativity.

2.5 Timelike, spacelike, proper time, proper distance

General relativity inherits from special relativity the physical meaning of the scalar spacetime distance
squared 𝑑𝑠2 along an interval 𝑑𝑥𝜇. The scalar spacetime distance squared can be negative, zero, or positive,
and accordingly timelike, lightlike, or spacelike:

timelike: 𝑑𝑠2 < 0 , 𝑑𝜏 =
√
−𝑑𝑠2 = interval of proper time ,

lightlike: 𝑑𝑠2 = 0 ,

spacelike: 𝑑𝑠2 > 0 , 𝑑𝑙 =
√
𝑑𝑠2 = interval of proper distance .

(2.15)

2.6 Orthonormal tetrad basis 𝛾𝛾𝑚

You are familiar with the idea that in ordinary 3-dimensional Euclidean geometry it is often convenient to
treat vectors in an abstract coordinate-independent formalism. Thus for example a 3-vector is commonly
written as an abstract quantity 𝑟. The coordinates of the vector 𝑟 may be {𝑥, 𝑦, 𝑧} in some particular
coordinate system, but one recognizes that the vector 𝑟 has a meaning, a magnitude and a direction, that is
independent of the coordinate system adopted. In an arbitrary Cartesian coordinate system, the Euclidean
3-vector 𝑟 can be expressed

𝑟 =
∑︁
𝑎

�̂�𝑎 𝑥𝑎 = �̂�𝑥+ 𝑦 𝑦 + 𝑧 𝑧 (2.16)

where �̂�𝑎 ≡ {�̂�,𝑦, 𝑧} are unit vectors along each of the coordinate axes. The unit vectors satisfy a Euclidean
metric

�̂�𝑎 · �̂�𝑏 = 𝛿𝑎𝑏 . (2.17)

The same kind of abstract notation is useful in general relativity. Because the spacetime of general relativity
is only locally inertial, not globally inertial, vectors must be thought of as living not in the spacetime manifold
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itself, but rather in the tangent space of the manifold. The existence and structure of such a tangent space
follows from the postulate of the existence of locally inertial frames. Let 𝜉𝑚 be a set of locally inertial
coordinates at a point of spacetime. Define the vectors 𝛾𝛾𝑚, called a tetrad, to be tangent to the locally
inertial coordinates at the point in question,

𝛾𝛾𝑚 ≡ {𝛾𝛾0,𝛾𝛾1,𝛾𝛾2,𝛾𝛾3} , (2.18)

as illustrated in the left panel of Figure 2.4. Each tetrad basis vector 𝛾𝛾𝑚 is a 4-dimensional object, with
both magnitude and direction. The basis vectors 𝛾𝛾𝑚 are introduced so that vectors in spacetime can be
expressed in an abstract coordinate-independent fashion. The prototypical vector is an infinitesimal interval
𝑑𝜉𝑚 of spacetime, which can be expressed in coordinate-independent fashion as the abstract vector interval
𝑑𝑥 defined by

𝑑𝑥 ≡ 𝛾𝛾𝑚 𝑑𝜉
𝑚 = 𝛾𝛾0 𝑑𝜉

0 + 𝛾𝛾1 𝑑𝜉
1 + 𝛾𝛾2 𝑑𝜉

2 + 𝛾𝛾3 𝑑𝜉
3 . (2.19)

The interval 𝑑𝜉𝑚 transforms under a Lorentz transformation of the locally inertial coordinates as a con-
travariant Lorentz vector. To make the abstract vector interval 𝑑𝑥 invariant under Lorentz transformation,
the basis vectors 𝛾𝛾𝑚 must transform as a covariant Lorentz vector.
The scalar length squared of the abstract vector interval 𝑑𝑥 is

𝑑𝑠2 = 𝑑𝑥 · 𝑑𝑥 = 𝛾𝛾𝑚 · 𝛾𝛾𝑛 𝑑𝜉𝑚𝑑𝜉𝑛 . (2.20)

Since this must reproduce the locally inertial metric (2.10), the scalar products of the tetrad vectors 𝛾𝛾𝑚
must form the Minkowski metric

𝛾𝛾𝑚 · 𝛾𝛾𝑛 = 𝜂𝑚𝑛 . (2.21)

A basis of tetrad vectors whose scalar products form the Minkowski metric is called orthonormal.
Tetrads are explored in depth in Chapter 11.

2.7 Basis of coordinate tangent vectors 𝑒𝜇

In general relativity, coordinates can be chosen arbitrarily, subject to differentiability conditions. In an
arbitrary system of coordinates 𝑥𝜇, the coordinate tangent vectors 𝑒𝜇 at each point,

𝑒𝜇 ≡ {𝑒0, 𝑒1, 𝑒2, 𝑒3} , (2.22)

are defined to satisfy

𝑑𝑥 ≡ 𝑒𝜇 𝑑𝑥
𝜇 = 𝛾𝛾𝑚 𝑑𝜉

𝑚 . (2.23)

The letter 𝑒 derives from the German word einheit, meaning unity. The relation (2.11) between coordinate
intervals 𝑑𝑥𝜇 and locally inertial coordinate intervals 𝑑𝜉𝑚 implies that the coordinate tangent vectors 𝑒𝜇
must be related to the orthonormal tetrad vectors 𝛾𝛾𝑚 by

𝑒𝜇 = 𝛾𝛾𝑚
𝜕𝜉𝑚

𝜕𝑥𝜇
. (2.24)
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Like the tetrad axes 𝛾𝛾𝑚, each coordinate tangent axis 𝑒𝜇 is a 4-dimensional vector object, with both mag-
nitude and direction, as illustrated in the right panel of Figure 2.4.
The scalar length squared of the abstract vector interval 𝑑𝑥 is

𝑑𝑠2 = 𝑑𝑥 · 𝑑𝑥 = 𝑒𝜇 · 𝑒𝜈 𝑑𝑥𝜇𝑑𝑥𝜈 , (2.25)

from which it follows that the scalar products of the coordinate tangent axes 𝑒𝜇 must equal the coordinate
metric 𝑔𝜇𝜈 ,

𝑔𝜇𝜈 = 𝑒𝜇 · 𝑒𝜈 . (2.26)

Like the orthonormal tetrad vectors 𝛾𝛾𝑚, the coordinate tangent vectors 𝑒𝜇 form a basis for the 4-
dimensional tangent space at each point. The tangent space has three basic mathematical properties. First,
the tangent space is a vector space, that is, it has the properties of linearity that define a vector space.
Second, the tangent space has an inner (or scalar) product, defined by the metric (2.26). That scalar product
is a consequence of the postulated locally inertial, or Lorentz, structure of spacetime, which asserts that the
metric is Minkowski 𝜂𝑚𝑛 with respect to locally inertial coordinates 𝜉𝑚. Third, vectors 𝑒𝜇 in the tangent
space can be differentiated with respect to coordinates 𝑥𝜈 , as will be elucidated in §2.9.3.
Some texts represent the tangent vectors 𝑒𝜇 with the notation 𝜕𝜇, on the grounds that 𝑒𝜇 transforms

like the coordinate derivatives 𝜕𝜇 ≡ 𝜕/𝜕𝑥𝜇. This notation is not used in this book, to avoid the potential
confusion between 𝜕𝜇 as a derivative and 𝜕𝜇 as a vector.

2.8 4-vectors and tensors

2.8.1 Contravariant coordinate 4-vector

Under a general coordinate transformation

𝑥𝜇 → 𝑥′𝜇 , (2.27)

a coordinate interval 𝑑𝑥𝜇 transforms as

𝑑𝑥′𝜇 =
𝜕𝑥′𝜇

𝜕𝑥𝜈
𝑑𝑥𝜈 . (2.28)

In general relativity, a coordinate 4-vector is defined to be a quantity 𝐴𝜇 = {𝐴0, 𝐴1, 𝐴2, 𝐴3} that trans-
forms under a coordinate transformation (2.27) like a coordinate interval

𝐴′𝜇 =
𝜕𝑥′𝜇

𝜕𝑥𝜈
𝐴𝜈 . (2.29)

Just because something has an index on it does not make it a 4-vector. The essential property of a con-
travariant coordinate 4-vector is that it transforms like a coordinate interval, equation (2.29).
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2.8.2 Abstract 4-vector

A 4-vector may be written in coordinate-independent fashion as

𝐴 = 𝑒𝜇𝐴
𝜇 . (2.30)

The quantity 𝐴 is an abstract 4-vector. Although 𝐴 is a 4-vector, it is by construction unchanged by a
coordinate transformation, and is therefore a coordinate scalar. See §2.8.7 for commentary on the distinction
between abstract and coordinate vectors.

2.8.3 Lowering and raising indices

Define 𝑔𝜇𝜈 to be the inverse metric, satisfying

𝑔𝜆𝜇 𝑔
𝜇𝜈 = 𝛿𝜈𝜆 =

⎛⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ . (2.31)

The metric 𝑔𝜇𝜈 and its inverse 𝑔𝜇𝜈 provide the means of lowering and raising coordinate indices. The
components of a coordinate 4-vector 𝐴𝜇 with raised index are called its contravariant components, while
those 𝐴𝜇 with lowered indices are called its covariant components,

𝐴𝜇 = 𝑔𝜇𝜈 𝐴
𝜈 , (2.32)

𝐴𝜇 = 𝑔𝜇𝜈 𝐴𝜈 . (2.33)

2.8.4 Dual basis 𝑒𝜇

The contravariant dual basis elements 𝑒𝜇 are defined by raising the indices of the covariant tangent basis
elements 𝑒𝜈 ,

𝑒𝜇 ≡ 𝑔𝜇𝜈𝑒𝜈 . (2.34)

You can check that the dual vectors 𝑒𝜇 transform as a contravariant coordinate 4-vector. The dot products
of the dual basis elements 𝑒𝜇 with each other are

𝑒𝜇 · 𝑒𝜈 = 𝑔𝜇𝜈 . (2.35)

The dot products of the dual and tangent basis elements are

𝑒𝜇 · 𝑒𝜈 = 𝛿𝜇𝜈 . (2.36)
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2.8.5 Covariant coordinate 4-vector

Under a general coordinate transformation (2.27), the covariant components 𝐴𝜇 of a coordinate 4-vector
transform as

𝐴′𝜇 =
𝜕𝑥𝜈

𝜕𝑥′𝜇
𝐴𝜈 . (2.37)

You can check that the transformation law (2.37) for the covariant components 𝐴𝜇 is consistent with the
transformation law (2.29) for the contravariant components 𝐴𝜇.
You can check that the tangent vectors 𝑒𝜇 transform as a covariant coordinate 4-vector.

2.8.6 Scalar product

If 𝐴𝜇 and 𝐵𝜇 are coordinate 4-vectors, then their scalar product is

𝐴𝜇𝐵
𝜇 = 𝐴𝜇𝐵𝜇 = 𝑔𝜇𝜈𝐴

𝜇𝐵𝜈 . (2.38)

This is a coordinate scalar, a quantity that remains invariant under general coordinate transformations.
The ability to form a scalar by contracting over paired indices, always one raised and one lowered, is what
makes the introduction of two species of vector, contravariant (raised index) and covariant (lowered index),
so advantageous.
In abstract vector formalism, the scalar product of two 4-vectors 𝐴 = 𝑒𝜇𝐴

𝜇 and 𝐵 = 𝑒𝜇𝐵
𝜇 is

𝐴 ·𝐵 = 𝑒𝜇 · 𝑒𝜈 𝐴𝜇𝐵𝜈 = 𝑔𝜇𝜈𝐴
𝜇𝐵𝜈 . (2.39)

2.8.7 Comment on vector naming and notation

Different texts follow different conventions for naming and notating vectors and tensors.
This book follows the convention of calling both 𝐴𝜇 (with a dummy index 𝜇) and 𝐴 ≡ 𝐴𝜇𝑒𝜇 vectors.

Although 𝐴𝜇 and 𝐴 are both vectors, they are mathematically different objects.
If the index on a vector indicates a specific coordinate, then the indexed vector is the component of the

vector; for example 𝐴0 (or 𝐴𝑡) is the 𝑥0 (or time 𝑡) component of the coordinate 4-vector 𝐴𝜇.
In this book, the different species of vector are distinguished by an adjective:
1. A coordinate vector 𝐴𝜇, identified by greek (brown) indices 𝜇, is one that changes in a prescribed

way under coordinate transformations. A coordinate transformation is one that changes the coordinates
of the spacetime without actually changing the spacetime or whatever lies in it.

2. An abstract vector 𝐴, identified by boldface, is the thing itself, and is unchanged by the choice of
coordinates. Since the abstract vector is unchanged by a coordinate transformation, it is a coordinate
scalar.

All the types of vector have the properties of linearity (additivity, multiplication by scalars) that identify
them mathematically as belonging to vector spaces. The important distinction between the types of vector
is how they behave under transformations.
In referring to both 𝐴𝜇 and 𝐴 as vectors, this book follows the standard physics practice of mentally
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regarding 𝐴𝜇 and 𝐴 as equivalent objects. You are familiar with the advantages of treating a vector in
3-dimensional Euclidean space either as an abstract vector 𝐴, or as a coordinate vector 𝐴𝑎. Depending on
the problem, sometimes the abstract notation 𝐴 is more convenient, and sometimes the coordinate notation
𝐴𝑎 is more convenient. Sometimes it’s convenient to switch between the two in the middle of a calculation.
Likewise in general relativity it is convenient to have the flexibility to work in either coordinate or abstract
notation, whatever suits the problem of the moment.

2.8.8 Coordinate tensor

In general, a coordinate tensor 𝐴𝜅𝜆...𝜇𝜈... is an object that transforms under general coordinate transforma-
tions (2.27) as

𝐴′𝜅𝜆...𝜇𝜈... =
𝜕𝑥′𝜅

𝜕𝑥𝜋
𝜕𝑥′𝜆

𝜕𝑥𝜌
...
𝜕𝑥𝜎

𝜕𝑥′𝜇
𝜕𝑥𝜏

𝜕𝑥′𝜈
... 𝐴𝜋𝜌...𝜎𝜏... . (2.40)

You can check that the metric tensor 𝑔𝜇𝜈 and its inverse 𝑔𝜇𝜈 are indeed coordinate tensors, transforming
like (2.40).
The rank of a tensor is the number of indices of its expansion 𝐴𝜅𝜆...𝜇𝜈... in components. A scalar is a tensor

of rank 0. A 4-vector is a tensor of rank 1. The metric and its inverse are tensors of rank 2. The rank of a

tensor with 𝑛 contravariant (upstairs) and 𝑚 covariant (downstairs) indices is sometimes written

(︂
𝑛

𝑚

)︂
.

2.9 Covariant derivatives

2.9.1 Derivative of a coordinate scalar

Suppose that Φ is a coordinate scalar. Then the coordinate derivative of Φ is a coordinate 4-vector

𝜕Φ

𝜕𝑥𝜇
a coordinate tensor (2.41)

transforming like equation (2.37).
As a shorthand, the ordinary partial derivative is often denoted in the literature with a comma

𝜕Φ

𝜕𝑥𝜇
= Φ,𝜇 . (2.42)

For the most part this book does not use the comma notation.

2.9.2 Derivative of a coordinate 4-vector

The ordinary partial derivative of a contravariant coordinate 4-vector 𝐴𝜇 is not a tensor

𝜕𝐴𝜇

𝜕𝑥𝜈
not a coordinate tensor (2.43)
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Figure 2.5 The change 𝛿𝑒0 in the tangent vector 𝑒0 over a small interval 𝛿𝑥1 of spacetime is defined to be the difference

between the tangent vector 𝑒0(𝑥1+ 𝛿𝑥1) at the shifted position 𝑥1+ 𝛿𝑥1 and the tangent vector 𝑒0(𝑥1) at the original

position 𝑥1, parallel-transported to the shifted position. The parallel-transported vector is shown as a dashed arrowed

line. The parallel transport is defined with respect to a locally inertial frame, shown as a background square grid.

because it does not transform like a coordinate tensor.
However, the 4-vector 𝐴 = 𝑒𝜇𝐴

𝜇, being by construction invariant under coordinate transformations, is a
coordinate scalar, and its partial derivative is a coordinate 4-vector

𝜕𝐴

𝜕𝑥𝜈
=
𝜕𝑒𝜇𝐴

𝜇

𝜕𝑥𝜈

= 𝑒𝜇
𝜕𝐴𝜇

𝜕𝑥𝜈
+
𝜕𝑒𝜇
𝜕𝑥𝜈

𝐴𝜇 a coordinate tensor . (2.44)

The last line of equation (2.44) assumes that it is legitimate to differentiate the tangent vectors 𝑒𝜇, but
what does that mean? The partial derivatives of basis vectors 𝑒𝜇 are defined in the usual way by

𝜕𝑒𝜇
𝜕𝑥𝜈

≡ lim
𝛿𝑥𝜈→0

𝑒𝜇(𝑥
0, ..., 𝑥𝜈+𝛿𝑥𝜈 , ..., 𝑥3)− 𝑒𝜇(𝑥

0, ..., 𝑥𝜈 , ..., 𝑥3)

𝛿𝑥𝜈
. (2.45)

This definition relies on being able to compare the vectors 𝑒𝜇(𝑥) at some point 𝑥 with the vectors 𝑒𝜇(𝑥+𝛿𝑥)
at another point 𝑥+𝛿𝑥 a small distance away. The comparison between two vectors a small distance apart
is made possible by the existence of locally inertial frames. In a locally inertial frame, two vectors a small
distance apart can be compared by parallel-transporting one vector to the location of the other along
the small interval between them, that is, by transporting the vector without accelerating or precessing with
respect to the locally inertial frame. Thus the right hand side of equation (2.45) should be interpreted as
𝑒𝜇(𝑥+𝛿𝑥) minus the value of 𝑒𝜇(𝑥) parallel-transported from position 𝑥 to position 𝑥+𝛿𝑥 along the small
interval 𝛿𝑥 between them, as illustrated in Figure 2.5.
The notion of the tangent space at a point on a manifold was introduced in §2.6. Parallel transport allows

the tangent spaces at neighbouring points to be adjoined in a well-defined fashion to form the tangent
manifold, whose dimension is twice that of the underlying spacetime. Coordinates for the tangent manifold
are provided by a combination {𝑥𝜇, 𝜉𝑚} of coordinates 𝑥𝜇 on the parent manifold and tangent space coor-
dinates 𝜉𝑚 extrapolated from a locally inertial frame about each point. The tangent space coordinates 𝜉𝑚

vary smoothly over the manifold provided that the locally inertial frames are chosen to vary smoothly.
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2.9.3 Coordinate connection coefficients

The partial derivatives of the basis vectors 𝑒𝜇 that appear on the right hand side of equation (2.44) define
the coordinate connection coefficients Γ𝜅𝜇𝜈 ,

𝜕𝑒𝜇
𝜕𝑥𝜈

≡ Γ𝜅𝜇𝜈 𝑒𝜅 not a coordinate tensor . (2.46)

The definition (2.46) shows that the connection coefficients express how each tangent vector 𝑒𝜇 changes,
relative to parallel-transport, when shifted along an interval 𝛿𝑥𝜈 .

2.9.4 Covariant derivative of a contravariant 4-vector

Expression (2.44) along with the definition (2.46) of the connection coefficients implies that

𝜕𝐴

𝜕𝑥𝜈
= 𝑒𝜇

𝜕𝐴𝜇

𝜕𝑥𝜈
+ Γ𝜅𝜇𝜈𝑒𝜅𝐴

𝜇

= 𝑒𝜅

(︂
𝜕𝐴𝜅

𝜕𝑥𝜈
+ Γ𝜅𝜇𝜈𝐴

𝜇

)︂
a coordinate tensor . (2.47)

The expression in parentheses is a coordinate tensor, and defines the covariant derivative 𝐷𝜈𝐴
𝜅 of the

contravariant coordinate 4-vector 𝐴𝜅

𝐷𝜈𝐴
𝜅 ≡ 𝜕𝐴𝜅

𝜕𝑥𝜈
+ Γ𝜅𝜇𝜈𝐴

𝜇 a coordinate tensor . (2.48)

As a shorthand, the covariant derivative is often denoted in the literature with a semi-colon

𝐷𝜈𝐴
𝜅 = 𝐴𝜅;𝜈 . (2.49)

For the most part this book does not use the semi-colon notation.

2.9.5 Covariant derivative of a covariant coordinate 4-vector

Similarly,

𝜕𝐴

𝜕𝑥𝜈
= 𝑒𝜅𝐷𝜈𝐴𝜅 a coordinate tensor (2.50)

where 𝐷𝜈𝐴𝜅 is the covariant derivative of the covariant coordinate 4-vector 𝐴𝜅

𝐷𝜈𝐴𝜅 ≡
𝜕𝐴𝜅
𝜕𝑥𝜈

− Γ𝜇𝜅𝜈𝐴𝜇 a coordinate tensor . (2.51)
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2.9.6 Covariant derivative of a coordinate tensor

In general, the covariant derivative of a coordinate tensor is

𝐷𝜋𝐴
𝜅𝜆...
𝜇𝜈... =

𝜕𝐴𝜅𝜆...𝜇𝜈...

𝜕𝑥𝜋
+ Γ𝜅𝜌𝜋𝐴

𝜌𝜆...
𝜇𝜈... + Γ𝜆𝜌𝜋𝐴

𝜅𝜌...
𝜇𝜈... + ...− Γ𝜌𝜇𝜋𝐴

𝜅𝜆...
𝜌𝜈... − Γ𝜌𝜈𝜋𝐴

𝜅𝜆...
𝜇𝜌... − ... (2.52)

with a positive Γ term for each contravariant index, and a negative Γ term for each covariant index.

Concept question 2.3. Does covariant differentiation commute with the metric? Answer. Yes,
essentially by construction. The covariant derivative of a tangent basis vector 𝑒𝜇,

𝐷𝜈𝑒𝜇 =
𝜕𝑒𝜈
𝜕𝑥𝜇

− Γ𝜅𝜇𝜈𝑒𝜅 = 0 , (2.53)

vanishes by definition of the coordinate connections, equation (2.46). Consequently the covariant derivative of
the metric 𝑔𝜇𝜈 ≡ 𝑒𝜇 ·𝑒𝜈 also vanishes. As a corollary, covariant differentiation commutes with the operations
of raising and lowering indices, and of contraction.

2.10 Torsion

2.10.1 No-torsion condition

The existence of locally inertial frames requires that it must be possible to arrange not only that the tangent
axes 𝑒𝜇 are orthonormal at a point, but also that they remain orthonormal to first order in a Taylor expansion
about the point. That is, it must be possible to choose the coordinates such that the tangent axes 𝑒𝜇 are
orthonormal, and unchanged to linear order:

𝑒𝜇 · 𝑒𝜈 = 𝜂𝜇𝜈 , (2.54a)

𝜕𝑒𝜇
𝜕𝑥𝜈

= 0 . (2.54b)

In view of the definition (2.46) of the connection coefficients, the second condition (2.54b) is equivalent to
the vanishing of all the connection coefficients:

Γ𝜅𝜇𝜈 = 0 . (2.55)

Under a general coordinate transformation 𝑥𝜇 → 𝑥′𝜇, the tangent axes transform as 𝑒𝜇 = 𝜕𝑥′𝜅/𝜕𝑥𝜇 𝑒′𝜅.
The 4×4 matrix 𝜕𝑥′𝜅/𝜕𝑥𝜇 of partial derivatives provides 16 degrees of freedom in choosing the tangent axes
at a point. The 16 degrees of freedom are enough — more than enough — to accomplish the orthonormality
condition (2.54a), which is a symmetric 4 × 4 matrix equation with 10 degrees of freedom. The additional
16− 10 = 6 degrees of freedom are Lorentz transformations, which rotate the tangent axes 𝑒𝜇, but leave the
metric 𝜂𝜇𝜈 unchanged.
Just as it is possible to reorient the tangent axes 𝑒𝜇 at a point by adjusting the matrix 𝜕𝑥′𝜅/𝜕𝑥𝜇 of first
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partial derivatives of the coordinate transformation 𝑥𝜇 → 𝑥′𝜇, so also it is possible to reorient the derivatives
𝜕𝑒𝜇/𝜕𝑥

𝜈 of the tangent axes by adjusting the matrix 𝜕2𝑥′𝜅/𝜕𝑥𝜇𝜕𝑥𝜈 of second partial derivatives of the
coordinate transformation. The second partial derivatives comprise a set of 4 symmetric 4× 4 matrices, for
a total of 4 × 10 = 40 degrees of freedom. However, there are 4 × 4 × 4 = 64 connection coefficients Γ𝜅𝜇𝜈 ,
all of which the condition (2.55) requires to vanish. The matrix of second derivatives is thus 64 − 40 = 24

degrees of freedom short of being able to make all the connections vanish. The resolution of the problem
is that, as shown below, equation (2.58), there are 24 combinations of the connections that form a tensor,
the torsion tensor. If a tensor is zero in one frame, then it is automatically zero in any other frame. Thus
the requirement that all the connections vanish requires that the torsion tensor vanish. This requires, from
the expression (2.58) for the torsion tensor, the no-torsion condition that the connection coefficients are
symmetric in their last two indices

Γ𝜅𝜇𝜈 = Γ𝜅𝜈𝜇 . (2.56)

It should be emphasized that the condition of vanishing torsion is an assumption of general relativity, not
a mathematical necessity. It has been shown in this section that torsion vanishes if and only if spacetime is
locally flat, meaning that at any point coordinates can be found such that conditions (2.54) are true. The
assumption of local flatness is central to the idea of the principle of equivalence. But it is an assumption,
not a consequence, of the theory.

Concept question 2.4. Parallel transport when torsion is present. If torsion does not vanish, then
there is no locally inertial frame. What does parallel-transport mean in such a case? Answer. A general
coordinate transformation can always be found such that the connection coefficients Γ𝜅𝜇𝜈 vanish along any
one direction 𝜈. Parallel-transport along that direction can be defined relative to such a frame. For any given
direction 𝜈, there are 16 second partial derivatives 𝜕2𝑥′𝜅/𝜕𝑥𝜇𝜕𝑥𝜈 , just enough to make vanish the 4×4 = 16

coefficients Γ𝜅𝜇𝜈 .

2.10.2 Torsion tensor

General relativity assumes no torsion, but it is possible to consider generalizations to theories with torsion.
The torsion tensor 𝑆𝜇𝜅𝜆 is defined by the commutator of the covariant derivative acting on a scalar Φ

[𝐷𝜅, 𝐷𝜆] Φ = 𝑆𝜇𝜅𝜆
𝜕Φ

𝜕𝑥𝜇
a coordinate tensor . (2.57)

Note that the covariant derivative of a scalar is just the ordinary derivative, 𝐷𝜆Φ = 𝜕Φ/𝜕𝑥𝜆. The expres-
sion (2.51) for the covariant derivatives shows that the torsion tensor is

𝑆𝜇𝜅𝜆 = Γ𝜇𝜅𝜆 − Γ𝜇𝜆𝜅 a coordinate tensor (2.58)

which is evidently antisymmetric in the indices 𝜅𝜆.
In Einstein-Cartan theory, the torsion tensor is related to the spin content of spacetime. Since this vanishes
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in empty space, Einstein-Cartan theory is indistinguishable from general relativity in experiments carried
out in vacuum. See §16.11 for more on Einstein-Cartan theory.

2.11 Connection coefficients in terms of the metric

The connection coefficients have been defined, equation (2.46), as derivatives of the tangent basis vectors 𝑒𝜇.
However, the connection coefficients can be expressed purely in terms of the (first derivatives of the) metric,
without reference to the individual basis vectors. The partial derivatives of the metric are

𝜕𝑔𝜆𝜇
𝜕𝑥𝜈

=
𝜕𝑒𝜆 · 𝑒𝜇
𝜕𝑥𝜈

= 𝑒𝜆 ·
𝜕𝑒𝜇
𝜕𝑥𝜈

+ 𝑒𝜇 ·
𝜕𝑒𝜆
𝜕𝑥𝜈

= 𝑒𝜆 · 𝑒𝜅 Γ𝜅𝜇𝜈 + 𝑒𝜇 · 𝑒𝜅 Γ𝜅𝜆𝜈
= 𝑔𝜆𝜅 Γ

𝜅
𝜇𝜈 + 𝑔𝜇𝜅 Γ

𝜅
𝜆𝜈

= Γ𝜆𝜇𝜈 + Γ𝜇𝜆𝜈 , (2.59)

which is a sum of two connection coefficients. Here Γ𝜆𝜇𝜈 with all indices lowered is defined to be Γ𝜅𝜇𝜈 with
the first index lowered by the metric,

Γ𝜆𝜇𝜈 ≡ 𝑔𝜆𝜅Γ𝜅𝜇𝜈 . (2.60)

Combining the metric derivatives in the following fashion yields an expression for a single connection,

𝜕𝑔𝜆𝜇
𝜕𝑥𝜈

+
𝜕𝑔𝜆𝜈
𝜕𝑥𝜇

− 𝜕𝑔𝜇𝜈
𝜕𝑥𝜆

= Γ𝜆𝜇𝜈 + Γ𝜇𝜆𝜈 + Γ𝜆𝜈𝜇 + Γ𝜈𝜆𝜇 − Γ𝜇𝜈𝜆 − Γ𝜈𝜇𝜆

= 2Γ𝜆𝜇𝜈 − 𝑆𝜆𝜇𝜈 − 𝑆𝜇𝜈𝜆 − 𝑆𝜈𝜇𝜆 , (2.61)

with 𝑆𝜆𝜇𝜈 ≡ 𝑔𝜆𝜅𝑆𝜅𝜇𝜈 , which shows that, in the presence of torsion,

Γ𝜆𝜇𝜈 =
1

2

(︂
𝜕𝑔𝜆𝜇
𝜕𝑥𝜈

+
𝜕𝑔𝜆𝜈
𝜕𝑥𝜇

− 𝜕𝑔𝜇𝜈
𝜕𝑥𝜆

+ 𝑆𝜆𝜇𝜈 + 𝑆𝜇𝜈𝜆 + 𝑆𝜈𝜇𝜆

)︂
not a coordinate tensor . (2.62)

If torsion vanishes, as general relativity assumes, then

Γ𝜆𝜇𝜈 =
1

2

(︂
𝜕𝑔𝜆𝜇
𝜕𝑥𝜈

+
𝜕𝑔𝜆𝜈
𝜕𝑥𝜇

− 𝜕𝑔𝜇𝜈
𝜕𝑥𝜆

)︂
not a coordinate tensor . (2.63)

This is the formula that allows connection coefficients to be calculated from the metric.

2.12 Torsion-free covariant derivative

Einstein’s principle of equivalence postulates that a locally inertial frame exists at each point of spacetime,
and this implies that torsion vanishes. However, torsion is of special interest as a generalization of general
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relativity because, as discussed in §2.19.2, the torsion tensor and the Riemann curvature tensor can be re-
garded as fields associated with local gauge groups of respectively displacements and Lorentz transformations.
Together displacements and Lorentz transformations form the Poincaré group of symmetries of spacetime.
Spinor (spin- 12 ) fields inevitably generate torsion, Exercise 16.5, but torsion is local and non-propagating,
and cancels between oppositely aligned spins, so in practice is negligible in almost all circumstances, §16.11.
The torsion-free part of the covariant derivative is a covariant derivative even when torsion is present (that

is, it yields a tensor when acting on a tensor). The torsion-free covariant derivative is important, even when
torsion is present, for several reasons. Firstly, as will be discovered from an action principle in Chapter 4,
the covariant derivative that goes in the geodesic equation (2.88) is the torsion-free covariant derivative,
equation (2.90). Secondly, the torsion-free covariant curl defines the exterior derivative in the theory of
differential forms, §15.6. The exterior derivative has the property that it is inverse to integration over curved
hypersurfaces. Integration is central to various aspects of general relativity, such as the development of
Lagrangian and Hamiltonian mechanics. Thirdly, the Lie derivative, §7.34, is a covariant derivative defined
in terms of torsion-free covariant derivatives. Finally, Yang-Mills gauge symmetries, such as the U(1) gauge
symmetry of electromagnetism, require the gauge field to be defined in terms of the torsion-free covariant
derivative, in order to preserve the gauge symmetry.
When torsion is present and it is desirable to make the torsion part explicit, it is convenient to distinguish

torsion-free quantities with a˚ overscript. The torsion-free part Γ̊𝜆𝜇𝜈 of the connection, also called the Levi-
Civita connection, is given by the right hand side of equation (2.63). When expressed in a coordinate
frame (as opposed to a tetrad frame, §11.15), the components of the torsion-free connections Γ̊𝜆𝜇𝜈 are also
called Christoffel symbols. Sometimes, the components Γ̊𝜆𝜇𝜈 with all indices lowered are called Christoffel
symbols of the first kind, while components Γ̊𝜆𝜇𝜈 with first index raised are called Christoffel symbols of the
second kind. There is no need to remember the jargon, but it is useful to know what it means if you meet it.
The torsion-full connection Γ𝜆𝜇𝜈 is a sum of the torsion-free connection Γ̊𝜆𝜇𝜈 and a tensor called the

contortion tensor (not contorsion!) 𝐾𝜆𝜇𝜈 ,

Γ𝜆𝜇𝜈 = Γ̊𝜆𝜇𝜈 +𝐾𝜆𝜇𝜈 not a coordinate tensor . (2.64)

From equation (2.62), the contortion tensor 𝐾𝜆𝜇𝜈 is related to the torsion tensor 𝑆𝜆𝜇𝜈 by

𝐾𝜆𝜇𝜈 = 1
2 (𝑆𝜆𝜇𝜈 + 𝑆𝜇𝜈𝜆 + 𝑆𝜈𝜇𝜆) = −𝑆𝜈𝜆𝜇 + 3

2𝑆[𝜆𝜇𝜈] a coordinate tensor . (2.65)

The contortion 𝐾𝜆𝜇𝜈 is antisymmetric in its first two indices,

𝐾𝜆𝜇𝜈 = −𝐾𝜇𝜆𝜈 , (2.66)

and thus like the torsion tensor 𝑆𝜆𝜇𝜈 has 6 × 4 = 24 degrees of freedom. The torsion tensor 𝑆𝜆𝜇𝜈 can be
expressed in terms of the contortion tensor 𝐾𝜆𝜇𝜈 ,

𝑆𝜆𝜇𝜈 = 𝐾𝜆𝜇𝜈 −𝐾𝜆𝜈𝜇 = −𝐾𝜇𝜈𝜆 + 3𝐾[𝜆𝜇𝜈] a coordinate tensor . (2.67)

The torsion-full covariant derivative 𝐷𝜈 differs from the torsion-free covariant derivative 𝐷𝜈 by the con-
tortion,

𝐷𝜈𝐴
𝜅 ≡ 𝐷𝜈𝐴

𝜅 +𝐾𝜅
𝜇𝜈𝐴

𝜇 a coordinate tensor . (2.68)
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In this book torsion will not be assumed automatically to vanish, and thus by default the symbol 𝐷𝜈 will
denote the torsion-full covariant derivative. When torsion is assumed to vanish, or when 𝐷𝜈 denotes the
torsion-free covariant derivative, it will be explicitly stated so.

Concept question 2.5. Can the metric be Minkowski in the presence of torsion? In §2.10.1 it was
argued that the postulate of the existence of locally inertial frames implies that torsion vanishes. The basis
of the argument was the proposition that derivatives of the tangent axes vanish, equation (2.54b). Impose
instead the weaker condition that the derivatives of the metric (i.e. scalar products of tangent axes) vanish,

𝜕𝑔𝜆𝜇
𝜕𝑥𝜈

= 0 . (2.69)

Can torsion be non-vanishing under this weaker condition? Answer. Yes. In fact torsion may exist even
in flat (Minkowski) space, where the metric is everywhere Minkowski, 𝑔𝜆𝜇 = 𝜂𝜆𝜇. The condition (2.69) of
vanishing metric derivatives is equivalent to the vanishing of the torsion-free connections,

1

2

𝜕𝑔𝜆𝜇
𝜕𝑥𝜈

= Γ(𝜆𝜇)𝜈 = Γ̊(𝜆𝜇)𝜈 +𝐾(𝜆𝜇)𝜈 = Γ̊(𝜆𝜇)𝜈 = 0 . (2.70)

Thus the condition (2.69) of vanishing metric derivatives imposes no condition on torsion.

Exercise 2.6. Covariant curl and coordinate curl. Show that the covariant curl of a covariant vector
𝐴𝜆 is

𝐷𝜅𝐴𝜆 −𝐷𝜆𝐴𝜅 =
𝜕𝐴𝜆
𝜕𝑥𝜅

− 𝜕𝐴𝜅
𝜕𝑥𝜆

+ 𝑆𝜇𝜅𝜆𝐴𝜇 . (2.71)

Conclude that the coordinate curl of a vector equals its torsion-free covariant curl,

𝐷𝜅𝐴𝜆 −𝐷𝜆𝐴𝜅 =
𝜕𝐴𝜆
𝜕𝑥𝜅

− 𝜕𝐴𝜅
𝜕𝑥𝜆

. (2.72)

Of course, if torsion vanishes as general relativity assumes, then the covariant curl is the torsion-free covariant
curl. Note that since both 𝐷𝜅𝐴𝜆 − 𝐷𝜆𝐴𝜅 on the left hand side and 𝑆𝜇𝜅𝜆𝐴𝜇 on the right hand side of
equation (2.71) are both tensors, it follows that the coordinate curl 𝜕𝐴𝜆/𝜕𝑥𝜅 − 𝜕𝐴𝜅/𝜕𝑥𝜆 is a tensor even in
the presence of torsion.

Exercise 2.7. Covariant divergence and coordinate divergence. Show that the covariant divergence
of a contravariant vector 𝐴𝜇 is

𝐷𝜇𝐴
𝜇 =

1√
−𝑔

𝜕(
√
−𝑔𝐴𝜇)
𝜕𝑥𝜇

+ 𝑆𝜈𝜇𝜈𝐴
𝜇 , (2.73)

where 𝑔 ≡ |𝑔𝜇𝜈 | is the determinant of the metric matrix. Conclude that the torsion-free covariant divergence
is

𝐷𝜇𝐴
𝜇 =

1√
−𝑔

𝜕(
√
−𝑔𝐴𝜇)
𝜕𝑥𝜇

. (2.74)

Of course, if torsion vanishes as general relativity assumes, then the covariant divergence is the torsion-free
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covariant divergence. Note that since both the covariant divergence on the left hand side of equation (2.73)
and the torsion term on the right hand side of equation (2.73) are both tensors, the torsion-free covariant
divergence (2.74) is a tensor even in the presence of torsion.
Solution. The covariant divergence is

𝐷𝜇𝐴
𝜇 =

𝜕𝐴𝜇

𝜕𝑥𝜇
+ Γ𝜈𝜇𝜈𝐴

𝜇 . (2.75)

From equation (2.62),

Γ𝜈𝜇𝜈 =
1

2
𝑔𝜈𝜆

𝜕𝑔𝜆𝜈
𝜕𝑥𝜇

+ 𝑆𝜈𝜇𝜈

=
𝜕 ln |

√
−𝑔|

𝜕𝑥𝜇
+ 𝑆𝜈𝜇𝜈 . (2.76)

The second line of equations (2.76) follows because for any matrix 𝑀 , the variation of the logarithm of its
determinant is

𝛿 ln |𝑀 | = ln |𝑀 + 𝛿𝑀 | − ln |𝑀 |
= ln |𝑀−1(𝑀 + 𝛿𝑀)|
= ln |1 +𝑀−1𝛿𝑀 |
= ln(1 + Tr 𝑀−1𝛿𝑀)

= Tr 𝑀−1𝛿𝑀 . (2.77)

The torsion-free covariant divergence is

𝐷𝜇𝐴
𝜇 =

𝜕𝐴𝜇

𝜕𝑥𝜇
+ Γ̊𝜈𝜇𝜈𝐴

𝜇 , (2.78)

where the torsion-free coordinate connection is

Γ̊𝜈𝜇𝜈 =
1

2
𝑔𝜈𝜆

𝜕𝑔𝜆𝜈
𝜕𝑥𝜇

=
𝜕 ln |

√
−𝑔|

𝜕𝑥𝜇
. (2.79)

Concept question 2.8. If torsion does not vanish, does torsion-free covariant differentiation

commute with the metric? Answer. Yes. Unlike the torsion-full covariant derivative, Concept Ques-
tion 2.3, the torsion-free covariant derivative of the tangent basis vectors 𝑒𝜅 does not vanish, but rather
depends on the contortion 𝐾𝜈

𝜅𝜇𝑒𝜈 ,

𝐷𝜇𝑒𝜅 = 𝐷𝜇𝑒𝜅 +𝐾𝜈
𝜅𝜇𝑒𝜈 = 𝐾𝜈

𝜅𝜇𝑒𝜈 . (2.80)

However, the torsion-free covariant derivative of the metric, that is, of scalar products of the tangent basis
vectors, does vanish,

𝐷𝜇𝑔𝜅𝜆 = 𝐷𝜇(𝑒𝜅 · 𝑒𝜆) = 𝐾𝜈
𝜅𝜇𝑒𝜈 · 𝑒𝜆 +𝐾𝜈

𝜆𝜇𝑒𝜅 · 𝑒𝜈 = 𝐾𝜆𝜅𝜇 +𝐾𝜅𝜆𝜇 = 0 , (2.81)

thanks to the antisymmetry of the contortion tensor in its first two indices. As a corollary, torsion-free
covariant differentiation commutes with the operations of raising and lowering indices, and of contraction.
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2.13 Mathematical aside: What if there is no metric?

General relativity is a metric theory. Many of the structures introduced above can be defined mathematically
without a metric. For example, it is possible to define the tangent space of vectors with basis 𝑒𝜇, and to
define a dual vector space with basis 𝑒𝜇 such that 𝑒𝜇 · 𝑒𝜈 = 𝛿𝜇𝜈 , equation (2.36). Elements of the dual vector
space are called covectors. Similarly it is possible to define connections and covariant derivatives without a
metric. However, this book follows general relativity in assuming that spacetime has a metric.

2.14 Coordinate 4-velocity

Consider a particle following a worldline

𝑥𝜇(𝜏) , (2.82)

where 𝜏 is the particle’s proper time. The proper time along any interval of the worldline is 𝑑𝜏 ≡
√
−𝑑𝑠2.

Define the coordinate 4-velocity 𝑢𝜇 by

𝑢𝜇 ≡ 𝑑𝑥𝜇

𝑑𝜏
a coordinate 4-vector . (2.83)

The magnitude squared of the 4-velocity is constant

𝑢𝜇𝑢
𝜇 = 𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝜏

𝑑𝑥𝜈

𝑑𝜏
=
𝑑𝑠2

𝑑𝜏2
= −1 . (2.84)

The negative sign arises from the choice of metric signature: with the signature −+++ adopted here, there
is a − sign between 𝑑𝑠2 and 𝑑𝜏2. Equation (2.84) can be regarded as an integral of motion associated with
conservation of particle rest mass.

2.15 Geodesic equation

Let 𝑢 ≡ 𝑒𝜇𝑢
𝜇 be the 4-velocity in coordinate-independent notation. The principle of equivalence (which

imposes vanishing torsion) implies that the geodesic equation, the equation of motion of a freely-falling
particle, is

𝑑𝑢

𝑑𝜏
= 0 . (2.85)

Why? Because 𝑑𝑢/𝑑𝜏 = 0 in the particle’s own free-fall frame, and the equation is coordinate-independent.
In the particle’s own free-fall frame, the particle’s 4-velocity is 𝑢𝜇 = {1, 0, 0, 0}, and the particle’s locally
inertial axes 𝑒𝜇 = {𝑒0, 𝑒1, 𝑒2, 𝑒3} are constant.
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What does the equation of motion look like in coordinate notation? The acceleration is

𝑑𝑢

𝑑𝜏
=
𝑑𝑥𝜈

𝑑𝜏

𝜕𝑢

𝜕𝑥𝜈

= 𝑢𝜈𝑒𝜅𝐷𝜈𝑢
𝜅

= 𝑢𝜈𝑒𝜅

(︂
𝜕𝑢𝜅

𝜕𝑥𝜈
+ Γ𝜅𝜇𝜈𝑢

𝜇

)︂
= 𝑒𝜅

(︂
𝑑𝑢𝜅

𝑑𝜏
+ Γ𝜅𝜇𝜈𝑢

𝜇𝑢𝜈
)︂
. (2.86)

The geodesic equation is then

𝑑𝑢𝜅

𝑑𝜏
+ Γ𝜅𝜇𝜈𝑢

𝜇𝑢𝜈 = 0 . (2.87)

Another way of writing the geodesic equation is

𝐷𝑢𝜅

𝐷𝜏
= 0 , (2.88)

where 𝐷/𝐷𝜏 is the covariant proper time derivative

𝐷

𝐷𝜏
≡ 𝑢𝜈𝐷𝜈 . (2.89)

The above derivation of the geodesic equation invoked the principle of equivalence, which postulates that
locally inertial frames exist, and thus that torsion vanishes. What happens if torsion does not vanish? In
Chapter 4, equation (4.15), it will be shown from an action principle that in the presence of torsion, the
covariant derivative in the geodesic equation should simply be replaced by the torsion-free covariant derivative
𝐷/𝐷𝜏 = 𝑢𝜇𝐷𝜇,

𝐷𝑢𝜅

𝐷𝜏
= 0 . (2.90)

Thus the geodesic motion of particles is unaffected by the presence of torsion.

2.16 Coordinate 4-momentum

The coordinate 4-momentum of a particle of rest mass 𝑚 is defined to be

𝑝𝜇 ≡ 𝑚𝑢𝜇 = 𝑚
𝑑𝑥𝜇

𝑑𝜏
a coordinate 4-vector . (2.91)

The momentum squared is, from equation (2.84),

𝑝𝜇𝑝
𝜇 = 𝑚2𝑢𝜇𝑢

𝜇 = −𝑚2 (2.92)

minus the square of the rest mass. Again, the minus sign arises from the choice −+++ of metric signature.
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2.17 Affine parameter

For photons, the rest mass is zero, 𝑚 = 0, but the 4-momentum 𝑝𝜇 remains finite. Define the affine

parameter 𝜆 by

𝜆 ≡ 𝜏

𝑚
a coordinate scalar (2.93)

which remains finite in the limit 𝑚 → 0. The affine parameter 𝜆 is unique up to an overall linear transfor-
mation (that is, 𝛼𝜆 + 𝛽 is also an affine parameter, for constant 𝛼 and 𝛽), because of the freedom in the
choice of mass 𝑚 and the zero point of proper time 𝜏 . In terms of the affine parameter, the 4-momentum is

𝑝𝜇 =
𝑑𝑥𝜇

𝑑𝜆
. (2.94)

The geodesic equation is then in coordinate-independent notation

𝑑𝑝

𝑑𝜆
= 0 , (2.95)

or in component form
𝑑𝑝𝜅

𝑑𝜆
+ Γ𝜅𝜇𝜈𝑝

𝜇𝑝𝜈 = 0 , (2.96)

which works for massless as well as massive particles.
Another way of writing this is

𝐷𝑝𝜅

𝐷𝜆
= 0 , (2.97)

where 𝐷/𝐷𝜆 is the covariant affine derivative

𝐷

𝐷𝜆
≡ 𝑝𝜈𝐷𝜈 . (2.98)

In the presence of torsion, the connection in the geodesic equation (2.96) should be interpreted as the
torsion-free connection Γ̊𝜅𝜇𝜈 , and the covariant derivative in equations (2.97) and (2.98) are torsion-free
covariant derivatives.

2.18 Affine distance

The freedom in the overall scaling of the affine parameter can be removed by setting it equal to the proper
distance near the observer in the observer’s locally inertial rest frame. With the scaling fixed in this fashion,
the affine parameter is called the affine distance, so called because it provides a measure of distance along
null geodesics. When you look at a scene with your eyes, you are looking along null geodesics, and the natural
measure of distance to objects that you see is the affine distance (Hamilton and Polhemus, 2010).
In special relativity, the affine distance coincides with the perceived (e.g. binocular) distance to objects.
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Exercise 2.9. Gravitational redshift in a stationary metric. Let 𝑥𝜇 ≡ {𝑡, 𝑥𝛼} constitute time 𝑡
and spatial coordinates 𝑥𝛼 of a spacetime. The metric 𝑔𝜇𝜈 is said to be stationary if it is independent of
the coordinate 𝑡. A comoving observer in the spacetime is one that is at rest in the spatial coordinates,
𝑑𝑥𝛼/𝑑𝜏 = 0.
1. Argue that the coordinate 4-velocity 𝑢𝜈 ≡ 𝑑𝑥𝜈/𝑑𝜏 of a comoving observer in a stationary spacetime is

𝑢𝜈 = {𝛾, 0, 0, 0} , 𝛾 ≡ 1√
−𝑔𝑡𝑡

. (2.99)

2. Argue that the proper energy 𝐸 of a particle, massless or massive, with energy-momentum 4-vector 𝑝𝜈

seen by a comoving observer with 4-velocity 𝑢𝜈 , equation (2.99), is

𝐸 = −𝑢𝜈𝑝𝜈 . (2.100)

3. Consider a particle, massless or massive, that follows a geodesic between two comoving observers. Since
the metric is independent of the time coordinate 𝑡, the covariant momentum 𝑝𝑡 is a constant of motion,
equation (4.50). Argue that the ratio 𝐸obs/𝐸em of the observed to emitted energies between two comoving
observers is

𝐸obs

𝐸em
=
𝛾obs
𝛾em

. (2.101)

4. Can comoving observers exist where 𝑔𝑡𝑡 is positive?

Exercise 2.10. Gravitational redshift in Rindler space. Rindler space is Minkowski space expressed in
the coordinates of uniformly accelerating observers, called Rindler observers. Rindler observers are precisely
the observers in the right quadrant of the spacetime wheel, Figure 1.14.
1. Start with Minkowski space in a Cartesian coordinate system {𝑡, 𝑥, 𝑦, 𝑧}. Define Rindler coordinates 𝛼, 𝑙

by

𝑡 = 𝑙 sinh𝛼 , 𝑥 = 𝑙 cosh𝛼 . (2.102)

Show that the line-element in Rindler coordinates is

𝑑𝑠2 = − 𝑙2𝑑𝛼2 + 𝑑𝑙2 + 𝑑𝑦2 + 𝑑𝑧2 . (2.103)

2. A Rindler observer is a comoving observer in Rindler space, one who follows a worldline of constant 𝑙,
𝑦, and 𝑧. Since Rindler spacetime is stationary, conclude that the ratio 𝐸obs/𝐸em of the observed to
emitted energies between two Rindler observers is, equation (2.101),

𝐸obs

𝐸em
=
𝑙em
𝑙obs

. (2.104)

3. Can Rindler space be considered equivalent to a spacetime containing a uniform gravitational field? Do
Rindler observers all accelerate at the same rate?
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Exercise 2.11. Gravitational redshift in a uniformly rotating space. Start with Minkowski space in
cylindrical coordinates {𝑡, 𝑟, 𝜑, 𝑧},

𝑑𝑠2 = − 𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑𝜑2 + 𝑑𝑧2 . (2.105)

Define a uniformly rotating azimuthal angle 𝜒 by

𝜒 ≡ 𝜑− 𝜔𝑡 , (2.106)

which is constant for observers who are at rest in a system rotating uniformly at angular velocity 𝜔. The
line-element in uniformly rotating coordinates is

𝑑𝑠2 = − 𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜒+ 𝜔 𝑑𝑡)2 + 𝑑𝑧2 . (2.107)

1. A comoving observer in the uniformly rotating system follows a worldline at constant 𝑟, 𝜒, and 𝑧. Since
the uniformly rotating spacetime is stationary, conclude that the ratio 𝐸obs/𝐸em of the observed to
emitted energies between two comoving observers is, equation (2.101),

𝐸obs

𝐸em
=
𝛾em
𝛾obs

, (2.108)

where

𝛾 =
1√

1− 𝑣2
, 𝑣 = 𝜔𝑟 . (2.109)

2. What happens where 𝑣 > 1?

Concept question 2.12. Can Minkoswki space rotate? Exercise 2.11 considered Minkowski space in
rotating coordinates. Can Minkowski space rotate globally? Answer. No. General relativity allows arbitrary
choices of coordinates, including choices that allow physical objects to move through the coordinates faster
than light. However, the choice of coordinates does not affect physical observables in any way. The metric
encodes locally inertial frames, determining what intervals are timelike, lightlike, or spacelike (𝑑𝑠2 less than,
equal to, or greater than zero). That locally inertial structure is independent of the choice of coordinates.
Objects cannot move through locally inertial frames than light. Thus Minkoswki spacetime does not rotate
globally, regardless of the choice of coordinates.

2.19 Riemann tensor

2.19.1 Riemann curvature tensor

The Riemann curvature tensor 𝑅𝜅𝜆𝜇𝜈 is defined by the commutator of the covariant derivative acting
on a 4-vector. In the presence of torsion,

[𝐷𝜅, 𝐷𝜆]𝐴𝜇 = 𝑆𝜈𝜅𝜆𝐷𝜈𝐴𝜇 +𝑅𝜅𝜆𝜇𝜈𝐴
𝜈 a coordinate tensor . (2.110)
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If torsion vanishes, as general relativity assumes, then the definition (2.110) reduces to

[𝐷𝜅, 𝐷𝜆]𝐴𝜇 = 𝑅𝜅𝜆𝜇𝜈𝐴
𝜈 a coordinate tensor . (2.111)

The expression (2.51) for the covariant derivative yields the following formula for the Riemann tensor in
terms of connection coefficients

𝑅𝜅𝜆𝜇𝜈 =
𝜕Γ𝜇𝜈𝜆
𝜕𝑥𝜅

− 𝜕Γ𝜇𝜈𝜅
𝜕𝑥𝜆

+ Γ𝜋𝜇𝜆Γ𝜋𝜈𝜅 − Γ𝜋𝜇𝜅Γ𝜋𝜈𝜆 a coordinate tensor . (2.112)

This is the formula that allows the Riemann tensor to be calculated from the connection coefficients. The
same formula (2.112) remains valid if torsion does not vanish, but the connection coefficients Γ𝜆𝜇𝜈 themselves
are given by (2.62) in place of (2.63).
In flat (Minkowski) space, covariant derivatives reduce to partial derivatives, 𝐷𝜅 → 𝜕/𝜕𝑥𝜅, and

[𝐷𝜅, 𝐷𝜆]→
[︂
𝜕

𝜕𝑥𝜅
,
𝜕

𝜕𝑥𝜆

]︂
= 0 in flat space (2.113)

so that 𝑅𝜅𝜆𝜇𝜈 = 0 in flat space.

Exercise 2.13. Derivation of the Riemann tensor. Confirm expression (2.112) for the Riemann tensor.
This is an exercise that any serious student of general relativity should do. However, you might like to defer
this rite of passage to Chapter 11, where Exercises 11.3–11.6 take you through the derivation and properties
of the tetrad-frame Riemann tensor.

2.19.2 Commutator of the covariant derivative acting on a general tensor

The commutator of the covariant derivative is of fundamental importance because it defines what is meant
by the field in gauge theories.
It has seen above that the commutator of the covariant derivative acting on a scalar defined the torsion

tensor, equation (2.57), which general relativity assumes vanishes, while the commutator of the covariant
derivative acting on a vector defined the Riemann tensor, equation (2.111). Does the commutator of the
covariant derivative acting on a general tensor introduce any other distinct tensor? No: the torsion and
Riemann tensors completely define the action of the commutator of the covariant derivative on any tensor.
Acting on a general tensor, the commutator of the covariant derivative is

[𝐷𝜅, 𝐷𝜆]𝐴
𝜋𝜌...
𝜇𝜈... = 𝑆𝜎𝜅𝜆𝐷𝜎𝐴

𝜋𝜌...
𝜇𝜈... +𝑅𝜅𝜆𝜇

𝜎𝐴𝜋𝜌...𝜎𝜈... +𝑅𝜅𝜆𝜈
𝜎𝐴𝜋𝜌...𝜇𝜎... −𝑅𝜅𝜆𝜎𝜋𝐴𝜎𝜌...𝜇𝜈... −𝑅𝜅𝜆𝜎𝜌𝐴𝜋𝜎...𝜇𝜈... . (2.114)

In more abstract notation, the commutator of the covariant derivative is the operator

[𝐷𝜅, 𝐷𝜆] = 𝑆𝜇𝜅𝜆𝐷𝜇 + �̂�𝜅𝜆 (2.115)

where the Riemann curvature operator �̂�𝜅𝜆 is an operator whose action on any tensor is specified by equa-
tion (2.114). The action of the operator �̂�𝜅𝜆 is analogous to that of the covariant derivative (2.52): there’s
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a positive 𝑅 term for each covariant index, and a negative 𝑅 term for each contravariant index. The action
of �̂�𝜅𝜆 on a scalar is zero, which reflects the fact that a scalar is unchanged by a Lorentz transformation.
The general expression (2.114) for the commutator of the covariant derivative reveals the meaning of the

torsion and Riemann tensors. The torsion and Riemann tensors describe respectively the displacement and the
Lorentz transformation experienced by an object when parallel-transported around a curve. Displacements
and Lorentz transformations together constitute the Poincaré group, the complete group of symmetries of
flat spacetime.
How can an object detect a displacement when parallel-transported around a curve? If you go around

a curve back to the same coordinate in spacetime where you began, won’t you necessarily be at the same
position? This is a question that goes to heart of the meaning of spacetime. To answer the question, you
have to consider how fundamental particles are able to detect position, orientation, and velocity. Classically,
particles may be structureless points, but quantum mechanically, particles possess frequency, wavelength,
spin, and (in the relativistic theory) boost, and presumably it is these properties that allow particles to
“measure” the properties of the spacetime in which they live. For example, a Dirac spinor (relativistic spin- 12
particle) Lorentz transforms under the fundamental (spin- 12 ) representation of the Lorentz group, and is
thus endowed with precisely the properties that allow it to “measure” boost and rotation, §14.10. The Dirac
wave equation shows that a Dirac spinor propagating through spacetime varies as ∼ 𝑒𝑖𝑝𝜇𝑥

𝜇

, whose phase
encodes the displacement of the Dirac spinor. Thus a Dirac spinor could potentially detect a displacement
through a change in its phase when parallel-transported around a curve back to the same point in spacetime.
Since a change in phase is indistinguishable from a spatial rotation about the spin axis of the Dirac spinor,
operationally torsion rotates particles, whence the name torsion.

2.19.3 No torsion

In the remainder of this Chapter, torsion will be assumed to vanish, as general relativity postulates. A
decomposition of the Riemann tensor into torsion-free and contortion parts is deferred to §11.18.

2.19.4 Symmetries of the Riemann tensor

In a locally inertial frame (necessarily, with vanishing torsion), the connection coefficients all vanish, Γ𝜆𝜇𝜈 = 0,
but their partial derivatives, which are proportional to second derivatives of the metric tensor, equation (2.63),
do not vanish. Thus in a locally inertial frame the Riemann tensor is

𝑅𝜅𝜆𝜇𝜈 =
𝜕Γ𝜇𝜈𝜆
𝜕𝑥𝜅

− 𝜕Γ𝜇𝜈𝜅
𝜕𝑥𝜆

=
1

2

(︂
𝜕2𝑔𝜇𝜈
𝜕𝑥𝜅𝜕𝑥𝜆

+
𝜕2𝑔𝜇𝜆
𝜕𝑥𝜅𝜕𝑥𝜈

− 𝜕2𝑔𝜈𝜆
𝜕𝑥𝜅𝜕𝑥𝜇

− 𝜕2𝑔𝜇𝜈
𝜕𝑥𝜆𝜕𝑥𝜅

− 𝜕2𝑔𝜇𝜅
𝜕𝑥𝜆𝜕𝑥𝜈

+
𝜕2𝑔𝜈𝜅
𝜕𝑥𝜆𝜕𝑥𝜇

)︂
=

1

2

(︂
𝜕2𝑔𝜇𝜆
𝜕𝑥𝜅𝜕𝑥𝜈

− 𝜕2𝑔𝜈𝜆
𝜕𝑥𝜅𝜕𝑥𝜇

− 𝜕2𝑔𝜇𝜅
𝜕𝑥𝜆𝜕𝑥𝜈

+
𝜕2𝑔𝜈𝜅
𝜕𝑥𝜆𝜕𝑥𝜇

)︂
. (2.116)

You can check that the bottom line of equation (2.116):
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1. is antisymmetric in 𝜅↔ 𝜆,
2. is antisymmetric in 𝜇↔ 𝜈,
3. is symmetric in 𝜅𝜆↔ 𝜇𝜈,
4. has the property that the sum of the cyclic permutations of the last three (or first three, or indeed any

three) indices vanishes

𝑅𝜅𝜆𝜇𝜈 +𝑅𝜅𝜈𝜆𝜇 +𝑅𝜅𝜇𝜈𝜆 = 0 . (2.117)

Actually, as shown in Exercise 11.6, the third, symmetric, symmetry is a consequence of the fourth, cyclic
symmetry. The first three of the four symmetries can be expressed compactly

𝑅𝜅𝜆𝜇𝜈 = 𝑅([𝜅𝜆][𝜇𝜈]) , (2.118)

in which [ ] denotes antisymmetrization and ( ) symmetrization, as in

𝐴[𝜅𝜆] ≡ 1
2 (𝐴𝜅𝜆 −𝐴𝜆𝜅) , 𝐴(𝜅𝜆) ≡ 1

2 (𝐴𝜅𝜆 +𝐴𝜆𝜅) . (2.119)

The symmetries (2.118) imply that the Riemann tensor is a symmetric matrix of antisymmetric matrices. An
antisymmetric tensor is also known as a bivector, much more about which you can discover in Chapter 13
on the geometric algebra. An antisymmetric matrix, or bivector, in 4 dimensions has 6 degrees of freedom.
A symmetric matrix of bivectors is a 6 × 6 symmetric matrix, which has 21 degrees of freedom. The final,
cyclic symmetry of the Riemann tensor, equation (2.117), which can be abbreviated

𝑅𝜅[𝜆𝜇𝜈] = 0 , (2.120)

removes 1 further degree of freedom. Thus the Riemann tensor has a net 20 degrees of freedom.
Although the above symmetries were derived in a locally inertial frame, the fact that the Riemann tensor

is a tensor means that the symmetries hold in any frame. If you prefer, you can add back the products of
connection coefficients in equation (2.112), and check that the claimed symmetries remain.
Some of the symmetries of the Riemann tensor persist when torsion is present, and others do not. The

relation between symmetries of the Riemann tensor and torsion is deferred to Exercises 11.4–11.6.

2.20 Ricci tensor, Ricci scalar

The Ricci tensor 𝑅𝜅𝜇 and Ricci scalar 𝑅 are the essentially unique contractions of the Riemann curvature
tensor. The Ricci tensor, the compressive part of the Riemann tensor, is

𝑅𝜅𝜇 ≡ 𝑔𝜆𝜈𝑅𝜅𝜆𝜇𝜈 a coordinate tensor . (2.121)

If torsion vanishes as general relativity assumes, then the Ricci tensor is symmetric

𝑅𝜅𝜇 = 𝑅𝜇𝜅 (2.122)

and therefore has 10 independent components.
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The Ricci scalar is

𝑅 ≡ 𝑔𝜅𝜇𝑅𝜅𝜇 a coordinate tensor (a scalar) . (2.123)

2.21 Einstein tensor

The Einstein tensor 𝐺𝜅𝜇 is defined by

𝐺𝜅𝜇 ≡ 𝑅𝜅𝜇 − 1
2 𝑔𝜅𝜇𝑅 a coordinate tensor . (2.124)

For vanishing torsion, the symmetry of the Ricci and metric tensors imply that the Einstein tensor is likewise
symmetric

𝐺𝜅𝜇 = 𝐺𝜇𝜅 , (2.125)

and thus has 10 independent components.

2.22 Bianchi identities

The Jacobi identity

[𝐷𝜅, [𝐷𝜆, 𝐷𝜇]] + [𝐷𝜆, [𝐷𝜇, 𝐷𝜅]] + [𝐷𝜇, [𝐷𝜅, 𝐷𝜆]] = 0 (2.126)

implies the Bianchi identities which, for vanishing torsion, are

𝐷𝜅𝑅𝜆𝜇𝜈𝜋 +𝐷𝜆𝑅𝜇𝜅𝜈𝜋 +𝐷𝜇𝑅𝜅𝜆𝜈𝜋 = 0 . (2.127)

The torsion-free Bianchi identities can be written in shorthand

𝐷[𝜅𝑅𝜆𝜇]𝜈𝜋 = 0 . (2.128)

The Bianchi identities constitute a set of differential relations between the components of the Riemann
tensor, which are distinct from the algebraic symmetries of the Riemann tensor. There are 4 ways to pick
[𝜅𝜆𝜇], and 6 ways to pick antisymmetric 𝜈𝜋, giving 4 × 6 = 24 Bianchi identities, but 4 of the identities,
𝐷[𝜅𝑅𝜆𝜇𝜈]𝜋 = 0, are implied by the cyclic symmetry (2.120), which is a consequence of vanishing torsion.
Thus there are 24−4 = 20 non-trivial torsion-free Bianchi identities on the 20 components of the torsion-free
Riemann tensor.

Exercise 2.14. Jacobi identity. Prove the Jacobi identity (2.126).
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2.23 Covariant conservation of the Einstein tensor

The most important consequence of the torsion-free Bianchi identities (2.128) is obtained from the double
contraction

𝑔𝜅𝜈𝑔𝜆𝜋 (𝐷𝜅𝑅𝜆𝜇𝜈𝜋 +𝐷𝜆𝑅𝜇𝜅𝜈𝜋 +𝐷𝜇𝑅𝜅𝜆𝜈𝜋) = −𝐷𝜅𝑅𝜅𝜇 −𝐷𝜆𝑅𝜆𝜇 +𝐷𝜇𝑅 = 0 , (2.129)

or equivalently

𝐷𝜅𝐺𝜅𝜇 = 0 , (2.130)

where 𝐺𝜅𝜇 is the Einstein tensor, equation (2.124). Equation (2.130) is a primary motivation for the form
of the Einstein equations, since it implies energy-momentum conservation, equation (2.132). It is worth
remarking that the derivation of the contracted Bianchi identities (3.7) holds in arbitrarily many spacetime
dimensions, so the factor of 1

2 multiplying the Ricci scalar 𝑅 in the definition (2.124) of the Einstein tensor
holds in arbitrarily many spacetime dimensions, not just 4.

2.24 Einstein equations

Einstein’s equations are

𝐺𝜅𝜇 = 8𝜋𝐺𝑇𝜅𝜇 a coordinate tensor equation . (2.131)

What motivates the form of Einstein’s equations?
1. The equation is generally covariant.

2. For vanishing torsion, the Bianchi identities (2.128) guarantee covariant conservation of the Einstein
tensor, equation (2.130), which in turn guarantees covariant conservation of energy-momentum,

𝐷𝜅𝑇𝜅𝜇 = 0 . (2.132)

3. The Einstein tensor depends on the lowest (second) order derivatives of the metric tensor that do not
vanish in a locally inertial frame.

In Chapter 16, the Einstein equations will be derived from an action principle. Although Einstein derived his
equations from considerations of theoretical elegance, the real justification for them is that they reproduce
observation.
Einstein’s equations (2.131) constitute a complete set of gravitational equations, generalizing Poisson’s

equation of Newtonian gravity. However, Einstein’s equations by themselves do not constitute a closed set
of equations: in general, other equations, such as Maxwell’s equations of electromagnetism, and equations
describing the microphysics of the energy-momentum, must be adjoined to form a closed set.
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Exercise 2.15. Einstein tensor in 3 or more dimensions. What is the Einstein tensor in 𝑁 ≥ 3

spacetime dimensions?
Solution. The Einstein tensor must be covariantly conserved to ensure that its source, energy-momentum,
is covariantly conserved. The doubly-contracted Bianchi identities (3.7) hold as long as there are at least 3
spacetime dimensions. In 𝑁 = 2 spacetime dimensions, there are zero Bianchi identities (2.128), since there
are zero ways of picking 3 distinct indices. Thus the expression (2.124) for the Einstein tensor holds in any
number 𝑁 ≥ 3 of spacetime dimensions. See §11.19 for general relativity in 2 spacetime dimensions.

2.25 Summary of the path from metric to the energy-momentum tensor

1. Start by defining the metric 𝑔𝜇𝜈 .

2. Compute the connection coefficients Γ𝜆𝜇𝜈 from equation (2.63).

3. Compute the Riemann tensor 𝑅𝜅𝜆𝜇𝜈 from equation (2.112).

4. Compute the Ricci tensor 𝑅𝜅𝜇 from equation (2.121), the Ricci scalar 𝑅 from equation (2.123), and the
Einstein tensor 𝐺𝜅𝜇 from equation (2.124).

5. The Einstein equations (2.131) then imply the energy-momentum tensor 𝑇𝜅𝜇.
The path from metric to energy-momentum tensor is straightforward to program on a computer, but

the results are typically messy and complicated, even for fairly simple spacetimes. Inverting the path to
recover the metric from a given energy-momentum content is typically highly non-trivial, the subject of a
vast literature.
The great majority of metrics 𝑔𝜇𝜈 yield an energy-momentum tensor 𝑇𝜅𝜇 that cannot be achieved with

normal matter.

2.26 Energy-momentum tensor of a perfect fluid

The simplest non-trivial energy-momentum tensor is that of a perfect fluid. In this case 𝑇𝜇𝜈 is taken to be
isotropic in the locally inertial rest frame of the fluid, taking the form

𝑇𝜇𝜈 =

⎛⎜⎜⎝
𝜌 0 0 0

0 𝑝 0 0

0 0 𝑝 0

0 0 0 𝑝

⎞⎟⎟⎠ (2.133)

where

𝜌 is the proper mass-energy density ,
𝑝 is the proper pressure .

(2.134)
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The expression (2.133) is valid only in the locally inertial rest frame of the fluid. An expression that is valid
in any frame is

𝑇𝜇𝜈 = (𝜌+ 𝑝)𝑢𝜇𝑢𝜈 + 𝑝 𝑔𝜇𝜈 , (2.135)

where 𝑢𝜇 is the 4-velocity of the fluid. Equation (2.135) is valid because it is a tensor equation, and it is true
in the locally inertial rest frame, where 𝑢𝜇 = {1, 0, 0, 0}.

2.27 Newtonian limit

The Newtonian limit is obtained in the limit of a weak gravitational field and non-relativistic (pressureless)
matter. In Cartesian coordinates, the metric in the Newtonian limit is (see Chapter 27)

𝑑𝑠2 = − (1 + 2Φ)𝑑𝑡2 + (1− 2Φ)(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) , (2.136)

in which

Φ(𝑥, 𝑦, 𝑧) = Newtonian potential (2.137)

is a function only of the spatial coordinates 𝑥, 𝑦, 𝑧, not of time 𝑡.
For this metric, to first order in the potential Φ the only non-vanishing component of the Einstein tensor

is the time-time component

𝐺𝑡𝑡 = 2∇2Φ , (2.138)

where∇2 = 𝜕2/𝜕𝑥2+𝜕2/𝜕𝑦2+𝜕2/𝜕𝑧2 is the usual 3-dimensional Laplacian operator. This component (2.138)
of the Einstein tensor plugged into Einstein’s equations (2.131) implies Poisson’s equation (2.4).

Exercise 2.16. Special and general relativistic corrections for clocks on satellites. The metric just
above the surface of the Earth is well-approximated by

𝑑𝑠2 = − (1 + 2Φ)𝑑𝑡2 + (1− 2Φ)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2𝜃 𝑑𝜑2) , (2.139)

where

Φ(𝑟) = −𝐺𝑀
𝑟

(2.140)

is the familiar Newtonian gravitational potential.
1. Proper time. Consider an object at fixed radius 𝑟, moving along the equator 𝜃 = 𝜋/2 with constant

non-relativistic velocity 𝑟 𝑑𝜑/𝑑𝑡 = 𝑣. Compare the proper time of this object with that at rest at infinity.
[Hint: Work to first order in the potential Φ. Regard 𝑣2 as first order in Φ. Why is that reasonable?]

2. Orbits. Consider a satellite in orbit about the Earth. The conservation of energy 𝐸 per unit mass,
angular momentum 𝐿 per unit mass, and rest mass per unit mass are expressed by (§4.8)

𝑢𝑡 = −𝐸 , 𝑢𝜑 = 𝐿 , 𝑢𝜇𝑢
𝜇 = −1 . (2.141)
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For equatorial orbits, 𝜃 = 𝜋/2, show that the radial component 𝑢𝑟 of the 4-velocity satisfies

𝑢𝑟 =
√︀

2(Δ𝐸 − 𝑈) , (2.142)

where Δ𝐸 is the energy per unit mass of the particle excluding its rest mass energy,

Δ𝐸 = 𝐸 − 1 , (2.143)

and the effective potential 𝑈 is

𝑈 = Φ+
𝐿2

2𝑟2
. (2.144)

[Hint: Neglect air resistance. Remember to work to first order in Φ. Treat Δ𝐸 and 𝐿2 as first order in
Φ. Why is that reasonable?]

3. Circular orbits. From the condition that the potential 𝑈 be an extremum, find the circular orbital
velocity 𝑣 = 𝑟 𝑑𝜑/𝑑𝑡 of a satellite at radius 𝑟.

4. Special and general relativistic corrections for satellites. Compare the proper time of a satellite
in circular orbit to that of a person at rest at infinity. Express your answer in the form

𝑑𝜏satellite
𝑑𝑡

− 1 = −Φ⊕ (𝑓GR + 𝑓SR) , (2.145)

where 𝑓GR and 𝑓SR are the general relativistic and special relativistic corrections, and Φ⊕ is the dimen-
sionless gravitational potential at the surface of the Earth,

Φ⊕ = −𝐺𝑀⊕
𝑐2𝑅⊕

. (2.146)

What is the value of Φ⊕ in milliseconds per year?
5. Special and general relativistic corrections for satellites vs. Earth observer. Compare the

proper time of a satellite in circular orbit to that of a person on Earth at one of the poles (so the person
has no motion from the Earth’s rotation). Express your answer in the form

𝑑𝜏satellite
𝑑𝑡

− 𝑑𝜏person
𝑑𝑡

= −Φ⊕ (𝑓GR + 𝑓SR) . (2.147)

At what satellite radius 𝑟, in units of Earth radius 𝑅⊕, do the special and general relativistic corrections
cancel?

6. Special and general relativistic corrections for ISS and GPS satellites.What are the corrections
(be careful to get the sign right!) in units of Φ⊕, and in units of msyr−1, for (i) a satellite in low Earth
orbit, such as the International Space Station; (ii) a nearly geostationary satellite, such as a GPS
satellite? Google the numbers that you may need.

Exercise 2.17. Equations of motion in weak gravity. Take the metric to be the Newtonian met-
ric (2.136) with the Newtonian potential Φ(𝑥, 𝑦, 𝑧) a function only of the spatial coordinates 𝑥, 𝑦, 𝑧, not of
time 𝑡, equation (2.137).
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1. Confirm that the non-zero connection coefficients are (coefficients as below but with the last two indices
swapped are the same by the no-torsion condition Γ𝜅𝜇𝜈 = Γ𝜅𝜈𝜇)

Γ𝑡𝑡𝛼 = Γ𝛼𝑡𝑡 = Γ𝛼𝛽𝛽 = −Γ𝛽𝛽𝛼 = −Γ𝛼𝛼𝛼 =
𝜕Φ

𝜕𝑥𝛼
(𝛼 ̸= 𝛽 = 𝑥, 𝑦, 𝑧) . (2.148)

[Hint: Work to linear order in Φ.]

2. Consider a massive, non-relativistic particle moving with 4-velocity 𝑢𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜏 = {𝑢𝑡, 𝑢𝑥, 𝑢𝑦, 𝑢𝑧}.
Show that 𝑢𝜇𝑢𝜇 = −1 implies that

𝑢𝑡 = 1 +
1

2
𝑢2 − Φ , (2.149)

whereas

𝑢𝑡 = −
(︂
1 +

1

2
𝑢2 +Φ

)︂
(2.150)

where 𝑢 ≡
[︀
(𝑢𝑥)2 + (𝑢𝑦)2 + (𝑢𝑧)2

]︀1/2
. One of 𝑢𝑡 or 𝑢𝑡 is constant. Which one? [Hint: Work to linear

order in Φ. Note that 𝑢2 is of linear order in Φ.]

3. Equation of motion of a massive particle. From the geodesic equation

𝑑𝑢𝜅

𝑑𝜏
+ Γ𝜅𝜇𝜈𝑢

𝜇𝑢𝜈 = 0 (2.151)

show that
𝑑𝑢𝛼

𝑑𝑡
= − 𝜕Φ

𝜕𝑥𝛼
𝛼 = 𝑥, 𝑦, 𝑧 . (2.152)

Why is it legitimate to replace 𝑑𝜏 by 𝑑𝑡? Show further that

𝑑𝑢𝑡

𝑑𝑡
= − 2𝑢𝛼

𝜕Φ

𝜕𝑥𝛼
(2.153)

with implicit summation over 𝛼 = 𝑥, 𝑦, 𝑧. Does the result agree with what you would expect from
equation (2.149)?

4. For a massless particle, the proper time along a geodesic is zero, and the affine parameter 𝜆 must be
used instead of the proper time. The 4-velocity of a massless particle can be defined to be (and really
this is just the 4-momentum 𝑝𝜇 up to an arbitrary overall factor) 𝑣𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜆 = {𝑣𝑡, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧}. Show
that 𝑣𝜇𝑣𝜇 = 0 implies that

𝑣𝑡 = (1− 2Φ)𝑣 , (2.154)

whereas

𝑣𝑡 = −𝑣 , (2.155)

where 𝑣 ≡
[︀
(𝑣𝑥)2 + (𝑣𝑦)2 + (𝑣𝑧)2

]︀1/2
. One of 𝑣𝑡 or 𝑣𝑡 is constant. Which one?
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5. Equation of motion of a massless particle. From the geodesic equation

𝑑𝑣𝜅

𝑑𝜆
+ Γ𝜅𝜇𝜈𝑣

𝜇𝑣𝜈 = 0 (2.156)

show that the spatial components 𝑣 ≡ {𝑣𝑥, 𝑣𝑦, 𝑣𝑧} satisfy

𝑑𝑣

𝑑𝜆
= 2𝑣 × (𝑣 ×∇Φ) , (2.157)

where boldface symbols represent 3D vectors, and in particular ∇Φ is the spatial 3D gradient ∇Φ ≡
𝜕Φ/𝜕𝑥𝛼 = {𝜕Φ/𝜕𝑥, 𝜕Φ/𝜕𝑦, 𝜕Φ/𝜕𝑧}.

6. Interpret your answer, equation (2.157). In what ways does this equation for the acceleration of photons
differ from the equation governing the acceleration of massive particles? [Hint: Without loss of generality,
the affine parameter can be normalized so that the photon speed is one, 𝑣 = 1, so that 𝑣 is a unit vector
representing the direction of the photon.]

7. Consider an observer who happens to be at rest in the Newtonian metric, so that 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0.
Argue that the energy of a photon observed by this observer, relative to an observer at rest at zero
potential, is

− 𝑢𝜇𝑣𝜇 = 1− Φ . (2.158)

Does the observed photon have higher or lower energy in a deeper potential well?

Exercise 2.18. Deflection of light by the Sun.

1. Consider light that passes by a spherical mass 𝑀 sufficiently far away that the potential Φ is always
weak. The potential at distance 𝑟 from the spherical mass can be approximated by the Newtonian
potential

Φ = − 𝐺𝑀

𝑟
. (2.159)

Approximate the unperturbed path of light past the mass as a straight line. The plan is to calculate
the deflection as a perturbation to the straight line (physicists call this the Born approximation). For
definiteness, take the light to be moving in the 𝑥-direction, offset by a constant amount 𝑦 away from
the mass in the 𝑦-direction (so 𝑦 is the impact parameter, or periapsis). Argue that equation (2.157)
becomes

𝑑𝑣𝑦

𝑑𝜆
= 𝑣𝑥

𝑑𝑣𝑦

𝑑𝑥
= − 2 (𝑣𝑥)2

𝜕Φ

𝜕𝑦
. (2.160)

Integrate this equation to show that

Δ𝑣𝑦

𝑣𝑥
= − 4𝐺𝑀

𝑦
. (2.161)

Argue that this equals the deflection angle Δ𝜑.

2. Calculate the predicted deflection angle Δ𝜑 in arcseconds for light that just grazes the limb of the Sun.
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Exercise 2.19. Shapiro time delay. The three classic tests of general relativity are the gravitational
redshift (Exercise 2.9), the gravitational bending of light around the Sun (Exercise 2.18), and the precession
of Mercury (Exercise 7.9). Shapiro (1964) pointed out a fourth test, that the round-trip time for a light
beam bounced off a planet or spacecraft would be lengthened slightly by the passage of the light through
the gravitational potential of the Sun. The experiment could be done with radio signals, since the Sun does
not overwhelm a radio signal passing near its limb. In Exercise 2.17 you showed that the time component of
the 4-velocity 𝑣𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜆 of a massless particle moving through a weak gravitational potential Φ is (units
𝑐 = 1)

𝑣𝜇 ≡
{︂
𝑑𝑡

𝑑𝜆
,
𝑑𝑥

𝑑𝜆

}︂
= {𝑣𝑡,𝑣} = {1− 2Φ,𝑣} , (2.162)

where 𝑣 is a 3-vector of unit magnitude. Equation (2.162) implies that

𝑑𝑡

𝑑𝑙
= 1− 2Φ , (2.163)

where 𝑑𝑙 ≡ |𝑑𝑥| is the magnitude of the 3-vector interval 𝑑𝑥. The Shapiro time delay comes from the 2Φ

correction.
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Figure 2.6 A person on Earth sends out a radio signal that passes by the Sun, bounces off the planet Venus, and

returns to Earth.

1. Time delay. The potential Φ at distance 𝑟 from the Sun is

Φ = −𝐺M⊙
𝑟

. (2.164)

Assume that the path of the light can be well-approximated as a straight line, as illustrated in Figure 2.6.
Show that the round-trip time Δ𝑡 is, with units of 𝑐 restored,

Δ𝑡 =
2

𝑐
(𝑙E + 𝑙V) +

4𝐺M⊙
𝑐3

ln

[︂
(𝑟E + 𝑙E)(𝑟V + 𝑙V)

𝑏2

]︂
, (2.165)

where, as illustrated in Figure 2.6, 𝑟E and 𝑟V are the distances of Earth and Venus from the Sun, 𝑏 is the
impact parameter, and 𝑙E and 𝑙V are the distances of Earth and Venus from the point of closest approach.
The first term in equation (2.165) is the Newtonian expectation, while the last term in equation (2.165)
is the Shapiro term.
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2. Shapiro time delay for the Earth-Venus-Sun system. Evaluate the Shapiro time delay, in mil-
liseconds, for the Earth-Venus-Sun system when the radio signal just grazes the limb of the Sun,
with 𝑏 = R⊙. [Hint: The Earth-Sun distance is 𝑟E = 1.496 × 1011 m, while the Venus-Sun distance
is 𝑟V = 1.082× 1011 m.]

3. Change in the time delay as the planets orbit. Assume that Earth and Venus are in circular orbit
about the Sun (so 𝑟E and 𝑟V are constant). What are the derivatives 𝑑𝑙E/𝑑𝑏 and 𝑑𝑙V/𝑑𝑏, in terms of 𝑙E,
𝑙V, and 𝑏? Deduce an expression for 𝑐 𝑑Δ𝑡/𝑑𝑏. Identify which is the Newtonian contribution, and which
the Shapiro contribution. Among the terms in the Shapiro contribution, which one term dominates for
small impact parameters, where 𝑏≪ 𝑟E and 𝑏≪ 𝑟V?

4. Relative sizes of Newtonian and Shapiro terms. From your results in part (c), calculate approx-
imately the relative sizes of the Newtonian and Shapiro contributions to the variation 𝑐 𝑑Δ𝑡/𝑑𝑏 of the
time delay when the radio signal just grazes the limb of the Sun, 𝑏 = R⊙. Comment.

Exercise 2.20. Gravitational lensing. In Exercise 2.18 you found that, in the weak field limit, light
passing a spherical mass 𝑀 at impact parameter 𝑦 is deflected by angle

Δ𝜑 =
4𝐺𝑀

𝑦𝑐2
. (2.166)

1. Lensing equation. Argue that the deflection angle Δ𝜑 is related to the angles 𝛼 and 𝛽 illustrated in
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Figure 2.7 Lensing diagram.

the lensing diagram in Figure 2.7 by

𝛼𝐷S = 𝛽𝐷S +Δ𝜑𝐷LS . (2.167)
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Lens

Source

Image

image
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Figure 2.8 The appearance of a source lensed by a point lens. The lens in this case is a black hole, whose physical size

is the filled circle, and whose apparent (lensed) size is the surrounding unfilled circle. However, any mass, not just a

black hole, will lens a background source.

Hence or otherwise obtain the “lensing equation” in the form commonly used by astronomers

𝛽 = 𝛼− 𝛼2
E

𝛼
, (2.168)

where

𝛼E =

(︂
4𝐺𝑀

𝑐2
𝐷LS

𝐷L𝐷S

)︂1/2

. (2.169)

2. Solutions. Equation (2.168) has two solutions for the apparent angles 𝛼 in terms of 𝛽. What are they?
Sketch both solutions on a lensing diagram similar to Figure 2.7.

3. Magnification. Figure 2.8 illustrates the appearance of a finite-sized source lensed by a point gravita-
tional lens. If the source is far from the lens, then the source redshift is unchanged by the gravitational
lensing. But the distortion changes the apparent brightness of the source by a magnification 𝜇 equal to
the ratio of the apparent area of the lensed source to that of the unlensed source. For a small source,
the ratio of areas is

𝜇 =
𝑦A 𝑑𝑦A
𝑦S 𝑑𝑦S

. (2.170)

What is the magnification of a small source in terms of 𝛼 and 𝛼E? When is the magnification largest?
4. Einstein ring around the Sun? The case 𝛼 = 𝛼E evidently corresponds to the case where the source

is exactly behind the lens, 𝛽 = 0. In this case the lensed source appears as an “Einstein ring” of light
around the lens. Could there be an Einstein ring around the Sun, as seen from Earth?

5. Einstein ring around SgrA*.What is the maximum possible angular size of an Einstein ring around
the 4× 106 M⊙ black hole at the center of our Milky Way, 8 kpc away? Might this be observable?
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More on the coordinate approach

3.1 Weyl tensor

The trace-free, or tidal, part of the Riemann curvature tensor defines the Weyl tensor 𝐶𝜅𝜆𝜇𝜈

𝐶𝜅𝜆𝜇𝜈 ≡ 𝑅𝜅𝜆𝜇𝜈 − 1
2 (𝑔𝜅𝜇𝑅𝜆𝜈 − 𝑔𝜅𝜈𝑅𝜆𝜇 + 𝑔𝜆𝜈𝑅𝜅𝜇 − 𝑔𝜆𝜇𝑅𝜅𝜈) + 1

6 (𝑔𝜅𝜇𝑔𝜆𝜈 − 𝑔𝜅𝜈𝑔𝜆𝜇)𝑅 a coordinate tensor .

(3.1)
The Weyl tensor is by construction trace-free, meaning that it vanishes on contraction of any two indices,
which is true with or without torsion.
If torsion vanishes as general relativity assumes, then the Weyl tensor has 10 independent components,

which together with the 10 components of the Ricci tensor account for the 20 distinct components of the
Riemann tensor. The Weyl tensor 𝐶𝜅𝜆𝜇𝜈 inherits the symmetries (2.118) of the Riemann tensor, which for
vanishing torsion are

𝐶𝜅𝜆𝜇𝜈 = 𝐶([𝜅𝜆][𝜇𝜈]) . (3.2)

Whereas the Einstein tensor 𝐺𝜅𝜇 necessarily vanishes in a region of spacetime where there is no energy-
momentum, 𝑇𝜅𝜇 = 0, the Weyl tensor does not. The Weyl tensor expresses the presence of tidal gravitational
forces, and of gravitational waves.
If torsion does not vanish, then the Weyl tensor has 20 independent components, which together with the

16 components of the Ricci tensor account for the 36 distinct components of the Riemann tensor with torsion.
The 6 antisymmetric components 𝐺[𝜅𝜇] of the Einstein tensor vanish if torsion vanishes, and likewise the 10
antisymmetric components 𝐶[[𝜅𝜆][𝜇𝜈]] of the Weyl tensor vanish if torsion vanishes. With or without torsion,
the 10 symmetric components 𝐶([𝜅𝜆][𝜇𝜈]) of the Weyl tensor encode gravitational waves that propagate in
empty space.

Exercise 3.1. Weyl tensor in arbitrary dimensions. What is the Weyl tensor in 𝑁 spacetime dimen-
sions?
Solution. The Weyl tensor is the trace-free part of the Riemann tensor. In 𝑁 spacetime dimensions it is
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given by the same expression (3.1) but with different coefficients,

𝐶𝜅𝜆𝜇𝜈 ≡ 𝑅𝜅𝜆𝜇𝜈 −
1

𝑁 − 2
(𝑔𝜅𝜇𝑅𝜆𝜈 − 𝑔𝜅𝜈𝑅𝜆𝜇 + 𝑔𝜆𝜈𝑅𝜅𝜇 − 𝑔𝜆𝜇𝑅𝜅𝜈) +

1

(𝑁 − 1)(𝑁 − 2)
(𝑔𝜅𝜇𝑔𝜆𝜈 − 𝑔𝜅𝜈𝑔𝜆𝜇)𝑅 .

(3.3)
The Weyl tensor vanishes identically in 𝑁 = 2 and 3 spacetime dimensions.

Exercise 3.2. Number of components of the Riemann, Ricci, and Weyl tensors in arbitrary

dimensions. How many components do the Riemann, Ricci, and Weyl tensors have in 𝑁 spacetime dimen-
sions?
Solution. The number of components depends on the total number 𝑁 of spacetime dimensions, regardless
of how many of those dimensions are timelike or spacelike. With torsion, the Riemann tensor is a matrix of
bivectors. If torsion vanishes, the cyclic symmetry (2.120) imposes 1

6𝑁
2(𝑁−1)(𝑁−2) conditions. Thus the

number of components components of the Riemann tensor with and without torsion is

Riemann torsion-full:
(︀
1
2𝑁(𝑁 − 1)

)︀2
, (3.4a)

Riemann torsion-free: 1
12 (𝑁 + 1)𝑁2(𝑁 − 1) . (3.4b)

The Ricci tensor is the trace-full part of the Riemann tensor. In 𝑁 ≥ 3 spacetime dimensions, the Ricci
tensor with torsion is a matrix of vectors, and without torsion is a symmetric matrix of vectors. Thus the
number of components of the Ricci tensor with and without torsion is

Ricci torsion-full: 𝑁2 , (3.5a)

Ricci torsion-free: 1
2 (𝑁 + 1)𝑁 . (3.5b)

The Weyl tensor is the trace-free part of the Riemann tensor. The number of Weyl components is the
difference between the number of Riemann and Ricci components, which with and without torsion is, in
𝑁 ≥ 3 spacetime dimensions,

Weyl torsion-full: 1
4 (𝑁 + 1)𝑁2(𝑁 − 3) , (3.6a)

Weyl torsion-free: 1
12 (𝑁 + 2)(𝑁 + 1)𝑁(𝑁 − 3) . (3.6b)

Equations (3.5) and (3.6) hold only for 𝑁 ≥ 3. For 𝑁 = 2, the Riemann tensor has 1 component, the Ricci
tensor 1 component, and the Weyl tensor 0 components, equation (11.92).

3.2 Evolution equations for the Weyl tensor, and gravitational waves

This section shows how the evolution equations for the Weyl tensor resemble Maxwell’s equations for the
electromagnetic field, and how the Weyl tensor encodes gravitational waves. In this section, torsion is taken
to vanish, as general relativity assumes.
Contracted on one index, the torsion-free Bianchi identities (2.127) are

𝐷[𝜅𝑅𝜆𝜇]𝜈
𝜅 = 𝐷𝜅𝑅𝜆𝜇𝜈

𝜅 +𝐷𝜆𝑅𝜇𝜈 −𝐷𝜈𝑅𝜆𝜈 = 0 . (3.7)



92 More on the coordinate approach

In 4-dimensional spacetime, there are 20 such independent contracted identities, consisting of 4 trace iden-
tities obtained by contracting over 𝜆𝜈, and 16 trace-free identities. Since this is the same as the number of
independent torsion-free Bianchi identities, it follows that the contracted Bianchi identities (3.7) are equiva-
lent to the full set of Bianchi identities (2.128). An explicit expression for the Bianchi identities in terms of
the contracted Bianchi identities is, in 4-dimensions (in 5 or higher dimensions there are additional terms),

𝐷[𝜅𝑅𝜆𝜇]
𝜈𝜋 =

(︀
18 𝛿𝜌[𝜅𝛿

𝜎
𝜆𝛿

[𝜈
𝜇]𝛿

𝜋]
𝜏 + 9 𝛿𝜌𝜏 𝛿

𝜎
[𝜅𝛿

𝜈
𝜆𝛿
𝜋
𝜇]

)︀
𝐷[𝜐𝑅𝜌𝜎]

𝜏𝜐 (4D spacetime) . (3.8)

If the Riemann tensor is separated into its trace (Ricci) and traceless (Weyl) parts, equation (3.1), then the
contracted Bianchi identities (3.7) become the Weyl evolution equations

𝐷𝜅𝐶𝜅𝜆𝜇𝜈 = 𝐽𝜆𝜇𝜈 , (3.9)

where 𝐽𝜆𝜇𝜈 is the Weyl current

𝐽𝜆𝜇𝜈 ≡ 1
2 (𝐷𝜇𝐺𝜆𝜈 −𝐷𝜈𝐺𝜆𝜇)− 1

6 (𝑔𝜆𝜈𝐷𝜇𝐺− 𝑔𝜆𝜇𝐷𝜈𝐺) . (3.10)

The Weyl evolution equations (3.9) can be regarded as the gravitational analogue of Maxwell’s equations of
electromagnetism.
The Weyl current 𝐽𝜆𝜇𝜈 is a vector of bivectors, which would suggest that it has 4 × 6 = 24 components,

but it loses 4 of those components because of the cyclic identity (2.117), valid for vanishing torsion, which
implies the cyclic symmetry

𝐽[𝜆𝜇𝜈] = 0 . (3.11)

Thus the torsion-free Weyl current 𝐽𝜆𝜇𝜈 has 20 independent components, in agreement with the above
assertion that there are 20 independent torsion-free contracted Bianchi identities. Since the Weyl tensor is
traceless, contracting the Weyl evolution equations (3.9) on 𝜆𝜇 yields zero on the left hand side, so that the
contracted Weyl current satisfies

𝐽𝜆𝜆𝜈 = 0 . (3.12)

This doubly-contracted Bianchi identity, which is the same as equation (2.130), enforces conservation of
energy-momentum. Unlike the cyclic symmetry (3.11), which follows from the cyclic symmetry of the Rie-
mann tensor and is not a differential condition on the Riemann tensor, equations (3.12) constitute a non-
trivial set of 4 differential conditions on the Einstein tensor. Besides the algebraic relations (3.11) and (3.12),
the Weyl current satisfies 6 differential identities comprising the conservation law

𝐷𝜆𝐽𝜆𝜇𝜈 = 0 (3.13)

in view of equation (3.9) and the antisymmetry of 𝐶𝜅𝜆𝜇𝜈 with respect to the indices 𝜅𝜆. The Weyl current
conservation law (3.13) follows from the form (3.10) of the Weyl current, coupled with covariant conservation
of the Einstein tensor, equation (2.130), so does not impose any additional non-trivial conditions on the
Riemann tensor. The Weyl current conservation law (3.13) is the gravitational analogue of the conservation
law for electric current that follows from Maxwell’s equations.
Whereas the Einstein equations relating the Einstein tensor to the energy-momentum tensor are postulated
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equations of general relativity, the evolution equations (3.9) for the Weyl tensor, and the equations enforcing
covariant conservation of the Einstein tensor, follow mathematically from the Bianchi identities, and do not
represent additional assumptions of the theory.

Exercise 3.3. Number of Bianchi identities. Confirm the counting of degrees of freedom.

Exercise 3.4. Wave equation for the Riemann and Weyl tensors. From the torsion-free Bianchi
identities (2.128) and (3.7), show that the torsion-free Riemann tensor satisfies the covariant wave equation

�𝑅𝜅𝜆𝜇𝜈 = 𝐷𝜅𝐷𝜇𝑅𝜆𝜈 −𝐷𝜅𝐷𝜈𝑅𝜆𝜇 +𝐷𝜆𝐷𝜈𝑅𝜅𝜇 −𝐷𝜆𝐷𝜇𝑅𝜅𝜈 , (3.14)

where � is the D’Alembertian operator, the 4-dimensional wave operator

� ≡ 𝐷𝜋𝐷𝜋 . (3.15)

Show that contracting equation (3.14) with 𝑔𝜆𝜈 yields the identity �𝑅𝜅𝜇 = �𝑅𝜅𝜇. Conclude that the wave
equation (3.14) is non-trivial only for the trace-free part of the Riemann tensor, the Weyl tensor 𝐶𝜅𝜆𝜇𝜈 .
Show that the wave equation for the Weyl tensor is

�𝐶𝜅𝜆𝜇𝜈 = (𝐷𝜅𝐷𝜇 − 1
2 𝑔𝜅𝜇�)𝑅𝜆𝜈 − (𝐷𝜅𝐷𝜈 − 1

2 𝑔𝜅𝜈 �)𝑅𝜆𝜇

+ (𝐷𝜆𝐷𝜈 − 1
2 𝑔𝜆𝜈 �)𝑅𝜅𝜇 − (𝐷𝜆𝐷𝜇 − 1

2 𝑔𝜆𝜇�)𝑅𝜅𝜈

+ 1
6 (𝑔𝜅𝜇𝑔𝜆𝜈 − 𝑔𝜅𝜈𝑔𝜆𝜇)�𝑅 . (3.16)

Conclude that in a vacuum, where 𝑅𝜅𝜇 = 0,

�𝐶𝜅𝜆𝜇𝜈 = 0 . (3.17)

3.3 Geodesic deviation

This section on geodesic deviation is included not because the equation of geodesic deviation is crucial to
everyday calculations in general relativity, but rather for two reasons. First, the equation offers insight into
the physical meaning of the Riemann tensor. Second, the derivation of the equation offers a fine illustration
of the fact that in general relativity, whenever you take differences at infinitesimally separated points in
space or time, you should always take covariant differences.
Consider two objects that are free-falling along two infinitesimally separated geodesics. In flat space the

acceleration between the two objects would be zero, but in curved space the curvature induces a finite
acceleration between the two objects. This is how an observer can measure curvature, at least in principle:
set up an ensemble of objects initially at rest a small distance away from the observer in the observer’s
locally inertial frame, and watch how the objects begin to move. The equation (3.24) that describes this
acceleration between objects an infinitesimal distance apart is called the equation of geodesic deviation.
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The covariant difference in the velocities of two objects an infinitesimal distance 𝛿𝑥𝜇 apart is

𝐷𝛿𝑥𝜇

𝐷𝜏
= 𝛿𝑢𝜇 . (3.18)

In general relativity, the ordinary difference between vectors at two points a small interval apart is not
a physically meaningful thing, because the frames of reference at the two points are different. The only
physically meaningful difference is the covariant difference, which is the difference in the two vectors parallel-
transported across the gap between them. It is only this covariant difference that is independent of the frame
of reference. On the left hand side of equation (3.18), the proper time derivative must be the covariant proper
time derivative, 𝐷/𝐷𝜏 = 𝑢𝜆𝐷𝜆. On the right hand side of equation (3.18), the difference in the 4-velocity
at two points 𝛿𝑥𝜅 apart must be the covariant difference 𝛿 = 𝛿𝑥𝜅𝐷𝜅. Thus equation (3.18) means explicitly
the covariant equation

𝑢𝜆𝐷𝜆𝛿𝑥
𝜇 = 𝛿𝑥𝜅𝐷𝜅𝑢

𝜇 . (3.19)

To derive the equation of geodesic deviation, first vary the geodesic equation 𝐷𝑢𝜇/𝐷𝜏 = 0 (the index 𝜇 is
put downstairs so that the final equation (3.24) looks cosmetically better, but of course since everything is
covariant the 𝜇 index could just as well be put upstairs everywhere):

0 = 𝛿
𝐷𝑢𝜇
𝐷𝜏

= 𝛿𝑥𝜅𝐷𝜅

(︀
𝑢𝜆𝐷𝜆𝑢𝜇

)︀
= 𝛿𝑢𝜆𝐷𝜆𝑢𝜇 + 𝛿𝑥𝜅𝑢𝜆𝐷𝜅𝐷𝜆𝑢𝜇 . (3.20)

On the second line, the covariant difference 𝛿 between quantities a small distance 𝛿𝑥𝜅 apart has been set
equal to 𝛿𝑥𝜅𝐷𝜅, while 𝐷/𝐷𝜏 has been set equal to the covariant time derivative 𝑢𝜆𝐷𝜆 along the geodesic.
On the last line, 𝛿𝑥𝜅𝐷𝜅𝑢

𝜆 has been replaced by 𝛿𝑢𝜇. Next, consider the covariant acceleration of the interval
𝛿𝑥𝜇, which is the covariant proper time derivative of the covariant velocity difference 𝛿𝑢𝜇:

𝐷2𝛿𝑥𝜇
𝐷𝜏2

=
𝐷𝛿𝑢𝜇
𝐷𝜏

= 𝑢𝜆𝐷𝜆 (𝛿𝑥
𝜅𝐷𝜅𝑢𝜇)

= 𝛿𝑢𝜅𝐷𝜅𝑢𝜇 + 𝛿𝑥𝜅𝑢𝜆𝐷𝜆𝐷𝜅𝑢𝜇 . (3.21)

As in the previous equation (3.20), on the second line 𝐷/𝐷𝜏 has been set equal to 𝑢𝜆𝐷𝜆, while 𝛿 has been
set equal to 𝛿𝑥𝜅𝐷𝜅. On the last line, 𝑢𝜆𝐷𝜆𝛿𝑥

𝜅 has been set equal to 𝛿𝑢𝜇, equation (3.19). Subtracting (3.20)
from (3.21) gives

𝐷2𝛿𝑥𝜇
𝐷𝜏2

= 𝛿𝑥𝜅𝑢𝜆[𝐷𝜆, 𝐷𝜅]𝑢𝜇 , (3.22)

or equivalently

𝐷2𝛿𝑥𝜇
𝐷𝜏2

+ 𝑆𝜈𝜅𝜆𝛿𝑥
𝜅𝑢𝜆𝐷𝜈𝑢𝜇 +𝑅𝜅𝜆𝜇𝜈𝛿𝑥

𝜅𝑢𝜆𝑢𝜈 = 0 . (3.23)
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If torsion vanishes as general relativity assumes, then

𝐷2𝛿𝑥𝜇
𝐷𝜏2

+𝑅𝜅𝜆𝜇𝜈𝛿𝑥
𝜅𝑢𝜆𝑢𝜈 = 0 , (3.24)

which is the desired equation of geodesic deviation.
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Action principle for point particles

This Chapter describes the action principle for point particles in a prescribed gravitational field. The action
principle provides a powerful way to obtain equations of motion for particles in a given spacetime, such as
a black hole, or a cosmological spacetime. An action principle for the gravitational field itself is deferred to
Chapter 16, after development of the tetrad formalism in Chapter 11.
Hamilton’s principle of least action postulates that any dynamical system is characterized by a scalar

action 𝑆, which has the property that when the system evolves from one specified state to another, the path
by which it gets between the two states is such as to minimize the action. The action need not be a global
minimum, just a local minimum with respect to small variations in the path between fixed initial and final
states.
That nature appears to respect a principle of such simplicity and power is quite remarkable, and a deep

mystery. But it works, and in modern physics, the principle of least action has become a basic building block
with which physicists construct theories.
From a practical perspective, the principle of least action, in either Lagrangian or Hamiltonian form,

provides the most powerful way to solve equations of motion. For example, integrals of motion associated
with symmetries of the spacetime emerge automatically in the Lagrangian or Hamiltonian formalisms.

4.1 Principle of least action for point particles

The path of a point particle through spacetime is specified by its coordinates 𝑥𝜇(𝜆) as a function of some
arbitrary parameter 𝜆. In non-relativistic mechanics it is usual to take the parameter 𝜆 to be the time 𝑡, and
the path of a particle through space is then specified by three spatial coordinates 𝑥𝑎(𝑡). In relativity however
it is more natural to treat the time and space coordinates on an equal footing, and to regard the path of a
particle as being specified by four spacetime coordinates 𝑥𝜇(𝜆) as a function of an arbitrary parameter 𝜆, as
illustrated in Figure 4.1. The parameter 𝜆 is simply a differentiable parameter that labels points along the
path, and has no physical significance (for example, it is not necessarily an affine parameter).
The path of a system of 𝑁 point particles through spacetime is specified by 4𝑁 coordinates 𝑥𝜇(𝜆). The

action principle postulates that, for a system of𝑁 point particles, the action 𝑆 is an integral of a Lagrangian
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Figure 4.1 The action principle considers various paths through spacetime between fixed initial and final conditions,

and chooses that path that minimizes the action.

𝐿(𝑥𝜇, 𝑑𝑥𝜇/𝑑𝜆) which is a function of the 4𝑁 coordinates 𝑥𝜇(𝜆) together with the 4𝑁 velocities 𝑑𝑥𝜇/𝑑𝜆 with
respect to the arbitrary parameter 𝜆. The action from an initial state at 𝜆i to a final state at 𝜆f is thus

𝑆 =

∫︁ 𝜆f

𝜆i

𝐿

(︂
𝑥𝜇,

𝑑𝑥𝜇

𝑑𝜆

)︂
𝑑𝜆 . (4.1)

The principle of least action demands that the actual path taken by the system between given initial and
final coordinates 𝑥𝜇i and 𝑥𝜇f is such as to minimize the action. Thus the variation 𝛿𝑆 of the action must be
zero under any change 𝛿𝑥𝜇 in the path, subject to the constraint that the coordinates at the endpoints are
fixed, 𝛿𝑥𝜇i = 0 and 𝛿𝑥𝜇f = 0,

𝛿𝑆 =

∫︁ 𝜆f

𝜆i

(︂
𝜕𝐿

𝜕𝑥𝜇
𝛿𝑥𝜇 +

𝜕𝐿

𝜕(𝑑𝑥𝜇/𝑑𝜆)
𝛿(𝑑𝑥𝜇/𝑑𝜆)

)︂
𝑑𝜆 = 0 . (4.2)

Linearity of the derivative,

𝑑

𝑑𝜆
(𝑥𝜇 + 𝛿𝑥𝜇) =

𝑑𝑥𝜇

𝑑𝜆
+
𝑑(𝛿𝑥𝜇)

𝑑𝜆
, (4.3)

shows that the change in the velocity along the path equals the velocity of the change, 𝛿(𝑑𝑥𝜇/𝑑𝜆) =

𝑑(𝛿𝑥𝜇)/𝑑𝜆. Integrating the second term in the integrand of equation (4.2) by parts yields

𝛿𝑆 =

[︂
𝜕𝐿

𝜕(𝑑𝑥𝜇/𝑑𝜆)
𝛿𝑥𝜇

]︂𝜆f

𝜆i

+

∫︁ 𝜆f

𝜆i

(︂
𝜕𝐿

𝜕𝑥𝜇
− 𝑑

𝑑𝜆

𝜕𝐿

𝜕(𝑑𝑥𝜇/𝑑𝜆)

)︂
𝛿𝑥𝜇 𝑑𝜆 = 0 . (4.4)

The surface term in equation (4.4) vanishes, since by hypothesis the coordinates are held fixed at the
endpoints, so 𝛿𝑥𝜇 = 0 at the endpoints. Therefore the integral in equation (4.4) must vanish. Indeed least
action requires the integral to vanish for all possible variations 𝛿𝑥𝜇 in the path. The only way this can happen
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is that the integrand must be identically zero. The result is the Euler-Lagrange equations of motion

𝑑

𝑑𝜆

𝜕𝐿

𝜕(𝑑𝑥𝜇/𝑑𝜆)
− 𝜕𝐿

𝜕𝑥𝜇
= 0 . (4.5)

It might seem that the Euler-Lagrange equations (4.5) are inadequately specified, since they depend on
some arbitrary unknown parameter 𝜆. But in fact the Euler-Lagrange equations are the same regardless of
the choice of 𝜆. An example of the arbitrariness of 𝜆 will be seen in §4.3. Since 𝜆 can be chosen arbitrarily,
it is common to choose it in some convenient fashion. For a massive particle, 𝜆 can be taken equal to the
proper time 𝜏 of the particle. For a massless particle, whose proper time never progresses, 𝜆 can be taken
equal to an affine parameter.

Concept question 4.1. Redundant time coordinates? How can it be possible to treat the time co-
ordinate 𝑡 for each particle as an independent coordinate? Isn’t the time coordinate 𝑡 the same for all 𝑁
particles? Answer. Different particles follow different trajectories in spacetime. One is free to choose 𝑡(𝜆)
to be a different function of the parameter 𝜆 for each particle, in the same way that the spatial coordinate
𝑥𝛼(𝜆) may be a different function for each particle.

4.2 Generalized momentum

The left hand side of the Euler-Lagrange equations of motion (4.5) involves the partial derivative of the
Lagrangian with respect to the velocity 𝑑𝑥𝜇/𝑑𝜆. This quantity plays a fundamental role in the Hamiltonian
formulation of the action principle, §4.10, and is called the generalized momentum 𝜋𝜇 conjugate to the
coordinate 𝑥𝜇,

𝜋𝜇 ≡
𝜕𝐿

𝜕(𝑑𝑥𝜇/𝑑𝜆)
. (4.6)

4.3 Lagrangian for a test particle

According to the principle of equivalence, a test particle in a gravitating system moves along a geodesic, a
straight line relative to local free-falling frames. A geodesic is the shortest distance between two points. In
relativity this translates, for a massive particle, into the longest proper time between two points. The proper
time along any path is 𝑑𝜏 =

√
−𝑑𝑠2 =

√︀
−𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 . Thus the action 𝑆𝑚 of a test particle of constant rest

mass 𝑚 in a gravitating system is

𝑆𝑚 = −𝑚
∫︁ 𝜆f

𝜆i

𝑑𝜏 = −𝑚
∫︁ 𝜆f

𝜆i

√︂
−𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
𝑑𝜆 . (4.7)
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The factor of rest mass𝑚 brings the action, which has units of angular momentum, to standard normalization.
The overall minus sign comes from the fact that the action is a minimum whereas the proper time is a
maximum along the path. The action principle requires that the Lagrangian 𝐿(𝑥𝜇, 𝑑𝑥𝜇/𝑑𝜆) be written as a
function of the coordinates 𝑥𝜇 and velocities 𝑑𝑥𝜇/𝑑𝜆, and it is seen that the integrand in the last expression
of equation (4.7) has the desired form, the metric 𝑔𝜇𝜈 being considered a given function of the coordinates.
Thus the Lagrangian 𝐿𝑚 of a test particle of mass 𝑚 is

𝐿𝑚 = −𝑚
√︂
−𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
. (4.8)

The partial derivatives that go in the Euler-Lagrange equations (4.5) are then

𝜕𝐿𝑚
𝜕(𝑑𝑥𝜅/𝑑𝜆)

= −𝑚
−𝑔𝜅𝜈

𝑑𝑥𝜈

𝑑𝜆√︀
−𝑔𝜋𝜌(𝑑𝑥𝜋/𝑑𝜆)(𝑑𝑥𝜌/𝑑𝜆)

, (4.9a)

𝜕𝐿𝑚
𝜕𝑥𝜅

= −𝑚
−1

2

𝜕𝑔𝜇𝜈
𝜕𝑥𝜅

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆√︀
−𝑔𝜋𝜌(𝑑𝑥𝜋/𝑑𝜆)(𝑑𝑥𝜌/𝑑𝜆)

. (4.9b)

The denominators in the expressions (4.9) for the partial derivatives of the Lagrangian are√︀
−𝑔𝜋𝜌(𝑑𝑥𝜋/𝑑𝜆)(𝑑𝑥𝜌/𝑑𝜆) = 𝑑𝜏/𝑑𝜆. It was not legitimate to make this substitution before taking the partial

derivatives, since the Euler-Lagrange equations require that the Lagrangian be expressed in terms of 𝑥𝜇 and
𝑑𝑥𝜇/𝑑𝜆, but it is fine to make the substitution now that the partial derivatives have been obtained. The
partial derivatives (4.9) thus simplify to

𝜕𝐿𝑚
𝜕(𝑑𝑥𝜅/𝑑𝜆)

= 𝑚𝑔𝜅𝜈
𝑑𝑥𝜈

𝑑𝜆

𝑑𝜆

𝑑𝜏
= 𝑚𝑢𝜅 , (4.10a)

𝜕𝐿𝑚
𝜕𝑥𝜅

=
1

2
𝑚
𝜕𝑔𝜇𝜈
𝜕𝑥𝜅

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆

𝑑𝜆

𝑑𝜏
= 𝑚Γ𝜇𝜈𝜅𝑢

𝜇𝑢𝜈
𝑑𝜏

𝑑𝜆
, (4.10b)

in which 𝑢𝜅 ≡ 𝑑𝑥𝜅/𝑑𝜏 is the usual 4-velocity, and the derivative of the metric has been replaced by connections
in accordance with equation (2.59). The generalized momentum 𝜋𝜅, equation (4.6), of the test particle
coincides with its ordinary momentum 𝑝𝜅:

𝜋𝜅 = 𝑝𝜅 ≡ 𝑚𝑢𝜅 . (4.11)

The resulting Euler-Lagrange equations of motion (4.5) are

𝑑𝑚𝑢𝜅
𝑑𝜆

= 𝑚Γ𝜇𝜈𝜅𝑢
𝜇𝑢𝜈

𝑑𝜏

𝑑𝜆
. (4.12)

As remarked in §4.1, the choice of the arbitrary parameter 𝜆 has no effect on the equations of motion. With
a factor of 𝑚𝑑𝜏/𝑑𝜆 cancelled, equation (4.12) becomes

𝑑𝑢𝜅
𝑑𝜏

= Γ𝜇𝜈𝜅𝑢
𝜇𝑢𝜈 . (4.13)
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Splitting the connection Γ𝜇𝜈𝜅 into its torsion-free part Γ̊𝜇𝜈𝜅 and the contortion 𝐾𝜇𝜈𝜅, equation (2.64), gives

𝑑𝑢𝜅
𝑑𝜏

= (̊Γ𝜇𝜈𝜅 +𝐾𝜇𝜈𝜅)𝑢
𝜇𝑢𝜈 = Γ̊𝜇𝜅𝜈𝑢

𝜇𝑢𝜈 , (4.14)

where the last step follows from the symmetry of the torsion-free connection Γ̊𝜇𝜈𝜅 in its last two indices,
and the antisymmetry of the contortion tensor 𝐾𝜇𝜈𝜅 in its first two indices. With or without torsion, equa-
tion (4.14) yields the torsion-free geodesic equation of motion,

𝐷𝑢𝜅
𝐷𝜏

= 0 . (4.15)

Equation (4.15) shows that presence of torsion does not affect the geodesic motion of particles.

Concept question 4.2. Throw a clock up in the air.

1. This question is posed by Rovelli (2007). Standing on the surface of the Earth, you throw a clock up in
the air, and catch it. Which clock shows more time elapsed, the one you threw up in the air, or the one
on your wrist?

2. Suppose you throw the clock so hard that it goes around the Moon. Which clock shows more time
elapsed?

4.4 Massless test particle

The equation of motion for a massless test particle is obtained from that for a massive particle in the limit of
zero mass, 𝑚→ 0. The proper time 𝜏 along the path of a massless particle is zero, but an affine parameter
𝜆 ≡ 𝜏/𝑚 proportional to proper time can be defined, equation (2.93), which remains finite in the limit
𝑚→ 0. In terms of the affine parameter 𝜆, the momentum 𝑝𝜅 of a particle can be written

𝑝𝜅 ≡ 𝑚𝑢𝜅 =
𝑑𝑥𝜅

𝑑𝜆
, (4.16)

and the equation of motion (4.15) becomes

𝐷𝑝𝜅
𝐷𝜆

= 0 , (4.17)

which works for massless as well as massive particles.
The action for a test particle in terms of the affine parameter 𝜆 defined by equation (2.93) is

𝑆 = −𝑚2

∫︁
𝑑𝜆 , (4.18)

which vanishes for 𝑚→ 0. One might be worried that the action seemingly vanishes identically for a massless
particle. An alternative nice action is given below, equation (4.30), that vanishes in the massless limit only
after the equations of motion are imposed.
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Concept question 4.3. Conventional Lagrangian. In the conventional Lagrangian approach, the pa-
rameter 𝜆 is set equal to the time coordinate 𝑡, and the Lagrangian 𝐿(𝑡, 𝑥𝛼, 𝑑𝑥𝛼/𝑑𝑡) of a system of 𝑁 particles
is considered to be a function of the time 𝑡, the 3𝑁 spatial coordinates 𝑥𝛼, and the 3𝑁 spatial velocities
𝑑𝑥𝛼/𝑑𝑡. Compare the conventional and covariant Lagrangian approaches for a point particle. Answer. The
Euler-Lagrange equations in the conventional Lagrangian approach are

𝑑

𝑑𝑡

𝜕𝐿

𝜕(𝑑𝑥𝛼/𝑑𝑡)
− 𝜕𝐿

𝜕𝑥𝛼
= 0 . (4.19)

For a point particle, the Euler-Lagrange equations (4.19) yield the spatial components of the geodesic equa-
tion of motion (4.17),

𝐷𝑝𝛼
𝐷𝜆

= 0 . (4.20)

What about the time component of the geodesic equation of motion? The geodesic equation for the time
component is a consequence of the geodesic equations for the spatial components, coupled with conservation
of rest mass 𝑚,

𝑝0
𝐷𝑝0
𝐷𝜆

=
1

2

𝐷𝑝0𝑝0
𝐷𝜆

= −1

2

𝐷(𝑝𝛼𝑝𝛼 +𝑚2)

𝐷𝜆
= −𝑝𝛼𝐷𝑝𝛼

𝐷𝜆
= 0 . (4.21)

Put another way, the covariant Lagrangian approach applied to a point particle enforces conservation of the
rest mass 𝑚 of the particle, a conservation law that the conventional Lagrangian approach simply assumes.
Invariance of the action with respect to reparametrization of 𝜆 implies conservation of rest mass.

4.5 Effective Lagrangian for a test particle

A drawback of the test particle Lagrangian (4.8) is that it involves a square root. This proves to be problematic
for various reasons, among which is that it is an obstacle to deriving a satisfactory super-Hamiltonian, §4.12.
This section describes an alternative approach that gets rid of the square root, making the test particle
Lagrangian quadratic in velocities 𝑑𝑥𝜇/𝑑𝜆, equation (4.25).
After equations of motion are imposed, the Lagrangian (4.8) for a test particle of constant rest mass 𝑚 is

𝐿𝑚 = −𝑚𝑑𝜏

𝑑𝜆
. (4.22)

If the parameter 𝜆 is chosen such that 𝑑𝜏/𝑑𝜆 is constant,

𝑑𝜏

𝑑𝜆
= constant , (4.23)

so that the Lagrangian 𝐿𝑚 is constant after equations of motion are imposed, then the Euler-Lagrange
equations of motion (4.5) are unchanged if the Lagrangian is replaced by any function of it,

𝐿′𝑚 = 𝑓(𝐿𝑚) . (4.24)
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A convenient choice of alternative Lagrangian 𝐿′𝑚, also called an effective Lagrangian, is

𝐿′𝑚 = − 𝐿2
𝑚

2𝑚2
=

1

2
𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
. (4.25)

For the effective Lagrangian (4.25), the partial derivatives (4.9) are

𝜕𝐿′𝑚
𝜕(𝑑𝑥𝜅/𝑑𝜆)

= 𝑔𝜅𝜈
𝑑𝑥𝜈

𝑑𝜆
, (4.26a)

𝜕𝐿′𝑚
𝜕𝑥𝜅

=
1

2

𝜕𝑔𝜇𝜈
𝜕𝑥𝜅

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
= Γ𝜇𝜈𝜅

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
. (4.26b)

The Euler-Lagrange equations of motion (4.5) are then

𝑑

𝑑𝜆

(︂
𝑔𝜅𝜈

𝑑𝑥𝜈

𝑑𝜆

)︂
= Γ𝜇𝜈𝜅

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
. (4.27)

Equations (4.27) are valid subject to the condition (4.23), which asserts that 𝑑𝜆 ∝ 𝑑𝜏 . The constant of
proportionality does not affect the equations of motion (4.27), which thus reproduce the earlier equations of
motion in either of the forms (4.15) or (4.17).
If the test particle is moving in a prescribed gravitational field and there are no other fields, then the

equations of motion are unchanged by the normalization of the effective Lagrangian 𝐿′𝑚. But if there are other
fields that affect the particle’s motion, such as an electromagnetic field, §4.7, then the effective Lagrangian
𝐿′𝑚 must be normalized correctly if it is to continue to recover the correct equations of motion. The correct
normalization is such that the generalized momentum of the test particle, defined by equation (4.26a), equal
its ordinary momentum 𝑝𝜇, in agreement with equation (4.11),

𝑔𝜅𝜈
𝑑𝑥𝜈

𝑑𝜆
= 𝑝𝜅 ≡ 𝑔𝜅𝜈𝑚

𝑑𝑥𝜈

𝑑𝜏
. (4.28)

This requires that the constant in equation (4.23) must equal the rest mass 𝑚,

𝑑𝜏

𝑑𝜆
= 𝑚 . (4.29)

This is just the definition of the affine parameter 𝜆, equation (2.93). Thus the 𝜆 in the definition (4.25) of
the effective Lagrangian 𝐿′𝑚 should be interpreted as the affine parameter.
Notice that the value of the effective Lagrangian 𝐿′𝑚 after condition (4.29) is applied (after equations of

motion are imposed) is −𝑚2/2, which is half the value of the original Lagrangian 𝐿𝑚 (4.8).

4.6 Nice Lagrangian for a test particle

The effective Lagrangian (4.25) has the advantage that it does not involve a square root, but this advantage
was achieved at the expense of imposing the condition (4.29) ad hoc after the equations of motion are
derived. It is possible to retain the advantage of a Lagrangian quadratic in velocities, but get rid of the ad
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hoc condition, by modifying the Lagrangian so that the ad hoc condition essentially emerges as an equation
of motion. I call the resulting Lagrangian (4.31) the “nice” Lagrangian.
As seen in §4.1, the equations of motion are independent of the choice of the arbitrary parameter 𝜆

that labels the path of the particle between its fixed endpoints. The equations of motion are said to be
reparametrization independent. Introduce, therefore, a scale factor 𝑎(𝜆), an arbitrary function of 𝜆,
that rescales the parameter 𝜆, and let the action for a test particle of mass 𝑚 be

𝑆𝑚 =

∫︁
1

2

(︂
𝑔𝜇𝜈

𝑑𝑥𝜇

𝑎 𝑑𝜆

𝑑𝑥𝜈

𝑎 𝑑𝜆
−𝑚2

)︂
𝑎 𝑑𝜆 , (4.30)

with nice Lagrangian

𝐿𝑚 =
𝑎

2

(︂
𝑔𝜇𝜈

𝑑𝑥𝜇

𝑎 𝑑𝜆

𝑑𝑥𝜈

𝑎 𝑑𝜆
−𝑚2

)︂
. (4.31)

Variation of the action (4.30) with respect to 𝑥𝜇 and 𝑑𝑥𝜇/𝑑𝜆 yields the Euler-Lagrange equations in the form

𝑑

𝑎 𝑑𝜆

(︂
𝑔𝜅𝜈

𝑑𝑥𝜈

𝑎 𝑑𝜆

)︂
= Γ𝜇𝜈𝜅

𝑑𝑥𝜇

𝑎 𝑑𝜆

𝑑𝑥𝜈

𝑎 𝑑𝜆
. (4.32)

Variation of the action (4.30) with respect to the parameter 𝑎 gives

𝛿𝑆𝑚 =

∫︁
1

2

(︂
− 𝑔𝜇𝜈

𝑑𝑥𝜇

𝑎 𝑑𝜆

𝑑𝑥𝜈

𝑎 𝑑𝜆
−𝑚2

)︂
𝛿𝑎 𝑑𝜆 , (4.33)

and requiring that this be an extremum imposes

𝑔𝜇𝜈
𝑑𝑥𝜇

𝑎 𝑑𝜆

𝑑𝑥𝜈

𝑎 𝑑𝜆
= −𝑚2 . (4.34)

Equation (4.34) is equivalent to

𝑎 𝑑𝜆 =
𝑑𝜏

𝑚
, (4.35)

where the sign has been taken positive without loss of generality. Substituting equation (4.35) into the
equations of motion (4.32) recovers the usual equations of motion (4.15).
Condition (4.35) substituted into the action (4.30) recovers the standard test particle action (4.7) with

the correct sign and normalization.

4.7 Action for a charged test particle in an electromagnetic field

The equations of motion for a test particle of charge 𝑞 in a prescribed gravitational and electromagnetic
field can be obtained by adding to the test particle action 𝑆𝑚 an interaction action 𝑆𝑞 that characterizes the
interaction between the charge and the electromagnetic field,

𝑆 = 𝑆𝑚 + 𝑆𝑞 . (4.36)
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In flat (Minkowski) space, experiment shows that the required equation of motion is the classical Lorentz
force law (4.45). The Lorentz force law is recovered with the interaction action

𝑆𝑞 = 𝑞

∫︁ 𝜆f

𝜆i

𝐴𝜇 𝑑𝑥
𝜇 = 𝑞

∫︁ 𝜆f

𝜆i

𝐴𝜇
𝑑𝑥𝜇

𝑑𝜆
𝑑𝜆 , (4.37)

where 𝐴𝜇 is the electromagnetic 4-vector potential. The interaction Lagrangian 𝐿𝑞 corresponding to the
action (4.37) is

𝐿𝑞 = 𝑞𝐴𝜇
𝑑𝑥𝜇

𝑑𝜆
. (4.38)

If the electromagnetic potential 𝐴𝜇 is taken to be a prescribed function of the coordinates 𝑥𝜇 along the
path of the particle, then the Lagrangian 𝐿𝑞 (4.38) is a function of coordinates 𝑥𝜇 and velocities 𝑑𝑥𝜇/𝑑𝜆
as required by the action principle. The partial derivatives of the interaction Lagrangian 𝐿𝑞 with respect to
velocities and coordinates are

𝜕𝐿𝑞
𝜕(𝑑𝑥𝜅/𝑑𝜆)

= 𝑞𝐴𝜅 , (4.39a)

𝜕𝐿𝑞
𝜕𝑥𝜅

= 𝑞
𝜕𝐴𝜇
𝜕𝑥𝜅

𝑑𝑥𝜇

𝑑𝜆
= 𝑞

𝜕𝐴𝜇
𝜕𝑥𝜅

𝑢𝜇
𝑑𝜏

𝑑𝜆
. (4.39b)

The generalized momentum 𝜋𝜅, equation (4.6), of the test particle of mass 𝑚 and charge 𝑞 in the electro-
magnetic field of potential 𝐴𝜇 is, from equations (4.10a) and (4.39a),

𝜋𝜅 ≡
𝜕(𝐿𝑚 + 𝐿𝑞)

𝜕(𝑑𝑥𝜅/𝑑𝜆)
= 𝑚𝑢𝜅 + 𝑞𝐴𝜅 . (4.40)

Applied to the Lagrangian 𝐿 = 𝐿𝑚 + 𝐿𝑞, the Euler-Lagrange equations (4.5) are

𝑑

𝑑𝜆
(𝑚𝑢𝜅 + 𝑞𝐴𝜅) =

(︂
𝑚Γ𝜇𝜈𝜅𝑢

𝜇𝑢𝜈 + 𝑞
𝜕𝐴𝜇
𝜕𝑥𝜅

𝑢𝜇
)︂
𝑑𝜏

𝑑𝜆
, (4.41)

which rearranges to
𝑑𝑚𝑢𝜅
𝑑𝜏

= 𝑚Γ𝜇𝜈𝜅𝑢
𝜇𝑢𝜈 + 𝑞𝐹𝜅𝜇𝑢

𝜇 , (4.42)

where the antisymmetric electromagnetic field tensor 𝐹𝜅𝜇 is defined to be the torsion-free covariant curl of
the electromagnetic potential 𝐴𝜇,

𝐹𝜅𝜇 ≡
𝜕𝐴𝜇
𝜕𝑥𝜅

− 𝜕𝐴𝜅
𝜕𝑥𝜇

. (4.43)

The definition (4.43) of the electromagnetic field holds even in the presence of torsion (see §16.5). Splitting
the connection in equation (4.42) into its torsion-free part and the contortion, as done previously in equa-
tion (4.14), yields the Lorentz force law for a test particle of mass 𝑚 and charge 𝑞 moving in a prescribed
gravitational and electromagnetic field, with or without torsion,

𝐷𝑚𝑢𝜅
𝐷𝜏

= 𝑞𝐹𝜅𝜇𝑢
𝜇 . (4.44)
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Equation (4.44), which involves the torsion-free covariant derivative 𝐷/𝐷𝜏 , shows that the Lorentz force law
is unaffected by the presence of torsion.
In flat (Minkowski) space, the spatial components of equation (4.44) reduce to the classical special rela-

tivistic Lorentz force law
𝑑𝑝

𝑑𝑡
= 𝑞 (𝐸 + 𝑣 ×𝐵) . (4.45)

In equation (4.45), 𝑝 is the 3-momentum and 𝑣 is the 3-velocity, related to the 4-momentum and 4-velocity
by 𝑝𝑘 = {𝑝𝑡,𝑝} = 𝑚𝑢𝑘 = 𝑚𝑢𝑡{1,𝑣} (note that 𝑑/𝑑𝑡 = (1/𝑢𝑡) 𝑑/𝑑𝜏). In flat space, the components of the
electric and magnetic fields 𝐸 = {𝐸𝑥, 𝐸𝑦, 𝐸𝑧} and 𝐵 = {𝐵𝑥, 𝐵𝑦, 𝐵𝑧} are related to the electromagnetic field
tensor 𝐹𝑚𝑛 by (the signs in the expression (4.46) are arranged precisely so as to agree with the classical
law (4.45))

𝐹𝑚𝑛 =

⎛⎜⎜⎝
0 −𝐸𝑥 −𝐸𝑦 −𝐸𝑧
𝐸𝑥 0 𝐵𝑧 −𝐵𝑦
𝐸𝑦 −𝐵𝑧 0 𝐵𝑥
𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

⎞⎟⎟⎠ , 𝐹𝑚𝑛 =

⎛⎜⎜⎝
0 𝐸𝑥 𝐸𝑦 𝐸𝑧
−𝐸𝑥 0 𝐵𝑧 −𝐵𝑦
−𝐸𝑦 −𝐵𝑧 0 𝐵𝑥
−𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

⎞⎟⎟⎠ . (4.46)

If the electromagnetic 4-potential 𝐴𝑚 is written in terrms of a classical electric potential 𝜑 and electric
3-vector potential 𝐴 ≡ {𝐴𝑥, 𝐴𝑦, 𝐴𝑧},

𝐴𝑚 = {𝜑,𝐴} , (4.47)

then in flat space equation (4.43) reduces to the traditional relations for the electric and magnetic fields 𝐸
and 𝐵 in terms of the potentials 𝜑 and 𝐴,

𝐸 = −∇𝜑− 𝜕𝐴

𝜕𝑡
, 𝐵 = ∇×𝐴 , (4.48)

where ∇ ≡ {𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝜕/𝜕𝑧} is the spatial 3-gradient.

4.8 Symmetries and constants of motion

If a spacetime possesses a symmetry of some kind, then a test particle moving in that spacetime possesses
an associated constant of motion. The Lagrangian formalism makes it transparent how to relate symmetries
to constants of motion.
Suppose that the Lagrangian of a particle has some spacetime symmetry, such as time translation symme-

try, or spatial translation symmetry, or rotational symmetry. In a suitable coordinate system, the symmetry
is expressed by the condition that the Lagrangian 𝐿 is independent of some coordinate, call it 𝜉. In the case
of time translation symmetry, for example, the coordinate would be a suitable time coordinate 𝑡. Coordinate
independence requires that the metric 𝑔𝜇𝜈 , along with any other field, such as an electromagnetic field, that
may affect the particle’s motion, is independent of the coordinate 𝜉. Then the Euler-Lagrangian equations
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of motion (4.5) imply that the derivative of the covariant 𝜉-component 𝜋𝜉 of the conjugate momentum of
the particle vanishes along the trajectory of the particle,

𝑑𝜋𝜉
𝑑𝜆

=
𝜕𝐿

𝜕𝜉
= 0 . (4.49)

Thus the covariant momentum 𝜋𝜉 is a constant of motion,

𝜋𝜉 = constant . (4.50)

4.9 Conformal symmetries

Sometimes the Lagrangian possesses a weaker kind of symmetry, called conformal symmetry, in which
the Lagrangian 𝐿 depends on a coordinate 𝜉 only through an overall scaling of the Lagrangian,

𝐿 = 𝑒2𝜉�̃� , (4.51)

where the conformal Lagrangian �̃� is independent of 𝜉. The factor 𝑒𝜉 is called a conformal factor. The
Euler-Lagrangian equation of motion (4.5) for the conformal coordinate 𝜉 is then

𝑑𝜋𝜉
𝑑𝜆

=
𝜕𝐿

𝜕𝜉
= 2𝐿 . (4.52)

As an example, consider a test particle moving in a spacetime with conformally symmetric metric

𝑔𝜇𝜈 = 𝑒2𝜉𝑔𝜇𝜈 , (4.53)

where the conformal metric 𝑔𝜇𝜈 is independent of the coordinate 𝜉. The effective Lagrangian 𝐿′𝑚 of the test
particle is given by equation (4.25). The equation of motion (4.52) becomes

𝑑𝑝𝜉
𝑑𝜆

= 2𝐿′𝑚 = −𝑚2 . (4.54)

If the test particle is massive, 𝑚 ̸= 0, then equation (4.54) integrates to

𝑝𝜉 = −𝑚𝜏 , (4.55)

where a constant of integration has been absorbed, without loss of generality, into a shift of the zero point
of the proper time 𝜏 of the particle. If the test particle is massless, 𝑚 = 0, then equation (4.54) implies that

𝑝𝜉 = constant . (4.56)
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Exercise 4.4. Geodesics in Rindler space. The Rindler line-element (2.103) can be written

𝑑𝑠2 = 𝑒2𝜉
(︀
− 𝑑𝛼2 + 𝑑𝜉2

)︀
+ 𝑑𝑦2 + 𝑑𝑧2 , (4.57)

where the Rindler coordinates 𝛼 and 𝜉 are related to Minkowski coordinates 𝑡 and 𝑥 by

𝑡 = 𝑒𝜉 sinh𝛼 , 𝑥 = 𝑒𝜉 cosh𝛼 . (4.58)

What are the constants of motion of a test particle? Integrate the Euler-Lagrange equations of motion.
Solution. The Rindler metric is independent of the coordinates 𝛼, 𝑦, and 𝑧. The three corresponding
constants of motion are

𝑝𝛼 , 𝑝𝑦 , 𝑝𝑧 . (4.59)

A fourth integral of motion follows from conservation of rest mass

𝑝𝜈𝑝𝜈 = −𝑚2 . (4.60)

x

t

Figure 4.2 Rindler wedge of Minkowski space. Purple and blue lines are lines of constant Rindler time 𝛼 and constant

Rindler spatial coordinate 𝜉 respectively. The grid of lines is equally spaced by 0.2 in each of 𝛼 and 𝜉. The Rindler

coordinates 𝛼 and 𝜉, each extending over the interval (−∞,∞), cover only the 𝑥 > |𝑡| quadrant of Minkowski space.

The fact that the Rindler metric is conformally Minkowski in 𝛼 and 𝜉 (the line-element is proportional to − 𝑑𝛼2+𝑑𝜉2,

equation (4.57)) shows up in the fact that small areal elements of the 𝛼–𝜉 grid are rhombi with null (45∘) diagonals.

The straight black line is a representative geodesic. The solid dot marks the point where the geodesic goes through

{𝛼0, 𝜉0}. Open circles mark 𝛼 = ∓∞, where the geodesic passes through the null boundaries 𝑡 = ∓𝑥 of the Rindler

wedge.
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Equation (4.60) rearranges to give

𝑑𝜉

𝑑𝜆
≡ 𝑝𝜉 = 𝑒−𝜉

√︁
(𝑒−𝜉𝑝𝛼)2 − 𝜇2 , (4.61)

where 𝜇 is the positive constant

𝜇 ≡
√︁
𝑝2𝑦 + 𝑝2𝑧 +𝑚2 . (4.62)

Equation (4.61) integrates to give 𝜉 as a function of 𝜆,

𝑒2𝜉 =
𝑝2𝛼
𝜇2
− 𝜇2𝜆2 , (4.63)

where a constant of integration has been absorbed without loss of generality into a shift of the zero point of
the affine parameter 𝜆 along the trajectory of the particle. The coordinate 𝜉 passes through its maximum
value 𝜉0 where 𝜆 = 0, at which point

𝑒𝜉0 = −𝑝𝛼
𝜇
, (4.64)

the sign coming from the fact that 𝑝𝛼 = 𝑔𝛼𝛼𝑝
𝛼 = −𝑒2𝜉𝑑𝛼/𝑑𝜆 must be negative, since the particle must move

forward in Rindler time 𝛼. The trajectory is illustrated in Figure 4.2; the trajectory is of course a straight
line in the parent Minkowski space.
The evolution equation (4.63) for 𝜉(𝜆) can be derived alternatively from the Euler-Lagrange equation for

𝜉,

𝑑𝑝𝜉
𝑑𝜆

= −𝜇2 . (4.65)

The Euler-Lagrange equation (4.65) integrates to

𝑝𝜉 = −𝜇2𝜆 , (4.66)

where a constant of integration has again been absorbed into a shift of the zero point of the affine parameter
𝜆 (this choice is consistent with the previous one). Given that 𝑝𝜉 = 𝑔𝜉𝜉𝑝

𝜉 = 𝑒2𝜉𝑑𝜉/𝑑𝜆, equation (4.66)
integrates to yield the same result (4.63), the constant of integration being established by the rest-mass
relation (4.60).
The evolution of Rindler time 𝛼 along the particle’s trajectory follows from integrating 𝑝𝛼 = 𝑔𝛼𝛼𝑝

𝛼 =

−𝑒2𝜉𝑑𝛼/𝑑𝜆, which gives

𝛼− 𝛼0 = −1

2
ln

(︂
𝑒𝜉0 + 𝜇𝜆

𝑒𝜉0 − 𝜇𝜆

)︂
, (4.67)

where 𝛼0 is the value of 𝛼 for 𝜆 = 0, where 𝜉 takes its maximum 𝜉0. The Rindler time coordinate 𝛼 varies
between limits ∓∞ at 𝜇𝜆 = ∓𝑒𝜉0 .
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4.10 (Super-)Hamiltonian

The Lagrangian approach characterizes the paths of particles through spacetime in terms of their 4𝑁 coor-
dinates 𝑥𝜇 and corresponding velocities 𝑑𝑥𝜇/𝑑𝜆 along those paths. The Hamiltonian approach on the other
hand characterizes the paths of particles through spacetime in terms of 4𝑁 coordinates 𝑥𝜇 and the 4𝑁 gen-
eralized momenta 𝜋𝜇, which are treated as independent from the coordinates. In the Hamiltonian approach,
the Hamiltonian 𝐻(𝑥𝜇, 𝜋𝜇) is considered to be a function of coordinates and generalized momenta, and
the action is minimized with respect to independent variations of those coordinates and momenta. In the
Hamiltonian approach, the coordinates and momenta are treated essentially on an equal footing.
The Hamiltonian 𝐻 can be defined in terms of the Lagrangian 𝐿 by

𝐻 ≡ 𝜋𝜇
𝑑𝑥𝜇

𝑑𝜆
− 𝐿 . (4.68)

Here, as previously in §4.1, the parameter 𝜆 is to be regarded as an arbitrary parameter that labels the
path of the system through the 8𝑁 -dimensional phase space of coordinates and momenta of the 𝑁 particles.
Misner, Thorne, and Wheeler (1973) call the Hamiltonian (4.68) the super-Hamiltonian, to distinguish
it from the conventional Hamiltonian, equation (4.74), where the parameter 𝜆 is taken equal to the time
coordinate 𝑡. Here however the super-Hamiltonian (4.68) is simply referred to as the Hamiltonian, for brevity.
In terms of the Hamiltonian (4.68), the action (4.1) is

𝑆 =

∫︁ 𝜆f

𝜆i

(︂
𝜋𝜇
𝑑𝑥𝜇

𝑑𝜆
−𝐻

)︂
𝑑𝜆 . (4.69)

In accordance with Hamilton’s principle of least action, the action must be varied with respect to the
coordinates and momenta along the path. The variation of the first term in the integrand of equation (4.69)
can be written

𝛿

(︂
𝜋𝜇
𝑑𝑥𝜇

𝑑𝜆

)︂
= 𝛿𝜋𝜇

𝑑𝑥𝜇

𝑑𝜆
+ 𝜋𝜇

𝑑𝛿𝑥𝜇

𝑑𝜆
= 𝛿𝜋𝜇

𝑑𝑥𝜇

𝑑𝜆
+

𝑑

𝑑𝜆
(𝜋𝜇𝛿𝑥

𝜇)− 𝑑𝜋𝜇
𝑑𝜆

𝛿𝑥𝜇 . (4.70)

The middle term on the right hand side of equation (4.70) yields a surface term on integration. Thus the
variation of the action is

𝛿𝑆 = [𝜋𝜇𝛿𝑥
𝜇]
𝜆f

𝜆i
+

∫︁ 𝜆f

𝜆i

{︂
−
(︂
𝑑𝜋𝜇
𝑑𝜆

+
𝜕𝐻

𝜕𝑥𝜇

)︂
𝛿𝑥𝜇 +

(︂
𝑑𝑥𝜇

𝑑𝜆
− 𝜕𝐻

𝜕𝜋𝜇

)︂
𝛿𝜋𝜇

}︂
𝑑𝜆 , (4.71)

which takes into account that the Hamiltonian is to be considered a function 𝐻(𝑥𝜇, 𝜋𝜇) of coordinates and
momenta. The principle of least action requires that the action is a minimum with respect to variations of
the coordinates and momenta along the paths of particles, the coordinates and momenta at the endpoints
𝜆i and 𝜆f of the integration being held fixed. Since the coordinates are fixed at the endpoints, 𝛿𝑥𝜇 = 0, the
surface term in equation (4.71) vanishes. Minimization of the action with respect to arbitrary independent
variations of the coordinates and momenta then yields Hamilton’s equations of motion

𝑑𝑥𝜇

𝑑𝜆
=
𝜕𝐻

𝜕𝜋𝜇
,

𝑑𝜋𝜇
𝑑𝜆

= − 𝜕𝐻
𝜕𝑥𝜇

. (4.72)
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4.11 Conventional Hamiltonian

The conventional Hamiltonian of classical mechanics is not the same as the super-Hamiltonian (4.68). In the
conventional approach, the parameter 𝜆 is set equal to the time coordinate 𝑡. The Lagrangian is taken to be
a function 𝐿(𝑡, 𝑥𝛼, 𝑑𝑥𝛼/𝑑𝑡) of time 𝑡 and of the 3𝑁 spatial coordinates 𝑥𝛼 and 3𝑁 spatial velocities 𝑑𝑥𝛼/𝑑𝑡.
The generalized momenta are defined to be, analogously to (4.6),

𝜋𝛼 ≡
𝜕𝐿

𝜕(𝑑𝑥𝛼/𝑑𝑡)
. (4.73)

The conventional Hamitonian is taken to be a function 𝐻(𝑡, 𝑥𝛼, 𝜋𝛼) of time 𝑡 and of the 3𝑁 spatial coor-
dinates 𝑥𝛼 and corresponding 3𝑁 generalized momenta 𝜋𝛼. The conventional Hamiltonian is related to the
conventional Lagrangian by

𝐻 ≡ 𝜋𝛼
𝑑𝑥𝛼

𝑑𝑡
− 𝐿 . (4.74)

The conventional Hamilton’s equations are

𝑑𝑥𝛼

𝑑𝑡
=
𝜕𝐻

𝜕𝜋𝛼
,

𝑑𝜋𝛼
𝑑𝑡

= − 𝜕𝐻
𝜕𝑥𝛼

. (4.75)

The advantage of the super-Hamiltonian (4.68) over the conventional Hamiltonian (4.74) in general rela-
tivity will become apparent in the sections following.

4.12 Conventional Hamiltonian for a test particle

The test-particle Lagrangian (4.8) is

𝐿𝑚 = −𝑚
√︂
−𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
. (4.76)

The corresponding test-particle Hamiltonian is supposedly given by equation (4.68). However, one runs into
a difficulty. The Hamiltonian is supposed to be expressed in terms of coordinates 𝑥𝜇 and momenta 𝑝𝜇. But
the expression (4.68) for the Hamiltonian depends on the arbitrary parameter 𝜆, whereas as seen in §4.3 the
coordinates 𝑥𝜇 and momenta 𝑝𝜇 are (before the least action principle is applied) independent of the choice
of 𝜆. For example, the square of the momentum (4.11) derived from the Lagrangian (4.8) is 𝑝𝜇𝑝𝜇 = −𝑚2,
which is independent of the choice of 𝜆. There is no way to express the Hamiltonian in the prescribed form
without imposing some additional constraint on 𝜆. Two ways to achieve this are described in the next two
sections, §4.13 and §4.14.
A third approach is to revert to the conventional approach of fixing the arbitrary parameter 𝜆 equal to

coordinate time 𝑡. This choice eliminates the time coordinate and corresponding generalized momentum as
parameters to be determined by the least action principle. It also breaks manifest covariance, by singling out
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the time coordinate for special treatment. For simplicity, consider flat space, where the metric is Minkowski
𝜂𝑚𝑛. The Lagrangian (4.76) becomes

𝐿𝑚 = −𝑚
√︂
−𝜂𝑚𝑛

𝑑𝑥𝑚

𝑑𝑡

𝑑𝑥𝑛

𝑑𝑡
= −𝑚

√︀
1− 𝑣2 , (4.77)

where 𝑣 ≡
√︀
𝜂𝑎𝑏𝑣𝑎𝑣𝑏 is the magnitude of the 3-velocity 𝑣𝑎,

𝑣𝑎 ≡ 𝑑𝑥𝑎

𝑑𝑡
. (4.78)

The generalized momentum 𝜋𝑎 defined by (4.73) equals the ordinary momentum 𝑝𝑎,

𝜋𝑎 = 𝑝𝑎 ≡
𝑚𝑣𝑎√
1− 𝑣2

. (4.79)

The Hamiltonian (4.74) is

𝐻 = 𝑝𝑎𝑣
𝑎 − 𝐿 =

𝑚√
1− 𝑣2

. (4.80)

Expressed in terms of the spatial momenta 𝑝𝑎, the Hamiltonian is

𝐻 =
√︀
𝑝2 +𝑚2 , (4.81)

where 𝑝 ≡
√︀
𝜂𝑎𝑏𝑝𝑎𝑝𝑏 is the magnitude of the 3-momentum 𝑝𝑎. Hamilton’s equations (4.75) are

𝑑𝑥𝑎

𝑑𝑡
=

𝑝𝑎√︀
𝑝2 +𝑚2

,
𝑑𝑝𝑎

𝑑𝑡
= 0 . (4.82)

The Hamiltonian (4.81) can be recognized as the energy of the particle, or minus the covariant time compo-
nent of the 4-momentum,

𝐻 = −𝑝0 . (4.83)

A similar, more complicated, analysis in curved space leads to the same conclusion, that the conventional
Hamiltonian 𝐻 is minus the covariant time component of the 4-momentum,

𝐻 = −𝑝𝑡 . (4.84)

The expression for the Hamiltonian in terms of spatial coordinates 𝑥𝛼 and momenta 𝑝𝛼 can be inferred from
conservation of rest mass,

𝑔𝜇𝜈𝑝𝜇𝑝𝜈 +𝑚2 = 0 . (4.85)

Explicitly, the conventional Hamiltonian is

𝐻 = −𝑝𝑡 =
1

𝑔𝑡𝑡

[︂
𝑔𝑡𝛼𝑝𝛼 +

√︁
(𝑔𝑡𝛼𝑔𝑡𝛽 − 𝑔𝑡𝑡𝑔𝛼𝛽)𝑝𝛼𝑝𝛽 − 𝑔𝑡𝑡𝑚2

]︂
. (4.86)

In the presence of an electromagnetic field, replace the momenta 𝑝𝑡 and 𝑝𝛼 in equation (4.86) by 𝑝𝜇 =

𝜋𝜇 − 𝑞𝐴𝜇, and set the Hamiltonian equal to −𝜋𝑡,

𝐻 = −𝜋𝑡 . (4.87)
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The super-Hamiltonians (4.90) and (4.96) derived in the next two sections are more elegant than the
conventional Hamiltonian (4.86). All lead to the same equations of motion, but the super-Hamiltonian
exhibits general covariance more clearly.

4.13 Effective (super-)Hamiltonian for a test particle with electromagnetism

In the effective approach, the condition (4.29) on the parameter 𝜆 is applied after equations of motion are
derived. The effective test-particle Lagrangian (4.25), coupled to electromagnetism, is

𝐿 = 𝐿𝑚 + 𝐿𝑞 =
1

2
𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
+ 𝑞𝐴𝜇

𝑑𝑥𝜇

𝑑𝜆
, (4.88)

where the metric 𝑔𝜇𝜈 and electromagnetic potential 𝐴𝜇 are considered to be given functions of the coordinates
𝑥𝜇. The corresponding generalized momentum (4.6) is

𝜋𝜇 = 𝑔𝜇𝜈
𝑑𝑥𝜈

𝑑𝜆
+ 𝑞𝐴𝜇 . (4.89)

The (super-)Hamiltonian (4.68) expressed in terms of coordinates 𝑥𝜇 and momenta 𝜋𝜇 as required is

𝐻 =
1

2
𝑔𝜇𝜈(𝜋𝜇 − 𝑞𝐴𝜇)(𝜋𝜈 − 𝑞𝐴𝜈) . (4.90)

Hamilton’s equations (4.72) are

𝑑𝑥𝜇

𝑑𝜆
= 𝑝𝜇 ,

𝑑𝑝𝜅
𝑑𝜆

= Γ𝜇𝜈𝜅𝑝
𝜇𝑝𝜈 + 𝑞𝐹𝜅𝜇𝑝

𝜇 , (4.91)

where 𝑝𝜇 is defined by

𝑝𝜇 ≡ 𝜋𝜇 − 𝑞𝐴𝜇 . (4.92)

The equations of motion (4.91) having been derived from the Hamiltonian (4.90), the parameter 𝜆 is set
equal to the affine parameter in accordance with condition (4.29). In particular, the first of equations (4.91)
together with condition (4.29) implies that 𝑝𝜇 = 𝑚𝑑𝑥𝜇/𝑑𝜏 , as it should be. The equations of motion (4.91)
thus reproduce the equations (4.42) derived in Lagrangian approach. The value of the Hamiltonian (4.90)
after the equations of motion and condition (4.29) are imposed is constant,

𝐻 = −𝑚
2

2
. (4.93)

Recall that the super-Hamiltonian 𝐻 is a scalar, associated with rest mass, to be distinguished from the
conventional Hamiltonian, which is the time component of a vector, associated with energy. The minus sign
in equation (4.93) is associated with the choice of metric signature −+++, where scalar products of timelike
quantities are negative. The negative Hamiltionian (4.93) signifies that the particle is propagating along a
timelike direction. If the particle is massless, 𝑚 = 0, then the Hamiltonian is zero (after equations of motion
are imposed), signifying that the particle is propagating along a null direction.
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4.14 Nice (super-)Hamiltonian for a test particle with electromagnetism

The nice test-particle Lagrangian (4.31), coupled to electromagnetism, is

𝐿 =
𝑎

2

(︂
𝑔𝜇𝜈

𝑑𝑥𝜇

𝑎 𝑑𝜆

𝑑𝑥𝜈

𝑎 𝑑𝜆
−𝑚2

)︂
+ 𝑞𝐴𝜇

𝑑𝑥𝜇

𝑑𝜆
. (4.94)

The corresponding generalized momentum (4.6) is

𝜋𝜇 = 𝑔𝜇𝜈
𝑑𝑥𝜈

𝑎 𝑑𝜆
+ 𝑞𝐴𝜇 . (4.95)

The associated nice (super-)Hamiltonian (4.68) expressed in terms of coordinates 𝑥𝜇 and momenta 𝜋𝜇 as
required is

𝐻 =
𝑎

2

[︀
𝑔𝜇𝜈(𝜋𝜇 − 𝑞𝐴𝜇)(𝜋𝜈 − 𝑞𝐴𝜈) +𝑚2

]︀
. (4.96)

The nice Hamiltonian 𝐻, equation (4.96), depends on the auxiliary scale factor 𝑎 as well as on 𝑥𝜇 and 𝜋𝜇,
and the action must be varied with respect to all of these to obtain all the equations of motion. Compared
to the variation (4.71), the variation of the action contains an additional term proportional to 𝛿𝑎:

𝛿𝑆 = [𝜋𝜇𝛿𝑥
𝜇]
𝜆f

𝜆i
+

∫︁ 𝜆f

𝜆i

{︂
−
(︂
𝑑𝜋𝜇
𝑑𝜆

+
𝜕𝐻

𝜕𝑥𝜇

)︂
𝛿𝑥𝜇 +

(︂
𝑑𝑥𝜇

𝑑𝜆
− 𝜕𝐻

𝜕𝜋𝜇

)︂
𝛿𝜋𝜇 −

𝜕𝐻

𝜕𝑎
𝛿𝑎

}︂
𝑑𝜆 . (4.97)

Requiring that the variation (4.97) of the action vanish under arbitrary variations of the coordinates 𝑥𝜇 and
momenta 𝜋𝜇 yields Hamilton’s equations (4.72), which here are

𝑑𝑥𝜇

𝑎 𝑑𝜆
= 𝑝𝜇 ,

𝑑𝑝𝜅
𝑎 𝑑𝜆

= Γ𝜇𝜈𝜅𝑝
𝜇𝑝𝜈 + 𝑞𝐹𝜅𝜇𝑝

𝜇 , (4.98)

with 𝑝𝜇 defined by

𝑝𝜇 ≡ 𝜋𝜇 − 𝑞𝐴𝜇 . (4.99)

The condition (4.103) found below, substituted into the first of Hamilton’s equations (4.98), implies that 𝑝𝜇

coincides with the usual ordinary momentum 𝑝𝜇 = 𝑚𝑑𝑥𝜇/𝑑𝜏 , as it should. Requiring that the variation (4.97)
of the action vanish under arbitrary variation of the parameter 𝑎 yields the additional equation of motion

𝜕𝐻

𝜕𝑎
= 0 . (4.100)

The additional equation of motion (4.100) applied to the Hamiltonian (4.96) implies that

𝑔𝜇𝜈(𝜋𝜇 − 𝑞𝐴𝜇)(𝜋𝜈 − 𝑞𝐴𝜈) = −𝑚2 . (4.101)

From the first of the equations of motion (4.98) along with the definition (4.99), equation (4.101) is the same
as

𝑔𝜇𝜈
𝑑𝑥𝜇

𝑎 𝑑𝜆

𝑑𝑥𝜈

𝑎 𝑑𝜆
= −𝑚2 , (4.102)
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which in turn is equivalent to

𝑎 𝑑𝜆 =
𝑑𝜏

𝑚
, (4.103)

recovering equation (4.35) derived using the Lagrangian formalism. Inserting the condition (4.103) into
Hamilton’s equations (4.98) recovers the equations of motion (4.42) for a test particle in a prescribed gravi-
tational and electromagnetic field. The value of the Hamiltonian (4.96) after the equation of motion (4.101)
is imposed is zero,

𝐻 = 0 . (4.104)

4.15 Derivatives of the action

Besides being a scalar whose minimum value between fixed endpoints defines the path between those points,
the action 𝑆 can also be treated as a function of its endpoints along the actual path. Along the actual path,
the equations of motion are satisfied, so the integral in the variation (4.4) or (4.71) of the action vanishes
identically. The surface term in the variation (4.4) or (4.71) then implies that 𝛿𝑆 = 𝜋𝜇𝛿𝑥

𝜇. This means that
the partial derivatives of the action with respect to the coordinates are equal to the generalized momenta,

𝜕𝑆

𝜕𝑥𝜇
= 𝜋𝜇 . (4.105)

This is the basis of the Hamilton-Jacobi method for solving equations of motion, §4.16.
By definition, the total derivative of the action 𝑆 with respect to the arbitrary parameter 𝜆 along the

actual path equals the Lagrangian 𝐿. In addition to being a function of the coordinates 𝑥𝜇 along the actual
path, the action may also be an explicit function 𝑆(𝜆, 𝑥𝜇) of the parameter 𝜆. The total derivative of the
action along the path may thus be expressed

𝑑𝑆

𝑑𝜆
= 𝐿 =

𝜕𝑆

𝜕𝜆
+

𝜕𝑆

𝜕𝑥𝜇
𝑑𝑥𝜇

𝑑𝜆
. (4.106)

Comparing equation (4.106) to the definition (4.68) of the Hamiltonian shows that the partial derivative of
the action with respect to the parameter 𝜆 is minus the Hamiltonian

𝜕𝑆

𝜕𝜆
= −𝐻 . (4.107)

In the conventional approach where the parameter 𝜆 is fixed equal to the time coordinate 𝑡, equa-
tions (4.105) and (4.107) together show that

𝜕𝑆

𝜕𝑡
= 𝜋𝑡 = −𝐻 , (4.108)

in agreement with equation (4.87). In the super-Hamiltonian approach, the Hamiltonian 𝐻 is constant, equal
to −𝑚2/2 in the effective approach, equation (4.93), and equal to zero in the nice approach, equation (4.104).
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Concept question 4.5. Action vanishes along a null geodesic, but its gradient does not. How can
it be that the gradient of the action 𝑝𝜇 = 𝜕𝑆/𝜕𝑥𝜇 is non-zero along a null geodesic, yet the variation of the
action 𝑑𝑆 = −𝑚𝑑𝜏 is identically zero along the same null geodesic? Answer. This has to do with the fact
that a vector can be finite yet null,

𝑑𝑆

𝑑𝜆
=
𝑑𝑥𝜇

𝑑𝜆

𝜕𝑆

𝜕𝑥𝜇
= 𝜋𝜇𝜋𝜇 = −𝑚2 = 0 for 𝑚 = 0 . (4.109)

4.16 Hamilton-Jacobi equation

The Hamilton-Jacobi equation provides a powerful way to solve equations of motion. The Hamilton-Jacobi
equation proves to be separable in the Kerr-Newman geometry for an ideal rotating black hole, Chapter 23.
The hypothesis that the Hamilton-Jacobi equation be separable provides one way to derive the Kerr-Newman
line-element, Chapter 22, and to discover other separable spacetimes.
The Hamilton-Jacobi equation is obtained by writing down the expression for the Hamiltonian 𝐻 in terms

of coordinates 𝑥𝜇 and generalized momenta 𝜋𝜇, and replacing the Hamiltonian 𝐻 by −𝜕𝑆/𝑑𝜆 in accordance
with equation (4.107), and the generalized momenta 𝜋𝜇 by 𝜕𝑆/𝜕𝑥𝜇 in accordance with equation (4.105).
For the effective Hamiltonian (4.90), the resulting Hamilton-Jacobi equation is

− 𝜕𝑆

𝜕𝜆
=

1

2
𝑔𝜇𝜈

(︂
𝜕𝑆

𝜕𝑥𝜇
− 𝑞𝐴𝜇

)︂(︂
𝜕𝑆

𝜕𝑥𝜈
− 𝑞𝐴𝜈

)︂
, (4.110)

whose left hand side is −𝑚2/2, equation (4.93). For the nice Hamiltonian (4.96), the resulting Hamilton-
Jacobi equation is

− 𝜕𝑆

𝑎 𝜕𝜆
=

1

2

[︂
𝑔𝜇𝜈

(︂
𝜕𝑆

𝜕𝑥𝜇
− 𝑞𝐴𝜇

)︂(︂
𝜕𝑆

𝜕𝑥𝜈
− 𝑞𝐴𝜈

)︂
+𝑚2

]︂
, (4.111)

whose left hand side is zero, equation (4.104). The Hamilton-Jacobi equations (4.110) and (4.111) agree, as
they should. The Hamilton-Jacobi equation (4.110) or (4.111) is a partial differential equation for the action
𝑆(𝜆, 𝑥𝜇). In spacetimes with sufficient symmetry, such as Kerr-Newman, the partial differential equation can
be solved by separation of variables. This will be done in §22.3.

4.17 Canonical transformations

The Lagrangian equations of motion (4.5) take the same form regardless of the choice of coordinates 𝑥𝜇 of
the underlying spacetime. This expresses general covariance: the form of the Lagrangian equations of motion
is unchanged by general coordinate transformations.
Coordinate transformations also preserve Hamilton’s equations of motion (4.72). But the Hamiltonian
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formalism allows a wider range of transformations that preserve the form of Hamilton’s equations. Transfor-
mations of the coordinates and momenta that preserve Hamilton’s equations are called canonical trans-
formations. The construction of canonical transformations is addressed in §4.17.1.
The wide range of possible canonical transformations means that the coordinates and momenta lose much

of their original meaning as actual spacetime coordinates and momenta of particles. For example, there is
a canonical transformation (4.117) that simply exchanges coordinates and their conjugate momenta. It is
common therefore to refer to general systems of coordinates and momenta that satisfy Hamilton’s equations
as generalized coordinates and generalized momenta, and to denote them by 𝑞𝜇 and 𝑝𝜇,

𝑞𝜇 , 𝑝𝜇 . (4.112)

4.17.1 Construction of canonical transformations

Consider a canonical transformation of coordinates and momenta

{𝑞𝜇, 𝑝𝜇} → {𝑞′𝜇(𝑞, 𝑝), 𝑝′𝜇(𝑞, 𝑝)} . (4.113)

By definition of canonical transformation, both the original and transformed sets of coordinates and momenta
satisfy Hamilton’s equations.
For the equations of motion to take Hamiltonian form, the original and transformed actions 𝑆 and 𝑆′ must

take the form

𝑆 =

∫︁ 𝜆f

𝜆i

𝑝𝜇𝑑𝑞
𝜇 −𝐻𝑑𝜆 , 𝑆′ =

∫︁ 𝜆f

𝜆i

𝑝′𝜇𝑑𝑞
′𝜇 −𝐻 ′𝑑𝜆 . (4.114)

One way for the original and transformed coordinates and momenta to yield equivalent equations of motion
is that the integrands of the actions differ by the total derivative 𝑑𝐹 of some function 𝐹 ,

𝑑𝐹 = 𝑝𝜇 𝑑𝑞
𝜇 − 𝑝′𝜇 𝑑𝑞′𝜇 − (𝐻 −𝐻 ′) 𝑑𝜆 . (4.115)

When the actions 𝑆 and 𝑆′ are varied, the difference in the variations is the difference in the variation of 𝐹
between the initial and final points 𝜆i and 𝜆f , which vanishes provided that whatever 𝐹 depends on is held
fixed on the initial and final points,

𝛿𝑆 − 𝛿𝑆′ = [𝛿𝐹 ]
𝜆f

𝜆i
= 0 . (4.116)

Because the variations of the actions are the same, the resulting equations of motion are equivalent. The
function 𝐹 is called the generator of the canonical transformation between the original and transformed
coordinates.
Given any function 𝐹 (𝜆, 𝑞, 𝑞′), equation (4.115) determines 𝑝𝜇, −𝑝′𝜇, and 𝐻−𝐻 ′ as partial derivatives of 𝐹

with respect to 𝑞𝜇, 𝑞′𝜇, and 𝜆. For example, the function 𝐹 =
∑︀
𝜇 𝑞
′𝜇𝑞𝜇 generates a canonical transformation

that simply trades coordinates and momenta,

𝑝𝜇 =
𝜕𝐹

𝜕𝑞𝜇
= 𝑞′𝜇 , 𝑝′𝜇 = − 𝜕𝐹

𝜕𝑞′𝜇
= −𝑞𝜇 . (4.117)

The generating function 𝐹 (𝜆, 𝑞, 𝑞′) depends on 𝑞𝜇 and 𝑞′𝜇. Other generating functions depending on either
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of 𝑞𝜇 or 𝑝𝜇, and either of 𝑞′𝜇 or 𝑝′𝜇, are obtained by subtracting 𝑝𝜇𝑞𝜇 and/or adding 𝑝′𝜇𝑞
′𝜇 to 𝐹 . For example,

equation (4.115) can be rearranged as

𝑑𝐺 = 𝑝𝜇 𝑑𝑞
𝜇 + 𝑞′𝜇 𝑑𝑝′𝜇 − (𝐻 −𝐻 ′)𝑑𝜆 , (4.118)

where 𝐺 ≡ 𝐹 + 𝑝′𝜈𝑞
′𝜈 is now some function 𝐺(𝜆, 𝑞, 𝑝′). For example, the function 𝐺(𝑞, 𝑝′) =

∑︀
𝜇 𝑓

𝜇(𝑞) 𝑝′𝜇,
in which 𝑓𝜇(𝑞) is some function of the coordinates 𝑞𝜈 but not of the momenta 𝑝𝜈 , generates the canonical
transformation

𝑝𝜇 =
𝜕𝐺

𝜕𝑞𝜇
=
∑︁
𝜈

𝜕𝑓𝜈

𝜕𝑞𝜇
𝑝′𝜈 , 𝑞′𝜇 =

𝜕𝐺

𝜕𝑝′𝜇
= 𝑓𝜇(𝑞) . (4.119)

This is just a coordinate transformation 𝑞𝜇 → 𝑞′𝜇 = 𝑓𝜇(𝑞).
If the generator of a canonical transformation does not depend on the parameter 𝜆, then the Hamiltonians

are the same in the original and transformed systems,

𝐻(𝑞𝜇, 𝑝𝜇) = 𝐻 ′(𝑞′𝜇, 𝑝′𝜇) . (4.120)

In the super-Hamiltonian approach, where the parameter 𝜆 is arbitrary, the Hamiltonian is without loss of
generality independent of 𝜆, and there is no physical significance to canonical transformations generated by
functions that depend on 𝜆. The super-Hamiltonian 𝐻(𝑞𝜇, 𝑝𝜇) is then a scalar, invariant with respect to
canonical transformations that do not depend explicitly on 𝜆. This contrasts with the conventional Hamil-
tonian approach, where the parameter 𝜆 is set equal to the coordinate time 𝑡, and the conventional Ham-
iltonian is the time component of a 4-vector, which varies under canonical transformations generated by
functions that depend on time 𝑡.

4.17.2 Evolution is a canonical transformation

The evolution of the system from some initial hypersurface 𝜆 = 0 to some final hypersurface 𝜆 is itself a
canonical transformation. This is evident from the fact that Hamilton’s equations (4.72) hold for any value of
the parameter 𝜆, so in particular Hamilton’s equations are unchanged when initial coordinates and momenta
𝑞𝜇(0) and 𝑝𝜇(0) are replaced by evolved values 𝑞𝜇(𝜆) and 𝑝𝜇(𝜆),

𝑞𝜇(0)→ 𝑞′𝜇 = 𝑞𝜇(𝜆) , 𝑝𝜇(0)→ 𝑝′𝜇 = 𝑝𝜇(𝜆) . (4.121)

The action varies by the total derivative 𝑑𝑆 = 𝑝𝜇 𝑑𝑞
𝜇 − 𝐻 𝑑𝜆 along the actual path of the system, equa-

tion (4.106), so the initial and evolved actions differ by a total derivative, equation (4.115),

𝑑𝐹 = 𝑝𝜇(0) 𝑑𝑞
𝜇(0)− 𝑝𝜇(𝜆) 𝑑𝑞𝜇(𝜆)−

[︀
𝐻(0)−𝐻(𝜆)

]︀
𝑑𝜆 = 𝑑𝑆(0)− 𝑑𝑆(𝜆) . (4.122)

Thus the canonical transformation from an initial 𝜆 = 0 to a final 𝜆 is generated by the difference in the
actions along the actual path of the system,

𝐹 = 𝑆(0)− 𝑆(𝜆) . (4.123)
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4.18 Symplectic structure

The generalized coordinates 𝑞𝜇 and momenta 𝑝𝜇 of a dynamical system of particles have a geometrical struc-
ture that transcends the geometrical structure of the underlying spacetime manifold. For 𝑁 coordinates 𝑞𝜇

and 𝑁 momenta 𝑝𝜇, the geometrical structure is a 2𝑁 -dimensional manifold called a symplectic manifold.
A symplectic manifold is also called phase space, and the coordinates {𝑞𝜇, 𝑝𝜇} of the manifold are called
phase-space coordinates.
A central property of a symplectic manifold is that the Hamiltonian dynamics define a scalar product with

antisymmetric symplectic metric 𝜔𝑖𝑗 . Let 𝑧𝑖 with 𝑖 = 1, ..., 2𝑁 denote the combined set of 2𝑁 generalized
coordinates and momenta {𝑞𝜇, 𝑝𝜇},

{𝑧1, ..., 𝑧𝑁 , 𝑧𝑁+1, ..., 𝑧2𝑁} ≡ {𝑞1, ..., 𝑞𝑁 , 𝑝1, ..., 𝑝𝑁} . (4.124)

Hamilton’s equations (4.72) can be written

𝑑𝑧𝑖

𝑑𝜆
= 𝜔𝑖𝑗

𝜕𝐻

𝜕𝑧𝑗
, (4.125)

where 𝜔𝑖𝑗 is the antisymmetric symplectic metric (actually the inverse symplectic metric)

𝜔𝑖𝑗 ≡ 𝛿𝑖+𝑁, 𝑗 − 𝛿𝑖, 𝑗+𝑁 =

⎧⎨⎩
1 if 𝑧𝑖 = 𝑞𝜇 and 𝑧𝑗 = 𝑝𝜇 ,

−1 if 𝑧𝑖 = 𝑝𝜇 and 𝑧𝑗 = 𝑞𝜇 ,

0 otherwise .
(4.126)

As a matrix, the symplectic metric 𝜔𝑖𝑗 is the 2𝑁 × 2𝑁 matrix

𝜔𝑖𝑗 =

(︂
0 1

−1 0

)︂
, (4.127)

where 1 denotes the 𝑁 × 𝑁 unit matrix. Inverting the inverse symplectic metric 𝜔𝑖𝑗 yields the symplectic
metric 𝜔𝑖𝑗 , which is the same matrix but flipped in sign,

𝜔𝑖𝑗 ≡ (𝜔𝑖𝑗)−1 = (𝜔𝑖𝑗)⊤ = −𝜔𝑖𝑗 =
(︂

0 −1
1 0

)︂
. (4.128)

Let 𝑧′𝑖 be another set of generalized coordinates and momenta satisfying Hamilton’s equations with the same
Hamiltonian 𝐻,

𝑑𝑧′𝑖

𝑑𝜆
= 𝜔𝑖𝑗

𝜕𝐻

𝜕𝑧′𝑗
. (4.129)

It is being assumed here that the Hamiltonian 𝐻 does not depend explicitly on the parameter 𝜆. In the super-
Hamiltonian approach, there is no loss of generality in taking the Hamiltonian 𝐻 to be independent of 𝜆,
since the parameter 𝜆 is arbitrary, without physical significance. The important point about equation (4.129)
is that the symplectic metric 𝜔𝑖𝑗 is the same regardless of the choice of phase-space coordinates. Under a
canonical transformation 𝑧𝑖 → 𝑧′𝑖(𝑧) of generalized coordinates and momenta, 𝑑𝑧′𝑖/𝑑𝜆 transforms as

𝑑𝑧′𝑖

𝑑𝜆
=
𝜕𝑧′𝑖

𝜕𝑧𝑘
𝑑𝑧𝑘

𝑑𝜆
=
𝜕𝑧′𝑖

𝜕𝑧𝑘
𝜔𝑘𝑙

𝜕𝐻

𝜕𝑧𝑙
=
𝜕𝑧′𝑖

𝜕𝑧𝑘
𝜔𝑘𝑙

𝜕𝑧′𝑗

𝜕𝑧𝑙
𝜕𝐻

𝜕𝑧′𝑗
. (4.130)
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Comparing equations (4.129) and (4.130) shows that the symplectic matrix 𝜔𝑖𝑗 is invariant under a canonical
transformation,

𝜔𝑖𝑗 =
𝜕𝑧′𝑖

𝜕𝑧𝑘
𝜔𝑘𝑙

𝜕𝑧′𝑗

𝜕𝑧𝑙
. (4.131)

Equation (4.131) can be expressed as the invariance under canonical transformations of

𝜔𝑖𝑗
𝜕

𝜕𝑧𝑖
𝜕

𝜕𝑧𝑗
= 𝜔𝑖𝑗

𝜕

𝜕𝑧′𝑖
𝜕

𝜕𝑧′𝑗
. (4.132)

Equivalently,

𝜔𝑖𝑗 𝑑𝑧
𝑖𝑑𝑧𝑗 = 𝜔𝑖𝑗 𝑑𝑧

′𝑖𝑑𝑧′𝑗 . (4.133)

The invariance of the symplectic metric 𝜔𝑖𝑗 under canonical transformations can be thought of as analogous
to the invariance of the Minkowski metric 𝜂𝑚𝑛 under Lorentz transformations. But whereas the Minkowski
metric 𝜂𝑚𝑛 is symmetric, the symplectic metric 𝜔𝑖𝑗 is antisymmetric.

4.19 Symplectic scalar product and Poisson brackets

Let 𝑓(𝑧𝑖) and 𝑔(𝑧𝑖) be two functions of phase-space coordinates 𝑧𝑖. Their tangent vectors in the phase space
are 𝜕𝑓/𝜕𝑧𝑖 and 𝜕𝑔/𝜕𝑧𝑖. The symplectic scalar product of the tangent vectors defines the Poisson bracket

of the two functions 𝑓 and 𝑔,

[𝑓, 𝑔] ≡ 𝜔𝑖𝑗 𝜕𝑓
𝜕𝑧𝑖

𝜕𝑔

𝜕𝑧𝑗
=

𝜕𝑓

𝜕𝑞𝜇
𝜕𝑔

𝜕𝑝𝜇
− 𝜕𝑓

𝜕𝑝𝜇

𝜕𝑔

𝜕𝑞𝜇
. (4.134)

The invariance (4.132) of the symplectic metric implies that the Poisson bracket is a scalar, invariant under
canonical transformations of the phase-space coordinates 𝑧𝑖. The Poisson bracket is antisymmetric thanks
to the antisymmetry of the symplectic metric 𝜔𝑖𝑗 ,

[𝑓, 𝑔] = −[𝑔, 𝑓 ] . (4.135)

4.19.1 Poisson brackets of phase-space coordinates

The Poisson brackets of the phase-space coordinates and momenta themselves satisfy

[𝑧𝑖, 𝑧𝑗 ] = 𝜔𝑖𝑗 . (4.136)

Explicitly in terms of the generalized coordinates and momenta 𝑞𝜇 and 𝑝𝜇,

[𝑞𝜇, 𝑝𝜈 ] = 𝛿𝜇𝜈 , [𝑞𝜇, 𝑞𝜈 ] = 0 , [𝑝𝜇, 𝑝𝜈 ] = 0 . (4.137)

Reinterpreting equations (4.137) as operator equations provides a path from classical to quantum mechanics.
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4.20 (Super-)Hamiltonian as a generator of evolution

The Poisson bracket of a function 𝑓(𝑧𝑖) with the Hamiltonian 𝐻 is

[𝑓,𝐻] =
𝜕𝑓

𝜕𝑞𝜇
𝜕𝐻

𝜕𝑝𝜇
− 𝜕𝑓

𝜕𝑝𝜇

𝜕𝐻

𝜕𝑞𝜇
. (4.138)

Inserting Hamilton’s equations (4.72) implies

[𝑓,𝐻] =
𝜕𝑓

𝜕𝑞𝜇
𝑑𝑞𝜇

𝑑𝜆
+

𝜕𝑓

𝜕𝑝𝜇

𝑑𝑝𝜇
𝑑𝜆

=
𝑑𝑓

𝑑𝜆
. (4.139)

That is, the evolution of a function 𝑓(𝑞𝜇, 𝑝𝜇) of generalized coordinates and momenta is its Poisson bracket
with the Hamiltonian 𝐻,

𝑑𝑓

𝑑𝜆
= [𝑓,𝐻] . (4.140)

Equation (4.140) shows that the (super-)Hamiltonian defined by equation (4.68) can be interpreted as gen-
erating the evolution of the system.
The same derivation holds in the conventional case where 𝜆 is taken to be time 𝑡, but generically the

function 𝑓(𝑡, 𝑞𝛼, 𝑝𝛼) and conventional Hamiltonian 𝐻(𝑡, 𝑞𝛼, 𝑝𝛼) must be allowed to be explicit functions of
time 𝑡 as well as of generalized spatial coordinates and momenta 𝑞𝛼 and 𝑝𝛼. Equation (4.140) becomes in
the conventional case

𝑑𝑓

𝑑𝑡
=
𝜕𝑓

𝜕𝑡
+ [𝑓,𝐻] . (4.141)

4.21 Infinitesimal canonical transformations

A canonical transformation generated by 𝐺 = 𝑞𝜇𝑝′𝜇 is the identity transformation, since it leaves the coordi-
nates and momenta unchanged. Consider a canonical transformation with generator infinitesimally shifted
from the identity transformation, with 𝜖 an infinitesimal parameter,

𝐺 = 𝑞𝜇𝑝′𝜇 + 𝜖 𝑔(𝑞, 𝑝′) . (4.142)

The resulting canonical transformation is, from equation (4.119),

𝑞′𝜇 =
𝜕𝐺

𝜕𝑝′𝜇
= 𝑞𝜇 + 𝜖

𝜕𝑔

𝜕𝑝′𝜇
, 𝑝𝜇 =

𝜕𝐺

𝜕𝑞𝜇
= 𝑝′𝜇 + 𝜖

𝜕𝑔

𝜕𝑞𝜇
. (4.143)

Because 𝜖 is infinitesimal, the term 𝜖 𝜕𝑔/𝜕𝑝′𝜇 can be replaced by 𝜖 𝜕𝑔/𝜕𝑝𝜇 to linear order, yielding

𝑞′𝜇 = 𝑞𝜇 + 𝜖
𝜕𝑔

𝜕𝑝𝜇
, 𝑝′𝜇 = 𝑝𝜇 − 𝜖

𝜕𝑔

𝜕𝑞𝜇
. (4.144)

Equations (4.144) imply that the changes 𝛿𝑝𝜇 and 𝛿𝑞𝜇 in the coordinates and momenta under an infinitesimal
canonical transformation (4.142) is their Poisson bracket with 𝑔,

𝛿𝑝𝜇 = 𝜖 [𝑝𝜇, 𝑔] , 𝛿𝑞𝜇 = 𝜖 [𝑞𝜇, 𝑔] . (4.145)
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As a particular example, the evolution of the system under an infinitesimal change 𝛿𝜆 in the parameter 𝜆
is, in accordance with the evolutionary equation (4.140), generated by a canonical transformation with 𝑔 in
equation (4.142) set equal to the Hamiltonian 𝐻,

𝛿𝑝𝜇 = 𝛿𝜆 [𝑝𝜇, 𝐻] , 𝛿𝑞𝜇 = 𝛿𝜆 [𝑞𝜇, 𝐻] . (4.146)

4.22 Constancy of phase-space volume under canonical transformations

The invariance of the symplectic metric under canonical transformations implies the invariance of phase-space
volume under canonical transformations.
The volume 𝑉 of a region of 2𝑁 -dimensional phase space is

𝑉 ≡
∫︁
𝑑𝑉 ≡

∫︁
𝑑𝑧1...𝑑𝑧2𝑁 ≡

∫︁
𝑑𝑞1...𝑑𝑞𝑁 𝑑𝑝1...𝑑𝑝𝑁 , (4.147)

integrated over the region. Under a canonical transformation 𝑧𝑖 → 𝑧′𝑖(𝑧) of phase-space coordinates, the
phase-space volume element 𝑑𝑉 transforms by the Jacobian of the transformation, which is the determinant⃒⃒
𝜕𝑧′𝑖/𝜕𝑧𝑗

⃒⃒
,

𝑑𝑉 ′ =

⃒⃒⃒⃒
𝜕𝑧′𝑖

𝜕𝑧𝑗

⃒⃒⃒⃒
𝑑𝑉 . (4.148)

But equation (4.131) implies that ⃒⃒
𝜔𝑖𝑗
⃒⃒
=

⃒⃒⃒⃒
𝜕𝑧′𝑖

𝜕𝑧𝑘

⃒⃒⃒⃒ ⃒⃒
𝜔𝑘𝑙
⃒⃒ ⃒⃒⃒⃒𝜕𝑧′𝑗
𝜕𝑧𝑙

⃒⃒⃒⃒
, (4.149)

so the Jacobian must be 1 in absolute magnitude,⃒⃒⃒⃒
𝜕𝑧′𝑖

𝜕𝑧𝑗

⃒⃒⃒⃒
= ±1 . (4.150)

If the canonical transformation can be obtained by a continuous transformation from the identity, then the
Jacobian must equal 1. As a particular case, the Jacobian equals 1 for the canonical transformation generated
by evolution, §4.22.1, since evolution is continuous from initial to final conditions.

4.22.1 Constancy of phase-space volume under evolution

Since evolution is a canonical transformation, §4.17.2 and §4.21, phase-space volume 𝑉 is preserved under
evolution of the system. Each phase-space point inside the volume 𝑉 evolves according to the equations
of motion. As the system of points evolves, the region distorts, but the magnitude of the volume 𝑉 of the
region remains constant. The constancy of phase-space volume as it evolves was proved explicitly in 1871 by
Boltzmann, who later referred to the result as “Liouville’s theorem” since the proof was based in part on a
mathematical theorem proved by Liouville (see Nolte, 2010).
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4.23 Poisson algebra of integrals of motion

A function 𝑓(𝑧𝑖) of the generalized coordinates and momenta is said to be an integral of motion if it is
constant as the system evolves. In view of equation (4.140), a function 𝑓(𝑧𝑖) is an integral of motion if and
only if its Poisson brackets with the Hamiltonian vanishes,

[𝑓,𝐻] = 0 . (4.151)

As a particular example, the antisymmetry of the Poisson bracket implies that the Poisson bracket of the
Hamiltonian with itself is zero,

[𝐻,𝐻] = 0 , (4.152)

so the Hamiltonian 𝐻 is itself a constant of motion. The super-Hamiltonian 𝐻 is a constant of motion in
general, while the conventional Hamiltonian 𝐻 is constant provided that it does not depend explicitly on
time 𝑡.
Suppose that 𝑓(𝑧𝑖) and 𝑔(𝑧𝑖) are both integrals of motion. Then their Poisson brackets with each other is

also an integral of motion,

[[𝑓, 𝑔], 𝐻] = − [[𝑔,𝐻], 𝑓 ]− [[𝐻, 𝑓 ], 𝑔] = 0 , (4.153)

the first equality of which expresses the Jacobi identity, and the last equality of which follows because the
Poisson bracket of each of 𝑓 and 𝑔 with the Hamiltonian 𝐻 vanishes. The Poisson bracket of two integrals
of motion 𝑓 and 𝑔 may or may not yield a further distinct integral of motion. A set of linearly independent
integrals of motion whose Poisson brackets close forms a Lie algebra is called a Poisson algebra.

Concept question 4.6. How many integrals of motion can there be? How many distinct integrals
of motion can there be in a dynamical system described by 𝑁 coordinates and 𝑁 momenta? A distinct
integral of motion is one that cannot be expressed as a function of the other integrals of motion (this is more
stringent than the condition that the integrals be linearly independent). Answer. The dynamical motion of
the system is described by a 1-dimensional line in a 2𝑁 -dimensional phase-space manifold consisting of the 𝑁
coordinates and 𝑁 momenta. Any constant of motion 𝑓(𝑥𝜇, 𝜋𝜇) defines a (2𝑁−1)-dimensional submanifold
of the phase-space manifold. A 1-dimensional line can be the intersection of no more than 2𝑁−1 distinct
such submanifolds, so there can be at most 2𝑁−1 distinct constants of motion. In the super-Hamiltonian
formulation, the phase space of a single particle in 4 spacetime dimensions is 8-dimensional, and there are
at most 7 distinct integrals of motion. A particle moving along a straight line in Minkowski space provides
an example of a system with a full set of 7 integrals of motion: 4 integrals constitute the covariant energy-
momentum 4-vector 𝑝𝑚, and a further 3 integrals of motion comprise 𝑥𝑎 − 𝑣𝑎𝑡 = 𝑥𝑎(0) where 𝑣𝑎 ≡ 𝑝𝑎/𝑝0 is
the velocity, and 𝑥𝑚(0) is the origin of the line at 𝑡 = 0. In the conventional Hamiltonian formulation, the
phase space of a single particle is 6-dimensional, and there are at most 5 distinct integrals of motion. The
apparent discrepancy in the number of integrals occurs because in the super-Hamiltonian formalism the time
𝑡 and time component 𝜋𝑡 of the generalized momentum are treated as distinct variables whose equations
of motion are determined by Hamilton’s equations, whereas in the conventional Hamiltonian formalism the
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arbitrary parameter 𝜆 is set equal to the time 𝑡, which is therefore no longer an independent variable, and
the generalized momentum 𝜋𝑡, which equals minus the conventional Hamiltonian 𝐻, equation (4.108), is
eliminated as an independent variable by re-expressing it in terms of the spatial coordinates and momenta.



Concept Questions

1. What evidence do astronomers currently accept as indicating the presence of a black hole in a system?
2. Why can astronomers measure the masses of supermassive black holes only in relatively nearby galaxies?
3. To what extent (with what accuracy) are real black holes in our Universe described by the no-hair

theorem?
4. Does the no-hair theorem apply inside a black hole?
5. Black holes lose their hair on a light-crossing time. How long is a light-crossing time for a typical

stellar-sized or supermassive astronomical black hole?
6. Relativists say that the metric is 𝑔𝜇𝜈 , but they also say that the metric is 𝑑𝑠2 = 𝑔𝜇𝜈 𝑑𝑥

𝜇𝑑𝑥𝜈 . How can
both statements be correct?

7. The Schwarzschild geometry is said to describe the geometry of spacetime outside the surface of the
Sun or Earth. But the Schwarzschild geometry supposedly describes non-rotating masses, whereas the
Sun and Earth are rotating. If the Sun or Earth collapsed to a black hole conserving their mass 𝑀 and
angular momentum 𝐿, roughly what would the spin 𝑎/𝑀 = 𝐿/𝑀2 of the black hole be relative to the
maximal spin 𝑎/𝑀 = 1 of a Kerr black hole?

8. What happens at the horizon of a black hole?
9. As cold matter becomes denser, it goes through the stages of being solid/liquid like a planet, then

electron degenerate like a white dwarf, then neutron degenerate like a neutron star, then finally it
collapses to a black hole. Why could there not be a denser state of matter, denser than a neutron star,
that brings a star to rest inside its horizon?

10. How can an observer determine whether they are “at rest” in the Schwarzschild geometry?
11. An observer outside the horizon of a black hole never sees anything pass through the horizon, even to

the end of the Universe. Does the black hole then ever actually collapse, if no one ever sees it do so?
12. If nothing can ever get out of a black hole, how does its gravity get out?
13. Why did Einstein believe that black holes could not exist in nature?
14. In what sense is a rotating black hole “stationary” but not “static”?
15. What is a white hole? Do they exist?
16. Could the expanding Universe be a white hole?
17. Could the Universe be the interior of a black hole?
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18. You know the Schwarzschild metric for a black hole. What is the corresponding metric for a white hole?
19. What is the best kind of black hole to fall into if you want to avoid being tidally torn apart?
20. Why do astronomers often assume that the inner edge of an accretion disk around a black hole occurs

at the innermost stable orbit?
21. A collapsing star of uniform density has the geometry of a collapsing Friedmann-Lemaître-Robertson-

Walker cosmology. If a spatially flat FLRW cosmology corresponds to a star that starts from zero velocity
at infinity, then to what do open or closed FLRW cosmologies correspond?

22. Your friend falls into a black hole, and you watch her image freeze and redshift at the horizon. A shell
of matter falls on to the black hole, increasing the mass of the black hole. What happens to the image
of your friend? Does it disappear, or does it remain on the horizon?

23. Is the singularity of a Reissner-Nordström black hole gravitationally attractive or repulsive?
24. If you are a charged particle, which dominates near the singularity of the Reissner-Nordström geometry,

the electrical attraction/repulsion or the gravitational attraction/repulsion?
25. Is a white hole gravitationally attractive or repulsive?
26. What happens if you fall into a white hole?
27. Which way does time go in Parallel Universes in the Reissner-Nordström geometry?
28. What does it mean that geodesics inside a black hole can have negative energy?
29. Can geodesics have negative energy outside a black hole? How about inside the ergosphere?
30. Physically, what causes mass inflation?
31. Is mass inflation likely to occur inside real astronomical black holes?
32. What happens at the X point, where the outgoing and ingoing inner horizons of the Reissner-Nordström

geometry intersect?
33. Can a particle like an electron or proton, whose charge far exceeds its mass (in geometric units), be

modelled as Reissner-Nordström black hole?
34. Does it makes sense that a person might be at rest in the Kerr-Newman geometry? How would the

Boyer-Lindquist coordinates of such a person vary along their worldline?
35. In identifying 𝑀 as the mass and 𝑎 the angular momentum per unit mass of the black hole in the

Boyer-Lindquist metric, why is it sufficient to consider the behaviour of the metric at 𝑟 →∞?
36. Does space move faster than light inside the ergosphere?
37. If space moves faster than light inside the ergosphere, why is the outer boundary of the ergosphere not

a horizon?
38. Do closed timelike curves make sense?
39. What does Carter’s fourth integral of motion 𝒬 signify physically?
40. What is special about a principal null congruence?
41. Evaluated in the locally inertial frame of a principal null congruence, the spin-0 component of the Weyl

scalar of the Kerr geometry is 𝐶 = −𝑀/(𝑟−𝑖𝑎 cos 𝜃)3, which looks like the Weyl scalar 𝐶 = −𝑀/𝑟3 of the
Schwarzschild geometry but with radius 𝑟 replaced by the complex radius 𝑟−𝑖𝑎 cos 𝜃. Is there something
deep here? Can the Kerr geometry be constructed from the Schwarzschild geometry by complexifying
the radial coordinate 𝑟?



What’s important?

1. Astronomical evidence suggests that stellar-sized and supermassive black holes exist ubiquitously in
nature.

2. The no-hair theorem, and when and why it applies.
3. The physical picture of black holes as regions of spacetime where space is falling faster than light.
4. A physical understanding of how the metric of a black hole relates to its physical properties.
5. Penrose (conformal) diagrams. In particular, the Penrose diagrams of the various kinds of vacuum black

hole: Schwarzschild, Reissner-Nordström, Kerr-Newman.
6. What really happens inside black holes. Collapse of a star. Mass inflation instability.
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5

Observational Evidence for Black Holes

It is beyond the intended scope of this book to discuss the extensive and rapidly evolving observational
evidence for black holes in any detail. However, it is useful to summarize a few facts.
1. Observational evidence supports the idea that black holes occur ubiquitously in nature. They are not

observed directly, but reveal themselves through their effects on their surroundings. Two kinds of black
hole are observed: stellar-sized black holes in x-ray binary systems, mostly in our own Milky Way galaxy,
and supermassive black holes in Active Galactic Nuclei (AGN) found at the centres of our own and other
galaxies.

2. The primary evidence that astronomers accept as indicating the presence of a black hole is a lot of mass
compacted into a tiny space.
a. In an x-ray binary system, if the mass of the compact object exceeds 3M⊙, the maximum theoretical

mass of a neutron star, then the object is considered to be a black hole. Many hundreds of x-ray
binary systems are known in our Milky Way galaxy, but only tens of these have measured masses,
and in about 20 the measured mass indicates a black hole (McClintock et al., 2011).

b. Several tens of thousands of AGN have been catalogued, identified either in the radio, optical,
or x-rays. But only in nearby galaxies can the mass of a supermassive black hole be measured
directly. This is because it is only in nearby galaxies that the velocities of gas or stars can be
measured sufficiently close to the nuclear centre to distinguish a regime where the velocity becomes
constant, so that the mass can be attribute to an unresolved central point as opposed to a continuous
distribution of stars. The masses of about 40 supermassive black holes have been measured in this
way (Kormendy and Gebhardt, 2001). The masses range from the 4×106 M⊙ mass of the black hole
at the centre of the Milky Way (Ghez et al., 2008; Gillessen et al., 2009) to the 6.6± 0.4× 109 M⊙
mass of the black hole at the centre of the M87 galaxy at the centre of the Virgo cluster at the
centre of the Local Supercluster of galaxies (Gebhardt et al., 2011; Akiyama et al., 2019).

3. Secondary evidences for the presence of a black hole are:
a. high luminosity;
b. non-stellar spectrum, extending from radio to gamma-rays;
c. rapid variability.
d. relativistic jets.
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Figure 5.1 The supermassive black hole in the M87 galaxy imaged by the Event Horizon Telescope (Akiyama et al.,

2019).

Jets in AGN are often one-sided, and a few that are bright enough to be resolved at high angular
resolution show superluminal motion. Both evidences indicate that jets are commonly relativistic, moving
at close to the speed of light. There are a few cases of jets in x-ray binary systems, sometimes called
microquasars.

4. Stellar-sized black holes are thought to be created in supernovae as the result of the core-collapse of
stars more massive than about 25M⊙ (this number depends in part on uncertain computer simulations).
Supermassive black holes are probably created initially in the same way, but they then grow by accretion
of gas funnelled to the centre of the galaxy. The growth rates inferred from AGN luminosities are
consistent with this picture.

5. Long gamma-ray bursts (lasting more than about 2 seconds) are associated observationally with su-
pernovae. It is thought that in such bursts we are seeing the formation of a black hole. As the black
hole gulps down the huge quantity of material needed to make it, it regurgitates a relativistic jet that
punches through the envelope of the star. If the jet happens to be pointed in our direction, then we see
it relativistically beamed as a gamma-ray burst.

6. Astronomical black holes present the only realistic prospect for testing general relativity in the strong



Observational Evidence for Black Holes 129

field regime, since such fields cannot be reproduced in the laboratory. At the present time the obser-
vational tests of general relativity from astronomical black holes are at best tentative. One test is the
redshifting of 7 keV iron lines in a small number of AGN, notably MCG-6-30-15, which can be interpreted
as being emitted by matter falling on to a rotating (Kerr) black hole.

7. The first direct detection of gravitational waves was with the Laser Interferometer Gravitational wave
Observatory (LIGO) on 14 September 2015 (Abbott et al., 2016). The wave-form was consistent with
the merger of two black holes of masses 29 and 36M⊙.

8. Before gravitational waves were detected directly, their existence was inferred from the gradual speed-
ing up of the orbit of the Hulse-Taylor binary, which consists of two neutron stars, one of which,
PSR1913+16, is a pulsar. The parameters of the orbit have been measured with exquisite precision, and
the rate of orbital speed-up is in good agreement with the energy loss by quadrupole gravitational wave
emission predicted by general relativity.



6

Ideal Black Holes

6.1 Definition of a black hole

What is a black hole? Doubtless you have heard the standard definition: It is a region whose gravity is so
strong that not even light can escape.
But why can light not escape from a black hole? A standard answer, which John Michell (1784) would

have found familiar, is that the escape velocity exceeds the speed of light. But that answer brings to mind
a Newtonian picture of light going up, turning around, and coming back down, that is altogether different
from what general relativity actually predicts.

Figure 6.1 The fish upstream can make way against the current, but the fish downstream is swept to the bottom of

the waterfall (Art by Wildrose Hamilton). This painting appeared on the cover of the June 2008 issue of the American

Journal of Physics (Hamilton and Lisle, 2008). A similar depiction appeared in Susskind (2003).
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A better definition of a black hole is that it is a

region where space is falling faster than light.

Inside the horizon, light emitted outwards is carried inward by the faster-than-light inflow of space, like a
fish trying but failing to swim up a waterfall, Figure 6.1.
The definition may seem jarring. If space has no substance, how can it fall faster than light? It means that

inside the horizon any locally inertial frame is compelled to fall to smaller radius as its proper time goes by.
This fundamental fact is true regardless of the choice of coordinates.
A similar concept of space moving arises in cosmology. Astronomers observe that the Universe is expand-

ing. Cosmologists find it convenient to conceptualize the expansion by saying that space itself is expanding.
For example, the picture that space expands makes it more straightforward, both conceptually and mathe-
matically, to deal with regions of spacetime beyond the horizon, the surface of infinite redshift, of an observer.

6.2 Ideal black hole

The simplest kind of black hole, an ideal black hole, is one that is stationary, and electrovac outside its
singularity. Electrovac means that the energy-momentum tensor 𝑇𝜇𝜈 is zero except for the contribution
from a stationary electromagnetic field. The most important ideal black holes are those that extend to
asymptotically flat empty space (Minkowski space) at infinity. There are ideal black hole solutions that do
not asymptote to flat empty space, but most of these have little relevance to reality. The most important
ideal black hole solutions that are not flat at infinity are those containing a non-zero cosmological constant.
The next several chapters deal with ideal black holes in asymptotically flat space. The importance of ideal

black holes stems from the no-hair theorem, discussed in the next section. The no-hair theorem has the
consequence that, except during their initial collapse, or during a merger, real astronomical black holes are
accurately described as ideal outside their horizons.

6.3 No-hair theorem

I will state and justify the no-hair theorem, but I will not prove it mathematically, since the proof is technical.
The no-hair theorem states that a stationary black hole in asymptotically flat space is characterized by

just three quantities:
1. Mass 𝑀 ;
2. Electric charge 𝑄;
3. Spin, usually parameterized by the angular momentum 𝑎 per unit mass.
The mechanism by which a black hole loses its hair is gravitational radiation. When initially formed,

whether from the collapse of a massive star or from the merger of two black holes, a black hole will form a
complicated, oscillating region of spacetime. But over the course of several light crossing times, the oscillations
lose energy by gravitational radiation, and damp out, leaving a stationary black hole.
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Real astronomical black holes are not isolated, and continue to accrete (cosmic microwave background
photons, if nothing else). However, the timescale (a light crossing time) for oscillations to damp out by
gravitational radiation is usually far shorter than the timescale for accretion, so in practice real black holes
are extremely well described by no-hair solutions almost all of their lives.
The physical reason that the no-hair theorem applies is that space is falling faster than light inside the

horizon. Consequently, unlike a star, no energy can bubble up from below to replace the energy lost by
gravitational radiation. The loss of energy by gravitational radiation brings the black hole to a state where it
can no longer radiate gravitational energy. The properties of a no-hair black hole are characterized entirely
by conserved quantities.
As a corollary, the no-hair theorem does not apply from the inner horizon of a black hole inward, because

space ceases to fall superluminally inside the inner horizon.
If there exist other absolutely conserved quantities, such as magnetic charge (magnetic monopoles), or

various supersymmetric charges in theories where supersymmetry is not broken, then the black hole will also
be characterized by those quantities.
Black holes are expected not to conserve quantities such as baryon or lepton number that are thought not

to be absolutely conserved, even though they appear to be conserved in low energy physics.
It is legitimate to think of the process of reaching a stationary state as analogous to reaching a condition

of thermodynamic equilibrium, in which a macroscopic system is described by a small number of parameters
associated with the conserved quantities of the system.
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Schwarzschild Black Hole

The Schwarzschild geometry was discovered by Karl Schwarzschild in late 1915 at essentially the same
time that Einstein was arriving at his final version of the General Theory of Relativity. Schwarzschild
was Director of the Astrophysical Observatory in Potsdam, perhaps the foremost astronomical position in
Germany. Despite his position, he joined the German army at the outbreak of World War 1, and was serving
on the front at the time of his discovery. Sadly, Schwarzschild contracted a rare skin disease on the front.
Returning to Berlin, he died in May 1916 at the age of 42.
The realisation that the Schwarzschild geometry describes a collapsed object, a black hole, was not under-

stood by Einstein and his contemporaries. Understanding did not emerge until many decades later, in the
late 1950s. Thorne (1994) gives a delightful popular account of the history.

7.1 Schwarzschild metric

The Schwarzschild metric was discovered first by Karl Schwarzschild (1916b), and then independently
by Johannes Droste (1916). In a polar coordinate system {𝑡, 𝑟, 𝜃, 𝜑}, and in geometric units 𝑐 = 𝐺 = 1, the
Schwarzschild metric is

𝑑𝑠2 = −
(︂
1− 2𝑀

𝑟

)︂
𝑑𝑡2 +

(︂
1− 2𝑀

𝑟

)︂−1
𝑑𝑟2 + 𝑟2𝑑𝑜2 , (7.1)

where 𝑑𝑜2 (this is the Landau & Lifshitz notation) is the metric of a unit 2-sphere,

𝑑𝑜2 = 𝑑𝜃2 + sin2𝜃 𝑑𝜑2 . (7.2)

With units restored, the time-time component 𝑔𝑡𝑡 of the Schwarzschild metric is

𝑔𝑡𝑡 = −
(︂
1− 2𝐺𝑀

𝑐2𝑟

)︂
. (7.3)

The Schwarzschild geometry describes the simplest kind of black hole: a black hole with mass 𝑀 , but no
electric charge, and no spin.

133
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The geometry describes not only a black hole, but also any empty space surrounding a spherically sym-
metric mass. Thus the Schwarzschild geometry describes to a good approximation the spacetimes outside
the surfaces of the Sun and the Earth.
Comparison with the spherically symmetric Newtonian metric

𝑑𝑠2 = − (1 + 2Φ)𝑑𝑡2 + (1− 2Φ)(𝑑𝑟2 + 𝑟2𝑑𝑜2) (7.4)

with Newtonian potential

Φ(𝑟) = −𝑀
𝑟

(7.5)

establishes that the 𝑀 in the Schwarzschild metric is to be interpreted as the mass of the black hole
(Exercise 7.1).
The Schwarzschild geometry is asymptotically flat, because the metric tends to the Minkowski metric in

polar coordinates at large radius

𝑑𝑠2 → − 𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑𝑜2 as 𝑟 →∞ . (7.6)

Exercise 7.1. Schwarzschild metric in isotropic form. The Schwarzschild metric (7.1) does not have
the same form as the spherically symmetric Newtonian metric (7.4). By a suitable transformation of the
radial coordinate 𝑟, bring the Schwarzschild metric (7.1) to the isotropic form

𝑑𝑠2 = −
(︂
1−𝑀/2𝑅

1 +𝑀/2𝑅

)︂2

𝑑𝑡2 + (1 +𝑀/2𝑅)
4
(𝑑𝑅2 +𝑅2𝑑𝑜2) . (7.7)

What is the relation between 𝑅 and 𝑟? Hence conclude that the identification (7.5) is correct, and therefore
that 𝑀 is indeed the mass of the black hole. Is the isotropic form (7.7) of the Schwarzschild metric valid
inside the horizon?

7.2 Stationary, static

The Schwarzschild geometry is stationary. A spacetime is said to be stationary if and only if there exists
a timelike coordinate 𝑡 such that the metric is independent of 𝑡. In other words, the spacetime possesses
time translation symmetry: the metric is unchanged by a time translation 𝑡 → 𝑡 + 𝑡0 where 𝑡0 is some
constant. Evidently the Schwarzschild metric (7.1) is independent of the timelike coordinate 𝑡, and is therefore
stationary, time translation symmetric.
As will be found below, §7.6, the Schwarzschild time coordinate 𝑡 is timelike outside the horizon, but

spacelike inside. Some authors therefore refer to the spacetime inside the horizon of a stationary black hole
as being homogeneous. However, I think it is less confusing to refer to time translation symmetry, which is
a single symmetry of the spacetime, by a single name, stationarity, everywhere in the spacetime.
The Schwarzschild geometry is also static. A spacetime is static if and only if in addition to being
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stationary with respect to a time coordinate 𝑡, spatial coordinates can be chosen that do not change along
the direction of the tangent vector 𝑒𝑡. This requires that the tangent vector 𝑒𝑡 be orthogonal to all the spatial
tangent vectors 𝑒𝛼

𝑒𝑡 · 𝑒𝛼 = 𝑔𝑡𝛼 = 0 . (7.8)

The Kerr geometry for a rotating black hole is an example of a geometry that is stationary but not static. If
time 𝑡 and azimuthal 𝜑 coordinates are coordinates associated with time and azimuthal symmetry, then the
scalar product 𝑒𝑡 ·𝑒𝜑 of their tangent vectors in the Kerr geometry is a non-vanishing scalar, §9.3. Physically,
in a static geometry, a system of static observers, those who are at rest in static spatial coordinates, see each
other to remain at rest as time passes. In a non-static geometry, no such system of static observers exists.
The Gullstrand-Painlevé metric for the Schwarzschild geometry, discussed in §7.12, is an example of a

metric that is stationary, since the metric coefficients are independent of the free-fall time 𝑡ff , but not explicitly
static. Observers at rest with respect to Gullstrand-Painlevé spatial coordinates fall into the black hole, and
do not see each other as remaining at rest as time goes by. The Schwarzschild geometry is nevertheless static
because there exist coordinates, the Schwarzschild coordinates, with respect to which the metric is explicitly
static, 𝑔𝑡𝛼 = 0. The Schwarzschild time coordinate 𝑡 is thus identified as a special one: it is the unique time
coordinate with respect to which the Schwarzschild geometry is manifestly static.

7.3 Spherically symmetric

The Schwarzschild geometry is also spherically symmetric. This is evident from the fact that the angular
part 𝑟2𝑑𝑜2 of the metric is the metric of a 2-sphere of radius 𝑟. This can be seen as follows. Consider the
metric of ordinary flat 3-dimensional Euclidean space in Cartesian coordinates {𝑥, 𝑦, 𝑧}:

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 . (7.9)

Convert to polar coordinates {𝑟, 𝜃, 𝜑}, defined so that

𝑥 = 𝑟 sin 𝜃 cos𝜑 , (7.10a)

𝑦 = 𝑟 sin 𝜃 sin𝜑 , (7.10b)

𝑧 = 𝑟 cos 𝜃 . (7.10c)

Substituting equations (7.10a) into the Euclidean metric (7.9) gives

𝑑𝑠2 = 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2𝜃 𝑑𝜑2) . (7.11)

Restricting to a surface 𝑟 = constant of constant radius then gives the metric of a 2-sphere of radius 𝑟

𝑑𝑠2 = 𝑟2(𝑑𝜃2 + sin2𝜃 𝑑𝜑2) (7.12)

as claimed.
The radius 𝑟 in Schwarzschild coordinates is the circumferential radius, defined such that the proper
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circumference of the 2-sphere measured by observers at rest in Schwarzschild coordinates is 2𝜋𝑟. This is a
coordinate-invariant definition of the meaning of 𝑟, which implies that 𝑟 is a scalar.

7.4 Energy-momentum tensor

It is straightforward (especially if you use a computer algebraic manipulation program) to follow the cookbook
summarized in §2.25 to check that the Einstein tensor that follows from the Schwarzschild metric (7.1) is
zero. Einstein’s equations then imply that the Schwarzschild geometry has zero energy-momentum tensor.
If the Schwarzschild geometry is empty, should not the spacetime be flat, the Minkowski spacetime? There

are two answers to this question. Firstly, the Schwarzschild geometry describes the geometry of empty space
around a static spherically symmetric mass, such as the Sun or Earth. The geometry inside the spherically
symmetric mass is described by some other metric, which connects continuously and differentiably (but not
necessarily doubly differentiably, if the spherical object has an abrupt surface) to the Schwarzschild metric.
The second answer is that the Schwarzschild geometry describes the geometry of a collapsed object, a

black hole, which is singular at zero radius, 𝑟 = 0, but is otherwise empty of energy-momentum.

Exercise 7.2. Derivation of the Schwarzschild metric. There are neater and more insightful ways
to derive it, but the Schwarzschild metric can be derived by turning a mathematical crank without the
need for deeper conceptual understanding. Start with the assumption that the metric of a static, spherically
symmetric object can be written in polar coordinates {𝑡, 𝑟, 𝜃, 𝜑} as

𝑑𝑠2 = −𝐴(𝑟) 𝑑𝑡2 +𝐵(𝑟) 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2𝜃 𝑑𝜑2) , (7.13)

where 𝐴(𝑟) and 𝐵(𝑟) are some to-be-determined functions of radius 𝑟. Write down the components of the
metric 𝑔𝜇𝜈 , and deduce its inverse 𝑔𝜇𝜈 . Compute all the components of the coordinate connections Γ𝜆𝜇𝜈 ,
equation (2.63). Of the 40 distinct connections, 9 should be non-vanishing. Compute all the components of
the Riemann tensor 𝑅𝜅𝜆𝜇𝜈 , equation (2.112). There should be 6 distinct non-zero components. Compute all
the components of the Ricci tensor 𝑅𝜅𝜇, equation (2.121). There should be 4 distinct non-zero components.
Now impose that the spacetime be empty, that is, the energy-momentum tensor is zero. Einstein’s equations
then demand that the Ricci tensor vanishes identically. Use the requirement that 𝑔𝑡𝑡𝑅𝑡𝑡 − 𝑔𝑟𝑟𝑅𝑟𝑟 = 0 to
show that 𝐴𝐵 = 1. Then use 𝑔𝑡𝑡𝑅𝑡𝑡 = 0 to derive the functional form of 𝐴. Finally, use the Newtonian limit
−𝑔𝑡𝑡 ≈ 1 + 2Φ with Φ = −𝐺𝑀/𝑟, valid at large radius 𝑟, to fix 𝐴.

7.5 Birkhoff’s theorem

Birkhoff’s theorem, whose proof is deferred to Chapter 20, Exercise 20.2, states that the geometry of
empty space surrounding a spherically symmetric matter distribution is the Schwarzschild geometry. That
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is, if the metric is of the form

𝑑𝑠2 = 𝐴(𝑡, 𝑟) 𝑑𝑡2 +𝐵(𝑡, 𝑟) 𝑑𝑡 𝑑𝑟 + 𝐶(𝑡, 𝑟) 𝑑𝑟2 +𝐷(𝑡, 𝑟) 𝑑𝑜2 , (7.14)

where the metric coefficients 𝐴, 𝐵, 𝐶, and 𝐷 are allowed to be arbitrary functions of 𝑡 and 𝑟, and if the
energy momentum tensor vanishes, 𝑇𝜇𝜈 = 0, outside some value of the circumferential radius 𝑟′ defined by
𝑟′2 = 𝐷, then the geometry is necessarily Schwarzschild outside that radius.
This means that if a mass undergoes spherically symmetric pulsations, then those pulsations do not affect

the geometry of the surrounding spacetime. This reflects the fact that there are no spherically symmetric
gravitational waves.

7.6 Horizon

The horizon of the Schwarzschild geometry lies at the Schwarzschild radius 𝑟 = 𝑟𝑠

𝑟𝑠 =
2𝐺𝑀

𝑐2
, (7.15)

where units of 𝑐 and 𝐺 have been momentarily restored. Where does this come from? The Schwarzschild
metric shows that the scalar spacetime distance squared 𝑑𝑠2 along an interval at rest in Schwarzschild
coordinates, 𝑑𝑟 = 𝑑𝜃 = 𝑑𝜑 = 0, is timelike, lightlike, or spacelike depending on whether the radius is greater
than, equal to, or less than the Schwarzschild radius 𝑟𝑠:

𝑑𝑠2 = −
(︁
1− 𝑟𝑠

𝑟

)︁
𝑑𝑡2

⎧⎨⎩
< 0 if 𝑟 > 𝑟𝑠 ,

= 0 if 𝑟 = 𝑟𝑠 ,

> 0 if 𝑟 < 𝑟𝑠 .

(7.16)

Since the worldline of a massive observer must be timelike, it follows that a massive observer can remain at
rest only outside the horizon, 𝑟 > 𝑟𝑠. An object at rest at the horizon, 𝑟 = 𝑟𝑠, follows a null geodesic, which
is to say it is a possible worldline of a massless particle, a photon. Inside the horizon, 𝑟 < 𝑟𝑠, neither massive
nor massless objects can remain at rest. To remain at rest, a particle inside the horizon would have to go
faster than light.
A full treatment of what is going on requires solving the geodesic equation in the Schwarzschild geometry,

but the results may be anticipated already at this point. In effect, space is falling into the black hole. Outside
the horizon, space is falling less than the speed of light; at the horizon space is falling at the speed of light;
and inside the horizon, space is falling faster than light, carrying everything with it. This is why light cannot
escape from a black hole: inside the horizon, space falls inward faster than light, carrying light inward even if
that light is pointed radially outward. The statement that space is falling superluminally inside the horizon
of a black hole is a coordinate-invariant statement: massive or massless particles are carried inward whatever
their state of motion and whatever the coordinate system.
Whereas an interval of coordinate time 𝑡 switches from timelike outside the horizon to spacelike inside the
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horizon, an interval of coordinate radius 𝑟 does the opposite: it switches from spacelike to timelike:

𝑑𝑠2 =
(︁
1− 𝑟𝑠

𝑟

)︁−1
𝑑𝑟2

⎧⎨⎩
> 0 if 𝑟 > 𝑟𝑠 ,

=∞ if 𝑟 = 𝑟𝑠 ,

< 0 if 𝑟 < 𝑟𝑠 .

(7.17)

It appears then that the Schwarzschild time and radial coordinates swap roles inside the horizon. Inside the
horizon, the radial coordinate becomes timelike, meaning that it becomes a possible worldline of a massive
observer. That is, a trajectory at fixed 𝑡 and decreasing 𝑟 is a possible worldline. Again this reflects the fact
that space is falling faster than light inside the horizon. A person inside the horizon is inevitably compelled,
as their proper time goes by, to move to smaller radial coordinate 𝑟.

Concept question 7.3. Going forwards or backwards in time inside the horizon. Inside the horizon,
can a person can go forwards or backwards in Schwarzschild time 𝑡? What does that mean?

7.7 Proper time

The proper time experienced by an observer at rest in Schwarzschild coordinates, 𝑑𝑟 = 𝑑𝜃 = 𝑑𝜑 = 0, is

𝑑𝜏 =
√︀
−𝑑𝑠2 =

(︁
1− 𝑟𝑠

𝑟

)︁1/2
𝑑𝑡 . (7.18)

For an observer at rest at infinity, 𝑟 →∞, the proper time is the same as the coordinate time,

𝑑𝜏 → 𝑑𝑡 as 𝑟 →∞ . (7.19)

Among other things, this implies that the Schwarzschild time coordinate 𝑡 is a scalar: not only is it the
unique coordinate with respect to which the metric is manifestly static, but it coincides with the proper time
of observers at rest at infinity. This coordinate-invariant definition of Schwarzschild time 𝑡 implies that it is
a scalar.
At finite radii outside the horizon, 𝑟 > 𝑟𝑠, the proper time 𝑑𝜏 is less than the Schwarzschild time 𝑑𝑡, so

the clocks of observers at rest run slower at smaller than at larger radii.
At the horizon, 𝑟 = 𝑟𝑠, the proper time 𝑑𝜏 of an observer at rest goes to zero,

𝑑𝜏 → 0 as 𝑟 → 𝑟𝑠 . (7.20)

This reflects the fact that an object at rest at the horizon is following a null geodesic, and as such experiences
zero proper time.
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7.8 Redshift

An observer at rest at infinity looking through a telescope at an emitter at rest at radius 𝑟 sees the emitter
redshifted by a factor

1 + 𝑧 ≡ 𝜆obs
𝜆em

=
𝜈em
𝜈obs

=
𝑑𝜏obs
𝑑𝜏em

=
(︁
1− 𝑟𝑠

𝑟

)︁−1/2
. (7.21)

This is an example of the universally valid statement that photons are good clocks: the redshift factor is given
by the rate at which the emitter’s clock appears to tick relative to the observer’s own clock. Equation (7.21)
is an example of the general formula (2.101) for the redshift between two comoving (= rest) observers in a
stationary spacetime.
It should be emphasized that the redshift factor (7.21) is valid only for an observer and an emitter at rest

in the Schwarzschild geometry. If the observer and emitter are not at rest, then additional special relativistic
factors will fold into the redshift.
The redshift goes to infinity for an emitter at the horizon

1 + 𝑧 →∞ as 𝑟 → 𝑟𝑠 . (7.22)

Here the redshift tends to infinity regardless of the motion of the observer or emitter. An observer watching
an emitter fall through the horizon will see the emitter appear to freeze at the horizon, becoming ever slower
and more redshifted. Physically, photons emitted vertically upward at the horizon by an infaller remain at
the horizon for ever, taking an infinite time to get out to the outside observer.

7.9 “Schwarzschild singularity”

The apparent singularity in the Schwarzschild metric at the horizon 𝑟𝑠 is not a real singularity, because it
can be removed by a change of coordinates, such as to Gullstrand-Painlevé coordinates, equation (7.27).
Einstein, and other influential physicists such as Eddington, failed to appreciate this. Einstein thought that
the “Schwarzschild singularity” at 𝑟 = 𝑟𝑠 marked the physical boundary of the Schwarzschild spacetime.
After all, an outside observer watching stuff fall in never sees anything beyond that boundary.
Schwarzschild’s choice of coordinates was certainly a natural one. It was natural to search for static

solutions, and his time coordinate 𝑡 is the only one with respect to which the metric is manifestly static.
The problem is that physically there can be no static observers inside the horizon: they must necessarily fall
inward as time passes. The fact that Schwarzschild’s coordinate system shows an apparent singularity at the
horizon reflects the fact that the assumption of a static spacetime necessarily breaks down at the horizon,
where space is falling at the speed of light.
Does stuff “actually” fall in, even though no outside observer ever sees it happen? The answer is yes: when

a black hole forms, it does actually collapse, and when an observer falls through the horizon, they really do
fall through the horizon. The reason that an outside observer sees everything freeze at the horizon is simply
a light travel time effect: it takes an infinite time for light to lift off the horizon and make it to the outside
world.
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7.10 Weyl tensor

For Schwarzschild, the Einstein tensor vanishes identically (because the spacetime is by assumption empty of
energy-momentum). The only part of the Riemann curvature tensor that does not vanish is the Weyl tensor.
The non-vanishing Weyl tensor says that gravitational tidal forces are present, even though the spacetime
is empty of energy-momentum. Non-vanishing gravitational tidal forces are the signature that spacetime is
curved.
The covariant (all indices down) components 𝐶𝜅𝜆𝜇𝜈 of the coordinate-frame Weyl tensor of the Schwarz-

schild geometry, computed from equation (3.1), appear at first sight to be a mess (go ahead, compute them).
However, the mess is an artefact of looking at the tensor through the distorting lens of the coordinate basis
vectors 𝑒𝜇, which are not orthonormal. After tetrads, Chapter 11, it will be found that the 10 components
of the Weyl tensor, the tidal part of the Riemann tensor, can be decomposed in any locally inertial frame
into 5 complex components of spin 0, ±1, and ±2. In a locally inertial frame whose radial direction coincides
with the radial direction of the Schwarzschild metric, all components of the Weyl tensor of the Schwarzschild
geometry vanish except the real spin-0 component. Spin 0 means that the Weyl tensor is unchanged under
a spatial rotation about the radial direction (and it is also unchanged by a Lorentz boost in the radial di-
rection). This spin-0 component is a coordinate-invariant scalar, the Weyl scalar 𝐶. The fact that the Weyl
tensor of the Schwarzschild geometry has only a single independent non-vanishing component is plausible
from the fact that the non-zero components of the coordinate-frame Weyl tensor written with two indices
up and two indices down are (no implicit summation over repeated indices)

− 1
2𝐶

𝑡𝑟
𝑡𝑟 = − 1

2𝐶
𝜃𝜑
𝜃𝜑 = 𝐶𝑡𝜃𝑡𝜃 = 𝐶𝑡𝜑𝑡𝜑 = 𝐶𝑟𝜃𝑟𝜃 = 𝐶𝑟𝜑𝑟𝜑 = 𝐶 , (7.23)

where 𝐶 is the Weyl scalar,

𝐶 = −𝑀
𝑟3

. (7.24)

The trick of writing the 4-index Weyl tensor with 2 indices up and 2 indices down, in order to reveal a simple
pattern, works in a simple spacetime like Schwarzschild, but fails in more complicated spacetimes.

7.11 Singularity

The Weyl scalar, equation (7.24), goes to infinity at zero radius,

𝐶 →∞ as 𝑟 → 0 . (7.25)

The diverging Weyl tensor implies that the tidal force diverges at zero radius, signalling that there is a
genuine singularity at zero radius in the Schwarzschild geometry.
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Figure 7.1 (Left) The light (yellow) shaded region shows the region visible to an infaller (blue) who falls radially to

the singularity of a Schwarzschild black hole; the dark (grey) shaded region shows the region that remains invisible

to the infaller. The invisible region has the shape of a cardioid, equation (7.62). If another infaller (purple) falls along

a different radial direction, the two infallers not only fail to meet at the singularity, they lose causal contact with

each other already some distance from the singularity. Since the two infallers fall to two causally disconnected places,

the singularity cannot be a point. (Right) Same, showing the shortest causal path (red) joining the two infallers

asymptotically near the singularity. The shortest causal path is a pair of light rays that start at the starred point,

move in opposite azimuthal directions, and reach the infallers asymptotically near the singularity. The shortest causal

path remains non-zero even though the spatial distance between the infallers tends to zero. Compare to Figure 23.2

for a Kerr black hole.

Concept question 7.4. Is the singularity of a Schwarzschild black hole a point? Is the singularity
at the centre of the Schwarzschild geometry a point? Answer. No. Familiar experience in 3-dimensional
space would suggest the answer is yes, but that conception is misleading. In the first place, general relativity
fails at singularities: the locally inertial description of spacetime fails, and general relativity cannot continue
worldlines of infallers beyond a singularity. Therefore singularities are not part of the spacetime described by
general relativity. Presumably some other physical theory takes over at singularities, but what that theory
is remains equivocal at the present time. In the second place, infallers who fall into a Schwarzschild black
hole at different angular positions do not approach each other as they approach the singularity. Rather,
the diverging tidal force near the singularity funnels each infaller along radially converging lines, effectively
keeping the infallers isolated from each other. Moreover, the future lightcones of infallers who fall in at the
same time 𝑡 but at different angular positions cease to intersect once they are close enough to the singularity.
Thus the infallers not only fail to touch each other, they cease even to be able to communicate with each other
as they approach the singularity, as illustrated in Figure 7.1. The reader may object that the Schwarzschild
metric shows that the proper angular distance between two observers separated by angle 𝜑 is 𝑟 𝑑𝜑, which
goes to zero at the singularity 𝑟 → 0. This objection fails because infallers approaching the singularity cease
to be able to measure angular distances, since angularly separated points cease to be causally accessible to
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the infaller. The region accessible to an infaller is cusp-like near the singularity. See Exercises 7.10 and 7.11
for a more quantitative treatment of this problem.

Concept question 7.5. Separation between infallers who fall in at different times. Consider two
infallers who free-fall radially into the black hole at the same angular position, but at different times 𝑡. What
is the proper spatial radial separation between the two observers at the instants they hit the singularity, at
𝑟 → 0? Answer. Infinity. At the same angular position, 𝑑𝜃 = 𝑑𝜑, the proper radial separation is

𝑑𝑙 =
√
𝑑𝑠2 =

√︂
𝑟𝑠
𝑟
− 1 𝑑𝑡→∞ as 𝑟 → 0 . (7.26)

7.12 Gullstrand-Painlevé metric

An alternative metric for the Schwarzschild geometry was discovered independently by Allvar Gullstrand and
Paul Painlevé in 1921 (Gullstrand, 1922; Painlevé, 1921). (Gullstrand has priority because his paper, though
published in 1922, was submitted in May 1921, whereas Painlevé’s paper was a write-up of a presentation
to L’Académie des Sciences in Paris in October 1921). After tetrads, it will become clear that the standard

Horizon

Singularity

Figure 7.2 The Gullstrand-Painlevé metric for the Schwarzschild geometry encodes locally inertial frames (tetrads)

that free-fall radially into the black hole at the Newtonian escape velocity 𝛽, equation (7.28). The infall velocity is

less than the speed of light outside the horizon, equal to the speed of light at the horizon, and faster than light inside

the horizon. The infall velocity tends to infinity at the central singularity.
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way in which metrics are written encodes not only metric but also a tetrad. The Gullstrand-Painlevé line-
element (7.27) encodes a tetrad that represents locally inertial frames free-falling radially into the black hole
at the Newtonian escape velocity, Figure 7.2, although at the time no one, including Einstein, Gullstrand,
and Painlevé, understood this. Unlike Schwarzschild coordinates, there is no singularity at the horizon
in Gullstrand-Painlevé coordinates. It is striking that the mathematics was known long before physical
understanding emerged.
The Gullstrand-Painlevé metric is

𝑑𝑠2 = − 𝑑𝑡2ff + (𝑑𝑟 − 𝛽 𝑑𝑡ff)2 + 𝑟2𝑑𝑜2 . (7.27)

Here 𝛽 is the Newtonian escape velocity (with a minus sign because space is falling inward),

𝛽 = −
(︂
2𝐺𝑀

𝑟

)︂1/2

, (7.28)

and 𝑡ff is the proper time experienced by an object that free falls radially inward from zero velocity at infinity.
The free fall time 𝑡ff is related to the Schwarzschild time coordinate 𝑡 by

𝑑𝑡ff = 𝑑𝑡− 𝛽

1− 𝛽2
𝑑𝑟 , (7.29)

which integrates to

𝑡ff = 𝑡+ 𝑟𝑠

(︃
2
√︀
𝑟/𝑟𝑠+ ln

⃒⃒⃒⃒
⃒
√︀
𝑟/𝑟𝑠 − 1√︀
𝑟/𝑟𝑠 + 1

⃒⃒⃒⃒
⃒
)︃
. (7.30)

The time axis 𝑒𝑡ff in Gullstrand-Painlevé coordinates is not orthogonal to the radial axis 𝑒𝑟, but rather is
tilted along the radial axis, 𝑒𝑡ff · 𝑒𝑟 = 𝑔𝑡ff𝑟 = −𝛽.
The proper time of a person at rest in Gullstrand-Painlevé coordinates, 𝑑𝑟 = 𝑑𝜃 = 𝑑𝜑 = 0, is

𝑑𝜏 = 𝑑𝑡ff
√︀

1− 𝛽2 . (7.31)

The horizon occurs where this proper time vanishes, which happens when the infall velocity 𝛽 is the speed
of light

|𝛽| = 1 . (7.32)

According to equation (7.28), this happens at 𝑟 = 𝑟𝑠, which is the Schwarzschild radius, as it should be.

Exercise 7.6. Geodesics in the Schwarzschild geometry. The Schwarzschild metric is

𝑑𝑠2 = −Δ(𝑟) 𝑑𝑡2 +
1

Δ(𝑟)
𝑑𝑟2 + 𝑟2 (𝑑𝜃2 + sin2𝜃 𝑑𝜑2) , (7.33)

where Δ(𝑟) is the horizon function

Δ(𝑟) = 1− 2𝑀

𝑟
. (7.34)
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1. Constants of motion. Argue that, without loss of generality, the trajectory of a freely falling particle
may be taken to lie in the equatorial plane, 𝜃 = 𝜋/2. Argue that, for a massive particle, conservation of
energy per unit rest mass 𝐸, angular momentum per unit rest mass 𝐿, and rest mass per unit rest mass
implies that the 4-velocity 𝑢𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜏 satisfies

𝑢𝑡 = −𝐸 , (7.35a)

𝑢𝜑 = 𝐿 , (7.35b)

𝑢𝜇𝑢
𝜇 = −1 . (7.35c)

2. Effective potential. Show that the radial component 𝑢𝑟 of the 4-velocity satisfies

𝑢𝑟 = ±
(︀
𝐸2 − 𝑈

)︀1/2
, (7.36)

where 𝑈 is the effective potential

𝑈 =

(︂
1 +

𝐿2

𝑟2

)︂
Δ . (7.37)

3. Proper time in radial free-fall. What is the proper time 𝜏 for an observer to free-fall from radius
𝑟 to the singularity at zero radius, for the particular case of an observer who falls radially from rest
at infinity. [Hint: What are the energy 𝐸 and angular momentum 𝐿 for an observer who falls radially
starting from rest at infinity?]

4. Proper time in radial free-fall — numbers. Evaluate the proper time, in seconds, to fall from the
horizon to the singularity in the case of a black hole with the mass 4× 106 M⊙ of the black hole at the
centre of our Galaxy, the Milky Way.

5. Circular orbits. Circular orbits occur where the effective potential 𝑈 is an extremum. Find the radii
at which this occurs, as a function of angular momentum 𝐿. Solutions exist only if the absolute value
|𝐿| of the angular momentum exceeds a certain critical value 𝐿𝑐. What is this critical value 𝐿𝑐?

6. Graph. Graph the effective potential 𝑈 for values of 𝐿 (i) less than, (ii) equal to, (iii) greater than the
critical value 𝐿𝑐. Describe physically, in words, what the possible orbital trajectories are for the various
cases. [Hint: For cases (i) and (iii), values near the critical value 𝐿𝑐 show the distinction most clearly.]

7. Range of orbits. Identify the ranges of radii over which circular orbits are: (i) stable, (ii) unstable, (iii)
non-existent. [Hint: Stability depends on whether the extremum of the effective potential is a minimum
or a maximum. Which is which? You will find it helps to consider 𝑈 as a function of 1/𝑟 rather than 𝑟.]

8. Angular momentum and energy in circular orbit. Show that the angular momentum per unit
mass for a circular orbit at radius 𝑟 satisfies

|𝐿| = 𝑟

(𝑟/𝑀 − 3)
1/2

, (7.38)

and hence show also that the energy per unit mass in the circular orbit is

𝐸 =
𝑟 − 2𝑀

[𝑟(𝑟 − 3𝑀)]
1/2

. (7.39)
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9. Drop in orbit. There is a certain circular orbit that has the same energy as a massive particle at rest
at infinity. This is useful for starship captains to know, because it is possible to drop into this orbit
using only a small amount of energy. What is the radius of the orbit? Is it stable or unstable?

10. Orbital period. Show that the orbital period 𝑡, as measured by an observer at rest at infinity, of a
particle in circular orbit at radius 𝑟 is given by Kepler’s 3rd law (remarkably, Kepler’s 3rd law remains
true even in the fully general relativistic case, as long as 𝑡 is taken to be the time measured at infinity),

𝐺𝑀𝑡2

(2𝜋)2
= 𝑟3 . (7.40)

[Hint: Argue that the azimuthal angle 𝜑 evolves according to 𝑑𝜑/𝑑𝑡 = 𝑢𝜑/𝑢𝑡 = 𝐿Δ/(𝐸𝑟2).]

Exercise 7.7. Null geodesics in the Schwarzschild geometry. The orbit equations (7.35) would appear
to break down for photons, which have zero mass, hence infinite energy per unit mass 𝐸, and infinite angular
momentum per unit mass 𝐿. Another way of looking at this is that photons follow null geodesics, 𝑑𝜏 = 0, so
that 𝜏 , which does not change, is not a very useful time coordinate for expressing the equations of motion
of photons. The difficulty is cured by introducing an affine parameter, equation (2.93), which functions as a
good scalar coordinate along null geodesics.
1. Constants of motion. For a massless particle, the 4-velocity 𝑣𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜆, normalized to unit energy

at infinity, satisfies

𝑣𝑡 = −1 , (7.41a)

𝑣𝜑 = 𝐽 , (7.41b)

𝑣𝜇𝑣
𝜇 = 0 , (7.41c)

where 𝐽 = 𝐿/𝐸 is the photon’s angular momentum per unit energy.
2. Effective potential. Show that the radial component 𝑣𝑟 of the photon 4-velocity satisfies

𝑣𝑟 = ± (1− 𝑉 )
1/2

, (7.42)

where 𝑉 is the effective potential

𝑉 =
𝐽2

𝑟2
Δ . (7.43)

3. Photon sphere. Circular orbits occur where the effective potential 𝑉 is a minimum (stable orbit) or a
maximum (unstable orbit). At what radius can photons orbit in circles? Is the orbit stable or unstable?

4. Photon energy. The photon energy −𝑣𝑡, equation (7.41a), is normalized to one as measured by an
observer at rest at infinity. Show that the energy of the photon measured by an observer on a trajectory
with energy 𝐸 per unit mass and angular momentum per unit mass 𝐿, relative to unit energy at infinity,

𝜔obs = 𝑢𝜇𝑣
𝜇 = − 𝐸

Δ
± 1

Δ

√︃(︂
𝐸2 −

(︂
1 +

𝐿2

𝑟2

)︂
Δ

)︂(︂
1− 𝐽2

𝑟2
Δ

)︂
+

𝐿 · 𝐽
𝑟2

, (7.44)

where the ± sign is the sign of 𝑢𝑟𝑣𝑟, which is positive or negative as the observer and photon are moving
radially in the same or opposite directions.
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Exercise 7.8. Geodesics in the Schwarzschild geometry in 3 or more dimensions. Standard general
relativity breaks down in 𝑁 = 2 spacetime dimensions, §11.19, and there are no black holes in 𝑁 = 2

spacetime dimensions in the closest approximation to general relativity, Exercise 11.9 (there are however
black holes in 𝑁 = 2 spacetime dimensions in extensions of general relativity). The Schwarzschild metric in
𝑁 ≥ 3 spacetime dimensions is

𝑑𝑠2 = −Δ(𝑟) 𝑑𝑡2 +
1

Δ(𝑟)
𝑑𝑟2 + 𝑟2 𝑑𝑜2 , (7.45)

where 𝑑𝑜2 is the metric of a unit 𝑁−2 sphere, and Δ(𝑟) is the horizon function

Δ(𝑟) = 1− 2𝑀

𝑟𝑁−3
. (7.46)

What happens when 𝑁 = 3? What happens when 𝑁 ≥ 5? Argue that equations (7.35)–(7.37) hold, with Δ

in the effective potential 𝑈 , equation (7.37), being given by equation (7.46).
Solution. For 𝑁 = 3, the horizon function 7.46 is constant Δ = 1 − 2𝑀 . For 𝑁 = 3, a coordinate
transformation to coordinates 𝑡′ = 𝑡

√
Δ and 𝑟′ = 𝑟/

√
Δ brings the Schwarzschild line-element (7.45) to

𝑑𝑠2 = − 𝑑𝑡′2 + 𝑑𝑟′2 + 𝑟′2Δ 𝑑𝑜2 , (7.47)

which is the metric of a cone, with angle 2𝜋
√
Δ around a circumference. The spacetime looks flat except for

a conical vertex at 𝑟′ = 0. A mass 𝑀 bends geodesics around it, but there are no bound orbits.
The condition for a circular orbit is that the effective potential be an extremum, 𝑑𝑈/𝑑𝑟 = 0. The boundary

between stable and unstable circular orbits occurs when the potential is a double extremum, 𝑑𝑈/𝑑𝑟 =

𝑑2𝑈/𝑑𝑟2 = 0. The boundary between stable and unstable circular orbits occurs at

𝑟𝑐
𝑟𝑠

=

(︂
𝑁 − 1

5−𝑁

)︂1/(𝑁−3)

,
𝐿𝑐
𝑟𝑠

=

(︂
𝑁 − 1

5−𝑁

)︂(5−𝑁)/[2(𝑁−3)]

, (7.48)

which has real finite solutions only for 2 ≤ 𝑁 ≤ 4. For 𝑁 = 2, equations (7.48) do not apply. For 𝑁 = 3,
equations (7.48) give 𝑟𝑐/𝑟𝑠 = 𝑒 and 𝐿𝑐/𝑟𝑠 = 𝑒 (where 𝑒 is the exponential); but these values are really valid
not for 𝑁 = 3, but rather for values of 𝑁 infinitesimally close to but not equal to 3.
For 𝑁 ≥ 5, there are no stable circular orbits. For 𝑁 ≥ 5, the only circular orbits are unstable, which

occur for 𝐿 > 1 if 𝑁 = 5 or 𝐿 > 0 if 𝑁 ≥ 6. Besides unstable circular orbits, there are unbound geodesics,
and geodesics that fall into the black hole. The case 𝑁 = 4 is the only dimension for which stable circular
orbits exist.

Exercise 7.9. General relativistic precession of Mercury.

1. Conclude from Exercise 7.6 that the 4-velocity 𝑢𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜏 of a massive particle on a geodesic in the
equatorial plane of the Schwarzschild geometry satisfies

𝑢𝑡 =
𝐸

Δ
, 𝑢𝜑 =

𝐿

𝑟2
, 𝑢𝑟 =

[︂
𝐸2 −

(︂
1 +

𝐿2

𝑟2
Δ

)︂]︂1/2
. (7.49)
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2. Letting 𝑥 ≡ 1/𝑟, show that

𝜑 =

∫︁
𝐿 𝑑𝑥

[(𝐸2 − 1) + 2𝑀𝑥− 𝐿2𝑥2 + 2𝑀𝐿2𝑥3]
1/2

. (7.50)

[Hint: This is a straightforward application of equations (7.49). Do not try to solve this integral; leave
it as given above.]

3. Suppose that the orbit varies between a known periapsis 𝑟− and apoapsis 𝑟+. Define 𝑥− ≡ 1/𝑟− and
𝑥+ ≡ 1/𝑟+ (note that 𝑟− < 𝑟+ so 𝑥− > 𝑥+). Argue that equation (7.50) must take the form

𝜑 =

∫︁
𝑑𝑥

[(𝑥− 𝑥+)(𝑥− − 𝑥)(𝑎− 2𝑀𝑥)]
1/2

, (7.51)

where

𝑎 ≡ 1− 2𝑀(𝑥− + 𝑥+) . (7.52)

[Hint: This is not hard, but there are two things to do. First, you have to argue that, given the assumption
that the orbit is a bounded stable orbit, there must be 3 real roots to the cubic, which must be ordered
as 0 < 𝑥+ < 𝑥− < 𝑎/2𝑀 < ∞. Second, you should compare the coefficients of 𝑥3 and 𝑥2 in the cubic
in the integrands of (7.50) and (7.51)].

4. By the transformation

𝑥 = 𝑥+ + (𝑥− − 𝑥+)𝑦 (7.53)

bring the integral (7.51) to the form

𝜑 =

∫︁
𝑑𝑦

[𝑦(1− 𝑦)(𝑞 − 𝑝𝑦)]1/2
, (7.54)

where

𝑝 = 2𝑀(𝑥− − 𝑥+) , 𝑞 = 1− 2𝑀(𝑥− + 2𝑥+) . (7.55)

5. Argue that the angle 𝜑 integrated around a full period, from apoapsis at 𝑦 = 0 to periapsis at 𝑦 = 1

and back, is

𝜑 =
4

𝑞1/2
𝐾(𝑝/𝑞) , (7.56)

where 𝐾(𝑚) is the complete elliptic integral of the first kind, one definition of which is

𝐾(𝑚) ≡ 1

2

∫︁ 1

0

𝑑𝑦

[𝑦(1− 𝑦)(1−𝑚𝑦)]1/2
. (7.57)

6. The Taylor series expansion of the complete elliptic integral is

𝐾(𝑚) =
𝜋

2

(︁
1 +

𝑚

4
+ ...

)︁
. (7.58)

Argue that to linear order in mass 𝑀 , the angle around a full period is

𝜑 = 2𝜋 + 3𝜋𝑀(𝑥− + 𝑥+) . (7.59)
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7. Calculate the predicted precession of the perihelion of the orbit of Mercury, expressing your answer in
arcseconds per century. Google the perihelion and aphelion distances of Mercury, and its orbital period.

Exercise 7.10. A body cannot remain rigid as it approaches the Schwarzschild singularity. You
have already found from Exercise 7.6 that the azimuthal angle 𝜑 at radius 𝑟 of a particle of rest mass 𝑚 on
a geodesic with energy 𝐸 and azimuthal angular momentum 𝐿 in the equatorial plane of the Schwarzschild
geometry satisfies

𝜑 =

∫︁
𝐿𝑑𝑟√︀

(𝐸2 −𝑚2)𝑟4 − 𝐿2𝑟2Δ
. (7.60)

1. Define 𝐽 ≡ 𝐿/𝐸 to be the angular momentum per unit energy. Argue that for photons, which are
massless,

𝜑 =

∫︁
𝐽 𝑑𝑟√

𝑟4 − 𝐽2𝑟2Δ
. (7.61)

2. Argue that inside the horizon (Δ < 0) the largest possible rate of change 𝑑𝜑/𝑑𝑟 of the azimuthal angle
𝜑 with respect to radius 𝑟 occurs for 𝐽 →∞.

Horizon

Singularity

φ

φ/ 2

h

Figure 7.3 The arrowed lines, which are initially parallel, represent the worldtube of a body that remains as rigid as

possible (having constant cross-sectional radius ℎ) as it falls to the singularity at the centre of a Schwarzschild black

hole. (The blow-up at right shows some details.) The dashed (purple) line shows geodesics with the maximum possible

angular motion inside the horizon, namely null geodesics with infinite angular momentum per unit energy, 𝐽 = ∞.

Since the walls of the infalling body cannot exceed the speed of light, their horizontal motion near the singularity is

bounded by that of 𝐽 = ∞ null geodesics, as illustrated. The diagram gives the impression that the different (left and

right) sides of the worldtube encounter each other at the singularity, but this is false. The left side of the tube can

send a signal to the right side only as long as the two sides are connected by a 𝐽 = ∞ null geodesic. The dashed line,

marked with filled dots where the signal is emitted by the left side and observed by the right side, is the last such

geodesic connecting the two sides: inside this dashed line the left side can no longer influence causally the right side.
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3. Show that a null geodesic with 𝐽 =∞ in a Schwarzschild black hole satisfies

𝑟 = 𝑟𝑠 sin
2(𝜑/2) . (7.62)

Equation (7.62) is the equation of a cardioid, illustrated by the dashed purple lines in Figure 7.3.
4. Parameterize the 𝐽 =∞ null geodesic satisfying equation (7.62) by {𝑥, 𝑦} ≡ {𝑟 cos𝜑, 𝑟 sin𝜑}. Show that

𝑑𝑦

𝑑𝑥
= tan (3𝜑/2) . (7.63)

Sketch the situation geometrically. Conclude that the radius ℎ of a cylinder whose centre falls radially
must satisfy ℎ ≤ 𝑟 sin (𝜑/2) in order that the walls of the cylinder not exceed the speed of light.
Equivalently, conclude that a cylinder of radius ℎ can remain rigid only down to a radius 𝑟 satisfying

ℎ ≤ 𝑟3/2/𝑟1/2𝑠 . (7.64)

5. Do the parts of a body that falls into a Schwarzschild black hole encounter each other at the singularity?
Solution. See Figure 7.3. The answer to part 5 is no, parts of a body that fall into a Schwarzschild black hole
do not encounter each other at the singularity. Indeed, as illustrated in Figure 7.3, parts of a body cease to
be in causal contact (cease to be able to influence each other) once they are close enough to the singularity.
From the perspective of an infaller inside the horizon, the closest they ever see any point an angle 𝜑 away is
at the edge of their past light cone, along the 𝐽 =∞ null geodesic.

Exercise 7.11. Causal distance between infallers near the singularity. The proper distance between
two infallers who fall along different radial directions goes to zero at the singularity, but the causal distance
between the two, the shortest causal path joining them, does not go to zero. The shortest causal path is the
red line illustrated in the right panel of Figure 7.1, a pair of null geodesics each with the maximum possible
angular momentum, 𝐽 =∞. A measure of distance along a null geodesic is the affine distance 𝜆. Calculate
the affine distance along the shortest causal path between infallers approaching the singularity.
Solution. Normalized to a frame at rest at infinity, the affine distance 𝜆 along a null geodesic is obtained
by integrating 𝑑𝜑/𝑑𝜆 = 𝑟2/𝐽 , equation (7.41b), or equivalently 𝑑𝑟/𝑑𝜆 = 𝑣𝑟 from equation (7.42), giving

𝜆 =
1

𝐽

∫︁
𝑟2 𝑑𝜑 =

∫︁
𝑑𝑟√︀

1− 𝐽2Δ/𝑟2
. (7.65)

Normalized to the frame of an observer, the affine distance 𝜆obs is

𝜆obs = 𝜔obs𝜆 , (7.66)

where 𝜔obs is the observed energy (7.44) of the photon relative to that at infinity. The observed affine distance
to an object coincides with proper distance to it measured by the observer in their immediate locally inertial
vicinity. The shortest causal path joining infallers near the singularity is realised by a pair of photons emitted
in opposite directions with maximum angular momentum, 𝐽 =∞, from a point half way (in angle) between
the infallers, illustrated by the red line in the right panel of Figure 7.1. The causal path has two symmetrically
equal parts, each following the path of a cardioid, equation (7.62). If the angular separation between the two
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infallers near the singularity is 2𝜑, then the observed affine distance along the shortest causal path is 2𝜆obs,
twice the affine distance along each individual null segment,

𝜆obs =
𝜔obs

𝐽

∫︁ 𝜑

0

𝑟2 𝑑𝜑 =
𝜔obs𝑟

2
𝑠

𝐽

∫︁ 𝜑

0

sin4(𝜑/2) 𝑑𝜑 =
𝜔obs𝑟

2
𝑠

𝐽

(︀
3
8𝜑−

1
2 sin𝜑+ 1

16 sin 2𝜑
)︀
. (7.67)

The 𝜑-dependent factor in parentheses on the right hand side of equations (7.67) is ≈ 1
80𝜑

5 at small sep-
arations 𝜑. The observed energy 𝜔obs depends on the position and motion of the observer. Radially-falling
observers (𝐿 = 0) near the singularity watching 𝐽 =∞ null geodesics see photon energy, from equation (7.44),

𝜔obs =
𝐽

𝑟obs
, (7.68)

so the factor on the right hand side of the expression (7.67) for the observed affine distance is

𝜔obs𝑟
2
𝑠

𝐽
=

𝑟2𝑠
𝑟obs

, (7.69)

which diverges at the singularity, 𝑟obs → 0. The divergence is a symptom of the failure of general relativity,
the cessation of the existence of locally inertial frames, at the singularity. Notwithstanding the divergence,
the robust conclusion is that the causal distance between two infallers does not go to zero at the singular
surface.

Exercise 7.12. Maximum transverse velocity of a light signal inside the horizon. Again consider
two infallers who free-fall radially along radial paths at different angular positions. The maximum transverse
velocity with which they can send signals to each other is, once again, along 𝐽 = ∞ null geodesics. Show
that this maximum transverse velocity is

𝑟𝑑𝜑

𝑑𝑡ff

⃒⃒⃒⃒
𝐽=∞

=

√︂
1− 𝑟

𝑟𝑠
. (7.70)

The maximum transverse velocity is always less than the speed of light, but tends to the speed of light at
the singularity.
Solution. The relation between the radius 𝑟 and angle 𝜑 along a 𝐽 = ∞ null geodesic is given by equa-
tion (7.62). The relation between radius 𝑟 and proper time 𝑡ff for a radial free-faller follows from 𝑑𝑟/𝑑𝑡ff = 𝛽

in the Gullstrand-Painlevé metric (7.27).

7.13 Embedding diagram

An embedding diagram is a visual aid to understanding geometry. It is a depiction of a lower dimensional
geometry in a higher dimension. A classic example is the illustration of the geometry of a 2-sphere embedded
in 3-dimensional space, Figure 2.2.
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Figure 7.4 Embedding diagram of the Schwarzschild geometry. The 2-dimensional surface represents the 3-dimensional

Schwarzschild geometry at a fixed instant of Schwarzschild time 𝑡. Each circle represents a sphere, of proper circumfer-

ence 2𝜋𝑟, as measured by observers at rest in the geometry. The proper radial distance measured by observers at rest

is stretched in the radial direction, as shown in the diagram. The stretching is infinite at the horizon, so the spatial

geometry there looks like a vertical cliff. Radial lines in the Schwarzschild geometry are spacelike outside the horizon,

but timelike inside the horizon.

Figure 7.4 shows an embedding diagram of the spatial Schwarzschild geometry at a fixed instant of Schwarz-
schild time 𝑡. To the polar coordinates 𝑟, 𝜃, 𝜑 of the 3D Schwarzschild spatial geometry, adjoin a fourth spatial
coordinate 𝑤. The metric of 4D Euclidean space in the coordinates 𝑤, 𝑟, 𝜃, 𝜑, is

𝑑𝑙2 = 𝑑𝑤2 + 𝑑𝑟2 + 𝑟2𝑑𝑜2 . (7.71)

The spatial Schwarzschild geometry is represented by a 3D surface embedded in the 4D Euclidean geometry,
such that the proper distance 𝑑𝑙 in the radial direction satisfies equation (7.17), that is

𝑑𝑙2 =
𝑑𝑟2

1− 𝑟𝑠/𝑟
= 𝑑𝑤2 + 𝑑𝑟2 . (7.72)

Equation (7.72) rearranges to

𝑑𝑤 =
𝑑𝑟√︀

𝑟/𝑟𝑠 − 1
, (7.73)
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which integrates to

𝑤 = 2

√︂
𝑟

𝑟𝑠
− 1 . (7.74)

The embedded Schwarzschild surface has the shape of a square root, infinitely steep at the horizon 𝑟 = 𝑟𝑠,
as illustrated by Figure 7.4.
Inside the horizon, proper radial distances change to being timelike, 𝑑𝑙2 < 0, equation (7.17). Here the

Schwarzschild geometry at fixed Schwarzschild time 𝑡 (which is a spacelike coordinate inside the horizon)
can be embedded in a 4D Minkowski space in which the fourth coordinate 𝑤 is timelike,

𝑑𝑙2 = − 𝑑𝑤2 + 𝑑𝑟2 + 𝑟2𝑑𝑜2 . (7.75)

The embedded surface inside the horizon satisfies

𝑤 = −2
√︂
1− 𝑟

𝑟𝑠
, (7.76)

with a minus sign chosen so that the coordinate 𝑤 is negative inside the horizon, whereas it is positive
outside the horizon. The two embeddings (7.74) and (7.76) can be patched together at the horizon (though
not doubly differentiably), as illustrated in Figure 7.4.
It should be emphasized that the embedding diagram of the Schwarzschild geometry at fixed Schwarzschild

time 𝑡 has a limited physical meaning. Fixing the time 𝑡 means choosing a certain hypersurface through the
geometry. Other choices of hypersurface will yield different embedding diagrams. For example, the Gullstrand-
Painlevé metric (7.27) is spatially flat at fixed free-fall time 𝑡ff , so in that case the embedding diagram would
simply illustrate flat space, with no funny business at the horizon.

7.14 Schwarzschild spacetime diagram

In general relativity as in special relativity, a spacetime diagram is a plot of space versus time.
Figure 7.5 shows a spacetime diagram of the Schwarzschild geometry. In this diagram, Schwarzschild time

𝑡 increases vertically upward, while circumferential radius 𝑟 increases horizontally.
The more or less diagonal lines in Figure 7.5 are outgoing and infalling radial null geodesics. The radial

null geodesics are not at 45∘, as they would be in a special relativistic spacetime diagram. In Schwarzschild
coordinates, light rays that fall radially (𝑑𝜃 = 𝑑𝜑 = 0) inward or outward follow null geodesics

𝑑𝑠2 = −
(︁
1− 𝑟𝑠

𝑟

)︁
𝑑𝑡2 +

(︁
1− 𝑟𝑠

𝑟

)︁−1
𝑑𝑟2 = 0 . (7.77)

Radial null geodesics thus follow
𝑑𝑟

𝑑𝑡
= ±

(︁
1− 𝑟𝑠

𝑟

)︁
, (7.78)

in which the ± sign is + for outgoing, − for infalling rays. Equation (7.78) shows that 𝑑𝑟/𝑑𝑡 → 0 as
𝑟 → 𝑟𝑠, suggesting that null rays, whether infalling or outgoing, never cross the horizon. In the Schwarzschild
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Figure 7.5 Spacetime diagram of the Schwarzschild geometry, in Schwarzschild coordinates. The horizontal axis is the

circumferential radius 𝑟, while the vertical axis is Schwarzschild time 𝑡. The horizon (pink) is at one Schwarzschild

radius, 𝑟 = 𝑟𝑠. The singularity (cyan) is at zero radius, 𝑟 = 0. The more or less diagonal lines (black) are outgoing

and infalling null geodesics. The outgoing and infalling null geodesics appear not to cross the horizon, but this is an

artefact of the Schwarzschild coordinate system.

spacetime diagram 7.5, null geodesics asymptote to the horizon, but never actually cross it. This feature of
Schwarzschild coordinates was first noticed by Droste (1916), and contributed to the historical misconception
that black holes stopped at their horizons. The failure of geodesics to cross the horizon is an artefact of
Schwarzschild’s choice of coordinates, which are adapted to observers at rest, whereas no locally inertial
frame can remain at rest at the horizon.

7.15 Gullstrand-Painlevé spacetime diagram

Figure 7.6 shows a spacetime diagram of the Schwarzschild geometry in Gullstrand-Painlevé coordinates 𝑡ff
and 𝑟 in place of Schwarzschild coordinates 𝑡 and 𝑟. As the spacetime diagram shows, in Gullstrand-Painlevé
coordinates infalling light rays cross the horizon. Unfortunately, neither Gullstrand nor Painlevé, nor anyone
else at that time, grasped the physical significance of their metric.
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Figure 7.6 Gullstrand-Painlevé, or free-fall, spacetime diagram, in units 𝑟𝑠 = 𝑐 = 1. In this spacetime diagram the

time coordinate is the Gullstrand-Painlevé time 𝑡ff , which is the proper time of observers who free-fall radially from

zero velocity at infinity. The radial coordinate 𝑟 is the circumferential radius, and the horizon and singularity are at

𝑟 = 𝑟𝑠 and 𝑟 = 0, as in the Schwarzschild spacetime diagram, Figure 7.5. In contrast to the spacetime diagram in

Schwarzschild coordinates, in Gullstrand-Painlevé coordinates infalling light rays do cross the horizon.

7.16 Eddington-Finkelstein spacetime diagram

In 1958, David Finkelstein (1958) carried out an elementary transformation of the time coordinate which
seemed to show that infalling light rays could indeed pass through the horizon. It turned out that Eddington
had already discovered the transformation in 1924 (Eddington, 1924), though at that time the physical
implications were not grasped. Again, it is striking that the mathematics was in place long before physical
understanding emerged.
In Schwarzschild coordinates, radially outgoing or infalling light rays follow equation (7.78). Equation (7.78)

integrates to

𝑡 = ± (𝑟 + 𝑟𝑠 ln|𝑟 − 𝑟𝑠|) , (7.79)

which shows that Schwarzschild time 𝑡 approaches ±∞ logarithmically as null rays approach the horizon.
Finkelstein defined his time coordinate 𝑡F by

𝑡F ≡ 𝑡+ 𝑟𝑠 ln |𝑟 − 𝑟𝑠| , (7.80)

which has the property that infalling null rays follow

𝑡F + 𝑟 = constant . (7.81)
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Figure 7.7 Finkelstein spacetime diagram, in units 𝑟𝑠 = 𝑐 = 1. Here the time coordinate is taken to be the Finkelstein

time coordinate 𝑡F, equation (7.80). The Finkelstein time coordinate 𝑡F is constructed so that radially infalling light

rays are at 45∘.

In other words, on a spacetime diagram in Finkelstein coordinates, Figure 7.7, radially infalling light rays
move at 45∘, the same as in a special relativistic spacetime diagram.

7.17 Kruskal-Szekeres spacetime diagram

After Finkelstein had transformed coordinates so that radially infalling light rays moved at 45∘ in a spacetime
diagram, it was natural to look for coordinates in which outgoing as well as infalling light rays are at 45∘.
Kruskal and Szekeres independently provided such a transformation in 1960 (Kruskal, 1960; Szekeres, 1960).
Define the tortoise, or Regge-Wheeler (Regge and Wheeler, 1957), coordinate 𝑟* by

𝑟* ≡
∫︁

𝑑𝑟

1− 2𝑀/𝑟
= 𝑟 + 2𝑀 ln |𝑟 − 2𝑀 | . (7.82)

Then radially infalling and outgoing null rays follow

𝑟* + 𝑡 = constant infalling ,

𝑟* − 𝑡 = constant outgoing .
(7.83)

In a spacetime diagram in coordinates 𝑡 and 𝑟*, infalling and outgoing light rays are indeed at 45∘. Unfor-
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Figure 7.8 Kruskal-Szekeres spacetime diagram, in units 𝑟𝑠 = 𝑐 = 1. Kruskal-Szekeres coordinates are arranged such

that not only infalling, but also outgoing null rays move at 45∘ on the spacetime diagram. The Kruskal-Szekeres

spacetime diagram reveals the causal structure of the Schwarzschild geometry. The singularity (cyan) at 𝑟 = 0, at

the upper edge of the spacetime diagram, is revealed to be a spacelike surface. Besides the usual horizon (pink),

there is an antihorizon (red), which was not apparent in Schwarzschild or Finkelstein coordinates. In the Kruskal-

Szekeres spacetime diagram, lines of constant circumferential radius 𝑟 (blue) are hyperboloids, while lines of constant

Schwarzschild time 𝑡 (violet) are straight lines passing through the origin, the same as in the spacetime wheel,

Figure 1.14, or as in Rindler space. Contours of constant Schwarzschild time 𝑡 (violet) are spaced uniformly at

intervals of 1 (in units 𝑟𝑠 = 𝑐 = 1), and similarly infalling and outgoing null rays (black) are spaced uniformly by 1,

while lines of constant circumferential radius 𝑟 (blue) are drawn spaced uniformly by 1/4.

tunately the metric in these coordinates is still singular at the horizon 𝑟 = 2𝑀 :

𝑑𝑠2 =

(︂
1− 2𝑀

𝑟

)︂(︀
− 𝑑𝑡2 + 𝑑𝑟*2

)︀
+ 𝑟2𝑑𝑜2 . (7.84)

The singularity at the horizon can be eliminated by the following transformation into Kruskal-Szekeres
coordinates 𝑡K and 𝑟K:

𝑟K + 𝑡K = 2𝑀 exp

(︂
𝑟* + 𝑡

4𝑀

)︂
,

𝑟K − 𝑡K = ±2𝑀 exp

(︂
𝑟* − 𝑡
4𝑀

)︂
,

(7.85)

where the ± sign in the last equation is + outside the horizon, − inside the horizon. The Kruskal-Szekeres
metric is

𝑑𝑠2 =
8𝑀

𝑟
𝑒−𝑟/2𝑀

(︀
− 𝑑𝑡2K + 𝑑𝑟2K

)︀
+ 𝑟2𝑑𝑜2 , (7.86)
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Figure 7.9 From left to right, the Finkelstein spacetime diagram, Figure 7.7, morphs into the Kruskal-Szekeres space-

time diagram, Figure 7.8. The morph illustrates how the antihorizon, or past horizon (red), emerges from the depths

of 𝑡 = −∞. Like the horizon, the antihorizon is a null surface, thus appearing at 45∘ in the Kruskal-Szekeres spacetime

diagram.

which is non-singular at the horizon. The Schwarzschild radial coordinate 𝑟, which appears in the factors
(8𝑀/𝑟)𝑒−𝑟/2𝑀 and 𝑟2 in the Kruskal metric, is to be understood as an implicit function of the Kruskal
coordinates 𝑡K and 𝑟K.

7.18 Antihorizon

The Kruskal-Szekeres spacetime diagram reveals a new feature that was not apparent in Schwarzschild or
Finkelstein coordinates. Dredged from the depths of 𝑡 = −∞ appears a null line 𝑟K + 𝑡K = 0, Figure 7.9.
The null line is at radius 𝑟 = 2𝑀 , but it does not correspond to the horizon that a person might fall into.
The null line is called the antihorizon.

7.19 Analytically extended Schwarzschild geometry

The Schwarzschild geometry is analytic, and there is a unique analytic continuation of the geometry through
the antihorizon. The extended geometry consists of two copies of the Schwarzschild geometry, glued along
their antihorizons, as illustrated in the embedding diagram in Figure 7.10. The embedding diagram 7.10
gives the impression of a static wormhole, but this is an artefact of everything being frozen at the horizon
in Schwarzschild coordinates.
Figure 7.11 shows the Kruskal spacetime diagram of the analytically extended Schwarzschild geometry,

Whereas the original Schwarzschild geometry showed an asymptotically flat region and a black hole region
separated by a horizon, the complete analytically extended Schwarzschild geometry shows two asymptotically
flat regions, together with a black hole and a white hole. Relativists typically label the regions I, II, III, and
IV, but I like to call them by name: “Universe,” “Black Hole,” “Parallel Universe,” and “White Hole.”
The white hole is a time-reversed version of the black hole. Whereas space falls inward faster than light
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Figure 7.10 Embedding diagram of the analytically extended Schwarzschild geometry. The analytically extended

geometry is constructed by gluing together two copies of the Schwarzschild geometry along the antihorizon. The

extended geometry contains a Universe, a Parallel Universe, a Black Hole, and a White Hole.
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Figure 7.11 Analytically extended Kruskal-Szekeres spacetime diagram, in units 𝑟𝑠 = 𝑐 = 1. The analytically extended

horizon and antihorizon (crossing pink/red lines at 45∘) divide the spacetime into 4 regions, a Universe region at right,

a Black Hole region bounded by the singularity at top, a Parallel Universe region at left, and a White Hole region

bounded by a singularity at bottom. The White Hole is a time-reversed version of the Black Hole.
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inside the black hole, space falls outward faster than light inside the white hole. In the Gullstrand-Painlevé
metric (7.27), the velocity 𝛽 = ±(2𝑀/𝑟)1/2 is negative for the black hole, positive for the white hole.
The Kruskal diagram shows that the universe and the parallel universe are connected, but only by spacelike

lines. This spacelike connection is called the Einstein-Rosen bridge, and constitutes a wormhole connecting
the two universes. Because the connection is spacelike, it is impossible for a traveller to pass through this
wormhole. The wormhole is said to be non-traversable.
Figure 7.12 illustrates a sequence of embedding diagrams for spatial slices of the analytically extended

Schwarzschild geometry. Although two travellers, one from the universe and one from the parallel universe,
cannot travel to each other’s universe, they can meet, but only inside the black hole. Inside the black hole,
they can talk to each other, and they can see light from each other’s universe. Sadly, the enlightenment is
only temporary, because they are doomed soon to hit the central singularity.

Figure 7.12 Sequence of embedding diagrams of spatial slices of the analytically extended Schwarzschild geometry,

progressing in time from left to right. Two white holes merge, form an Einstein-Rosen bridge, then fall apart into

two black holes. The wormhole formed by the Einstein-Rosen bridge is non-traversable. The (yellow) arrows indicate

the direction in which an object can cross the horizon. At left, travellers in the two universes cannot fall into their

respective white holes, because objects can cross the white hole horizons (red) only in the outward direction. The

horizons cross in the middle diagram, without the arrows changing direction. After this point, travellers in the two

universes can fall through their respective black hole horizons (pink) into the Einstein-Rosen bridge, and temporarily

meet up with each other. Unfortunately, having fallen through the black hole horizons, they cannot exit, and are

doomed to hit the singularity. The insets at top show the adopted spatial slicings on the Kruskal spacetime diagram.

The adopted slicings are engineered to give the embedding diagrams an appealing look, and have no fundamental

significance.
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Figure 7.13 Penrose spacetime diagram, in units 𝑟𝑠 = 𝑐 = 1. The Penrose coordinates 𝑡P and 𝑟P here are defined

by equations (7.87) and (7.88). Lines of constant Schwarzschild time 𝑡 (violet), and infalling and outgoing null lines

(black) are spaced uniformly at intervals of 1 (units 𝑟𝑠 = 𝑐 = 1), while lines of constant circumferential radius 𝑟 (blue)

are spaced uniformly in the tortoise coordinate 𝑟*, equation (7.82), so that the intersections of 𝑡 and 𝑟 lines are also

intersections of infalling and outgoing null lines.

It should be emphasized that the white hole and the wormhole in the Schwarzschild geometry are a
mathematical construction with as far as anyone knows no relevance to reality. Nevertheless it is intriguing
that such bizarre objects emerge already in the simplest general relativistic solution for a black hole.

7.20 Penrose diagrams

Roger Penrose, as so often, had a novel take on the business of spacetime diagrams (Penrose, 2011). Penrose
conceived that the primary purpose of a spacetime diagram should be to portray the causal structure of
the spacetime, and that the specific choice of coordinates was largely irrelevant. After all, general relativity
allows arbitrary choices of coordinates.
In addition to requiring that light rays be at 45∘, Penrose wanted to bring regions at infinity (in time or

space) to a finite position on the spacetime diagram, so that the entire spacetime could be seen at once. Such
diagrams are called Penrose diagrams, or conformal diagrams.
Penrose diagrams are bona-fide spacetime diagrams. Penrose time and space coordinates 𝑡P and 𝑟P can

be defined by any conformal transformation of Kruskal-Szekeres coordinates

𝑟P ± 𝑡P = 𝑓(𝑟K ± 𝑡K) (7.87)
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Figure 7.14 From left to right, the Kruskal-Szekeres spacetime diagram, Figure 7.8, morphs into the Penrose spacetime

diagram, Figure 7.13.
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Figure 7.15 Penrose spacetime diagram of the analytically extended Schwarzschild geometry. This is the analytically

extended version of Figure 7.13.

for which 𝑓(𝑧) is finite as 𝑧 → ±∞. The transformation (7.87) brings spatial and temporal infinity to finite
values of the coordinates, while keeping infalling and outgoing light rays at 45∘ in the spacetime diagram.
It is common to draw a Penrose diagram with the singularity horizontal, which can be accomplished by
choosing the function 𝑓(𝑧) to be odd, 𝑓(−𝑧) = −𝑓(𝑧). Figure 7.13 shows a spacetime diagram in Penrose
coordinates with 𝑓(𝑧) set to

𝑓(𝑧) =
2

𝜋
atan 𝑧 . (7.88)
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Figure 7.16 Penrose diagram of the Schwarzschild geometry, labelled with the Universe and Black Hole regions, and

their various boundaries. The (blue) line at less than 45∘ from vertical is a possible trajectory of a person who falls

through the horizon from the Universe into the Black Hole. Once inside the horizon, the infaller cannot avoid the

Singularity.

Figure 7.14 illustrates a morph of the Kruskal-Szekeres spacetime diagram, Figure 7.8, into the Penrose
spacetime diagram, Figure 7.13.
Figure 7.15 illustrates the Penrose diagram of the analytically extended Schwarzschild geometry.

7.21 Penrose diagrams as guides to spacetime

In the literature, Penrose diagrams are usually sketched, not calculated, the aim being to convey a conceptual
understanding of the spacetime without obsessing over detail.
Figure 7.16 shows a Penrose diagram of the Schwarzschild geometry, with the Universe and Black Hole

regions, and the various boundaries of the diagram, marked. The 45∘ edges of the Penrose diagram at infinite
radius, 𝑟 = ∞, are called past and future null infinity, often designated in the mathematical literature
by ℐ+ and ℐ− (commonly pronounced scri-plus and scri-minus, scri being short for script-I). The corners of
the Penrose diagram in the infinite past or future are called past and future infinity, often designated 𝑖−
and 𝑖+, while the corner at infinite radius is called spatial infinity, often designated 𝑖0.
The Schwarzschild geometry, being asymptotically flat (Minkowski), has no boundary at infinity. Thus

the boundary at infinity in the Penrose diagram is not part of the spacetime manifold. However, a worldline
that extends into the indefinite past converges towards past infinity, while a worldline that extends into the
indefinite future outside the black hole converges towards future infinity.
A Penrose diagram is an indispensable guide to finding your way around a complicated spacetime such

as a black hole. However, a Penrose diagram can be deceiving, because the conformal mapping distorts



7.22 Future and past horizons 163

r = 0

r
=

∞

r
=
∞

r
=
∞

r
=

∞

H
o
ri
z
o
n

Universe

Black Hole

r = 0

P
a
ra
lle
l
H
o
riz
o
n

A
n
tih
o
riz
o
n

P
a
ra
ll
e
l
A
n
ti
h
o
ri
z
o
nParallel Universe

White Hole

Figure 7.17 Penrose diagram of the analytically extended Schwarzschild geometry.

the spacetime. Most of the physical spacetime in the Penrose diagram of the Schwarzschild geometry is
compressed to the corners of the diagram, to past, future, and spatial infinity, and to the top left point at
the intersection of the antihorizon with the singularity.
Figure 7.17 shows the Penrose diagram of the analytically extended Schwarzschild geometry, with the four

regions, Universe, Black Hole, Parallel Universe, and White Hole marked. Again, relativists typically call
these regions I, II, III, and IV, but I like to give them names. I’ve also given names to the various horizons.
The names are unconventional, but reasonable.

Concept question 7.13. Penrose diagram of Minkowski space. Draw a Penrose diagram of Minkowski
space.

7.22 Future and past horizons

Hawking and Ellis (1973) define the future horizon of the worldline of an observer to be the boundary of
the past lightcone of the continuation of the worldline into the indefinite future. Likewise the past horizon
of the worldline of an observer is the boundary of the future lightcone of the continuation of the worldline
into the indefinite past. The definition of future and past horizons is observer-dependent.
The horizon of a Schwarzschild black hole is a future horizon for observers who remain at a finite distance

outside the black hole for ever. The antihorizon of a Schwarzschild black hole is a past horizon for observers
who remained a finite distance outside the black hole in the indefinite past.
The causal diamond of an observer is the part of spacetime bounded by the observer’s past and future

horizons. The causal diamond is the region of spacetime to which the observer can, at some point on their
worldline, send a signal, and from which the observer can, at some other point on their worldline, receive a
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signal. For example, the Universe region of the Penrose diagram 7.16 is the causal diamond of an observer
who starts at past infinity and ends at future infinity, without falling into the black hole.

7.23 Oppenheimer-Snyder collapse to a black hole

Realistic collapse of a star to a black hole is not expected to produce a white hole or parallel universe.
The simplest model of a collapsing star is a spherical ball of uniform density and zero pressure which free

falls from zero velocity at infinity, a problem first solved by Oppenheimer and Snyder (1939). In this simple
model, the interior of the star is described by a collapsing Friedmann-Lemaître-Robertson-Walker metric
(see Chapter 10), while the exterior is described by the Schwarzschild solution. The assumption that the star
collapses from zero velocity at infinity implies that the FLRW geometry is spatially flat, the simplest case.
To continue the geometry between Schwarzschild and FLRW geometries, it is neatest to use the Gullstrand-
Painlevé metric, with the Gullstrand-Painlevé infall velocity 𝛽 at the edge of the star set equal to minus 𝑟
times the Hubble parameter of the collapsing FLRW metric, −𝑟𝐻 ≡ −𝑟 𝑑 ln 𝑎/𝑑𝑡. Section 20.15 describes a
systematic approach to solving the Oppenheimer-Snyder problem.
Figure 7.18 shows the star collapse as seen by an outside observer at rest at a radius of 10 Schwarzschild

radii. The Figure is correctly ray-traced, taking into account the different travel times of light from the
various parts of the star to the observer. The collapsing star appears to freeze at the horizon, taking on the
appearance of a Schwarzschild black hole.
When Oppenheimer & Snyder first did their calculation, the result seemed paradoxical. An outsider saw

the collapsing star freeze at its horizon and never get further, even to the end of time. Yet an observer who
collapsed with the star would find themself falling uneventfully through the horizon to the central singularity
in a finite proper time. How could these two perspectives be reconciled?
The solution is that the freezing at the horizon is an illusion. As pictured in Figure 7.2, space is falling at

the speed of light at the horizon. Light emitted outward at the horizon just hangs there, barrelling at the
speed of light through space that is falling at the speed of light. It takes an infinite time for light to lift off
the horizon and make it to the outside world. The star really did collapse, but the infinite light travel time
from the horizon gives the illusion that the star freezes at the horizon.
That radially outgoing light rays at the horizon remain on the horizon is apparent in the Penrose diagram,

which shows the horizon as a null line, at 45∘.

7.24 Apparent horizon

Since light can escape from the surface or interior of the collapsing star as long as it is even slightly larger
than its Schwarzschild radius, it is possible to take the view that the horizon comes instantaneously into
being at the moment that the star collapses through its Schwarzschild radius. This definition of the horizon is
called the apparent horizon. More generally, the apparent horizon is a null surface on which the congruence
of light rays that form the surface are neither diverging nor converging. In spherically symmetric spacetimes,
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Figure 7.18 Three frames in the collapse of a uniform density, pressureless, spherical star from zero velocity at infinity

(Oppenheimer and Snyder, 1939), as seen by an outside observer at rest at a radius of 10 Schwarzschild radii. The

frames are spaced by 10 units of Schwarzschild time (𝑐 = 𝑟𝑠 = 1). The star is made transparent, so you can see inside.

Two layers are shown, one at the surface of the star, the other at half its radius. The centre of the star is shown as

a dot. The frames are accurately ray-traced, and include the effect of the different light travel times from different

parts of the star to the observer. As time goes by, from left to right, the collapsing star appears to freeze at the

horizon, taking on the appearance of a Schwarzschild black hole. The different layers of the star appear to merge into

one. The radius of the nearest point on the surface at the time of emission is 3.72, 1.50, and 1.01 Schwarzschild radii

respectively.

an apparent horizon is a place where radially moving null geodesics remain at rest in circumferential radius
𝑟,

𝑑𝑟

𝑑𝜆
= 0 . (7.89)

7.25 True horizon

An alternative definition of the horizon is to take it to be the boundary between outgoing null rays that
fall into the black hole versus those that go to infinity. In any evolving situation, this definition of the
horizon, which is called the true horizon, or absolute horizon, depends formally on what happens in the
indefinite future, but in a slowly evolving system the absolute horizon can be located with some precision
without knowing the future. The true horizon is part of the future horizon of an observer who remains at a
finite distance outside the black hole into the indefinite future.
Figure 7.19 shows Finkelstein, Kruskal, and Penrose spacetime diagrams of the Oppenheimer-Snyder col-
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lapse of a star to a Schwarzschild black hole. The diagrams show the freely-falling surface of the collapsing
star, and the formation of the true horizon and of the singularity. The true horizon of the collapsing star
forms before the star has collapsed, and grows to meet the apparent horizon as the star falls through its
Schwarzschild radius. The central singularity forms slightly before the star has collapsed to zero radius. The
formation of the singularity is marked by the fact that light rays emitted at zero radius cease to be able to
move outward. In other words, the singularity forms when space starts to fall into it faster than light.

7.26 Penrose diagrams of Oppenheimer-Snyder collapse

Figure 7.20 shows a sequence of Penrose diagrams of Oppenheimer-Snyder collapse, progressing in time from
left to right. The diagrams are drawn from the perspective of an observer before collapse on the left, to
that of an observer after collapse on the right. The diagrams illustrate that, even though a Penrose diagram
supposedly encompasses all of the spacetime, it crams most of the spacetime into a few boundary points, and
the appearance of the diagram can vary dramatically depending on what part of the spacetime the diagram
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Figure 7.19 Finkelstein, Kruskal-Szekeres, and Penrose spacetime diagrams of the Oppenheimer-Snyder of a pressure-

less, spherical star. The thick (red) line is the surface of the collapsing star. The geometry outside the surface of the

star is Schwarzschild, and the spacetime diagrams there look like those shown previously, Figures 7.7, 7.8, and 7.13.

The geometry inside the surface of the star is that of a uniform density, pressureless Friedmann-Lemaître-Robertson-

Walker universe. The lines of constant time (purple) are lines of constant Schwarzschild time outside the star’s surface,

and lines of constant FLRW time inside the star’s surface. Lines of constant circumferential radius 𝑟 (blue) are spaced

uniformly in the tortoise coordinate 𝑟*, equation (7.82), so before collapse appear bunched around the radius 𝑟 = 𝑟𝑠
that after collapse becomes the horizon radius. The thick (pink) line at 45∘ in the Kruskal and Penrose diagrams is the

true, or absolute, horizon, which divides the spacetime into a region where light rays are trapped, eventually falling

to zero radius, and a region where light rays can escape to infinity. A singularity (cyan) forms when outgoing light

rays can no longer escape from zero radius, which happens slightly before the surface of the collapsing star reaches

zero radius.
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centres. In Figure 7.20, the Penrose diagram looks like Minkowski well before collapse, and like Schwarzschild
well after collapse.
The Penrose diagrams in Figure 7.20 are drawn in the Penrose coordinates defined by equations (7.87)

with the function 𝑓(𝑧) given by equation (7.88). Requiring the singularity to be horizontal, as is conventional,
imposes that 𝑓(𝑧) be odd. Since other choices of 𝑓(𝑧) could be made, the shapes of the Penrose diagrams
are not unique. However, other choices of smooth, monotonic, odd 𝑓(𝑧) give diagrams quite similar to those
shown. In particular, as long as the singularity is chosen to be horizontal, it is impossible to arrange that
the left edge of the diagram, defined by the centre of the collapsing star at 𝑟 = 0, be vertical.
In the evolving Penrose diagram of Figure 7.20, spacetime appears to flow out of future infinity, the point

at the top right of the diagram, down into past infinity, the point at the bottom of the diagram. Inside the
horizon, as Schwarzschild time 𝑡 goes by, spacetime appears to flow to the left, to the top left corner of the
spacetime diagram. An infaller inside the horizon must of course follow a worldline at less than 45∘ from
vertical. However, infallers who fall in at different times fall to different places on the spacelike singularity.
From the perspective of an outside observer, infallers who fell in long ago are crammed to the top left corner
of the Penrose diagram.

7.27 Illusory horizon

The simple Oppenheimer-Snyder model of stellar collapse shows that the antihorizon of the complete Schwarz-
schild geometry is replaced by the surface of the collapsing star, and that beyond the star’s surface is not
a parallel universe and a white hole, but merely the interior of the star, and the distant Universe glimpsed
through the star’s interior.
As time goes by, the surface of the collapsing star becomes dimmer and more redshifted, taking on the

Figure 7.20 Sequence of Penrose diagrams illustrating the Oppenheimer-Snyder collapse of a pressureless, spherical

star to a Schwarzschild black hole, progressing in time of collapse from left to right. On the left, the collapse is to

the future of an observer at the centre of the diagram; on the right, the collapse is to the past of an observer at the

centre of the diagram. The diagrams are at times −16, −4, 0, 4, and 16 Schwarzschild time units (𝑐 = 𝑟𝑠 = 1) relative

to the middle diagram. On the left the Penrose diagram resembles that of Minkowski space, while on the right the

diagram resembles that of the Schwarzschild geometry. These Penrose diagrams are spacetime diagrams calculated in

the Penrose coordinates defined by equations (7.87) and (7.88).
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appearance of the Schwarzschild antihorizon, Figure 7.18. The name illusory horizon for the exponentially
dimming and redshifting surface was coined by Hamilton and Polhemus (2010). Figure 7.21 shows a Penrose
diagram of a spherical collapsed star, with the true and illusory horizons marked. The Penrose diagram is
just the limit of the sequence of the diagrams in Figure 7.20 from the perspective of an observer for whom the
star collapsed long ago. The Penrose diagram 7.21 looks identical to the Penrose diagram of a Schwarzschild
black hole, Figure 7.13, except that the antihorizon is replaced by the illusory horizon.
Unlike the antihorizon, the illusory horizon is not a future or past horizon, as defined by Hawking and Ellis

(1973). As the Penrose diagrams 7.20 show, the illusory horizon is neither the boundary of the past lightcone
of the future development of the worldline of any observer, nor the boundary of the future lightcone of the
past development of the worldline of any observer.
An object similar to the illusory horizon, the stretched horizon, was introduced by Susskind, Thorlacius,

and Uglum (1993). The stretched horizon was conceived as the place where, from the perspective of an outside
observer, Hawking radiation comes from, and the place where, from the perspective of an outside observer,
the interior quantum states of a black hole reside. The stretched horizon was argued to be located on a
spacelike surface one Planck area above the true horizon. However, the restriction to an outside observer is
too limiting, and the notion that the stretched horizon lives literally just above the true horizon has been
a source of confusion in the theoretical physics literature. If you go down to the true horizon, you do not
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Figure 7.21 Penrose diagram of a collapsed spherical star at late times. The Penrose diagram looks essentially identical

to the Penrose diagram 7.16 of the Schwarzschild geometry, except that the antihorizon is replaced by the illusory

horizon. The wiggly lines show the paths of outgoing light rays from the illusory horizon, and ingoing light rays from

the true horizon, as seen by an infaller who falls through the true horizon. An infaller looking directly towards the

black hole sees the illusory horizon ahead of them, whether they are outside or inside the true horizon. The true

horizon becomes visible to an infaller only after they have fallen through it. Once inside, the infaller sees the true

horizon behind them, in the direction away from the black hole.
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Figure 7.22 Six frames from a visualization of the view seen by an observer who free-falls into a Schwarzschild black

hole. The infaller is on a geodesic with energy per unit mass 𝐸 = 1, and angular momentum per unit mass 𝐿 = 1.96 𝑟𝑠.

From left to right and top to bottom, the observer is at radii 3.008, 1.501, 0.987, 0.508, 0.102, and 0.0132 Schwarzschild

radii. The illusory horizon is painted with a dark red grid, while the true horizon is painted with a grid coloured with

an appropriately red- or blue-shifted blackbody colour. The schematic map at the lower left of each frame shows

the trajectory (white line) of the observer through regions of stable circular orbits (green), unstable circular orbits

(yellow), no circular orbits (orange), the horizon (red line), and inside the horizon (red). The clock at the lower right

of each frame shows the proper time left to hit the singularity, in seconds, scaled to the mass 4× 106 M⊙ of the Milky

Way’s supermassive black hole (Ghez et al., 2005; Eisenhauer et al., 2005). The background is Axel Mellinger’s Milky

Way (Mellinger, 2009) (with permission).
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encounter the putative stretched horizon. The stretched horizon is an illusion, a mirage. Better call it the
illusory horizon.
Figure 7.22 shows six frames from a visualization (Hamilton and Polhemus, 2010) of the appearance of a

Schwarzschild black hole and its true and illusory horizons as perceived by an observer who free-falls through
the true horizon. The illusory horizon, the exponentially redshifting image of the long-ago collapsed star, is
painted with a dark red grid, as befits its dimmed, redshifted appearance. The true horizon is painted with
blackbody colours blueshifted or redshifted according to the shift that the infalling observer would see on
an emitter free-falling radially through the true horizon from zero velocity at infinity. When an infaller falls
through the true horizon, they do not catch up with the illusory horizon, the image of the collapsed star,
which remains ahead of them. The visualization gives the impression that the illusory horizon is a finite
distance ahead of the infaller, and this impression is correct: the affine distance between the illusory horizon
and an infaller at the true horizon is finite, not zero. Calculation of what an infaller sees involves working in
the locally inertial frame (tetrad) of the infaller, so is deferred until after tetrads.
An infaller does not encounter the illusory horizon at the true horizon, but, as illustrated by the visual-

ization 7.22, they do have the impression of encountering the illusory horizon at the singularity. The affine
distance between the infaller and the illusory horizon tends to zero at the singularity.

7.28 Collapse of a shell of matter on to a black hole

The antihorizon of a Schwarzschild black hole is located at the horizon radius, one Schwarzschild radius.
Where is the illusory horizon located? From the perspective of an observer watching a spherical black hole
that collapsed from a star long ago, the illusory horizon appears to be located at (exponentially close to) the
antihorizon of the Schwarzschild black hole of the same mass.
What happens to the illusory horizon if the black hole accretes mass, and grows larger? Figure 7.23

shows three frames in the collapse of a thin spherical shell of pressureless matter on to a pre-existing black
hole, Exercise 20.6. The shell collapses from zero velocity at infinity. As usual in this book, the frames are
accurately ray-traced. The shell of matter here has the same mass as the pre-existing black hole, so the
black hole doubles in mass as the shell collapses on to it. The visualization shows that the illusory horizon of
the pre-existing black hole expands to meet the infalling shell of matter. The apparent expansion is caused
by gravitational lensing of the pre-existing black hole by the shell. As time goes by, the shell appears to
merge with the horizon of the pre-existing black hole. The merged shell and expanded horizon take on the
appearance of the antihorizon of a Schwarzschild black hole of twice the original mass.
Figure 7.24 shows a Finkelstein spacetime diagram of the collapse of the shell of matter on to the black

hole. The initial black hole has half the mass of the final black hole. The initial apparent horizon at 0.5𝑟𝑠,
half the Schwarzschild radius of the final black hole, follows a null geodesic until the infalling shell hits it.
The shell deflects the null geodesic, which falls to the central singularity. The true horizon follows a null
geodesic that joins continuously with the apparent horizon of the final black hole.
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Figure 7.23 Three frames in the collapse of a thin spherical shell of matter on to a pre-existing Schwarzschild black

hole, as seen by an outside observer at rest at a radius of 10 Schwarzschild radii (Schwarzschild radius of the final

black hole). The frames are spaced by 10 units of Schwarzschild time (𝑐 = 𝑟𝑠 = 1). The shell has the same mass as

the original black hole, so the black hole doubles in mass from beginning to end. During the collapse, the horizon of

the pre-existing black hole appears to expand outward, in due course reaching the size of the new black hole. The

expansion of the image of the pre-existing black hole is caused by gravitational lensing by the shell.

Concept question 7.14. Penrose diagram of a thin spherical shell collapsing on to a Schwarz-

schild black hole. Sketch a Penrose diagram of a thin spherical shell collapsing on to a pre-existing Schwarz-
schild black hole. Where are the apparent and true horizons?Answer. The Penrose diagram looks essentially
the same as Figure 7.13 (differing in that lines of constant time and radius are different inside the shell).
The apparent horizon before collapse follows an outgoing null (45∘) line that hits the singularity inside the
true horizon, consistent with the Finkelstein diagram 7.24.

7.29 The illusory horizon and black hole thermodynamics

As will be discussed later in this book, the illusory horizon plays a central role in the thermodynamics of
black holes. The illusory horizon is the source of Hawking radiation, for observers both outside and inside
the true horizon. If, as proposed by Susskind, Thorlacius, and Uglum (1993), there is a holographic mapping
between the interior quantum states of a black hole and its horizon, then that holographic mapping must be
to the illusory horizon, for observers both outside and inside the true horizon.
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Figure 7.24 Finkelstein spacetime diagram of a thin spherical shell of matter collapsing on to a pre-existing Schwarz-

schild black hole, in units 𝑟𝑠 of the Schwarzschild radius of the final black hole. The mass of the (red) shell equals that

of the pre-existing black hole, so the black hole doubles in mass as a result of accreting the shell. Whereas the apparent

horizon jumps discontinuously from 0.5𝑟𝑠 to 1𝑟𝑠 at the shell boundary, the true horizon increases continuously. The

mathematics governing a thin spherical shell is addressed in Exercise 20.6.

7.30 Rindler space and Rindler horizons

Rindler space is Minkowski space expressed in the coordinates of, and as experienced by, a system of uniformly
accelerating observers, called Rindler observers. A Rindler observer who accelerates uniformly in their own
frame with proper acceleration 1/𝑙, passing through position {𝑡, 𝑥} = {0, 𝑙}, follows a worldline in Minkowski
space

{𝑡, 𝑥} = 𝑙 {sinh𝛼, cosh𝛼} (7.90)

with fixed 𝑙 and varying 𝛼. The Rindler observer’s worldline follows a point on the rim of the rotating space-
time wheel, §1.8.2. The Rindler line-element is the Minkowski line-element expressed in Rindler coordinates
{𝛼, 𝑙, 𝑦, 𝑧}, Exercise 2.10,

𝑑𝑠2 = − 𝑙2𝑑𝛼2 + 𝑑𝑙2 + 𝑑𝑦2 + 𝑑𝑧2 . (7.91)

Despite the fact that Rindler spacetime is Minkowski spacetime in disguise, it nevertheless resembles Schwarz-
schild spacetime in that, from the perspective of Rindler observers, Rindler space contains horizons. Moreover
Rindler observers are expected to see Hawking radiation, which in this context is called Unruh (1976) radi-
ation.
Figure 7.25 shows a Rindler diagram, a spacetime time diagram of Minkowski space, drawn in standard
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Figure 7.25 Rindler diagram, which is a Minkowski spacetime diagram showing lines of constant Rindler coordinates

𝛼 and 𝑙, equations (7.90) and (7.92). The Rindler lines are uniformly spaced by 0.2 in 𝛼 and ln 𝑙. The spacetime

diagram resembles that of the analytically extended Schwarzschild geometry in Kruskal coordinates, Figure 7.11. The

null lines passing through the origin constitute future (line from lower left to upper right) and past (line from lower

right to upper left) horizons for Rindler observers in the right quadrant.

Minkowski coordinates 𝑡 and 𝑥, showing lines of constant Rindler coordinates 𝛼 and 𝑙. The Rindler spacelike
coordinate 𝑙 is positive in the right quadrant, negative in the left quadrant. The Rindler coordinate vanishes,
𝑙 = 0, at the boundaries of the right and left quadrants, which form the null lines at 45∘ passing through
the origin in the Rindler diagram 7.25. The Rindler metric (7.91) has a coordinate singularity at 𝑙 = 0. In
the upper and lower quadrants, the Rindler coordinate 𝑙 switches from being spacelike to timelike (𝑑𝑙2 < 0).
Rindler coordinates in the upper and lower quadrants are defined by

{𝑡, 𝑥} = 𝑙 {cosh𝛼, sinh𝛼} , (7.92)

where the timelike coordinate 𝑙 is positive in the upper quadrant, negative in the lower quadrant.
The null (45∘) lines passing through the origin in Figure 7.25 are future and past horizons for Rindler

observers in the right quadrant of the Rindler diagram. A Rindler observer following a worldline (7.90) in
the right quadrant never gets to see the part of spacetime to the future of the null surface 𝑥 = 𝑡, which
therefore constitutes a future horizon for the Rindler observer. The same Rindler observer can never send a
signal into the part of spacetime to the past of the null surface 𝑥 = −𝑡, which therefore constitutes a past
horizon, an antihorizon, for the Rindler observer.
The Rindler diagram 7.25 resembles the Kruskal diagram 7.11 of the analytically extended Schwarzschild

geometry, albeit without singularities. The Minkowski coordinates 𝑡 and 𝑥 are analogues of the Kruskal
coordinates 𝑡K and 𝑟K, while the Rindler coordinates 𝛼 and 𝑙 are analogues of the Schwarzschild coordinates
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𝑡 and 𝑟. The Schwarzschild and Rindler time coordinates 𝑡 and 𝛼 are both Killing coordinates, §7.32. Lines
of constant Schwarzschild and Rindler time 𝑡 and 𝛼 follow straight lines in the corresponding Kruskal and
Rindler diagrams, Figures 7.11 and 7.25. The Schwarzschild and Rindler spatial coordinates 𝑟 and 𝑙 are
spacelike in the right and left quadrants, timelike in the upper and lower quadrants.

7.30.1 Penrose diagram of Rindler space

Figure 7.26 is a Penrose diagram of Rindler space. This is just a Penrose diagram of Minkowski space showing
lines of constant Rindler coordinates 𝛼 and 𝑙. Penrose time and space coordinates 𝑡P and 𝑥P can be defined
by any conformal transformation

𝑡P ± 𝑥P ≡ 𝑓(𝑡± 𝑥) (7.93)

for which 𝑓(𝑧) is finite at 𝑧 → ±∞. The Rindler lines acquire a symmetrical appearance on the Penrose
diagram provided that the conformal function 𝑓(𝑧) is chosen to satisfy 𝑓(𝑧) + 𝑓(−𝑧) = constant. For the
Penrose diagram in Figure 7.26, the conformal function 𝑓(𝑧) is

𝑓(𝑧) ≡ sign(𝑧) +
2

𝜋
atan

(︂
𝑧 − 𝑧−1

2

)︂
. (7.94)
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Figure 7.26 Penrose diagram of Rindler space. This is the Penrose diagram of Minkowski space corresponding to

the Rindler diagram 7.25. The Penrose coordinates 𝑡P and 𝑥P are related to Minkowski coordinates 𝑡 and 𝑥 by

equations (7.93). The Rindler lines are uniformly spaced by 0.4 in 𝛼 and ln 𝑙. The Penrose diagram resembles that of

the analytically extended Schwarzschild geometry, Figure 7.15, but without singularities.
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The choice (7.94) is inspired by the form (10.181) of the coordinates that gives the Penrose diagram of de
Sitter space a symmetrical appearance. The Penrose diagram 7.26 resembles that of the analytically extended
Schwarzschild geometry, Figure 7.15, but without singularities.

Concept question 7.15. Spherical Rindler space. The Rindler line-element (7.91) is plane-parallel,
with all the Rindler observers accelerating in the 𝑥-direction. Would not a better analogue of a spherical
black hole be the spherically symmetric Rindler line-element

𝑑𝑠2 = − 𝑟2R 𝑑𝛼2 + 𝑑𝑟2R + 𝑟2𝑑𝑜2 , (7.95)

where all Rindler observers accelerate in the radial direction with {𝑡, 𝑟} = 𝑟R{sinh𝛼, cosh𝛼}? Answer. The
spherical Rindler line-element (7.95) is indeed a viable line-element. However, it does not provide a better
analogue of a spherical black hole because the past and future horizons of a Rindler observer accelerating
in, say, the 𝑥-direction are flat surfaces at 𝑥± 𝑡 = 0, not spherical surfaces at 𝑟 ± 𝑡 = 0.
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Figure 7.27 Minkowski spacetime diagram, showing worldlines of observers who start at rest, then begin accelerating

uniformly, as Rindler observers, at 𝑡 = 0. At 𝑡 ≤ 0, the lines are lines of constant Minkowski time and space 𝑡 and 𝑥,

while at 𝑡 ≥ 0, the lines are lines of constant Rindler time and space 𝛼 and 𝑙, equations (7.90) and (7.92). The Rindler

lines are uniformly spaced by 0.2 in 𝛼 and ln 𝑙. The null line starting at the origin {𝑡, 𝑥} = {0, 0} extending upward

at 45∘ from vertical is a future horizon for the Rindler observers.
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7.31 Rindler observers who start at rest, then accelerate

Rindler space provides an analogue of the analytically extended Schwarzschild geometry. But a spherical
black hole formed from the collapse of a star is not described by the analytically extended geometry. Rather,
the analytic extension through the antihorizon is replaced by the interior of the collapsed star.

A Rindler analogue of a black hole that forms from the collapse of a star is obtained by considering a
system of Rindler observers who are initially at rest, and begin accelerating only at some time 𝑡 = 0. The
situation is illustrated in the spacetime diagram shown in Figure 7.27. This diagram is similar to the Rindler
diagram 7.25, except that the Rindler observers start accelerating at 𝑡 = 0 instead of having been accelerating
into the indefinite past. Just as a black hole formed from the collapse of a star has a future horizon but no
past horizon, so also the Rindler space of Rindler observers who start at rest contains a future horizon but
no past horizon.

Despite having no past horizon, a Rindler observer who starts from rest sees an illusory horizon form,
Figure 7.28, in much the same way that an observer watching a star collapse to a black hole sees an illu-
sory horizon form, Figure 7.18. The illusory horizon is the exponentially dimming and redshifting image of
Minkowski space around the Rindler observer. Figure 7.28 shows three frames in the appearance of a portion
of Minkowski space as seen by an Rindler observer watching rearward. As time goes by, Minkowski space
appears to compress and freeze toward a surface, the illusory horizon. The Rindler observer sees the illu-
sory horizon dim and redshift exponentially. Exercise 7.16 quantifies the appearance of the Rindler illusory
horizon, which forms a hyperbola around the Rindler observer, with the Rindler observer at its focus.

Figure 7.28 Three frames in the appearance of Minkowski space as seen by a uniformly accelerating observer, a Rindler

observer. Minkowski space is represented by a unit box at rest, centred at the origin. The box is drawn as a 5× 5× 5

lattice. The Rindler observer starts at rest at unit distance from the origin, and watches rearward while accelerating

at unit acceleration away from the box. The field of view is 120∘ across the horizontal. The frames increase in time

from left to right, and are at 0, 2, and 4 units of proper time after the Rindler observer begins accelerating. As time

goes by, the lattice appears to freeze towards a two-dimensional surface, the illusory Rindler horizon.
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7.31.1 Penrose diagram of Rindler observers who start at rest, then accelerate

Figure 7.29 shows a sequence of Penrose diagrams drawn from the perspective of Rindler observers who start
at rest and begin to accelerate at time 𝑡 = 0, as in the spacetime diagram 7.27. These Penrose diagrams are
calculated, not sketched, with Penrose coordinates given by equations (7.93). The left edge of each diagram
is the surface at 𝑥 = 0. This sequence resembles the sequence of Penrose diagrams of Oppenheimer-Snyder
collapse of a star to a black hole, Figure 7.20, except that there is no singularity.

At left, before the observers start to accelerate, the Penrose diagram looks like that of Minkowski space.
The Rindler portion of the spacetime (the part above the green line) is crammed along the top right edge of
the Penrose diagram. At right, after the Rindler observers have started to accelerate, the Penrose diagram
is tilted by the Lorentz boost of the Minkowski space. The Minkowski portion of the spacetime (the part
below the green line) crams towards the bottom right edge of the diagram.

Aren’t the Penrose diagrams in Figure 7.29 misleading because they omit the spacetime to the left of
the diagrams, at 𝑥 < 0? Since Rindler observers are confined to the right quadrant of Rindler space, they
never get to see the region beyond their future horizon. Therefore there is no loss of generality to draw
the Minkowski spacetime diagram 7.27 with reflection symmetry about 𝑥 = 0. Applied to the Penrose
diagrams 7.29, reflection symmetry means that light that passes that passes from 𝑥 < 0 to 𝑥 > 0 can be
considered to “bounce” at 45∘ off the left edge of the diagram at 𝑥 = 0. Whatever the case, as seen in

Figure 7.29 Sequence of Penrose diagrams of the Minkowski space shown in Figure 7.27, progressing in time from left

to right. The left edge of each diagram is the surface at 𝑥 = 0. The diagrams at left are in the frames of observers

who are at rest relative to each other. In the middle diagram, the observers start to accelerate as Rindler observers.

The diagrams at right are in the frames of the Rindler observers, which become progressively more Lorentz boosted

compared to the rest frame. The diagrams are at times −8, −2, 0, 2, and 8 units of proper time of the observer who is

initially at rest at unit distance (𝑥 = 1 in Figure 7.27) from the origin. The Rindler lines are uniformly spaced by 0.4

in 𝛼 and ln 𝑙. This sequence of Penrose diagrams resembles that of the Oppenheimer-Snyder collapse of a star shown

in Figure 7.20.
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Exercise 7.16, light emitted from 𝑥 < 0 appears to a Rindler observer asymptotically to dim, redshift, and
freeze at the observer’s illusory horizon.

Exercise 7.16. Rindler illusory horizon. The purpose of this problem is to figure out the appearance
to a Rindler observer of their illusory horizon. For simplicity, choose time units such that the Rindler
observer accelerates with unit acceleration. The coordinates {𝑥, 𝑦, 𝑧} are spatial coordinates in Minkowski
space. Starting from rest on the 𝑥-axis at position 𝑥 = 1, the Rindler observer accelerates in the positive
𝑥-direction, reaching position 𝑥 = 𝑥0 in the rest frame. After a sufficiently long Rindler proper time 𝛼, the
position 𝑥0 = cosh𝛼 is large.
1. Shape. Show that points {𝑥, 𝑦, 𝑧} that are close to the origin, in the sense of satisfying |𝑥| ≪ 𝑥0 and√︀

𝑦2 + 𝑧2 ≪ 𝑥0, appear to a Rindler observer to freeze towards a time-independent surface {𝑙, 𝑦, 𝑧}, the
illusory horizon, satisfying

𝑙 = 1
2 (𝑦

2 + 𝑧2 − 1) . (7.96)

The Rindler observer sees their illusory horizon as a parabola with themself at the focus, the origin.
2. Redshift. Show further that the Rindler observer sees points on the illusory horizon redshifting expo-

nentially, at rate 𝑒𝛼.
Solution.

1. Shape. In the Minkowski rest frame, a spatial point {𝑥, 𝑦, 𝑧} relative to an observer at {𝑥0, 0, 0} is at
position {𝑥−𝑥0, 𝑦, 𝑧}. If the observer is moving at velocity 𝑣 in the 𝑥-direction, then according to the
rules of 4-dimensional perspective, §1.13.2, the point appears in the observer’s frame to lie at position
{𝑙, 𝑦, 𝑧} with transverse coordinates 𝑦, 𝑧 unchanged, and 𝑙 given by

𝑙 = 𝛾(𝑥− 𝑥0) + 𝛾𝑣
√︀
(𝑥− 𝑥0)2 + 𝑦2 + 𝑧2 , (7.97)

where 𝛾 = 1/
√
1− 𝑣2 is the Lorentz gamma factor. Points near the origin, with |𝑥| < 𝑥0, are behind the

observer, satisfying 𝑥− 𝑥0 < 0. Thus equation (7.97) factors to

𝑙 = 𝛾(𝑥− 𝑥0)
[︁
1− 𝑣

√︀
1 + (𝑦2 + 𝑧2)/(𝑥− 𝑥0)2

]︁
, (7.98)

which rearranges to

𝑙 =
𝛾(𝑥− 𝑥0)[1− 𝑣2 − 𝑣2(𝑦2 + 𝑧2)/(𝑥− 𝑥0)2]

1 + 𝑣2
√︀
1 + (𝑦2 + 𝑧2)/(𝑥− 𝑥0)2

=
1

1 + 𝑣2
√︀
1 + (𝑦2 + 𝑧2)/(𝑥− 𝑥0)2

[︂
𝑥− 𝑥0
𝛾

− 𝑣2(𝑦2 + 𝑧2)𝛾

𝑥− 𝑥0

]︂
. (7.99)

For a Rindler observer, the position 𝑥0 is just equal to the Lorentz gamma factor, 𝑥0 = cosh𝛼 = 𝛾.
Under the conditions 𝑥0 ≡ 𝛾 ≫ 1, along with 𝑥0 ≫ |𝑥| and 𝑥0 ≫

√︀
𝑦2 + 𝑧2, equation (7.99) reduces to

𝑙 ≈ − 1
2 + 1

2 (𝑦
2 + 𝑧2) , (7.100)

yielding equation (7.96) as claimed.
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2. Redshift. According to the rules of 4-dimensional perspective, §1.13.2, the redshift factor, the ratio
𝐸em/𝐸obs of emitted to observed photon energies from a point, equals the ratio of the emitted to
observed distances to the point,

𝐸em

𝐸obs
=

√︀
(𝑥− 𝑥0)2 + 𝑦2 + 𝑧2√︀

𝑙2 + 𝑦2 + 𝑧2
. (7.101)

A point {𝑙, 𝑦, 𝑧} on the Rindler observer’s illusory horizon appears fixed to the observer, 𝑙 satisfying
equation (7.100). The only quantity on the right hand side of equation (7.101) that various with the
Rindler observer’s time 𝛼 is 𝑥0. Under the conditions 𝑥0 ≡ cosh𝛼 ≫ 1, along with 𝑥0 ≫ |𝑥| and
𝑥0 ≫

√︀
𝑦2 + 𝑧2, the redshift factor satisfies

𝐸em

𝐸obs

∝∼ 𝑥0 ∝∼ 𝑒
𝛼 . (7.102)

The redshift factor of a point on the Rindler observer’s illusory horizon thus increases exponentially
with Rindler time 𝛼.

Exercise 7.17. Area of the Rindler horizon. What is the area of a Rindler observer’s horizon?
Solution. The area of the Rindler horizon is the area of the spatial 𝑦–𝑧 plane orthogonal to the Rindler
observer’s boost plane 𝑡–𝑥. For a Rindler observer who starts accelerating at a finite time, the illusory horizon
after 𝛼 acceleration times is well-formed only over a region of size

√︀
𝑦2 + 𝑧2. 𝑒𝛼 about the origin. Thus the

area of the illusory Rindler horizon is of order ∼ 𝑒2𝛼.

7.32 Killing vectors

The Schwarzschild metric presents an opportunity to introduce the concept of Killing vectors (after Wil-
helm Killing, not because the vectors kill things, though the latter is true), which are associated with
symmetries of the spacetime. The flow through spacetime of the Killing vectors associate with a symmetry
is called the Killing vector field. A coordinate that is constant along the flow lines of a Killing vector field
is called a Killing coordinate.

7.32.1 Time translation symmetry

The time translation invariance of the Schwarzschild geometry is evident from the fact that the metric is
independent of the Schwarzschild time coordinate 𝑡. Equivalently, the partial time derivative 𝜕/𝜕𝑡 of the
Schwarzschild metric is zero. The associated Killing vector 𝜉𝜇 at each point of the spacetime is then defined
by

𝜉𝜇
𝜕

𝜕𝑥𝜇
=

𝜕

𝜕𝑡
, (7.103)
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so that in Schwarzschild coordinates {𝑡, 𝑟, 𝜃, 𝜑}

𝜉𝜇 = {1, 0, 0, 0} . (7.104)

In coordinate-independent notation, the Killing vector is

𝜉 = 𝑒𝜇𝜉
𝜇 = 𝑒𝑡 . (7.105)

The Schwarzschild time coordinate 𝑡 is a Killing coordinate.
This may seem like overkill — couldn’t one just say that the metric is independent of time 𝑡 and be done

with it? The answer is that symmetries are not always evident from the metric, as will be seen in the next
section 7.32.2.
Because the Killing vector 𝑒𝑡 is the unique timelike Killing vector of the Schwarzschild geometry, it has

a definite meaning independent of the coordinate system. It follows that its scalar product with itself is a
coordinate-independent scalar

𝜉𝜇𝜉
𝜇 = 𝑒𝑡 · 𝑒𝑡 = 𝑔𝑡𝑡 = −

(︂
1− 2𝑀

𝑟

)︂
. (7.106)

In curved spacetimes, it is important to be able to identify scalars, which have a physical meaning independent
of the choice of coordinates.

7.32.2 Spherical symmetry

The azimuthal rotational symmetry of the Schwarzschild metric is evident from the fact that the metric is
independent of the azimuthal coordinate 𝜑, implying that 𝜑 is a Killing coordinate. The associated Killing

φ

Figure 7.30 The Killing vector field associated with rotation of a 2-sphere about an axis.
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vector at each point of the spacetime is

𝑒𝜑 (7.107)

with components {0, 0, 0, 1} in Schwarzschild coordinates {𝑡, 𝑟, 𝜃, 𝜑}. Figure 7.30 illustrates the Killing vector
field corresponding to the azimuthal rotational symmetry.
The Schwarzschild metric is fully spherically symmetric, not just azimuthally symmetric. Since the 3D

rotation group 𝑂(3) is 3-dimensional, it is to be expected that there are three Killing vectors. You may
recognize from quantum mechanics that 𝜕/𝜕𝜑 is (modulo factors of 𝑖 and ~) the 𝑧-component of the angular
momentum operator 𝐿 = {𝐿𝑥, 𝐿𝑦, 𝐿𝑧} in a coordinate system where the azimuthal axis is the 𝑧-axis. The 3
components of the angular momentum operator are given by:

𝑖𝐿𝑥 = 𝑦
𝜕

𝜕𝑧
− 𝑧 𝜕

𝜕𝑦
= − sin𝜑

𝜕

𝜕𝜃
− cot 𝜃 cos𝜑

𝜕

𝜕𝜑
, (7.108a)

𝑖𝐿𝑦 = 𝑧
𝜕

𝜕𝑥
− 𝑥 𝜕

𝜕𝑧
= cos𝜑

𝜕

𝜕𝜃
− cot 𝜃 sin𝜑

𝜕

𝜕𝜑
, (7.108b)

𝑖𝐿𝑧 = 𝑥
𝜕

𝜕𝑦
− 𝑦 𝜕

𝜕𝑥
=

𝜕

𝜕𝜑
. (7.108c)

The 3 rotational Killing vectors are correspondingly:

rotation about 𝑥-axis: − sin𝜑 𝑒𝜃 − cot 𝜃 cos𝜑 𝑒𝜑 , (7.109a)

rotation about 𝑦-axis: cos𝜑 𝑒𝜃 − cot 𝜃 sin𝜑 𝑒𝜑 , (7.109b)

rotation about 𝑧-axis: 𝑒𝜑 . (7.109c)

The 3 Killing vectors span the 2-dimensional surface of the unit sphere, and are therefore not linearly
independent. Specifically, they satisfy

𝑥𝐿𝑥 + 𝑦𝐿𝑦 + 𝑧𝐿𝑧 = 0 . (7.110)

Note that although a linear combination of Killing vectors with constant coefficients is a Killing vector, a
linear combination with non-constant coefficients is not necessarily a Killing vector.
You can check that the action of the 𝑥 and 𝑦 rotational Killing vectors on the metric does not kill the

metric. For example, 𝑖𝐿𝑥𝑔𝜑𝜑 = 2𝑟2 cos𝜑 sin 𝜃 cos 𝜃 does not vanish. This example shows that a more powerful
and general condition, described in the next section 7.32.3, is needed to establish whether a quantity is or is
not a Killing vector.
Because spherical symmetry does not define a unique azimuthal axis 𝑒𝜑, its scalar product with itself

𝑒𝜑 · 𝑒𝜑 = 𝑔𝜑𝜑 = −𝑟2 sin2𝜃 is not a coordinate-invariant scalar. However, the sum of the scalar products of
the 3 rotational Killing vectors is rotationally invariant, and is therefore a coordinate-invariant scalar

(− sin𝜑 𝑒𝜃 − cot 𝜃 cos𝜑 𝑒𝜑)
2 + (cos𝜑 𝑒𝜃 − cot 𝜃 sin𝜑 𝑒𝜑)

2 + 𝑒2𝜑 = 𝑔𝜃𝜃 + (cot2𝜃 + 1)𝑔𝜑𝜑 = −2𝑟2 . (7.111)

This shows that the circumferential radius 𝑟 is a scalar, as you would expect.
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7.32.3 Killing equation

As seen in the previous section, a Killing vector does not always kill the metric in a given coordinate system.
This is not really surprising given the arbitrariness of coordinates in general relativity. What is true is that
a quantity is a Killing vector if and only if there exists a coordinate system (possibly in patches) such that
the Killing vector kills the metric in that system.
Suppose that in some coordinate system the metric is independent of the coordinate 𝜑. Then the covariant

𝜑-momentum 𝑝𝜑 of a particle along a geodesic is a constant of motion, equation (4.50),

𝑝𝜑 = constant . (7.112)

Equivalently

𝜉𝜈𝑝𝜈 = constant , (7.113)

where 𝜉𝜈 is the associated Killing vector, whose only non-zero component is 𝜉𝜑 = 1 in this particular
coordinate system. The converse is also true: if 𝜉𝜈𝑝𝜈 = constant along all geodesics, then 𝜉𝜈 is a Killing
vector. The constancy of 𝜉𝜈𝑝𝜈 along all geodesics is equivalent to the condition that its affine derivative
vanish along all geodesics

𝑑𝜉𝜈𝑝𝜈
𝑑𝜆

= 0 . (7.114)

But this is equivalent to

0 = 𝑝𝜇𝐷𝜇(𝜉
𝜈𝑝𝜈) = 𝑝𝜇𝑝𝜈𝐷𝜇𝜉𝜈 = 1

2𝑝
𝜇𝑝𝜈(𝐷𝜇𝜉𝜈 +𝐷𝜈𝜉𝜇) , (7.115)

the ˚ atop 𝐷𝜇 serving as a reminder that this is the torsion-free covariant derivative, §2.12. The second
equality of equations (7.115) follows from the geodesic equation, 𝑝𝜇𝐷𝜇𝑝𝜈 = 0, and the last equality is true
because of the symmetry of 𝑝𝜇𝑝𝜈 in 𝜇 ↔ 𝜈. A necessary and sufficient condition for equation (7.115) to be
true for all geodesics is that

𝐷(𝜇𝜉𝜈) = 0 , (7.116)

which is Killing’s equation. This equation is the desired necessary and sufficient condition for 𝜉𝜈 to be
a Killing vector. It is a generally covariant equation, valid in any coordinate system. Equation (7.116) can
also be written as the statement that the Lie derivative of the metric, equation (7.154), along the Killing
direction 𝜉𝜈 vanishes,

ℒ𝜉𝑔𝜇𝜈 = 0 . (7.117)

7.32.4 Conformal Killing vector

Sometimes a spacetime has a weaker conformal symmetry in which, instead of the metric being indepen-
dent of a coordinate (in some system of coordinates), the metric depends on a coordinate 𝜑 only through an
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overall scaling, 𝑔𝜇𝜈 ∝ 𝑒2𝜑, equation (4.53). In that case the covariant momentum 𝑝𝜑 is constant only along
null geodesics, equation (4.56),

𝑝𝜑 = constant along null geodesics . (7.118)

The associated conformal Killing vector 𝜉𝜈 , satisfying equation (7.113), is the vector whose only non-zero
component is 𝜉𝜑 = 1 in a coordinate system where 𝜑 is one of the coordinates. Equation (7.115) is modified
to

0 = 𝑝𝜇𝑝𝜈(𝐷(𝜇𝜉𝜈) − 1
4𝑔𝜇𝜈𝐷𝜅𝜉

𝜅) , (7.119)

which holds because 𝑝𝜇𝑝𝜈𝑔𝜇𝜈 = 0 for null geodesics. A necessary and sufficient for equation (7.119) to hold
for all null geodesics is the conformal Killing equation

𝐷(𝜇𝜉𝜈) − 1
4𝑔𝜇𝜈𝐷𝜅𝜉

𝜅 = 0 , (7.120)

the left hand side of which is the trace-free part of 𝐷(𝜇𝜉𝜈). The factor of
1
4 in equations (7.119) and (7.120)

is for 4 spacetime dimensions (where 𝑔𝜇𝜈𝑔𝜇𝜈 = 1
4 ); the factor should be replaced by 1/𝑁 in 𝑁 spacetime

dimensions.

7.33 Killing tensors

Some symmetries are expressed by Killing tensors 𝜉𝜇𝜈 rather than Killing vectors. Whereas for a Killing
vector, 𝜉𝜈𝑝𝜈 is a constant of motion along geodesics, equation (7.113), for a Killing tensor

𝜉𝜇𝜈𝑝𝜇𝑝𝜈 = constant . (7.121)

A Killing tensor 𝜉𝜇𝜈 is symmetric without loss of generality. The metric 𝑔𝜇𝜈 is itself a Killing tensor in any
spacetime, since

𝑔𝜇𝜈𝑝𝜇𝑝𝜈 = −𝑚2 = constant . (7.122)

The condition of the constancy of 𝜉𝜇𝜈𝑝𝜇𝑝𝜈 along geodesics is equivalent to the condition that its affine
derivative vanishes along all geodesics, analogously to equation (7.114). A necessary and sufficient condition
for this to be true is Killing’s equation

𝐷(𝜅𝜉𝜇𝜈) = 0 , (7.123)

where the parentheses denote symmetrization over all indices.
A conformal Killing tensor is one that satisfies equation (7.121) only along null geodesics. The corre-

sponding Killing equation is the trace-free part of equation (7.123).
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7.34 Lie derivative

It was remarked above that Killing’s equation (7.116) can be recast as the statement that the Lie derivative
of the metric along the Killing vector vanishes, equation (7.117). This section presents an exposition of the
Lie derivative.
The Lie derivative of a coordinate tensor, whose mathematical form is derived in §§7.34.2–7.34.6, is

physically minus the rate of change of the coordinate tensor with respect to a prescribed change in the
coordinates, equation (7.124). The change in coordinates should be understood as leaving the spacetime
itself and physical quantities within it unchanged.
Let the coordinates 𝑥𝜇 be changed by an infinitesimal amount 𝜖 with a prescribed shape 𝜉𝜇(𝑥) as a function

of spacetime,

𝑥𝜇 → 𝑥′𝜇 = 𝑥𝜇 + 𝜖𝜉𝜇 . (7.124)

The Lie derivative of a coordinate tensor 𝐴𝜅𝜆..𝜇𝜈... is defined such that the change in the coordinate tensor
under the coordinate transformation (7.124) is given by 𝜖 times minus its Lie derivative, denoted ℒ𝜉𝐴𝜅𝜆...𝜇𝜈...,

𝐴𝜅𝜆...𝜇𝜈...(𝑥)→ 𝐴′𝜅𝜆..𝜇𝜈...(𝑥) = 𝐴𝜅𝜆...𝜇𝜈...(𝑥)− 𝜖ℒ𝜉𝐴𝜅𝜆...𝜇𝜈... . (7.125)

Equivalently,

ℒ𝜉𝐴𝜅𝜆...𝜇𝜈... = lim
𝜖→0

𝐴𝜅𝜆...𝜇𝜈...(𝑥)−𝐴′𝜅𝜆..𝜇𝜈...(𝑥)

𝜖
. (7.126)

The reason for the minus sign in the definition (7.125) of the Lie derivative is that, as will be seen below,
equation (7.151), the principal term in the expansion of the Lie derivative of a tensor 𝐴.... in terms of ordinary
derivatives is just its directed derivative along the direction 𝜉𝜅,

ℒ𝜉𝐴.... = 𝜉𝜅
𝜕𝐴....
𝜕𝑥𝜅

+ ... . (7.127)

As its name suggests, the Lie derivative acts like a derivative: it is linear, and it satisfies the Leibniz rule.
The Lie derivative is also a covariant derivative: the Lie derivative of a coordinate tensor is a coordinate
tensor. Whereas the usual covariant derivative of a tensor is a tensor of rank one higher, the Lie derivative
of a tensor is a tensor of the same rank. The Lie derivative can be expressed entirely in terms of coordinate
derivatives without any connection coefficients, or equivalently in terms of torsion-free covariant derivatives.

Concept question 7.18. What use is a Lie derivative? Answer. The general rule to remember is that
the change in any object under an infinitesimal coordinate transformation is, by construction, (minus) its Lie
derivative. A prominent application of the Lie derivative is in general relativistic perturbation theory, Chap-
ter 26, where it is essential to distinguish between genuine physical perturbations of the spacetime geometry
and perturbations associated with transformations of the coordinates. Another important application of the
Lie derivative is to derive the general relativistic law of conservation of energy-momentum, §16.11.2. The
conservation law is a consequence of symmetry of the general relativistic action under coordinate transfor-
mations. Finally (the nominal motivation for introducing Lie derivatives here), if a spacetime possesses some
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special symmetry under a coordinate transformation, then that symmetry may be expressed as the vanishing
of the Lie derivative of the metric with respect to the symmetry, equation (7.117).

7.34.1 The difference between the covariant derivative and the Lie derivative

The usual covariant derivative of a tensor 𝐴 (dropping indices for brevity) follows from the difference between
the tensor 𝐴(𝑥′) evaluated at a shifted position 𝑥′, and the tensor 𝐴(𝑥) evaluated at the original position 𝑥
parallel-transported to the shifted position 𝑥′,

𝐷𝐴 ∝ 𝐴(𝑥′)−𝐴(𝑥)parallel−transported . (7.128)

Now if the shift between 𝑥′ and 𝑥 is the result of an infinitesimal coordinate transformation, 𝑥′ = 𝑥 + 𝜖𝜉.
then there is another object 𝐴′(𝑥′) available, which is the tensor 𝐴(𝑥) transformed into the new (primed)
coordinate frame. The Lie derivative is the difference between the tensor 𝐴(𝑥′) evaluated at a shifted position
𝑥′, and the tensor 𝐴(𝑥) evaluated at the original position 𝑥, transformed into the new frame, and parallel-
transported to the shifted position 𝑥′,

ℒ𝜉𝐴 ∝ 𝐴(𝑥′)−𝐴′(𝑥′)parallel−transported . (7.129)

Concept question 7.18 discusses the physical justification for this mathematical artifice.

7.34.2 Lie derivative of a coordinate scalar

Under a coordinate transformation (7.124), a coordinate-frame scalar Φ(𝑥) remains unchanged

Φ(𝑥)→ Φ′(𝑥′) = Φ(𝑥) . (7.130)

Here the scalar Φ′(𝑥′) is evaluated at position 𝑥′, which is the same as the original physical position 𝑥 since
all that has changed is the coordinates, not the physical position. However, the Lie derivative gives the
change in a tensor evaluated at fixed coordinate position 𝑥, not at fixed physical position. The value of Φ′

at 𝑥 is related to that at 𝑥′ by

Φ′(𝑥) = Φ′(𝑥′ − 𝜖𝜉) = Φ′(𝑥′)− 𝜖𝜉𝜅 𝜕Φ
′

𝜕𝑥𝜅
. (7.131)

Since 𝜖 is a small quantity, and Φ′ differs from Φ by a small quantity, the last term 𝜖𝜉𝜅𝜕Φ′/𝜕𝑥𝜅 in equa-
tion (7.135) can be replaced by 𝜖𝜉𝜅𝜕Φ/𝜕𝑥𝜅 to linear order in 𝜖. Putting equations (7.130) and (7.131) together
shows that the coordinate scalar Φ changes under a coordinate transformation (7.124) as

Φ(𝑥)→ Φ′(𝑥) = Φ(𝑥)− 𝜖ℒ𝜉Φ , (7.132)

where ℒ𝜉Φ is the Lie derivative of the scalar Φ,

ℒ𝜉Φ = 𝜉𝜅
𝜕Φ

𝜕𝑥𝜅
a coordinate scalar . (7.133)
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7.34.3 Lie derivative of a contravariant coordinate vector

A similar argument applies to coordinate vectors. Under an infinitesimal coordinate transformation (7.124),
a contravariant coordinate 4-vector 𝐴𝜇(𝑥) transforms in the usual way as

𝐴𝜇(𝑥)→ 𝐴′𝜇(𝑥′) = 𝐴𝜅(𝑥)
𝜕𝑥′𝜇

𝜕𝑥𝜅
= 𝐴𝜇(𝑥) + 𝜖𝐴𝜅(𝑥)

𝜕𝜉𝜇

𝜕𝑥𝜅
. (7.134)

As in the scalar case, the vector 𝐴′𝜇(𝑥′) is evaluated at position 𝑥′, which is the same as the original physical
position since all that has changed is the coordinates, not the physical position. Again, the Lie derivative
gives the change in the vector evaluated at coordinate position 𝑥, not 𝑥′. The value of 𝐴′𝜇 at 𝑥 is related to
that at 𝑥′ by

𝐴′𝜇(𝑥) = 𝐴′𝜇(𝑥′ − 𝜖𝜉) = 𝐴′𝜇(𝑥′)− 𝜖𝜉𝜅 𝜕𝐴
′𝜇

𝜕𝑥𝜅
. (7.135)

The last term 𝜖𝜉𝜅𝜕𝐴′𝜇/𝜕𝑥𝜅 in equation (7.135) can be replaced by 𝜖𝜉𝜅𝜕𝐴𝜇/𝜕𝑥𝜅 to linear order in the
infinitesimal parameter 𝜖. Putting equations (7.134) and (7.135) together shows that the coordinate 4-vector
𝐴𝜇 changes under a coordinate transformation (7.124) as

𝐴𝜇(𝑥)→ 𝐴′𝜇(𝑥) = 𝐴𝜇(𝑥)− 𝜖ℒ𝜉𝐴𝜇 , (7.136)

where ℒ𝜉𝐴𝜇 is the Lie derivative of the contravariant vector 𝐴𝜇,

ℒ𝜉𝐴𝜇 = 𝜉𝜅
𝜕𝐴𝜇

𝜕𝑥𝜅
−𝐴𝜅 𝜕𝜉

𝜇

𝜕𝑥𝜅
a coordinate vector . (7.137)

The ordinary partial derivatives in equation (7.137) can be replaced by torsion-free covariant derivatives
(the˚ atop 𝐷𝜅 is a reminder that it is the torsion-free covariant derivative)

ℒ𝜉𝐴𝜇 = 𝜉𝜅𝐷𝜅𝐴
𝜇 −𝐴𝜅𝐷𝜅𝜉

𝜇 a coordinate vector . (7.138)

The replacement by a torsion-free covariant derivative holds because the contribution Γ̊𝜇𝜈𝜅(𝜉
𝜅𝐴𝜈 − 𝐴𝜅𝜉𝜈)

from the torsion-free coordinate connection vanishes, because the torsion-free connection is symmetric in its
last two indices, equation (2.56). Equation (7.138) holds, and the Lie derivative is a tensor, regardless of
whether torsion is present. An equivalent expression for the Lie derivative of a coordinate vector 𝐴𝜇 in terms
of torsion-full covariant derivatives 𝐷𝜅 is

ℒ𝜉𝐴𝜇 = 𝜉𝜅𝐷𝜅𝐴
𝜇 −𝐴𝜅𝐷𝜅𝜉

𝜇 +𝐴𝜅𝜉𝜆𝑆𝜇𝜅𝜆 a coordinate vector , (7.139)

where 𝑆𝜇𝜅𝜆 is the torsion. The torsion term in equation (7.139) is just such as to cancel the torsion part of
the torsion-full covariant derivatives.

Exercise 7.19. Equivalence of expressions for the Lie derivative. Confirm that equations (7.137),
(7.138), and (7.139) are all equivalent.
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7.34.4 Lie bracket

If 𝐴𝜇 and 𝐵𝜇 are two contravariant coordinate vectors, then the Lie derivative with respect to 𝐴𝜇 of 𝐵𝜇 is
minus the Lie derivative with respect to 𝐵𝜇 of 𝐴𝜇,

ℒ𝐴𝐵𝜇 = 𝐴𝜅
𝜕𝐵𝜇

𝜕𝑥𝜅
−𝐵𝜅 𝜕𝐴

𝜇

𝜕𝑥𝜅
= −ℒ𝐵𝐴𝜇 a coordinate vector . (7.140)

This antisymmetric property motivates defining the antisymmetric Lie bracket of two vectors 𝐴 ≡ 𝑒𝜇𝐴
𝜇

and 𝐵 ≡ 𝑒𝜇𝐵
𝜇 to be

[𝐴,𝐵] ≡ ℒ𝐴𝐵 = 𝑒𝜇ℒ𝐴𝐵
𝜇 = −[𝐵,𝐴] . (7.141)

The Lie bracket elevates the space of vectors on the manifold to a Lie algebra.

Exercise 7.20. Commutator of Lie derivatives.

1. Show that if 𝐴, 𝐵, and 𝐶 are vectors, then the commutator of Lie derivatives of 𝐶 is

[ℒ𝐴,ℒ𝐵]𝐶 = [[𝐴,𝐵],𝐶] . (7.142)

2. Show that the commutator of Lie derivatives is the Lie derivative of the commutator,

[ℒ𝐴,ℒ𝐵] = ℒ[𝐴,𝐵] . (7.143)

Solution.

1. This is an application of the Jacobi identity

[𝐴, [𝐵,𝐶]] + [𝐵, [𝐶,𝐴]] + [𝐶, [𝐴,𝐵]] = 0 . (7.144)

The commutator of Lie derivatives of 𝐶 is

[ℒ𝐴,ℒ𝐵]𝐶 = ℒ𝐴(ℒ𝐵𝐶)− ℒ𝐵(ℒ𝐴𝐶) = [𝐴, [𝐵,𝐶]]− [𝐵, [𝐴,𝐶]] = [[𝐴,𝐵],𝐶] . (7.145)

2. It is straightforward to check that equation (7.143) holds when acting on scalars. Equation (7.143) also
holds when acting on vectors, since the rightmost side of equation (7.145) is, from equation (7.141),
ℒ[𝐴,𝐵]𝐶, so that for vectors 𝐶,

[ℒ𝐴,ℒ𝐵]𝐶 = ℒ[𝐴,𝐵]𝐶 . (7.146)

Since ℒ𝐴 and ℒ𝐵 satisfy the Leibniz rule, so also does their commutator [ℒ𝐴,ℒ𝐵]. It then follows that
equation (7.143) holds when acting on arbitrary products. Thus equation (7.143) holds acting on a
general tensor.
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7.34.5 Lie derivative of a covariant coordinate vector

Under a coordinate transformation (7.124), a covariant coordinate 4-vector 𝐴𝜇(𝑥) transforms in the usual
way as

𝐴𝜇(𝑥)→ 𝐴′𝜇(𝑥
′) = 𝐴𝜅(𝑥)

𝜕𝑥𝜅

𝜕𝑥′𝜇
= 𝐴𝜇(𝑥)− 𝜖𝐴𝜅(𝑥)

𝜕𝜉𝜅

𝜕𝑥𝜇
. (7.147)

Again, the vector 𝐴′𝜇(𝑥
′) is evaluated at position 𝑥′, which is the same as the original physical position 𝑥

since all that has changed is the coordinates, not the physical position. And again, the Lie derivative gives
the change in the vector evaluated at coordinate position 𝑥, not the physical position 𝑥′. The value of 𝐴′𝜇 at
𝑥 is related to that at 𝑥′ by

𝐴′𝜇(𝑥) = 𝐴′𝜇(𝑥
′ − 𝜖𝜉) = 𝐴′𝜇(𝑥

′)− 𝜖𝜉𝜅
𝜕𝐴′𝜇
𝜕𝑥𝜅

, (7.148)

and again, the last term 𝜖𝜉𝜅𝜕𝐴′𝜇/𝜕𝑥
𝜅 in equation (7.148) can be replaced by 𝜖𝜉𝜅𝜕𝐴𝜇/𝜕𝑥𝜅 to linear order in

𝜖. Putting equations (7.134) and (7.135) together shows that the covariant coordinate 4-vector 𝐴𝜇 changes
under a coordinate transformation (7.124) as

𝐴𝜇(𝑥)→ 𝐴′𝜇(𝑥) = 𝐴𝜇(𝑥)− 𝜖ℒ𝜉𝐴𝜇 , (7.149)

where ℒ𝜉𝐴𝜇 is the Lie derivative of the covariant vector 𝐴𝜇,

ℒ𝜉𝐴𝜇 = 𝜉𝜅
𝜕𝐴𝜇
𝜕𝑥𝜅

+𝐴𝜅
𝜕𝜉𝜅

𝜕𝑥𝜇
a coordinate vector . (7.150)

As in the Lie derivative of a contravariant vector, equation (7.138), the coordinate derivatives in the Lie
derivative (7.150) of a covariant vector can be replaced by torsion-free covariant derivatives.

7.34.6 Lie derivative of a coordinate tensor

In general, the Lie derivative of a coordinate tensor 𝐴𝜅𝜆...𝜇𝜈... is defined by

ℒ𝜉𝐴𝜅𝜆...𝜇𝜈... ≡ 𝜉𝜋
𝜕𝐴𝜅𝜆...𝜇𝜈...

𝜕𝑥𝜋
+𝐴𝜅𝜆...𝜋𝜈...

𝜕𝜉𝜋

𝜕𝑥𝜇
+𝐴𝜅𝜆...𝜇𝜋...

𝜕𝜉𝜋

𝜕𝑥𝜈
... −𝐴𝜋𝜆...𝜇𝜈...

𝜕𝜉𝜅

𝜕𝑥𝜋
−𝐴𝜅𝜋...𝜇𝜈...

𝜕𝜉𝜆

𝜕𝑥𝜋
a coordinate tensor ,

(7.151)
with an overall 𝜕𝐴 term, and a +𝜕𝜉 term for each covariant index and a −𝜕𝜉 term for each contravariant
index. As in the Lie derivative of a vector, equation (7.138), the coordinate derivatives in the Lie deriva-
tive (7.151) of a tensor can be replaced by torsion-free covariant derivatives,

ℒ𝜉𝐴𝜅𝜆...𝜇𝜈... = 𝜉𝜋𝐷𝜋𝐴
𝜅𝜆...
𝜇𝜈... +𝐴𝜅𝜆...𝜋𝜈...𝐷𝜇𝜉

𝜋 +𝐴𝜅𝜆...𝜇𝜋...𝐷𝜈𝜉
𝜋 ... −𝐴𝜋𝜆...𝜇𝜈...𝐷𝜋𝜉

𝜅 −𝐴𝜅𝜋...𝜇𝜈...𝐷𝜋𝜉
𝜆 a coordinate tensor .

(7.152)
Equivalently, in terms of torsion-full covariant derivatives,

ℒ𝜉𝐴𝜅𝜆...𝜇𝜈... = 𝜉𝜋𝐷𝜋𝐴
𝜅𝜆...
𝜇𝜈... +𝐴𝜅𝜆...𝜋𝜈...𝐷𝜇𝜉

𝜋 +𝐴𝜅𝜆...𝜇𝜋...𝐷𝜈𝜉
𝜋 ... −𝐴𝜋𝜆...𝜇𝜈...𝐷𝜋𝜉

𝜅 −𝐴𝜅𝜋...𝜇𝜈...𝐷𝜋𝜉
𝜆 ...

+
(︀
𝐴𝜅𝜆...𝜋𝜈...𝑆

𝜋
𝜇𝜌 +𝐴𝜅𝜆...𝜇𝜋...𝑆

𝜋
𝜈𝜌 ... −𝐴𝜋𝜆...𝜇𝜈...𝑆

𝜅
𝜋𝜌 −𝐴𝜅𝜋...𝜇𝜈...𝑆

𝜆
𝜋𝜌

)︀
𝜉𝜌 a coordinate tensor . (7.153)
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Exercise 7.21. Lie derivative of the metric. What is the Lie derivative of the metric tensor 𝑔𝜇𝜈 along
the direction 𝜉𝜅?
Solution. The Lie derivative of the metric 𝑔𝜇𝜈 along 𝜉𝜅 is

ℒ𝜉𝑔𝜇𝜈 = 𝜉𝜅
𝜕𝑔𝜇𝜈
𝜕𝑥𝜅

+ 𝑔𝜅𝜈
𝜕𝜉𝜅

𝜕𝑥𝜇
+ 𝑔𝜇𝜅

𝜕𝜉𝜅

𝜕𝑥𝜈

=
𝜕𝜉𝜈
𝜕𝑥𝜇

+
𝜕𝜉𝜇
𝜕𝑥𝜈
− 2Γ̊𝜅𝜇𝜈𝜉

𝜅

= 𝐷𝜇𝜉𝜈 +𝐷𝜈𝜉𝜇 , (7.154)

where Γ̊𝜅𝜇𝜈 is the torsion-free coordinate-frame connection, equation (2.63), and 𝐷𝜇 is the torsion-free
covariant derivative.

Exercise 7.22. Lie derivative of the inverse metric. Show that the Lie derivative of a Kronecker delta
is zero,

ℒ𝜉𝛿𝜅𝜇 = 0 . (7.155)

Show that the Lie derivative of the inverse metric tensor 𝑔𝜅𝜆 is

ℒ𝜉𝑔𝜅𝜆 = −𝑔𝜅𝜇𝑔𝜆𝜈ℒ𝜉𝑔𝜇𝜈 = −
(︀
𝐷𝜅𝜉𝜆 +𝐷𝜆𝜉𝜅

)︀
. (7.156)

Exercise 7.23. Lie derivative of the metric determinant. Show that the Lie derivative of the metric
determinant is

ℒ𝜉 ln |𝑔| = 𝑔𝜇𝜈ℒ𝜉𝑔𝜇𝜈 = 𝜉𝜇
𝜕 ln |𝑔|
𝜕𝑥𝜇

+ 2
𝜕𝜉𝜇

𝜕𝑥𝜇
. (7.157)

Solution. The first equality of equation (7.157) follows because a Lie derivative is a variation (with respect to
a coordinate transformation), and the variation of the determinant of any matrix is given by equation (2.77).
The second equality of equation (7.157) follows from the first line of equations (7.154).
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Reissner-Nordström Black Hole

The Reissner-Nordström geometry, discovered independently by Hans Reissner (1916), HermannWeyl (1917),
and Gunnar Nordström (1918), describes the unique spherically symmetric static solution for a black hole
with mass and electric charge in asymptotically flat spacetime.
As with the Schwarzschild geometry, the mathematics of the Reissner-Nordström geometry was under-

stood long before conceptual understanding emerged. The meaning of the Reissner-Nordström geometry was
eventually clarified by Graves and Brill (1960).

8.1 Reissner-Nordström metric

The Reissner-Nordström metric for a black hole of mass 𝑀 and electric charge 𝑄 is, in geometric units
𝑐 = 𝐺 = 1,

𝑑𝑠2 = −Δ 𝑑𝑡2 +Δ−1𝑑𝑟2 + 𝑟2𝑑𝑜2 , (8.1)

where Δ(𝑟) is the horizon function,

Δ ≡ 1− 2𝑀

𝑟
+
𝑄2

𝑟2
. (8.2)

The Reissner-Nordström metric (8.1) looks like the Schwarzschild metric (7.1) with the replacement

𝑀 →𝑀(𝑟) =𝑀 − 𝑄2

2𝑟
. (8.3)

The quantity 𝑀(𝑟) in equation (8.3) has a coordinate-independent interpretation as the mass 𝑀(𝑟) interior
to radius 𝑟, which here is the mass 𝑀 at infinity, minus the mass in the electric field 𝐸 = 𝑄/𝑟2 outside 𝑟,∫︁ ∞

𝑟

𝐸2

8𝜋
4𝜋𝑟2𝑑𝑟 =

∫︁ ∞
𝑟

𝑄2

8𝜋𝑟4
4𝜋𝑟2𝑑𝑟 =

𝑄2

2𝑟
. (8.4)

The units of 𝑄 here are gaussian; in Heaviside units the electric field is 𝐸 = 𝑄/(4𝜋𝑟2), the energy density
is 𝐸2/2, and the charge term in the horizon function would be 𝑄2/(8𝜋𝑟2). Equations (8.4) seem like a

190
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Newtonian calculation of the energy in the electric field, but it turns out to be valid also in general relativity,
essentially because the radial electric field 𝐸 is unchanged by a Lorentz boost along the radial direction.
Real astronomical black holes probably have very little electric charge, because the Universe as a whole

appears almost electrically neutral (and Maxwell’s equations in fact demand that the Universe in its entirety
should be exactly electrically neutral), and a charged black hole would quickly neutralize itself. It would
probably not neutralize itself completely, but have some small residual positive charge, because protons
(positive charge) are more massive than electrons (negative charge), so it is slightly easier for protons than
electrons to overcome a Coulomb barrier.
Nevertheless, the Reissner-Nordström solution is of more than passing interest because its internal geom-

etry resembles that of the Kerr solution for a rotating black hole.

Concept question 8.1. Units of charge of a charged black hole. What is the charge 𝑄 in standard
(either gaussian or SI) units?

8.2 Energy-momentum tensor

The Einstein tensor of the Reissner-Nordström metric (8.1) is diagonal, with elements given by

𝐺𝜈𝜇 =

⎛⎜⎜⎜⎝
𝐺𝑡𝑡 0 0 0

0 𝐺𝑟𝑟 0 0

0 0 𝐺𝜃𝜃 0

0 0 0 𝐺𝜑𝜑

⎞⎟⎟⎟⎠ = 8𝜋

⎛⎜⎜⎝
−𝜌 0 0 0

0 𝑝𝑟 0 0

0 0 𝑝⊥ 0

0 0 0 𝑝⊥

⎞⎟⎟⎠ =
𝑄2

𝑟4

⎛⎜⎜⎝
−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ . (8.5)

The trick of writing one index up and the other down on the Einstein tensor 𝐺𝜈𝜇 partially cancels the
distorting effect of the metric, yielding the proper energy density 𝜌, the proper radial pressure 𝑝𝑟, and
transverse pressure 𝑝⊥, up to factors of ±1. A more systematic way to extract proper quantities is to work
in the tetrad formalism, Chapter 11.
The energy-momentum tensor is that of a radial electric field

𝐸 =
𝑄

𝑟2
. (8.6)

Notice that the radial pressure 𝑝𝑟 is negative, while the transverse pressure 𝑝⊥ is positive. It is no coincidence
that the sum of the energy density and pressures is twice the energy density, 𝜌+ 𝑝𝑟 + 2𝑝⊥ = 2𝜌.
The negative pressure, or tension, of the radial electric field produces a gravitational repulsion that domi-

nates at small radii, and that is responsible for much of the strange phenomenology of the Reissner-Nordström
geometry. The gravitational repulsion mimics the centrifugal repulsion inside a rotating black hole, for which
reason the Reissner-Nordström geometry is often used a surrogate for the rotating Kerr-Newman geometry.
At this point, the statements that the energy-momentum tensor is that of a radial electric field, and that

the radial tension produces a gravitational repulsion that dominates at small radii, are true but unjustified
assertions.
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8.3 Weyl tensor

As with the Schwarzschild geometry (indeed, any spherically symmetric geometry), only 1 of the 10 inde-
pendent spin components of the Weyl tensor is non-vanishing, the real spin-0 component, the Weyl scalar
𝐶. The Weyl scalar for the Reissner-Nordström geometry is

𝐶 = − 𝑀

𝑟3
+
𝑄2

𝑟4
. (8.7)

The Weyl scalar goes to infinity at zero radius,

𝐶 →∞ as 𝑟 → 0 , (8.8)

signalling the presence of a genuine singularity at zero radius, where the curvature, the tidal force, diverges.

8.4 Horizons

The Reissner-Nordström geometry has not one but two horizons. The horizons occur where an object at rest
in the geometry, 𝑑𝑟 = 𝑑𝜃 = 𝑑𝜑 = 0, follows a null geodesic, 𝑑𝑠2 = 0, which occurs where the horizon function
Δ, equation (8.2), vanishes,

Δ = 0 . (8.9)

This is a quadratic equation in 𝑟, and it has two solutions, an outer horizon 𝑟+ and an inner horizon 𝑟−

𝑟± =𝑀 ±
√︀
𝑀2 −𝑄2 . (8.10)

It is straightforward to check that the Reissner-Nordström time coordinate 𝑡 is timelike outside the outer
horizon, 𝑟 > 𝑟+, spacelike between the horizons 𝑟− < 𝑟 < 𝑟+, and again timelike inside the inner horizon
𝑟 < 𝑟−. Conversely, the radial coordinate 𝑟 is spacelike outside the outer horizon, 𝑟 > 𝑟+, timelike between
the horizons 𝑟− < 𝑟 < 𝑟+, and spacelike inside the inner horizon 𝑟 < 𝑟−.
The physical meaning of this strange behaviour is akin to that of the Schwarzschild geometry. As in the

Schwarzschild geometry, outside the outer horizon space is falling at less than the speed of light; at the outer
horizon space hits the speed of light; and inside the outer horizon space is falling faster than light. But a new
ingredient appears. The gravitational repulsion caused by the negative pressure of the electric field slows
down the flow of space, so that it slows back down to the speed of light at the inner horizon. Inside the inner
horizon space is falling at less than the speed of light.

8.5 Gullstrand-Painlevé metric

Deeper insight into the Reissner-Nordström geometry comes from examining its Gullstrand-Painlevé metric.
The Gullstrand-Painlevé metric for the Reissner-Nordström geometry has the same form as that for the
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Figure 8.1 Depiction of the Gullstrand-Painlevé metric for the Reissner-Nordström geometry, for a black hole of charge

𝑄 = 0.96𝑀 . The Gullstrand-Painlevé line-element defines locally inertial frames attached to observers who free-fall

radially from zero velocity at infinity. Frames fall at less than the speed of light outside the outer horizon, hit the

speed of light at the outer horizon, and fall faster than light in the black hole region inside the outer horizon. The

gravitational attraction from the mass of the black hole is counteracted by a gravitational repulsion produced by the

tension (negative radial pressure) of the electric field. The repulsion grows stronger at smaller radii, slowing the inflow.

The inflow slows back down to the speed of light at the inner horizon, comes to a halt at the turnaround radius, turns

around, and accelerates outward. Now moving outward, the flow hits the speed of light at the inner horizon, and passes

outward through the inner horizon into a new region of spacetime, a white hole, where frames are moving outward

faster than light. The repulsion from the tension of the electric field weakens at larger radii, slowing the outflow. The

outflow drops back down to the speed of light at the outer horizon of the white hole, and exits the outer horizon into

a new piece of spacetime.

Schwarzschild geometry,

𝑑𝑠2 = − 𝑑𝑡2ff + (𝑑𝑟 − 𝛽 𝑑𝑡ff)2 + 𝑟2𝑑𝑜2 . (8.11)

The velocity 𝛽 is again the escape velocity, but this is now

𝛽 = ∓
√︂

2𝑀(𝑟)

𝑟
, (8.12)

where 𝑀(𝑟) = 𝑀 − 𝑄2/2𝑟 is the interior mass already given as equation (8.3). Horizons occur where the
magnitude of the velocity 𝛽 equals the speed of light

|𝛽| = 1 , (8.13)

which happens at the outer and inner horizons 𝑟 = 𝑟+ and 𝑟 = 𝑟−, equation (8.10).
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The Gullstrand-Painlevé metric once again paints the picture of space falling into the black hole. Outside
the outer horizon 𝑟+ space falls at less than the speed of light, at the horizon space falls at the speed of
light, and inside the horizon space falls faster than light. But the gravitational repulsion produced by the
tension of the radial electric field starts to slow down the inflow of space, so that the infall velocity reaches
a maximum at 𝑟 = 𝑄2/𝑀 . The infall slows back down to the speed of light at the inner horizon 𝑟−. Inside
the inner horizon, the flow of space slows all the way to zero velocity, 𝛽 = 0, at the turnaround radius

𝑟0 =
𝑄2

2𝑀
. (8.14)

Space then turns around, the velocity 𝛽 becoming positive, and accelerates back up to the speed of light.
Space is now accelerating outward, to larger radii 𝑟. The outfall velocity reaches the speed of light at the
inner horizon 𝑟−, but now the motion is outward, not inward. Passing back out through the inner horizon,
space is falling outward faster than light. This is not the black hole, but an altogether new piece of spacetime,
a white hole. The white hole looks like a time-reversed black hole. As space falls outward, the gravitational
repulsion produced by the tension of the radial electric field declines, and the outflow slows. The outflow
slows back to the speed of light at the outer horizon 𝑟+ of the white hole. Outside the outer horizon of the
white hole is a new universe, where once again space is flowing at less than the speed of light.
What happens inward of the turnaround radius 𝑟0, equation (8.14)? Inside this radius the interior mass

𝑀(𝑟), equation (8.3), is negative, and the velocity 𝛽 is imaginary. The interior mass𝑀(𝑟) diverges to negative
infinity towards the central singularity at 𝑟 → 0. The singularity is timelike, and infinitely gravitationally
repulsive, unlike the central singularity of the Schwarzschild geometry. Is it physically realistic to have a
singularity that has infinite negative mass and is infinitely gravitationally repulsive? Undoubtedly not.

8.6 Radial null geodesics

In Reissner-Nordström coordinates, light rays that fall radially (𝑑𝜃 = 𝑑𝜑 = 0) follow

𝑑𝑟

𝑑𝑡
= ±Δ . (8.15)

Equation (8.15) shows that 𝑑𝑟/𝑑𝑡→ 0 as 𝑟 → 𝑟±, suggesting that null rays can never cross a horizon. As in
the Schwarzschild geometry, this is an artefact of the choice of coordinate system. As in the Schwarzschild
geometry, the Reissner-Nordström metric (8.1) appears singular at the horizons, where Δ = 0, but this is a
coordinate singularity, not a true singularity, as is evident from the fact that the Riemann curvature tensor
remains finite at the horizons.
Figure 8.2 shows a spacetime diagram of the Reissner-Nordström geometry in Reissner-Nordström coor-

dinates. The spacetime diagram illustrates the apparent freezing of infalling and outgoing null geodesics at
both outer and inner horizons.
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Figure 8.2 Spacetime diagram of the Reissner-Nordström geometry, in Reissner-Nordström coordinates, for a black

hole of charge 𝑄 = 0.8𝑀 , plotted in units of the outer horizon radius 𝑟+ of the black hole. The geometry has two

horizons (pink), an outer horizon, and an inner horizon at 𝑟− = 0.25𝑟+. The more or less diagonal lines (black) are

outgoing and infalling null geodesics. The outgoing and infalling null geodesics appear not to cross the horizon, but

this is an artefact of the Reissner-Nordström coordinate system.

8.7 Finkelstein coordinates

Finkelstein and Kruskal-Szekeres coordinates can be constructed for the Reissner-Nordström geometry just
as in the Schwarzschild geometry.
Introduce the tortoise coordinate 𝑟* defined by

𝑟* ≡
∫︁
𝑑𝑟

Δ
= 𝑟 +

1

2𝜅+
ln

⃒⃒⃒⃒
1− 𝑟

𝑟+

⃒⃒⃒⃒
+

1

2𝜅−
ln

⃒⃒⃒⃒
1− 𝑟

𝑟−

⃒⃒⃒⃒
, (8.16)

where 𝜅± are the surface gravities at the two horizons

𝜅± = ±𝑟+ − 𝑟−
2𝑟2±

. (8.17)

Radially infalling and outgoing null geodesics follow

𝑟* + 𝑡 = constant infalling ,
𝑟* − 𝑡 = constant outgoing .

(8.18)

Finkelstein time 𝑡F is defined by

𝑡F + 𝑟 = 𝑡+ 𝑟* , (8.19)
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Figure 8.3 Finkelstein spacetime diagram of the Reissner-Nordström geometry, for a black hole of charge 𝑄 = 0.8𝑀 ,

plotted in units of the outer horizon radius 𝑟+ of the black hole. The Finkelstein time coordinate 𝑡F is constructed so

that radially infalling light rays are at 45∘.

which is constructed so that infalling null rays follow 𝑡F + 𝑟 = 0. Figure 8.3 shows the Finkelstein spacetime
diagram of the Reissner-Nordström geometry.

8.8 Kruskal-Szekeres coordinates

With respect to the coordinates 𝑡 and 𝑟*, the Reissner-Nordström line-element is

𝑑𝑠2 = Δ
(︀
− 𝑑𝑡2 + 𝑑𝑟*2

)︀
+ 𝑟2𝑑𝑜2 . (8.20)

This metric is still ill-behaved at the horizons, where Δ = 0 and where the tortoise coordinate 𝑟* diverges
logarithmically, with 𝑟* → −∞ as 𝑟 → 𝑟+ and 𝑟* → +∞ as 𝑟 → 𝑟−. The misbehaviour at the two horizons
can be removed by transforming to Kruskal coordinates 𝑟K and 𝑡K defined by

𝑟K + 𝑡K ≡ 𝑓(𝑟* + 𝑡) , (8.21a)

𝑟K − 𝑡K ≡ 𝑠𝑓(𝑟* − 𝑡) + 2𝑛𝑘 , (8.21b)
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Figure 8.4 Kruskal spacetime diagram of the Reissner-Nordström geometry, plotted in units of 𝑘, equation (8.23),

for a black hole of charge 𝑄 = 0.96𝑀 . The Kruskal coordinates 𝑡K and 𝑟K are defined by equations (8.21), and are

constructed so that radially infalling and outgoing light rays are at 45∘. Lines of constant Reissner-Nordström time 𝑡

(violet), and infalling and outgoing null lines (black) are spaced uniformly at intervals of 1 (units 𝑟+ = 1), while lines

of constant circumferential radius 𝑟 (blue) are spaced uniformly in the tortoise coordinate 𝑟*, equation (8.16), so that

the intersections of 𝑡 and 𝑟 lines are also intersections of infalling and outgoing null lines.

where the function 𝑓(𝑧) is

𝑓(𝑧) ≡

⎧⎪⎪⎨⎪⎪⎩
𝑒𝜅+𝑧

𝜅+
𝑧 ≤ 0 ,

𝑒𝜅−𝑧

𝜅−
+ 𝑘 𝑧 ≥ 0 ,

(8.22)

which varies from 𝑓(𝑧) → 0 as 𝑧 → −∞, to 𝑓(𝑧) → 𝑘 as 𝑧 → +∞, and is continuous and differentiable at
the junction 𝑧 = 0. The constant 𝑘 is

𝑘 ≡ 1

𝜅+
− 1

𝜅−
=

2(𝑟2+ + 𝑟2−)

𝑟+ − 𝑟−
. (8.23)

The constants 𝑠 and 𝑛 in equation (8.21b) are a sign and an integer that fix the sign and offset of the Kruskal
coordinates in each quadrant of the Kruskal diagram. Figure 8.4 shows the resulting Kruskal spacetime
diagram, containing three quadrants, a region outside the outer horizon, a region between the two horizons,
and a region inside the inner horizon. The integers {𝑠, 𝑛} in the three quadrants are {1, 0} in the region
outside the outer horizon, {−1, 0} in the region between the two horizons, and {1,−1} in the region inside
the inner horizon.
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Figure 8.5 Kruskal spacetime diagram of the analytically extended Reissner-Nordström geometry, plotted in units of

𝑘, equation (8.23), for a black hole of charge 𝑄 = 0.96𝑀 .

The transformation (8.21) to Kruskal coordinates brings infinite time 𝑡 and radius 𝑟 to finite values, as in
a Penrose diagram. This is associated with the fact that the tortoise coordinate 𝑟* is +∞ at both 𝑟 =∞ and
𝑟 = 𝑟−, so any transformation of 𝑟*±𝑡 that maps the inner horizon 𝑟− to a finite coordinate also maps infinite
radius to a finite coordinate. It would be possible to allow 𝑟K to be infinite at infinite 𝑟, as in Schwarzschild,
by choosing different Kruskal coordinate transformations for the regions near the inner horizon and near
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infinity, but it is advantageous to enforce the same transformation, since the Kruskal coordinate system can
then be extended analytically across both inner and outer horizons.
The Kruskal diagram 8.4 shows that the singularity of the Reissner-Nordström geometry is timelike, not

spacelike. This is associated with the fact that the singularity is gravitationally repulsive, not attractive.
The Penrose diagram of the Reissner-Nordström geometry is commonly drawn with the singularity vertical.

The singularity in the Kruskal diagram 8.4 is not vertical. It is possible to construct Kruskal-like coordinates
such that the singularity is vertical in the resulting spacetime diagram, for example by setting 𝜅− = −𝜅+
in the Kruskal transformation formulae (8.22) and (8.23). However, the metric coefficients in 𝑡K and 𝑟K are
then zero, not finite, at the inner horizon. If the metric coefficients are required to be finite at both outer
and inner horizons, then it is impossible to construct a Kruskal coordinate transformation that makes the
singularity vertical.

8.9 Analytically extended Reissner-Nordström geometry

Like the Schwarzschild geometry, the Reissner-Nordström geometry can be analytically extended. Figure 8.5
shows the Kruskal spacetime diagram of the analytically extended geometry. The extension is considerably
more complicated than that for Schwarzschild, as discussed in the next section.

8.10 Penrose diagram

Figure 8.6 shows a Penrose diagram of the analytic continuation of the Reissner-Nordström geometry. This
is essentially a schematic version of the Kruskal diagram 8.5, with the various parts of the geometry labelled.
The analytic continuation consists of an infinite ladder of universes and parallel universes connected to each
other by black hole → wormhole → white hole tunnels. I call the various pieces of spacetime “Universe,”
“Parallel Universe,” “Black Hole,” “Wormhole,” “Parallel Wormhole,” and “White Hole.” These pieces repeat
in an infinite ladder. The various horizons in the Penrose diagram are labelled with descriptive names.
Relativists tend to use more abstract terminology.
The Wormhole and Parallel Wormhole contain separate central singularities, the “Singularity” and the

“Parallel Singularity,” which are oppositely charged. If the black hole is positively charged as measured by
observers in the Universe, then it is negatively charged as measured by observers in the Parallel Universe,
and the Wormhole contains a positive charge singularity while the Parallel Wormhole contains a negative
charge singularity.
Where does the electric charge of the Reissner-Nordström geometry “actually” reside? This comes down

to the question of how observers detect the presence of charge. Observers detect charge by the electric field
that it produces. Equip all (radially moving) observers with a gyroscope that they orient consistently in
the same radial direction, which can be taken to be towards the black hole as measured by observers in
the Universe. Observers in the Parallel Universe find that their gyroscope is pointed away from the black
hole. Inside the black hole, observers from either Universe agree that the gyroscope is pointed towards the
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Figure 8.6 Penrose diagram of the analytically extended Reissner-Nordström geometry.
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Wormhole, and away from the Parallel Wormhole. All observes agree that the electric field is pointed in the
same radial direction. Observers who end up inside the Wormhole measure an electric field that appears to
emanate from the Singularity, and which they therefore attribute to charge in the Singularity. Observers
who end up inside the Parallel Wormhole measure an electric field that appears to emanate in the opposite
direction from the Parallel Singularity, and which they therefore attribute to charge of opposite sign in the
Parallel Singularity. Strange, but all consistent.

8.11 Antiverse: Reissner-Nordström geometry with negative mass

It is also possible to consider the Reissner-Nordström geometry for negative values of the radius 𝑟. I call the
extension to negative 𝑟 the “Antiverse.” There is also a “Parallel Antiverse.”
Changing the sign of 𝑟 in the Reissner-Nordström metric (8.1) is equivalent to changing the sign of the

mass 𝑀 . Thus the Reissner-Nordström metric with negative 𝑟 describes a charged black hole of negative
mass

𝑀 < 0 . (8.24)

The negative mass black hole is gravitationally repulsive at all radii, and it has no horizons.

8.12 Outgoing, ingoing

The black hole in the Reissner-Nordström geometry has not one but two inner horizons. The inner horizon
plays a central role in the inflationary instability described in §8.13 below.
The inner horizons can be called outgoing and ingoing. Persons freely falling in the Black Hole region are

all moving inward in coordinate radius 𝑟, but they may be moving either forward or backward in Reissner-
Nordström coordinate time 𝑡. In the Black Hole region, the conserved energy along a geodesic is positive if
the time coordinate 𝑡 is decreasing, negative if the time coordinate 𝑡 is increasing1. Persons with positive
energy are ingoing, while persons with negative energy are outgoing. Both outgoing and ingoing persons
fall inward, to smaller radii, but outgoing persons think that the inward direction is towards the Parallel
Wormhole, while ingoing persons think that the inward direction is in the opposite direction, towards the
Wormhole. Outgoing persons fall through the outgoing inner horizon, while ingoing persons fall through the
ingoing inner horizon.
Coordinate time 𝑡 moves forwards in the Universe and Wormhole regions, and geodesics have positive

energy in these regions. Conversely, coordinate time 𝑡 moves backwards in the Parallel Universe and Parallel
Wormhole regions, and geodesics have negative energy in these regions. Of course, all observers, wherever

1 The fact that positive energy geodesics go backwards in Reissner-Nordström coordinate time 𝑡 in the Black Hole region is
counter-intuitive, but it does make sense. An outgoing infaller who fell through the horizon earlier can meet an ingoing
infaller who falls in later. Thus outgoers, who have negative energy, progress forward in time 𝑡, while ingoers, who have
positive energy, progress backward in time 𝑡.
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they may be, always perceive their own proper time to be moving forward in the usual fashion, at the rate
of one second per second.

8.13 The inflationary instability

Roger Penrose (1968) first pointed out that a person passing through the outgoing inner horizon (also
called the Cauchy horizon) of the Reissner-Nordström geometry would see the outside Universe infinitely
blueshifted, and he suggested that this would destabilize the geometry. Perturbation theory calculations,
starting with Simpson & Penrose (1973) and culminating with Chandrasekhar and Hartle (1982), confirmed
that waves become infinitely blueshifted as they approach the outgoing inner horizon, and that their energy
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Figure 8.7 Penrose diagram illustrating why the Reissner-Nordström geometry is subject to the inflationary instability.

Outgoing and ingoing streams just outside the inner horizon must pass through separate outgoing and ingoing inner

horizons into causally separated pieces of spacetime where the timelike time coordinate 𝑡 goes in opposite directions. To

accomplish this, the outgoing and ingoing streams must exceed the speed of light through each other, which physically

they cannot do. The inflationary instability is driven by the pressure of the relativistic counter-streaming between

outgoing and ingoing streams. The inset shows the direction of coordinate time 𝑡 in the various regions. Proper time

of course always increases upward in a Penrose diagram.
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density diverges. The perturbation theory calculations were widely construed as indicating that the Reissner-
Nordström geometry was “unstable,” although the precise nature of this instability remained obscure.
It was not until a seminal paper by Poisson & Israel (1990) that the nonlinear nature of the instability at

the inner horizon was clarified. Poisson & Israel showed that the Reissner-Nordström geometry is subject to
an exponentially growing instability which they dubbedmass inflation. The term refers to the fact that the
interior mass 𝑀(𝑟) grows exponentially during mass inflation. The interior mass 𝑀(𝑟) has the property of
being a gauge-invariant, scalar quantity, so it has a physical meaning independent of the coordinate system.
What causes mass inflation? Actually it has nothing to do with mass: the inflating mass is just a symptom

of the underlying cause. What causes mass inflation is relativistic counter-streaming between outgoing and
ingoing streams. Since the name mass inflation can be misleading, I prefer to call it the inflationary

instability. As the Penrose diagram of the Reissner-Nordström geometry shows, outgoing and ingoing
streams must drop through separate outgoing and ingoing inner horizons into separate pieces of spacetime,
the Wormhole and the Parallel Wormhole. The regions of spacetime must be separate because coordinate time
𝑡 is timelike in both regions, but going in opposite directions in the two regions, forward in the Wormhole,
backward in the Parallel Wormhole, as illustrated in Figure 8.7. In other words, outgoing and ingoing streams
cannot co-exist in the same subluminal region of spacetime because they would have to be moving in opposite
directions in time, which cannot be.
In the Reissner-Nordström geometry, outgoing and ingoing streams resolve their differences by exceeding

the speed of light relative to each other, and passing into causally separated regions. As the outgoing and
ingoing streams drop through their respective inner horizons, they each see the other stream infinitely
blueshifted.
In reality however, this cannot occur: outgoing and ingoing streams cannot exceed the speed of light relative

to each other. Instead, as the outgoing and ingoing streams move ever faster through each other in their
effort to drop through the inner horizon, their counter-streaming generates a radial pressure. The pressure,
which is positive, exerts an inward gravitational force. As the counter-streaming approaches the speed of
light, the gravitational force produced by the counter-streaming pressure eventually exceeds the gravitational
force produced by the background Reissner-Nordström geometry. At this point, the inflationary instability
begins.
The gravitational force produced by the counter-streaming is inwards, but, in the strange way that general

relativity operates, the inward direction is in opposite directions for the ingoing streams, towards the black
hole for the ingoing stream, and away from the black hole for the outgoing stream. Consequently the counter-
streaming pressure simply accelerates the outgoing and ingoing streams ever faster through each other. The
result is an exponential feedback instability. The increasing pressure accelerates the streams faster through
each other, which increases the pressure, which increases the acceleration.
The interior mass is not the only thing that increases exponentially during mass inflation. The proper

density and pressure, and the Weyl scalar (all gauge-invariant scalars) exponentiate together.
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Exercise 8.2. Blueshift of a photon crossing the inner horizon of a Reissner-Nordström black

hole. Show that, in the Reissner-Nordström geometry, the blueshift of a photon with energy 𝑣𝑡 = ∓1 and
angular momentum per unit energy 𝑣⊥ = 𝐽 observed by observer on a geodesic with energy per unit mass
𝑢𝑡 = −𝐸 and angular momentum per unit mass 𝑢⊥ = 𝐿 is (the minus sign in −𝑢𝜇𝑣𝜇 makes the blueshift
positive)

−𝑢𝜇𝑣𝜇 =
something

Δ
. (8.25)

Argue that the blueshift diverges at the horizon for outgoing observers observing ingoing photons, and for
ingoing observers observing outgoing photons.
Solution. The solution for geodesics is similar to that in the Schwarzschild geometry, Exercise 7.6. The
radial velocities 𝑢𝑟 and 𝑣𝑟 are both necessarily negative just above the inner horizon. The blueshift of a
photon is

−𝑢𝜇𝑣𝜇 = −
(︀
𝑔𝑡𝑡𝑢𝑡𝑣𝑡 + 𝑔𝑟𝑟𝑢

𝑟𝑣𝑟 + 𝑔⊥⊥𝑢⊥𝑣⊥
)︀

=
∓𝐸 +

√︀
[𝐸2 − (1 + 𝐿2/𝑟2)Δ] [1− (𝐽2/𝑟2)Δ]

−Δ
− 𝐿𝐽

𝑟2
. (8.26)

Note that Δ is negative between the outer and inner horizons. The ∓ sign of ∓𝐸 is negative if 𝑢𝑡 and 𝑣𝑡
have the same sign, positive if 𝑢𝑡 and 𝑣𝑡 have opposite signs. The latter case holds for outgoing observers
observing ingoing photons, or for ingoing observers observing outgoing photons, in which case the blueshift
near the inner horizon, where Δ→ −0, diverges as

−𝑢𝜇𝑣𝜇 →
⃒⃒⃒⃒
2𝑢𝑡𝑣𝑡
Δ

⃒⃒⃒⃒
as Δ→ −0 if 𝑢𝑡𝑣𝑡 < 0 . (8.27)

8.14 The X point

The point in the Reissner-Nordström geometry where the outgoing and ingoing inner horizons intersect,
the X point, is a special one. This is the point through which geodesics of zero energy, 𝐸 = 0, must pass.
Persons with zero energy who reach the X point see both outgoing and ingoing streams, coming from opposite
directions, infinitely blueshifted.

8.15 Extremal Reissner-Nordström geometry

So far the discussion of the Reissner-Nordström geometry has centred on the case 𝑄 < 𝑀 (or more generally,
|𝑄| < |𝑀 |) where there are separate outer and inner horizons. In the special case that the charge and mass
are equal,

𝑄 =𝑀 , (8.28)
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Figure 8.8 Depiction of the Gullstrand-Painlevé metric for the extremal Reissner-Nordström geometry, with 𝑄 =𝑀 .

In the extremal geometry, the inner and outer horizons are at the same radius, so there is only one horizon.

the inner and outer horizons merge into one, 𝑟+ = 𝑟−, equation (8.10). This special case describes the
extremal Reissner-Nordström geometry.
The extremal Reissner-Nordström geometry is of particular interest in quantum gravity because its Hawk-

ing temperature is zero, and in string theory because extremal black holes have a higher degree of symmetry,
making them more tractable for theoretical investigation.
Figure 8.8 shows the Gullstrand-Painlevé model of an extremal Reissner-Nordström black hole. It looks

like that of a non-extremal Reissner-Nordström black hole except that the two horizons merge into one. The
infall velocity 𝛽 into an extremal black hole reaches its maximum, the speed of light, at the horizon.
The Penrose diagram of the extremal Reissner-Nordström geometry, Figure 8.9, differs from that of the

standard Reissner-Nordström geometry in having no Black Hole, White Hole, or Parallel regions. The fact
that extremal black hole differs topologically from a non-extremal black hole suggests that it would be
physically impossible by any causal mechanism to change a black hole from non-extremal to extremal.

8.16 Super-extremal Reissner-Nordström geometry

The Reissner-Nordström geometry with charge greater than mass,

𝑄 > 𝑀 , (8.29)
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Figure 8.9 Penrose diagram of the extremal Reissner-Nordström geometry.

has no horizons. The geometry is called super-extremal. The change in geometry from an extremal black
hole, with horizon at finite radius 𝑟+ = 𝑟− = 𝑀 , to a super-extremal black hole without horizons is
discontinuous. This suggests that there is no way to pack a black hole with more charge than its mass.
Indeed, if you try to force additional charge into an extremal black hole, then the work needed to do so
increases its mass so that the charge 𝑄 does not exceed its mass 𝑀 .
Real fundamental particles nevertheless have charge far exceeding their mass. For example, the charge-to-
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mass ratio of a proton is
𝑒

𝑚𝑝
≈ 1018 (8.30)

where 𝑒 is the square root of the fine-structure constant 𝛼 ≡ 𝑒2/~𝑐 ≈ 1/137, and 𝑚𝑝 ≈ 10−19 is the mass
of the proton in Planck units. However, the Schwarzschild radius of such a fundamental particle is far tinier
than its Compton wavelength ∼ ~/𝑚 (or its classical radius 𝑒2/𝑚 = 𝛼~/𝑚), so quantum mechanics, not
general relativity, governs the structure of these fundamental particles.

8.17 Reissner-Nordström geometry with imaginary charge

It is possible formally to consider the Reissner-Nordström geometry with imaginary charge 𝑄

𝑄2 < 0 . (8.31)

This is completely unphysical. If charge were imaginary, then electromagnetic energy would be negative.
However, the Reissner-Nordström metric with 𝑄2 < 0 is well-defined, and it is possible to calculate

geodesics in that geometry. What makes the geometry interesting is that the singularity, instead of being
gravitationally repulsive, becomes gravitationally attractive. Thus particles, instead of bouncing off the
singularity, are attracted to it, and it turns out to be possible to continue geodesics through the singularity.
Mathematically, the geometry can be considered as the Kerr-Newman geometry in the limit of zero spin. In

Singularity

Tu
rnaround

Figure 8.10 Depiction of the Gullstrand-Painlevé metric for a super-extremal Reissner-Nordström geometry, with

𝑄 = 1.04𝑀 . The super-extremal geometry has no horizons.
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Figure 8.11 Penrose diagram of the Reissner-Nordström geometry with imaginary charge 𝑄. If charge were imaginary,

then electromagnetic energy would be negative, which is completely unphysical. But the metric is well-defined, and

the spacetime is fun.

the Kerr-Newman geometry, geodesics can pass from positive to negative radius 𝑟, and the passage through
the singularity of the Reissner-Nordström geometry can be regarded as this process in the limit of zero spin.

Suffice to say that it is intriguing to see what it looks like to pass through the singularity of a charged
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black hole of imaginary charge, however unrealistic. The Penrose diagram is even more eventful than that
for the usual Reissner-Nordström geometry.
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Kerr-Newman Black Hole

The geometry of a stationary, rotating, uncharged black hole in asymptotically flat empty space was discov-
ered unexpectedly by Roy Kerr in 1963 (Kerr, 1963). Kerr’s own account of the history of the discovery is
at Kerr (2009). You can read in that paper that the discovery was not mere chance: Kerr used sophisticated
mathematical methods to make it. The extension to a rotating electrically charged black hole was made
shortly thereafter by Ted Newman (Newman et al., 1965). Newman told me (private communication 2009)
that, after seeing Kerr’s work, he quickly realised that the extension to a charged black hole was straightfor-
ward. He set the problem to the graduate students in his relativity class, who became coauthors of Newman
et al. (1965).
The importance of the Kerr-Newman geometry stems in part from the no-hair theorem, which states

that this geometry is the unique end state of spacetime outside the horizon of an undisturbed black hole in
asymptotically flat space.

9.1 Boyer-Lindquist metric

The Boyer-Lindquist metric of the Kerr-Newman geometry is

𝑑𝑠2 = − 𝑅2Δ

𝜌2
(︀
𝑑𝑡− 𝑎 sin2𝜃 𝑑𝜑

)︀2
+

𝜌2

𝑅2Δ
𝑑𝑟2 + 𝜌2𝑑𝜃2 +

𝑅4 sin2𝜃

𝜌2

(︁
𝑑𝜑− 𝑎

𝑅2
𝑑𝑡
)︁2

, (9.1)

where 𝑅 and 𝜌 are defined by

𝑅 ≡
√︀
𝑟2 + 𝑎2 , 𝜌 ≡

√︀
𝑟2 + 𝑎2 cos2𝜃 , (9.2)

and Δ is the horizon function defined by

Δ ≡ 1− 2𝑀𝑟

𝑅2
+
𝑄2

𝑅2
. (9.3)

If𝑀 = 𝑄 = 0, so that Δ = 1, the Boyer-Lindquist metric (9.1) goes over to the metric of Minkowski space
expressed in ellipsoidal coordinates.

210
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At large radius 𝑟, the Boyer-Lindquist metric is

𝑑𝑠2 → −
(︂
1− 2𝑀

𝑟

)︂
𝑑𝑡2 − 4𝑎𝑀 sin2𝜃

𝑟
𝑑𝑡𝑑𝜑+

(︂
1 +

2𝑀

𝑟

)︂
𝑑𝑟2 + 𝑟2

(︀
𝑑𝜃2 + sin2𝜃 𝑑𝜑2

)︀
. (9.4)

By comparison, the weak-field metric in Newtonian gauge, equation (27.62), around an object of mass 𝑀
and angular momentum 𝐿 takes the form

𝑑𝑠2 = − (1 + 2Ψ)𝑑𝑡2 − 2𝑊𝑟 sin 𝜃 𝑑𝑡𝑑𝜑+ (1− 2Φ)(𝑑𝑟2 + 𝑟2𝑑𝑜2) , (9.5)

where, from equations (27.80) and (27.87), the scalar Ψ, Φ and vector 𝑊 potentials are

Ψ = Φ = −𝑀
𝑟
, 𝑊 = −2𝐿 sin 𝜃

𝑟2
. (9.6)

The asymptotic Boyer-Lindquist metric (9.4) is not quite in the Newtonian form (9.5), but a transformation
of the radial coordinate brings it to Newtonian form, Exercise 7.1. Comparison of the two metrics establishes
that 𝑀 is the mass of the black hole and 𝑎 = 𝐿/𝑀 is its angular momentum per unit mass. For positive 𝑎,
the black hole rotates right-handedly about its polar axis 𝜃 = 0.
The Boyer-Lindquist line-element (9.1) defines not only a metric but also a tetrad. The Boyer-Lindquist

coordinates and tetrad are carefully chosen to exhibit the symmetries of the geometry. In the locally inertial
frame defined by the Boyer-Lindquist tetrad, the energy-momentum tensor (which is non-vanishing for
charged Kerr-Newman) and the Weyl tensor are both diagonal. These assertions becomes apparent only
in the tetrad frame, §19.3, and are obscure in the coordinate frame.

9.2 Oblate spheroidal coordinates

Boyer-Lindquist coordinates 𝑟, 𝜃, 𝜑 are oblate spheroidal coordinates (not polar coordinates). Correspond-
ing Cartesian coordinates are

𝑥 = 𝑅 sin 𝜃 cos𝜑 ,

𝑦 = 𝑅 sin 𝜃 sin𝜑 ,

𝑧 = 𝑟 cos 𝜃 .

(9.7)

Surfaces of constant 𝑟 are confocal oblate spheroids, satisfying

𝑥2 + 𝑦2

𝑅2
+
𝑧2

𝑟2
= 1 . (9.8)

Equation (9.8) implies that the spheroidal coordinate 𝑟 is given in terms of 𝑥, 𝑦, 𝑧 by the quadratic equation

𝑟4 − 𝑟2(𝑥2 + 𝑦2 + 𝑧2 − 𝑎2)− 𝑎2𝑧2 = 0 . (9.9)

Figure 9.1 illustrates the spatial geometry of a Kerr black hole, and of a Kerr-Newman black hole, in
Boyer-Lindquist coordinates.
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Figure 9.1 Spatial geometry of (upper) a Kerr black hole with spin parameter 𝑎 = 0.96𝑀 , and (lower) a Kerr-Newman

black hole with charge 𝑄 = 0.8𝑀 and spin parameter 𝑎 = 0.56𝑀 . The upper half of each diagram shows 𝑟 ≥ 0, while

the lower half shows 𝑟 ≤ 0, the Antiverse. The outer and inner horizons are confocal oblate spheroids whose focus is

the ring singularity. For the Kerr geometry, the turnaround radius is at 𝑟 = 0. The Sisytube is a torus enclosing the

ring singularity, that contains closed timelike curves.
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9.3 Time and rotation symmetries

The Boyer-Lindquist metric coefficients are independent of the time coordinate 𝑡 and of the azimuthal angle
𝜑. This shows that the Kerr-Newman geometry has time translation symmetry, and rotational symmetry
about its azimuthal axis. The time and rotation symmetries means that the tangent vectors 𝑒𝑡 and 𝑒𝜑 in
Boyer-Lindquist coordinates are Killing vectors. It follows that their scalar products

𝑒𝑡 · 𝑒𝑡 = 𝑔𝑡𝑡 = − 1

𝜌2
(︀
𝑅2Δ− 𝑎2 sin2𝜃

)︀
,

𝑒𝑡 · 𝑒𝜑 = 𝑔𝑡𝜑 = − 𝑎𝑅2 sin2𝜃

𝜌2
(1−Δ) ,

𝑒𝜑 · 𝑒𝜑 = 𝑔𝜑𝜑 =
𝑅2 sin2𝜃

𝜌2
(︀
𝑅2 − 𝑎2 sin2𝜃Δ

)︀
, (9.10)

are all gauge-invariant scalar quantities. As will be seen below, 𝑔𝑡𝑡 = 0 defines the boundary of ergospheres,
𝑔𝑡𝜑 = 0 defines the turnaround radius, and 𝑔𝜑𝜑 = 0 defines the boundary of the sisytube, the toroidal region
containing closed timelike curves.
The Boyer-Lindquist time 𝑡 and azimuthal angle 𝜑 are arranged further to satisfy the condition that 𝑒𝑡

and 𝑒𝜑 are each orthogonal to both 𝑒𝑟 and 𝑒𝜃.

9.4 Ring singularity

The Kerr-Newman geometry contains a ring singularity where the Weyl tensor (9.26) diverges, 𝜌 = 0, or
equivalently at

𝑟 = 0 and 𝜃 = 𝜋/2 . (9.11)

The ring singularity is at the focus of the confocal ellipsoids of the Boyer-Lindquist metric. Physically, the
singularity is kept open by the centrifugal force.
Figure 9.2 illustrates contours of constant 𝜌 in a Kerr black hole.

9.5 Horizons

The horizon of a Kerr-Newman black hole rotates, as observed by a distant observer, so it is incorrect to try
to solve for the location of the horizon by assuming that the horizon is at rest. The worldline of a photon
that sits on the horizon, battling against the inflow of space, remains at fixed radius 𝑟 and polar angle 𝜃, but
it moves in time 𝑡 and azimuthal angle 𝜑. The photon’s 4-velocity is 𝑣𝜇 = {𝑣𝑡, 0, 0, 𝑣𝜑}, and the condition
that it is on a null geodesic is

0 = 𝑣𝜇𝑣
𝜇 = 𝑔𝜇𝜈𝑣

𝜇𝑣𝜈 = 𝑔𝑡𝑡(𝑣
𝑡)2 + 2 𝑔𝑡𝜑 𝑣

𝑡𝑣𝜑 + 𝑔𝜑𝜑(𝑣
𝜑)2 . (9.12)
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Figure 9.2 Not a mouse’s eye view of a snake coming down its mousehole, uhoh. Contours of constant 𝜌 and their

covariant normals 𝜕𝜌/𝜕𝑥𝜇 in a spatial cross-section of a Kerr black hole of spin parameter 𝑎 = 0.96𝑀 , in Boyer-

Lindquist coordinates. The thicker contours are the outer and inner horizons, which are confocal spheroids with the

ring singularity at their focus. The ring singularity is at 𝜌 = 0, the snake’s eyes.

This equation has solutions provided that the determinant of the 2× 2 matrix of metric coefficients in 𝑡 and
𝜑 is less than or equal to zero (why?). The determinant is

𝑔𝑡𝑡𝑔𝜑𝜑 − 𝑔2𝑡𝜑 = −𝑅2 sin2𝜃Δ , (9.13)

where Δ is the horizon function defined above, equation (9.3). Thus if Δ ≥ 0, then there exist null geodesics
such that a photon can be instantaneously at rest in 𝑟 and 𝜃, whereas if Δ < 0, then no such geodesics exist.
The boundary

Δ = 0 (9.14)

defines the location of horizons. With Δ given by equation (9.3), equation (9.14) gives outer and inner

horizons at

𝑟± =𝑀 ±
√︀
𝑀2 −𝑄2 − 𝑎2 . (9.15)

Between the horizons Δ is negative, and photons cannot be at rest. This is consistent with the picture that
space is falling faster than light between the horizons.
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9.6 Angular velocity of the horizon

The angular velocity of the horizon as observed by observers at rest at infinity can be read off directly from
the Boyer-Lindquist metric (9.1). The horizon is at 𝑑𝑟 = 𝑑𝜃 = 0 and Δ = 0, and then the null condition
𝑑𝑠2 = 0 implies that the angular velocity is

𝑑𝜑

𝑑𝑡
=

𝑎

𝑅2
. (9.16)

The derivative is with respect to the proper time 𝑡 of observers at rest at infinity, so this is the angular
velocity observed by such observers.

9.7 Ergospheres

There are finite regions, just outside the outer horizon and just inside the inner horizon, within which the
worldline of an object at rest, 𝑑𝑟 = 𝑑𝜃 = 𝑑𝜑 = 0, is spacelike. These regions, called ergospheres, are places
where nothing can remain at rest (the place where little children come from). Objects can escape from within
the outer ergosphere (whereas they cannot escape from within the outer horizon), but they cannot remain
at rest there. A distant observer will see any object within the outer ergosphere being dragged around by
the rotation of the black hole. The direction of dragging is the same as the rotation direction of the black
hole in both outer and inner ergospheres.
The boundary of the ergosphere is at

𝑔𝑡𝑡 = 0 , (9.17)

which occurs where

𝑅2Δ = 𝑎2 sin2𝜃 . (9.18)

Equation (9.18) has two solutions, the outer and inner ergospheres. The outer and inner ergospheres touch
respectively the outer and inner horizons at the poles, 𝜃 = 0 and 𝜋.

9.8 Turnaround radius

The turnaround radius is the radius inside the inner horizon at which infallers who fall from zero velocity
and zero angular momentum at infinity turn around. The radius is at

𝑔𝑡𝜑 = 0 , (9.19)

which occurs where Δ = 1, or equivalently at

𝑟 =
𝑄2

2𝑀
. (9.20)

In the uncharged Kerr geometry, the turnaround radius is at zero radius, 𝑟 = 0, but in the Kerr-Newman
geometry the turnaround radius is at positive radius.
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9.9 Antiverse

The surface at zero radius, 𝑟 = 0, forms a disk bounded by the ring singularity. Objects can pass through
this disk into the region at negative radius, 𝑟 < 0, the Antiverse.
The Boyer-Lindquist metric (9.1) is unchanged by a symmetry transformation that simultaneously flips

the sign both of the radius and mass, 𝑟 → −𝑟 and 𝑀 → −𝑀 . Thus the Boyer-Lindquist geometry at
negative 𝑟 with positive mass is equivalent to the geometry at positive 𝑟 with negative mass. In effect, the
Boyer-Lindquist metric with negative 𝑟 describes a rotating black hole of negative mass

𝑀 < 0 . (9.21)

9.10 Sisytube

Inside the inner horizon there is a toroidal region around the ring singularity, which I call the sisytube,
within which the light cone in 𝑡-𝜑 coordinates opens up to the point that 𝜑 as well as 𝑡 is a timelike
coordinate. In the Wormhole, the direction of increasing proper time along 𝑡 is 𝑡 increasing, and along 𝜑 is
𝜑 decreasing, which is retrograde. In the Parallel Wormhole, the direction of increasing proper time along
𝑡 is 𝑡 decreasing, and along 𝜑 is 𝜑 increasing, which is again retrograde. Within the toroidal region, there
exist timelike trajectories that go either forwards or backwards in coordinate time 𝑡 as they wind retrograde
around the toroidal tunnel. Because the 𝜑 coordinate is periodic, these timelike curves connect not only the
past to the future (the usual case), but also the future to the past, which violates causality. In particular, as
first pointed out by Carter (1968), there exist closed timelike curves (CTCs), trajectories that connect to
themselves, connecting their own future to their own past, and repeating interminably, like Sisyphus pushing
his rock up the mountain.
The boundary of the sisytube torus is at

𝑔𝜑𝜑 = 0 , (9.22)

which occurs where

𝑅2 = 𝑎2 sin2𝜃Δ . (9.23)

In the uncharged Kerr geometry the sisytube is entirely at negative radius, 𝑟 < 0, but in the Kerr-Newman
geometry the sisytube extends to positive radius, Figure 9.1.

9.11 Extremal Kerr-Newman geometry

The Kerr-Newman geometry is called extremal when the outer and inner horizons coincide, 𝑟+ = 𝑟−, which
occurs where

𝑀2 = 𝑄2 + 𝑎2 . (9.24)
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Figure 9.3 Spatial geometry of (upper) an extremal (𝑎 =𝑀) Kerr black hole, and (lower) an extremal Kerr-Newman

black hole with charge 𝑄 = 0.8𝑀 and spin parameter 𝑎 = 0.6𝑀 .

Figure 9.3 illustrates the structure of an extremal Kerr (uncharged) black hole, and an extremal Kerr-Newman
(charged) black hole.
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Figure 9.4 Spatial geometry of a super-extremal Kerr black hole with spin parameter 𝑎 = 1.04𝑀 . A super-extremal

black hole has no horizons.

9.12 Super-extremal Kerr-Newman geometry

If 𝑀2 < 𝑄2 + 𝑎2, then there are no horizons. The geometry is called super-extremal. Figure 9.4 illustrates
the structure of a super-extremal Kerr black hole. A super-extremal black hole has a naked ring singularity,
and CTCs in a sisytube unhidden by a horizon.

9.13 Energy-momentum tensor

The coordinate-frame Einstein tensor of the Kerr-Newman geometry in Boyer-Lindquist coordinates is a bit
of a mess. The trick of raising one index, which for the Reissner-Nordström metric brought the Einstein
tensor to diagonal form, equation (8.5), fails for Boyer-Lindquist (because the Boyer-Lindquist metric is not
diagonal). The problem is endemic to the coordinate approach to general relativity. After tetrads it will
emerge that, in the Boyer-Lindquist tetrad, the Einstein tensor is diagonal, and that the proper density 𝜌,
the proper radial pressure 𝑝𝑟, and the proper transverse pressure 𝑝⊥ in that frame are (do not confuse the
notation 𝜌 for proper density with the radial parameter 𝜌, equation (9.2), of the Boyer-Lindquist metric)

𝜌 = −𝑝𝑟 = 𝑝⊥ =
𝑄2

8𝜋𝜌4
. (9.25)

This looks like the energy-momentum tensor (8.5) of the Reissner-Nordström geometry with the replacement
𝑟 → 𝜌. The energy-momentum is that of an electric field produced by a charge 𝑄 seemingly located at the
ring singularity.
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9.14 Weyl tensor

The Weyl tensor of the Kerr-Newman geometry in Boyer-Lindquist coordinates is likewise a mess. After
tetrads, it will emerge that the 10 components of the Weyl tensor can be decomposed into 5 complex
components of spin 0, ±1, and ±2. In the Boyer-Lindquist tetrad, the only non-vanishing component is
the spin-0 component, the Weyl scalar 𝐶, but in contrast to the Schwarzschild and Reissner-Nordström
geometries the spin-0 component is complex, not real:

𝐶 = − 1

(𝑟 − 𝑖𝑎 cos 𝜃)3

(︂
𝑀 − 𝑄2

𝑟 + 𝑖𝑎 cos 𝜃

)︂
. (9.26)

9.15 Electromagnetic field

The expression for the electromagnetic field in Boyer-Lindquist coordinates is again a mess. After tetrads,
it will emerge that, in the Boyer-Lindquist tetrad, the electromagnetic field is purely radial, and the electro-
magnetic potential has only a time component. For reference, the covariant electromagnetic potential 𝐴𝜇 in
the Boyer-Lindquist coordinate (not tetrad) frame is

𝐴𝜇 =
𝑄𝑟

𝜌2

{︂
−1, 0, 0, 𝑎 sin 𝜃

𝑅
√
Δ

}︂
. (9.27)

9.16 Principal null congruences

The Kerr-Newman geometry admits a special set of space-filling, non-overlapping null geodesics called the
principal outgoing and ingoing null congruences. These are the directions with respect to which the Weyl
tensor and the electric field vector align. Photons that hold steady on the outer horizon are on the principal
outgoing null congruence. The construction and special character of the principal null congruences will be
demonstrated after tetrads, in §23.6.
Geodesics along the principal null congruences satisfy

𝑑𝜃 = 𝑑𝜑− 𝜔 𝑑𝑡 = 0 , (9.28)

where 𝜔 = 𝑎/𝑅2 is the azimuthal angular velocity of the geodesics through the coordinates. The Boyer-
Lindquist line-element (9.1) is specifically constructed so that it aligns with the principal null congruences.
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9.17 Finkelstein coordinates

Along the principal outgoing and ingoing null congruences, where equations (9.28) hold, the Boyer-Lindquist
metric (9.1) reduces to

𝑑𝑠2 =
𝜌2Δ

𝑅2

(︂
− 𝑑𝑡2 + 𝑑𝑟2

Δ2

)︂
. (9.29)

A tortoise coordinate 𝑟* in the Kerr-Newman geometry may be defined analogously to that (8.16) in the
Reissner-Nordström geometry,

𝑟* ≡
∫︁
𝑑𝑟

Δ
, (9.30)

which integrates to the same expressions (8.16) and (8.17) in terms of horizon radii 𝑟± and surface gravities
𝜅± as in the Reissner-Nordström geometry. Principal outgoing and ingoing null geodesics follow

𝑟* − 𝑡 = constant outgoing ,
𝑟* + 𝑡 = constant ingoing .

(9.31)

A Finkelstein time coordinate 𝑡F can be defined as in the Reissner-Nordström geometry, equation (8.19).
Likewise, Kruskal-Szekeres coordinates can be defined as in the Reissner-Nordström geometry, equations (8.21)
and (8.22). The Finkelstein and Kruskal spacetime diagrams for the Kerr-Newman geometry look identical
to those of the Reissner-Nordström geometry (if the horizon radii 𝑟± are the same), Figures 8.3 and 8.4. The
discussion in §§8.7–8.9 carries through essentially unchanged for the Kerr-Newman geometry.
The behaviour of geodesics in the angular direction is more complicated in the Kerr-Newman than Reissner-

Nordström geometry, but this complexity is hidden in the Finkelstein and Kruskal diagrams.

9.18 Doran coordinates

For the Kerr-Newman geometry, the analogue of the Gullstrand-Painlevé metric is the Doran (2000) metric

𝑑𝑠2 = − 𝑑𝑡2ff +

[︂
𝜌

𝑅
𝑑𝑟 − 𝛽𝑅

𝜌

(︀
𝑑𝑡ff − 𝑎 sin2𝜃 𝑑𝜑ff

)︀]︂2
+ 𝜌2𝑑𝜃2 +𝑅2 sin2𝜃 𝑑𝜑2ff , (9.32)

where the free-fall time 𝑡ff and azimuthal angle 𝜑ff are related to the Boyer-Lindquist time 𝑡 and azimuthal
angle 𝜑 by

𝑑𝑡ff = 𝑑𝑡− 𝛽

1− 𝛽2
𝑑𝑟 , 𝑑𝜑ff = 𝑑𝜑− 𝑎𝛽

𝑅2(1− 𝛽2)
𝑑𝑟 . (9.33)

The free-fall time 𝑡ff is the proper time experienced by persons who free-fall from rest at infinity, with zero
angular momentum. They follow trajectories of fixed 𝜃 and 𝜑ff , with radial velocity 𝑑𝑟/𝑑𝑡ff = 𝛽𝑅2/𝜌2. The
4-velocity 𝑢𝜈 ≡ 𝑑𝑥𝜈/𝑑𝜏 of such free-falling observers is

𝑢𝑡ff = 1 , 𝑢𝑟 =
𝑅2𝛽

𝜌2
, 𝑢𝜃 = 0 , 𝑢𝜑ff = 0 . (9.34)
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For the Kerr-Newman geometry, the velocity 𝛽 is

𝛽 = ∓
√︀

2𝑀𝑟 −𝑄2

𝑅
(9.35)

where the ∓ sign is − (infalling) for black hole solutions, and + (outfalling) for white hole solutions.
Horizons occur where the magnitude of the velocity 𝛽 equals the speed of light

𝛽 = ∓1 . (9.36)

The boundaries of ergospheres occur where the velocity is

𝛽 = ∓ 𝜌
𝑅
. (9.37)

The turnaround radius is where the velocity is zero

𝛽 = 0 . (9.38)

The sisytube is bounded by the imaginary velocity

𝛽 = 𝑖
𝜌

𝑎 sin 𝜃
. (9.39)



222 Kerr-Newman Black Hole

r
=

∞

r
=
∞

r
=
∞

r
=

∞

r
=
−
∞

r
=

−
∞

r
=

−
∞

r
=
−
∞

White Hole

P
a
ra
ll
e
l
A
n
ti
h
o
ri
z
o
n

A
n
tih
o
riz
o
n

Parallel Universe Universe

P
a
ra
lle
l
H
o
riz
o
n

H
o
ri
z
o
n

Black Hole

In
n
e
r
H
o
ri
z
o
n

P
a
ra
lle
l
In
n
e
r
H
o
riz
o
n

W
o
r
m
h
o
le P

a
r
a
lle

l

W
o
r
m
h
o
le

Antiverse
Parallel

Antiverse

White HoleIn
n
e
r
A
n
tih
o
riz
o
n

P
a
ra
ll
e
l
In
n
e
r
A
n
ti
h
o
ri
z
o
n

New Parallel Universe New Universe

Figure 9.6 Penrose diagram of the Kerr-Newman geometry. The diagram is similar to that of the Reissner-Nordström

geometry, except that it is possible to pass through the disk at 𝑟 = 0 from the Wormhole region into the Antiverse

region. This Penrose diagram, which represents a slice at fixed 𝜃 and 𝜑, does not capture the full richness of the

geometry, which contains closed timelike curves in a torus around the ring singularity, the sisytube.
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9.19 Penrose diagram

The Penrose diagram of the Kerr-Newman geometry, Figure 9.6, resembles that of the Reissner-Nordström
geometry, Figure 8.6, except that in the Kerr-Newman geometry an infaller can reach the Antiverse by
passing through the disk at 𝑟 = 0 bounded by the ring singularity. In the Reissner-Nordström geometry,
the ring singularity shrinks to a point, and passing into the Antiverse would require passing through the
singularity itself.



Concept Questions

1. What does it mean that the Universe is expanding?
2. Does the expansion affect the solar system or the Milky Way?
3. How far out do you have to go before the expansion is evident?
4. What is the Universe expanding into?
5. In what sense is the Hubble constant constant?
6. Does our Universe have a centre, and if so where is it?
7. What evidence suggests that the Universe at large is homogeneous and isotropic?
8. How can the Cosmic Microwave Background (CMB) be construed as evidence for homogeneity and

isotropy given that it provides information only over a 2D surface on the sky?
9. What is thermodynamic equilibrium? What evidence suggests that the early Universe was in thermo-

dynamic equilibrium?
10. What are cosmological parameters?
11. What cosmological parameters can or cannot be measured from the power spectrum of fluctuations of

the CMB?
12. Friedmann-Lemaître-Robertson-Walker (FLRW) universes are characterized as closed, flat, or open.

Does flat here mean the same as flat Minkowski space?
13. What is it that astronomers call dark matter?
14. What is the primary evidence for the existence of non-baryonic cold dark matter?
15. How can astronomers detect dark matter in galaxies or clusters of galaxies?
16. How can cosmologists claim that the Universe is dominated by not one but two distinct kinds of myste-

rious mass-energy, dark matter and dark energy, neither of which has been observed in the laboratory?
17. What key property or properties distinguish dark energy from dark matter?
18. A FLRW universe conserves entropy. Is that true? If so, can the entropy of the Universe increase?
19. Does the annihilation of electron-positron pairs into photons generate entropy in the early Universe, as

its temperature cools through 1MeV?
20. How does the wavelength of light change with the expansion of the Universe?
21. How does the temperature of the CMB change with the expansion of the Universe?

224
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22. How does a blackbody (Planck) distribution change with the expansion of the Universe? What about a
non-relativistic distribution? What about a semi-relativistic distribution?

23. What is the horizon of our Universe? What is the Hubble distance?
24. What happens beyond the horizon of our Universe?
25. What caused the Big Bang?
26. What happened before the Big Bang?
27. What will be the fate of the Universe?



What’s important?

1. The Cosmic Microwave Background (CMB) indicates that the early (≈ 400,000 year old) Universe was
(a) uniform to a few ×10−5, and (b) in thermodynamic equilibrium. This indicates that

the Universe was once very simple .
It is this simplicity that makes it possible to model the early Universe with some degree of confidence.

2. The power spectrum of fluctuations of the CMB has enabled precise measurements of cosmological
parameters.

3. There is a remarkable concordance of evidence from a broad range of astronomical observations —
supernovae, big bang nucleosynthesis, the clustering of galaxies, the abundances of clusters of galaxies,
measurements of the Hubble constant from Cepheid variables and supernovae, and the ages of the oldest
stars.

4. Observational evidence is consistent with the predictions of the theory of inflation in its simplest form
— the expansion of the Universe, the spatial flatness of the Universe, the near uniformity of temperature
fluctuations of the CMB (the horizon problem), the presence of acoustic peaks and troughs in the power
spectrum of fluctuations of the CMB, the near power law shape of the power spectrum at large scales,
its spectral index (tilt), the gaussian distribution of fluctuations at large scales.

5. What is non-baryonic dark matter?
6. What is dark energy? What is its equation of state 𝑤 ≡ 𝑝/𝜌, and how does 𝑤 evolve with time?

226
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Homogeneous, Isotropic Cosmology

10.1 Observational basis

Since 1998, observations have converged on a Standard “ΛCDM” Model of Cosmology, a spatially flat
Universe dominated by gravitationally repulsive dark energy whose equation of state is consistent with that
of a cosmological constant (Λ), and by gravitationally attractive non-baryonic cold dark matter (CDM). The
mass-energy of the Standard Model of the Universe consists of 70% dark energy, 25% non-baryonic cold dark
matter (CDM), 5% baryonic matter, and a sprinkling of photons and neutrinos. The designation “baryonic”
is conventional but misleading: it refers to all atomic matter, including not only baryons (nuclei), but also
non-relativistic charged leptons (electrons).

10.1.1 The expansion of the Universe

The Hubble diagram, a diagram of distance versus redshift of distant astronomical objects, indicates that
the Universe is expanding.
Hubble’s law states that galaxies are receding with velocity proportional to distance, 𝑣 = 𝐻0𝑑, with

constant of proportionality the Hubble constant 𝐻0 (the 0 subscript signifies the present day value). Hubble’s
law was first proposed by Georges Lemaître (1927) and by Edwin Hubble (1929) on the basis of observations.
The recession velocity 𝑣 of an astronomical object can be determined with some precision from the redshift

of its spectral lines, but its distance 𝑑 is more difficult to measure, because astronomical objects, such as
galaxies, typically have a wide range of intrinsic luminosities. Hubble estimated distances to galaxies using
Cepheid variable stars, which had been discovered by Henrietta Leavitt (1912) to have periods proportional
to their luminosities. A good distance estimator should be a “standard candle” of predictable luminosity, and
it should be bright, so that it can be seen over cosmological distances.
The best modern Hubble diagram is that of Type Ia supernovae, illustrated in Figure 10.1, from data

tabulated by Scolnic et al. (2018). A Type Ia supernova is thought to represent the thermonuclear explosion
of a white dwarf star that through accretion from a companion star reaches the Chandrasekhar mass limit of
1.4M⊙. Having a similar origin, such supernovae approximate standard candles (or standard bombs) having
the same luminosity. Actually, some variation in luminosity is observed, which may be associated with the

227



228 Homogeneous, Isotropic Cosmology

.01

.02

.05

.1

.2

.5

1

2

5

L
u
m

in
o
si

ty
d
is

ta
n

c
e

d
L

SNLS3

Low z SNe

Pan-STARRS

HST

SDSS

.01 .02 .05 .1 .2 .5 1 2

.8

1.0

1.2

1.4

Redshift z

R
e
si

d
u

a
ls

Ω
Λ

Ωm

0.7 0.3

0 1

0 0.3

0 0

1 0

Figure 10.1 Hubble diagram of 1048 Type Ia supernovae from a compilation of surveys, from data tabulated by Scolnic

et al. (2018). The vertical axis is the luminosity distance 𝑑𝐿 in units of the present-day Hubble distance 𝑐/𝐻0. The

bottom panel shows residuals. The various smooth curves are 5 theoretical model Hubble diagrams, with parameters

as indicated. The solid line is a flat ΛCDM model with ΩΛ = 0.7 and Ωm = 0.3.

amount of 56Ni synthesized in the explosion, and which can be corrected at least in part through an empirical
relation between luminosity and how rapidly the lightcurve decays (higher luminosity supernovae decay more
slowly).
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10.1.2 The acceleration of the Universe

Since light takes time to travel from distant parts of the Universe to astronomers here on Earth, the higher
the redshift of an object, the further back in time astronomers are seeing.
In 1998 two teams, the Supernova Cosmology Project (Perlmutter, S. et al. (Supernova Cosmology Project,

32 authors), 1999), and the High-𝑧 Supernova Search team (Riess et al., 1998), precipitated the revolution
that led to the Standard Model of Cosmology. They reported that observations of Type Ia supernova at high
redshift indicated that the Universe is not only expanding, but also accelerating. The acceleration requires
the mass-energy density of the Universe to be dominated at the present time by a gravitationally repulsive
component, such as a cosmological constant Λ.
In the Hubble diagram of Type Ia supernova shown in Figure 10.1, the fitted curve is a best-fit flat

cosmological model containing a cosmological constant and matter.

10.1.3 The Cosmic Microwave Background (CMB)

The single most powerful observational constraints on the Universe come from the Cosmic Microwave Back-
ground (CMB). Modern observations of the CMB have ushered in an era of precision cosmology, where key
cosmological parameters are being measured with percent level uncertainties.
The CMB was discovered serendipitously by Arno Penzias & Robert Wilson (1965), who were puzzled

by an apparently uniform excess temperature from a horn antenna, 6 metres in size, tuned to a wavelength
of ∼ 7 cm, that they had built to detect radio waves. They were unaware that Robert Dicke’s group at
Princeton had already realised that a hot Big Bang would have left a remnant of blackbody radiation filling
the Universe, with a present-day temperature of a few Kelvin, and were setting about to try to detect it.
When Penzias heard about Dicke’s work, he and Wilson quickly realised that their observations fit what
the Princeton group were predicting. The observations of Penzias and Wilson (1965) were published along
with a theoretical explanation by Dicke et al. (1965) in back-to-back papers in an issue of the Astrophysical
Journal Letters.
Dicke et al. (1965) argued that the temperature of the expanding Universe must have been higher in the

past, and there must have been a time before which the temperature was high enough to ionize hydrogen,
about 3,000K. Before this time, called recombination, hydrogen and other elements would have been mostly
ionized. The CMB comes to us from the time of recombination, when the Universe transitioned from being
mainly ionized, and therefore opaque, to being mainly neutral, and therefore transparent. Recombination
occurred when the Universe was about 400,000 years old, and the CMB has streamed essentially freely
through the Universe since that time. Thus the CMB provides a snapshot of the Universe at recombination.
The CMB spectrum peaks in microwaves, which are absorbed by water vapour in the atmosphere. Modern

observations of the CMB are therefore made using satellites, or with balloons, or at high-altitude sites with
low water vapour, such as the South Pole, or the Atacama Desert in Chile.
The characteristics of the CMB measured from modern observations are as follows.
The CMB has a remarkably precise black body spectrum, Figure 10.2, with temperature (Fixsen, 2009)

𝑇0 = 2.72548± 0.00057K . (10.1)
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Figure 10.2 COBE/FIRAS observations of the (monopole) spectrum of the CMB. The observations (points with error

bars multiplied by 500) fit extraordinarily well to a blackbody, or Planck, spectrum at a temperature of 2.725K (solid

line). In practice, the spectrum was observed by switching between the CMB sky and a blackbody calibrator. The

lower graph shows the measured deviation from the blackbody calibrator. Data from https://lambda.gsfc.nasa.gov/

product/cobe/firas_monopole_get.cfm.

The CMB shows a dipole anisotropy of Δ𝑇 = 3.355± 0.008mK, implying that the solar system is moving
through the CMB at velocity (Jarosik et al., 2011)

𝑣 = 369.1 km s−1 in Galactic coordinate direction {𝑙, 𝑏} = {263.∘99± 0.14, 48.∘26± 0.03} . (10.2)

After dipole subtraction, the temperature of the CMB over the sky is uniform to a few parts in 105.
The power spectrum of temperature 𝑇 fluctuations shows a scale-invariant spectrum at large scales, and

prominent acoustic peaks at smaller scales, Figure 10.3. The power spectrum fits astonishingly well to
predictions based on the theory of inflation, §10.22, in its simplest form. The power spectrum yields precision
measurements of some basic cosmological parameters, notably the densities of the principal contributions to
the energy-density of the Universe: dark energy, non-baryonic cold dark matter, and baryons.
Fluctuations in the CMB are expected to be polarized at some level. There are two independent modes of

polarization of opposite parity, electric “𝐸” ((−)ℓ parity) modes and magnetic “𝐵” ((−)ℓ+1 parity) modes.
There are corresponding 𝐸-mode and 𝐵-mode power spectra. The temperature fluctuation 𝑇 has electric
parity, so of the cross-power spectra between temperature 𝑇 and 𝐸 and 𝐵 fluctuations, only the 𝑇–𝐸 cross-
power is expected to be non-vanishing (if the Universe at large is not only homogeneous but also parity

https://lambda.gsfc.nasa.gov/product/cobe/firas_monopole_get.cfm
https://lambda.gsfc.nasa.gov/product/cobe/firas_monopole_get.cfm
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Figure 10.3 Power spectrum of fluctuations in the CMB from observations with the Planck satellite (Ade et al., 2013),
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symmetric). The 𝑇–𝐸 cross-power spectrum has been measured by the WMAP satellite, and is interpreted
as arising from scattering of CMB photons by ionized gas intervening between recombination and us.

10.1.4 The clustering of galaxies

The clustering of galaxies shows a power spectrum in good agreement with the Standard Model, Figure 10.4.
Historically, the principal evidence for non-baryonic cold dark matter was comparison between the power

spectra of galaxies versus CMB. How can tiny fluctuations in the CMB grow into the observed fluctuations
in matter today in only the age of the Universe? The answer was, non-baryonic dark matter that begins to
cluster before recombination, when the CMB was released.
The interpretation of the power spectrum of galaxies is complicated by the facts that galaxies have un-

dergone non-linear clustering at smaller scales, and that galaxies are a biassed tracer of mass. However, the
pattern of clustering at large, linear scales retains an imprint of baryonic acoustic oscillations (BAO) analo-
gous to those in the CMB. Observations from large galaxy surveys have been able to measure the predicted
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Figure 10.4 Monopole, dipole, and quadrupole power spectra of galaxies from the extended Baryon Oscillation Spec-

troscopic Survey (BOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) (Gil-Marín et al., 2020). The analysis includes

377,458 luminous red galaxies covering approximately 18% of the sky over redshifts 𝑧 = 0.6–1.0. Filled and unfilled

symbols are measurements from the north and south galactic caps respectively. The curves are flat ΛCDM model

spectra calculated from simulations analyzed using the same footprint as the survey. The right panel shows spectra

with a smooth component divided out to bring out the baryon acoustic oscillations (BAO).

BAO, Figure 10.4. Comparison of the scales of acoustic oscillations in galaxies and the CMB allows the
two scales to be matched, pinning the relative scales of galaxies today with those in the CMB at redshift
𝑧 ∼ 1100.
Major plans are underway to measure galaxy clustering as a function of redshift, with the primary aim to

determine whether the evolution of dark energy is consistent with that of a cosmological constant. Such a
measurement cannot be done with CMB observations, since the CMB offers only a snapshot of the Universe
at high redshift.

10.1.5 Other supporting evidence

∙ The observed abundances of light elements H, D, 3He, He, and Li are consistent with the predictions of
big bang nucleosynthesis (BBN) provided that the baryonic density is Ωb ≈ 0.04, in good agreement with
measurements from the CMB.

∙ The ages of the oldest stars, in globular clusters, agree with the age of the Universe with dark energy, but
are older than the Universe without dark energy.

∙ The existence of dark matter, possibly non-baryonic, is supported by ubiquitous evidence for unseen dark
matter, deduced from sizes and velocities (or in the case of gravitational lensing, the gravitational potential)
of various objects:
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– The Local Group of galaxies;
– Rotation curves of spiral galaxies;
– The temperature and distribution of x-ray gas in elliptical galaxies, and in clusters of galaxies;
– Gravitational lensing by clusters of galaxies.
∙ The abundance of galaxy clusters as a function of redshift is consistent with a matter density Ωm ≈ 0.3, but
not much higher. A low matter density slows the gravitational clustering of galaxies, implying relatively
more and richer clusters at high redshift than at the present, as observed.

∙ The Bullet cluster is a rare example that supports the notion that the dark matter is non-baryonic. In the
Bullet cluster, two clusters recently passed through each other. The baryonic matter, as measured from
x-ray emission of hot gas, appears displaced from the dark matter, as measured from weak gravitational
lensing.

10.2 Cosmological Principle

The cosmological principle states that the Universe at large is
∙ homogeneous (has spatial translation symmetry),
∙ isotropic (has spatial rotation symmetry).
The primary evidence for this is the uniformity of the temperature of the CMB, which, after subtraction of
the dipole produced by the motion of the solar system through the CMB, is constant over the sky to a few
parts in 105. Confirming evidence is the statistical uniformity of the distribution of galaxies over large scales.
The cosmological principle allows that the Universe evolves in time, as observations surely indicate — the

Universe is expanding, galaxies, quasars, and galaxy clusters evolve with redshift, and the temperature of
the CMB has undoubtedly decreased since recombination.

10.3 Friedmann-Lemaître-Robertson-Walker metric

Universes satisfying the cosmological principle are described by the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric, equation (10.28) below, discovered independently by Friedmann (1922; 1924) and Lemaître
(1927) (English translation in Lemaître 1931). The FLRW metric was shown to be the unique metric for a
homogeneous, isotropic universe by Robertson (1935; 1936; 1936) and Walker (1937). The metric, and the
associated Einstein equations, which are known as the Friedmann equations, are set forward in the next
several sections, §§10.4–10.9.

10.4 Spatial part of the FLRW metric: informal approach

The cosmological principle implies that

the spatial part of the FLRW metric is a 3D hypersphere . (10.3)
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In this context the term hypersphere is to be construed as including not only cases of positive curvature,
which have finite positive radius of curvature, but also cases of zero and negative curvature, which have
infinite and imaginary radius of curvature.
Figure 10.5 shows an embedding diagram of a 3D hypersphere in 4D Euclidean space. The horizontal

directions in the diagram represent the normal 3 spatial 𝑥, 𝑦, 𝑧 dimensions, with one dimension 𝑧 suppressed,
while the vertical dimension represents the 4th spatial dimension 𝑤. The 3D hypersphere is a set of points
{𝑥, 𝑦, 𝑧, 𝑤} satisfying (︀

𝑥2 + 𝑦2 + 𝑧2 + 𝑤2
)︀1/2

= 𝑅 = constant . (10.4)

An observer is sitting at the north pole of the diagram, at {0, 0, 0, 1}. A 2D sphere (which forms a 1D circle
in the embedding diagram of Figure 10.5) at fixed distance surrounding the observer has geodesic distance
𝑟‖ defined by

𝑟‖ ≡ proper distance to sphere measured along a radial geodesic , (10.5)

and circumferential radius 𝑟 defined by

𝑟 ≡
(︀
𝑥2 + 𝑦2 + 𝑧2

)︀1/2
, (10.6)
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Figure 10.5 Embedding diagram of the FLRW geometry.
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which has the property that the proper circumference of the sphere is 2𝜋𝑟. In terms of 𝑟‖ and 𝑟, the spatial
metric is

𝑑𝑙2 = 𝑑𝑟2‖ + 𝑟2𝑑𝑜2 , (10.7)

where 𝑑𝑜2 ≡ 𝑑𝜃2 + sin2𝜃 𝑑𝜑2 is the metric of a unit 2-sphere.
Introduce the angle 𝜒 illustrated in the diagram. Evidently

𝑟‖ = 𝑅𝜒 ,

𝑟 = 𝑅 sin𝜒 . (10.8)

In terms of the angle 𝜒, the spatial metric is

𝑑𝑙2 = 𝑅2
(︀
𝑑𝜒2 + sin2𝜒𝑑𝑜2

)︀
, (10.9)

which is one version of the spatial FLRW metric. The metric resembles the metric of a 2-sphere of radius 𝑅,
which is not surprising since the same construction, with Figure 10.5 interpreted as the embedding diagram
of a 2D sphere in 3D, yields the metric of a 2-sphere. Indeed, the construction iterates to give the metric of
an 𝑁 -dimensional sphere of arbitrarily many dimensions 𝑁 .
Instead of the angle 𝜒, the metric can be expressed in terms of the circumferential radius 𝑟. It follows from

equations (10.8) that

𝑟‖ = 𝑅 asin(𝑟/𝑅) , (10.10)

whence

𝑑𝑟‖ =
𝑑𝑟√︀

1− 𝑟2/𝑅2

=
𝑑𝑟√

1−𝐾𝑟2
, (10.11)

where 𝐾 is the curvature

𝐾 ≡ 1

𝑅2
. (10.12)

In terms of 𝑟, the spatial FLRW metric is then

𝑑𝑙2 =
𝑑𝑟2

1−𝐾𝑟2
+ 𝑟2𝑑𝑜2 . (10.13)

The embedding diagram Figure 10.5 is a nice prop for the imagination, but it is not the whole story. The
curvature 𝐾 in the metric (10.13) may be not only positive, corresponding to real finite radius 𝑅, but also
zero or negative, corresponding to infinite or imaginary radius 𝑅. The possibilities are called closed, flat, and
open:

𝐾

⎧⎨⎩
> 0 closed 𝑅 real ,
= 0 flat 𝑅→∞ ,

< 0 open 𝑅 imaginary .
(10.14)
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10.5 Comoving coordinates

The metric (10.13) is valid at any single instant of cosmic time 𝑡. As the Universe expands, the 3D spa-
tial hypersphere (whether closed, flat, or open) expands. In cosmology it is highly advantageous to work in
comoving coordinates that expand with the Universe. Why? Firstly, it is helpful conceptually and math-
ematically to think of the Universe as at rest in comoving coordinates. Secondly, linear perturbations, such
as those in the CMB, have wavelengths that expand with the Universe, and are therefore fixed in comoving
coordinates.
In practice, cosmologists introduce the cosmic scale factor 𝑎(𝑡)

𝑎(𝑡) ≡ measure of the size of the Universe, expanding with the Universe , (10.15)

which is proportional to but not necessarily equal to the radius 𝑅 of the Universe. The cosmic scale factor
𝑎 can be normalized in any arbitrary way. The most common convention adopted by cosmologists is to
normalize it to unity at the present time,

𝑎0 = 1 , (10.16)

where the 0 subscript conventionally signifies the present time.
Comoving geodesic and circumferential radial distances 𝑥‖ and 𝑥 are defined in terms of the proper geodesic

and circumferential radial distances 𝑟‖ and 𝑟 by

𝑎𝑥‖ ≡ 𝑟‖ , 𝑎𝑥 ≡ 𝑟 . (10.17)

Objects expanding with the Universe remain at fixed comoving positions 𝑥‖ and 𝑥. In terms of the comoving
circumferential radius 𝑥, the spatial FLRW metric is

𝑑𝑙2 = 𝑎2
(︂

𝑑𝑥2

1− 𝜅𝑥2
+ 𝑥2𝑑𝑜2

)︂
, (10.18)

where the curvature constant 𝜅, a constant in time and space, is related to the curvature 𝐾, equation (10.12),
by

𝜅 ≡ 𝑎2𝐾 . (10.19)

Alternatively, in terms of the geodesic comoving radius 𝑥‖, the spatial FLRW metric is

𝑑𝑙2 = 𝑎2
(︁
𝑑𝑥2‖ + 𝑥2𝑑𝑜2

)︁
, (10.20)

where

𝑥 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin(𝜅1/2𝑥‖)

𝜅1/2
𝜅 > 0 closed ,

𝑥‖ 𝜅 = 0 flat ,

sinh(|𝜅|1/2𝑥‖)
|𝜅|1/2

𝜅 < 0 open .

(10.21)
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Actually it is fine to use just the top expression of equations (10.21), which is mathematically equivalent to
the bottom two expressions when 𝜅 = 0 or 𝜅 < 0 (because sin(𝑖𝑥)/𝑖 = sinh(𝑥)).
For some purposes it is convenient to normalize the cosmic scale factor 𝑎 so that 𝜅 = 1, 0, or −1. In this

case the spatial FLRW metric may be written

𝑑𝑙2 = 𝑎2
(︀
𝑑𝜒2 + 𝑥2𝑑𝑜2

)︀
, (10.22)

where

𝑥 =

⎧⎪⎪⎨⎪⎪⎩
sin(𝜒) 𝜅 = 1 closed ,

𝜒 𝜅 = 0 flat ,

sinh(𝜒) 𝜅 = −1 open .

(10.23)

10.6 Spatial part of the FLRW metric: more formal approach

A more formal approach to the derivation of the spatial FLRW metric from the cosmological principle starts
with the proposition that the spatial components 𝐺𝛼𝛽 of the Einstein tensor at fixed scale factor 𝑎 (all time
derivatives of 𝑎 set to zero) should be proportional to the metric tensor

𝐺𝛼𝛽 = −𝐾 𝑔𝛼𝛽 (𝛼, 𝛽 = 1, 2, 3) . (10.24)

Without loss of generality, the spatial metric can be taken to be of the form

𝑑𝑙2 = 𝑓(𝑟) 𝑑𝑟2 + 𝑟2𝑑𝑜2 . (10.25)

Imposing the condition (10.24) on the metric (10.25) recovers the spatial FLRW metric (10.13).

Exercise 10.1. Isotropic (Poincaré) form of the FLRW metric. By a suitable transformation of the
comoving radial coordinate 𝑥, bring the spatial FLRW metric (10.18) to the “isotropic” form

𝑑𝑙2 =
4𝑎2

(1 + 𝜅𝑋2)
2

(︀
𝑑𝑋2 +𝑋2𝑑𝑜2

)︀
. (10.26)

What is the relation between 𝑋 and 𝑥?
For an open geometry, 𝜅 < 0, the isotropic line-element (10.26) is also called the Poincaré ball, or in 2D the

Poincaré disk, Figure 10.6. By construction, the isotropic line-element (10.26) is conformally flat, meaning
that it equals the Euclidean line-element multiplied by a position-dependent conformal factor. Conformal
transformations of a line-element preserve angles.
Solution.

𝑋 =
𝑥

1 +
√
1− 𝜅𝑥2

=
1√
𝜅
tan

(︂√
𝜅𝑥‖

2

)︂
, 𝑥 =

2𝑋

1 + 𝜅𝑋2
=

1√
𝜅
sin
(︀√
𝜅𝑥‖

)︀
. (10.27)

For an open geometry with 𝜅 = −1, 𝑋 goes from 0 to 1 as 𝑥 goes from 0 to ∞.
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Figure 10.6 The Poincaré disk depicts the geometry of an open FLRW universe in isotropic coordinates. The lines are

lines of latitude and longitude relative to a “pole” chosen here to be displaced from the centre of the disk. In isotropic

coordinates, geodesics correspond to circles that intersect the boundary of the disk at right angles, such as the lines

of constant longitude in this diagram. The lines of latitude remain unchanged under rotations about the pole.

10.7 FLRW metric

The full Friedmann-Lemaître-Robertson-Walker spacetime metric is

𝑑𝑠2 = − 𝑑𝑡2 + 𝑎(𝑡)2
(︂

𝑑𝑥2

1− 𝜅𝑥2
+ 𝑥2𝑑𝑜2

)︂
, (10.28)

where 𝑡 is cosmic time, which is the proper time experienced by comoving observers, who remain at rest
in comoving coordinates 𝑑𝑥 = 𝑑𝜃 = 𝑑𝜑 = 0. Any of the alternative versions of the comoving spatial FLRW
metric, equations (10.18), (10.20), (10.22), or (10.26), may be used as the spatial part of the FLRW spacetime
metric (10.28).

10.8 Einstein equations for FLRW metric

The Einstein equations for the FLRW metric (10.28) are

−𝐺𝑡𝑡 = 3

(︂
�̇�2

𝑎2
+

𝜅

𝑎2

)︂
= 8𝜋𝐺𝜌 , (10.29a)

𝐺𝑥𝑥 = 𝐺𝜃𝜃 = 𝐺𝜑𝜑 = − 2 �̈�

𝑎
− �̇�2

𝑎2
− 𝜅

𝑎2
= 8𝜋𝐺𝑝 , (10.29b)

where overdots represent differentiation with respect to cosmic time 𝑡, so that for example �̇� ≡ 𝑑𝑎/𝑑𝑡. Note
the trick of one index up, one down, to remove, modulo signs, the distorting effect of the metric on the
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Einstein tensor. The Einstein equations (10.29) rearrange to give Friedmann’s equations

�̇�2

𝑎2
=

8𝜋𝐺𝜌

3
− 𝜅

𝑎2
, (10.30a)

�̈�

𝑎
= −4𝜋𝐺

3
(𝜌+ 3𝑝) . (10.30b)

Friedmann’s two equations (10.30) are fundamental to cosmology. The first one relates the curvature 𝜅 of
the Universe to the expansion rate �̇�/𝑎 and the density 𝜌. The second one relates the acceleration �̈�/𝑎 to the
density 𝜌 plus 3 times the pressure 𝑝.

10.9 Newtonian “derivation” of Friedmann equations

The Friedmann equations can be reproduced with a heuristic Newtonian argument.

10.9.1 Energy equation

Model a piece of the Universe as a ball of radius 𝑎 with uniform density 𝜌, hence of mass 𝑀 = 4
3𝜋𝜌𝑎

3.
Consider a small mass 𝑚 attracted by this ball. Conservation of the kinetic plus potential energy of the
small mass 𝑚 implies

1

2
𝑚�̇�2 − 𝐺𝑀𝑚

𝑎
= −𝜅𝑚𝑐

2

2
, (10.31)

where the quantity on the right is some constant whose value is not determined by this Newtonian treatment,
but which GR implies is as given. The energy equation (10.31) rearranges to

�̇�2

𝑎2
=

8𝜋𝐺𝜌

3
− 𝜅𝑐2

𝑎2
, (10.32)

a m

M

Figure 10.7 Newtonian picture in which the Universe is modeled as a uniform density sphere of radius 𝑎 and mass 𝑀

that gravitationally attracts a test mass 𝑚.
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which reproduces the first Friedmann equation.

10.9.2 First law of thermodynamics

For adiabatic expansion, the first law of thermodynamics is

𝑑𝐸 + 𝑝 𝑑𝑉 = 0 . (10.33)

With 𝐸 = 𝜌𝑉 and 𝑉 = 4
3𝜋𝑎

3, the first law (10.33) becomes

𝑑(𝜌𝑎3) + 𝑝 𝑑𝑎3 = 0 , (10.34)

or, with the derivative taken with respect to cosmic time 𝑡,

�̇�+ 3(𝜌+ 𝑝)
�̇�

𝑎
= 0 . (10.35)

Differentiating the first Friedmann equation in the form

�̇�2 =
8𝜋𝐺𝜌𝑎2

3
− 𝜅𝑐2 (10.36)

gives

2�̇��̈� =
8𝜋𝐺

3

(︀
�̇�𝑎2 + 2𝜌𝑎�̇�

)︀
, (10.37)

and substituting �̇� from the first law (10.35) reduces this to

2�̇��̈� =
8𝜋𝐺

3
𝑎�̇� (− 𝜌− 3𝑝) . (10.38)

Hence

�̈�

𝑎
= −4𝜋𝐺

3
(𝜌+ 3𝑝) , (10.39)

which reproduces the second Friedmann equation.

10.9.3 Comment on the Newtonian derivation

The above Newtonian derivation of Friedmann’s equations is only heuristic. A different result could have
been obtained if different assumptions had been made. If for example the Newtonian gravitational force law
𝑚�̈� = −𝐺𝑀𝑚/𝑎2 were taken as correct, then it would follow that �̈�/𝑎 = − 4

3𝜋𝐺𝜌, which is missing the
all-important 3𝑝 contribution (without which there would be no inflation or dark energy) to Friedmann’s
second equation.
It is notable that the first law of thermodynamics is built in to the Friedmann equations. This implies

that entropy is conserved in FLRW Universes (but see Concept question 30.5). This remains true even when
the mix of particles changes, as happens for example during the epoch of electron-positron annihilation, or
during big bang nucleosynthesis. How then does entropy increase in the real Universe? Through fluctuations
away from the perfect homogeneity and isotropy assumed by the FLRW metric.
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10.10 Hubble parameter

The Hubble parameter 𝐻(𝑡) is defined by

𝐻 ≡ �̇�

𝑎
. (10.40)

The Hubble parameter 𝐻 varies in cosmic time 𝑡, but is constant in space at fixed cosmic time 𝑡.
The value of the Hubble parameter today is called the Hubble constant 𝐻0 (the subscript 0 signifies the

present time). The Hubble constant measured from Cepheid variable stars and Type Ia supernova is (Riess
et al., 2011; Riess et al., 2018).

𝐻0 = 73.5± 1.7 km s−1 Mpc−1 . (10.41)

The observed CMB power spectrum, Figure 10.3, provides an accurate measurement of the angular lo-
cation of the first peak in the power spectrum, which determines the angular size of the sound horizon at
recombination, Chapter 32. This cosmological yardstick translates into a measurement of the Hubble pa-
rameter 𝐻0, but only if a cosmological model is assumed. In particular, the angular location of the peak
depends on the spatial curvature. The combination of CMB data with other data, notably Baryon Acoustic
Oscillations in galaxy clustering, Figure 10.4, and the Hubble diagram of Type Ia supernovae, Figure 10.1,
point consistently to a spatially flat cosmological model. If the Universe is taken to be spatially flat, then
CMB data from the Planck satellite yield (Aghanim et al., 2018)

𝐻0 = 67.4± 0.5 km s−1 Mpc−1 . (10.42)

The Cepheid and CMB measurements (10.41) and (10.42) of 𝐻0 lie outside each other’s error bars. One can
either be impressed that two completely independent measurements of 𝐻0 yield almost the same result, or
be worried by the disagreement. I incline to the former view, since these kind of measurements tend to be
beset with systematic uncertainties that can be difficult to get under control.
The distance 𝑑 to an object that is receding with the expansion of the universe is proportional to the cosmic

scale factor, 𝑑 ∝ 𝑎, and its recession velocity 𝑣 is consequently proportional to �̇�. The result is Hubble’s
law relating the recession velocity 𝑣 and distance 𝑑 of distant objects

𝑣 = 𝐻0𝑑 . (10.43)

Since it takes light time to travel from a distant object, and the Hubble parameter varies in time, the linear
relation (10.43) breaks down at cosmological distances.
We, in the Milky Way, reside in an overdense region of the Universe that has collapsed out of the general

Hubble expansion of the Universe. The local overdense region of the Universe that has just turned around
from the general expansion and is beginning to collapse for the first time is called the Local Group of
galaxies. The Local Group consists of order 100 galaxies, mostly dwarf and irregular galaxies. It contains two
major spiral galaxies, Andromeda (M31) and the Milky Way, and one mid-sized spiral galaxy Triangulum
(M33). The Local Group is about 1Mpc in radius.
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Because of the ubiquity of the Hubble constant in cosmological studies, cosmologists often parameterize
it by the quantity ℎ defined by

ℎ ≡ 𝐻0

100 km s−1 Mpc−1
. (10.44)

The reciprocal of the Hubble constant gives an approximate estimate of the age of the Universe (c.f. Exer-
cise 10.6),

1

𝐻0
= 9.778ℎ−1 Gyr = 14.0ℎ−10.70 Gyr . (10.45)

10.11 Critical density

The critical density 𝜌crit is defined to be the density required for the Universe to be flat, 𝜅 = 0. According
to the first of Friedmann equations (10.30), this sets

𝜌crit ≡
3𝐻2

8𝜋𝐺
. (10.46)

The critical density 𝜌crit, like the Hubble parameter 𝐻, evolves with time.

10.12 Omega

Cosmologists designate the ratio of the actual density 𝜌 of the Universe to the critical density 𝜌crit by the
fateful letter Ω, the final letter of the Greek alphabet,

Ω ≡ 𝜌

𝜌crit
. (10.47)

With no subscript, Ω denotes the total mass-energy density in all forms. A subscript 𝑥 on Ω𝑥 denotes
mass-energy density of type 𝑥.
The curvature density 𝜌𝑘, which is not really a form of mass-energy but it is sometimes convenient to treat

it as though it were, is defined by

𝜌𝑘 ≡ −
3𝜅𝑐2

8𝜋𝐺𝑎2
, (10.48)

and correspondingly

Ω𝑘 ≡
𝜌𝑘
𝜌crit

= − 𝜅𝑐2

𝑎2𝐻2
. (10.49)

If the cosmic scale factor is normalized to unity at the present time, equation (10.16), then the relation
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Table 10.1: Cosmic inventory

WMAP Planck
Species Hinshaw et al. (2012) Aghanim et al. (2018)
Dark energy (Λ) ΩΛ 0.72± 0.01 0.685± 0.007

Non-baryonic cold dark matter (CDM) Ωc 0.24± 0.01 0.261± 0.002

Baryonic matter Ωb 0.047± 0.002 0.0490± 0.0005

Neutrinos Ω𝜈 < 0.02 < 0.004

Photons (CMB) Ω𝛾 5× 10−5 5× 10−5

Total Ω 1.003± 0.004 0.999± 0.002

Curvature Ω𝑘 −0.003± 0.004 0.001± 0.002

between Ω𝑘 and the curvature constant 𝜅 is Ω𝑘 = −𝜅𝑐2/𝐻2
0 . According to the first of Friedmann’s equa-

tions (10.30), the curvature density Ω𝑘 satisfies

Ω𝑘 = 1− Ω . (10.50)

Note that Ω𝑘 has opposite sign from 𝜅, so a closed universe has negative Ω𝑘.
Table 10.1 gives measurements of Ω in various species, as reported by Hinshaw et al. (2012) from the final

analysis of the CMB power spectrum from WMAP, and by Aghanim et al. (2018) from the final analysis of
the CMB power spectrum from Planck. Both sets of analyses incorporate measurements from a variety of
other data, including CMB data at smaller scales, Figure 10.3, supernova data, Figure 10.1, galaxy clustering
(Baryonic Acoustic Oscillation, or BAO) data, Figure 10.4, and local measurements of the Hubble constant
𝐻0 (Riess et al., 2011; Riess et al., 2018). It is largely the CMB data that enable cosmological parameters
to be measured to the level of precision given in the Table. However, the CMB data by themselves constrain
tightly only a combination of the Hubble parameter 𝐻0 and the curvature Ω𝑘, as illustrated in Figure 26
of Aghanim et al. (2018). Other data, in particular BAO and the supernova Hubble diagram, resolve this
uncertainty, pointing to a flat Universe, Ω𝑘 = 0. Importantly, the various data are consistent with each other,
inspiring confidence in the correctness of the Standard Model. The neutrino limit implies an upper limit to
the sum of the masses of all neutrino species (Aghanim et al., 2018),∑︁

𝜈

𝑚𝜈 < 0.12 eV . (10.51)

Exercise 10.2. Omega in photons. Most of the energy density in electromagnetic radiation today is in
CMB photons. Calculate Ω𝛾 in CMB photons. Note that photons may not be the only relativistic species
today. Neutrinos with masses smaller than about 10−4 eV would be still be relativistic at the present time,
Exercise 10.20.
Solution. CMB photons have a blackbody spectrum at temperature 𝑇0 = 2.725K, so their density can be
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calculated from the blackbody formula. The present day ratio Ω𝛾 of the mass-energy density 𝜌𝛾 of CMB
photons to the critical density 𝜌crit is

Ω𝛾 ≡
𝜌𝛾
𝜌crit

=
8𝜋𝐺𝜌𝛾
3𝐻2

0

=
8𝜋3𝐺(𝑘𝑇0)

4

45𝐻2
0 𝑐

5~3
= 2.471× 10−5 ℎ−2 𝑇 4

2.725K = 5.0× 10−5 ℎ−20.70 𝑇
4
2.725K . (10.52)

10.13 Types of mass-energy

The energy-momentum tensor 𝑇𝜇𝜈 of a FLRW Universe is necessarily homogeneous and isotropic, by as-
sumption of the cosmological principle, taking the form (note yet again the trick of one index up and one
down to remove the distorting effect of the metric)

𝑇𝜇𝜈 =

⎛⎜⎜⎜⎝
𝑇 𝑡𝑡 0 0 0

0 𝑇 𝑟𝑟 0 0

0 0 𝑇 𝜃𝜃 0

0 0 0 𝑇𝜑𝜑

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎝
−𝜌 0 0 0

0 𝑝 0 0

0 0 𝑝 0

0 0 0 𝑝

⎞⎟⎟⎠ . (10.53)

Table 10.2 gives equations of state 𝑝/𝜌 for generic species of mass-energy, along with (𝜌 + 3𝑝)/𝜌, which
determines the gravitational attraction (deceleration) per unit energy, and how the mass-energy varies with
cosmic scale factor, 𝜌 ∝ 𝑎𝑛, Exercise 10.3.
As commented in §10.9.2, the first law of thermodynamics for adiabatic expansion is built into Friedmann’s

equations. In fact the law represents covariant conservation of energy-momentum for the system as a whole

𝐷𝜇𝑇
𝜇𝜈 = 0 . (10.54)

As long as species do not convert into each other (for example, no annihilation), covariant energy-momentum
conservation holds individually for each species, so the first law applies to each species individually, deter-
mining how its energy density 𝜌 varies with cosmic scale factor 𝑎. Figure 10.8 illustrates how the energy
densities 𝜌 of various species evolve as a function of scale factor 𝑎.
Vacuum energy is equivalent to a cosmological constant. Einstein originally introduced the cosmological

Table 10.2: Properties of universes dominated by various species

Species 𝑝/𝜌 (𝜌+ 3𝑝)/𝜌 𝜌 ∝
Radiation 1/3 2 𝑎−4

Matter 0 1 𝑎−3

Curvature “−1/3” “0” 𝑎−2

Vacuum −1 −2 𝑎0
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Figure 10.8 Behaviour of the mass-energy density 𝜌 of various species as a function of cosmic time 𝑡.

constant Λ as a modification to the left hand side of his equations,

𝐺𝜅𝜇 + Λ𝑔𝜅𝜇 = 8𝜋𝐺𝑇𝜅𝜇 . (10.55)

The cosmological constant term can be taken over to the right hand side and reinterpreted as vacuum energy
𝑇𝜅𝜇 = −𝜌Λ 𝑔𝜅𝜇 with energy density 𝜌Λ, satisfying

Λ = 8𝜋𝐺𝜌Λ . (10.56)

Exercise 10.3. Mass-energy in a FLRW Universe.

1. First law. The first law of thermodynamics for adiabatic expansion is built into Friedmann’s equations
(= Einstein’s equations for the FLRW metric):

𝑑(𝜌𝑎3) + 𝑝 𝑑𝑎3 = 0 . (10.57)

How does the density 𝜌 evolve with cosmic scale factor for a species with equation of state 𝑝/𝜌 = 𝑤 with
constant 𝑤? You should get an answer of the form

𝜌 ∝ 𝑎𝑛 . (10.58)

2. Attractive or repulsive? For what equation of state 𝑤 is the mass-energy attractive or repulsive?
Consider in particular the cases of “matter,” “radiation,” “curvature,” and “vacuum” energy.
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Concept question 10.4. Mass of a ball of photons or of vacuum. What is the gravitational mass of
a homogeneous, isotropic, spherical, ball of photons embedded in empty space, as measured by an observer
outside the ball? Assume that the boundary of the ball is free to expand or contract. What if the ball of
photons is bounded by a stationary reflecting spherical wall? What if the ball is a ball of vacuum energy
instead of photons? Answer. The right way to address this question is to think about what happens at the
boundary between the ball and empty space. See §20.17.

10.14 Redshifting

The spatial translation symmetry of the FLRWmetric implies conservation of generalized momentum. As you
will show in Exercise 10.5, a particle that moves along a geodesic in the radial direction, so that 𝑑𝜃 = 𝑑𝜑 = 0,
has 4-velocity 𝑝𝜈 satisfying

𝑝𝑥‖ = constant . (10.59)

This conservation law implies that the coordinate momentum 𝑝𝑥‖ of a radially moving particle decays as

𝑝𝑥‖ = 𝑔𝑥‖𝑥‖𝑝𝑥‖ =
𝑝𝑥‖

𝑎2
∝ 1

𝑎2
, (10.60)

so the proper momentum (the momentum measured in a comoving tetrad frame) decays as

𝑝
𝑥‖
proper ≡ 𝑚

𝑑𝑟‖

𝑑𝜏
= 𝑚𝑎

𝑑𝑥‖

𝑑𝜏
= 𝑎𝑝𝑥‖ ∝ 1

𝑎
, (10.61)

which is true for both massive and massless particles.
It follows from equation (10.61) that light observed on Earth from a distant object will be redshifted by

a factor

1 + 𝑧 =
𝑎0
𝑎
, (10.62)

where 𝑎0 is the present day cosmic scale factor. Cosmologists often refer to the redshift of an epoch, since
the cosmological redshift is an observationally accessible quantity that uniquely determines the cosmic time
of emission.

Exercise 10.5. Geodesics in the FLRW geometry. The Friedmann-Lemaître-Robertson-Walker metric
of cosmology is

𝑑𝑠2 = − 𝑑𝑡2 + 𝑎(𝑡)2

[︃
𝑑𝑥2‖ +

sin2(𝜅1/2𝑥‖)

𝜅

(︀
𝑑𝜃2 + sin2𝜃 𝑑𝜑2

)︀]︃
, (10.63)

where 𝜅 is a constant, the curvature constant. Note that equation (10.63) is valid for all values of 𝜅, including
zero and negative values: there is no need to consider the cases separately.
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1. Conservation of generalized momentum. Consider a particle moving with comoving 4-momentum
𝑝𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜆 along a geodesic in the radial direction, so that 𝑑𝜃 = 𝑑𝜑 = 0. Argue that the Lagrangian
equations of motion

𝑑

𝑑𝜆

𝜕𝐿

𝜕𝑝𝑥‖
=

𝜕𝐿

𝜕𝑥‖
(10.64)

with effective Lagrangian

𝐿 = 1
2 𝑔𝜇𝜈𝑝

𝜇𝑝𝜈 (10.65)

imply that

𝑝𝑥‖ = constant . (10.66)

Argue further from the same Lagrangian equations of motion that the assumption of a radial geodesic
is valid because

𝑝𝜃 = 𝑝𝜑 = 0 (10.67)

is a consistent solution. [Hint: The metric 𝑔𝜇𝜈 depends on the coordinate 𝑥‖. But for radial geodesics
with 𝑝𝜃 = 𝑝𝜑 = 0, the possible contributions from derivatives of the metric vanish.]

2. Proper momentum. Argue that a proper interval of distance measured by comoving observers along
the radial geodesic is 𝑎 𝑑𝑥‖. Hence show from equation (10.68) that the proper momentum 𝑝𝑥‖ of the
particle relative to comoving observers (who are at rest in the FLRW metric) evolves as

𝑝𝑥‖ ≡ 𝑚𝑎
𝑑𝑥‖

𝑑𝜆
∝ 1

𝑎
. (10.68)

3. Redshift. What relation does your result (10.68) imply between the redshift 1 + 𝑧 of a distant object
observed on Earth and the expansion factor 𝑎 since the object emitted its light? [Hint: Equation (10.68)
is valid for massless as well as massive particles. Why?]

4. Temperature of the CMB. Argue from the above results that the temperature 𝑇 of the CMB evolves
with cosmic scale factor as

𝑇 ∝ 1

𝑎
. (10.69)

10.15 Evolution of the cosmic scale factor

Given how the energy density 𝜌 of each species evolves with cosmic scale factor 𝑎, the first Friedmann
equation then determines how the cosmic scale factor 𝑎(𝑡) itself evolves with cosmic time 𝑡. If the Hubble
parameter 𝐻 ≡ �̇�/𝑎 is expressed as a function of cosmic scale factor 𝑎, then cosmic time 𝑡 can be expressed
in terms of 𝑎 as

𝑡 =

∫︁
𝑑𝑎

𝑎𝐻
. (10.70)
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The definition (10.46) of the critical density allows the Hubble parameter 𝐻 to be written

𝐻

𝐻0
=

√︂
𝜌crit

𝜌crit(𝑎0)
. (10.71)

The critical density 𝜌crit is itself the sum of the densities 𝜌 of all species including the curvature density,

𝜌crit = 𝜌𝑘 +
∑︁

species 𝑥

𝜌𝑥 . (10.72)

For example, in the case that the density is comprised of radiation, matter, and vacuum, the critical density
is

𝜌crit = 𝜌r + 𝜌m + 𝜌𝑘 + 𝜌Λ , (10.73)

and equation (10.71) is

𝐻(𝑡)

𝐻0
=
√︀
Ωr𝑎−4 +Ωm𝑎−3 +Ω𝑘𝑎−2 +ΩΛ , (10.74)

where Ω𝑥 represents its value at the present time. For density comprised of radiation, matter, and vacuum,
equation (10.74), the time 𝑡, equation (10.70), is

𝑡 =
1

𝐻0

∫︁
𝑑𝑎

𝑎
√
Ωr𝑎−4 +Ωm𝑎−3 +Ω𝑘𝑎−2 +ΩΛ

, (10.75)

which is an elliptic integral of the third kind. The elliptic integral simplifies to elementary functions in some
cases relevant to reality, Exercises 10.6 and 10.7.
If one single species in particular dominates the mass-energy density, then equation (10.75) integrates to

give the results in Table 10.3.

Table 10.3: Evolution of cosmic scale factor in universes dominated by various species

Dominant Species 𝑎 ∝
Radiation 𝑡1/2

Matter 𝑡2/3

Curvature 𝑡

Vacuum 𝑒𝐻𝑡

10.16 Age of the Universe

The present age 𝑡0 of the Universe since the Big Bang can be derived from equation (10.75) and cosmological
parameters, Table 10.1. Aghanim et al. (2018) give the age of the Universe to be

𝑡0 = 13.80± 0.02Gyr . (10.76)
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Figure 10.9 Cosmic scale factor as a function of time in universes with various Ωm and ΩΛ.

Exercise 10.6. Age of a FLRW universe containing matter and vacuum.

1. Age of a universe dominated by matter and vacuum. To a good approximation, the Universe
today appears to be flat, and dominated by matter and a cosmological constant, with Ωm + ΩΛ = 1.
Show that in this case the relation between age 𝑡 and cosmic scale factor 𝑎 is

𝑡 =
2

3𝐻0

√
ΩΛ

asinh

√︃
ΩΛ𝑎3

Ωm
. (10.77)

2. Age of our Universe. Evaluate the age 𝑡0 of the Universe today (𝑎0 = 1) in the approximation that
the Universe is flat and dominated by matter and a cosmological constant. [Note: Astronomers define
one Julian year to be exactly 365.25 days of 24 × 60 × 60 = 86,400 seconds each. A parsec (pc) is the
distance at which a star has a parallax of 1 arcsecond, whence 1 pc = (60 × 60 × 180/𝜋) au, where
1 au is one Astronomical Unit, the Earth-Sun distance. One Astronomical Unit was officially defined
by the International Astronomical Union (IAU) in 2012 to be 1 au ≡ 149,597,870,700m, with official
abbreviation au.]

Exercise 10.7. Age of a FLRW universe containing radiation and matter. The Universe was
dominated by radiation and matter over many decades of expansion including the time of recombination.
Show that for a flat Universe containing radiation and matter the relation between age 𝑡 and cosmic scale
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factor 𝑎 is

𝑡 =
2Ω

3/2
r

3𝐻0Ω2
m

�̂�2(2 +
√
1 + �̂�)

(1 +
√
1 + �̂�)2

, (10.78)

where �̂� is the cosmic scale factor scaled to 1 at matter-radiation equality,

�̂� ≡ 𝑎

𝑎eq
=

Ωm𝑎

Ωr
. (10.79)

You may well find a formula different from (10.78), but you should be able to recover the latter using the
identity

√
1 + �̂� − 1 = �̂�/(

√
1 + �̂� + 1). Equation (10.78) has the virtue that it is numerically stable to

evaluate for all �̂�, including tiny �̂�.

10.17 Conformal time

It is often convenient to use conformal time 𝜂 defined by (with units 𝑐 temporarily restored)

𝑎 𝑑𝜂 ≡ 𝑐 𝑑𝑡 , (10.80)

with respect to which the FLRW metric is

𝑑𝑠2 = 𝑎(𝜂)2
(︁
− 𝑑𝜂2 + 𝑑𝑥2‖ + 𝑥2𝑑𝑜2

)︁
, (10.81)

with 𝑥 given by equation (10.21). The term conformal refers to a metric that is multiplied by an overall factor,
the conformal factor (squared). In the FLRW metric (10.81), the cosmic scale factor 𝑎 is the conformal factor.
Conformal time 𝜂 is constructed so that radial null geodesics move at unit velocity in conformal coordinates.

Light moving radially, with 𝑑𝜃 = 𝑑𝜑 = 0, towards an observer at the origin 𝑥‖ = 0 satisfies

𝑑𝑥‖

𝑑𝜂
= −1 . (10.82)

Exercise 10.8. Relation between conformal time and cosmic scale factor. What is the relation
between conformal time 𝜂 and cosmic scale factor 𝑎 if the energy-momentum is dominated by a species with
equation of state 𝑝/𝜌 = 𝑤 = constant?
Solution. The conformal time 𝜂 is related to cosmic scale factor 𝑎 by (units 𝑐 = 1)

𝜂 =

∫︁
𝑑𝑎

𝑎2𝐻
. (10.83)

For 𝑝/𝜌 = 𝑤 = constant, a possible choice of integration constant for 𝜂 is: if 𝑤 > −1/3 (decelerating), set
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𝜂 = 0 at 𝑎 = 0, so that 𝜂 →∞ at 𝑎→∞; if 𝑤 < −1/3 (accelerating), set 𝜂 = 0 at 𝑎→∞, so that 𝜂 → −∞
at 𝑎→ 0. Then

𝜂 =
2

(1 + 3𝑤)𝑎𝐻
∝ ±𝑎(1+3𝑤)/2 , (10.84)

in which the sign is positive for 𝑤 > −1/3, negative for 𝑤 < −1/3, ensuring that conformal time 𝜂 always
increases with cosmic scale factor 𝑎. For the special case of a curvature-dominated universe, 𝑤 = −1/3,

𝜂 =
ln 𝑎

𝑎𝐻
∝ ln 𝑎 , (10.85)

which goes to 𝜂 → −∞ as 𝑎→ 0 and 𝜂 →∞ as 𝑎→∞.

10.18 Looking back along the lightcone

Since light moves radially at unit velocity in conformal coordinates, an object at geodesic distance 𝑥‖ that
emits light at conformal time 𝜂em is observed at conformal time 𝜂obs given by

𝑥‖ = 𝜂obs − 𝜂em . (10.86)

The comoving geodesic distance 𝑥‖ to an object is

𝑥‖ =

∫︁ 𝜂obs

𝜂em

𝑑𝜂 =

∫︁ 𝑡obs

𝑡em

𝑐 𝑑𝑡

𝑎
=

∫︁ 𝑎obs

𝑎em

𝑐 𝑑𝑎

𝑎2𝐻
=

∫︁ 𝑧

0

𝑐 𝑑𝑧

𝐻
, (10.87)

where the last equation assumes the relation 1 + 𝑧 = 1/𝑎, valid as long as 𝑎 is normalized to unity at the
observer (us) at the present time 𝑎obs = 𝑎0 = 1. In the case that the density is comprised of (curvature and)
radiation, matter, and vacuum, equation (10.87) gives

𝑥‖ =
𝑐

𝐻0

∫︁ 1

1/(1+𝑧)

𝑑𝑎

𝑎2
√
Ωr𝑎−4 +Ωm𝑎−3 +Ω𝑘𝑎−2 +ΩΛ

, (10.88)

which is an elliptical integral of the first kind. Given the geodesic comoving distance 𝑥‖, the circumferential
comoving distance 𝑥 then follows as

𝑥 =
sinh(

√
Ω𝑘𝐻0𝑥‖/𝑐)√
Ω𝑘𝐻0/𝑐

. (10.89)

To second order in redshift 𝑧,

𝑥 ≈ 𝑥‖ ≈
𝑐

𝐻0

[︀
𝑧 − 𝑧2

(︀
Ωr +

3
4Ωm + 1

2Ωk

)︀
+ ...

]︀
. (10.90)

The geodesic and circumferential distances 𝑥‖ and 𝑥 differ at order 𝑧3.
Figure 10.10 illustrates the relation between the comoving geodesic and circumferential distances 𝑥‖ and

𝑥, equations (10.88) and (10.89), and redshift 𝑧, equation (10.62), in three cosmological models, including
the standard flat ΛCDM model.
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Figure 10.10 In this diagram, each wedge represents a cone of fixed opening angle, with the observer (us) at the point

of the cone, at zero redshift. The wedges show the relation between physical sizes, namely the comoving distances 𝑥‖
in the radial (vertical) and 𝑥 in the transverse (horizontal) directions, and observable quantities, namely redshift and

angular separation, in three different cosmological models: (left) a flat matter-dominated universe, (middle) an open

matter-dominated universe, and (right) a flat ΛCDM universe.

10.19 Hubble diagram

The Hubble diagram of Type Ia supernova shown in Figure 10.1 is a plot of (log) luminosity distance log 𝑑𝐿
versus (log) redshift log 𝑧. The luminosity distance is explained in §10.19.1 immediately following.

10.19.1 Luminosity distance

Astronomers conventionally define the luminosity distance 𝑑𝐿 to a celestial object so that the observed
flux 𝐹 from the object (energy observed per unit time per unit collecting area of the telescope) is equal to
the intrinsic luminosity 𝐿 of the object (energy per unit time emitted by the object in its rest frame) divided
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by 4𝜋𝑑2𝐿,

𝐹 =
𝐿

4𝜋𝑑2𝐿
. (10.91)

In other words, the luminosity distance 𝑑𝐿 is defined so that flux 𝐹 and luminosity 𝐿 are related by the
usual inverse square law of distance. Objects at cosmological distances are redshifted, so the luminosity at
some emitted wavelength 𝜆em is observed at the redshifted wavelength 𝜆obs = (1 + 𝑧)𝜆em. The luminosity
distance (10.91) is defined so that the flux 𝐹 (𝜆obs) on the left hand side is at the observed wavelength, while
the luminosity 𝐿(𝜆em) on the right hand side is at the emitted wavelength. The observed flux and emitted
luminosity are then related by

𝐹 =
𝐿

(1 + 𝑧)24𝜋𝑥2
, (10.92)

where 𝑥 is the comoving circumferential radius, normalized to 𝑎0 = 1 at the present time. The factor of
1/(4𝜋𝑥2) expresses the fact that the luminosity is spread over a sphere of proper area 4𝜋𝑥2. Equation (10.92)
involves two factors of 1+ 𝑧, one of which come from the fact that the observed photon energy is redshifted,
and the other from the fact that the observed number of photons detected per unit time is redshifted by
1 + 𝑧. Equations (10.91) and (10.92) imply that the luminosity distance 𝑑𝐿 is related to the circumferential
distance 𝑥 and the redshift 𝑧 by

𝑑𝐿 = (1 + 𝑧)𝑥 . (10.93)

Why bother with the luminosity distance if it can be reduced to the circumferential distance 𝑥 by dividing
by a redshift factor? The answer is that, especially historically, fluxes of distant astronomical objects are
often measured from images without direct spectral information. If the intrinsic luminosity of the object
is treated as “known” (as with Cepheid variables and Type Ia supernovae), then the luminosity distance
𝑑𝐿 =

√︀
𝐿/(4𝜋𝐹 ) can be inferred without knowledge of the redshift. In practice objects are often measured

with a fixed colour filter or set of filters, and some additional correction, historically called the 𝐾-correction,
is necessary to transform the flux in an observed filter to a common band.

10.19.2 Magnitudes

The Hubble diagram of Type Ia supernova shown in Figure 10.1 has for its vertical axis the astronomers’
system of magnitudes, a system that dates back to the 2nd century BC Greek astronomer Hipparchus.
A magnitude is a logarithmic measure of brightness, defined such that an interval of 5 magnitudes 𝑚

corresponds to a factor of 100 in linear flux 𝐹 . Following Hipparchus, the magnitude system is devised such
that the brightest stars in the sky have apparent magnitudes of approximately 0, while fainter stars have
larger magnitudes, the faintest naked eye stars in the sky being about magnitude 6. Traditionally, the system
is tied to the star Vega, which is defined to have magnitude 0. Thus the apparent magnitude 𝑚 of a star is

𝑚 = 𝑚Vega − 2.5 log (𝐹/𝐹Vega) . (10.94)

The absolute magnitude 𝑀 of an object is defined to equal the apparent magnitude 𝑚 that it would have if
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it were 10 parsecs away, which is the approximate distance to the star Vega. Thus

𝑚−𝑀 = 5 log (𝑑𝐿/10 pc) , (10.95)

where 𝑑𝐿 is the luminosity distance. The difference 𝑚−𝑀 is called the distance modulus.

Exercise 10.9. Hubble diagram. Draw a theoretical Hubble diagram, a plot of luminosity distance 𝑑𝐿
versus redshift 𝑧, for universes with various values of ΩΛ and Ωm. The relation between 𝑑𝐿 and 𝑧 is an elliptic
integral of the first kind, so you will need to find a program that does elliptic integrals (alternatively, you can
do the integral numerically). The elliptic integral simplifies to elementary functions in simple cases where
the mass-energy density is dominated by a single component (either mass Ωm = 1, or curvature Ωk = 1, or
a cosmological constant ΩΛ = 1).
Solution. Your model curves should look similar to those in Figure 10.1.

10.20 Recombination

The CMB comes to us from the epoch of recombination, when the Universe transitioned from being mostly
ionized, and therefore opaque, to mostly neutral, and therefore transparent. As the Universe expands, the
temperature of the cosmic background decreases as 𝑇 ∝ 𝑎−1. Given that the CMB temperature today is
𝑇0 ≈ 3K, the temperature would have been about 3,000K at a redshift of about 1,000. This temperature
corresponds to the temperature at which hydrogen, the most abundant element in the Universe, ionizes. Not
coincidentally, the temperature of recombination is comparable to the ≈ 5,800K surface temperature of the
Sun. The CMB and Sun temperatures differ because the baryon-to-photon number density is much greater
in the Sun.
The transition from mostly ionized to mostly neutral takes place over a fairly narrow range of redshifts, just

as the transition from ionized to neutral at the photosphere of the Sun is rather sharp. Thus recombination
can be approximated as occurring almost instantaneously. Aghanim et al. (2018) give the redshift of last
scattering, where the photon-electron scattering (Thomson) optical depth was 1,

𝑧* = 1089.8± 0.2 . (10.96)

Hinshaw et al. (2012, supplementary data) give the age of the Universe at recombination,

𝑡* = 376,000± 4,000 yr . (10.97)

10.21 Horizon

Light can come from no more distant point than the Big Bang. This distant point defines what cosmologists
traditionally refer to as the horizon (or particle horizon) of our Universe, located at infinite redshift, 𝑧 =∞.
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Figure 10.11 Spacetime diagram of a FLRW Universe in conformal coordinates 𝜂 and 𝑥‖, in units of the present

day Hubble distance 𝑐/𝐻0. The unfilled circle marks our position, which is taken to be the origin of the conformal

coordinates. In conformal coordinates, light moves at 45∘ on the spacetime diagram. The diagram is drawn for a flat

ΛCDM model with ΩΛ = 0.7, Ωm = 0.3, and a radiation density such that the redshift of matter-radiation equality

is 3400, consistent with Aghanim et al. (2018). Horizontal lines are lines of constant cosmic scale factor 𝑎, labelled by

their values relative to the present, 𝑎0 = 1. Reheating, at the end of inflation, has been taken to be at redshift 1028.

Filled dots mark the place that cosmologists traditionally call the horizon, at reheating, which is a place of large, but

not infinite, redshift. Inflation offers a solution to the horizon problem because all points on the CMB within our past

lightcone could have been in causal contact at an early stage of inflation. If dark energy behaves like a cosmological

constant into the indefinite future, then we will have a future horizon.

Equation (10.87) gives the geodesic distance between us at redshift zero and the horizon as

𝑥‖(horizon) =
∫︁ ∞
0

𝑐 𝑑𝑧

𝐻
. (10.98)

The standard ΛCDM paradigm is based in part on the proposition that the Universe had an early infla-
tionary phase, §10.22. If so, then there is no place where the redshift reaches infinity. However, the redshift
is large at reheating, when inflation ends, and cosmologists call this the horizon,

𝑥‖(horizon) =
∫︁ huge

0

𝑐 𝑑𝑧

𝐻
. (10.99)

Figure 10.11 shows a spacetime diagram of a FLRW Universe with cosmological parameters consistent
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accelerating, vacuum-dominated phase. Whereas in the past redshifts tended to decrease with time, in the future

redshifts will tend to increase with time.

with those of (Aghanim et al., 2018). In this model, the comoving horizon distance to reheating is

𝑥‖(horizon) = 3.333 𝑐/𝐻0 = 14.5Gpc = 47.2Glyr . (10.100)

The redshift of reheating in this model has been taken at 𝑧 = 1028, but the horizon distance is insensitive to
the choice of reheating redshift.
The horizon should be distinguished from the future horizon, which Hawking and Ellis (1973) define to

be the farthest that an observer will ever be able to see in the indefinite future. If the Universe continues
accelerating, as it is currently, then our future horizon will be finite, as illustrated in Figure 10.11.
A quantity that cosmologists sometimes refer to loosely as the horizon is the Hubble distance, defined

to be

Hubble distance ≡ 𝑐

𝐻
, (10.101)

The Hubble distance sets the characteristic scale over which two observers can communicate and influence
each other, which is smaller than the horizon distance.
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The standard ΛCDM model has the curious property that the Universe is switching from a matter-
dominated period of deceleration to a vacuum-dominated period of acceleration. During deceleration, objects
appear over the horizon, while during acceleration, they disappear over the horizon. Figure 10.12 illustrates
the evolution of the observed redshifts of objects at fixed comoving distances. In the past decelerating phase,
the redshift of objects appearing over the horizon decreased rapidly from some huge value. In the future
accelerating phase, the redshift of objects disappearing over the horizon will increase in proportion to the
cosmic scale factor.

10.22 Inflation

Part of the Standard Model of Cosmology is the hypothesis that the early Universe underwent a period of
inflation, when the mass-energy density was dominated by “vacuum” energy, and the Universe expanded
exponentially, with 𝑎 ∝ 𝑒𝐻𝑡. The idea of inflation was originally motivated around 1980 by the idea that
early in the Universe the forces of nature would be unified, and that there is energy associated with that
unification. For example, the inflationary energy could be the energy associated with Grand Unification
of the U(1) × SU(2) × SU(3) forces of the standard model. The three coupling constants of the standard
model vary slowly with energy, appearing to converge at an energy of around 𝑚GUT ∼ 1016 GeV, not much
less than the Planck energy of 𝑚P ∼ 1019 GeV. The associated vacuum energy density would be of order
𝜌GUT ∼ 𝑚4

GUT in Planck units.
Alan Guth (1981) pointed at that, regardless of theoretical arguments for inflation, an early inflationary

epoch would solve a number of observational conundra. The most important observational problem is the
horizon problem, Exercise 10.11. If the Universe has always been dominated by radiation and matter, and
therefore always decelerating, then up to the time of recombination light could only have travelled a distance
corresponding to about 1 degree on the cosmic microwave background sky, Exercise 10.10. If that were the
case, then how come the temperature at points in the cosmic microwave background more than a degree
apart, indeed even 180∘ apart, on opposite sides of the sky, have the same temperature, even though they
could never have been in causal contact? Guth pointed out that inflation could solve the horizon problem
by allowing points to be initially in causal contact, then driven out of causal contact by the acceleration
and consequent exponential expansion induced by vacuum energy, provide that the inflationary expansion
continued over a sufficient number 𝑒-folds, Exercise 10.11. Guth’s solution is illustrated in the spacetime
diagram in Figure 10.11.
Guth pointed out that inflation could solve some other problems, such as the flatness problem. However,

most of these problems are essentially equivalent to the horizon problem, Exercise 10.12.
A distinct basic problem that inflation solves is the expansion problem. If the Universe has always been

dominated by a gravitationally attractive form of mass-energy, such as matter or radiation, then how come
the Universe is expanding? Inflation solves the problem because an initial period dominated by gravitationally
repulsive vacuum energy could have accelerated the Universe into enormous expansion.
Inflation also offers an answer to the question of where the matter and radiation seen in the Universe

today came from. Inflation must have come to an end, since the present day Universe does not contain
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the enormously high vacuum energy density that dominated during inflation (the vacuum energy during
inflation was vast compared to the present-day cosmological constant). The vacuum energy must therefore
have decayed into other forms of gravitationally attractive energy, such as matter and radiation. The process
of decay is called reheating. Reheating is not well understood, because it occurred at energies well above
those accessible to experiment today. Nevertheless, if inflation occurred, then so also did reheating.
Compelling evidence in favour of the inflationary paradigm comes from the fact that, in its simplest

form, inflationary predictions for the power spectrum of fluctuations of the CMB fit astonishingly well to
observational data, which continue to grow ever more precise.

Exercise 10.10. Horizon size at recombination.

1. Comoving horizon distance. Assume for simplicity a flat, matter-dominated Universe. From equa-
tion (10.98), what is the comoving horizon distance 𝑥‖ as a function of cosmic scale factor 𝑎?

2. Angular size on the CMB of the horizon at recombination. For a flat Universe, the angular
size on the CMB of the horizon at recombination equals the ratio of the comoving horizon distance
at recombination to the comoving distance between us and recombination. Recombination occurs at
sufficiently high redshift that the latter distance approximates the comoving horizon at the present time.
Estimate the angular size on the CMB of the horizon at recombination if the redshift of recombination
is 𝑧rec ≈ 1100.

Exercise 10.11. The horizon problem.

1. Expansion factor. The temperature of the CMB today is 𝑇0 ≈ 3K. By approximately what factor
has the Universe expanded since the temperature was some initial high temperature, say the GUT
temperature 𝑇i ≈ 1029 K, or the Planck temperature 𝑇i ≈ 1032 K?

2. Hubble distance. By what factor has the Hubble distance 𝑐/𝐻 increased during the expansion of
part 1? Assume for simplicity that the Universe has been mainly radiation-dominated during this period,
and that the Universe is flat. [Hint: For a flat Universe 𝐻2 ∝ 𝜌, and for radiation-dominated Universe
𝜌 ∝ 𝑎−4.]

3. Comoving Hubble distance. Hence determine by what factor the comoving Hubble distance 𝑥𝐻 =

𝑐/(𝑎𝐻) has increased during the expansion of part 1.
4. Comoving Hubble distance during inflation. During inflation the Hubble distance 𝑐/𝐻 remained

constant, while the cosmic scale factor 𝑎 expanded exponentially. What is the relation between the
comoving Hubble distance 𝑥𝐻 = 𝑐/(𝑎𝐻) and cosmic scale factor 𝑎 during inflation? [You should obtain
an answer of the form 𝑥𝐻 ∝ 𝑎?.]

5. Number of 𝑒-foldings to solve the horizon problem. By how many 𝑒-foldings must the Universe
have inflated in order to solve the horizon problem? Assume again, as in part 1, that the Universe
has been mainly radiation-dominated during expansion from the Planck temperature to the current
temperature, and that this radiation-dominated epoch was immediately preceded by a period of inflation.
[Hint: Inflation solves the horizon problem if the currently observable Universe was within the Hubble
distance at the beginning of inflation, i.e. if the comoving 𝑥𝐻,0 now is less than the comoving Hubble
distance 𝑥𝐻,𝑖 at the beginning of inflation. The ‘number of 𝑒-foldings’ is ln(𝑎f/𝑎i), where ln is the natural
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logarithm, and 𝑎i and 𝑎f are the cosmic scale factors at the beginning (i for initial) and end (f for final)
of inflation.]

Exercise 10.12. Relation between horizon and flatness problems. Show that Friedmann’s equa-
tion (10.30a) can be written in the form

Ω− 1 = 𝜅𝑥2𝐻 , (10.102)

where 𝑥𝐻 ≡ 𝑐/(𝑎𝐻) is the comoving Hubble distance. Use this equation to argue in your own words how the
horizon and flatness problems are related.

10.23 Evolution of the size and density of the Universe

Figure 10.13 shows the evolution of the cosmic scale factor 𝑎 as a function of time 𝑡 predicted by the standard
flat ΛCDM model, coupled with a plausible depiction of the early inflationary epoch. The parameters of the
model are the same as those for Figure 10.11. In the model, the Universe starts with an inflationary phase,
and transitions instantaneously at reheating to a radiation-dominated phases. Not long before recombination,
the Universe goes over to a matter-dominated phase, then later to the dark-energy-dominated phase of today.
The relation between cosmic time 𝑡 and cosmic scale factor 𝑎 is given by equation (10.70), and some relevant
analytic results are in Exercises 10.6 and 10.7.
Figure 10.13 also shows the evolution of the Hubble distance 𝑐/𝐻, which sets the approximate scale within

which regions are in causal contact. The Hubble distance is constant during vacuum-dominated phases, but
is approximately proportional to the age of the Universe at other times. The Figure illustrates that regions
that are in causal contact prior to inflation can fly out of causal contact during the accelerated expansion
of inflation. Once the Universe transitions to a decelerating radiation- or matter-dominated phase, regions
that were out of causal contact can come back into causal contact, inside the Hubble distance.
Since inflation occurred at high energies inaccessible to experiment, the energy scale of inflation is unknown,

and the number of 𝑒-folds during which inflation persisted is unknown. Figure 10.13 illustrates the case where
the energy scale of inflation is around the GUT scale, and the number of 𝑒-folds is only slightly greater than
the number necessary to solve the horizon problem. Figure 10.13 does not attempt to extrapolate to what
might possibly have happened prior to inflation.
Figure 10.14 shows the mass-energy density 𝜌 as a function of time 𝑡 for the same flat ΛCDM model as

shown in Figure 10.13. Since the Universe here is taken to be flat, the density equals the critical density
at all times, and is proportional to the inverse square of the Hubble distance 𝑐/𝐻 plotted in Figure 10.13.
The energy density is constant during epochs dominated by vacuum energy, but decreases approximately as
𝜌 ∝∼ 𝑡−2 at other times.
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Figure 10.13 Cosmic scale factor 𝑎 and Hubble distance 𝑐/𝐻 as a function of cosmic time 𝑡, for a flat ΛCDM model

with the same parameters as in Figure 10.11. In this model, the Universe began with an inflationary epoch where the

density was dominated by constant vacuum energy, the Hubble parameter 𝐻 was constant, and the cosmic scale factor

increased exponentially, 𝑎 ∝ 𝑒𝐻𝑡. The initial inflationary phase came to an end when the vacuum energy decayed into

radiation energy, an event called reheating. The Universe then became radiation-dominated, evolving as 𝑎 ∝ 𝑡1/2.

At a redshift of 𝑧eq ≈ 3400 the Universe passed through the epoch of matter-radiation equality, where the density

of radiation equalled that of (non-baryonic plus baryonic) matter. Matter-radiation equality occurred just prior to

recombination, at 𝑧rec ≈ 1090. The Universe remained matter-dominated, evolving as 𝑎 ∝ 𝑡2/3, until relatively recently

(from a cosmological perspective). The Universe transitioned through matter-dark energy equality at 𝑧Λ ≈ 0.4. The

dotted line shows how the cosmic scale factor and Hubble distance will evolve in the future, if the dark energy is a

cosmological constant, and if it does not decay into some other form of energy.

10.24 Evolution of the temperature of the Universe

Figure 10.15 shows the radiation (photon) temperature 𝑇 as a function of time 𝑡 corresponding to the
evolution of the scale factor 𝑎 and temperature 𝑇 shown in Figures 10.13 and 10.14.
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Figure 10.14 Mass-energy density 𝜌 of the Universe as a function of cosmic time 𝑡 corresponding to the evolution of

the cosmic scale factor shown in Figure 10.13.

A system of photons in thermodynamic equilibrium has a blackbody distribution of energies. The CMB
has a precise blackbody spectrum, not because it is in thermodynamic equilibrium today, but rather because
the CMB was in thermodynamic equilibrium with electrons and nuclei at the time of recombination, and the
CMB has streamed more or less freely through the Universe since recombination. A thermal distribution of
relativistic particles retains its thermal distribution in an expanding FLRW universe (albeit with a changing
temperature), Exercise 10.13.
The evolution of the temperature of photons in the Universe can be deduced from conservation of entropy.

The Friedmann equations imply the first law of thermodynamics, §10.9.2, and thus enforce conservation of
entropy per comoving volume (but see Concept Question 30.5). Entropy is conserved in a FLRW universe
even when particles annihilate with each other. For example, electrons and positrons annihilated with each
other when the temperature fell through 𝑇 ≈ 𝑚𝑒 = 511 keV, but the entropy lost by electrons and positrons
was gained by photons, for no net change in entropy, Figure 10.16 and Exercise 10.21.

In the real Universe, entropy increases as a result of fluctuations away from the perfect homogeneity and
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Figure 10.15 Radiation temperature 𝑇 of the Universe as a function of cosmic time 𝑡 corresponding to the evolution of

the cosmic scale factor shown in Figure 10.13. The temperature during inflation was the Hawking temperature, equal

to 𝐻/(2𝜋) in Planck units. After inflation and reheating, the temperature decreases as 𝑇 ∝ 𝑎−1, modified by a factor

depending on the effective entropy-weighted number 𝑔𝑠 of particle species, equation (10.104). In this plot, the effective

number 𝑔𝑠 of relativistic particle species has been approximated as changing abruptly at three discrete temperatures,

electron-positron annihilation, the QCD phase transition, and the electroweak phase transition, Table 10.4.

isotropy assumed by the FLRW geometry. By far the biggest repositories of entropy in today’s Universe are
black holes, principally supermassive black holes. However, black holes are irrelevant to the CMB, since the
CMB has propagated essentially unchanged since recombination. It is fine to compute the temperature of
cosmological radiation from conservation of cosmological entropy.

The entropy of a system in thermodynamic equilibrium is approximately one per particle, Exercise 10.18.
The number of particles in the Universe today is dominated by particles that were relativistic at the time
they decoupled, namely photons and neutrinos, and these therefore dominate the cosmological entropy. The
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Figure 10.16 Comoving number densities 𝑎3𝑛 of photons 𝛾, neutrinos 𝜈, electrons 𝑒, and positrons 𝑒 as a function of

temperature 𝑇 around the temperature 𝑚𝑒 near which electrons and positrons annihilate. Annihilating electrons and

positrons dump their entropy into photons, increasing the comoving density of photons, while conserving total entropy

per comoving volume. The comoving densities are normalized to 𝑎3𝑛𝛾 = 1 at the present time. The calculations are

described in Exercise 10.21.

ratio 𝜂b ≡ 𝑛b/𝑛𝛾 of baryon to photon number in the Universe today is less than a billionth,

𝜂b ≡
𝑛b
𝑛𝛾

=
𝜖𝛾Ωb

𝑚bΩ𝛾
= 6.1× 10−10

Ωbℎ
2

0.0224

(︂
𝑇0

2.725K

)︂−3
, (10.103)

where 𝜖𝛾 = 𝜋4𝑇0/ (30𝜁(3)) = 2.701𝑇0 is the mean energy per photon (Exercise 10.15), and 𝑚b = 939MeV

is the approximate mass per baryon. The value is as reported by the Planck team (Aghanim et al., 2018).
Conservation of entropy per comoving volume implies that the photon temperature 𝑇 at redshift 𝑧 is

related to the present day photon temperature 𝑇0 by (Exercise 10.19)

𝑇

𝑇0
= (1 + 𝑧)

(︂
𝑔𝑠,0
𝑔𝑠

)︂1/3

, (10.104)

where 𝑔𝑠 is the entropy-weighted effective number of relativistic particle species.
The other major contributors to cosmological entropy today, besides photons, are neutrinos and antineutri-

nos. Neutrinos decoupled at a temperature of about 𝑇 ≈ 1MeV. Above that temperature weak interactions
were fast enough to keep neutrinos and antineutrinos in thermodynamic equilibrium with protons and neu-
trons, hence with photons, but below that temperature neutrinos and antineutrinos froze out.
Neutrino oscillation data indicate that at least 2 of the 3 neutrino types have masses that would make
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Table 10.4: Effective entropy-weighted number of relativistic particle species
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𝑇 . 0.5MeV
photon 𝛾 1 1

2

(︂
1 +

7

8

4

11
3

)︂
= 3.91

neutrinos 𝜈𝑒, 𝜈𝜇, 𝜈𝜏 1
2 1 3 3

0.5MeV.𝑇 . 200MeV

photon 𝛾 1 1
2

(︂
1 +

7

8
5
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= 10.75neutrinos 𝜈𝑒, 𝜈𝜇, 𝜈𝜏 1

2 1 3 3

electron 𝑒 1
2 2 1 2

200MeV.𝑇 . 100GeV

photon 𝛾 1 1

2

(︂
9 +

7

8
25

)︂
= 61.75

SU(3) gluons 1 8

neutrinos 𝜈𝑒, 𝜈𝜇, 𝜈𝜏 1
2 1 3 3

leptons 𝑒, 𝜇 1
2 2 2 4

quarks 𝑢, 𝑑, 𝑠 1
2 2 3

2 2 3 18

𝑇 & 100GeV

SU(2)×U𝑌 (1) bosons 1 3 + 1

2

(︂
14 +

7

8
45

)︂
= 106.75

SU(3) gluons 1 8

complex Higgs 0 2

neutrinos 𝜈𝑒, 𝜈𝜇, 𝜈𝜏 1
2 1 3 3

leptons 𝑒, 𝜇, 𝜏 1
2 2 3 6

quarks 𝑢, 𝑑, 𝑐, 𝑠, 𝑡, 𝑏 1
2 2 3 2 3 36

cosmic neutrinos non-relativistic at the present time, §42.4.15. Neutrino oscillations fix only differences
in squared masses of neutrinos, leaving unconstrained the absolute mass levels. If the lightest neutrino
has mass 𝑚𝜈 . 10−4 eV, equation (10.111), then it would remain relativistic at the present time, and it
would produce a Cosmic Neutrino Background (CNB) analogous to the CMB. Because neutrinos froze out
before 𝑒𝑒-annihilation, annihilating electrons and positrons dumped their entropy into photons, increasing
the temperature of photons relative to that of neutrinos. The temperature of the CNB today would be,
Exercise 10.20,

𝑇𝜈 =

(︂
4

11

)︂1/3

2.725K = 1.945K . (10.105)

Sadly, neutrinos interact too weakly for such a background to be detectable with current technology. Like
the CMB, the CNB should have a (redshifted) thermal distribution inherited from being in thermodynamic
equilibrium at 𝑇 ∼ 1MeV.
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Table 10.4 gives approximate values of the effective entropy-weighted number 𝑔𝑠 of relativistic particle
species over various temperature ranges. The extra factor of two for 𝑔𝑠 in the final column of Table 10.4
arises because every particle species has an antiparticle (the two spin states of a photon can be construed
as each other’s antiparticle). The entropy of a relativistic fermionic species is 7/8 that of a bosonic species,
Exercise 10.16, equation (10.141). The difference in photon and neutrino temperatures leads to an extra
factor of 4/11 in the value of 𝑔𝑠 today, which, with 1 bosonic species (photons) and 3 fermionic species
(neutrinos), together with their antiparticles, is, equation (10.152),

𝑔𝑠,0 = 2

(︂
1 +

7

8

4

11
3

)︂
=

43

11
= 3.91 . (10.106)

A more comprehensive evaluation of 𝑔𝑠 is given by Kolb and Turner (1990, Fig. 3.5), and Aghanim et
al. (2018, Fig. 36). Over the range of energies 𝑇 . 1TeV covered by the standard model of physics, there
are four principal epochs in the evolution of the effective number 𝑔𝑠 of relativistic species, punctuated by
electron-positron annihilation at 𝑇 ≈ 0.5MeV, the QCD phase transition from bound nuclei to free quarks
and gluons at 𝑇 ≈ 200MeV, and the electroweak phase transition above which all standard model particles
are relativistic at 𝑇 ≈ 100GeV. There could well be further changes in the number of relativistic species
at higher temperatures, for example if supersymmetry becomes unbroken at some energy, but at present no
experimental data constrain the possibilities.

10.25 Neutrino mass

Neutrinos are created naturally by nucleosynthesis in the Sun, and by interaction of cosmic rays with the
atmosphere. When a neutrino is created (or annihilated) by a weak interaction, it is created in a weak
eigenstate. Observations of solar and atmospheric neutrinos indicate that neutrino species oscillate into each
other, implying that the weak eigenstates are not mass eigenstates. The weak eigenstates are denoted 𝜈𝑒, 𝜈𝜇,
and 𝜈𝜏 , while the mass eigenstates are denoted 𝜈1, 𝜈2, and 𝜈3. Oscillation data yield mass squared differences
between the three mass eigenstates (Forero, Tortola, and Valle, 2012)

|Δ𝑚21|2 = (7.6± 0.2)× 10−5 eV2 solar neutrinos , (10.107a)

|Δ𝑚31|2 = (2.4± 0.1)× 10−3 eV2 atmospheric neutrinos . (10.107b)

The data imply that at least two of the neutrino types have mass. The squared mass difference between 𝑚1

and 𝑚2 implies that at least one of them must have a mass

𝑚𝜈1 or 𝑚𝜈2 ≥
√︀

7.6× 10−5 eV2 ≈ 0.01 eV . (10.108)

The squared mass difference between 𝑚1 and 𝑚3 implies that at least one of them must have a mass

𝑚𝜈1 or 𝑚𝜈3 ≥
√︀

2.4× 10−3 eV2 ≈ 0.05 eV . (10.109)

The ordering of masses is undetermined by the data. The natural ordering is 𝑚1 < 𝑚2 < 𝑚3, but an inverted
hierarchy 𝑚3 < 𝑚1 ≈ 𝑚2 is possible. Constraints from the CMB impose an upper limit on the sum of the
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masses of the three neutrino types (Aghanim et al., 2018),∑︁
𝑚𝜈 < 0.12 eV . (10.110)

A direct measurement by the KATRIN experiment yields an upper limit of 𝑚𝜈𝑒 < 1.1 eV on the mass of the
electron neutrino (Aker et al., 2019).
The CNB temperature, equation (10.105), is 𝑇𝜈 = 1.945K = 1.676 × 10−4 eV. The redshift at which a

neutrino of mass 𝑚𝜈 becomes non-relativistic is then

1 + 𝑧𝜈 =
𝑚𝜈

𝑇𝜈
=

𝑚𝜈

1.676× 10−4 eV
. (10.111)

Neutrinos of masses 0.01 eV and 0.05 eV would have become non-relativistic at 𝑧𝜈 ≈ 60 and 300 respectively.
Only a neutrino of mass . 10−4 eV would remain relativistic at the present time.
The masses from neutrino oscillation data suggest that at least two species of cosmological neutrinos are

non-relativistic today. If so, then the neutrino density Ω𝜈 today is related to the sum
∑︀
𝑚𝜈 of neutrino

masses by

Ω𝜈 =
8𝜋𝐺

∑︀
𝑚𝜈𝑛𝜈

3𝐻2
0

= 5.4× 10−4
(︂ ∑︀

𝑚𝜈

0.05 eV

)︂
ℎ−20.70 . (10.112)

The number and entropy densities of neutrinos today are unaffected by whether they are relativistic, so
the effective number- and entropy-weighted numbers 𝑔𝑛,0 and 𝑔𝑠,0 are unaffected. On the other hand the
energy density of neutrinos today does depend on whether or not they are relativistic. If just one neutrino
type is relativistic and the other two are non-relativistic, then the effective energy-weighted number 𝑔𝜌,0 of
relativistic species today is

𝑔𝜌,0 = 2 +

(︂
4

11

)︂4/3
7

8
2 = 2.45 . (10.113)

The density Ωr of relativistic particles today is Ωr = (𝑔𝜌,0/2)Ω𝛾 .

10.25.1 The neutrino mass puzzle

The experimental fact that neutrinos have mass is puzzling. The other salient experimental property of
neutrinos is that they are left-handed (and anti-neutrinos are right-handed). A particle whose spin and
momentum point in the same direction is called right-handed, while a particle whose spin and momentum
point in opposite directions is called left-handed. The handedness of a particle is also called its chirality. For
massless particles, chirality is Lorentz-invariant: a massless particle that is purely left-handed in one frame
remains purely left-handed in any Lorentz-transformed frame.
The problem is that a particle cannot be both massive and purely left- or right-handed. A massive particle

that looks left-handed, spin anti-aligned with its momentum, in one frame, looks right-handed to an observer
who overtakes the particle from behind. This does not immediately contradict the experimental fact that
neutrinos are both massive and left-handed, since in all experiments neutrinos are highly relativistic, in which
case the left-handed components are boosted exponentially compared to the right-handed components, as
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Figure 10.17 According to the Standard Model of physics, a massive fermion acquires its mass by interacting with

the Higgs field. The interaction flips the fermion between left- and right-handed chiralities as it propagates through

spacetime, as illustrated schematically in this spacetime diagram. In the fermion’s rest frame, its wavefunction is a

linear combination of left- and right-handed chiralities with equal amplitudes (in absolute value). Boosting the fermion

in a direction opposite to its spin amplifies the left-handed component by a boost factor 𝑒𝜃/2 and deamplifies the

right-handed component by 𝑒−𝜃/2, so a fermion moving relativistically appears almost entirely left-handed.

illustrated in Figure 10.17. But in principle an observer could overtake a left-handed neutrino, which the
observer would then see as right-handed. But then where are the right-handed neutrinos? It is not enough to
say that right-handed neutrinos are too weakly interacting to have been observed. A right-handed neutrino
observed from behind would look like a left-handed neutrino and thereby become interacting, so right-handed
neutrinos should make themselves felt in cosmology.

A leading idea to solve the problem of neutrino mass is that neutrinos are so-called Majorana fermions,
which have the defining property that when observed from behind they not only switch from left- to right-
handed, but also from particle to antiparticle. Thus a left-handed neutrino observed from behind looks like
a right-handed antineutrino. Switching from particle to antiparticle would violate charge conservation, so
other fermions, namely electrons and quarks, cannot be Majorana fermions because they possess conserved
charges (electric charge and color charge). Left-handed neutrinos have weak isospin and weak hypercharge,
but those charges are not strictly conserved at energies below the ∼ 100GeV scale at which the electroweak
U𝑌 (1)×SU(2) symmetry breaks down to the Uem(1) electromagnetic symmetry. Thus at energies below the
electroweak scale, neutrinos can be massive Majorana fermions without violating any strict conservation law.

The problem of neutrino mass is resumed in §42.3.1.



268 Homogeneous, Isotropic Cosmology

10.26 Occupation number, number density, and energy-momentum

A careful treatment of the evolution of the number and energy-momentum densities of species in a FLRW
universe requires consideration of their momentum distributions.
In this section, including the Exercises, units 𝑐, ~, and 𝐺 are kept explicit, but the Boltzmann constant is

set to unity, 𝑘 = 1, which is equivalent to measuring temperature 𝑇 in units of energy.

10.26.1 Occupation number

Choose a locally inertial frame attached to an observer. The distribution of a particle species in the observer’s
frame is described by a dimensionless scalar occupation number 𝑓(𝑡,𝑥,𝑝) that specifies the number 𝑑𝑁 of
particles at the observer’s position 𝑥𝜇 ≡ {𝑡,𝑥} with momentum 𝑝𝑘 ≡ {𝐸,𝑝} in a dimensionless Lorentz-
invariant 6-dimensional volume of phase space,

𝑑𝑁 = 𝑓(𝑡,𝑥,𝑝)
𝑔 𝑑3𝑟 𝑑3𝑝

(2𝜋~)3
, (10.114)

with 𝑔 being the number of spin states of the particle. Here 𝑑3𝑟 and 𝑑3𝑝 denote the proper spatial and
momentum 3-volume elements in the observer’s locally inertial frame. The quantum mechanical normalization
factor (2𝜋~)3 ensures that 𝑓 counts the number of particles per free-particle quantum state. If the particle
species has rest mass 𝑚, then its energy 𝐸 is related to its momentum by 𝐸2− 𝑝2𝑐2 = 𝑚2𝑐4, which explains
why the occupation number is treated as a function only of momentum 𝑝.
The phase-space volume element 𝑑3𝑟 𝑑3𝑝 is a scalar, invariant under Lorentz transformations of the ob-

server’s frame. In fact, as shown in §4.22.1, the phase-space volume element is invariant under any canonical
transformation of coordinates and momenta, which includes not only Lorentz transformations but also a
broad range of other transformations. For example, in place of 𝑑3𝑟 𝑑3𝑝 it would be possible to use the
phase-space volume element 𝑑3𝑥 𝑑3𝜋 formed out of the spatial comoving coordinates 𝑥𝛼 and their conjugate
generalized momenta 𝜋𝛼.
The Lorentz invariance of the phase-space volume element 𝑑3𝑟 𝑑3𝑝 can be demonstrated more simplistically

as follows. First, the 3-volume element 𝑑3𝑟 is related to the scalar 4-volume element 𝑑𝑡 𝑑3𝑟 by

𝑑𝑡 𝑑3𝑟

𝑑𝜆
= 𝐸 𝑑3𝑟 , (10.115)

since 𝑑𝑡/𝑑𝜆 = 𝐸. The left hand side of equation (10.115) is the derivative of the observer’s 4-volume 𝑑𝑡 𝑑3𝑟
with respect to the affine parameter 𝑑𝜆 ≡ 𝑑𝜏/𝑚, with 𝜏 the observer’s proper time. Since both the 4-
volume and affine parameter are scalars, it follows that 𝐸 𝑑3𝑟 is a scalar (actually, 𝑑𝑡 𝑑3𝑟 = 𝑑𝑡 𝑑𝑟1𝑑𝑟2𝑑𝑟3 is
a pseudoscalar, not a scalar, as is 𝐸 𝑑3𝑟 = 𝑝0 𝑑𝑟1𝑑𝑟2𝑑𝑟3; see Chapter 15). Second, the momentum 3-volume
element 𝑑3𝑝 is related to the scalar 4-volume element 𝑑𝐸 𝑑3𝑝 by

𝛿(𝐸2 − 𝑝2𝑐2 −𝑚2𝑐4) 𝑑𝐸 𝑑3𝑝 =
𝑑3𝑝

2𝐸
, (10.116)

where the Dirac delta-function enforces conservation of the particle rest mass 𝑚. The 4-volume 𝑑4𝑝 is a
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scalar, and the delta-function is a function of a scalar argument, hence 𝑑3𝑝/𝐸 is likewise a scalar (again,
𝑑𝐸 𝑑3𝑝 = −𝑑𝑝0𝑑𝑝1𝑑𝑝2𝑑𝑝3 and 𝑑3𝑝/𝐸 = 𝑑𝑝1𝑑𝑝2𝑑𝑝3/𝑝

0 are actually pseudoscalars, not scalars). Since 𝐸 𝑑3𝑟
and 𝑑3𝑝/𝐸 are both Lorentz-invariant (pseudo-)scalars, so is their product, the phase space volume 𝑑3𝑟 𝑑3𝑝
(which is a genuine scalar).

10.26.2 Occupation number in a FLRW universe

The homogeneity and isotropy of a FLRW universe imply that, for a comoving observer, the occupation
number 𝑓 is independent of position and direction,

𝑓(𝑡,𝑥,𝑝) = 𝑓(𝑡, 𝑝) . (10.117)

10.26.3 Number density

In the locally inertial frame of an observer, the number density and flux of a particle species form a 4-vector
𝑛𝑘,

𝑛𝑘 =

∫︁
𝑝𝑘 𝑓(𝑡,𝑥,𝑝)

𝑔 𝑑3𝑝

𝐸(2𝜋~)3
. (10.118)

In particular, the number density 𝑛0, with units number of particles per unit proper volume, is the time
component of the number current,

𝑛0 =

∫︁
𝑓
𝑔 𝑑3𝑝

(2𝜋~)3
. (10.119)

In a FLRW universe, the spatial components of the number flux vanish by isotropy, so the only non-
vanishing component is the time component 𝑛0, which is just the proper number density 𝑛 of the particle
species,

𝑛 ≡ 𝑛0 =

∫︁
𝑓(𝑡, 𝑝)

𝑔 4𝜋𝑝2𝑑𝑝

(2𝜋~)3
. (10.120)

10.26.4 Energy-momentum tensor

In the locally inertial frame of an observer, the energy-momentum tensor 𝑇 𝑘𝑙 of a particle species is

𝑇 𝑘𝑙 =

∫︁
𝑝𝑘𝑝𝑙 𝑓(𝑡,𝑥,𝑝)

𝑔 𝑑3𝑝

𝐸(2𝜋~)3
. (10.121)

For a FLRW universe, homogeneity and isotropy imply that the energy-momentum tensor in the locally
inertial frame of a comoving observer is diagonal, with time component 𝑇 00 = 𝜌, and isotropic spatial
components 𝑇 𝑎𝑏 = 𝑝 𝛿𝑎𝑏. The proper energy density 𝜌 of a particle species is

𝜌 =

∫︁
𝐸 𝑓(𝑡, 𝑝)

𝑔 4𝜋𝑝2𝑑𝑝

(2𝜋~)3
, (10.122)
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and the proper isotropic pressure 𝑝 is (don’t confuse pressure 𝑝 on the left hand side with momentum 𝑝 on
the right hand side)

𝑝 =

∫︁
𝑝2

3𝐸
𝑓(𝑡, 𝑝)

𝑔 4𝜋𝑝2𝑑𝑝

(2𝜋~)3
. (10.123)

10.27 Occupation numbers in thermodynamic equilibrium

Frequent collisions tend to drive a system towards thermodynamic equilibrium. Electron-photon scattering
keeps photons in near equilibrium with electrons, while Coulomb scattering keeps electrons in near equi-
librium with ions, primarily hydrogen ions (protons) and helium nuclei. Thus photons and baryons can be
treated as having unperturbed distributions in mutual thermodynamic equilibrium.
In thermodynamic equilibrium at temperature 𝑇 , the occupation numbers of fermions, which obey an

exclusion principle, and of bosons, which obey an anti-exclusion principle, are

𝑓 =

⎧⎪⎨⎪⎩
1

𝑒(𝐸−𝜇)/𝑇 + 1
fermion ,

1

𝑒(𝐸−𝜇)/𝑇 − 1
boson ,

(10.124)

where 𝜇 is the chemical potential of the species. In the limit of small occupation numbers, 𝑓 ≪ 1, equivalent
to large negative chemical potential, 𝜇 → −large, both fermion and boson distributions go over to the
Boltzmann distribution

𝑓 = 𝑒(−𝐸+𝜇)/𝑇 Boltzmann . (10.125)

Chemical potential is the thermodynamic potential associated with conservation of number. There is a
distinct potential for each conserved species. For example, radiative recombination and photoionization of
hydrogen,

𝑝+ 𝑒↔ H+ 𝛾 , (10.126)

separately preserves proton and electron number, hydrogen being composed of one proton and one electron.
In thermodynamic equilibrium, the chemical potential 𝜇H of hydrogen is the sum of the chemical potentials
𝜇𝑝 and 𝜇𝑒 of protons and electrons,

𝜇𝑝 + 𝜇𝑒 = 𝜇H . (10.127)

Photon number is not conserved, so photons have zero chemical potential,

𝜇𝛾 = 0 , (10.128)

which is closely associated with the fact that photons are their own antiparticles. For photons, which are
bosons, the thermodynamic distribution (10.124) becomes the Planck distribution,

𝑓 =
1

𝑒𝐸/𝑇 − 1
Planck . (10.129)
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Exercise 10.13. Distribution of non-interacting particles initially in thermodynamic equilib-

rium. The number 𝑑𝑁 of a particle species in an interval 𝑑3𝑟𝑑3𝑝 of phase space (proper positions 𝑟 and
proper momenta 𝑝, not to be confused with the same symbol 𝑝 for pressure) for an ideal gas of free particles
(non-relativistic, relativistic, or anything in between) in thermodynamic equilibrium at temperature 𝑇 and
chemical potential 𝜇 is

𝑑𝑁 = 𝑓
𝑔 𝑑3𝑟𝑑3𝑝

(2𝜋~)3
, (10.130)

where the occupation number 𝑓 is (units 𝑘 = 1, where 𝑘 is the Boltzmann constant)

𝑓 =
1

𝑒(𝐸−𝜇)/𝑇 ± 1
, (10.131)

with a + sign for fermions and a − sign for bosons. The energy 𝐸 and momentum 𝑝 of particles of mass 𝑚
are related by 𝐸2 = 𝑝2𝑐2 +𝑚2𝑐4. For bosons, the chemical potential is constrained to satisfy 𝜇 ≤ 𝐸, but for
fermions 𝜇 may take any positive or negative value, with 𝜇 ≫ 𝐸 corresponding to a degenerate Fermi gas.
As the Universe expands, proper distance increase as 𝑟 ∝ 𝑎, while proper momenta decrease as 𝑝 ∝ 𝑎−1, so
the phase space volume 𝑑3𝑟𝑑3𝑝 remains constant.
1. Occupation number. Write down an expression for the occupation number 𝑓(𝑝) of a distribution of

particles that start in thermodynamic equilibrium and then remain non-interacting while the Universe
expands by a factor 𝑎.

2. Relativistic particles. Conclude that a distribution of non-interacting relativistic particles initially
in thermodynamic equilibrium retains its thermodynamic equilibrium distribution in a FLRW universe
as long as the particles remain relativistic. How do the temperature 𝑇 and chemical potential 𝜇 of the
relativistic distribution vary with cosmic scale factor 𝑎?

3. Non-relativistic particles. Show similarly that a distribution of non-interacting non-relativistic par-
ticles initially in thermodynamic equilibrium remains thermal. How do the temperature 𝑇 and chemical
potential 𝜇−𝑚 of the non-relativistic distribution vary with cosmic scale factor 𝑎?

4. Transition from relativistic to non-relativistic.What happens to a distribution of non-interacting
particles that are relativistic in thermodynamic equilibrium, but redshift to being non-relativistic?

Exercise 10.14. The first law of thermodynamics with non-conserved particle number. As seen
in §10.9.2, the first law of thermodynamics in the form

𝑇 𝑑(𝑎3𝑠) = 𝑑(𝑎3𝜌) + 𝑝 𝑑(𝑎3) = 0 (10.132)

is built into Friedmann’s equations. But what happens when for example the temperature falls through the
temperature 𝑇 ≈ 0.5MeV at which electrons and positrons annihilate? Won’t there be entropy production
associated with 𝑒𝑒 annihilation? Should not the first law of thermodynamics actually say

𝑇 𝑑(𝑎3𝑠) = 𝑑(𝑎3𝜌) + 𝑝 𝑑(𝑎3)−
∑︁
𝑋

𝜇𝑋 𝑑(𝑎
3𝑛𝑋) , (10.133)

with the last term taking into account the variation in the number 𝑎3𝑛𝑋 of various species 𝑋?
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Solution. Each distinct chemical potential 𝜇𝑋 is associated with a conserved number, so the additional
terms contribute zero change to the entropy,∑︁

𝑋

𝜇𝑋 𝑑(𝑎
3𝑛𝑋) = 0 , (10.134)

as long as the species are in mutual thermodynamic equilibrium. For example, positrons and electrons in
thermodynamic equilibrium satisfy 𝜇𝑒 = −𝜇𝑒, and

𝜇𝑒 𝑑(𝑎
3𝑛𝑒) + 𝜇𝑒 𝑑(𝑎

3𝑛𝑒) = 𝜇𝑒 𝑑(𝑎
3𝑛𝑒 − 𝑎3𝑛𝑒) = 0 , (10.135)

which vanishes because the difference 𝑎3𝑛𝑒− 𝑎3𝑛𝑒 between electron and positron number is conserved. Thus
the entropy conservation equation (10.132) remains correct in a FLRW universe even when number changing
processes are occurring.

Exercise 10.15. Number, energy, pressure, and entropy of a relativistic ideal gas at zero chem-

ical potential. The number density 𝑛, energy density 𝜌, and pressure 𝑝 of an ideal gas of a single species
of free particles are given by equations (10.120), (10.122), and (10.123), with occupation number (10.131).
Show that for an ideal relativistic gas of 𝑔 bosonic species in thermodynamic equilibrium at temperature 𝑇
and zero chemical potential, 𝜇 = 0, the number density 𝑛, energy density 𝜌, and pressure 𝑝 are (units 𝑘 = 1;
number density 𝑛 in units 1/volume, energy density 𝜌 and pressure 𝑝 in units energy/volume)

𝑛 = 𝑔
𝜁(3)𝑇 3

𝜋2𝑐3~3
, 𝜌 = 3𝑝 = 𝑔

𝜋2𝑇 4

30𝑐3~3
, (10.136)

where 𝜁(3) = 1.2020569 is a Riemann zeta function. The entropy density 𝑠 of an ideal gas of free particles
in thermodynamic equilibrium at zero chemical potential is

𝑠 =
𝜌+ 𝑝

𝑇
. (10.137)

Conclude that the entropy density 𝑠 of an ideal relativistic gas of 𝑔 bosonic species in thermodynamic
equilibrium at temperature 𝑇 and zero chemical potential is (units 1/volume)

𝑠 = 𝑔
2𝜋2𝑇 3

45𝑐3~3
. (10.138)

Exercise 10.16. A relation between thermodynamic integrals. Prove that∫︁ ∞
0

𝑥𝑛−1 𝑑𝑥

𝑒𝑥 + 1
=
(︀
1− 21−𝑛

)︀ ∫︁ ∞
0

𝑥𝑛−1 𝑑𝑥

𝑒𝑥 − 1
. (10.139)

[Hint: Use the fact that (𝑒𝑥 + 1)(𝑒𝑥 − 1) = (𝑒2𝑥 − 1).] Hence argue that the ratios of number, energy, and
entropy densities of relativistic fermionic (f) to relativistic bosonic (b) species in thermodynamic equilibrium
at the same temperature are

𝑛f
𝑛b

=
3

4
,

𝜌f
𝜌b

=
𝑠f
𝑠b

=
7

8
. (10.140)

Conclude that if the number 𝑛, energy 𝜌, and entropy 𝑠 of a mixture of bosonic and fermionic species in
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thermodynamic equilibrium at the same temperature 𝑇 are written in the form of equations (10.136) and
(10.138), then the effective number-, energy-, and entropy-weighted numbers 𝑔 of particle species are, in
terms of the number 𝑔b of bosonic and 𝑔f of fermionic species,

𝑔𝑛 = 𝑔b +
3

4
𝑔f , 𝑔𝜌 = 𝑔𝑠 = 𝑔b +

7

8
𝑔f . (10.141)

Exercise 10.17. Relativistic particles in the early Universe had approximately zero chemical

potential. Show that the small particle-antiparticle symmetry of our Universe implies that to a good ap-
proximation relativistic particles in thermodynamic equilibrium in the early Universe had zero chemical
potential.
Solution. The chemical potentials of particles 𝑋 and antiparticles �̄� in thermodynamic equilibrium are
necessarily related by

𝜇�̄� = −𝜇𝑋 . (10.142)

If the particle-antiparticle asymmetry is denoted 𝜂, defined for relativistic particles by

𝑛𝑋 − 𝑛�̄� = 𝜂 𝑛𝑋 , (10.143)

then 𝜇𝑋/𝑇 ∼ 𝜂. More accurately, to linear order in 𝜂,

𝜇𝑋
𝑇
≈ 𝜂 𝜋2

3 𝜁(3)
×
{︂

1 (bosons)
2
3 (fermions)

. (10.144)

Exercise 10.18. Entropy per particle. The entropy of an ideal gas of free particles in thermodynamic
equilibrium is

𝑠 =
𝜌+ 𝑝− 𝜇𝑛

𝑇
. (10.145)

Argue that the entropy per particle 𝑠/𝑛 is a quantity of order unity, whether particles are relativistic or
non-relativistic.
Solution. For relativistic bosons with zero chemical potential, equations (10.136) and (10.138) imply that
the entropy per particle is

𝑠

𝑛
=

2𝜋4

45𝜁(3)
×
{︂

1 = 3.6 (bosons) ,
7
6 = 4.2 (fermions) .

(10.146)

For a non-relativistic species, the number density 𝑛 is related to the temperature 𝑇 and chemical potential
𝜇 by

𝑛 = 𝑔

(︂
𝑚𝑇

2𝜋~2

)︂3/2

𝑒(𝜇−𝑚)/𝑇 . (10.147)

Under cosmological conditions, the occupation number of non-relativistic species was small, 𝑒(𝜇−𝑚)/𝑇 ≪ 1.
However, tiny occupation numbers correspond to values of (𝜇 − 𝑚)/𝑇 that are only logarithmically large
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(negative). The entropy per particle of a non-relativistic species is

𝑠

𝑛
=

5

2
+ ln

[︃
𝑔

𝑛

(︂
𝑚𝑇

2𝜋~2

)︂3/2
]︃
, (10.148)

which remains modest even if the argument of the logarithm is huge.

Exercise 10.19. Photon temperature at high redshift versus today. Use entropy conservation, 𝑎3𝑠 =
constant, to argue that the ratio of the photon temperature 𝑇 at redshift 𝑧 in the early Universe to the photon
temperature 𝑇0 today is as given by equation (10.104).

Exercise 10.20. Cosmic Neutrino Background. Neutrino oscillation data imply mass squared differ-
ences that indicate that at least 2 of the 3 neutrino types are massive today, equations (10.108) and (10.109).
The oscillation data do not constrain the offset from zero mass. A neutrino of mass . 10−4 eV would remain
relativistic at the present time, equation (10.111), and would produce a Cosmic Neutrino Background. Neutri-
nos that are non-relativistic today would have clustered gravitationally, similar to collisionless non-baryonic
dark matter, except that the fermionic character of neutrinos means that they could become degenerate
(occupation number almost 1) in regions of high density, such as in the cores of galaxies.
1. Temperature of the CNB. Weak interactions were fast enough to keep neutrinos in thermodynamic

equilibrium with protons and neutrons, hence with photons, electrons, and positrons up to just before
𝑒𝑒 annihilation, but then neutrinos decoupled. When electrons and positrons annihilated, they dumped
their entropy into that of photons, leaving the entropy of neutrinos unchanged. Argue that conservation
of comoving entropy implies

𝑎3𝑇 3
(︁
𝑔𝛾 +

7

8
𝑔𝑒

)︁
= 𝑇 3

𝛾 𝑔𝛾 , (10.149a)

𝑎3𝑇 3 𝑔𝜈 = 𝑇 3
𝜈 𝑔𝜈 , (10.149b)

where the left hand sides refer to quantities before 𝑒𝑒 annihilation, which happened at 𝑇 ∼ 0.5MeV, and
the right hand sides to quantities after 𝑒𝑒 annihilation (including today). Deduce the ratio of neutrino
to photon temperatures today,

𝑇𝜈
𝑇𝛾

. (10.150)

Does the temperature ratio (10.150) depend on the number of neutrino types? What is the neutrino
temperature today in K, if the photon temperature today is 2.725K?

2. Effective number of relativistic particle species. Because the temperatures of photons and neutri-
nos are different, the effective number 𝑔 of relativistic species today is not given by equations (10.141).
What are the effective number-, energy-, and entropy-weighted numbers 𝑔𝑛,0, 𝑔𝜌,0, and 𝑔𝑠,0 of relativistic
particle species today? What are their arithmetic values if the relativistic species consist of photons and
three species of neutrino? How are these values altered if, as is likely, neutrinos today are non-relativistic?
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Solution. The ratio of neutrino to photon temperatures after 𝑒𝑒 annihilation is

𝑇𝜈
𝑇𝛾

=

(︂
𝑔𝛾

𝑔𝛾 +
7
8 𝑔𝑒

)︂1/3

=

(︂
4

11

)︂1/3

= 0.714 . (10.151)

No, the temperature ratio does not depend on the number of neutrino types. The ratio depends on neutrinos
having decoupled a short time before 𝑒𝑒-annihilation. Equation (10.151) implies that the CNB temperature
is given by equation (10.105). With 2 bosonic degrees of freedom from photons, and 6 fermionic degrees of
freedom from 3 relativistic neutrino types, the effective number-, energy-, and entropy-weighted number of
relativistic degrees of freedom is

𝑔𝑛,0 = 𝑔𝛾 +

(︂
𝑇𝜈
𝑇𝛾

)︂3
3

4
𝑔𝜈 = 2 +

4

11

3

4
6 =

40

11
= 3.64 , (10.152a)

𝑔𝜌,0 = 𝑔𝛾 +

(︂
𝑇𝜈
𝑇𝛾

)︂4
7

8
𝑔𝜈 = 2 +

(︂
4

11

)︂4/3
7

8
6 = 3.36 , (10.152b)

𝑔𝑠,0 = 𝑔𝛾 +

(︂
𝑇𝜈
𝑇𝛾

)︂3
7

8
𝑔𝜈 = 2 +

4

11

7

8
6 =

43

11
= 3.91 . (10.152c)

Neutrinos today interact too weakly to annihilate, so their number and entropy today is that of relativistic
species even if they are non-relativistic today. However, their energy density today is not that of relativistic
particles.

Exercise 10.21. Abundance of electrons and positrons in thermodynamic equilibrium. Calcu-
late and plot the comoving number densities 𝑎3𝑛 of photons, electrons and positrons in thermodynamic
equilibrium as the temperature 𝑇 cooled through the electron mass mass 𝑚𝑒.
Solution. The results are shown in Figure 10.16.
Start by considering the more general situation of an ideal gas of any species, either fermionic or bosonic,

rest mass 𝑚, in thermodynamic equilibrium at temperature 𝑇 and chemical potential 𝜇 in a volume 𝑉 . The
logarithm of the grand partition function 𝑍𝐺 of such an ideal gas is (units 𝑐 = 𝑘 = 1)

ln𝑍𝐺 = 𝑉

∫︁
± ln

[︁
1± 𝑒(−𝐸+𝜇)/𝑇

]︁ 𝑔 𝑑3𝑝

(2𝜋~)3
, (10.153)

where the ± signs are + for fermions, − for bosons. The laws of thermodynamics state that energy density 𝜌,
number density 𝑛, and pressure 𝑝 (not to be confused with same symbol for momentum 𝑝) in thermodynamic
equilibrium are given by partial derivatives of ln𝑍𝐺 with respect to −1/𝑇 , 𝜇/𝑇 , and 𝑉 ,

𝑑 ln𝑍𝐺 = 𝜌𝑉 𝑑

(︂
− 1

𝑇

)︂
+ 𝑛𝑉 𝑑

(︁𝜇
𝑇

)︁
+
𝑝

𝑇
𝑑𝑉 . (10.154)

For an ideal gas, ln𝑍𝐺 is proportional to volume 𝑉 , and

ln𝑍𝐺
𝑉

=
𝑝

𝑇
= 𝑠− 𝜌

𝑇
+
𝜇𝑛

𝑇
, (10.155)

where 𝑠 is the entropy density.
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At the present time, the observed small baryon-to-photon ratio 𝑛b/𝑛𝛾 of the Universe implies a similarly
small electron-to-photon ratio 𝑛𝑒/𝑛𝛾 , from equations (10.103) and (31.8),

𝑛𝑒
𝑛𝛾

=
𝑓+𝑛b
𝑛𝛾

= 5.4× 10−10 . (10.156)

The small electron-to-photon ratio today implies a small electron-positron asymmetry before electron-
positron annihilation, implying 𝜇𝑒/𝑇 ≪ 1 before electron-positron annihilation.
As long as the particle-antiparticle symmetry is small when relativistic, an approximation to the grand

partition function that holds asymptotically at both high and low temperatures, and is accurate to better
than 5% at intermediate temperatures, is

ln𝑍𝐺 ≈
𝑔𝑉 𝑇 3

2𝜋2~3
𝑒(𝜇−𝑚)/𝑇 𝑐0

(︁
1 + 𝑐1

𝑚

𝑇

)︁3/2
, (10.157)

where the constants 𝑐0 and 𝑐1 for respectively fermions and bosons are

𝑐0 ≡
{︂
7

8
, 1

}︂
𝜋4

45
≈ {1.894, 2.165} , 𝑐1 ≡

(︂
𝜋

2𝑐20

)︂1/3

= {0.759, 0.695} . (10.158)

The partial derivatives (10.154) of the approximate logarithmic grand partition function (10.157) yield the
number density 𝑛, energy density 𝜌, and pressure 𝑝,

𝑛 ≈ 𝑔𝑇 3

2𝜋2~3
𝑒(𝜇−𝑚)/𝑇 𝑐0

(︁
1 + 𝑐1

𝑚

𝑇

)︁3/2
, (10.159a)

𝜌 ≈ 𝑛(𝑚+ 𝑞𝑇 ) , (10.159b)

𝑝 ≈ 𝑛𝑇 , (10.159c)

where the factor 𝑞 is

𝑞 ≡
3 + 3

2𝑐1𝑚/𝑇

1 + 𝑐1𝑚/𝑇
, (10.160)

which varies from 𝑞 = 3 at 𝑇 ≫ 𝑚 to 𝑞 = 3
2 at 𝑇 ≪ 𝑚. The entropy density 𝑠 is

𝑠 =
𝜌+ 𝑝− 𝜇𝑛

𝑇
≈
(︂
1 + 𝑞 +

𝑚− 𝜇
𝑇

)︂
𝑛 . (10.161)

The entropy in photons, which have 𝑞 = 3 and 𝑚 = 𝜇 = 0, is 𝑠𝛾 = 4𝑛𝛾 . The total entropy in all particles
can be written

𝑠 = 2𝑔𝑠𝑛𝛾 , (10.162)

which defines the effective entropy-weighted number 𝑔𝑠 of relativistic species. The total comoving entropy
𝑎3𝑠 is conserved. Conservation of comoving entropy implies that the cube of the product of scale factor 𝑎 and
temperature 𝑇 is inversely proportional to the effective entropy-weighted number 𝑔𝑠 of relativistic species,(︂

𝑎𝑇

𝑎0𝑇0

)︂3

=
𝑔𝑠,0
𝑔𝑠

. (10.163)
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In the problem being considered, when electrons and positrons annihilate, they dump their entropy into
photons, conserving the total comoving entropy of photons, electrons, and positrons as the Universe expands.
The effective entropy-weighted number 𝑔𝑠 of photons 𝛾, electrons 𝑒, and positrons 𝑒 through electron-positron
annihilation is approximately

𝑔𝑠 ≡
𝑠

2𝑛𝛾
≈ 1

2𝑛𝛾

[︂
4𝑛𝛾 +

(︂
1 + 𝑞𝑒 +

𝑚𝑒 − 𝜇𝑒
𝑇

)︂
𝑛𝑒 +

(︂
1 + 𝑞𝑒 +

𝑚𝑒 + 𝜇𝑒
𝑇

)︂
𝑛𝑒

]︂
≈ 2 +

7

8

[︁(︁
1 + 𝑞𝑒 +

𝑚𝑒

𝑇

)︁
cosh(𝜇𝑒/𝑇 )−

𝜇𝑒
𝑇

sinh(𝜇𝑒/𝑇 )
]︁
𝑒−𝑚𝑒/𝑇

(︁
1 + 𝑐1

𝑚𝑒

𝑇

)︁3/2
. (10.164)

For the purposes of calculating how the cosmic scale factor 𝑎 changes with temperature 𝑇 during electron-
positron annihilation, it suffices to approximate the electron chemical potential as zero, 𝜇𝑒 ≈ 0, since before
annihilation, when electrons and positrons are relativistic, the chemical potential is much less than the
temperature, 𝜇𝑒/𝑇 ≪ 1, and after annihilation electrons (and positrons) contribute little to the entropy,
and the value of the chemical potential ceases to make much difference. Thus the effective entropy-weighted
number 𝑔𝑠 of photons, electrons, and positrons is approximately

𝑔𝑠 ≈ 2 +
7

8

(︁
1 + 𝑞𝑒 +

𝑚𝑒

𝑇

)︁
𝑒−𝑚𝑒/𝑇

(︁
1 + 𝑐1

𝑚𝑒

𝑇

)︁3/2
. (10.165)

Inserting the expression (10.165) into equation (10.163) yields the cosmic scale factor 𝑎 in terms of temper-
ature 𝑇 through electron-positron annihilation.
An expression for chemical potential 𝜇𝑒 is needed to calculate the number densities of electrons and

positrons through electron-positron annihilation. The chemical potential can be deduced from conservation
of the comoving difference 𝑎3(𝑛𝑒 − 𝑛𝑒) in the number densities of electrons and positrons.
The approximation (10.159a), coupled with the thermodynamic equilibrium condition �̄� = −𝜇, implies

that the difference 𝑛 − �̄� between the number densities of particles and antiparticles in thermodynamic
equilibrium approximates

𝑛− �̄� ≈ 𝑔𝑇 3

𝜋2~3
sinh

(︁𝜇
𝑇

)︁
𝑒−𝑚/𝑇 𝑐′0

(︁
1 + 𝑐′1

𝑚

𝑇

)︁3/2
. (10.166)

In the approximation (10.159a), the constants 𝑐′0 and 𝑐′1 in equation (10.166) are the same as the con-
stants 𝑐0 and 𝑐1 given by equations (10.158); but a more accurate approximation for the difference 𝑛 − �̄�,
equation (10.166), uses instead the constants 𝑐′0 and 𝑐′1 defined by, for respectively fermions and bosons,

𝑐′0 ≡
{︂
3

4
, 1

}︂
2𝜁(3) ≈ {1.803, 2.404} , 𝑐′1 ≡

(︂
𝜋

2𝑐′20

)︂1/3

= {0.785, 0.648} , (10.167)

with 𝜁(3) ≈ 1.202 the Riemann zeta function. The approximation (10.166) with constants given by equa-
tions (10.167) is asymptotically correct at both high and low temperatures, and is accurate to better than
5% at intermediate temperatures. Putting together equations (10.166), (10.163), and (10.165) yields

𝑛𝑒
𝑛𝛾

⃒⃒⃒⃒
0

=
𝑔𝑠,0(𝑛𝑒 − 𝑛𝑒)

𝑔𝑠𝑛𝛾
=
𝑔𝑠,0
𝑔𝑠

2 sinh
(︁𝜇𝑒
𝑇

)︁
𝑒−𝑚𝑒/𝑇 0.833

(︁
1 + 0.785

𝑚𝑒

𝑇

)︁3/2
, (10.168)
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where 0.833 = 3
2𝜁(3)/(𝜋

4/45) and 0.785 are relevant constants from equations (10.158) and (10.167). Equa-
tion (10.168) can be solved for 𝜇𝑒/𝑇 in terms of temperature 𝑇 , given the present day value electron-to-photon
ratio 𝑛𝑒/𝑛𝛾 |0 from equation (10.156), the effective number of degrees of freedom 𝑔𝑠 from equation (10.165),
and its present day value 𝑔𝑠,0 = 2.
With 𝜇𝑒/𝑇 determined from equation (10.168), comoving number densities 𝑎3𝑛 in terms of temperature

𝑇 follow from equation (10.159a), along with equations (10.163) and (10.165).

10.28 Maximally symmetric spaces

By construction, the FLRW metric is spatially homogeneous and isotropic, which means it has maximal
spatial symmetry. A special subclass of FLRW metrics is in addition stationary, satisfying time translation
invariance. As you will show in Exercise 10.22, stationary FLRW metrics may have curvature and a cos-
mological constant, but no other source. You will also show that a coordinate transformation brings such
FLRW metrics to the explicitly stationary form

𝑑𝑠2 = −
(︀
1− 1

3Λ𝑟
2
s

)︀
𝑑𝑡2s +

𝑑𝑟2s
1− 1

3Λ𝑟
2
s

+ 𝑟2s 𝑑𝑜
2 , (10.169)

where the time 𝑡s and radius 𝑟s are subscripted s for stationary to distinguish them from FLRW time 𝑡 and
radius 𝑟.
Spacetimes that are homogeneous, isotropic, and stationary, and are therefore described by the met-

ric (10.169), are called maximally symmetric. A maximally symmetric space with a positive cosmological
constant, Λ > 0, is called de Sitter (dS) space, while that with a negative cosmological constant, Λ < 0,
is called anti de Sitter (AdS) space. The maximally symmetric space with zero cosmological constant is
just Minkowski space. Thanks to their high degree of symmetry, de Sitter and anti de Sitter spaces play a
prominent role in theoretical studies of quantum gravity.
de Sitter space has a horizon at radius 𝑟H =

√︀
3/Λ. Whereas inside the horizon the time coordinate 𝑡s is

timelike and the radial coordinate 𝑟s is spacelike, outside the horizon the time coordinate 𝑡s is spacelike and
the radial coordinate 𝑟s is timelike.
The Riemann tensor, Ricci tensor, Ricci scalar, and Einstein tensor of maximally symmetric spaces are

𝑅𝜅𝜆𝜇𝜈 = 1
3Λ(𝑔𝜅𝜇𝑔𝜆𝜈 − 𝑔𝜅𝜈𝑔𝜆𝜇) , 𝑅𝜅𝜇 = Λ𝑔𝜅𝜇 , 𝑅 = 4Λ , 𝐺𝜅𝜇 = −Λ𝑔𝜅𝜇 . (10.170)

10.28.1 de Sitter spacetime as a closed FLRW spacetime

Just as it was possible to conceive the spatial part of the FLRW geometry as a 3D hypersphere embedded in
4D Euclidean space, §10.6, so also it is possible to conceive a maximally symmetric space as a 4D hyperboloid
embedded in 5D space.
For de Sitter space, the parent 5D space is a Minkowski space with metric 𝑑𝑠2 = − 𝑑𝑢2 + 𝑑𝑥2 + 𝑑𝑦2 +
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Figure 10.18 Embedding spacetime diagram of de Sitter space, shown on the left in 3D, on the right in a 2D projection

on to the 𝑢-𝑤 plane. Objects are confined to the surface of the embedded hyperboloid. The vertical direction is timelike,

while the horizontal directions are spacelike. The position of a non-accelerating observer defines a “north pole” at 𝑟 = 0

and 𝑤 > 0, traced by the (black) line at the right edge of each diagram. Antipodeal to the north pole is a “south pole”

at 𝑟 = 0 and 𝑤 < 0, traced by the (black) line at the left edge of each diagram. The (reddish) skewed circles on the

3D diagram, which project to straight lines in the 2D diagram, are lines of constant stationary time 𝑡s, labelled with

their value in units of the horizon radius 𝑟H, as measured by the observer at rest at the north pole 𝑟 = 0. Lines of

constant stationary time 𝑡s transform into each other under a Lorentz boost in the 𝑢–𝑤 plane. The 45∘ dashed lines

are null lines constituting the past and future horizons of the north pole observer (or of the south pole observer). The

2D diagram on the right shows in addition a sample of (bluish) timelike geodesics that pass through 𝑢 = 𝑤 = 0 (these

lines are omitted from the 3D diagram).

𝑑𝑧2 + 𝑑𝑤2, and the embedded 4D hyperboloid is a set of points

− 𝑢2 + 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 = 𝑟2H = constant , (10.171)

with 𝑟H the horizon radius

𝑟H =

√︂
3

Λ
=

√︂
3

8𝜋𝜌Λ
. (10.172)

The de Sitter hyperboloid is illustrated in Figure 10.18. Let 𝑟 ≡ (𝑥2 + 𝑦2 + 𝑧2)1/2, and introduce the boost
angle 𝜓 and rotation angle 𝜒 defined by

𝑢 = 𝑟H sinh𝜓 , (10.173a)

𝑟 = 𝑟H cosh𝜓 sin𝜒 , (10.173b)

𝑤 = 𝑟H cosh𝜓 cos𝜒 . (10.173c)

The radius 𝑟 defined by equation (10.173b) is the same as the radius 𝑟s in the stationary metric (10.169). In
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terms of the angles 𝜓 and 𝜒, the metric on the de Sitter 4D hyperboloid is

𝑑𝑠2 = 𝑟2H
[︀
− 𝑑𝜓2 + cosh2𝜓

(︀
𝑑𝜒2 + sin2𝜒𝑑𝑜2

)︀]︀
. (10.174)

The metric (10.174) is of FLRW form (10.28) with 𝑡 = 𝑟H𝜓 and 𝑎(𝑡) = 𝑟H cosh𝜓 and a closed spatial
geometry. The de Sitter space describes a spatially closed FLRW universe that contracts, reaches a minimum
size at 𝑡 = 0, then reexpands. Comoving observers, those with 𝜒 = constant and fixed angular position, move
vertically upward on the embedded hyperboloid in Figure 10.18.
The spatial position at 𝑟 = 0 and 𝑤 > 0 defines a “north pole” of de Sitter space. Antipodeal to the north

pole is a “south pole” at 𝑟 = 0 and 𝑤 < 0. The surface 𝑢 = 𝑤 is a future horizon for an observer at the north
pole, and a past horizon for an observer at the south pole. Similarly the surface 𝑢 = −𝑤 is a past horizon for
an observer at the north pole, and a future horizon for an observer at the south pole. The causal diamond
of any observer is the region of spacetime bounded by the observer’s past and future horizons. The north
polar observer’s causal diamond is the region 𝑤 > |𝑢|, while the south polar observer’s causal diamond is
the region 𝑤 < −|𝑢|.
The radial coordinate 𝑟 is spacelike within the causal diamonds of either the north or south polar observers,

where |𝑤| > |𝑢|, but timelike outside those causal diamonds, where |𝑤| < |𝑢|.
The de Sitter hyperboloid possesses a symmetry under Lorentz boosts in the 𝑢–𝑤 plane. The time 𝑡s in

the stationary metric (10.169) is, modulo a factor of 𝑟H, the boost angle of this Lorentz boost, which is

𝑡s =

{︂
𝑟H atanh(𝑢/𝑤) |𝑤| > |𝑢| ,
𝑟H atanh(𝑤/𝑢) |𝑤| < |𝑢| . (10.175)

The stationary time coordinate 𝑡s is timelike inside the causal diamonds of either the north or south pole
observers, |𝑤| > |𝑢|, but spacelike outside those causal diamonds, |𝑤| < |𝑢|.

10.28.2 de Sitter spacetime as an open FLRW spacetime

An alternative coordinatization of the same embedded hyperboloid (10.171) for de Sitter space yields a metric
in FLRW form but with an open spatial geometry. Let 𝑟 ≡ (𝑥2 + 𝑦2 + 𝑧2)1/2 as before, and define 𝜓 and 𝜒
by

𝑢 = 𝑟H sinh𝜓 cosh𝜒 , (10.176a)

𝑟 = 𝑟H sinh𝜓 sinh𝜒 , (10.176b)

𝑤 = 𝑟H cosh𝜓 . (10.176c)

The 𝑟 defined by equation (10.176b) is not the same as the 𝑟s in the stationary metric (10.169); rather, it is
𝑤 that equals 𝑟s. In terms of the angles 𝜓 and 𝜒 defined by equations (10.176), the metric on the de Sitter
4D hyperboloid is

𝑑𝑠2 = 𝑟2H
[︀
− 𝑑𝜓2 + sinh2𝜓

(︀
𝑑𝜒2 + sinh2𝜒𝑑𝑜2

)︀]︀
. (10.177)

The metric (10.177) is in FLRW form (10.28) with 𝑡 = 𝑟H𝜓 and 𝑎(𝑡) = 𝑟H sinh𝜓 and an open spatial
geometry. Whereas the coordinates {𝜓, 𝜒}, equation (10.173), for de Sitter with closed spatial geometry
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N S

Figure 10.19 Penrose diagram of de Sitter space. The left and right edges are identified. The topology is that of a

3-sphere in the horizontal (spatial) direction times the real line in the vertical (time) direction. The thick (pink) null

lines are past and future horizons for observers who follow (vertical) geodesics at the “north” and “south” poles at

𝑟 = 0, marked N and S. The approximately horizontal and vertical contours are contours of constant stationary time

𝑡s and radius 𝑟s in the stationary form (10.169) of the de Sitter metric. The contours are uniformly spaced by 0.4

in 𝑡s/𝑟H and the tortoise coordinate 𝑟*s /𝑟H, equation (10.180). The stationary coordinates 𝑡s and 𝑟s are respectively

timelike (vertical) and spacelike (horizontal) inside the causal diamonds of the north and south pole observers, but

switch to being respectively spacelike and timelike outside the causal diamonds, in the lower and upper wedges.

The lower and upper wedges correspond to the open FLRW version (10.177) of the de Sitter metric. In the lower

wedges, comoving observers collapse to a Big Crunch where their future horizons converge, while in the upper wedges,

comoving observers expand away from a Big Bang from which their past horizons diverge.

cover the entire embedded hyperboloid shown in Figure 10.18, the coordinates {𝜓, 𝜒}, equation (10.176), for
de Sitter with open spatial geometry cover only the region of the hyperboloid with |𝑢| ≥ |𝑟| and 𝑤 ≥ 𝑟H.
The region of positive cosmic scale factor, 𝜓 ≥ 0, corresponds to 𝑢 ≥ 0. Conceptually, for de Sitter with
open spatial geometry, there is a Big Bang at {𝑢, 𝑟, 𝑤} = {0, 0, 1}𝑟H, comoving observers from which fill the
region 𝑢 ≥ |𝑟| and 𝑤 ≥ 𝑟H. Comoving observers, those with 𝜒 = constant, follow straight lines in the 𝑢–𝑟
plane, bounded by the null cone at 𝑢 = |𝑟|.
In the open FLRW metric (10.177) for de Sitter space, the coordinates 𝑡s and 𝑟s of the stationary met-

ric (10.169) are respectively spacelike and timelike. Lines of constant stationary time 𝑡s, equation (10.175),
coincide with geodesics of comoving observers, at constant 𝜒, while lines of constant stationary radius 𝑟s = 𝑤,
equation (10.176c), coincide with lines of constant FLRW time 𝜓,

𝑡s/𝑟H = 𝜒 , (10.178a)

𝑟s/𝑟H = 𝑤/𝑟H = cosh𝜓 . (10.178b)

10.28.3 Penrose diagram of de Sitter space

Figure 10.19 shows a Penrose diagram of de Sitter space. A natural choice of Penrose coordinates comes
from requiring that vertical lines on the embedded de Sitter hyperboloid 10.18 become vertical lines on the
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Penrose diagram. These vertical lines are geodesics for comoving observers, lines of constant 𝜒, in the closed
FLRW form (10.174) form of the de Sitter metric. The corresponding Penrose time coordinate 𝑡P follows
from solving for the radial null geodesics of the metric (10.174), whence 𝑡P =

∫︀
𝑑𝜓/ cosh𝜓. The resulting

Penrose coordinates for de Sitter space are

𝑡P = atan(sinh𝜓) = atan(𝑢/𝑟H) , (10.179a)

𝑟P = 𝜒 = atan(𝑟/𝑤) . (10.179b)

The radial coordinate 𝑟 in both the closed and open FLRW forms (10.174) and (10.177) of the de Sitter
metric was chosen so that a comoving observer at the origin was at 𝑟 = 0, at either the north or the south
pole. The Penrose diagram 10.19 depicts both closed and open FLRW geometries, but the open geometry is
shifted by 90∘ to the equator, so that it appears to interleave with the closed geometry instead of overlapping
it. The thick (pink) null lines at 45∘ outline the causal diamonds of north and south polar observers in the
closed FLRW geometry. The null lines also outline the causal wedges of equatorial observers in the open
FLRW geometry. The lower wedges correspond to collapsing spacetimes that terminate in a Big Crunch
where the null lines cross. The upper wedges correspond to expanding spacetimes that begin in a Big Bang
where the null lines cross. Note that the causal diamonds of any non-accelerating observer are spherically
symmetric about the observer. Thus the causal diamonds of the closed and open observers touch only along
one-dimensional lines, not along three-dimensional hypersurfaces as the Penrose diagram might suggest. The
causal diamonds of observers in de Sitter and anti de Sitter spacetimes are different for different observers,
and there is no reason to expect that the spacetime could be tiled fully by the causal diamonds of some set
of observers.
There is no physical singularity, no divergence of the Riemann tensor, at the Big Crunch and Big Bang

points of the collapsing and expanding open FLRW forms of the de Sitter geometry. Does that mean that the
collapsing de Sitter spacetime evolves smoothly into an expanding spacetime? As long as the spacetime is
pure vacuum, there is no way to tell whether spacetime is expanding or collapsing. Only when the spacetime
contains matter of some kind, as our Universe does, can a preferred set of comoving coordinates be defined.
When matter is present, Big Crunches and Big Bangs are, setting aside quantum gravity, genuine singularities
that cannot be removed by a coordinate transformation.
The horizontal and vertical contours in the Penrose diagram 10.19 are contours of constant stationary time

𝑡s and radius 𝑟s. Translation in 𝑡s is a symmetry of de Sitter spacetime, and to exhibit this symmetry, the
contours of 𝑡s in the Penrose diagram are chosen to be uniformly spaced. A similarly symmetric appearance
for the radial coordinate is achieved by choosing contours of 𝑟s to be uniformly spaced in the tortoise
coordinate 𝑟*s ,

𝑟*s ≡
∫︁

𝑑𝑟s
1− 𝑟2s /𝑟2H

= 𝑟H atanh(𝑟s/𝑟H) . (10.180)

The contours in the Penrose diagram 10.19 are uniformly spaced by 0.4 in 𝑡s/𝑟H and 𝑟*s /𝑟H. In terms of the
time and tortoise coordinates 𝑡𝑠 and 𝑟*s , the Penrose time and radial coordinates are

𝑡P ± 𝑟P = atan

[︂
sinh

(︂
𝑡s ± 𝑟*s
𝑟H

)︂]︂
. (10.181)
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Figure 10.20 Embedding spacetime diagram of anti de Sitter space, shown on the left in 3D, on the right in a 2D

projection on to the 𝑣-𝑟 plane. The vertical direction winding around the hyperboloid is timelike, while the horizontal

direction is spacelike. The position of a non-accelerating observer defines a spatial “pole” at 𝑟 = 0. In the 3D diagram,

the (red) horizontal line is an example line of constant stationary time 𝑡s for the observer at the pole. Lines of constant

stationary time 𝑡s transform into each other under a rotation in the 𝑢–𝑣 plane. The (bluish) lines at less than 45∘

from vertical are a sample of geodesics that pass through the pole at 𝑟 = 0 at time 𝜓 = 0. In anti de Sitter space, all

timelike geodesics that pass through a spatial point boomerang back to the spatial point in a proper time 𝜋𝑟H. The

2D diagram on the right shows in addition (reddish) lines of constant stationary time 𝑡s for observers on the various

geodesics.

10.28.4 Anti de Sitter space

For anti de Sitter space, the parent 5D space is a Minkowski space with signature −−+++, metric 𝑑𝑠2 =

− 𝑑𝑢2 − 𝑑𝑣2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2, and the embedded 4D hyperboloid is a set of points

− 𝑢2 − 𝑣2 + 𝑥2 + 𝑦2 + 𝑧2 = −𝑟2H = constant , (10.182)

with 𝑟H ≡
√︀
−3/Λ. The anti de Sitter hyperboloid is illustrated in Figure 10.20. Let 𝑟 ≡ (𝑥2 + 𝑦2 + 𝑧2)1/2,

and introduce the boost angle 𝜒 and rotation angle 𝜓 defined by

𝑢 = 𝑟H cosh𝜒 cos𝜓 , (10.183a)

𝑣 = 𝑟H cosh𝜒 sin𝜓 , (10.183b)

𝑟 = 𝑟H sinh𝜒 . (10.183c)

The time coordinate 𝜓 defined by equations (10.183) appears to be periodic, with period 2𝜋, but this is an
artefact of the embedding. In a causal spacetime, the time coordinate would not loop back on itself. Rather,
the coordinate 𝜓 can be taken to increase monotonically as it loops around the hyperboloid, extending from
−∞ to ∞. In terms of the angles 𝜓 and 𝜒, the metric on the anti de Sitter 4D hyperboloid is

𝑑𝑠2 = 𝑟2H
(︀
− cosh2𝜒𝑑𝜓2 + 𝑑𝜒2 + sinh2𝜒𝑑𝑜2

)︀
. (10.184)
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The metric (10.184) is of stationary form (10.169) with 𝑡s = 𝑟H𝜓 and 𝑟s = 𝑟H sinh𝜒.

10.28.5 Anti de Sitter spacetime as an open FLRW spacetime

An alternative coordinatization of the same embedded hyperboloid 10.20 for anti de Sitter space,

𝑢 = 𝑟H cos𝜓 , (10.185a)

𝑣 = 𝑟H sin𝜓 cosh𝜒 , (10.185b)

𝑟 = 𝑟H sin𝜓 sinh𝜒 . (10.185c)

yields a metric in FLRW form with an open spatial geometry,

𝑑𝑠2 = 𝑟2H
[︀
− 𝑑𝜓2 + sin2𝜓(𝑑𝜒2 + sinh2𝜒𝑑𝑜2)

]︀
. (10.186)

Whereas the coordinates (10.183) cover all of the anti de Sitter hyperboloid 10.20, the open coordinates (10.185)
cover only the regions with |𝑢| ≤ 𝑟H. These are the upper and lower diamonds bounded by the (pink) dashed
null lines in the hyperboloid 10.20. In each diamond, the open spacetime undergoes a Big Bang at the earliest
vertex of the diamond, expands to a maximum size, turns around, and collapses to a Big Crunch at the latest
vertex of the diamond.

10.28.6 Anti de Sitter spacetime as a Rindler space

Anti de Sitter spacetime possesses symmetry under Lorentz boosts in any time-space plane, such as the
𝑣–𝑥 plane. In the open FLRW form (10.186) of anti de Sitter geometry, such boosts transform geodesics
of comoving observers into each other. Outside the open causal diamonds on the other hand, these boosts
generate the worldlines of a certain set of “Rindler” observers who accelerate with constant acceleration in
the 𝑣–𝑥 plane. Rindler time and space coordinates {𝜒, 𝜓} are defined by

𝑢 = 𝑟H cosh𝜓 , (10.187a)

𝑣 = 𝑟H sinh𝜓 sinh𝜒 , (10.187b)

𝑥 = 𝑟H sinh𝜓 cosh𝜒 , (10.187c)

yielding the AdS Rindler metric

𝑑𝑠2 = 𝑟2H
(︀
− sinh2𝜓 𝑑𝜒2 + 𝑑𝜓2

)︀
+ 𝑑𝑦2 + 𝑑𝑧2 . (10.188)

10.28.7 Penrose diagram of anti de Sitter space

Figure 10.21 shows a Penrose diagram of anti de Sitter space. A natural choice of Penrose coordinates comes
from requiring that horizontal lines on the embedded anti de Sitter hyperboloid 10.20 become horizontal
lines on the Penrose diagram. These horizontal lines are lines of constant stationary time 𝑡s = 𝑟H𝜓 in the
stationary form (10.184) form of the anti de Sitter metric. The corresponding Penrose radial coordinate 𝑟P
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Figure 10.21 Penrose diagram of anti de Sitter space. The diagram repeats vertically indefinitely. The topology is

that of Euclidean 3-space in the horizontal (spatial) direction times the real line in the vertical (time) direction. The

thick (pink) null lines outline the causal diamonds of observers in the open FLRW form (10.186) of the anti de Sitter

spacetime. The spacetime of the open FLRW geometry expands from a Big Bang at a crossing point of the null lines,

and collapses to a Big Crunch at the next crossing point. The thick null lines also outline the causal wedges of Rindler

observers, equation (10.188), at the left and right edges of the diagram. The approximately horizontal and vertical

contours are lines of constant 𝜓 and 𝜒, uniformly spaced by 0.4 in 𝜒 and 𝜓*, equation (10.191), both in the open

FLRW diamonds and in the left and right Rindler wedges, equations (10.186) and (10.188). The coordinates 𝜓 and

𝜒 are respectively timelike (vertical) and spacelike (horizontal) in the open diamonds, and respectively spacelike and

timelike in the Rindler wedges.

follows from solving for the radial null geodesics of the metric (10.184), whence 𝑟P =
∫︀
𝑑𝜒/ cosh𝜒. The

resulting Penrose coordinates for de Sitter space are

𝑡P = 𝜓 = 𝑡s/𝑟H , (10.189a)

𝑟P = atan(sinh𝜒) = 𝑟*s /𝑟H , (10.189b)

where 𝑟*s is the tortoise radial coordinate

𝑟*s ≡
∫︁

𝑑𝑟s
1 + 𝑟2s /𝑟

2
H

= 𝑟H atan(𝑟s/𝑟H) . (10.190)

Thus, for anti de Sitter, lines of constant time 𝑡s and radius 𝑟s in the stationary metric (10.169) correspond
also to lines of constant Penrose time and radius 𝑡P and 𝑟P.
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The thick (pink) null lines in the Penrose diagram 10.21 outline the causal diamonds of comoving observers
in the open FLRW (10.186) form of the anti de Sitter metric. The null lines also outline the causal wedges
of Rindler observers in the Rindler (10.188) form of the anti de Sitter metric.
The approximately horizontal and vertical contours in the Penrose diagram 10.21 are lines of constant 𝜓

and 𝜒 in both the open FLRW (10.186) and Rindler (10.188) forms of the anti de Sitter metric. In the open
FLRW causal diamonds, the horizontal lines are lines of constant cosmic time 𝜓, while the vertical contours
are geodesics, lines of constant 𝜒. In the Rindler causal wedges, the horizontal contours are lines of constant
boost angle 𝜒, while the vertical contours are worldlines of Rindler observers, lines of constant 𝜓.
Anti de Sitter space is symmetric under boosts in the 𝑣–𝑥 plane, corresponding to translations of the

coordinate 𝜒 in either of the open FLRW (10.186) or Rindler (10.188) forms of the anti de Sitter metric. The
contours in the Penrose diagram 10.21 are uniformly spaced in 𝜒 by 0.4 so as to manifest this symmetry.
A similarly symmetric appearance for the 𝜓 coordinate is achieved by choosing contours to be uniformly
spaced by 0.4 in the tortoise coordinate 𝜓*

𝜓* ≡

⎧⎪⎪⎨⎪⎪⎩
∫︁

𝑑𝜓

sin𝜓
= ln tan(𝜓/2) open ,∫︁

𝑑𝜓

sinh𝜓
= ln tanh(𝜓/2) Rindler .

(10.191)

Exercise 10.22. Maximally symmetric spaces.

1. Argue that in a stationary spacetime, every scalar quantity must be independent of time. In particular,
the Riemann scalar 𝑅, and the contracted Ricci product 𝑅𝜇𝜈𝑅𝜇𝜈 must be independent of time. Conclude
that the density 𝜌 and pressure 𝑝 of a stationary FLRW spacetime must be constant.

2. Conclude that a stationary FLRW spacetime may have curvature and a cosmological constant, but no
other source. Show that the FLRW metric then takes the form (10.28) with cosmic scale factor

𝑎(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐻0𝑡 Ω𝑘 = 1 , ΩΛ = 0 ,

exp(𝐻0𝑡) Ω𝑘 = 0 , ΩΛ = 1 ,√︀
−Ω𝑘/ΩΛ cosh(

√
ΩΛ𝐻0𝑡) Ω𝑘 < 0 , ΩΛ > 0 ,√︀

Ω𝑘/ΩΛ sinh(
√
ΩΛ𝐻0𝑡) Ω𝑘 > 0 , ΩΛ > 0 ,√︀

−Ω𝑘/ΩΛ sin(
√
−ΩΛ𝐻0𝑡) Ω𝑘 > 0 , ΩΛ < 0 ,

(10.192)

with

ΩΛ𝐻
2
0 = 1

3Λ , Ω𝑘𝐻
2
0 = −𝜅 . (10.193)

As elsewhere in this chapter, 𝐻 = 𝐻0 at 𝑎 = 1, and the Ω’s sum to unity, Ω𝑘 +ΩΛ = 1.

3. Show that the FLRW metric transforms into the explicitly stationary form (10.169) under a coordinate
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transformation to proper radius 𝑟s = 𝑎(𝑡)𝑥 and stationary time 𝑡s given by

𝑡s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√︀
1− 𝜅𝑥2 𝑡 Ω𝑘 = 1 , ΩΛ = 0 ,

𝑡− 1

𝐻0
ln
√︁
1−𝐻2

0𝑟
2
s Ω𝑘 = 0 , ΩΛ = 1 ,

1√
ΩΛ𝐻0

acoth
[︁√︀

1− 𝜅𝑥2 coth
(︁√︀

ΩΛ𝐻0𝑡
)︁]︁

Ω𝑘 < 0 , ΩΛ > 0 ,

1√
ΩΛ𝐻0

atanh
[︁√︀

1− 𝜅𝑥2 tanh
(︁√︀

ΩΛ𝐻0𝑡
)︁]︁

Ω𝑘 > 0 , ΩΛ > 0 ,

1√
−ΩΛ𝐻0

atan
[︁√︀

1− 𝜅𝑥2 tan
(︁√︀
−ΩΛ𝐻0𝑡

)︁]︁
Ω𝑘 > 0 , ΩΛ < 0 .

(10.194)

Note that in all cases 𝑡s = 𝑡 at the origin 𝑟s = 0.

Concept question 10.23. Milne Universe. In Exercise 10.22 you found that the FLRW metric for an
open universe with zero energy-momentum content (Ω𝑘 = 1, ΩΛ = 0), also known as the Milne metric, is
equivalent to flat Minkowski space. How can an open universe be equivalent to flat space? Draw a spacetime
diagram of Minkowski space showing (a) worldlines of observers at constant comoving FLRW position 𝑥,
and (b) hypersurfaces of constant FLRW time 𝑡.

Concept question 10.24. Stationary FLRW metrics with different curvature constants describe

the same spacetime. How can it be that stationary FLRW metrics with different curvature constants 𝜅
(but the same cosmological constant Λ) describe the same spacetime?





PART TWO

TETRAD APPROACH TO GENERAL RELATIVITY





Concept Questions

1. The vierbein has 16 degrees of freedom instead of the 10 degrees of freedom of the metric. What do the
extra 6 degrees of freedom correspond to?

2. Tetrad transformations are defined to be Lorentz transformations. Don’t general coordinate transfor-
mations already include Lorentz transformations as a particular case, so aren’t tetrad transformations
redundant?

3. What does coordinate gauge-invariant mean? What does tetrad gauge-invariant mean?
4. Is the coordinate metric 𝑔𝜇𝜈 tetrad gauge-invariant?
5. What does a directed derivative 𝜕𝑚 mean physically?
6. Is the directed derivative 𝜕𝑚 coordinate gauge-invariant?
7. Is the tetrad metric 𝛾𝑚𝑛 coordinate gauge-invariant? Is it tetrad gauge-invariant?
8. What is the tetrad-frame 4-velocity 𝑢𝑚 of a person at rest in an orthonormal tetrad frame?
9. If the tetrad frame is accelerating (not in free-fall), which of the following is true/false?

a. Does the tetrad-frame 4-velocity 𝑢𝑚 of a person continuously at rest in the tetrad frame change
with time? 𝜕0𝑢𝑚 = 0? 𝐷0𝑢

𝑚 = 0?
b. Do the tetrad axes 𝛾𝛾𝑚 change with time? 𝜕0𝛾𝛾𝑚 = 0? 𝐷0𝛾𝛾𝑚 = 0?
c. Does the tetrad metric 𝛾𝑚𝑛 change with time? 𝜕0𝛾𝑚𝑛 = 0? 𝐷0𝛾𝑚𝑛 = 0?
d. Do the covariant components 𝑢𝑚 of the 4-velocity of a person continuously at rest in the tetrad

frame change with time? 𝜕0𝑢𝑚 = 0? 𝐷0𝑢𝑚 = 0?
10. Suppose that 𝑝 = 𝛾𝛾𝑚𝑝

𝑚 is a 4-vector. Is the proper rate of change of the proper components 𝑝𝑚 measured
by an observer equal to the directed time derivative 𝜕0𝑝𝑚 or to the covariant time derivative 𝐷0𝑝

𝑚?
What about the covariant components 𝑝𝑚 of the 4-vector? [Hint: The proper contravariant components
of the 4-vector measured by an observer are 𝑝𝑚 ≡ 𝛾𝛾𝑚 ·𝑝 where 𝛾𝛾𝑚 are the contravariant locally inertial
rest axes of the observer. Similarly the proper covariant components are 𝑝𝑚 ≡ 𝛾𝛾𝑚 · 𝑝.]

11. A person with two eyes separated by proper distance 𝛿𝜉𝑛 observes an object. The observer observes the
photon 4-vector from the object to be 𝑝𝑚. The observer uses the difference 𝛿𝑝𝑚 in the two 4-vectors
detected by the two eyes to infer the binocular distance to the object. Is the difference 𝛿𝑝𝑚 in photon
4-vectors detected by the two eyes equal to the directed derivative 𝛿𝜉𝑛𝜕𝑛𝑝𝑚 or to the covariant derivative
𝛿𝜉𝑛𝐷𝑛𝑝

𝑚?
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12. Suppose that 𝑝𝑚 is a tetrad 4-vector. Parallel-transport the 4-vector by an infinitesimal proper distance
𝛿𝜉𝑛. Is the change in 𝑝𝑚 measured by an ensemble of observers at rest in the tetrad frame equal to
the directed derivative 𝛿𝜉𝑛𝜕𝑛𝑝𝑚 or to the covariant derivative 𝛿𝜉𝑛𝐷𝑛𝑝

𝑚? [Hint: What if “rest” means
that the observer at each point is separately at rest in the tetrad frame at that point? What if “rest”
means that the observers are mutually at rest relative to each other in the rest frame of the tetrad at
one particular point?]

13. What is the physical significance of the fact that directed derivatives fail to commute?
14. Physically, what do the tetrad connection coefficients Γ𝑘𝑚𝑛 mean?
15. What is the physical significance of the fact that Γ𝑘𝑚𝑛 is antisymmetric in its first two indices (if the

tetrad metric 𝛾𝑚𝑛 is constant)?
16. Are the tetrad connections Γ𝑘𝑚𝑛 coordinate gauge-invariant?



What’s important?

This chapter describes the tetrad formalism of general relativity.
1. Why tetrads? Because physics is clearer in a locally inertial frame than in a coordinate frame.
2. The primitive object in the tetrad formalism is the vierbein 𝑒𝑚𝜇, in place of the metric in the coordinate

formalism.
3. Written suitably, for example as equation (11.9), a metric 𝑑𝑠2 encodes not only the metric coefficients
𝑔𝜇𝜈 , but a full vierbein 𝑒𝑚𝜇, through 𝑑𝑠2 = 𝛾𝑚𝑛 𝑒

𝑚
𝜇𝑑𝑥

𝜇 𝑒𝑛𝜈𝑑𝑥
𝜈 .

4. The tetrad road from vierbein to energy-momentum is similar to the coordinate road from metric to
energy-momentum, albeit a little more complicated.

5. In the tetrad formalism, the directed derivative 𝜕𝑚 is the analogue of the coordinate partial deriva-
tive 𝜕/𝜕𝑥𝜇 of the coordinate formalism. Directed derivatives 𝜕𝑚 do not commute, whereas coordinate
derivatives 𝜕/𝜕𝑥𝜇 do commute.
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11

The tetrad formalism

11.1 Tetrad

A tetrad (greek foursome) 𝛾𝛾𝑚(𝑥) is a set of axes

𝛾𝛾𝑚 ≡ {𝛾𝛾0,𝛾𝛾1,𝛾𝛾2,𝛾𝛾3} (11.1)

attached to each point 𝑥𝜇 of spacetime. The common case, illustrated in Figure 11.1, is that of an orthonor-
mal tetrad, where the axes form a locally inertial frame at each point, so that the dot products of the axes
constitute the Minkowski metric 𝜂𝑚𝑛

𝛾𝛾𝑚 · 𝛾𝛾𝑛 = 𝜂𝑚𝑛 . (11.2)

However, other tetrads prove useful in appropriate circumstances. There are spin tetrads, null tetrads (notably
the Newman-Penrose double null tetrad), and others (indeed, the basis of coordinate tangent vectors 𝑒𝜇 is

x
0

x
1

γγγγ
0

γγγγ
1

Figure 11.1 Tetrad vectors 𝛾𝛾𝑚 form a basis of vectors at each point. A common choice, depicted here, is for the

basis vectors 𝛾𝛾𝑚 to form an orthonormal set, meaning that their dot products constitute the Minkowski metric,

𝛾𝛾𝑚 ·𝛾𝛾𝑛 = 𝜂𝑚𝑛, at each point. The orthonormal frames at neighbouring points need not be aligned with each other by

parallel transport, and indeed in curved spacetime it is impossible to choose orthonormal frames that are everywhere

aligned.
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a tetrad). In general, the tetrad metric is some symmetric matrix 𝛾𝑚𝑛

𝛾𝛾𝑚 · 𝛾𝛾𝑛 ≡ 𝛾𝑚𝑛 . (11.3)

The convention in this book is that latin (black) indices label tetrad frames, while greek (brown) indices
label coordinate frames.
Why introduce tetrads?
1. The physics is more transparent when expressed in a locally inertial frame (or some other frame adapted

to the physics), as opposed to the coordinate frame, where Salvador Dali rules.
2. If you want to consider spin- 12 particles and quantum physics, you better work with tetrads.
3. For good reason, much of the general relativistic literature works with tetrads, so it’s useful to understand

them.

11.2 Vierbein

The vierbein (German four-legs, or colloquially, critter) 𝑒𝑚𝜇 is defined to be the matrix that transforms
between the tetrad frame and the coordinate frame (note the placement of indices: the tetrad index 𝑚 comes
first, then the coordinate index 𝜇)

𝑒𝜇 = 𝑒𝑚𝜇 𝛾𝛾𝑚 . (11.4)

The letter 𝑒 stems from the German word einheit for unity. The vierbein is a 4×4matrix, with 16 independent
components. The inverse vierbein 𝑒𝑚𝜇 is defined to be the matrix inverse of the vierbein 𝑒𝑚𝜇, so that

𝑒𝑚
𝜇 𝑒𝑚𝜈 = 𝛿𝜇𝜈 , 𝑒𝑚

𝜇 𝑒𝑛𝜇 = 𝛿𝑛𝑚 . (11.5)

Thus equation (11.4) inverts to

𝛾𝛾𝑚 = 𝑒𝑚
𝜇 𝑒𝜇 . (11.6)

11.3 The line-element encodes the vierbein

The scalar spacetime distance is

𝑑𝑠2 = 𝑔𝜇𝜈 𝑑𝑥
𝜇 𝑑𝑥𝜈 = 𝑒𝜇 · 𝑒𝜈 𝑑𝑥𝜇 𝑑𝑥𝜈 = 𝛾𝑚𝑛 𝑒

𝑚
𝜇 𝑒

𝑛
𝜈 𝑑𝑥

𝜇 𝑑𝑥𝜈 (11.7)

from which it follows that the coordinate metric 𝑔𝜇𝜈 is

𝑔𝜇𝜈 = 𝛾𝑚𝑛 𝑒
𝑚
𝜇 𝑒

𝑛
𝜈 . (11.8)

The shorthand way in which line-elements are commonly written encodes not only a metric but also a
vierbein, hence a tetrad. For example, the Schwarzschild line-element

𝑑𝑠2 = −
(︂
1− 2𝑀

𝑟

)︂
𝑑𝑡2 +

(︂
1− 2𝑀

𝑟

)︂−1
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2𝜃 𝑑𝜑2 (11.9)
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takes the form (11.7) with an orthonormal (Minkowski) tetrad metric 𝛾𝑚𝑛 = 𝜂𝑚𝑛, and a vierbein encoded
in the differentials (one-forms, §15.6)

𝑒0𝜇 𝑑𝑥
𝜇 =

(︂
1− 2𝑀

𝑟

)︂1/2

𝑑𝑡 , (11.10a)

𝑒1𝜇 𝑑𝑥
𝜇 =

(︂
1− 2𝑀

𝑟

)︂−1/2
𝑑𝑟 , (11.10b)

𝑒2𝜇 𝑑𝑥
𝜇 = 𝑟 𝑑𝜃 , (11.10c)

𝑒3𝜇 𝑑𝑥
𝜇 = 𝑟 sin 𝜃 𝑑𝜑 , (11.10d)

Explicitly, the vierbein of the Schwarzschild line-element is the diagonal matrix

𝑒𝑚𝜇 =

⎛⎜⎜⎝
(1− 2𝑀/𝑟)1/2 0 0 0

0 (1− 2𝑀/𝑟)−1/2 0 0

0 0 𝑟 0

0 0 0 𝑟 sin 𝜃

⎞⎟⎟⎠ , (11.11)

and the corresponding inverse vierbein is (note that, because the tetrad index is always in the first place and
the coordinate index is always in the second place, the matrices as written are actually inverse transposes of
each other, not just inverses)

𝑒𝑚
𝜇 =

⎛⎜⎜⎝
(1− 2𝑀/𝑟)−1/2 0 0 0

0 (1− 2𝑀/𝑟)1/2 0 0

0 0 1/𝑟 0

0 0 0 1/(𝑟 sin 𝜃)

⎞⎟⎟⎠ . (11.12)

Concept question 11.1. Schwarzschild vierbein. The components 𝑒0𝑡 and 𝑒1𝑟 of the Schwarzschild
vierbein (11.11) are imaginary inside the horizon. What does this mean? Is the vierbein still valid inside the
horizon?

11.4 Tetrad transformations

Tetrad transformations are transformations that preserve the fundamental property of interest, for example
the orthonormality, of the tetrad. For most tetrads considered in this book, which includes not only orthonor-
mal tetrads, but also spin tetrads and null tetrads (but not coordinate-based tetrads), tetrad transformations
are Lorentz transformations. The Lorentz transformation may be, and usually is, a different transformation
at each point. Tetrad transformations rotate the tetrad axes 𝛾𝛾𝑘 at each point by a Lorentz transformation
𝐿𝑘

𝑚, while keeping the background coordinates 𝑥𝜇 unchanged:

𝛾𝛾𝑘 → 𝛾𝛾′𝑘 = 𝐿𝑘
𝑚 𝛾𝛾𝑚 . (11.13)
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In the case that the tetrad axes 𝛾𝛾𝑘 are orthonormal, with a Minkowski metric, the Lorentz transformation
matrices 𝐿𝑘𝑚 in equation (11.13) take the familiar special relativistic form, but the linear matrices 𝐿𝑘𝑚 in
equation (11.13) signify a Lorentz transformation in any case.
For orthonormal, spin, and null tetrads, the tetrad metric 𝛾𝑚𝑛 is constant. Lorentz transformations are

precisely those transformations that leave the tetrad metric unchanged

𝛾′𝑘𝑙 = 𝛾𝛾′𝑘 · 𝛾𝛾′𝑙 = 𝐿𝑘
𝑚𝐿𝑙

𝑛 𝛾𝛾𝑚 · 𝛾𝛾𝑛 = 𝐿𝑘
𝑚𝐿𝑙

𝑛 𝛾𝑚𝑛 = 𝛾𝑘𝑙 . (11.14)

Exercise 11.2. Generators of Lorentz transformations are antisymmetric. From the condition that
the tetrad metric 𝛾𝑘𝑙 is unchanged by a Lorentz transformation, show that the generator of an infinitesimal
Lorentz transformation is an antisymmetric matrix. Is this true only for an orthonormal tetrad, or is it true
more generally?
Solution. An infinitesimal Lorentz transformation is the sum of the unit matrix and an infinitesimal piece
Δ𝐿𝑘

𝑚, the generator of the infinitesimal Lorentz transformation,

𝐿𝑘
𝑚 = 𝛿𝑚𝑘 +Δ𝐿𝑘

𝑚 . (11.15)

Under such an infinitesimal Lorentz transformation, the tetrad metric transforms to

𝛾′𝑘𝑙 = (𝛿𝑚𝑘 +Δ𝐿𝑘
𝑚)(𝛿𝑛𝑙 +Δ𝐿𝑙

𝑛)𝛾𝑚𝑛 ≈ 𝛾𝑘𝑙 +Δ𝐿𝑘𝑙 +Δ𝐿𝑙𝑘 , (11.16)

which by proposition equals the original tetrad metric 𝛾𝑘𝑙, equation (11.14). It follows that

Δ𝐿𝑘𝑙 +Δ𝐿𝑙𝑘 = 0 , (11.17)

that is, the generator Δ𝐿𝑘𝑙 is antisymmetric, as claimed. The result is true whenever the tetrad metric is
invariant under Lorentz transformations.

11.5 Tetrad vectors and tensors

Just as coordinate vectors (and tensors) were defined in §2.8 as objects that transformed like (tensor products
of) coordinate intervals under coordinate transformations, so also tetrad vectors (and tensors) are defined
as objects that transform like (tensor products of) tetrad vectors under tetrad (Lorentz) transformations.

11.5.1 Covariant tetrad 4-vector

A tetrad (Lorentz) transformation transforms the tetrad axes 𝛾𝛾𝑘 in accordance with equation (11.13). A
covariant tetrad 4-vector is defined to be a quantity 𝐴𝑘 = {𝐴0, 𝐴1, 𝐴2, 𝐴3} that transforms under a tetrad
transformation like the tetrad axes,

𝐴𝑘 → 𝐴′𝑘 = 𝐿𝑘
𝑚𝐴𝑚 . (11.18)
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11.5.2 Lowering and raising tetrad indices

Just as the indices on a coordinate vector or tensor were lowered and raised with the coordinate metric 𝑔𝜇𝜈
and its inverse 𝑔𝜇𝜈 , §2.8.3, so also indices on a tetrad vector or tensor are lowered and raised with the tetrad
metric 𝛾𝑚𝑛 and its inverse 𝛾𝑚𝑛, defined to satisfy

𝛾𝑘𝑚𝛾
𝑚𝑛 = 𝛿𝑛𝑘 . (11.19)

In the tetrads considered in this book (Minkowski, spin, or Newman-Penrose tetrad), the components of the
tetrad metric and its inverse are numerically equal, 𝛾𝑚𝑛 = 𝛾𝑚𝑛, but this need not be the case in general.
The contravariant (raised index) components 𝐴𝑚 and covariant (lowered index) components 𝐴𝑚 of a tetrad

vector are related by

𝐴𝑚 = 𝛾𝑚𝑛𝐴𝑛 , 𝐴𝑚 = 𝛾𝑚𝑛𝐴
𝑛 . (11.20)

The dual tetrad basis vectors 𝛾𝛾𝑚 are defined by

𝛾𝛾𝑚 ≡ 𝛾𝑚𝑛𝛾𝛾𝑛 . (11.21)

By construction, dot products of the dual and tetrad basis vectors equal the unit matrix,

𝛾𝛾𝑚 · 𝛾𝛾𝑛 = 𝛿𝑚𝑛 , (11.22)

while dot products of the dual basis vectors with each other equal the inverse tetrad metric,

𝛾𝛾𝑚 · 𝛾𝛾𝑛 = 𝛾𝑚𝑛 . (11.23)

11.5.3 Contravariant tetrad vector

A contravariant tetrad 4-vector 𝐴𝑘 transforms under a tetrad transformation as, analogously to equa-
tion (11.18),

𝐴𝑘 → 𝐴′𝑘 = 𝐿𝑘𝑚𝐴
𝑚 , (11.24)

where 𝐿𝑘𝑚 is the Lorentz transformation inverse to 𝐿𝑘𝑚. Equation (11.14) implies that Lorentz transforma-
tion matrices with indices variously lowered and raised satisfy

𝐿𝑘
𝑚𝐿𝑙𝑚 = 𝐿𝑘𝑚𝐿

𝑙𝑚 = 𝐿𝑚𝑘𝐿
𝑚𝑙 = 𝐿𝑚𝑘𝐿𝑚

𝑙 = 𝛿𝑙𝑘 . (11.25)

11.5.4 Abstract vector

A 4-vector can be written in a coordinate- and tetrad- independent fashion as an abstract 4-vector 𝐴,

𝐴 = 𝛾𝛾𝑚𝐴
𝑚 = 𝑒𝜇𝐴

𝜇 . (11.26)

Although 𝐴 is a 4-vector, it is by construction unchanged by either a coordinate transformation or a tetrad
transformation, and is therefore, according to the naming convention adopted in this book, §11.6, both a
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coordinate scalar and a tetrad scalar. The coordinate and tetrad components of the 4-vector 𝐴 are related
by the vierbein,

𝐴𝜇 = 𝑒𝑚𝜇𝐴𝑚 , 𝐴𝑚 = 𝑒𝑚
𝜇𝐴𝜇 . (11.27)

11.5.5 Scalar product

The scalar product of two 4-vectors may be 𝐴 and 𝐵 may be written variously

𝐴 ·𝐵 = 𝐴𝑚𝐵
𝑚 = 𝐴𝜇𝐵

𝜇 . (11.28)

The scalar product is a scalar, unchanged by either a coordinate or tetrad transformation.

11.5.6 Tetrad tensor

In general, a tetrad-frame tensor 𝐴𝑘𝑙...𝑚𝑛... is an object that transforms under tetrad (Lorentz) transforma-
tions (11.13) as

𝐴′𝑘𝑙...𝑚𝑛... = 𝐿𝑘𝑎𝐿
𝑙
𝑏 ... 𝐿𝑚

𝑐𝐿𝑛
𝑑 ... 𝐴𝑎𝑏...𝑐𝑑... . (11.29)

11.6 Index and naming conventions for vectors and tensors

In the tetrad formalism tensors can be coordinate tensors, or tetrad tensors, or mixed coordinate-tetrad
tensors. For example, the vierbein 𝑒𝑚𝜇 is itself a mixed coordinate-tetrad tensor.
The convention in this book is to distinguish the various kinds of vector and tensor with an adjective, and

by its index:
1. A coordinate vector 𝐴𝜇, with a brown greek index, is one that changes in a prescribed way under

coordinate transformations. A coordinate transformation is one that changes the coordinates 𝑥𝜇 of the
spacetime without actually changing the spacetime or whatever lies in it. A coordinate vector 𝐴𝜇 does
not change under a tetrad transformation, and is therefore a tetrad scalar.

2. A tetrad vector 𝐴𝑚 with a black latin index, is one that changes in a prescribed way under tetrad
transformations. A tetrad transformation Lorentz transforms the tetrad axes 𝛾𝛾𝑚 at each point of the
spacetime without actually changing the spacetime or whatever lies in it. A tetrad vector 𝐴𝑚 does not
change under a coordinate transformation, and is therefore a coordinate scalar.

3. An abstract vector 𝐴, identified by boldface, is the thing itself, and is unchanged by either the choice
of coordinates or the choice of tetrad. Since the abstract vector is unchanged by either a coordinate
transformation or a tetrad transformation, it is a coordinate and tetrad scalar, and has no indices.

All the types of vector have the properties of linearity (additivity, multiplication by scalars) that identify
them mathematically as belonging to vector spaces. The important distinction between the types of vector
is how they behave under transformations.
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Just because something has a coordinate or tetrad index does not make it a coordinate or tetrad tensor. If
however an object is a coordinate and/or tetrad tensor, then its indices are lowered and raised as follows:
1. Lower and raise coordinate indices with the coordinate metric 𝑔𝜇𝜈 and its inverse 𝑔𝜇𝜈 ;

2. Lower and raise tetrad indices with the tetrad metric 𝛾𝑚𝑛 and its inverse 𝛾𝑚𝑛;

3. Switch between coordinate and tetrad frames with the vierbein 𝑒𝑚𝜇 and its inverse 𝑒𝑚𝜇.

11.7 Gauge transformations

Gauge transformations are transformations of the coordinates or tetrad. Such transformations do not
change the underlying spacetime.
Quantities that are unchanged by a coordinate transformation are coordinate gauge-invariant (coor-

dinate scalars). Quantities that are unchanged under a tetrad transformation are tetrad gauge-invariant

(tetrad scalars). For example, tetrad tensors are coordinate gauge-invariant, while coordinate tensors are
tetrad gauge-invariant.
Tetrad transformations have the 6 degrees of freedom of Lorentz transformations, with 3 degrees of freedom

in spatial rotations, and 3 more in Lorentz boosts. General coordinate transformations have 4 degrees of
freedom. Thus there are 10 degrees of freedom in the choice of tetrad and coordinate system. The 16 degrees
of freedom of the vierbein, minus the 10 degrees of freedom from the transformations of the tetrad and
coordinates, leave 6 physical degrees of freedom in spacetime, the same as in the coordinate approach to
general relativity, which is as it should be.

11.8 Directed derivatives

Directed derivatives 𝜕𝑚 are defined to be the directional derivatives along the axes 𝛾𝛾𝑚

𝜕𝑚 ≡ 𝛾𝛾𝑚 · 𝜕 = 𝛾𝛾𝑚 · 𝑒𝜇
𝜕

𝜕𝑥𝜇
= 𝑒𝑚

𝜇 𝜕

𝜕𝑥𝜇
a tetrad 4-vector . (11.30)

The directed derivative 𝜕𝑚 is independent of the choice of coordinates, as signalled by the fact that it has
only a tetrad index, no coordinate index.
Unlike coordinate derivatives 𝜕/𝜕𝑥𝜇, directed derivatives 𝜕𝑚 do not commute. Their commutator is

[𝜕𝑚, 𝜕𝑛] =

[︂
𝑒𝑚

𝜇 𝜕

𝜕𝑥𝜇
, 𝑒𝑛

𝜈 𝜕

𝜕𝑥𝜈

]︂
= 𝑒𝑚

𝜇 𝜕𝑒𝑛
𝜈

𝜕𝑥𝜇
𝜕

𝜕𝑥𝜈
− 𝑒𝑛𝜈

𝜕𝑒𝑚
𝜇

𝜕𝑥𝜈
𝜕

𝜕𝑥𝜇

= (− 𝑑𝑘𝑛𝑚 + 𝑑𝑘𝑚𝑛) 𝜕𝑘 not a tetrad tensor (11.31)
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where 𝑑𝑙𝑚𝑛 ≡ 𝛾𝑙𝑘 𝑑𝑘𝑚𝑛 is the inverse vierbein derivative

𝑑𝑙𝑚𝑛 ≡ −𝛾𝑙𝑘 𝑒𝑘𝜅 𝑒𝑛𝜈
𝜕𝑒𝑚

𝜅

𝜕𝑥𝜈
not a tetrad tensor . (11.32)

Since the vierbein and inverse vierbein are inverse to each other, an equivalent definition of 𝑑𝑙𝑚𝑛 in terms of
the vierbein is

𝑑𝑙𝑚𝑛 ≡ 𝛾𝑙𝑘 𝑒𝑚𝜇 𝑒𝑛𝜈
𝜕𝑒𝑘𝜇
𝜕𝑥𝜈

not a tetrad tensor . (11.33)

The vierbein derivatives 𝑑𝑙𝑚𝑛 are also known as Ricci rotation coefficients (or, in the context of Newman-
Penrose tetrads, spin coefficients).

11.9 Tetrad covariant derivative

The derivation of tetrad covariant derivatives 𝐷𝑚 follows precisely the analogous derivation of coordinate
covariant derivatives 𝐷𝜇. The tetrad-frame formulae look entirely similar to the coordinate-frame formulae,
with the replacement of coordinate partial derivatives by directed derivatives, 𝜕/𝜕𝑥𝜇 → 𝜕𝑚, and the re-
placement of coordinate-frame connections by tetrad-frame connections Γ𝜅𝜇𝜈 → Γ𝑘𝑚𝑛. There are two things
to be careful about: first, unlike coordinate partial derivatives, directed derivatives 𝜕𝑚 do not commute;
and second, neither tetrad-frame nor coordinate-frame connections are tensors, and therefore it should be
no surprise that the tetrad-frame connections Γ𝑙𝑚𝑛 are not related to the coordinate-frame connections
Γ𝜆𝜇𝜈 by the ‘usual’ vierbein transformations. Rather, the tetrad and coordinate connections are related by
equation (11.44).
If Φ is a scalar, then 𝜕𝑚Φ is a tetrad 4-vector. The tetrad covariant derivative of a scalar is just the directed

derivative

𝐷𝑚Φ = 𝜕𝑚Φ a tetrad 4-vector . (11.34)

If 𝐴𝑚 is a tetrad 4-vector, then 𝜕𝑛𝐴𝑚 is not a tetrad tensor, and 𝜕𝑛𝐴𝑚 is not a tetrad tensor. But the
abstract 4-vector 𝐴 = 𝛾𝛾𝑚𝐴

𝑚, being by construction invariant under both tetrad and coordinate transfor-
mations, is a scalar, and its directed derivative is therefore a 4-vector,

𝜕𝑛𝐴 = 𝜕𝑛(𝛾𝛾𝑚𝐴
𝑚) a tetrad 4-vector

= 𝛾𝛾𝑚𝜕𝑛𝐴
𝑚 + (𝜕𝑛𝛾𝛾𝑚)𝐴𝑚 . (11.35)

For equation (11.35) to make sense, the derivatives 𝜕𝑛𝛾𝛾𝑚 must be defined, something that is made possible,
as in the coordinate approach in §2.9.2, by the postulate of the existence of locally inertial frames. The
coordinate partial derivative of 𝛾𝛾𝑚 are defined in the usual way by

𝜕𝛾𝛾𝑚
𝜕𝑥𝜈

≡ lim
𝛿𝑥𝜈→0

𝛾𝛾𝑚(𝑥0, ..., 𝑥𝜈+𝛿𝑥𝜈 , ..., 𝑥3)− 𝛾𝛾𝑚(𝑥0, ..., 𝑥𝜈 , ..., 𝑥3)

𝛿𝑥𝜈
. (11.36)

The right hand of equation (11.36) involves the difference between 𝛾𝛾𝑚 at two different points 𝑥 and 𝑥+𝛿𝑥.
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Figure 11.2 The change 𝛿𝛾𝛾0 in the tetrad vector 𝛾𝛾0 over a small coordinate interval 𝛿𝑥1 of spacetime is defined to be

the difference between the tetrad vector 𝛾𝛾0(𝑥1 + 𝛿𝑥1) at the shifted position 𝑥1 + 𝛿𝑥1 and the tetrad vector 𝛾𝛾0(𝑥1)

at the original position 𝑥1, parallel-transported to the shifted position. The parallel-transported vector is shown as a

dashed arrowed line. The parallel transport is defined with respect to a locally inertial frame, shown as a background

square grid aligned with the tetrad at the unshifted position.

The difference is to be interpreted as 𝛾𝛾𝑚(𝑥+𝛿𝑥) at the shifted point, minus the value of 𝛾𝛾𝑚(𝑥𝜈) parallel-
transported from position 𝑥 to the shifted point 𝑥+𝛿𝑥 along the small distance 𝛿𝑥 between them, as illustrated
in Figure 11.2. Parallel transport means, go to a locally inertial frame, then move along the prescribed
direction without boosting or precessing. With the coordinate partial derivatives of the tetrad basis vectors
so defined, the directed derivatives follow as 𝜕𝑛𝛾𝛾𝑚 = 𝑒𝑛

𝜈𝜕𝛾𝛾𝑚/𝜕𝑥
𝜈 .

The directed derivatives of the tetrad basis vectors define the tetrad-frame connection coefficients,
Γ𝑘𝑚𝑛,

𝜕𝑛𝛾𝛾𝑚 ≡ Γ𝑘𝑚𝑛 𝛾𝛾𝑘 not a tetrad tensor . (11.37)

In the usual case where the tetrad metric is Lorentz invariant and the tetrad connections Γ𝑘𝑚𝑛 are therefore
generators of Lorentz transformations, antisymmetric in their first two indices, Exercise 11.2, I like to call the
tetrad connection coefficients Lorentz connections. With equation (11.37), equation (11.35) then shows
that

𝜕𝑛𝐴 = 𝛾𝛾𝑘(𝐷𝑛𝐴
𝑘) a tetrad tensor , (11.38)

where 𝐷𝑛𝐴
𝑘 is the covariant derivative of the contravariant 4-vector 𝐴𝑘

𝐷𝑛𝐴
𝑘 ≡ 𝜕𝑛𝐴𝑘 + Γ𝑘𝑚𝑛𝐴

𝑚 a tetrad tensor . (11.39)

The covariant derivative of a covariant tetrad 4-vector 𝐴𝑘 follows similarly from

𝜕𝑛𝐴 = 𝛾𝛾𝑘(𝐷𝑛𝐴𝑘) a tetrad tensor , (11.40)

where 𝐷𝑛𝐴𝑘 is the covariant derivative of the covariant 4-vector 𝐴𝑘

𝐷𝑛𝐴𝑘 ≡ 𝜕𝑛𝐴𝑘 − Γ𝑚𝑘𝑛𝐴𝑚 a tetrad tensor . (11.41)

In general, the covariant derivative of a tetrad-frame tensor is

𝐷𝑝𝐴
𝑘𝑙...
𝑚𝑛... = 𝜕𝑝𝐴

𝑘𝑙...
𝑚𝑛... + Γ𝑘𝑞𝑝𝐴

𝑞𝑙...
𝑚𝑛... + Γ𝑙𝑞𝑝𝐴

𝑘𝑞...
𝑚𝑛... + ...− Γ𝑞𝑚𝑝𝐴

𝑘𝑙...
𝑞𝑛... − Γ𝑞𝑛𝑝𝐴

𝑘𝑙...
𝑚𝑞... − ... (11.42)
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with a positive Γ term for each contravariant index, and a negative Γ term for each covariant index.

11.10 Relation between tetrad and coordinate connections

The relation between the tetrad connections Γ𝑘𝑚𝑛 and their coordinate counterparts Γ𝜅𝜇𝜈 follows from

𝜕𝑒𝜇
𝜕𝑥𝜈

= Γ𝜅𝜇𝜈𝑒𝜅 =
𝜕𝑒𝑚𝜇𝛾𝛾𝑚
𝜕𝑥𝜈

not a tetrad tensor

=
𝜕𝑒𝑚𝜇
𝜕𝑥𝜈

𝛾𝛾𝑚 + 𝑒𝑚𝜇
𝜕𝛾𝛾𝑚
𝜕𝑥𝜈

= 𝑒𝑚𝜇𝑒
𝑛
𝜈

(︀
𝑑𝑘𝑚𝑛 + Γ𝑘𝑚𝑛

)︀
𝛾𝛾𝑘 . (11.43)

Thus the relation is

𝑑𝑙𝑚𝑛 + Γ𝑙𝑚𝑛 = 𝑒𝑙
𝜆 𝑒𝑚

𝜇 𝑒𝑛
𝜈 Γ𝜆𝜇𝜈 not a tetrad tensor (11.44)

where

Γ𝑙𝑚𝑛 ≡ 𝛾𝑙𝑘 Γ𝑘𝑚𝑛 . (11.45)

11.11 Antisymmetry of the tetrad connections

The directed derivative of the tetrad metric is

𝜕𝑛𝛾𝑙𝑚 = 𝜕𝑛(𝛾𝛾𝑙 · 𝛾𝛾𝑚)

= 𝛾𝛾𝑙 · 𝜕𝑛𝛾𝛾𝑚 + 𝛾𝛾𝑚 · 𝜕𝑛𝛾𝛾𝑙
= Γ𝑙𝑚𝑛 + Γ𝑚𝑙𝑛 . (11.46)

In most cases of interest, including orthonormal, spin, and null tetrads, the tetrad metric is chosen to be a
constant. For example, if the tetrad is orthonormal, then the tetrad metric is the Minkowski metric, which
is constant, the same everywhere. If the tetrad metric is constant, then all derivatives of the tetrad metric
vanish, and then equation (11.46) shows that the tetrad connections are antisymmetric in their first two
indices

Γ𝑙𝑚𝑛 = −Γ𝑚𝑙𝑛 . (11.47)

This antisymmetry reflects the fact that Γ𝑙𝑚𝑛 is the generator of a Lorentz transformation for each 𝑛,
Exercise 11.2.
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11.12 Torsion tensor

The torsion tensor 𝑆𝑚𝑘𝑙 , which general relativity assumes to vanish, is defined in the usual way, equa-
tion (2.57), by the commutator of the covariant derivative acting on a scalar Φ

[𝐷𝑘, 𝐷𝑙] Φ = 𝑆𝑚𝑘𝑙 𝜕𝑚Φ a tetrad tensor . (11.48)

The expression (11.41) for the covariant derivatives coupled with the commutator (11.31) of directed deriva-
tives shows that the torsion tensor is

𝑆𝑚𝑘𝑙 = 𝑑𝑚𝑘𝑙 + Γ𝑚𝑘𝑙 − 𝑑𝑚𝑙𝑘 − Γ𝑚𝑙𝑘 a tetrad tensor , (11.49)

which is equivalent to the coordinate expression (2.58) for the torsion in view of the relation (11.44) between
tetrad and coordinate connections. The torsion tensor 𝑆𝑚𝑘𝑙 is antisymmetric in 𝑘 ↔ 𝑙, as is evident from its
definition (11.48).

11.13 No-torsion condition

General relativity assumes vanishing torsion

𝑆𝑚𝑘𝑙 = 0 . (11.50)

For vanishing torsion, equation (11.49) implies

𝑑𝑚𝑘𝑙 + Γ𝑚𝑘𝑙 = 𝑑𝑚𝑙𝑘 + Γ𝑚𝑙𝑘 not a tetrad tensor , (11.51)

which is equivalent to the usual symmetry condition Γ𝜆𝜅𝜇 = Γ𝜆𝜇𝜅 on the coordinate frame connections in
view of the relation (11.44) between tetrad and coordinate connections.

11.14 Tetrad connections in terms of the vierbein

In the general case of non-constant tetrad metric, and non-vanishing torsion, the following manipulation,
from equations (11.46) and (11.49), analogous to the corresponding manipulation (2.61) in the coordinate
frame,

𝜕𝑛𝛾𝑙𝑚 + 𝜕𝑚𝛾𝑙𝑛 − 𝜕𝑙𝛾𝑚𝑛 = Γ𝑙𝑚𝑛 + Γ𝑚𝑙𝑛 + Γ𝑙𝑛𝑚 + Γ𝑛𝑙𝑚 − Γ𝑚𝑛𝑙 − Γ𝑛𝑚𝑙 (11.52)

= 2Γ𝑙𝑚𝑛 + 𝑆𝑙𝑛𝑚 + 𝑆𝑚𝑙𝑛 + 𝑆𝑛𝑙𝑚 − 𝑑𝑙𝑛𝑚 + 𝑑𝑙𝑚𝑛 − 𝑑𝑚𝑙𝑛 + 𝑑𝑚𝑛𝑙 − 𝑑𝑛𝑙𝑚 + 𝑑𝑛𝑚𝑙

implies that the tetrad connections Γ𝑙𝑚𝑛 are given in terms of the derivatives 𝜕𝑛𝛾𝑙𝑚 of the tetrad metric,
the torsion 𝑆𝑙𝑚𝑛, and the vierbein derivatives 𝑑𝑙𝑚𝑛 by

Γ𝑙𝑚𝑛 = 1
2 (𝜕𝑛𝛾𝑙𝑚 + 𝜕𝑚𝛾𝑙𝑛 − 𝜕𝑙𝛾𝑚𝑛 + 𝑆𝑙𝑚𝑛 + 𝑆𝑚𝑛𝑙 + 𝑆𝑛𝑚𝑙

+ 𝑑𝑙𝑛𝑚 − 𝑑𝑙𝑚𝑛 + 𝑑𝑚𝑙𝑛 − 𝑑𝑚𝑛𝑙 + 𝑑𝑛𝑙𝑚 − 𝑑𝑛𝑚𝑙) not a tetrad tensor . (11.53)
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If torsion vanishes, as general relativity assumes, and if furthermore the tetrad metric is constant, then
equation (11.53) simplifies to the following expression for the tetrad connections in terms of the vierbein
derivatives 𝑑𝑙𝑚𝑛 defined by (11.33), analogous to the expression (2.63) for coordinate-frame connections in
terms of coordinate derivatives of the metric,

Γ𝑙𝑚𝑛 = 1
2 (𝑑𝑙𝑛𝑚 − 𝑑𝑙𝑚𝑛 + 𝑑𝑚𝑙𝑛 − 𝑑𝑚𝑛𝑙 + 𝑑𝑛𝑙𝑚 − 𝑑𝑛𝑚𝑙) not a tetrad tensor . (11.54)

This is the formula that allows tetrad connections to be calculated from the vierbein.

11.15 Torsion-free covariant derivative

As in §2.12, the torsion-free part of the covariant derivative is a covariant derivative even when torsion is
present. When torsion is present and it is desirable to make the torsion part explicit, it is convenient to
distinguish torsion-free quantities with a ˚ overscript. The torsion-full tetrad connection Γ𝑙𝑚𝑛 is a sum of
the torsion-free (Levi-Civita) connection Γ̊𝑙𝑚𝑛 and the contortion tensor 𝐾𝑙𝑚𝑛,

Γ𝑙𝑚𝑛 = Γ̊𝑙𝑚𝑛 +𝐾𝑙𝑚𝑛 , (11.55)

where from equation (11.53) the contortion tensor 𝐾𝑙𝑚𝑛 and the torsion tensor 𝑆𝑙𝑚𝑛 are related by

𝐾𝑙𝑚𝑛 = 1
2 (𝑆𝑙𝑚𝑛 − 𝑆𝑚𝑙𝑛 + 𝑆𝑛𝑚𝑙) = −𝑆𝑛𝑙𝑚 + 3

2𝑆[𝑙𝑚𝑛] a tetrad tensor , (11.56a)

𝑆𝑙𝑚𝑛 = 𝐾𝑙𝑚𝑛 −𝐾𝑙𝑛𝑚 = −𝐾𝑚𝑛𝑙 + 3𝐾[𝑙𝑚𝑛] a tetrad tensor . (11.56b)

Like the tetrad connection Γ𝑙𝑚𝑛, the contortion𝐾𝑙𝑚𝑛 is antisymmetric in its first two indices. The torsion-full
covariant derivative 𝐷𝑛 differs from the torsion-free covariant derivative 𝐷𝑛 by the contortion,

𝐷𝑛𝐴
𝑘 ≡ 𝐷𝑛𝐴

𝑘 +𝐾𝑘
𝑚𝑛𝐴

𝑚 a tetrad tensor . (11.57)

In this book the symbol𝐷𝑛 by default denotes the torsion-full covariant derivative. In some places however,
such as in the theory of differential forms, the symbol 𝐷𝑛 is used for brevity to denote the torsion-free
covariant derivative, even in the presence of torsion. When 𝐷𝑛 denotes the torsion-free covariant derivative,
it will be stated so explicitly.

11.16 Riemann curvature tensor

The Riemann curvature tensor 𝑅𝑘𝑙𝑚𝑛 is defined in the usual way, equation (2.110), by the commutator
of the covariant derivative acting on a 4-vector. In the presence of torsion,

[𝐷𝑘, 𝐷𝑙]𝐴𝑚 ≡ 𝑆𝑛𝑘𝑙𝐷𝑛𝐴𝑚 +𝑅𝑘𝑙𝑚𝑛𝐴
𝑛 a tetrad tensor . (11.58)

If torsion vanishes, as general relativity assumes, then the definition (11.58) reduces to

[𝐷𝑘, 𝐷𝑙]𝐴𝑚 ≡ 𝑅𝑘𝑙𝑚𝑛𝐴𝑛 a tetrad tensor . (11.59)
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The expression (11.41) for the covariant derivative coupled with the torsion equation (11.48) yields the
following formula for the tetrad-frame Riemann tensor in terms of tetrad connection, for the general case of
non-vanishing torsion:

𝑅𝑘𝑙𝑚𝑛 = 𝜕𝑘Γ𝑚𝑛𝑙 − 𝜕𝑙Γ𝑚𝑛𝑘 + Γ𝑝𝑚𝑙Γ𝑝𝑛𝑘 − Γ𝑝𝑚𝑘Γ𝑝𝑛𝑙 + (Γ𝑝𝑘𝑙 − Γ𝑝𝑙𝑘 − 𝑆
𝑝
𝑘𝑙)Γ𝑚𝑛𝑝 a tetrad tensor . (11.60)

The formula has extra terms (Γ𝑝𝑘𝑙−Γ𝑝𝑙𝑘−𝑆
𝑝
𝑘𝑙)Γ𝑚𝑛𝑝 compared to the formula (2.112) for the coordinate-frame

Riemann tensor 𝑅𝜅𝜆𝜇𝜈 . If torsion vanishes, as general relativity assumes, then

𝑅𝑘𝑙𝑚𝑛 = 𝜕𝑘Γ𝑚𝑛𝑙 − 𝜕𝑙Γ𝑚𝑛𝑘 + Γ𝑝𝑚𝑙Γ𝑝𝑛𝑘 − Γ𝑝𝑚𝑘Γ𝑝𝑛𝑙 + (Γ𝑝𝑘𝑙 − Γ𝑝𝑙𝑘)Γ𝑚𝑛𝑝 a tetrad tensor . (11.61)

The symmetries of the tetrad-frame Riemann tensor are the same as those of the coordinate-frame Riemann
tensor. For vanishing torsion, these are

𝑅𝑘𝑙𝑚𝑛 = 𝑅([𝑘𝑙][𝑚𝑛]) , (11.62a)

𝑅𝑘[𝑙𝑚𝑛] = 0 . (11.62b)

Exercise 11.3. Riemann tensor. From the definition (11.58), derive the expression (11.60) for the Rie-
mann tensor. [Hint: Start by expanding out the definition (11.58) using the definition (11.42) of the covariant
derivative. You will find it easier to derive an expression for the Riemann tensor with one index raised, such
as 𝑅𝑘𝑙𝑚𝑛, but you should resist the temptation to leave it there, because the symmetries of the Riemann
tensor are obscured when one index is raised. To switch to all lowered indices, you will need to convert terms
such as 𝜕𝑘Γ𝑛𝑚𝑙 by

𝜕𝑘Γ
𝑛
𝑚𝑙 = 𝜕𝑘(𝛾

𝑛𝑝Γ𝑝𝑚𝑙) = 𝛾𝑛𝑝 𝜕𝑘Γ𝑝𝑚𝑙 + Γ𝑝𝑚𝑙 𝜕𝑘𝛾
𝑛𝑝 . (11.63)

You should show that the directed derivative 𝜕𝑘𝛾𝑛𝑝 in this expression is related to tetrad connections through
a formula similar to equation (11.46),

𝜕𝑘𝛾
𝑛𝑝 = −Γ𝑛𝑝𝑘 − Γ𝑝𝑛𝑘 , (11.64)

which you should recognize as equivalent to 𝐷𝑘𝛾
𝑛𝑝 = 0. To complete the derivation, show that

𝜕𝑘(Γ𝑚𝑛𝑙 + Γ𝑛𝑚𝑙)− 𝜕𝑙(Γ𝑚𝑛𝑘 + Γ𝑛𝑚𝑘) = [𝜕𝑘, 𝜕𝑙]𝛾𝑚𝑛 = (Γ𝑝𝑙𝑘 − Γ𝑝𝑘𝑙 + 𝑆𝑝𝑘𝑙)(Γ𝑚𝑛𝑝 + Γ𝑛𝑚𝑝) . (11.65)

Equation (11.65) implies the antisymmetry of 𝑅𝑘𝑙𝑚𝑛 in 𝑚𝑛.]

Exercise 11.4. Antisymmetry of the Riemann tensor. Argue that the antisymmetry of 𝑅𝑘𝑙𝑚𝑛 in 𝑚𝑛,
with or without torsion, can be deduced from

0 = [𝐷𝑘, 𝐷𝑙]𝛾𝑚𝑛 = 𝑆𝑝𝑘𝑙𝐷𝑝𝛾𝑚𝑛 +𝑅𝑘𝑙𝑚𝑝𝛿
𝑝
𝑛 +𝑅𝑘𝑙𝑛𝑝𝛿

𝑝
𝑚 = 𝑅𝑘𝑙𝑚𝑛 +𝑅𝑘𝑙𝑛𝑚 . (11.66)

Exercise 11.5. Cyclic symmetry of the Riemann tensor. Show that the cyclic symmetry (11.62b) is
a consequence of the assumption of vanishing torsion.
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Solution. Use the Jacobi identity applied to a scalar, [𝐷[𝑘, [𝐷𝑚, 𝐷𝑙]]]Φ = 0. Show that if Φ is a scalar, then

2𝐷[𝑘𝐷𝑙𝐷𝑚]Φ =
[︀
𝐷[𝑘, 𝐷𝑙

]︀
𝐷𝑚]Φ =

(︀
𝑅[𝑘𝑙𝑚]

𝑛 − 𝑆𝑝[𝑘𝑙𝑆
𝑛
𝑚]𝑝

)︀
𝐷𝑛Φ+ 𝑆𝑛[𝑘𝑙𝐷𝑚]𝐷𝑛Φ

= 𝐷[𝑘

[︀
𝐷𝑙, 𝐷𝑚]

]︀
Φ =

(︀
𝐷[𝑘𝑆

𝑛
𝑙𝑚]

)︀
𝐷𝑛Φ+ 𝑆𝑛[𝑘𝑙𝐷𝑚]𝐷𝑛Φ . (11.67)

Consequently

𝑅[𝑘𝑙𝑚]
𝑛 = 𝐷[𝑘𝑆

𝑛
𝑙𝑚] + 𝑆𝑝[𝑘𝑙𝑆

𝑛
𝑚]𝑝 . (11.68)

An equivalent expression in terms of the torsion-free covariant derivative 𝐷𝑘 and the contortion 𝐾𝑚𝑛𝑙 is

𝑅[𝑘𝑙𝑚]
𝑛 = 𝐷[𝑘𝑆

𝑛
𝑙𝑚] +𝐾𝑛

𝑝[𝑘𝑆
𝑝
𝑙𝑚] . (11.69)

Exercise 11.6. Symmetry of the Riemann tensor. Show that the cyclic symmetry (11.62b) implies the
symmetry 𝑘𝑙 ↔ 𝑚𝑛, given the antisymmetries 𝑘 ↔ 𝑙 and 𝑚 ↔ 𝑛. Given Exercise 11.5, this shows that the
symmetry 𝑘𝑙↔ 𝑚𝑛 is, like the cyclic symmetry, a consequence of vanishing torsion.
Solution. Show that

2(𝑅𝑘𝑙𝑚𝑛 −𝑅𝑚𝑛𝑘𝑙) = 3
(︀
𝑅𝑘[𝑙𝑚𝑛] −𝑅𝑙[𝑘𝑚𝑛] −𝑅𝑚[𝑛𝑘𝑙] +𝑅𝑛[𝑚𝑘𝑙]

)︀
, (11.70)

or alternatively,

2(𝑅𝑘𝑙𝑚𝑛 −𝑅𝑚𝑛𝑘𝑙) = 3
(︀
𝑅[𝑘𝑙𝑚]𝑛 −𝑅[𝑘𝑙𝑛]𝑚 −𝑅[𝑚𝑛𝑘]𝑙 +𝑅[𝑚𝑛𝑙]𝑘

)︀
. (11.71)

Exercise 11.7. Number of components of the Riemann tensor. How many independent components
does the Riemann tensor have, in 4-dimensional spacetime?
Solution. If torsion vanishes, 20. If torsion does not vanish, 36. The extra 16 components come from 𝑅[𝑘𝑙𝑚]𝑛,
which is related to torsion by equation (11.68), and which has 4 × 4 = 16 components if torsion does not
vanish.

Concept question 11.8. Must connections vanish if Riemann vanishes?Must the tetrad connections
Γ𝑙𝑚𝑛 vanish if the Riemann tensor vanishes identically, 𝑅𝑘𝑙𝑚𝑛 = 0? Answer. No. For a counterexample, take
flat (Minkowski) space expressed in spherical polar coordinates {𝑡, 𝑟, 𝜃, 𝜑}. The non-vanishing tetrad-frame
connections are Γ212 = Γ313 = 1/𝑟 and Γ323 = cot 𝜃/𝑟 (compare equations (20.23)).

11.16.1 Riemann tensor in a mixed coordinate-tetrad frame

In Chapter 16, Einstein’s equations will be obtained from an action principle, as first done by Hilbert (1915).
The Hilbert Lagrangian takes a particularly insightful form if the Riemann tensor is expressed in a mixed
coordinate-tetrad basis.
The coordinate-frame covariant derivative 𝐷𝜅 of a tetrad-frame vector 𝑎𝑛 is

𝐷𝜅𝑎𝑛 = 𝑒𝑘𝜅𝐷𝑘𝑎𝑛 =
𝜕𝑎𝑛
𝜕𝑥𝜅

− Γ𝑚𝑛𝜅𝑎𝑚 a coordinate-tetrad tensor , (11.72)
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where Γ𝑚𝑛𝜅 is the tetrad-frame connection with its last index converted into the coordinate frame with the
vierbein,

Γ𝑚𝑛𝜅 ≡ 𝑒𝑘𝜅Γ𝑚𝑛𝑘 a coordinate vector, but not a tetrad tensor . (11.73)

As usual, the connection with all indices lowered is defined by Γ𝑙𝑛𝜅 ≡ 𝛾𝑙𝑚Γ𝑚𝑛𝜅. The connections Γ𝑚𝑛𝜅 should
not be confused with the coordinate-frame connections (Christoffel symbols) Γ𝜇𝜈𝜅. The relation between the
two is, from equation (11.44),

Γ𝑚𝑛𝜅 = − 𝑒𝑘𝜅 𝑑𝑚𝑛𝑘 + 𝑒𝑚
𝜇𝑒𝑛

𝜈 Γ𝜇𝜈𝜅 . (11.74)

In 4 dimensions there are 6× 4 = 24 distinct connections Γ𝑚𝑛𝜅 (with or without torsion), whereas there are
4× 10 = 40 distinct coordinate-frame connections Γ𝜇𝜈𝜅 (without torsion, or 4× 4× 4 = 64 with torsion).
The last term on the right hand side of equation (11.60) for the Riemann tensor can be written, in view

of equations (11.49) and (11.32),

(Γ𝑝𝑘𝑙 − Γ𝑝𝑙𝑘 − 𝑆
𝑝
𝑘𝑙)Γ𝑚𝑛𝑝 = (𝜕𝑙𝑒𝑘

𝜅 − 𝜕𝑘𝑒𝑙𝜅)Γ𝑚𝑛𝜅 . (11.75)

The Riemann tensor 𝑅𝜅𝜆𝑚𝑛 in the mixed coordinate-tetrad basis is then

𝑅𝜅𝜆𝑚𝑛 =
𝜕Γ𝑚𝑛𝜆
𝜕𝑥𝜅

− 𝜕Γ𝑚𝑛𝜅
𝜕𝑥𝜆

+ Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅 − Γ𝑝𝑚𝜅Γ𝑝𝑛𝜆 a coordinate-tetrad tensor , (11.76)

which is valid with or without torsion. Equation (11.76) resembles superficially the coordinate-frame expres-
sion (2.112) for the Riemann tensor, but it is more economical in that there are only 24 connections Γ𝑚𝑛𝜅
instead of the 40 (or 64, with torsion) coordinate-frame connections Γ𝜇𝜈𝜅.
The torsion 𝑆𝑚𝜅𝜆 in the mixed coordinate-tetrad basis is

𝑆𝑚𝜅𝜆 = − 𝜕𝑒𝑚𝜆
𝜕𝑥𝜅

+
𝜕𝑒𝑚𝜅
𝜕𝑥𝜆

− Γ𝑚𝑙𝜅𝑒
𝑙
𝜆 + Γ𝑚𝑘𝜆𝑒

𝑘
𝜅 a coordinate-tetrad tensor . (11.77)

Equations (11.76) and (11.77) constitute Cartan’s equations of structure (Cartan, 1904) (see §16.14.2).

11.17 Ricci, Einstein, Bianchi

The usual suite of formulae leading to Einstein’s equations apply. Since all the quantities are tensors, and
all the equations are tensor equations, their form follows immediately from their coordinate counterparts.
Ricci tensor:

𝑅𝑘𝑚 ≡ 𝛾𝑙𝑛𝑅𝑘𝑙𝑚𝑛 . (11.78)

Ricci scalar:

𝑅 ≡ 𝛾𝑘𝑚𝑅𝑘𝑚 . (11.79)

Einstein tensor:

𝐺𝑘𝑚 ≡ 𝑅𝑘𝑚 − 1
2𝛾𝑘𝑚𝑅 . (11.80)
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Einstein’s equations:

𝐺𝑘𝑚 = 8𝜋𝐺𝑇𝑘𝑚 . (11.81)

The trace of the Einstein equations implies that 𝑅 = −8𝜋𝐺𝑇 , so the Einstein equations (11.81) can equally
well be written with the trace terms transferred from the left to the right hand side,

𝑅𝑘𝑚 = 8𝜋𝐺
(︀
𝑇𝑘𝑚 − 1

2𝛾𝑘𝑚 𝑇
)︀
. (11.82)

Bianchi identities in the absence of torsion:

𝐷𝑘𝑅𝑙𝑚𝑛𝑝 +𝐷𝑙𝑅𝑚𝑘𝑛𝑝 +𝐷𝑚𝑅𝑘𝑙𝑛𝑝 = 0 , (11.83)

which most importantly imply covariant conservation of the Einstein tensor, hence conservation of energy-
momentum

𝐷𝑘𝑇𝑘𝑚 = 0 . (11.84)

11.18 Expressions with torsion

If torsion does not vanish, then the Riemann tensor, and consequently also the Ricci and Einstein tensors,
can be split into torsion-free (distinguished by a˚overscript) and torsion parts (e.g. Hehl, Heyde, and Kerlick
1976). A similar split occurs in the ADM formalism where a certain gauge choice (fixing the time component
𝛾𝛾0 of the tetrad to be orthogonal to hypersurfaces of constant time) splits the tetrad connection into a tensor
part, the extrinsic curvature, and a remainder, equation (17.27).
The contortion tensor 𝐾𝑙𝑚𝑛 was defined previously as the torsion part of the connection Γ𝑙𝑚𝑛, equa-

tion (11.55). The unique non-vanishing contraction of the contortion tensor defines the contortion vector
𝐾𝑚,

𝐾𝑚 ≡ 𝐾𝑛
𝑚𝑛 = 𝑆𝑛𝑚𝑛 . (11.85)

The torsion-full Riemann tensor 𝑅𝑘𝑙𝑚𝑛 is a sum of the torsion-free Riemann tensor 𝑅𝑘𝑙𝑚𝑛 and a torsion
part (note that 𝐾𝑝𝑘𝑙 −𝐾𝑝𝑙𝑘 − 𝑆𝑝𝑘𝑙 = 0, so the “extra” term in 𝑅𝑘𝑙𝑚𝑛, equation (11.60), vanishes when 𝐾𝑝𝑘𝑙

is the contortion),

𝑅𝑘𝑙𝑚𝑛 = 𝑅𝑘𝑙𝑚𝑛 +𝐷𝑘𝐾𝑚𝑛𝑙 −𝐷𝑙𝐾𝑚𝑛𝑘 +𝐾𝑝
𝑚𝑙𝐾𝑝𝑛𝑘 −𝐾𝑝

𝑚𝑘𝐾𝑝𝑛𝑙 . (11.86)

The Ricci tensor is

𝑅𝑘𝑚 = 𝑅𝑘𝑚 −𝐷𝑘𝐾𝑚 −𝐷𝑛𝐾𝑚𝑛𝑘 +𝐾𝑚𝑝𝑛𝐾
𝑛𝑝
𝑘 −𝐾𝑚𝑝𝑘𝐾

𝑝 , (11.87)

and the Ricci scalar is

𝑅 = 𝑅− 2𝐷𝑛𝐾
𝑛 +𝐾𝑚𝑝𝑛𝐾

𝑛𝑝𝑚 −𝐾𝑛𝐾
𝑛 . (11.88)

The antisymmetric part of the Einstein tensor is, from contracting equation (11.68),

𝐺[𝑘𝑚] = 𝑅[𝑘𝑚] =
3
2𝑅[𝑘𝑙𝑚]

𝑙 = 3
2

(︁
𝐷[𝑘𝑆

𝑙
𝑙𝑚] + 𝑆𝑝[𝑘𝑙𝑆

𝑙
𝑚]𝑝

)︁
, (11.89)
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which vanishes for vanishing torsion.
The Jacobi identity (2.126) implies, in addition to the 16 conditions (11.68), the 24 Bianchi identities

𝐷[𝑘𝑅𝑙𝑚]𝑛𝑝 + 𝑆𝑞[𝑘𝑙𝑅𝑚]𝑞𝑛𝑝 = 0 . (11.90)

The doubly-contracted Bianchi identities are

− 3
2𝛾

𝑘𝑛𝛾𝑙𝑝
(︁
𝐷[𝑘𝑅𝑙𝑚]𝑛𝑝 + 𝑆𝑞[𝑘𝑙𝑅𝑚]𝑞𝑛𝑝

)︁
= 𝐷𝑘𝐺𝑚𝑘 − 1

2𝑆
𝑞
𝑘𝑙𝑅𝑚𝑞

𝑘𝑙 − 𝑆𝑞𝑘𝑚𝑅𝑞
𝑘 = 0 . (11.91)

11.19 General relativity in 2 spacetime dimensions

General relativity in 2 spacetime dimensions is weird. There are zero Bianchi identities (2.128) in 2 spacetime
dimensions, so the Bianchi identities do not identify any covariantly conserved tensor. The Einstein tensor
itself vanishes identically in 2 spacetime dimensions.
There are consistent extensions of general relativity in 2 spacetime dimensions, such as string-inspired

dilaton gravity (Grumiller, Kummer, and Vassilevich, 2002). However, those will not be considered here.
Historically, the main application of 2-dimensional relativity has been to explore quantum field theory

in curved spacetime, since in 2 spacetime dimensions the quantum energy-momentum tensor induced by
any prescribed geometry can be calculated exactly (even though the classical energy-momentum tensor is
indeterminate).
The closest thing to a consistent realisation of classical general relativity in 2 spacetime dimensions is as

follows.
In 2 spacetime dimensions, the Riemann tensor has just one distinct component,𝑅0101, and that component

is determined entirely by the Ricci scalar 𝑅. The tetrad-frame Riemann and Ricci tensors are related to the
Ricci scalar 𝑅 by

𝑅𝑘𝑙𝑚𝑛 = 1
2 (𝛾𝑘𝑚𝛾𝑙𝑛 − 𝛾𝑘𝑛𝛾𝑙𝑚)𝑅 , 𝑅𝑘𝑚 = 1

2𝛾𝑘𝑚𝑅 . (11.92)

In an arbitrary number of 𝑁 spacetime dimensions, contracting the Einstein equations implies that the Ricci
scalar 𝑅 is proportional to the trace 𝑇 of the energy-momentum tensor,

(1− 1
2𝑁)𝑅 = 𝜅𝑁𝑇 , (11.93)

where 𝜅𝑁 is Newton’s gravitational constant in 𝑁 spacetime dimensions, suitably normalized. For 𝑁 = 2,
the factor on the left of equation (11.93) vanishes; but one can imagine absorbing the zero factor into a
redefinition of the gravitational constant 𝜅𝑁 , so that

𝑅 = 𝜅′2𝑇 (11.94)

for some 𝜅′2. Now impose that the energy-momentum tensor 𝑇𝑘𝑚 is covariantly conserved,

𝐷𝑘𝑇𝑘𝑚 = 0 . (11.95)

In 𝑁 = 2 spacetime dimensions, the trace relation (11.94) together with the covariant conservation condi-
tion (11.95) imply almost uniquely the form of the energy-momentum tensor.
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The conserved energy-momentum tensor 𝑇𝑘𝑚 takes its simplest expression when the metric is expressed in
conformally flat form. The metric in 𝑁 = 2 spacetime dimensions is a symmetric 2× 2 matrix. By a suitable
coordinate transformation of the 2 coordinates, the metric can be brought to the conformally flat form

𝑑𝑠2 = 𝑒2𝜉(− 𝑑𝑡2 + 𝑑𝑥2) = −𝑒2𝜉𝑑𝑣𝑑𝑢 , (11.96)

where 𝑣 ≡ 𝑡 + 𝑥 and 𝑢 ≡ 𝑡 − 𝑥 are null coordinates, and 𝜉 is a function of the two coordinates. The
Newman-Penrose tetrad-frame components of the conserved energy-momentum tensor 𝑇𝑘𝑚 are then

−𝑅
2

= −4𝑒−2𝜉 𝜕
2𝜉

𝜕𝑣𝜕𝑢
= −𝜅′2

𝑇

2
= 𝜅′2𝑇𝑣𝑢 , (11.97a)

4𝑒−2𝜉

[︃
𝜕2𝜉

𝜕𝑣2
−
(︂
𝜕𝜉

𝜕𝑣

)︂2

+ 𝑓+(𝑣)

]︃
= 𝜅′2𝑇𝑣𝑣 , (11.97b)

4𝑒−2𝜉

[︃
𝜕2𝜉

𝜕𝑢2
−
(︂
𝜕𝜉

𝜕𝑢

)︂2

+ 𝑓−(𝑢)

]︃
= 𝜅′2𝑇𝑢𝑢 , (11.97c)

where 𝑓+(𝑣) and 𝑓−(𝑢) are arbitrary functions of respectively 𝑣 and 𝑢. There is a residual gauge freedom
𝑣 → 𝑉 (𝑣) and 𝑢→ 𝑈(𝑢) in the choice of null coordinates that allows the conformal function to be adjusted
𝜉 → 𝜉 + 𝜉+(𝑣) + 𝜉−(𝑢) by arbitrary additive functions of 𝑣 and 𝑢. This residual gauge freedom allows the
functions 𝑓+(𝑣) and 𝑓−(𝑢) in equations (11.97b) and (11.97c) to be adjusted arbitrarily. If desired, 𝑓+(𝑣)
and 𝑓−(𝑢) can be set to zero.
The classical 2-dimensional general relativity described by equations (11.97) is not very interesting; for

example there is no 2-dimensional analogue of the Schwarzschild black hole, Exercise 11.9.
Where equations (11.97) prove more interesting is that they also describe the expectation value ⟨𝑇𝑘𝑙⟩ of the

renormalized quantum energy-momentum induced by a given geometry in 2 spacetime dimensions (Birrell
and Davies, 1982). That is, the expectation value ⟨𝑇 ⟩ of the quantum trace in 2 spacetime dimensions is
proportional to the Ricci scalar (Birrell and Davies, 1982, eq. (6.121)), and the quantum energy-momentum
tensor ⟨𝑇𝑘𝑙⟩ is covariantly conserved, therefore equations (11.97) are satisfied by ⟨𝑇𝑘𝑙⟩. In 4 spacetime dimen-
sions the quantum energy-momentum tensor ⟨𝑇𝑘𝑙⟩ is extremely difficult to calculate in a general spacetime,
so clues from 2 spacetime dimensions can be illuminating.

Exercise 11.9. Black holes in 2 spacetime dimensions? Does the analogue of a Schwarzschild black
hole exist in 2 spacetime dimensions?
Solution. No. Require the spacetime to be empty outside some radius. The vanishing of the Ricci scalar (11.97a)
implies that

𝜉 = 𝜉+(𝑣) + 𝜉−(𝑢) (11.98)

for some functions 𝜉+ and 𝜉− of the null coordinates 𝑣 and 𝑢. But then the coordinate tranformations of the
null coordinates

𝑑𝑉 = 𝑒2𝜉
+(𝑣)𝑑𝑣 , 𝑑𝑈 = 𝑒2𝜉

−(𝑢)𝑑𝑢 (11.99)
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bring the line-element to

𝑑𝑠2 = −𝑑𝑉 𝑑𝑈 , (11.100)

which is just flat (Minkowski) space in 𝑁 = 2 dimensions.

Exercise 11.10. Tidal forces falling into a Schwarzschild black hole. In the Schwarzschild or
Gullstrand-Painlevé orthonormal tetrad, or indeed in any orthonormal tetrad of the Schwarzschild geome-
try where 𝑡 and 𝑟 represent the time and radial directions and 𝜃 and 𝜑 represent the transverse (angular)
directions, the non-zero components of the tetrad-frame Riemann tensor are

1
2𝑅𝑡𝑟𝑡𝑟 = −𝑅𝑡𝜃𝑡𝜃 = −𝑅𝑡𝜑𝑡𝜑 = 𝑅𝑟𝜃𝑟𝜃 = 𝑅𝑟𝜑𝑟𝜑 = − 1

2𝑅𝜃𝜑𝜃𝜑 = 𝐶 , (11.101)

where

𝐶 = −𝑀/𝑟3 (11.102)

is the Weyl scalar (the spin-0 component of the Weyl tensor).
1. Tidal forces. A person at rest in the tetrad has, by definition, tetrad-frame 4-velocity 𝑢𝑚 = {1, 0, 0, 0}.

From the equation of geodesic deviation, equation (11.103),

𝐷2𝛿𝜉𝑚
𝐷𝜏2

+𝑅𝑘𝑙𝑚𝑛𝛿𝜉
𝑘𝑢𝑙𝑢𝑛 = 0 , (11.103)

deduce the tidal acceleration on the person in the radial and transverse directions. Does the tidal
acceleration stretch or compress? [Hint: The equation of geodesic deviation, §3.3, gives the proper
acceleration between two points a small distance 𝛿𝜉𝑚 apart, where 𝜉𝑚 are the locally inertial coordinates
of the tetrad frame. Notice that this problem is much easier to solve with tetrads than with the traditional
coordinate approach. Note also that since the Weyl tensor takes the same form (11.101) independent of
the radial boost, the tidal acceleration is the same regardless of the radial velocity of the infaller.]

2. Choose a black hole to fall into. What is the mass of the black hole for which the tidal acceleration
𝑀/𝑟3 is 1 gee per metre at the horizon? If you wanted to fall through the horizon of a black hole without
first being torn apart, what mass of black hole would you choose? [Hint: 1 gee is the gravitational
acceleration at the surface of the Earth.]

3. Time to die. In a previous problem you showed that the proper time to free-fall radially from radius
𝑟 to the singularity of a Schwarzschild black hole, for a faller who starts at zero velocity at infinity (so
𝐸 = 1), is

𝜏 =
2

3

√︂
𝑟3

2𝑀
. (11.104)

How long, in seconds, does it take to fall to the singularity from the place where the tidal acceleration
is 1 gee per metre? Comment?

4. Tear-apart radius. At what radius 𝑟, in km, do you start to get torn apart, if that happens when the
tidal acceleration is 1 gee per metre? Express your answer in terms of the black hole mass 𝑀 in units
of a solar mass M⊙, that is, in the form 𝑟 =? (𝑀/M⊙)

?.
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5. Spaghettified? In Exercise 7.6 you showed that the infall velocity of a person who free-falls radially
from zero velocity at infinity (so 𝐸 = 1) is

𝑑𝑟

𝑑𝜏
= −

√︂
2𝑀

𝑟
. (11.105)

Show that radial component (𝛿𝜉𝑟) of the equation of geodesic deviation (11.103) for such a person solves
to

𝛿𝜉𝑟 =
𝐴√
𝑟
+𝐵𝑟2 , (11.106)

where 𝐴 and 𝐵 are constants. If a person tears apart when the tidal acceleration is 1 gee per metre, and
the parts of the person free-fall thereafter, is the person actually spaghettified? [Hint: If the frame is
in free-fall, then the covariant derivatives 𝐷/𝐷𝜏 in the equation of geodesic deviation may be replaced
by ordinary derivatives 𝑑/𝑑𝜏 in that frame. The last part of the question — Is the person actually
spaghettified? — is a concept question: given the solution (11.106), can you interpret what it means?]

Exercise 11.11. Totally antisymmetric tensor.

1. In an orthonormal tetrad 𝛾𝛾𝑚 where 𝛾𝛾0 points to the future and 𝛾𝛾1, 𝛾𝛾2, 𝛾𝛾3 are right-handed, the
contravariant totally antisymmetric tensor 𝜀𝑘𝑙𝑚𝑛 is defined by (this is the opposite sign from the Misner,
Thorne, and Wheeler (1973) notation)

𝜀𝑘𝑙𝑚𝑛 ≡ [𝑘𝑙𝑚𝑛] , (11.107)

where [𝑘𝑙𝑚𝑛] is the totally antisymmetric symbol

[𝑘𝑙𝑚𝑛] ≡

⎧⎨⎩
+1 if 𝑘𝑙𝑚𝑛 is an even permutation of 0123 ,
−1 if 𝑘𝑙𝑚𝑛 is an odd permutation of 0123 ,
0 if 𝑘𝑙𝑚𝑛 are not all different .

(11.108)

The choice of + sign in the definition (11.107) of 𝜀𝑘𝑙𝑚𝑛 is determined by the definition (13.19) of
the pseudoscalar 𝐼𝑁 of the geometric algebra in 𝑁 dimensions as a product of all 𝑁 basis vectors,
equation (15.74). The corresponding covariant totally antisymmetric tensor 𝜀𝑘𝑙𝑚𝑛 is

𝜀𝑘𝑙𝑚𝑛 = −[𝑘𝑙𝑚𝑛] , (11.109)

in which the − sign is the determinant of the tetrad (Minkowski) metric. Argue that in a general basis
𝑒𝜇 the contravariant totally antisymmetric tensor 𝜀𝜅𝜆𝜇𝜈 is

𝜀𝜅𝜆𝜇𝜈 = 𝑒𝑘
𝜅𝑒𝑙

𝜆𝑒𝑚
𝜇𝑒𝑛

𝜈 𝜀𝑘𝑙𝑚𝑛 = 𝑒−1 [𝜅𝜆𝜇𝜈] , (11.110)

while its covariant counterpart is

𝜀𝜅𝜆𝜇𝜈 = −𝑒 [𝜅𝜆𝜇𝜈] , (11.111)

where 𝑒 ≡ |𝑒𝑚𝜇| is the determinant of the vierbein.
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2. Show that in 4 dimensions

𝜀𝑘𝑙𝑚𝑛𝜀𝜅𝜆𝜇𝜈 = −4! 𝑒[𝑘𝜅𝑒𝑙𝜆𝑒𝑚𝜇𝑒𝑛]𝜈 . (11.112)

Conclude that

𝑒𝑘
𝜅𝜀𝑘𝑙𝑚𝑛𝜀𝜅𝜆𝜇𝜈 = −6 𝑒[𝑙𝜆𝑒𝑚𝜇𝑒𝑛]𝜈 , (11.113a)

𝑒𝑘
𝜅𝑒𝑙

𝜆𝜀𝑘𝑙𝑚𝑛𝜀𝜅𝜆𝜇𝜈 = −4 𝑒[𝑚𝜇𝑒𝑛]𝜈 , (11.113b)

𝑒𝑘
𝜅𝑒𝑙

𝜆𝑒𝑚
𝜇𝜀𝑘𝑙𝑚𝑛𝜀𝜅𝜆𝜇𝜈 = −6 𝑒𝑛𝜈 , (11.113c)

𝑒𝑘
𝜅𝑒𝑙

𝜆𝑒𝑚
𝜇𝑒𝑛

𝜈𝜀𝑘𝑙𝑚𝑛𝜀𝜅𝜆𝜇𝜈 = −24 . (11.113d)

The coefficient of the 𝑝’th contraction is −𝑝!(4− 𝑝)! .



12

Spin and Newman-Penrose tetrads

THIS CHAPTER NEEDS REWRITING.
This Chapter discusses spin tetrads (§??) and Newman-Penrose tetrads (§12.2). The Chapter goes on

to show how the fields that describe electromagnetic (§??) and gravitational (§12.3) waves have a natural
and insightful complex structure that is brought out in a Newman-Penrose tetrad. The Newman-Penrose
formalism provides a natural context for the Petrov classification of the Weyl tensor (§12.4).

12.1 Spin tetrad formalism

In quantum mechanics, fundamental particles have spin. The 3 generations of leptons (electrons, muons,
tauons, and their respective neutrino partners) and quarks (up, charm, top, and their down, strange, and
bottom partners) have spin 1

2 (in units ~ = 1). The carrier particles of the electromagnetic force (photons),
the weak force (the 𝑊± and 𝑍 bosons), and the colour force (the 8 gluons), have spin 1. The carrier of the
gravitational force, the graviton, is expected to have spin 2, though as of 2010 no gravitational wave, let
alone its quantum, the graviton, has been detected.
General relativity is a classical, not quantum, theory. Nevertheless the spin properties of classical waves,

such as electromagnetic or gravitational waves, are already apparent classically.

12.1.1 Spin tetrad

A systematic way to project objects into spin components is to work in a spin tetrad. As will become apparent
below, equation (12.5), spin describes how an object transforms under rotation about some preferred axis. In
the case of an electromagnetic or gravitational wave, the natural preferred axis is the direction of propagation
of the wave. With respect to the direction of propagation, electromagnetic waves prove to have two possible
spins, or helicities, ±1, while gravitational waves have two possible spins, or helicities, ±2. A preferred axis
might also be set by an experimenter who chooses to measure spin along some particular direction. The
following treatment takes the preferred direction to lie along the 𝑧-axis 𝛾𝛾𝑧, but there is no loss of generality
in making this choice.

315
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Start with an orthonormal tetrad {𝛾𝛾𝑡,𝛾𝛾𝑥,𝛾𝛾𝑦,𝛾𝛾𝑧}. If the preferred tetrad axis is the 𝑧-axis 𝛾𝛾𝑧, then the
spin tetrad axes {𝛾𝛾+,𝛾𝛾−} are defined to be complex combinations of the transverse axes {𝛾𝛾𝑥,𝛾𝛾𝑦},

𝛾𝛾+ ≡ 1√
2
(𝛾𝛾𝑥 + 𝑖𝛾𝛾𝑦) , (12.1a)

𝛾𝛾− ≡ 1√
2
(𝛾𝛾𝑥 − 𝑖𝛾𝛾𝑦) . (12.1b)

The tetrad metric of the spin tetrad {𝛾𝛾𝑡,𝛾𝛾𝑧,𝛾𝛾+,𝛾𝛾−} is

𝛾𝑚𝑛 =

⎛⎜⎜⎝
−1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎠ . (12.2)

Notice that the spin axes {𝛾𝛾+,𝛾𝛾−} are themselves null, 𝛾𝛾+ · 𝛾𝛾+ = 𝛾𝛾− · 𝛾𝛾− = 0, whereas their scalar product
with each other is non-zero 𝛾𝛾+ · 𝛾𝛾− = 1. The null character of the spin axes is what makes spin especially
well-suited to describing fields, such as electromagnetism and gravity, that propagate at the speed of light. An
even better trick in dealing with fields that propagate at the speed of light is to work in a Newman-Penrose
tetrad, §12.2, in which all 4 tetrad axes are taken to be null.

12.1.2 Transformation of spin under rotation about the preferred axis

Under a right-handed rotation by angle 𝜒 about the preferred axis 𝛾𝛾𝑧, the transverse axes 𝛾𝛾𝑥 and 𝛾𝛾𝑦 transform
as

𝛾𝛾𝑥 → cos𝜒𝛾𝛾𝑥 + sin𝜒𝛾𝛾𝑦 ,

𝛾𝛾𝑦 → sin𝜒𝛾𝛾𝑥 − cos𝜒𝛾𝛾𝑦 . (12.3)

It follows that the spin axes 𝛾𝛾+ and 𝛾𝛾− transform under a right-handed rotation by angle 𝜒 about 𝛾𝛾𝑧 as

𝛾𝛾± → 𝑒∓𝑖𝜒 𝛾𝛾± . (12.4)

The transformation (12.4) identifies the spin axes 𝛾𝛾+ and 𝛾𝛾− as having spin +1 and −1 respectively.

12.1.3 Spin

More generally, an object can be defined as having spin 𝑠 if it varies by

𝑒−𝑠𝑖𝜒 (12.5)

under a right-handed rotation by angle 𝜒 about the preferred axis 𝛾𝛾𝑧. Thus an object of spin 𝑠 is unchanged
by a rotation of 2𝜋/𝑠 about the preferred axis. A spin-0 object is symmetric about the 𝛾𝛾𝑧 axis, unchanged
by a rotation of any angle about the axis. The 𝛾𝛾𝑧 axis itself is spin-0, as is the time axis 𝛾𝛾𝑡.
The components of a tensor in a spin tetrad inherit spin properties from that of the spin basis. The general
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rule is that the spin 𝑠 of any tensor component is equal to the number of + covariant indices minus the
number of − covariant indices:

spin 𝑠 = number of + minus − covariant indices . (12.6)

12.1.4 Spin flip

Under a reflection through the 𝑦-axis, the spin axes swap:

𝛾𝛾+ ↔ 𝛾𝛾− , (12.7)

which may also be accomplished by complex conjugation. Reflection through the 𝑦-axis, or equivalently
complex conjugation, changes the sign of all spin indices of a tensor component

+↔ − . (12.8)

In short, complex conjugation flips spin, a pretty feature of the spin formalism.

12.1.5 Spin versus spherical harmonics

In physical problems, such as in cosmological perturbations, or in perturbations of spherical black holes, or
in the hydrogen atom, spin often appears in conjunction with an expansion in spherical harmonics. Spin
should not be confused with spherical harmonics.
Spin and spherical harmonics appear together whenever the problem at hand has a symmetry under the 3D

special orthogonal group 𝑆𝑂(3) of spatial rotations (special means of unit determinant; the full orthogonal
group 𝑂(3) contains in addition the discrete transformation corresponding to reflection of one of the axes,
which flips the sign of the determinant). Rotations in 𝑆𝑂(3) are described by 3 Euler angles {𝜃, 𝜑, 𝜒}. Spin
is associated with the Euler angle 𝜒. The usual spherical harmonics 𝑌ℓ𝑚(𝜃, 𝜑) are the spin-0 eigenfunctions
of 𝑆𝑂(3). The eigenfunctions of the full 𝑆𝑂(3) group are the spin harmonics SIGN?

𝑠𝑌ℓ𝑚(𝜃, 𝜑, 𝜒) = Θℓ𝑚𝑠(𝜃, 𝜑, 𝜒)𝑒
𝑖𝑚𝜑𝑒𝑖𝑠𝜒 . (12.9)

12.1.6 Spin components of the Einstein tensor

With respect to a spin tetrad, the components of the Einstein tensor 𝐺𝑚𝑛 are

𝐺𝑚𝑛 =

⎛⎜⎜⎝
𝐺𝑡𝑡 𝐺𝑡𝑧 𝐺𝑡+ 𝐺𝑡−
𝐺𝑡𝑧 𝐺𝑧𝑧 𝐺𝑧+ 𝐺𝑧−
𝐺𝑡+ 𝐺𝑧+ 𝐺++ 𝐺+−
𝐺𝑡− 𝐺𝑧− 𝐺+− 𝐺−−

⎞⎟⎟⎠ . (12.10)
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From this it is apparent that the 10 components of the Einstein tensor decompose into 4 spin-0 components,
4 spin-±1 components, and 2 spin-±2 components:

−2 : 𝐺−− ,

−1 : 𝐺𝑡− , 𝐺𝑧− ,

0 : 𝐺𝑡𝑡 , 𝐺𝑡𝑧 , 𝐺𝑧𝑧 , 𝐺+− ,

+1 : 𝐺𝑡+ , 𝐺𝑧+ ,

+2 : 𝐺++ .

(12.11)

The 4 spin-0 components are all real; in particular 𝐺+− is real since 𝐺*+− = 𝐺−+ = 𝐺+−. The 4 spin-±1
and 2 spin-±2 components comprise 3 complex components

𝐺*++ = 𝐺−− , 𝐺*𝑡+ = 𝐺𝑡− , 𝐺*𝑧+ = 𝐺𝑧− . (12.12)

In some contexts, for example in cosmological perturbation theory, REALLY? the various spin components
are commonly referred to as scalar (spin-0), vector (spin-±1), and tensor (spin-±2).

12.2 Newman-Penrose tetrad formalism

The Newman-Penrose formalism (Newman and Penrose, 1962; Newman and Penrose, 2009) provides a partic-
ularly powerful way to deal with fields that propagate at the speed of light. The Newman-Penrose formalism
adopts a tetrad in which the two axes 𝛾𝛾𝑣 (outgoing) and 𝛾𝛾𝑢 (ingoing) along the direction of propagation are
chosen to be lightlike, while the two axes 𝛾𝛾+ and 𝛾𝛾− transverse to the direction of propagation are chosen
to be spin axes.
Sadly, the literature on the Newman-Penrose formalism is characterized by an arcane and random notation

whose principal purpose seems to be to perpetuate exclusivity for an old-boys club of people who understand
it. This is unfortunate given the intrinsic power of the formalism. Held (1974) comments that the Newman-
Penrose formalism presents “a formidable notational barrier to the uninitiate.” For example, the tetrad
connections Γ𝑘𝑚𝑛 are called “spin coefficients,” and assigned individual greek letters that obscure their
transformation properties. Do not be fooled: all the standard tetrad formalism presented in Chapter 11
carries through unaltered. One ill-born child of the notation that persists in widespread use is 𝜓2−𝑠 for the
spin 𝑠 component of the Weyl tensor, equations (12.30).
Gravitational waves are commonly characterized by the Newman-Penrose (NP) components of the Weyl

tensor. The NP components of the Weyl tensor are sometimes referred to as the NP scalars. The designation
as NP scalars is potentially misleading, because the NP components of the Weyl tensor form a tetrad-frame
tensor, not a set of scalars (though of course the tetrad-frame Weyl tensor is, like any tetrad-frame quantity, a
coordinate scalar). The NP components do become proper quantities, and in that sense scalars, when referred
to the frame of a particular observer, such as a gravitational wave telescope, observing along a particular
direction. However, the use of the word scalar to describe the components of a tensor is unfortunate.
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12.2.1 Newman-Penrose tetrad

A Newman-Penrose tetrad {𝛾𝛾𝑣,𝛾𝛾𝑢,𝛾𝛾+,𝛾𝛾−} is defined in terms of an orthonormal tetrad {𝛾𝛾𝑡,𝛾𝛾𝑥,𝛾𝛾𝑦,𝛾𝛾𝑧} by

𝛾𝛾𝑣 ≡ 1√
2
(𝛾𝛾𝑡 + 𝛾𝛾𝑧) , (12.13a)

𝛾𝛾𝑢 ≡ 1√
2
(𝛾𝛾𝑡 − 𝛾𝛾𝑧) , (12.13b)

𝛾𝛾+ ≡ 1√
2
(𝛾𝛾𝑥 + 𝑖𝛾𝛾𝑦) , (12.13c)

𝛾𝛾− ≡ 1√
2
(𝛾𝛾𝑥 − 𝑖𝛾𝛾𝑦) , (12.13d)

or in matrix form ⎛⎜⎜⎝
𝛾𝛾𝑣
𝛾𝛾𝑢
𝛾𝛾+

𝛾𝛾−

⎞⎟⎟⎠ =
1√
2

⎛⎜⎜⎝
1 0 0 1

1 0 0 −1
0 1 𝑖 0

0 1 −𝑖 0

⎞⎟⎟⎠
⎛⎜⎜⎝

𝛾𝛾𝑡
𝛾𝛾𝑥
𝛾𝛾𝑦
𝛾𝛾𝑧

⎞⎟⎟⎠ . (12.14)

All four tetrad axes are null

𝛾𝛾𝑣 · 𝛾𝛾𝑣 = 𝛾𝛾𝑢 · 𝛾𝛾𝑢 = 𝛾𝛾+ · 𝛾𝛾+ = 𝛾𝛾− · 𝛾𝛾− = 0 . (12.15)

In a profound sense, the null, or lightlike, character of each the four NP axes explains why the NP formalism is
well adapted to treating fields that propagate at the speed of light. The tetrad metric of the Newman-Penrose
tetrad {𝛾𝛾𝑣,𝛾𝛾𝑢,𝛾𝛾+,𝛾𝛾−} is

𝛾𝑚𝑛 =

⎛⎜⎜⎝
0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎠ . (12.16)

12.2.2 Boost weight

A boost by rapidity 𝜃 along the 𝛾𝛾𝑧 axis multiplies the outgoing and ingoing axes 𝛾𝛾𝑣 and 𝛾𝛾𝑢 by a blueshift
factor 𝑒𝜃 and its reciprocal,

𝛾𝛾𝑣 → 𝑒𝜃 𝛾𝛾𝑣 ,

𝛾𝛾𝑢 → 𝑒−𝜃 𝛾𝛾𝑢 . (12.17)

In terms of the velocity 𝑣 = tanh 𝜃, the blueshift factor is the special relativistic Doppler shift factor

𝑒𝜃 =

(︂
1 + 𝑣

1− 𝑣

)︂1/2

. (12.18)
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More generally, object is said to have boost weight 𝑛 if it varies by

𝑒𝑛𝜃 (12.19)

under a boost by rapidity 𝜃 along the preferred direction 𝛾𝛾𝑧. Thus 𝛾𝛾𝑣 has boost weight +1, and 𝛾𝛾𝑢 has
boost weight −1. The spin axes 𝛾𝛾± both have boost weight 0. The NP components of a tensor inherit their
boost weight properties from those of the NP basis. The general rule is that the boost weight 𝑛 of any tensor
component is equal to the number of 𝑣 covariant indices minus the number of 𝑢 covariant indices:

boost weight 𝑛 = number of 𝑣 minus 𝑢 covariant indices . (12.20)

12.2.3 Lorentz transformations

Under a Lorentz transformation consisting of a combination of a Lorentz boost by rapidity 𝜉 about 𝑡–𝑥 and
a rotation by angle 𝜁 about 𝑦–𝑧, an orthonormal tetrad 𝛾𝛾𝑚 ≡ {𝛾𝛾𝑡,𝛾𝛾𝑥,𝛾𝛾𝑦,𝛾𝛾𝑧} transforms as FIX SIGNS

𝛾𝛾𝑚 → 𝛾𝛾′𝑚 =

⎛⎜⎜⎝
cosh(𝜉) − sinh(𝜉) 0 0

− sinh(𝜉) cosh(𝜉) 0 0

0 0 cos(𝜁) sin(𝜁)

0 0 − sin(𝜁) cos(𝜁)

⎞⎟⎟⎠
⎛⎜⎜⎝

𝛾𝛾𝑡
𝛾𝛾𝑥
𝛾𝛾𝑦
𝛾𝛾𝑧

⎞⎟⎟⎠ . (12.21)

Under the same Lorentz transformation, the bivector axes 𝛾𝛾𝑡𝑚 ≡ {𝛾𝛾𝑡𝑥,𝛾𝛾𝑡𝑦,𝛾𝛾𝑡𝑧} transform as

𝛾𝛾𝑡𝑚 → 𝛾𝛾′𝑡𝑚 =

⎛⎝ 1 0 0

0 cos(𝜁 + 𝑖𝜉) sin(𝜁 + 𝑖𝜉)

0 − sin(𝜁 + 𝑖𝜉) cos(𝜁 + 𝑖𝜉)

⎞⎠⎛⎝ 𝛾𝛾𝑡𝑥
𝛾𝛾𝑡𝑦
𝛾𝛾𝑡𝑧

⎞⎠ . (12.22)

12.3 Weyl tensor

The Weyl tensor is the trace-free part of the Riemann tensor,

𝐶𝑘𝑙𝑚𝑛 ≡ 𝑅𝑘𝑙𝑚𝑛 − 1
2 (𝛾𝑘𝑚𝑅𝑙𝑛 − 𝛾𝑘𝑛𝑅𝑙𝑚 + 𝛾𝑙𝑛𝑅𝑘𝑚 − 𝛾𝑙𝑚𝑅𝑘𝑛) + 1

6 (𝛾𝑘𝑚𝛾𝑙𝑛 − 𝛾𝑘𝑛𝛾𝑙𝑚)𝑅 . (12.23)

By construction, the Weyl tensor vanishes when contracted on any pair of indices. Whereas the Ricci and
Einstein tensors vanish identically in any region of spacetime containing no energy-momentum, 𝑇𝑚𝑛 = 0,
the Weyl tensor can be non-vanishing. Physically, the Weyl tensor describes tidal forces and gravitational
waves.

12.3.1 Complexified Weyl tensor

The Weyl tensor is is, like the Riemann tensor, a symmetric matrix of bivectors. Just as the electromagnetic
bivector 𝐹𝑘𝑙 has a natural complex structure, so also the Weyl tensor 𝐶𝑘𝑙𝑚𝑛 has a natural complex structure.
The properties of the Weyl tensor emerge most plainly when that complex structure is made manifest.
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In an orthonormal tetrad {𝛾𝛾𝑡,𝛾𝛾𝑥,𝛾𝛾𝑦,𝛾𝛾𝑧}, the Weyl tensor 𝐶𝑘𝑙𝑚𝑛 can be written as a 6 × 6 symmetric
bivector matrix, organized as a 2× 2 matrix of 3× 3 blocks, with the structure

𝐶 =

(︂
𝐶𝐸𝐸 𝐶𝐸𝐵
𝐶𝐵𝐸 𝐶𝐵𝐵

)︂
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐶𝑡𝑥𝑡𝑥 𝐶𝑡𝑥𝑡𝑦 𝐶𝑡𝑥𝑡𝑧 𝐶𝑡𝑥𝑧𝑦 𝐶𝑡𝑥𝑥𝑧 𝐶𝑡𝑥𝑦𝑥
𝐶𝑡𝑦𝑡𝑥 ... ... ... ... ...

𝐶𝑡𝑧𝑡𝑥 ... ... ... ... ...

𝐶𝑧𝑦𝑡𝑥 ... ... ... ... ...

𝐶𝑥𝑧𝑡𝑥 ... ... ... ... ...

𝐶𝑦𝑥𝑡𝑥 ... ... ... ... ...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (12.24)

where 𝐸 denotes electric indices, 𝐵 magnetic indices, per the designation (??). The condition of being
symmetric implies that the 3 × 3 blocks 𝐶𝐸𝐸 and 𝐶𝐵𝐵 are symmetric, while 𝐶𝐵𝐸 = 𝐶⊤𝐸𝐵 . The cyclic
symmetry (11.62b) of the Riemann, hence Weyl, tensor implies that the off-diagonal 3× 3 block 𝐶𝐸𝐵 (and
likewise 𝐶𝐵𝐸) is traceless.

The natural complex structure motivates defining a complexified Weyl tensor 𝐶𝑘𝑙𝑚𝑛 by

𝐶𝑘𝑙𝑚𝑛 ≡
1

4

(︂
𝛿𝑝𝑘𝛿

𝑞
𝑙 +

𝑖

2
𝜀𝑘𝑙

𝑝𝑞

)︂(︂
𝛿𝑟𝑚𝛿

𝑠
𝑛 +

𝑖

2
𝜀𝑚𝑛

𝑟𝑠

)︂
𝐶𝑝𝑞𝑟𝑠 a tetrad tensor (12.25)

analogously to the definition (??) of the complexified electromagnetic field. The definition (12.25) of the
complexified Weyl tensor 𝐶𝑘𝑙𝑚𝑛 is valid in any frame, not just an orthonormal frame. In an orthonormal
frame, if the Weyl tensor 𝐶𝑘𝑙𝑚𝑛 is organized according to the structure (12.24), then the complexified Weyl
tensor 𝐶𝑘𝑙𝑚𝑛 defined by equation (12.25) has the structure

𝐶 =
1

4

(︂
1 −𝑖
−𝑖 −1

)︂
(𝐶𝐸𝐸 − 𝐶𝐵𝐵 + 𝑖 𝐶𝐸𝐵 + 𝑖 𝐶𝐵𝐸) . (12.26)

Thus the independent components of the complexified Weyl tensor 𝐶𝑘𝑙𝑚𝑛 constitute a 3 × 3 complex sym-
metric traceless matrix 𝐶𝐸𝐸 − 𝐶𝐵𝐵 + 𝑖(𝐶𝐸𝐵 + 𝐶𝐵𝐸), with 5 complex degrees of freedom. Although the
complexified Weyl tensor 𝐶𝑘𝑙𝑚𝑛 is defined, equation (12.25), as a projection of the Weyl tensor, it neverthe-
less retains all the 10 degrees of freedom of the original Weyl tensor 𝐶𝑘𝑙𝑚𝑛.

The same complexification projection operator applied to the trace (Ricci) parts of the Riemann tensor
yields only the Ricci scalar multiplied by that unique combination of the tetrad metric that has the sym-
metries of the Riemann tensor. Thus complexifying the trace parts of the Riemann tensor produces nothing
useful.
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12.3.2 Newman-Penrose components of the Weyl tensor

With respect to a NP null tetrad {𝛾𝛾𝑣,𝛾𝛾𝑢,𝛾𝛾+,𝛾𝛾−}, equation (39.1), the Weyl tensor 𝐶𝑘𝑙𝑚𝑛 has 5 distinct
complex components, here denoted 𝜓𝑠, of spins respectively 𝑠 = −2, −1, 0, +1, and +2:

−2 : 𝜓−2 ≡ 𝐶𝑢−𝑢− ,
−1 : 𝜓−1 ≡ 𝐶𝑢𝑣𝑢− = 𝐶+−𝑢− ,

0 : 𝜓0 ≡ 1
2 (𝐶𝑢𝑣𝑢𝑣 + 𝐶𝑢𝑣+−) = 1

2 (𝐶+−+− + 𝐶𝑢𝑣+−) = 𝐶𝑣+−𝑢 ,

+1 : 𝜓1 ≡ 𝐶𝑣𝑢𝑣+ = 𝐶−+𝑣+ ,

+2 : 𝜓2 ≡ 𝐶𝑣+𝑣+ .

(12.27)

The complex conjugates 𝜓*𝑠 of the 5 NP components of the Weyl tensor are:

𝜓*−2 = 𝐶𝑢+𝑢+ ,

𝜓*−1 = 𝐶𝑢𝑣𝑢+ = 𝐶−+𝑢+ ,

𝜓*0 = 1
2 (𝐶𝑢𝑣𝑢𝑣 + 𝐶𝑢𝑣−+) = 1

2 (𝐶−+−+ + 𝐶𝑢𝑣−+) = 𝐶𝑣−+𝑢 ,

𝜓*1 = 𝐶𝑣𝑢𝑣− = 𝐶+−𝑣− ,

𝜓*2 = 𝐶𝑣−𝑣− .

(12.28)

whose spins have the opposite sign, in accordance with the rule (12.8) that complex conjugation flips spin.
The above expressions (12.27) and (12.28) account for all the NP components 𝐶𝑘𝑙𝑚𝑛 of the Weyl tensor but
four, which vanish identically:

𝐶𝑣+𝑣− = 𝐶𝑢+𝑢− = 𝐶𝑣+𝑢+ = 𝐶𝑣−𝑢− = 0 . (12.29)

The above convention that the index 𝑠 on the NP component 𝜓𝑠 labels its spin differs from the standard
convention, where the spin 𝑠 component of the Weyl tensor is impenetrably denoted 𝜓2−𝑠 (e.g. Chandrasekhar
(1983)):

−2 : 𝜓4 ,

−1 : 𝜓3 ,

0 : 𝜓2 ,

+1 : 𝜓1 ,

+2 : 𝜓0 .

(standard convention, not followed here) (12.30)

12.3.3 Newman-Penrose components of the complexified Weyl tensor

The non-vanishing NP components of the complexified Weyl tensor 𝐶𝑘𝑙𝑚𝑛 defined by equation (12.25) are

𝐶𝑢−𝑢− = 𝜓−2 ,

𝐶𝑢𝑣𝑢− = 𝐶+−𝑢− = 𝜓−1 ,

𝐶𝑢𝑣𝑢𝑣 = 𝐶+−+− = 𝐶𝑢𝑣+− = 𝐶𝑣+−𝑢 = 𝜓0 ,

𝐶𝑣𝑢𝑣+ = 𝐶−+𝑣+ = 𝜓1 ,

𝐶𝑣+𝑣+ = 𝜓2 .

(12.31)
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whereas any component with either of its two bivector indices equal to 𝑣− or 𝑢+ vanishes. As with the
complexified electromagnetic field, the rule that complex conjugation flips spin fails here because the com-
plexification operator breaks the rule. Equations (12.31) show that the complexified Weyl tensor in an NP
tetrad contains just 5 distinct non-vanishing complex components, and those components are precisely equal
to the complex spin components 𝜓𝑠.
With respect to a triple of bivector indices ordered as {𝑢−, 𝑢𝑣,+𝑣}, the NP components of the complexified

Weyl tensor constitute the 3× 3 complex symmetric matrix

𝐶𝑘𝑙𝑚𝑛 =

⎛⎝ 𝜓−2 𝜓−1 𝜓0

𝜓−1 𝜓0 𝜓1

𝜓0 𝜓1 𝜓2

⎞⎠ . (12.32)

12.3.4 Components of the complexified Weyl tensor in an orthonormal tetrad

The complexified Weyl tensor forms a 3 × 3 complex symmetric traceless matrix in any frame, not just an
NP frame. In an orthonormal frame, with respect to a triple of bivector indices {𝑡𝑥, 𝑡𝑦, 𝑡𝑧}, the complexified
Weyl tensor 𝐶𝑘𝑙𝑚𝑛 can be expressed in terms of the NP spin components 𝜓𝑠 as

𝐶𝑘𝑙𝑚𝑛 =

⎛⎝ 𝜓0
1
2 (𝜓1 − 𝜓−1) − 𝑖

2 (𝜓1 + 𝜓−1)
1
2 (𝜓1 − 𝜓−1) − 1

2𝜓0 +
1
4 (𝜓2 + 𝜓−2) − 𝑖

4 (𝜓2 − 𝜓−2)
− 𝑖

2 (𝜓1 + 𝜓−1) − 𝑖
4 (𝜓2 − 𝜓−2) − 1

2𝜓0 − 1
4 (𝜓2 + 𝜓−2)

⎞⎠ . (12.33)

12.3.5 Propagating components of gravitational waves

For outgoing gravitational waves, only the spin −2 component 𝜓−2 (the one conventionally called 𝜓4) prop-
agates, carrying gravitational waves from a source to infinity:

𝜓−2 : propagating, outgoing . (12.34)

This propagating, outgoing −2 component has spin −2, but its complex conjugate has spin +2, so effectively
both spin components, or helicities, or circular polarizations, of an outgoing gravitational wave are embodied
in the single complex component. The remaining 4 complex NP components (spins −1 to 2) of an outgoing
gravitational wave are short range, describing the gravitational field near the source.
Similarly, only the spin +2 component 𝜓2 of an ingoing gravitational wave propagates, carrying energy

from infinity:

𝜓2 : propagating, ingoing . (12.35)

12.4 Petrov classification of the Weyl tensor

As seen above, the complexified Weyl tensor is a complex symmetric traceless 3 × 3 matrix. If the matrix
were real symmetric (or complex Hermitian), then standard mathematical theorems would guarantee that
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Table 12.1: Petrov classification of the Weyl tensor

Petrov Distinct Distinct Normal form
type eigenvalues eigenvectors of the complexified Weyl tensor

I 3 3

⎛⎝ 𝜓0 0 0

0 − 1
2𝜓0 +

1
2𝜓2 0

0 0 − 1
2𝜓0 − 1

2𝜓2

⎞⎠
D 2 3

⎛⎝ 𝜓0 0 0

0 − 1
2𝜓0 0

0 0 − 1
2𝜓0

⎞⎠
II 2 2

⎛⎝ 𝜓0 0 0

0 − 1
2𝜓0 +

1
4𝜓2 − 𝑖

4𝜓2

0 − 𝑖
4𝜓2 − 1

2𝜓0 − 1
4𝜓2

⎞⎠
O 1 3

⎛⎝ 0 0 0

0 0 0

0 0 0

⎞⎠
N 1 2

⎛⎝ 0 0 0

0 1
4𝜓2 − 𝑖

4𝜓2

0 − 𝑖
4𝜓2 − 1

4𝜓2

⎞⎠
III 1 1

⎛⎝ 0 1
2𝜓1 − 𝑖

2𝜓1
1
2𝜓1 0 0

− 𝑖
2𝜓1 0 0

⎞⎠

it would be diagonalizable, with a complete set of eigenvalues and eigenvectors. But the Weyl matrix is
complex symmetric, and there is no such theorem.
The mathematical theorems state that a matrix is diagonalizable if and only if it has a complete set of

linearly independent eigenvectors. Since there is always at least one distinct linearly independent eigenvector
associated with each distinct eigenvalue, if all eigenvalues are distinct, then necessarily there is a complete
set of eigenvectors, and the Weyl tensor is diagonalizable. However, if some of the eigenvalues coincide, then
there may not be a complete set of linearly independent eigenvectors, in which case the Weyl tensor is not
diagonalizable.
The Petrov classification, tabulated in Table 12.1, classifies the Weyl tensor in accordance with the number

of distinct eigenvalues and eigenvectors. The normal form is with respect to an orthonormal frame aligned
with the eigenvectors to the extent possible. The tetrad with respect to which the complexified Weyl tensor
takes its normal form is called the Weyl principal tetrad. The Weyl principal tetrad is unique except in
cases D, O, and N. For Types D and N, the Weyl principal tetrad is unique up to Lorentz transformations
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that leave the eigen-bivector 𝛾𝛾𝑡𝑧 unchanged, which is to say, transformations generated by the Lorentz rotor
exp(𝜁𝛾𝛾𝑡𝑧) where 𝜁 is complex.
The Kerr-Newman geometry is Type D. General spherically symmetric geometries are Type D. The

Friedmann-Lemaître-Robertson-Walker geometry is Type O. Plane gravitational waves are Type N.



13

The geometric algebra

The geometric algebra is a conceptually appealing and mathematically powerful formalism. If you want to
understand rotations, Lorentz transformations, spin- 12 particles, and supersymmetry, and you want to do
actual calculations elegantly and (relatively) easily, then the geometric algebra is the thing to learn.
The extension of the geometric algebra to Minkowksi space is called the spacetime algebra, which is

the subject of Chapter 14. The natural extensions of the geometric and spacetime algebras to spinors are
called the super geometric algebra and the super spacetime algebra, covered in Chapters 38 and 39. All
these algebras may be referred to collectively as geometric algebras. I am generally unenthusiastic about
mathematical formalism for its own sake. The geometric algebras are a mathematical language that Nature
appears to speak.
The geometric algebra builds on a broad mathematical heritage beginning with the work of Grassmann

(1862; 1877) and Clifford (1878). The exposition in this book owes much to the conceptual rethinking of the
subject by David Hestenes (Hestenes, 1966; Hestenes and Sobczyk, 1987).
This Chapter starts by setting up the geometric algebra in 𝑁 -dimensional Euclidean space R𝑁 , then

specializes to the cases of 2 and 3 dimensions. The generalization to 4-dimensional Minkowski space, where
the geometric algebra is called the spacetime algebra, is deferred to Chapter 14. The 4-dimensional spacetime
algebra proves to be identical to the Clifford algebra of the Dirac 𝛾-matrices, which explains the adoption
of the symbol 𝛾𝛾𝑚 to denote the basis vectors of a tetrad. Although the formalism is presented initially
in Euclidean or Minkowski space, everything generalizes immediately to general relativity, where the basis
vectors 𝛾𝛾𝑚 form the basis of an orthonormal tetrad at each point of spacetime.
This book follows the standard physics convention that a rotor 𝑅 rotates a multivector 𝑎 as 𝑎 → 𝑅𝑎𝑅

and a spinor 𝜙 as 𝜙 → 𝑅𝜙. This, along with the standard definition (13.19) for the pseudoscalar, has the
consequence that a right-handed rotation corresponds to 𝑅 = 𝑒−𝑖𝜃/2 with 𝜃 increasing, and that rotations
accumulate to the left, that is, a rotation 𝑅 followed by a rotation 𝑆 is the product 𝑆𝑅. The physics
convention is opposite to that adopted in OpenGL and by the computer graphics industry, where a right-
handed rotation corresponds to 𝑅 = 𝑒𝑖𝜃/2, and rotations accumulate to the right, that is, 𝑅 followed by 𝑆 is
𝑅𝑆.
In this book, a multivector is written in boldface. A rotor is written in normal (not bold) face as a reminder

that, even though a rotor is an even member of the geometric algebra, it can also be regarded as a spin- 12

326
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Figure 13.1 Multivectors of grade 1, 2, and 3: a vector 𝑎 (left), a bivector 𝑎∧ 𝑏 (middle), and a trivector 𝑎∧ 𝑏∧ 𝑐

(right).

object with a transformation law (13.75) different from that (13.56) of multivectors. Earlier latin indices
𝑎, 𝑏, ... run over spatial indices 1, 2, ... only, while mid latin indices 𝑚,𝑛, ... run over both time and space
indices 0, 1, 2, ....

13.1 Products of vectors

In 3-dimensional Euclidean space R3, there are two familiar ways of taking the product of two vectors, the
scalar product and the vector product.
1. The scalar product 𝑎 · 𝑏, also known as the dot product or inner product, of two vectors 𝑎 and 𝑏 is

a scalar of magnitude |𝑎| |𝑏| cos 𝜃, where |𝑎| and |𝑏| are the lengths of the two vectors, and 𝜃 the angle
between them. The scalar product is commutative, 𝑎 · 𝑏 = 𝑏 · 𝑎.

2. The vector product, 𝑎 × 𝑏, also known as the cross product, is a vector of magnitude |𝑎| |𝑏| sin 𝜃,
directed perpendicular to both 𝑎 and 𝑏, such that 𝑎, 𝑏, and 𝑎× 𝑏 form a right-handed set. The vector
product is anticommutative, 𝑎× 𝑏 = −𝑏× 𝑎.

The definition of the scalar product continues to work fine in a Euclidean space of any dimension, but
the definition of the vector product works only in three dimensions, because in two dimensions there is no
vector perpendicular to two vectors, and in four or more dimensions there are many vectors perpendicular
to two vectors. It is therefore useful to define a more general version, the outer product (Grassmann, 1862)
that works in Euclidean space R𝑁 of any dimension.
3. The outer product 𝑎∧ 𝑏, also known as the wedge product or exterior product, of two vectors 𝑎 and

𝑏 is a bivector, a multivector of dimension 2, or grade 2. The bivector 𝑎∧ 𝑏 is the directed 2-dimen-
sional area, of magnitude |𝑎| |𝑏| sin 𝜃, of the parallelogram formed by the vectors 𝑎 and 𝑏, as illustrated
in Figure 13.1. The bivector has an orientation, or handedness, defined by circulating the parallelogram
first along 𝑎, then along 𝑏. The outer product is anticommutative, 𝑎∧ 𝑏 = −𝑏∧𝑎, like its forebear the
vector product.
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The outer product can be repeated, so that (𝑎∧ 𝑏)∧ 𝑐 is a trivector, a directed volume, a multivector
of grade 3. The magnitude of the trivector is the volume of the parallelepiped defined by the vectors 𝑎, 𝑏,
and 𝑐, illustrated in Figure 13.1. The outer product is by construction associative, (𝑎∧ 𝑏)∧ 𝑐 = 𝑎∧(𝑏∧ 𝑐).
Associativity, together with anticommutativity of bivectors, implies that the trivector 𝑎∧ 𝑏∧ 𝑐 is totally
antisymmetric under permutations of the three vectors, that is, it is unchanged under even permutations, and
changes sign under odd permutations. The ordering of an outer product thus defines one of two handednesses.
It is a familiar concept that a vector 𝑎 can be regarded as a geometric object, a directed length, independent

of the coordinates used to describe it. The components of a vector change when the reference frame changes,
but the vector itself remains the same physical thing. In the same way, a bivector 𝑎∧ 𝑏 is a directed area,
and a trivector 𝑎∧ 𝑏∧ 𝑐 is a directed volume, both geometric objects with a physical meaning independent
of the coordinate system.
In two dimensions the triple outer product of any three vectors is zero, 𝑎∧ 𝑏∧ 𝑐 = 0, because the volume

of a parallelepiped confined to a plane is zero. More generally, in 𝑁 -dimensional space R𝑁 , the outer product
of 𝑁 + 1 vectors is zero

𝑎1 ∧𝑎2 ∧ · · · ∧𝑎𝑁+1 = 0 (𝑁 dimensions) . (13.1)

13.2 Geometric product

The inner and outer products offer two different ways of multiplying vectors. However, by itself neither
product conforms to the usual desideratum of multiplication, that the product of two elements of a set be
an element of the set. Taking the inner product of a vector with another vector lowers the dimension by one,
while taking the outer product raises the dimension by one.
Grassmann (1877) and Clifford (1878) resolved the problem by defining a multivector as any linear

combination of scalars, vectors, bivectors, and objects of higher grade. Let 𝛾𝛾1,𝛾𝛾2, ...,𝛾𝛾𝑛 form an orthonormal
basis for 𝑁 -dimensional Euclidean space R𝑁 . A multivector in 𝑁 = 2 dimensions is then a linear combination
of

1 ,

1 scalar
𝛾𝛾1 , 𝛾𝛾2 ,

2 vectors
𝛾𝛾1 ∧𝛾𝛾2 ,

1 bivector
(13.2)

forming a linear space of dimension 1 + 2 + 1 = 4 = 22. Similarly, a multivector in 𝑁 = 3 dimensions is a
linear combination of

1 ,

1 scalar
𝛾𝛾1 , 𝛾𝛾2 , 𝛾𝛾3 ,

3 vectors
𝛾𝛾1 ∧𝛾𝛾2 , 𝛾𝛾2 ∧𝛾𝛾3 , 𝛾𝛾3 ∧𝛾𝛾1 ,

3 bivectors
𝛾𝛾1 ∧𝛾𝛾2 ∧𝛾𝛾3 ,

1 trivector
(13.3)

forming a linear space of dimension 1 + 3+ 3+ 1 = 8 = 23. In general, multivectors in 𝑁 dimensions form a
linear space of dimension 2𝑁 , with 𝑁 !/[𝑛!(𝑁−𝑛)!] distinct basis elements of grade 𝑛.
A multivector 𝑎 in 𝑁 -dimensional Euclidean space R𝑁 can thus be written as a linear combination of



13.2 Geometric product 329

basis elements

𝑎 =
∑︁

distinct {𝑎,𝑏,...,𝑑}⊆{1,2,...,𝑁}

𝑎𝑎𝑏...𝑑 𝛾𝛾𝑎 ∧𝛾𝛾𝑏 ∧ ...∧𝛾𝛾𝑑 (13.4)

the sum being over all 2𝑁 distinct subsets of {1, 2, ..., 𝑁}. The index on each component 𝑎𝑎𝑏...𝑑 is a totally
antisymmetric quantity, reflecting the total antisymmetry of 𝛾𝛾𝑎 ∧𝛾𝛾𝑏 ∧ ...∧𝛾𝛾𝑑.
The point of introducing multivectors is to allow multiplication to be defined so that the product of two

multivectors is a multivector. The key trick is to define the geometric product 𝑎𝑏 of two vectors 𝑎 and 𝑏

to be the sum of their inner and outer products:

𝑎𝑏 = 𝑎 · 𝑏+ 𝑎∧ 𝑏 . (13.5)

That is a seriously big trick, and if you buy a ticket to it, you are in for a seriously big ride. As a particular
example of (13.5), the geometric product of any element 𝛾𝛾𝑎 of the orthonormal basis with itself is a scalar,
and with any other element of the basis is a bivector:

𝛾𝛾𝑎𝛾𝛾𝑏 =

{︂
1 (𝑎 = 𝑏)

𝛾𝛾𝑎 ∧𝛾𝛾𝑏 (𝑎 ̸= 𝑏) .
(13.6)

Conversely, the rules (13.6), plus distributivity, imply the multiplication rule (13.5). A generalization of the
rule (13.6) completes the definition of the geometric product:

𝛾𝛾𝑎𝛾𝛾𝑏...𝛾𝛾𝑑 = 𝛾𝛾𝑎 ∧𝛾𝛾𝑏 ∧ ...∧𝛾𝛾𝑑 (𝑎, 𝑏, ..., 𝑑 all distinct) . (13.7)

The rules (13.6) and (13.7), along with the usual requirements of associativity and distributivity, combined
with commutativity of scalars and anticommutativity of pairs of 𝛾𝛾𝑎, uniquely define multiplication over the
space of multivectors. For example, the product of the bivector 𝛾𝛾1 ∧𝛾𝛾2 with the vector 𝛾𝛾1 is

(𝛾𝛾1 ∧𝛾𝛾2)𝛾𝛾1 = 𝛾𝛾1𝛾𝛾2𝛾𝛾1 = −𝛾𝛾2𝛾𝛾1𝛾𝛾1 = −𝛾𝛾2 . (13.8)

Sometimes it is convenient to denote the outer product (13.7) of distinct basis elements by the abbreviated
symbol 𝛾𝛾𝐴 or 𝛾𝛾𝑎𝑏...𝑑,

𝛾𝛾𝐴 = 𝛾𝛾𝑎𝑏...𝑑 ≡ 𝛾𝛾𝑎 ∧𝛾𝛾𝑏 ∧ ...∧𝛾𝛾𝑑 (𝑎, 𝑏, ..., 𝑑 all distinct) . (13.9)

By construction, 𝛾𝛾𝐴 with 𝐴 = 𝑎𝑏...𝑑 is antisymmetric in its indices 𝑎, 𝑏, ..., 𝑑. The product of two general
multivectors 𝑎 = 𝑎𝐴𝛾𝛾𝐴 and 𝑏 = 𝑏𝐴𝛾𝛾𝐴 is

𝑎𝑏 = 𝑎𝐴𝑏𝐵𝛾𝛾𝐴𝛾𝛾𝐵 , (13.10)

with paired indices 𝐴 and 𝐵 implicitly summed over distinct subsets of {1, ..., 𝑁}. By construction, the
geometric algebra is associative,

(𝑎𝑏)𝑐 = 𝑎(𝑏𝑐) . (13.11)

Does the geometric algebra form a group under multiplication? No. One of the defining properties of a
group is that every element should have an inverse. But, for example,

(1 + 𝛾𝛾1)(1− 𝛾𝛾1) = 0 (13.12)
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shows that neither 1 + 𝛾𝛾1 nor 1− 𝛾𝛾1 has an inverse.

13.3 Reverse

The reverse of any basis element is defined to be the reversed product

𝛾𝛾𝑎 ∧𝛾𝛾𝑏 ∧ ...∧𝛾𝛾𝑑 ≡ 𝛾𝛾𝑑 ∧ ...∧𝛾𝛾𝑏 ∧𝛾𝛾𝑎 . (13.13)

The product of a basis multivector 𝛾𝛾𝐴 and its reverse is 1,

𝛾𝛾𝐴𝛾𝛾𝐴 = 𝛾𝛾𝐴𝛾𝛾𝐴 = 1 . (13.14)

The reverse 𝑎 of any multivector 𝑎 is the multivector obtained by reversing each of its components.
Reversion leaves unchanged all multivectors whose grade is 0 or 1, modulo 4, and changes the sign of all
multivectors whose grade is 2 or 3, modulo 4. Thus the reverse of a multivector 𝑎 of pure grade 𝑝 is

𝑎 = (−)[𝑝/2]𝑎 , (13.15)

where [𝑝/2] signifies the largest integer less than or equal to 𝑝/2. For example, scalars and vectors are
unchanged by reversion, but bivectors and trivectors change sign. Reversion satisfies

𝑎+ 𝑏 = 𝑎+ 𝑏 , (13.16)

𝑎𝑏 = 𝑏𝑎 . (13.17)

Among other things, it follows that the reverse of any product of multivectors is the reversed product, as
you would hope:

𝑎𝑏 ... 𝑐 = 𝑐 ... 𝑏𝑎 . (13.18)

13.4 The pseudoscalar and the Hodge dual

Orthogonal to any 𝑛-dimensional subspace of 𝑁 -dimensional space is an (𝑁−𝑛)-dimensional space, called
the Hodge dual space. For example, the Hodge dual of a bivector in 2 dimensions is a 0-dimensional ob-
ject, a pseudoscalar. Similarly, the Hodge dual of a bivector in 3 dimensions is a 1-dimensional object, a
pseudovector.

13.4.1 Pseudoscalar

Define the pseudoscalar 𝐼𝑁 in 𝑁 dimensions to be

𝐼𝑁 ≡ 𝛾𝛾1 ∧𝛾𝛾2 ∧ ...∧𝛾𝛾𝑁 (13.19)
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with reverse

𝐼𝑁 = (−)[𝑁/2]𝐼𝑁 , (13.20)

where [𝑁/2] signifies the largest integer less than or equal to 𝑁/2. The square of the pseudoscalar is

𝐼2𝑁 = (−)[𝑁/2] =
{︂

1 if 𝑁 = (0 or 1) modulo 4
−1 if 𝑁 = (2 or 3) modulo 4 .

(13.21)

The pseudoscalar anticommutes (commutes) with vectors 𝑎, that is, with multivectors of grade 1, if 𝑁 is
even (odd):

𝐼𝑁𝑎 = −𝑎𝐼𝑁 if 𝑁 is even
𝐼𝑁𝑎 = 𝑎𝐼𝑁 if 𝑁 is odd .

(13.22)

This implies that the pseudoscalar 𝐼𝑁 commutes with all even grade elements of the geometric algebra, and
that it anticommutes (commutes) with all odd elements of the algebra if 𝑁 is even (odd). Concisely, if 𝑎 has
grade 𝑝, then

𝐼𝑁𝑎 = (−)𝑝(𝑁−𝑝)𝑎𝐼𝑁 . (13.23)

Exercise 13.1. Schur’s lemma. Prove that the only multivectors that commute with all elements of the
algebra are linear combinations of the scalar 1 and, if 𝑁 is odd, the pseudoscalar 𝐼𝑁 .
Solution. Suppose that 𝑎 is a multivector that commutes with all elements of the algebra. Then in particular
𝑎 commutes with every basis element 𝛾𝛾𝑎 ∧𝛾𝛾𝑏 ∧ ...∧𝛾𝛾𝑑. Since multiplication by a basis element permutes
the basis elements amongst each other (and multiplies each by ±1), it follows that 𝑎 commutes with a
basis element only if each of the components of 𝑎 commutes separately with that basis element. Thus each
component of 𝑎 must commute separately with all basis elements of the algebra. Amongst the basis elements
of the algebra, only the scalar 1, and, if the dimension 𝑁 is odd, the pseudoscalar 𝐼𝑁 , equation (13.22),
commute with all other basis elements. Thus 𝑎 must be some linear combination of 1 and, if 𝑁 is odd, the
pseudoscalar 𝐼𝑁 .

13.4.2 Hodge dual

The Hodge dual *𝑎 of a multivector 𝑎 in 𝑁 dimensions is defined by pre-multiplication by the pseudoscalar
𝐼𝑁 ,

*𝑎 ≡ 𝐼𝑁𝑎 . (13.24)

In 3 dimensions, the Hodge duals of the basis vectors 𝛾𝛾𝑎 are the bivectors

𝐼3𝛾𝛾1 = 𝛾𝛾2 ∧𝛾𝛾3 , 𝐼3𝛾𝛾2 = 𝛾𝛾3 ∧𝛾𝛾1 , 𝐼3𝛾𝛾3 = 𝛾𝛾1 ∧𝛾𝛾2 . (13.25)

Thus in 3 dimensions the bivector 𝑎∧ 𝑏 is seen to be the pseudovector Hodge dual to the familiar vector
product 𝑎× 𝑏:

𝑎∧ 𝑏 = 𝐼3 𝑎× 𝑏 . (13.26)
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13.5 General products of multivectors

13.5.1 Pure grade components of products of multivectors

It is useful to be able to project out a particular grade component of a multivector. The grade 𝑝 component
of a multivector 𝑎 is denoted

⟨𝑎⟩𝑝 , (13.27)

so that for example ⟨𝑎⟩0, ⟨𝑎⟩1, and ⟨𝑎⟩2 represent respectively the scalar, vector, and bivector components
of 𝑎. By construction, a multivector is the sum of its pure grade components, 𝑎 = ⟨𝑎⟩0 + ⟨𝑎⟩1 + ...+ ⟨𝑎⟩𝑁 .
The geometric product of a multivector 𝑎 of pure grade 𝑝 with a multivector 𝑏 of pure grade 𝑞 is in general

a sum of multivectors of grades |𝑝−𝑞| to min(𝑝+𝑞,𝑁). The product 𝑎𝑏 is in general neither commutative
nor anticommutative, but the pure grade components of the product commute or anticommute according to

⟨𝑎𝑏⟩𝑝+𝑞−2𝑛 = (−)𝑝𝑞−𝑛
2

⟨𝑏𝑎⟩𝑝+𝑞−2𝑛 (13.28)

for 𝑛 = [(𝑝+𝑞−𝑁)/2] tomin(𝑝, 𝑞). Written out in components, the grade 𝑝+𝑞−2𝑛 component of the geometric
product of 𝑎 = 𝑎𝐴𝛾𝛾𝐴 and 𝑏 = 𝑏𝐴𝛾𝛾𝐴 is

⟨𝑎𝑏⟩𝑝+𝑞−2𝑛 = (−)[𝑛/2]𝑎𝐴𝐶𝑏𝐶𝐵𝛾𝛾𝐴 ∧𝛾𝛾𝐵 , (13.29)

implicitly summed over distinct sequences 𝐴, 𝐵, and 𝐶 of respectively 𝑝−𝑛, 𝑞−𝑛, and 𝑛 indices. The factor
(−)[𝑛/2] comes from the square of a grade-𝑛 orthonormal multvector, 𝛾𝛾𝐶𝛾𝛾𝐶 = (−)[𝑛/2]. Only components
with the 𝑝+𝑞+𝑛 indices of 𝐴𝐵𝐶 all distinct contribute.
Equation (13.29) can also be written

⟨𝑎𝑏⟩𝑝+𝑞−2𝑛 = (−)[𝑛/2] (𝑝+ 𝑞 − 2𝑛)!

(𝑝− 𝑛)!(𝑞 − 𝑛)!
𝑎[𝐴𝐶𝑏𝐶

𝐵]𝛾𝛾𝐴𝐵 , (13.30)

implicitly summed over distinct sequences 𝐴𝐵 and 𝐶 of respectively 𝑝+𝑞−2𝑛 and 𝑛 indices. The binomial
factor is the number of ways of picking the 𝑝 − 𝑛 distinct indices of 𝐴 and the 𝑞 − 𝑛 distinct indices of 𝐵
from each distinct antisymmetric sequence 𝐴𝐵 of 𝑝+𝑞−2𝑛 indices.

13.5.2 Wedge product

The wedge product of multivectors of arbitrary grade is defined, consistent with the convention of differential
forms, §15.8, to be the highest possible grade component of the geometric product. The wedge product of a
multivector 𝑎 of grade 𝑝 with a multivector 𝑏 of grade 𝑞 is thus defined to be

𝑎∧ 𝑏 ≡ ⟨𝑎𝑏⟩𝑝+𝑞 . (13.31)

The definition (13.31) is consistent with the definition of the wedge product of vectors (multivectors of grade
1) in §13.1. The wedge product is commutative or anticommutative as 𝑝𝑞 is even or odd,

𝑎∧ 𝑏 = (−)𝑝𝑞𝑏∧𝑎 , (13.32)
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which is a special case of equation (13.28). The wedge product is associative,

(𝑎∧ 𝑏)∧ 𝑐 = 𝑎∧(𝑏∧ 𝑐) . (13.33)

In accordance with the definition (13.31), the wedge product of a scalar 𝑎 (a multivector of grade 0) with a
multivector 𝑏 equals the usual product of the scalar and the multivector,

𝑎∧ 𝑏 = 𝑎𝑏 if 𝑎 is a scalar , (13.34)

again consistent with the convention of differential forms.

13.5.3 Dot product

The dot product of multivectors of arbitrary grade is defined to be the lowest grade component of their
geometric product,

𝑎 · 𝑏 ≡ ⟨𝑎𝑏⟩|𝑝−𝑞| , (13.35)

except that the dot product of a scalar, a zero grade multivector, with any multivector is conveniently defined
to be zero,

𝑎 · 𝑏 = 0 if 𝑎 is a scalar . (13.36)

The convention (13.36) is adopted to ensure that, if 𝑏 is a vector, then 𝑎𝑏 = 𝑎 · 𝑏+𝑎∧ 𝑏 for any multivector
𝑎, including the case where 𝑎 is a scalar. The dot product is symmetric or antisymmetric,

𝑎 · 𝑏 = (−)(𝑝−𝑞)𝑞𝑏 · 𝑎 for 𝑝 ≥ 𝑞 . (13.37)

The dot product is not associative.

13.5.4 Scalar product

The dot product of two multivectors of the same grade is a scalar, and in this case the dot product can be
called the scalar product. The scalar product of two multivectors of the same grade 𝑝 is

𝑎 · 𝑏 = 𝑎𝐴𝛾𝛾𝐴 · 𝑏𝐵𝛾𝛾𝐵 = (−)[𝑝/2]𝑎𝐴𝑏𝐴 , (13.38)

implicitly summed over distinct sequences 𝐴 of 𝑝 indices. Equation (13.38) is a special case of equation (13.29).

13.5.5 Triple products of multivectors

The associativity of the geometric product implies that the grade 0 component of a triple product of multi-
vectors 𝑎, 𝑏, 𝑐 of grades respectively 𝑝, 𝑞, 𝑟 satisfies an associative law

⟨𝑎𝑏𝑐⟩0 = ⟨⟨𝑎𝑏⟩𝑟𝑐⟩0 = ⟨𝑎⟨𝑏𝑐⟩𝑝⟩0 . (13.39)
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Figure 13.2 Reflection of a vector 𝑎 through axis 𝑛.

More generally, the grade 𝑠 component of a triple product of multivectors 𝑎, 𝑏, 𝑐 of non-zero grades respec-
tively 𝑝, 𝑞, 𝑟 (any grade 0 multivector, i.e. scalar, can be taken outside the product) satisfies

⟨𝑎𝑏𝑐⟩𝑠 =
𝑟+𝑠∑︁

𝑛=|𝑟−𝑠|

⟨⟨𝑎𝑏⟩𝑛𝑐⟩𝑠 =
𝑝+𝑠∑︁

𝑛=|𝑝−𝑠|

⟨𝑎⟨𝑏𝑐⟩𝑛⟩𝑠 . (13.40)

Often some terms vanish, simplifying the relation. As an example of the triple-product relation (13.40), if 𝑎
and 𝑏 are multivectors of grades 𝑝 and 𝑞 respectively, and neither are scalars, and their wedge product does
not vanish (that is, 𝑝 + 𝑞 ≤ 𝑁), then the wedge and dot products of 𝑎 and 𝑏 are related by Hodge duality
relations

𝐼𝑁 (𝑎∧ 𝑏) = (𝐼𝑁𝑎) · 𝑏 , (𝑎∧ 𝑏)𝐼𝑁 = 𝑎 · (𝑏𝐼𝑁 ) , (13.41)

where 𝐼𝑁 is the pseudoscalar (13.19).

13.6 Reflection

Multiplying a vector (a multivector of grade 1) by a vector shifts the grade (dimension) of the vector by
±1. Thus, if one wants to transform a vector into another vector (with the same grade, one), at least two
multiplications by a vector are required.
The simplest non-trivial transformation of a vector 𝑎 is

𝑛 : 𝑎→ 𝑛𝑎𝑛 , (13.42)

in which the vector 𝑎 is multiplied on both left and right with a unit vector 𝑛. If 𝑎 is resolved into components
𝑎‖ and 𝑎⊥ respectively parallel and perpendicular to 𝑛, then the transformation (13.42) is

𝑛 : 𝑎‖ + 𝑎⊥ → 𝑎‖ − 𝑎⊥ , (13.43)
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which represents a reflection of the vector 𝑎 through the axis 𝑛, a reversal of all components of the
vector perpendicular to 𝑛, as illustrated by Figure 13.2. Note that −𝑛𝑎𝑛 is the reflection of 𝑎 through the
hypersurface normal to 𝑛, a reversal of the component of the vector parallel to 𝑛.
The operation of left- and right-multiplying by a unit vector 𝑛 reflects not only vectors, but multivectors

𝑎 in general:

𝑛 : 𝑎→ 𝑛𝑎𝑛 . (13.44)

For example, the product 𝑎𝑏 of two vectors transforms as

𝑛 : 𝑎𝑏→ 𝑛(𝑎𝑏)𝑛 = (𝑛𝑎𝑛)(𝑛𝑏𝑛) (13.45)

which works because 𝑛2 = 1.
A reflection leaves any scalar 𝜆 unchanged, 𝑛 : 𝜆→ 𝑛𝜆𝑛 = 𝜆𝑛2 = 𝜆. Geometrically, a reflection preserves

the lengths of, and angles between, all vectors.

13.7 Rotation

Two successive reflections yield a rotation. Consider reflecting a vector 𝑎 (a multivector of grade 1) first
through the unit vector 𝑚, then through the unit vector 𝑛:

𝑛𝑚 : 𝑎→ 𝑛𝑚𝑎𝑚𝑛 . (13.46)

Any component 𝑎⊥ of 𝑎 simultaneously orthogonal to both 𝑚 and 𝑛 (i.e. 𝑚 ·𝑎⊥ = 𝑛 ·𝑎⊥ = 0) is unchanged
by the transformation (13.46), since each reflection flips the sign of 𝑎⊥:

𝑛𝑚 : 𝑎⊥ → 𝑛𝑚𝑎⊥𝑚𝑛 = −𝑛𝑎⊥𝑛 = 𝑎⊥ . (13.47)

Rotations inherit from reflections the property of preserving the lengths of, and angles between, all vectors.
Thus the transformation (13.46) must represent a rotation of those components 𝑎‖ of 𝑎 lying in the 2-dim-
ensional plane spanned by 𝑚 and 𝑛, as illustrated by Figure 13.3. To determine the angle by which the
plane is rotated, it suffices to consider the case where the vector 𝑎‖ is equal to 𝑚 (or 𝑛, as a check). It is
not too hard to figure out that, if the angle from 𝑚 to 𝑛 is 𝜃/2, then the rotation angle is 𝜃 in the same
sense, from 𝑚 to 𝑛.
For example, if 𝑚 and 𝑛 are parallel, so that 𝑚 = ±𝑛, then the angle between 𝑚 and 𝑛 is 𝜃/2 = 0 or 𝜋,

and the transformation (13.46) rotates the vector 𝑎‖ by 𝜃 = 0 or 2𝜋, that is, it leaves 𝑎‖ unchanged. This
makes sense: two reflections through the same plane leave everything unchanged. If on the other hand 𝑚

and 𝑛 are orthogonal, then the angle between them is 𝜃/2 = ±𝜋/2, and the transformation (13.46) rotates
𝑎‖ by 𝜃 = ±𝜋, that is, it maps 𝑎‖ to −𝑎‖.
The rotation (13.46) can be abbreviated

𝑅 : 𝑎→ 𝑅𝑎𝑅 (13.48)

where 𝑅 = 𝑛𝑚 is called a rotor, and 𝑅 = 𝑚𝑛 is its reverse. Rotors are unimodular, satisfying 𝑅𝑅 =
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Figure 13.3 Two successive reflections of a vector 𝑎, first through 𝑚, then through 𝑛, yield a rotation of a vector 𝑎

by the bivector 𝑚𝑛. Baffled? Hey, draw your own picture.

𝑅𝑅 = 1. According to the discussion above, the transformation (13.48) corresponds to a rotation by angle
𝜃 in the 𝑚–𝑛 plane if the angle from 𝑚 to 𝑛 is 𝜃/2. Then 𝑚 · 𝑛 = cos 𝜃/2 and 𝑚∧𝑛 = (𝛾𝛾1 ∧𝛾𝛾2) sin 𝜃/2,
where 𝛾𝛾1 and 𝛾𝛾2 are two orthonormal vectors spanning the 𝑚–𝑛 plane, oriented so that the angle from 𝛾𝛾1

to 𝛾𝛾2 is positive 𝜋/2 (i.e. 𝛾𝛾1 is the 𝑥-axis and 𝛾𝛾2 the 𝑦-axis). Note that the outer product 𝛾𝛾1 ∧𝛾𝛾2 is invariant
under rotations in the 𝑚–𝑛 plane, hence independent of the choice of orthonormal basis vectors 𝛾𝛾1 and 𝛾𝛾2.
It follows that the rotor 𝑅 = 𝑛𝑚 = 𝑛 ·𝑚 + 𝑛∧𝑚 corresponding to a right-handed rotation by 𝜃 in the
𝛾𝛾1–𝛾𝛾2 plane is given by

𝑅 = cos
𝜃

2
− (𝛾𝛾1 ∧𝛾𝛾2) sin

𝜃

2
. (13.49)

The rotor (13.49) can also be written as an exponential of the bivector 𝜃 = 𝜃 𝛾𝛾1 ∧𝛾𝛾2,

𝑅 = 𝑒−𝜃/2 . (13.50)

It is straightforward to check that the action of the rotor (13.49) on the basis vectors 𝛾𝛾𝑎 is

𝑅 : 𝛾𝛾1 → 𝑅𝛾𝛾1𝑅 = 𝛾𝛾1 cos 𝜃 + 𝛾𝛾2 sin 𝜃 , (13.51a)

𝑅 : 𝛾𝛾2 → 𝑅𝛾𝛾2𝑅 = 𝛾𝛾2 cos 𝜃 − 𝛾𝛾1 sin 𝜃 , (13.51b)

𝑅 : 𝛾𝛾𝑎 → 𝑅𝛾𝛾𝑎𝑅 = 𝛾𝛾𝑎 (𝑎 ̸= 1, 2) , (13.51c)

which corresponds to a right-handed rotation of the basis vectors 𝛾𝛾𝑎 by angle 𝜃 in the 𝛾𝛾1–𝛾𝛾2 plane. The
inverse rotation is

𝑅 : 𝑎→ 𝑅𝑎𝑅 (13.52)

with

𝑅 = cos
𝜃

2
+ (𝛾𝛾1 ∧𝛾𝛾2) sin

𝜃

2
. (13.53)

A rotation of the form (13.49), a rotation in a single plane, is called a simple rotation.
In the geometric algebra, a rotation is considered to rotate the axes 𝛾𝛾𝑎 → 𝛾𝛾′𝑎 while leaving the components



13.7 Rotation 337

γγ
1

γγ
2

γγ
1
′

γγ
2
′

θ

a

a′

θ

Figure 13.4 Right-handed rotation of a vector 𝑎 by angle 𝜃 in the 𝛾𝛾1–𝛾𝛾2 plane. A rotation in the geometric algebra

is an active rotation, which rotates the axes 𝛾𝛾𝑎 → 𝛾𝛾′
𝑎 while leaving the components 𝑎𝑎 of a multivector unchanged,

equation (13.54). In other words, multivectors 𝑎 are considered to be attached to the frame, and a rotation bodily

rotates the frame and everything attached to it.

𝑎𝑎 of a multivector unchanged. Thus a rotation transforms a vector 𝑎 as

𝑅 : 𝑎 = 𝑎𝑎𝛾𝛾𝑎 → 𝑎′ = 𝑎𝑎𝛾𝛾′𝑎 . (13.54)

Figure 13.4 illustrates a right-handed rotation by angle 𝜃 of a vector 𝑎 in the 𝛾𝛾1–𝛾𝛾2 plane.
A rotation first by 𝑅 and then by 𝑆 transforms a vector 𝑎 as

𝑆𝑅 : 𝑎→ 𝑆𝑅𝑎𝑅𝑆 = 𝑆𝑅𝑎𝑆𝑅 . (13.55)

Thus the composition of two rotations, first 𝑅 and then 𝑆, is given by their geometric product 𝑆𝑅. This is the
physics convention, where rotations accumulate to the left (in contrast to the computer graphics convention,
where rotations accumulate to the right). In three dimensions or less, all rotations are simple, but in four
dimensions or higher, compositions of simple rotations can yield rotations that are not simple. For example,
a rotation in the 𝛾𝛾1–𝛾𝛾2 plane followed by a rotation in the 𝛾𝛾3–𝛾𝛾4 plane is not equivalent to any simple
rotation. However, it will be seen in §14.3 that bivectors in the 4D spacetime algebra have a natural complex
structure, which allows 4D spacetime rotations to take a simple form similar to (13.49), but with complex
angle 𝜃 and two orthogonal planes of rotation combined into a complex pair of planes.
A rotor 𝑅 rotates not only vectors, but multivectors 𝑎 in general:

𝑅 : 𝑎→ 𝑅𝑎𝑅 . (13.56)

For example, the product 𝑎𝑏 of two vectors transforms as

𝑅 : 𝑎𝑏→ 𝑅(𝑎𝑏)𝑅 = (𝑅𝑎𝑅)(𝑅𝑏𝑅) (13.57)

which works because 𝑅𝑅 = 1.
To summarize, the characterization of rotations by rotors has considerable advantages. Firstly, the trans-

formation (13.56) applies to multivectors 𝑎 of arbitrary grade in arbitrarily many dimensions. Secondly,
the composition law is particularly simple, the composition of two rotations being given by their geometric
product. A third advantage is that rotors rotate not only vectors and multivectors, but also spin- 12 objects
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— indeed rotors are themselves spin- 12 objects — as might be suspected from the intriguing factor of 1
2 in

front of the angle 𝜃 in equation (13.49).

Concept question 13.2. How fast do bivectors rotate? Rotors rotate half as fast as vectors. How fast
do bivectors rotate?
1. Bivectors don’t rotate.
2. Half as fast as vectors.
3. The same as vectors.
4. Twice as fast as vectors.
5. None of the above.

13.8 Rotor group

The rotor group is the group generated by the bivectors of the geometric algebra. The rotor group in 𝑁
dimensions is also called Spin(𝑁), and is the covering group of the special orthogonal group SO(𝑁) of proper
rotations in 𝑁 dimensions (the S in SO(𝑁) signifies special, that is, matrices of unit determinant, which
removes improper rotations with determinant −1 that occur when a spatial axis is reflected).
The rotor, or rotation, group is an example of a continuous group called a Lie group. A right-handed

rotation exp(− 1
2𝜃 𝛾𝛾𝑎 ∧𝛾𝛾𝑏) by finite angle 𝜃 in the 𝛾𝛾𝑎–𝛾𝛾𝑏 plane can be thought of as being built up from an

infinite number of infinitesimal rotations exp(− 1
2𝛿𝜃 𝛾𝛾𝑎 ∧𝛾𝛾𝑏) by angles 𝛿𝜃. To linear order, an infinitesimal

rotation by angle 𝛿𝜃 in the 𝛾𝛾𝑎–𝛾𝛾𝑏 plane is

exp(− 1
2𝛿𝜃 𝛾𝛾𝑎 ∧𝛾𝛾𝑏) = 1− 1

2𝛿𝜃 𝛾𝛾𝑎 ∧𝛾𝛾𝑏 . (13.58)

The bivector −𝛾𝛾𝑎 ∧𝛾𝛾𝑏 is said to be the generator of a right-handed rotation in the 𝛾𝛾𝑎–𝛾𝛾𝑏 plane.
The Baker-Campbell-Hausdorff formula states that the product of exponentials of not-necessarily-commuting

elements 𝜃 and 𝜑 is

exp(𝜃) exp(𝜑) = exp
(︀
𝜃 + 𝜑+ 1

2 [𝜃,𝜑] +
1
12 [[𝜃,𝜑],𝜑]−

1
12 [[𝜃,𝜑],𝜃] + ...

)︀
, (13.59)

where [𝜃,𝜑] ≡ 𝜃𝜑− 𝜑𝜃 is the commutator of 𝜃 and 𝜑, also called their Lie bracket. Thus finite rotations
are built from exponentials of linear combinations of generators and their commutators. A set of linearly
independent generators that close under commutation provides a basis for the Lie algebra of a Lie group.
The commutator of two bivectors is a bivector, so the Lie algebra of rotations is the set of bivectors. The
rotor group is the Lie group generated by the bivectors.

Concept question 13.3. What is the dimension of the rotor group in 𝑁 dimensions? Answer.

The dimension of the rotor group is the number of its generators, its bivectors, which is 𝑁(𝑁 − 1)/2.

Concept question 13.4. Is the rotor group the same as the group of even, unimodular elements
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of the geometric algebra? All rotors are even, unimodular elements of the geometric algebra. The proper-
ties of being even and unimodular are preserved under composition, so the set of even, unimodular elements
forms a group. Is the rotor group the same as the group of even, unimodular elements? Answer. In low
dimensions 𝑁 ≤ 5 yes, but in general no. See part 4 of Exercise 13.6.

Exercise 13.5. The even geometric algebra in 𝑁+1 dimensions is isomorphic to the full geo-

metric algebra in 𝑁 dimensions. Show that the even geometric algebra in 𝑁+1 dimensions is isomorphic
to the full geometric algebra in 𝑁 dimensions. Conclude that the dimension of the even geometric algebra
in 𝑁+1 dimensions is 2𝑁 .
Solution. Decompose a multivector 𝑎 in 𝑁 dimensions into its even and odd parts, 𝑎 = 𝑎even + 𝑎odd. The
mapping

𝑎even + 𝑎odd ↔ 𝑎even + 𝑎odd 𝛾𝛾𝑁+1 (13.60)

is an isomorphism between the 𝑁 -dimensional geometric algebra and the (𝑁+1)-dimensional even algebra
(𝑎even and 𝑎odd 𝛾𝛾𝑁+1 are both elements of the even algebra in 𝑁+1 dimensions). The mapping is an isomor-
phism because it respects addition and multiplication, and it respects rotations that leave 𝛾𝛾𝑁+1 invariant,
that is, rotations in the 𝑁 -dimensional geometric algebra.

Exercise 13.6. Lie groups generated by multivectors. An element 𝑅 of a Lie group generated by a set
of multivectors 𝛾𝛾𝐴 takes the form 𝑅 = exp(− 1

2

∑︀
𝐴 𝜃𝐴𝛾𝛾𝐴). The element 𝑅 acts on elements 𝑎 of the geometric

algebra by 𝑅 : 𝑎 → 𝑅𝑎𝑅−1, where the inverse of 𝑅 is 𝑅−1 = exp( 12
∑︀
𝐴 𝜃𝐴𝛾𝛾𝐴). A set of multivectors 𝛾𝛾𝐴

generates a Lie group provided that the set is closed under commutation, in accordance with the Baker-
Campbell-Hausdorff formula (13.59). Show that the non-zero commutators of two orthonormal multivectors
of grades respectively 𝑝 and 𝑞 in 𝑁 dimensions have grades 𝑝+ 𝑞 − 2𝑛 where

𝑛 ∈ [max(0, 𝑝+𝑞−𝑁),min(𝑝, 𝑞)] (13.61)

is an even integer if both 𝑝 and 𝑞 are odd, or an odd integer if either of 𝑝 or 𝑞 is even. In particular, show that
the non-zero commutators of two orthonormal multivectors of the same grade 𝑝 have grades 2 + 4𝑗 where
𝑗 ∈

[︀
0, [(𝑝−1)/2]

]︀
is an integer. Conclude that, if 𝑝 denotes a multivector of grade 𝑝 mod 4, then

[𝑝, 𝑝] = 2̂ , [2̂, 𝑝] = 𝑝 , [0̂, 1̂] = 3̂ , [0̂, 3̂] = 1̂ , [1̂, 3̂] = 0̂ . (13.62)

Conclude that the following are Lie groups generated by multivectors in the geometric algebra. All groups
preserve the scalar product of two multivectors. All groups have the rotor group as a subgroup. The notation
G𝐴(𝑁) for the group generated by multivectors with grades modulo 4 in the set 𝐴 follows Shirokov (2017).
1. The rotor group, generated by bivectors. The rotor group acting on a multivector 𝑎 preserves the grade

of 𝑎. The dimension (number of generators) of the group is 𝑁(𝑁−1)/2.
2. The group generated by vectors and bivectors (multivectors of grades 1 and 2). The dimension of the

group is 𝑁(𝑁+1)/2.
3. Pseudo versions of the above groups, namely:

a. The group generated by bivectors and pseudobivectors, dimension 𝑁(𝑁−1) for 𝑁 ≥ 5.
b. The group generated by pseudovectors and bivectors, dimension 𝑁(𝑁+1)/2 for 𝑁 ≥ 4.
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c. The group generated by vectors, pseudovectors, bivectors and pseudobivectors, dimension 𝑁(𝑁+1)

for 𝑁 ≥ 5.

4. The group G2(𝑁) generated by multivectors of grade 2 mod 4 (thus grades 2, 6, 10, ...). The group may
be called the even unimodular group since it is the largest group whose elements 𝑅 are all even and
unimodular, satisfying 𝑅−1 = 𝑅. In dimensions 𝑁 ≤ 5, the even unimodular group coincides with the
rotor group. The group preserves the grade 𝑝 mod 4 of a multivector. The dimension of the group is

dimG2(𝑁) = 2[(𝑁−2)/2]
(︀
2[(𝑁−1)/2] + 𝑠

)︀
, 𝑠 =

⎧⎨⎩
−1
0

1

as (𝑁+2) mod 8 =

⎧⎨⎩
1, 2, 3,

0, 4,

5, 6, 7.

(13.63)

5. The group G12(𝑁) generated by multivectors of grade (1 or 2) mod 4 (thus grades 1, 2, 5, 6, 9, 10, ...).
Define ̃︀𝑅 to be the flip (grade involution) of 𝑅, defined by 𝑎 → −𝑎 for all odd multivectors 𝑎. The
group is the largest group whose elements 𝑅 all have inverses equal to their reverse flips (or flip reverses),

𝑅−1 = ̃︀𝑅. The dimension of the group is

dimG12(𝑁) = dimG2(𝑁+1) . (13.64)

6. The group G23(𝑁) generated by multivectors of grade (2 or 3) mod 4 (thus grades 2, 3, 6, 7, 10, 11, ...).
The group may be called the unimodular group, since it is the largest group whose elements 𝑅 are all
unimodular, satisfying 𝑅−1 = 𝑅. The dimension of the group is

dimG23(𝑁) = 2𝑁−1 − dimG2(𝑁+1) + 2dimG2(𝑁)

= 2[(𝑁−1)/2]
(︀
2[𝑁/2] + 𝑠

)︀
, 𝑠 =

⎧⎨⎩
−1
0

1

as (𝑁+1) mod 8 =

⎧⎨⎩
1, 2, 3,

0, 4,

5, 6, 7.

(13.65)

7. The even group G02(𝑁) generated by multivectors of grade 0 mod 2 (thus grades 0, 2, 4, 6, ...). The even
group preserves the grade 𝑝 mod 2 of a multivector (that is, whether the multivector is even or odd).
The dimension of the group is 2𝑁−1. The special even group SG02(𝑁) is generated by even multivectors
excluding the unit element (thus grades 2, 4, 6, ...). The dimension of the special even group is 2𝑁−1−1.

8. The full group G0123(𝑁) generated by multivectors of all grades (thus grades 0, 1, 2, 3, ...). The dimension
of the group is 2𝑁 . The special even group SG0123(𝑁) is generated by multivectors excluding the unit
element (thus grades 1, 2, 3, ...). The dimension of the special group is 2𝑁 − 1.

9. There are also complex Lie groups in which some generators are permitted to be imaginary or complex.
The complex Lie groups are:

a. The complex rotor group generated by complex bivectors.

b. The group generated by imaginary vectors and real bivectors.

c. The group generated by complex vectors and complex bivectors.

d. Pseudo versions of the above.
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e. The remaining groups can be denoted G𝐴𝑖𝐵 following Shirokov (2017), with real generators of
grades 𝐴 mod 4 and imaginary generators of grades 𝐵 mod 4:

G2𝑖2 , G2𝑖𝑝 , G2𝑝𝑖2𝑝 , G2𝑝𝑖2𝑝 , G0123𝑖0123 , (13.66)

where 𝑝 runs over 0, 1, 3, and 2𝑝 denotes the opposite of 2𝑝 (for example 20 = 13).
Solution. The dimension of each Lie group G𝐴(𝑁), the number of its generators, is established as follows.
Let 𝑚𝑘 denote the number of multivectors of grade 𝑘 mod 4,

𝑚𝑘 ≡
∑︁

𝑝=𝑘 mod 4

(︂
𝑁

𝑝

)︂
. (13.67)

The binomial theorem implies (𝑖 is the imaginary)

(1 + 𝑖𝑗)𝑁 =

3∑︁
𝑘=0

𝑖𝑗𝑘𝑚𝑘 for 𝑗 = 0 to 3 , (13.68)

or explicitly ⎛⎜⎜⎝
2𝑁

(1 + 𝑖)𝑁

0

(1− 𝑖)𝑁

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 1 1 1

1 𝑖 −1 −𝑖
1 −1 1 −1
1 −𝑖 −1 𝑖

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑚0

𝑚1

𝑚2

𝑚3

⎞⎟⎟⎠ . (13.69)

Equation (13.68) inverts to

𝑚𝑘 =
1

4

3∑︁
𝑗=0

(−𝑖)𝑘𝑗(1 + 𝑖𝑗)𝑁 , (13.70)

or explicitly ⎛⎜⎜⎝
𝑚0

𝑚1

𝑚2

𝑚3

⎞⎟⎟⎠ =
1

4

⎛⎜⎜⎝
1 1 1 1

1 −𝑖 −1 𝑖

1 −1 1 −1
1 𝑖 −1 −𝑖

⎞⎟⎟⎠
⎛⎜⎜⎝

2𝑁

(1 + 𝑖)𝑁

0

(1− 𝑖)𝑁

⎞⎟⎟⎠ . (13.71)

The dimensions of the Lie groups are

dimG2(𝑁) = 𝑚2 , (13.72a)

dimG12(𝑁) = 𝑚1 +𝑚2 , (13.72b)

dimG23(𝑁) = 𝑚2 +𝑚3 , (13.72c)

dimG02(𝑁) = 𝑚0 +𝑚2 , (13.72d)

dimG0123(𝑁) = 𝑚0 +𝑚1 +𝑚2 +𝑚3 . (13.72e)
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13.9 Active and passive rotations

So far in this book, indices have indicated how an object transforms, so that the notation

𝑎𝑚𝛾𝛾𝑚 (13.73)

indicates a scalar, an object that is unchanged by a transformation, because the transformation of the
contravariant vector 𝑎𝑚 cancels against the corresponding transformation of the covariant vector 𝛾𝛾𝑚.
However, the transformation (13.56) of a multivector is an example of an active transformation that rotates

the basis vectors 𝛾𝛾𝐴 while keeping the coefficients 𝑎𝐴 fixed, as opposed to a passive transformation that
rotates the tetrad while keeping the thing itself unchanged. An active rotation bodily rotates a multivector
𝑎, whereas a passive rotation rotates the frame without changing the multivector. Figure 13.4 illustrates the
example of an active right-handed rotation by angle 𝜃 in the 𝛾𝛾1–𝛾𝛾2 plane, equations (13.51).
Under an active rotation, a multivector 𝑎 ≡ 𝑎𝐴𝛾𝛾𝐴 (implicit summation over distinct antisymmetrized

subsets 𝐴 of {1, ..., 𝑁}) is not a scalar under the transformation (13.56), but rather transforms to the
multivector 𝑎′ ≡ 𝑎𝐴𝛾𝛾′𝐴 given by

𝑅 : 𝑎𝐴𝛾𝛾𝐴 → 𝑎𝐴𝑅𝛾𝛾𝐴𝑅 = 𝑎𝐴𝛾𝛾′𝐴 . (13.74)

13.10 A rotor is a spin-1
2
object

A rotor is an even, unimodular element of the geometric algebra, §13.7. As a multivector, a rotor 𝑅 would
transform under a rotation by the rotor 𝑆 as 𝑅→ 𝑆𝑅𝑆. As a rotor, however, the rotor 𝑅 transforms under
a rotation by the rotor 𝑆 as

𝑆 : 𝑅→ 𝑆𝑅 , (13.75)

according to the transformation law (13.55). That is, composition in the rotor group is defined by the
transformation (13.75): 𝑅 rotated by 𝑆 is 𝑆𝑅.
The expression (13.49) for a simple rotation in the 𝛾𝛾1–𝛾𝛾2 plane shows that the rotor corresponding to a

rotation by 2𝜋 is −1. Thus under a rotation (13.75) by 2𝜋, a rotor 𝑅 changes sign:

2𝜋 : 𝑅→ −𝑅 . (13.76)

A rotation by 4𝜋 is necessary to bring the rotor 𝑅 back to its original value:

4𝜋 : 𝑅→ 𝑅 . (13.77)

Thus a rotor 𝑅 behaves like a spin- 12 object, requiring 2 full rotations to restore it to its original state.
The two different transformation laws for a rotor — as a multivector, and as a rotor — describe two

different physical situations. The transformation of a rotor as a multivector answers the question, what is
the form of a rotor 𝑅 rotated into another, primed, frame? In the unprimed frame, the rotor 𝑅 transforms
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a multivector 𝑎 to 𝑅𝑎𝑅. In the primed frame rotated by rotor 𝑆 from the unprimed frame, 𝑎′ = 𝑆𝑎𝑆, the
transformed rotor is 𝑆𝑅𝑆, since

𝑎′ = 𝑆𝑎𝑆 → 𝑆𝑅𝑎𝑅𝑆 = 𝑆𝑅𝑆𝑎′𝑆𝑅𝑆 = 𝑆𝑅𝑆𝑎′𝑆𝑅𝑆 . (13.78)

By contrast, the transformation (13.75) of a rotor as a rotor answers the question, what is the rotor corre-
sponding to a rotation 𝑅 followed by a rotation 𝑆?

13.11 2D rotations and complex numbers

In 𝑁 ≤ 5 dimensions, the rotor group consists of even, unimodular multivectors of the geometric subalgebra,
part 4 of Exercise 13.6. In two dimensions, the even grade multivectors are linear combinations of the basis
set

1 ,

1 scalar
𝐼2 ,

1 bivector (pseudoscalar)
(13.79)

forming a linear space of dimension 2. The sole bivector is the pseudoscalar 𝐼2 ≡ 𝛾𝛾1 ∧𝛾𝛾2, equation (13.19),
the highest grade element in 2 dimensions. The rotor 𝑅 that produces a right-handed rotation by angle 𝜃 is,
according to equation (13.49),

𝑅 = 𝑒−𝜃/2 = 𝑒−𝐼2 𝜃/2 = cos
𝜃

2
− 𝐼2 sin

𝜃

2
, (13.80)

where 𝜃 = 𝐼2 𝜃 is the bivector whose magnitude is (𝜃𝜃)1/2 = 𝜃.
Since the square of the pseudoscalar 𝐼2 is minus one, the pseudoscalar resembles the pure imaginary 𝑖, the

square root of −1. Sure enough, the mapping

𝐼2 ↔ 𝑖 (13.81)

defines an isomorphism between the algebra of even grade multivectors in 2 dimensions and the field of
complex numbers

𝑎+ 𝐼2𝑏↔ 𝑎+ 𝑖 𝑏 . (13.82)

With the isomorphism (13.82), the rotor 𝑅 that produces a right-handed rotation by angle 𝜃 is equivalent
to the complex number

𝑅 = 𝑒−𝑖𝜃/2 . (13.83)

The associated reverse rotor 𝑅 is

𝑅 = 𝑒𝑖𝜃/2 , (13.84)

the complex conjugate of 𝑅. The group of 2D rotors is isomorphic to the group of complex numbers of unit
magnitude, the unitary group U(1),

2D rotors ∼= U(1) . (13.85)



344 The geometric algebra

Let 𝑧 denote an even multivector, equivalent to some complex number by the isomorphism (13.82). Accord-
ing to the transformation formula (13.56), under the rotation 𝑅 = 𝑒−𝑖𝜃/2, the even multivector, or complex
number, 𝑧 transforms as

𝑅 : 𝑧 → 𝑒−𝑖𝜃/2𝑧 𝑒𝑖𝜃/2 = 𝑒−𝑖𝜃/2𝑒𝑖𝜃/2𝑧 = 𝑧 , (13.86)

which is true because even multivectors in 2 dimensions commute, as complex numbers should. Equa-
tion (13.86) shows that the even multivector, or complex number, 𝑧 is unchanged by a rotation. This
might seem strange: shouldn’t the rotation rotate the complex number 𝑧 by 𝜃 in the Argand plane? The
answer is that the rotation 𝑅 : 𝑎 → 𝑅𝑎𝑅 rotates vectors 𝛾𝛾1 and 𝛾𝛾2 (Exercise 13.7), as already seen in the
transformation (13.51). The same rotation leaves the scalar 1 and the bivector 𝐼2 ≡ 𝛾𝛾1 ∧𝛾𝛾2 unchanged. If
temporarily you permit yourself to think in 3 dimensions, you see that the bivector 𝛾𝛾1 ∧𝛾𝛾2 is Hodge dual to
the pseudovector 𝛾𝛾1 × 𝛾𝛾2, which is the axis of rotation and is itself unchanged by the rotation, even though
the individual vectors 𝛾𝛾1 and 𝛾𝛾2 are rotated.

Exercise 13.7. Rotation of a vector. Confirm that a right-handed rotation by angle 𝜃 rotates the axes
𝛾𝛾𝑎 by

𝑅 : 𝛾𝛾1 → 𝑒−𝑖𝜃/2𝛾𝛾1 𝑒
𝑖𝜃/2 = 𝛾𝛾1 cos 𝜃 + 𝛾𝛾2 sin 𝜃 , (13.87a)

𝑅 : 𝛾𝛾2 → 𝑒−𝑖𝜃/2𝛾𝛾2 𝑒
𝑖𝜃/2 = 𝛾𝛾2 cos 𝜃 − 𝛾𝛾1 sin 𝜃 , (13.87b)

in agreement with (13.51). The important thing to notice is that the pseudoscalar 𝐼2, hence 𝑖, anticommutes
with the vectors 𝛾𝛾𝑎.

13.12 Quaternions

A quaternion can be regarded as a kind of souped-up complex number,

𝑞 = 𝑎+ 𝚤𝑏1 + 𝚥𝑏2 + 𝑘𝑏3 , (13.88)

where 𝑎 and 𝑏𝑎 (𝑎 = 1, 2, 3) are real numbers, and the three imaginary numbers 𝚤, 𝚥, 𝑘, are defined to satisfy1

𝚤2 = 𝚥2 = 𝑘2 = −𝚤𝚥𝑘 = −1 . (13.89)

Remark the dotless 𝚤 (and 𝚥), to distinguish these quaternionic imaginaries from other possible imaginaries.
A consequence of equations (13.89) is that each pair of imaginary numbers anticommutes:

𝚤𝚥 = −𝚥𝚤 = −𝑘 , 𝚥𝑘 = −𝑘𝚥 = −𝚤 , 𝑘𝚤 = −𝚤𝑘 = −𝚥 . (13.90)

1 The choice 𝚤𝚥𝑘 = 1 in the definition (13.89) is the opposite of the conventional definition 𝑖𝑗𝑘 = −1 famously carved by
William Rowan Hamilton in the stone of Brougham Bridge while walking with his wife along the Royal Canal to Dublin on
16 October 1843 (O’Donnell, 1983). To map to Hamilton’s definition, you can take 𝚤 = −𝑖, 𝚥 = −𝑗, 𝑘 = −𝑘, or alternatively
𝚤 = 𝑖, 𝚥 = −𝑗, 𝑘 = 𝑘, or 𝚤 = 𝑘, 𝚥 = 𝑗, 𝑘 = 𝑖. The adopted choice 𝚤𝚥𝑘 = 1 has the merit that it avoids a treacherous minus sign
in the isomorphism (13.105) between 3-dimensional pseudovectors and quaternions. The present choice also conforms to the
convention used by OpenGL and other computer graphics programs.
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It is convenient to abbreviate the three imaginaries by 𝚤𝑎 with 𝑎 = 1, 2, 3,

{𝚤, 𝚥, 𝑘} ≡ {𝚤1, 𝚤2, 𝚤3} . (13.91)

The quaternion (13.88) can then be expressed compactly as a sum of its scalar 𝑎 and vector (actually
pseudovector, as will become apparent below from the isomorphism (13.105)) 𝑏 = 𝚤𝑎𝑏𝑎 parts

𝑞 = 𝑎+ 𝑏 = 𝑎+ 𝚤𝑎𝑏𝑎 , (13.92)

implicitly summed over 𝑎 = 1, 2, 3. A fundamentally useful formula, which follows from the defining equa-
tions (13.89), is

𝑎𝑏 = (𝚤𝑎𝑎𝑎)(𝚤𝑏𝑏𝑏) = −𝑎 · 𝑏− 𝑎× 𝑏 = −𝑎𝑎𝑏𝑎 − 𝚤𝑎𝜀𝑎𝑏𝑐𝑎𝑏𝑏𝑐 , (13.93)

where 𝑎·𝑏 and 𝑎×𝑏 denote the usual 3D scalar and vector products, and 𝜀𝑎𝑏𝑐 is the usual totally antisymmetric
matrix, with 𝜀123 = 1. The product of two quaternions 𝑝 ≡ 𝑎+ 𝑏 and 𝑞 ≡ 𝑐+ 𝑑 can thus be written

𝑝𝑞 = (𝑎+ 𝑏)(𝑐+ 𝑑) = (𝑎+ 𝚤𝑎𝑏𝑎)(𝑐+ 𝚤𝑏𝑑𝑏)

= 𝑎𝑐− 𝑏 · 𝑑+ 𝑎𝑑+ 𝑐𝑏− 𝑏× 𝑑 = 𝑎𝑐− 𝑏𝑎𝑑𝑎 + 𝚤𝑎(𝑎𝑑𝑎 + 𝑐𝑏𝑎 − 𝜀𝑎𝑏𝑐𝑏𝑏𝑑𝑐) . (13.94)

The quaternionic conjugate 𝑞 of a quaternion 𝑞 ≡ 𝑎 + 𝑏 is (the overbar symbol for quaternionic
conjugation distinguishes it from the asterisk symbol * for complex conjugation)

𝑞 = 𝑎− 𝑏 = 𝑎− 𝚤𝑎𝑏𝑎 . (13.95)

The quaternionic conjugate of a product is the reversed product of quaternionic conjugates

𝑝𝑞 = 𝑞𝑝 (13.96)

just like reversion in the geometric algebra, equation (13.17). The choice of the same symbol, an overbar,
to represent both reversion and quaternionic conjugation is not coincidental. The magnitude |𝑞| of the
quaternion 𝑞 ≡ 𝑎+ 𝑏 is

|𝑞| = (𝑞𝑞)1/2 = (𝑞𝑞)1/2 = (𝑎2 + 𝑏 · 𝑏)1/2 = (𝑎2 + 𝑏𝑎𝑏𝑎)
1/2 . (13.97)

The magnitude of a quaternion is also called its modulus. A quaternion that has unit modulus, 𝑞𝑞 = 1, is
called unimodular. The inverse 𝑞−1 of the quaternion, satisfying 𝑞𝑞−1 = 𝑞−1𝑞 = 1, is

𝑞−1 = 𝑞/(𝑞𝑞) = (𝑎− 𝑏)/(𝑎2 + 𝑏 · 𝑏) = (𝑎− 𝚤𝑎𝑏𝑎)/(𝑎2 + 𝑏𝑏𝑏𝑏) . (13.98)

13.13 3D rotations and quaternions

As before, in 𝑁 ≤ 5 dimensions, the rotor group consists of even, unimodular multivectors of the geometric
subalgebra. In three dimensions, the even grade multivectors are linear combinations of the basis set

1 ,

1 scalar
𝐼3𝛾𝛾1 , 𝐼3𝛾𝛾2 , 𝐼3𝛾𝛾3 ,

3 bivectors (pseudovectors)
(13.99)
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forming a linear space of dimension 4. The three bivectors are pseudovectors, equation (13.25). The squares
of the pseudovector basis elements are all minus one,

(𝐼3𝛾𝛾1)
2 = (𝐼3𝛾𝛾2)

2 = (𝐼3𝛾𝛾3)
2 = −1 , (13.100)

and they anticommute with each other,

(𝐼3𝛾𝛾1)(𝐼3𝛾𝛾2) = −(𝐼3𝛾𝛾2)(𝐼3𝛾𝛾1) = −𝐼3𝛾𝛾3 ,

(𝐼3𝛾𝛾2)(𝐼3𝛾𝛾3) = −(𝐼3𝛾𝛾3)(𝐼3𝛾𝛾2) = −𝐼3𝛾𝛾1 , (13.101)

(𝐼3𝛾𝛾3)(𝐼3𝛾𝛾1) = −(𝐼3𝛾𝛾1)(𝐼3𝛾𝛾3) = −𝐼3𝛾𝛾2 .

The rotor 𝑅 that produces a rotation by angle 𝜃 right-handedly about unit direction 𝑛𝑎 = {𝑛1, 𝑛2, 𝑛3},
satisfying 𝑛𝑎𝑛𝑎 = 1, is, according to equation (13.49),

𝑅 = 𝑒−𝜃/2 = 𝑒−𝑛 𝜃/2 = cos
𝜃

2
− 𝑛 sin

𝜃

2
. (13.102)

where 𝜃 is the bivector

𝜃 ≡ 𝑛 𝜃 = 𝐼3𝛾𝛾𝑎𝑛𝑎 𝜃 . (13.103)

of magnitude (𝜃𝜃)1//2 = 𝜃 and unit direction 𝑛 ≡ 𝐼3𝛾𝛾𝑎𝑛𝑎 (satisfying 𝑛𝑛 = 1). The pseudovector 𝐼3 is a
commuting imaginary, commuting with all members of the 3D geometric algebra, both odd and even, and
satisfying

𝐼23 = −1 . (13.104)

Comparison of equations (13.100) and (13.101) to equations (13.89) and (13.90), shows that the mapping

𝐼3𝛾𝛾𝑎 ↔ 𝚤𝑎 (𝑎 = 1, 2, 3) (13.105)

defines an isomorphism between the space of even multivectors in 3 dimensions and the non-commutative
division algebra of quaternions

𝑎+ 𝐼3𝛾𝛾𝑎𝑏𝑎 ↔ 𝑎+ 𝚤𝑎𝑏𝑎 . (13.106)

With the equivalence (13.106), the rotor 𝑅 given by equation (13.102) can be interpreted as a quaternion,
with 𝜃 the quaternion

𝜃 ≡ 𝑛 𝜃 = 𝚤𝑎𝑛𝑎 𝜃 . (13.107)

The associated reverse rotor 𝑅 is

𝑅 = 𝑒𝜃/2 = 𝑒𝑛 𝜃/2 = cos
𝜃

2
+ 𝑛 sin

𝜃

2
, (13.108)

the quaternionic conjugate of 𝑅.
The group of rotors is isomorphic to the group of unimodular quaternions, quaternions 𝑞 = 𝑎 + 𝚤1𝑏1 +

𝚤2𝑏2 + 𝚤3𝑏3 satisfying 𝑞𝑞 = 𝑎2 + 𝑏21 + 𝑏22 + 𝑏23 = 1. Unimodular quaternions evidently define a unit 3-sphere
in the 4-dimensional space of coordinates {𝑎, 𝑏1, 𝑏2, 𝑏3}. From this it is apparent that the rotor group in 3
dimensions has the geometry of a 3-sphere 𝑆3.
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Exercise 13.8. 3D rotation matrices. This exercise is a precursor to Exercise 14.9. The principal message
of the exercise is that rotating using matrices is more complicated than rotating using quaternions. Let
𝑏 ≡ 𝛾𝛾𝑎𝑏𝑎 be a 3D vector, a multivector of grade 1 in the 3D geometric algebra. Use the quaternionic
composition rule (13.93) to show that the vector 𝑏 transforms under a right-handed rotation by angle 𝜃
about unit direction 𝑛 = 𝛾𝛾𝑎𝑛𝑎 as

𝑅 : 𝑏→ 𝑅 𝑏𝑅 = 𝑏+ 2 sin
𝜃

2
𝑛×

(︁
cos

𝜃

2
𝑏+ sin

𝜃

2
𝑛× 𝑏

)︁
. (13.109)

Here the cross-product 𝑛 × 𝑏 denotes the usual vector product, which is dual to the bivector product
𝑛∧ 𝑏, equation (13.26). Suppose that the quaternionic components of the rotor 𝑅 are {𝑤, 𝑥, 𝑦, 𝑧}, that is,
𝑅 = 𝑒−𝚤𝑎𝑛𝑎 𝜃/2 = 𝑤+ 𝚤1𝑥+ 𝚤2𝑦 + 𝚤3𝑧. Show that the transformation (13.109) is (note that the 3× 3 rotation
matrix is written to the left of the vector, in accordance with the physics convention that rotations accumulate
to the left):

𝑅 :

⎛⎝ 𝑏1𝛾𝛾1

𝑏2𝛾𝛾2

𝑏3𝛾𝛾3

⎞⎠→
⎛⎝ 𝑤2+𝑥2−𝑦2−𝑧2 2(𝑥𝑦−𝑤𝑧) 2(𝑧𝑥+𝑤𝑦)

2(𝑥𝑦+𝑤𝑧) 𝑤2−𝑥2+𝑦2−𝑧2 2(𝑦𝑧−𝑤𝑥)
2(𝑧𝑥−𝑤𝑦) 2(𝑦𝑧+𝑤𝑥) 𝑤2−𝑥2−𝑦2+𝑧2

⎞⎠⎛⎝ 𝑏1𝛾𝛾1

𝑏2𝛾𝛾2

𝑏3𝛾𝛾3

⎞⎠ . (13.110)

Confirm that the 3 × 3 rotation matrix on the right hand side of the transformation (13.110) is an or-
thogonal matrix (its inverse is its transpose) provided that the rotor is unimodular, 𝑅𝑅 = 1, so that
𝑤2 +𝑥2 + 𝑦2 + 𝑧2 =1. As a simple example, show that the transformation (13.110) in the case of a right-
handed rotation by angle 𝜃 about the 3-axis (the 1–2 plane), where 𝑤 = cos(𝜃/2) and 𝑧 = − sin(𝜃/2),
is

𝑅 :

⎛⎝ 𝑏1𝛾𝛾1

𝑏2𝛾𝛾2

𝑏3𝛾𝛾3

⎞⎠→
⎛⎝ cos 𝜃 sin 𝜃 0

− sin 𝜃 cos 𝜃 0

0 0 1

⎞⎠⎛⎝ 𝑏1𝛾𝛾1

𝑏2𝛾𝛾2

𝑏3𝛾𝛾3

⎞⎠ . (13.111)

13.14 Pauli matrices

The multiplication rules of the basis vectors 𝛾𝛾𝑎 of the 3D geometric algebra are identical to those of the
Pauli matrices 𝜎𝑎 used in the theory of non-relativistic spin- 12 particles.
The Pauli matrices form a vector of 2 × 2 complex (with respect to a scalar quantum-mechanical

imaginary 𝑖) matrices whose three components are each traceless (Tr 𝜎𝑎 = 0), Hermitian (𝜎†𝑎 = 𝜎𝑎), and
unitary (𝜎−1𝑎 = 𝜎†):

𝜎1 ≡
(︂

0 1

1 0

)︂
, 𝜎2 ≡

(︂
0 −𝑖
𝑖 0

)︂
, 𝜎3 ≡

(︂
1 0

0 −1

)︂
. (13.112)
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The Pauli matrices anticommute with each other

𝜎1𝜎2 = −𝜎2𝜎1 = 𝑖𝜎3 , 𝜎2𝜎3 = −𝜎3𝜎2 = 𝑖𝜎1 , 𝜎3𝜎1 = −𝜎1𝜎3 = 𝑖𝜎2 . (13.113)

The particular choice (13.112) of Pauli matrices is conventional but not unique: any three traceless, Hermitian,
unitary, anticommuting 2 × 2 complex matrices will do. The product of the 3 Pauli matrices is 𝑖 times the
unit matrix,

𝜎1𝜎2𝜎3 = 𝑖

(︂
1 0

0 1

)︂
. (13.114)

If the scalar 1 in the geometric algebra is identified with the unit 2 × 2 matrix, and the pseudoscalar 𝐼3
is identified with the imaginary 𝑖 times the unit matrix, then the 3D geometric algebra is isomorphic to the
algebra generated by the Pauli matrices, the Pauli algebra, through the mapping

1↔
(︂

1 0

0 1

)︂
, 𝛾𝛾𝑎 ↔ 𝜎𝑎 , 𝐼3 ↔ 𝑖

(︂
1 0

0 1

)︂
. (13.115)

The 3D pseudoscalar 𝐼3 commutes with all elements of the 3D geometric algebra.

Concept question 13.9. Properties of Pauli matrices. The Pauli matrices are traceless, Hermitian,
unitary, and anticommuting. What do these properties correspond to in the geometric algebra? Are all these
properties necessary for the Pauli algebra to be isomorphic to the 3D geometric algebra? Are the properties
sufficient?

In 3 dimensions, the rotation group is the group of even, unimodular multivectors of the geometric algebra.
The isomorphism (13.115) establishes that the rotation group is isomorphic to the group of complex 2 × 2

matrices of the form

𝑎+ 𝑖𝜎𝑎𝑏𝑎 , (13.116)

with 𝑎, 𝑏𝑎 (𝑎 = 1, 3) real, and with the unimodular condition requiring that 𝑎2+𝑏𝑎𝑏𝑎 = 1. It is straightforward
to check (Exercise 13.10) that the group of such matrices constitutes the group of unitary complex 2 × 2

matrices of unit determinant, the special unitary group SU(2). The isomorphisms

𝑎+ 𝐼3𝛾𝛾𝑎𝑏𝑎 ↔ 𝑎+ 𝚤𝑎𝑏𝑎 ↔ 𝑎+ 𝑖𝜎𝑎𝑏𝑎 (13.117)

have thus established isomorphisms between the group of 3D rotors, the group of unimodular quaternions,
and the special unitary group of complex 2× 2 matrices

3D rotors ∼= unimodular quaternions ∼= SU(2) . (13.118)

An isomorphism that maps a group into a set of matrices, such that group multiplication corresponds to
ordinary matrix multiplication, is called a representation of the group. The representation of the rotation
group as 2× 2 complex matrices may be termed the Pauli representation. The Pauli representation is the
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lowest dimensional representation of the 3D rotation group. In the Pauli representation, the rotor (13.102)
corresponding to a right-handed rotation by angle 𝜃 about unit axis 𝑛𝑎 is the matrix

𝑅 = cos
𝜃

2
− 𝑖𝑛𝑎𝜎𝑎 sin

𝜃

2
. (13.119)

Exercise 13.10. Translate a rotor into an element of SU(2). Show that the rotor 𝑅 = 𝑒−𝚤𝑎𝑛𝑎 𝜃/2,
equation (13.102), corresponding to a right-handed rotation by angle 𝜃 about unit axis 𝑛𝑎 is equivalent to
the special unitary 2× 2 matrix

𝑅↔

⎛⎜⎜⎝ cos
𝜃

2
− 𝑖𝑛3 sin

𝜃

2
−(𝑛2 + 𝑖𝑛1) sin

𝜃

2

(𝑛2 − 𝑖𝑛1) sin
𝜃

2
cos

𝜃

2
+ 𝑖𝑛3 sin

𝜃

2

⎞⎟⎟⎠ . (13.120)

Show that the reverse rotor 𝑅 is equivalent to the Hermitian conjugate 𝑅† of the corresponding 2×2 matrix.
Show that the determinant of the matrix equals 𝑅𝑅, which is 1.

13.15 Pauli spinors as quaternions, or scaled rotors

Any Pauli spinor 𝜙 can be expressed uniquely in the form of a 2 × 2 matrix 𝑞, the Pauli representation of
a quaternion 𝑞, acting on the spin-up basis element 𝜖↑ (the precise translation between Pauli spinors and
quaternions is left as Exercises 13.11 and 13.12):

𝜙 = 𝑞 𝜖↑ . (13.121)

In this section (and in the Exercises) the 2 × 2 matrix 𝑞 is written in boldface to distinguish it from the
quaternion 𝑞 that it represents, but the distinction is not fundamental. A quaternion can always decomposed
into a product 𝑞 = 𝜆𝑅 of a real scalar 𝜆 and a rotor, or unimodular quaternion, 𝑅. The real scalar 𝜆 can be
taken without loss of generality to be positive, since any minus sign can be absorbed into a rotation by 2𝜋

of the rotor 𝑅. Thus a Pauli spinor 𝜙 can also be expressed as a scaled rotor 𝜆𝑅 acting on the spin-up basis
element 𝜖↑,

𝜙 = 𝜆𝑅 𝜖↑ . (13.122)

One is used to thinking of a Pauli spinor as an intrinsically quantum-mechanical object. The map-
ping (13.121) or (13.122) between Pauli spinors and quaternions or scaled rotors shows that Pauli spinors also
have a classical interpretation: they encode a real amplitude 𝜆, and a rotation 𝑅. This provides a mathemat-
ical basis for the idea that, through their spin, fundamental particles “know” about the rotational structure
of space.
The isomorphism between the vector spaces of Pauli spinors and quaternions does not extend to multipli-

cation; that is, the product of two Pauli spinors 𝜙1 and 𝜙2 equivalent to the complex 2×2 matrices 𝑞1 and 𝑞2
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does not equal the Pauli spinor equivalent to the product 𝑞1𝑞2. The problem is that the Pauli representation
of a Pauli spinor 𝜙 is a column vector, and two column vectors cannot be multiplied. The question of how
to multiply spinors is deferred to Chapter 38 on the super geometric algebra.
Meanwhile, it is possible to multiply a row spinor and a column spinor. The spinor 𝜙 reverse to the

spinor (13.121) is defined to be the row spinor

𝜙 ≡ 𝜖⊤↑ 𝑞 , (13.123)

where 𝑞 is the matrix representation of the reverse 𝑞 of the quaternion 𝑞, and 𝜖⊤↑ is the transpose of the
column spinor 𝜖↑, which is the row spinor

𝜖⊤↑ = ( 1 0 ) . (13.124)

The scalar product 𝜙𝜙 is real and positive, equation (13.133). It is legitimate to multiply a row spinor 𝜙 by
a column spinor 𝜒, yielding a complex number. The product 𝜙𝜒 is a scalar under spatial rotations,

𝑅 : 𝜙𝜒→ 𝜙𝑅𝑅𝜒 = 𝜙𝜒 , (13.125)

and therefore provides a viable definition of a scalar product of Pauli spinors. The problem of defining a
scalar product of Pauli spinors is resumed in §38.6.

Exercise 13.11. Translate a Pauli spinor into a quaternion. Given any Pauli spinor

𝜙 ≡ 𝜙↑𝜖↑ + 𝜙↓𝜖↓ =

(︂
𝜙↑

𝜙↓

)︂
, (13.126)

show that the corresponding real quaternion 𝑞, and the equivalent 2 × 2 complex matrix 𝑞 in the Pauli
representation (13.112), such that 𝜙 = 𝑞 𝜖↑, are

𝑞 =
{︀
Re𝜙↑ , Im𝜙↓ , −Re𝜙↓ , Im𝜙↑

}︀
↔ 𝑞 =

(︂
𝜙↑ −𝜙↓*
𝜙↓ 𝜙↑*

)︂
. (13.127)

Show that the reverse quaternion 𝑞 and the equivalent 2× 2 matrix 𝑞 in the Pauli representation are

𝑞 =
{︀
Re𝜙↑ , − Im𝜙↓ , Re𝜙↓ , − Im𝜙↑

}︀
↔ 𝑞 =

(︂
𝜙↑* 𝜙↓*

−𝜙↓ 𝜙↑

)︂
. (13.128)

Conclude that the reverse matrix 𝑞 equals its Hermitian conjugate, 𝑞 = 𝑞†, and that the reverse Pauli spinor
𝜙 defined by equation (13.123) is

𝜙 ≡ 𝜖⊤↑ 𝑞 = 𝜖⊤↑ 𝑞
† =

(︀
𝜙↑* 𝜙↓*

)︀
= 𝜙† . (13.129)

Exercise 13.12. Translate a quaternion into a Pauli spinor. Show that the quaternion 𝑞 ≡ 𝑤 + 𝚤𝑥+

𝚥𝑦 + 𝑘𝑧 is equivalent in the Pauli representation (13.112) to the 2× 2 matrix 𝑞

𝑞 = {𝑤 , 𝑥 , 𝑦 , 𝑧} ↔ 𝑞 =

(︂
𝑤 + 𝑖𝑧 𝑖𝑥+ 𝑦

𝑖𝑥− 𝑦 𝑤 − 𝑖𝑧

)︂
. (13.130)
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Conclude that the Pauli spinor 𝜙 = 𝑞 𝜖↑ corresponding to the quaternion 𝑞 is

𝜙 ≡ 𝑞 𝜖↑ =

(︂
𝑤 + 𝑖𝑧

𝑖𝑥− 𝑦

)︂
, (13.131)

and that the reverse spinor 𝜙 defined by equation (13.123) is

𝜙 = 𝜙† = 𝜖⊤↑ 𝑞
† =

(︀
𝑤 − 𝑖𝑧 − 𝑖𝑥− 𝑦

)︀
. (13.132)

Hence conclude that 𝜙𝜙 is the real positive scalar magnitude squared 𝜆2 = 𝑞𝑞 of the quaternion 𝑞,

𝜙𝜙 = 𝜙†𝜙 = 𝑞𝑞 = 𝜆2 , (13.133)

with

𝜆2 = 𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 . (13.134)

Exercise 13.13. Can a Pauli spinor be rotated into its complex conjugate? Can a Pauli spinor 𝜙
be rotated into its complex conjugate 𝜙*?
Solution. Yes. The question is, does there exist a rotor 𝑅 such that 𝑅𝜙 = 𝜙*? If 𝑞 and 𝑞* are the quaternions
equivalent to 𝜙 and 𝜙*, then

𝑅 = 𝑞*𝑞−1 . (13.135)

More generally, a Pauli spinor may be rotated into any other Pauli spinor of the same modulus.

13.16 Spin axis

In the Pauli representation, the spinor basis elements 𝜖𝑎 are eigenvectors of the Pauli operator 𝜎3 with
eigenvalues ±1,

𝜎3𝜖↑ = +𝜖↑ , 𝜎3𝜖↓ = −𝜖↓ . (13.136)

The spin axis of a Pauli spinor 𝜙 is defined to be the direction along which the Pauli spinor is pure up.
In the Pauli representation, the spin axis of the spin-up basis spinor 𝜖↑ is the positive 3-axis, while the spin
axis of the spin-down basis spinor 𝜖↓ is the negative 3-axis. The spin axis of a Pauli spinor 𝜙 = 𝜆𝑅 𝜖↑ is the
unit direction {𝑛1, 𝑛2, 𝑛3} of the rotated 3-axis, given by

𝜎𝑎𝑛𝑎 = 𝑅𝜎3𝑅 . (13.137)

Equation (13.137) is confirmed by the fact that 𝜎𝑎𝑛𝑎 has eigenvalue +1 acting on 𝜙:

𝜎𝑎𝑛𝑎 𝜙 = (𝑅𝜎3𝑅) (𝜆𝑅 𝜖↑) = 𝜆𝑅𝜎3 𝜖↑ = 𝜆𝑅 𝜖↑ = 𝜙 . (13.138)
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Exercise 13.14. Orthonormal eigenvectors of the spin operator. Show that, in the Pauli representa-
tion, the orthonormal eigenvectors 𝜖↑𝑛 and 𝜖↓𝑛 of the spin operator 𝜎𝑎𝑛𝑎 projected along the unit direction
{𝑛1, 𝑛2, 𝑛3} are

𝜖↑𝑛 =
1√︀

2(1 + 𝑛3)

(︂
1 + 𝑛3
𝑛1 + 𝑖𝑛2

)︂
, 𝜖↓𝑛 =

1√︀
2(1− 𝑛3)

(︂
−1 + 𝑛3
𝑛1 + 𝑖𝑛2

)︂
. (13.139)
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The spacetime algebra

The spacetime algebra is the geometric algebra in Minkowski space. This Chapter is restricted to the case
of 4-dimensional Minkowski space, but the formalism generalizes to any number of dimensions where some
of the dimensions are timelike and the others are spacelike. Happily, the elegant formalism of the geometric
algebra carries through to the spacetime algebra. See Exercise 39.5 for the general case of 𝐾 space dimensions
and 𝑀 time dimensions.

14.1 Spacetime algebra

Let 𝛾𝛾𝑚 (𝑚 = 0, 1, 2, 3) denote an orthonormal basis of spacetime, with 𝛾𝛾0 representing the time axis, and
𝛾𝛾𝑎 (𝑎 = 1, 2, 3) the spatial axes. Geometric multiplication in the spacetime algebra is defined by

𝛾𝛾𝑚𝛾𝛾𝑛 = 𝛾𝛾𝑚 · 𝛾𝛾𝑛 + 𝛾𝛾𝑚 ∧𝛾𝛾𝑛 , (14.1)

just as in the geometric algebra, equation (13.5). The key difference between the spacetime basis 𝛾𝛾𝑚 and
Euclidean bases is that scalar products of the basis vectors 𝛾𝛾𝑚 form the Minkowski metric 𝜂𝑚𝑛,

𝛾𝛾𝑚 · 𝛾𝛾𝑛 = 𝜂𝑚𝑛 , (14.2)

whereas scalar products of Euclidean basis elements 𝛾𝛾𝑎 formed the unit matrix, 𝛾𝛾𝑎 ·𝛾𝛾𝑏 = 𝛿𝑎𝑏, equation (13.6).
In less abbreviated form, equations (14.1) state that the geometric product of each basis element with itself
is

− 𝛾𝛾2
0 = 𝛾𝛾2

1 = 𝛾𝛾2
2 = 𝛾𝛾2

3 = 1 , (14.3)

while geometric products of different basis elements 𝛾𝛾𝑚 anticommute

𝛾𝛾𝑚𝛾𝛾𝑛 = −𝛾𝛾𝑛𝛾𝛾𝑚 = 𝛾𝛾𝑚 ∧𝛾𝛾𝑛 (𝑚 ̸= 𝑛) . (14.4)

In the Dirac theory of relativistic spin- 12 particles, §14.7, the Dirac 𝛾-matrices are required to satisfy

{𝛾𝛾𝑚,𝛾𝛾𝑛} = 2 𝜂𝑚𝑛 (14.5)

353
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where {} denotes the anticommutator, {𝛾𝛾𝑚,𝛾𝛾𝑛} ≡ 𝛾𝛾𝑚𝛾𝛾𝑛 + 𝛾𝛾𝑛𝛾𝛾𝑚. The multiplication rules (14.5) for the
Dirac 𝛾-matrices are the same as those for geometric multiplication in the spacetime algebra, equations (14.3)
and (14.4).
A 4-vector 𝑎, a multivector of grade 1 in the geometric algebra of spacetime, is

𝑎 = 𝑎𝑚𝛾𝛾𝑚 = 𝑎0𝛾𝛾0 + 𝑎1𝛾𝛾1 + 𝑎2𝛾𝛾2 + 𝑎3𝛾𝛾3 . (14.6)

Such a 4-vector 𝑎 would be denoted ̸𝑎 in the Feynman slash notation. The product of two 4-vectors 𝑎 and
𝑏 is

𝑎𝑏 = 𝑎 · 𝑏+ 𝑎∧ 𝑏 = 𝑎𝑚𝑏𝑛𝛾𝛾𝑚 · 𝛾𝛾𝑛 + 𝑎𝑚𝑏𝑛𝛾𝛾𝑚 ∧𝛾𝛾𝑛 = 𝑎𝑚𝑏𝑛𝜂𝑚𝑛 + 1
2𝑎
𝑚𝑏𝑛[𝛾𝛾𝑚,𝛾𝛾𝑛] . (14.7)

It is convenient to denote three of the six bivectors of the spacetime algebra by 𝜎𝑎,

𝜎𝑎 ≡ 𝛾𝛾0𝛾𝛾𝑎 (𝑎 = 1, 2, 3) . (14.8)

The symbol 𝜎𝑎 is used because the algebra of bivectors 𝜎𝑎 is isomorphic to the algebra of Pauli matrices 𝜎𝑎.
The pseudoscalar, the highest grade basis element of the spacetime algebra, is denoted 𝐼

𝛾𝛾0𝛾𝛾1𝛾𝛾2𝛾𝛾3 = 𝜎1𝜎2𝜎3 = 𝐼 . (14.9)

The pseudoscalar 𝐼 satisfies

𝐼2 = −1 , 𝐼𝛾𝛾𝑚 = −𝛾𝛾𝑚𝐼 , 𝐼𝜎𝑎 = 𝜎𝑎𝐼 . (14.10)

The basis elements of the 4-dimensional spacetime algebra are then

1 ,

1 scalar
𝛾𝛾𝑚 ,

4 vectors
𝜎𝑎 , 𝐼𝜎𝑎 ,

6 bivectors
𝐼𝛾𝛾𝑚 ,

4 pseudovectors
𝐼 ,

1 pseudoscalar
(14.11)

forming a linear space of dimension 1 + 4 + 6 + 4 + 1 = 16 = 24. The reverse is defined in the usual
way, equation (13.13), leaving unchanged multivectors of grade 0 or 1, modulo 4, and changing the sign of
multivectors of grade 2 or 3, modulo 4:

1 = 1 , 𝛾𝛾𝑚 = 𝛾𝛾𝑚 , 𝜎𝑎 = −𝜎𝑎 , 𝐼𝜎𝑎 = −𝐼𝜎𝑎 , 𝐼𝛾𝛾𝑚 = −𝐼𝛾𝛾𝑚 , 𝐼 = 𝐼 . (14.12)

In the 3D geometric algebra a bivector was also a rotor, satisfying 𝑅𝑅 = 1, but in the 4D spacetime algebra
only the spatial bivectors 𝐼𝜎𝑎 are rotors, satisfying 𝐼𝜎𝑎𝐼𝜎𝑎 = 1. The boost bivectors satisfy 𝜎𝑎𝜎𝑎 = −1 not
1, so are not rotors. Nevertheless, if 𝜃𝜎𝑎 is a boost bivector, then its exponential 𝑅 ≡ 𝑒−𝜃𝜎𝑎/2 is a rotor,

𝑅 = 𝑒−𝜃𝜎𝑎/2 = 1− (𝜃/2)𝜎𝑎 +
(𝜃/2)2

2!
− (𝜃/2)3

3!
𝜎𝑎 + ... = cosh(𝜃/2)− 𝜎𝑎 sinh(𝜃/2) , (14.13)

since its inverse is indeed its reverse 𝑅 = 𝑒−𝜃𝜎𝑎/2 = 𝑒𝜃𝜎𝑎/2 = cosh(𝜃/2) + 𝜎𝑎 sinh(𝜃/2).
The mapping

𝛾𝛾(3)
𝑎 ↔ 𝜎𝑎 (𝑎 = 1, 2, 3) (14.14)

(the superscript (3) distinguishes the 3D basis vectors from the 4D spacetime basis vectors) defines an iso-
morphism between the 8-dimensional geometric algebra (13.3) of 3 spatial dimensions and the 8-dimensional
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even spacetime subalgebra. Among other things, the isomorphism (14.14) implies the equivalence of the 3D
spatial pseudoscalar 𝐼3 and the 4D spacetime pseudoscalar 𝐼,

𝐼3 ↔ 𝐼 , (14.15)

since 𝐼3 = 𝛾𝛾
(3)
1 𝛾𝛾

(3)
2 𝛾𝛾

(3)
3 and 𝐼 = 𝜎1𝜎2𝜎3.

14.2 Complex quaternions

A complex quaternion (also called a biquaternion by W. R. Hamilton) is a quaternion

𝑞 = 𝑎+ 𝑏 = 𝑎+ 𝚤𝑎𝑏𝑎 , (14.16)

in which the four coefficients 𝑎, 𝑏𝑎 (𝑎 = 1, 2, 3) are each complex numbers

𝑎 = 𝑎𝑅 + 𝐼𝑎𝐼 , 𝑏𝑎 = 𝑏𝑎,𝑅 + 𝐼𝑏𝑎,𝐼 . (14.17)

The imaginary 𝐼 is taken to commute with each of the quaternionic imaginaries 𝚤𝑎. The choice of symbol 𝐼
is deliberate: in the isomorphism (14.33) between the even spacetime algebra and complex quaternions, the
commuting imaginary 𝐼 is isomorphic to the spacetime pseudoscalar 𝐼.
All of the equations in §13.12 on real quaternions remain valid without change, including the multiplication,

conjugation, and inversion formulae (13.93)–(13.98). The quaternionic conjugate 𝑞 of a complex quaternion
𝑞 ≡ 𝑎 + 𝑏 is conjugated with respect to the quaternionic imaginaries 𝚤𝑎, but the complex coefficients 𝑎 and
𝑏𝑎 are not conjugated with respect to the complex imaginary 𝐼,

𝑞 = 𝑎+ 𝑏 = 𝑎− 𝑏 = 𝑎− 𝚤𝑎𝑏𝑎 . (14.18)

The modulus |𝑞| of a complex quaternion 𝑞 ≡ 𝑎+ 𝑏,

|𝑞| = (𝑞𝑞)1/2 = (𝑞𝑞)1/2 = (𝑎2 + 𝑏 · 𝑏)1/2 = (𝑎2 + 𝑏𝑎𝑏𝑎)
1/2 , (14.19)

is a complex number, not a real number. The name modulus to denote |𝑞| is preferred over magnitude, to
avoid confusion with the magnitude of a complex number. A quaternion is said to be unimodular if its
modulus is 1,

𝑞𝑞 = 1 . (14.20)

The unimodular condition (14.20) is a complex condition, stating that the real and imaginary (with respect
to 𝐼) parts of 𝑞𝑞 are respectively 1 and 0.
The complex conjugate 𝑞⋆ of the complex quaternion is (the star symbol ⋆ is used for complex conjugation

with respect to the pseudoscalar 𝐼, to distinguish it from the asterisk symbol * for complex conjugation with
respect to the scalar quantum-mechanical imaginary 𝑖)

𝑞⋆ = 𝑎⋆ + 𝑏⋆ = 𝑎⋆ + 𝚤𝑎𝑏
⋆
𝑎 , (14.21)
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in which the complex coefficients 𝑎 and 𝑏𝑎 are conjugated with respect to the imaginary 𝐼, but the quaternionic
imaginaries 𝚤𝑎 are not conjugated.
A non-zero complex quaternion can have zero modulus (unlike a real quaternion), in which case it is null.

The null condition

𝑞𝑞 = 𝑎2 + 𝑏𝑎𝑏𝑎 = 0 (14.22)

is a complex condition. The product of two null complex quaternions is a null quaternion. Under multiplica-
tion, null quaternions form a 6-dimensional subsemigroup (not a subgroup, because null quaternions do not
have inverses) of the 8-dimensional semigroup of complex quaternions.

Exercise 14.1. Null complex quaternions. Show that any non-trivial null complex quaternion 𝑞 can be
written uniquely in the form

𝑞 = 𝑝(1 + 𝐼𝑛) = 𝑝(1 + 𝐼𝚤𝑎𝑛𝑎) , (14.23)

where 𝑝 is a real quaternion, and 𝑛 = 𝚤𝑎𝑛𝑎 is a real unimodular vector quaternion, with real components
{𝑛1, 𝑛2, 𝑛3} satisfying 𝑛𝑎𝑛𝑎 = 1. Equivalently,

𝑞 = (1 + 𝐼𝑛′)𝑝 = (1 + 𝐼𝚤𝑎𝑛
′
𝑎)𝑝 , (14.24)

where 𝑛′ is the real unimodular vector quaternion

𝑛′ =
𝑝𝑛𝑝

|𝑝|2
, (14.25)

with real components {𝑛′1, 𝑛′2, 𝑛′3} satisfying 𝑛′𝑎𝑛′𝑎 = 1.
Solution. Write the null quaternion 𝑞 as

𝑞 = 𝑝+ 𝐼𝑟 (14.26)

where 𝑝 and 𝑟 are real quaternions, both of which must be non-zero if 𝑞 is non-trivial. Then equation (14.23)
is true with

𝑛 = 𝚤𝑎𝑛𝑎 =
𝑝𝑟

|𝑝|2
. (14.27)

The null condition is 𝑞𝑞 = 0. The vanishing of the real part, Re(𝑞𝑞) = 𝑝𝑝 − 𝑟𝑟 = 0, shows that |𝑝|2 = |𝑟|2.
The vanishing of the imaginary (𝐼) part, Im(𝑞𝑞) = 𝑝𝑟 + 𝑟𝑝 = 𝑝𝑟 + 𝑝𝑟 = 0 shows that the 𝑝𝑟 must be a
pure quaternionic imaginary, since the quaternionic conjugate of 𝑝𝑟 is minus itself, so 𝑝𝑟/ |𝑝|2 must be of the
form 𝑛 = 𝚤𝑎𝑛𝑎. Its squared modulus 𝑛𝑛 = 𝑛𝑎𝑛𝑎 = 𝑝𝑟 𝑟𝑝/ |𝑝|4 = 1 is unity, so 𝑛 is a unimodular 3-vector
quaternion. It follows immediately from the manner of construction that the expression (14.23) is unique, as
long as 𝑞 is non-trivial.

Exercise 14.2. Nilpotent complex quaternions. An object whose square is zero is said to be nilpotent.
Show that a complex quaternion of the form

𝑞 = 𝚤𝑎𝑞𝑎 with 𝑞 · 𝑞 = 𝑞𝑎𝑞𝑎 = 0 (14.28)
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is nilpotent,

𝑞2 = 0 . (14.29)

Prove that a nilpotent complex quaternion must take the form (14.28). The set of nilpotent complex quater-
nions forms a 4-dimensional subspace of complex quaternions, since the complex condition 𝑞𝑎𝑞𝑎 = 0 elimi-
nates 2 of the 6 degrees of freedom in the quaternionic components 𝑞𝑎. The product of two nilpotent complex
quaternions is not necessarily nilpotent, so the nilpotent set does not form a semigroup. The set of nilpotent
complex quaternions consists of the subset of null complex quaternions that are purely quaternionic.

14.3 Lorentz transformations and complex quaternions

Lorentz transformations are rotations of spacetime. The rotor group of spacetime rotations in 3+1 dimensions
is, as usual, the Lie group generated by the Lie algebra of bivectors. The rotor group in 3+1 dimensions is
called Spin(3, 1).
The basis elements of the even spacetime algebra are

1 ,

1 scalar
𝜎𝑎 , 𝐼𝜎𝑎 ,

6 bivectors
𝐼 ,

1 pseudoscalar
(14.30)

forming a linear space of dimension 1 + 6 + 1 = 8 over the real numbers. However, it is more elegant to
treat the even spacetime algebra as a linear space of dimension 8/2 = 4 over complex numbers of the form
𝜆 = 𝜆𝑅+ 𝐼𝜆𝐼 . The pseudoscalar 𝐼 qualifies as an imaginary because 𝐼2 = −1, and because it commutes with
all elements of the even spacetime algebra. It is convenient to take the basis elements of the even spacetime
algebra over the complex numbers to be

1 ,

1 scalar
𝐼𝜎𝑎 ,

3 bivectors
(14.31)

forming a linear space of dimension 1 + 3 = 4. The reason for choosing 𝐼𝜎𝑎 rather than 𝜎𝑎 as the elements
of the basis (14.31) is that the basis {1, 𝐼𝜎𝑎} is equivalent to the basis (13.99) of the even algebra of 3-dim-
ensional Euclidean space through the isomorphism (14.14) and (14.15). This basis in turn is equivalent to
the quaternionic basis {1, 𝚤𝑎} through the isomorphism (13.105):

𝐼𝜎𝑎 ↔ 𝐼3𝛾𝛾
(3)
𝑎 ↔ 𝚤𝑎 (𝑎 = 1, 2, 3) . (14.32)

In other words, the even spacetime algebra is isomorphic to the algebra of quaternions with complex coeffi-
cients:

𝑎+ 𝐼𝜎𝑎𝑏𝑎 ↔ 𝑎+ 𝚤𝑎𝑏𝑎 (14.33)

where 𝑎 = 𝑎𝑅 + 𝐼𝑎𝐼 is a complex number, and 𝑏𝑎 ≡ 𝑏𝑎,𝑅 + 𝐼𝑏𝑎,𝐼 is a triple of complex numbers.
The isomorphism (14.33) between even elements of the spacetime algebra and complex quaternions implies
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that the group Spin(3, 1) of Lorentz rotors, which are unimodular elements of the even spacetime algebra, is
isomorphic to the group of unimodular complex quaternions

spacetime rotors ∼= unimodular complex quaternions . (14.34)

In §13.13 it was found that the group of 3D spatial rotors is isomorphic to the group of unimodular real
quaternions. Thus Lorentz transformations are mathematically equivalent to complexified spatial rotations.
The Lorentz rotor that produces a rotation by complex angle 𝜃 about the unimodular complex direction

𝑛𝑎 is, according to equation (13.49),

𝑅 = 𝑒−𝜃/2 = 𝑒−𝑛 𝜃/2 = cos
𝜃

2
− 𝑛 sin

𝜃

2
, (14.35)

generalizing the 3D rotor (13.102). Here 𝜃 is a bivector

𝜃 = 𝑛 𝜃 = 𝐼𝜎𝑎𝑛𝑎 𝜃 , (14.36)

whose modulus is the complex angle (𝜃𝜃)1/2 = 𝜃 ≡ 𝜃𝑅+𝐼𝜃𝐼 , and whose direction is the unimodular complex
bivector 𝑛 = 𝑛𝑅 + 𝐼𝑛𝐼 . The unimodular condition 𝑛𝑛 = 1 on 𝑛 is equivalent to the complex condition
𝑛𝑎𝑛𝑎 = 1 on the complex components 𝑛𝑎 ≡ {𝑛1, 𝑛2, 𝑛3}. The real and imaginary parts of the unimodular
condition imply the two conditions

𝑛𝑎,𝑅 𝑛𝑎,𝑅 − 𝑛𝑎,𝐼 𝑛𝑎,𝐼 = 1 , 2𝑛𝑅,𝑎 𝑛𝐼,𝑎 = 0 . (14.37)

The complex angle 𝜃 has 2 degrees of freedom, while the complex unimodular bivector 𝑛 has 4 degrees of
freedom, so the Lorentz rotor 𝑅 has 6 degrees of freedom, which is the correct number of degrees of freedom
of the group of Lorentz transformations.
With the equivalence (14.32), the Lorentz rotor 𝑅 given by equation (14.35) can be reinterpreted as a

complex quaternion, with 𝜃 the complex quaternion

𝜃 = 𝑛 𝜃 = 𝚤𝑎𝑛𝑎𝜃 , (14.38)

whose complex modulus is 𝜃 = |𝜃| ≡ (𝜃𝜃)1/2 and whose complex unimodular direction is 𝑛 ≡ 𝚤𝑎𝑛𝑎. The
associated reverse rotor 𝑅 is

𝑅 = 𝑒𝜃/2 = 𝑒𝑛 𝜃/2 = cos
𝜃

2
+ 𝑛 sin

𝜃

2
(14.39)

the quaternionic conjugate of 𝑅. Note that 𝜃 and 𝑛 in equation (14.39) are not conjugated with respect to
the imaginary 𝐼. The sine and cosine of the complex angle 𝜃 appearing in equations (14.35) and (14.39) are
related to its real and imaginary parts in the usual way,

cos
𝜃

2
= cos

𝜃𝑅
2

cosh
𝜃𝐼
2
− 𝐼 sin 𝜃𝑅

2
sinh

𝜃𝐼
2
, sin

𝜃

2
= sin

𝜃𝑅
2

cosh
𝜃𝐼
2

+ 𝐼 cos
𝜃𝑅
2

sinh
𝜃𝐼
2
. (14.40)

For the case of a pure spatial rotation, the angle 𝜃 = 𝜃𝑅 and axis 𝑛 = 𝑛𝑅 in the rotor (14.35) are both
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Figure 14.1 Lorentz boost of a vector 𝑎 by rapidity 𝜃 in the 𝛾𝛾0–𝛾𝛾1 plane. See Exercise 14.3.

real. The rotor corresponding to a pure spatial rotation by angle 𝜃𝑅 right-handedly about unit real axis
𝑛𝑅 ≡ 𝐼𝜎𝑎𝑛𝑎,𝑅 = 𝚤𝑎𝑛𝑎,𝑅 is the real quaternion

𝑅 = 𝑒−𝑛𝑅 𝜃𝑅/2 = cos
𝜃𝑅
2
− 𝑛𝑅 sin

𝜃𝑅
2
. (14.41)

A Lorentz boost is a change of velocity in some direction, without any spatial rotation, and represents
a rotation of spacetime about some time-space plane. For example, a Lorentz boost along the 𝛾𝛾1-axis (the
𝑥-axis) is a rotation of spacetime in the 𝛾𝛾0–𝛾𝛾1 plane (the 𝑡–𝑥 plane). In the case of a pure Lorentz boost,
the angle 𝜃 = 𝐼𝜃𝐼 is pure imaginary, but the axis 𝑛 = 𝑛𝑅 remains pure real (alternatively, the angle is pure
real and the axis is pure imaginary). The rotor corresponding to a boost by rapidity 𝜃𝐼 , or equivalently by
velocity 𝑣 = tanh 𝜃𝐼 , in unit real direction 𝑛𝑅 ≡ 𝐼𝜎𝑎𝑛𝑎,𝑅 = 𝚤𝑎𝑛𝑎,𝑅 is the complex quaternion

𝑅 = 𝑒−𝐼𝑛𝑅 𝜃𝐼/2 = cosh
𝜃𝐼
2
− 𝐼𝑛𝑅 sinh

𝜃𝐼
2
. (14.42)

Exercise 14.3. Lorentz boost. A Lorentz boost by rapidity 𝜃 = atanh 𝑣 along the 𝛾𝛾1-axis (𝑥-axis) (that
is, a rotation in the 𝛾𝛾0–𝛾𝛾1 plane) is given by the Lorentz rotor

𝑅 = 𝑒−𝐼𝑛1 𝜃/2 = cosh
𝜃

2
+ 𝛾𝛾0 ∧𝛾𝛾1 sinh

𝜃

2
. (14.43)

Confirm that the Lorentz boost transforms the axes 𝛾𝛾𝑚 as

𝑅 : 𝛾𝛾0 → 𝑅𝛾𝛾0𝑅 = 𝛾𝛾0 cosh 𝜃 + 𝛾𝛾1 sinh 𝜃 , (14.44a)

𝑅 : 𝛾𝛾1 → 𝑅𝛾𝛾1𝑅 = 𝛾𝛾1 cosh 𝜃 + 𝛾𝛾0 sinh 𝜃 , (14.44b)

𝑅 : 𝛾𝛾𝑎 → 𝑅𝛾𝛾𝑎𝑅 = 𝛾𝛾𝑎 (𝑎 ̸= 0, 1) . (14.44c)

The boost is illustrated in Figure 14.1.
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Exercise 14.4. Factor a Lorentz rotor into a boost and a rotation. Factor a general Lorentz rotor
𝑅 = 𝑒−𝚤𝑎𝑛𝑎 𝜃/2 into the product 𝐿𝑈 of a pure spatial rotation 𝑈 followed by a pure Lorentz boost 𝐿. Do the
two factors commute?
Solution. Expand the rotor 𝑅 as

𝑅 = 𝑝+ 𝐼𝑞 (14.45)

where 𝑝 and 𝑞 are real quaternions. Then 𝑅 can be expressed as the composition of a pure spatial rotation
𝑈 followed by a pure Lorentz boost 𝐿

𝑅 = 𝐿𝑈 (14.46)

in which

𝑈 =
𝑝

|𝑝|
, 𝐿 = |𝑝|+ 𝐼

𝑞𝑝

|𝑝|
(14.47)

where |𝑝| = (𝑝𝑝)1/2 is the (real) absolute value of the real quaternion 𝑝. It is straightforward to check that
𝑈 and 𝐿 satisfy the requirements to be pure spatial and boost rotors. The spatial rotor 𝑈 is by construction
unimodular, 𝑈𝑈 = 1, and it follows that the boost rotor 𝐿 = 𝑅𝑈 is also unimodular, since 𝑅 is unimodular.
The spatial rotor 𝑈 is a real quaternion, and therefore satisfies the form (14.41) of a pure spatial rotation.
The real part |𝑝| of the boost rotor 𝐿 is pure real, while the imaginary part 𝑞𝑝/ |𝑝| is a pure quaternionic
imaginary, since unimodularity 𝑅𝑅 = 1 implies that Im(𝑅𝑅) = 𝑞𝑝+ 𝑝𝑞 = 𝑞𝑝+ 𝑞𝑝 = 0, i.e. the quaternionic
conjugate of 𝑞𝑝 is minus itself. Thus 𝐿 satisfies the form (14.42) of a pure Lorentz boost.
The factors 𝑈 and 𝐿 commute if the boost and rotation axes are in the same direction, but not in general.

The expression for the rotor 𝑅 as the composition of a Lorentz boost followed by a spatial rotation, the
opposite order to (14.46), is

𝑅 = 𝑈𝐿′ (14.48)

where 𝑈 is the same spatial rotor as before, but the boost rotor 𝐿′ is

𝐿′ = |𝑝|+ 𝐼
𝑝𝑞

|𝑝|
= 𝑈𝐿𝑈 (14.49)

whose real part |𝑝| is the same as for 𝐿, but whose imaginary part 𝑝𝑞/ |𝑝| differs in direction, though not
magnitude, from that of 𝐿.

Exercise 14.5. Topology of the group of Lorentz rotors. Show that the geometry of the group of
Lorentz rotors is the product of the geometries of the spatial rotation group and the boost group, which is
a 3-sphere times Euclidean 3-space, 𝑆3 × R3.

14.4 Spatial inversion (𝑃 ) and Time reversal (𝑇 )

Spatial inversion, or 𝑃 for parity, is the operation of reflecting a (single) spatial direction, 𝛾𝛾𝑎 → −𝛾𝛾𝑎. Spatial
inversion leaves the scalar product of orthonormal vectors unchanged. A rotation in 𝑁 spatial dimensions
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can be represented by a matrix in the orthogonal group O(𝑁) of matrices satisfying the condition that
their inverses are their transposes, 𝑂−1 = 𝑂⊤. Since transposing a matrix leaves its determinant unchanged,
orthogonal matrices have squared determinant equal to 1. The orthogonal group O(𝑁) thus splits into two
disconnected pieces, proper and improper rotations represented by orthogonal matrices of determinant
respectively +1 and −1. The subgroup group of proper rotations is designated SO(𝑁), the S signifying
Special, meaning matrices of determinant 1.
Inversion of one spatial direction can be represented by a diagonal orthogonal matrix with one of its

diagonal elements equal to −1 and the remainder all 1. Thus spatial inversion is a discrete transformation
of the geometric algebra, which splits the geometric algebra into two disconnected parts that cannot be
transformed into each other by any continuous rotation.
Inversion may be accomplished by reflecting through any odd number of spatial axes. In spacetimes with

an odd number of spatial dimensions, as here (where there are 3 spatial dimensions), spatial inversion may
be accomplished by reflecting all spatial vector basis elements 𝛾𝛾𝑎 → −𝛾𝛾𝑎, while keeping the time vector
basis element 𝛾𝛾0 unchanged. This results in 𝜎𝑎 → −𝜎𝑎 and 𝐼 → −𝐼. The equivalence 𝐼𝜎𝑎 ↔ 𝚤𝑎 means that
the quaternionic imaginaries 𝚤𝑎 are unchanged. Thus, if multivectors in the spacetime algebra are written as
linear combinations of products of 𝛾𝛾0, 𝚤𝑎, and 𝐼, then spatial inversion 𝑃 corresponds to the transformation

𝑃 : 𝛾𝛾0 → 𝛾𝛾0 , 𝚤𝑎 → 𝚤𝑎 , 𝐼 → −𝐼 . (14.50)

In other words spatial inversion may be accomplished by the rule, take the complex conjugate (with respect
to 𝐼) of a multivector.
Time reversal, or 𝑇 , is the operation of reversing the time direction while keeping all spatial directions un-

changed. Time reversal, like spatial inversion, leaves the scalar product of orthonormal vectors unchanged.
Time reversal cannot be accomplished by any continuous Lorentz transformation starting from the unit
element, nor can it be accomplished by spatial inversion accompanied by any continuous Lorentz transfor-
mation starting from the unit element. Thus the Lorentz group contains 4 disconnected components that
cannot be transformed into each other by any continuous Lorentz transformation starting from the unit
element. The normal and reversed time components of the Lorentz group are sometimes called respectively
orthochronous and antichronous.
Time reversal may be accomplished by reflecting the time vector basis element 𝛾𝛾0 → −𝛾𝛾0, while keeping

the spatial vector basis elements 𝛾𝛾𝑎 unchanged. As with spatial inversion, this results in 𝜎𝑎 → −𝜎𝑎 and
𝐼 → −𝐼, which keeps 𝐼𝜎𝑎 hence 𝚤𝑎 unchanged. If multivectors in the spacetime algebra are written as linear
combinations of products of 𝛾𝛾0, 𝚤𝑎, and 𝐼, then time inversion 𝑇 corresponds to the transformation

𝑇 : 𝛾𝛾0 → −𝛾𝛾0 , 𝚤𝑎 → 𝚤𝑎 , 𝐼 → −𝐼 . (14.51)

For any multivector, time inversion corresponds to the instruction to flip 𝛾𝛾0 and take the complex conjugate
(with respect to 𝐼).
The combined operation 𝑃𝑇 of inverting both space and time directions corresponds to

𝑃𝑇 : 𝛾𝛾0 → −𝛾𝛾0 , 𝚤→ 𝚤𝑎 , 𝐼 → 𝐼 . (14.52)
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For any multivector, spacetime inversion corresponds to the instruction to flip 𝛾𝛾0, while keeping 𝚤𝑎 and 𝐼
unchanged.

14.5 How to implement Lorentz transformations on a computer

The advantages of quaternions for implementing spatial rotations are well-known to 3D game programmers.
Compared to standard rotation matrices, quaternions offer increased speed and require less storage, and
their algebraic properties simplify interpolation and splining. Complex quaternions retain similar advantages
for implementing Lorentz transformations. They are fast, compact, and straightforward to interpolate or
spline (Exercises 14.6 and 14.8). Moreover, since complex quaternions contain real quaternions, Lorentz
transformations can be implemented simply as an extension of spatial rotations in 3D programs that use
quaternions to implement spatial rotations.
Lorentz rotors, 4-vectors, spacetime bivectors, and spinors (spin- 12 objects) can all be implemented as

complex quaternions. A complex quaternion

𝑞 = 𝑤 + 𝚤1𝑥+ 𝚤2𝑦 + 𝚤3𝑧 (14.53)

with complex coefficients 𝑤, 𝑥, 𝑦, 𝑧 (so 𝑤 = 𝑤𝑅 + 𝐼𝑤𝐼 , etc.) can be stored as the 8-component object

𝑞 =

{︂
𝑤𝑅 𝑥𝑅 𝑦𝑅 𝑧𝑅
𝑤𝐼 𝑥𝐼 𝑦𝐼 𝑧𝐼

}︂
. (14.54)

Actually, OpenGL and other computer software store the scalar (𝑤) component of a quaternion in the last
(fourth) place, but here the scalar components are put in the zeroth position to conform to standard physics
convention. The quaternion conjugate 𝑞 of the quaternion (14.54) is

𝑞 =

{︂
𝑤𝑅 −𝑥𝑅 −𝑦𝑅 −𝑧𝑅
𝑤𝐼 −𝑥𝐼 −𝑦𝐼 −𝑧𝐼

}︂
, (14.55)

while its complex conjugate 𝑞⋆ (with respect to 𝐼) is

𝑞⋆ =

{︂
𝑤𝑅 𝑥𝑅 𝑦𝑅 𝑧𝑅
−𝑤𝐼 −𝑥𝐼 −𝑦𝐼 −𝑧𝐼

}︂
. (14.56)

A Lorentz rotor 𝑅 corresponds to a complex quaternion of unit modulus. The unimodular condition 𝑅𝑅 =

1, a complex condition, removes 2 degrees of freedom from the 8 degrees of freedom of complex quaternions,
leaving the Lorentz group with 6 degrees of freedom, which is as it should be. Spatial rotations correspond
to real unimodular quaternions, and account for 3 of the 6 degrees of freedom of Lorentz transformations. A
spatial rotation by angle 𝜃 right-handedly about the 1-axis (the 𝑥-axis) is the real Lorentz rotor

𝑅 = 𝑒−𝚤1𝜃/2 = cos(𝜃/2)− 𝚤1 sin(𝜃/2) , (14.57)
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or, stored as a complex quaternion,

𝑅 =

{︂
cos(𝜃/2) − sin(𝜃/2) 0 0

0 0 0 0

}︂
. (14.58)

Note that this is the physics convention, where a right-handed rotation corresponds to 𝑅 = 𝑒−𝚤𝑎𝑛𝑎𝜃/2

and rotations accumulate to the left. The convention in OpenGL and other graphics software is that 𝑅 =

𝑒𝚤𝑎𝑛𝑎𝜃/2 and rotations accumulate to the right. To change to OpenGL convention, omit the minus sign
in equation (14.58). Lorentz boosts account for the remaining 3 of the 6 degrees of freedom of Lorentz
transformations. A Lorentz boost by velocity 𝑣, or equivalently by rapidity 𝜃 = atanh(𝑣), along the 1-axis
(the 𝑥-axis) is the complex Lorentz rotor

𝑅 = 𝑒−𝐼𝚤1𝜃/2 = cosh(𝜃/2)− 𝐼𝚤1 sinh(𝜃/2) , (14.59)

or, stored as a complex quaternion,

𝑅 =

{︂
cosh(𝜃/2) 0 0 0

0 − sinh(𝜃/2) 0 0

}︂
. (14.60)

Again, this is the physics convention. To change to OpenGL convention, omit the minus sign in equa-
tion (14.60). The rule for composing Lorentz transformations is simple: a Lorentz transformation 𝑅 followed
by a Lorentz transformation 𝑆 is just the product 𝑆𝑅 of the corresponding complex quaternions. This is
the physics convention, where rotations accumulate to the left. In the OpenGL convention, where rotations
accumulate to the right, 𝑅 followed by 𝑆 is 𝑅𝑆.
The inverse of a Lorentz rotor 𝑅 is its quaternionic conjugate 𝑅.
Any even multivector 𝑞 is equivalent to a complex quaternion by the isomorphism (14.33). According to

the usual transformation law (13.56) for multivectors, the rule for Lorentz transforming an even multivector
𝑞 is

𝑅 : 𝑞 → 𝑅𝑞𝑅 (even multivector) . (14.61)

The transformation (14.61) instructs to multiply three complex quaternions 𝑅, 𝑞, and 𝑅, a one-line expression
in a c++ program. In OpenGL convention, the transformation rule is 𝑞 → 𝑅𝑞𝑅.
As an example of an even multivector, the electromagnetic field 𝐹 is a bivector in the spacetime algebra,

𝐹 = 1
2𝐹

𝑚𝑛𝛾𝛾𝑚 ∧𝛾𝛾𝑛 , (14.62)

the factor of 1
2 compensating for the double-counting over indices 𝑚 and 𝑛 (the 1

2 could be omitted if the
counting were over distinct bivector indices only). The imaginary and real parts of 𝐹 constitute the electric
and magnetic bivectors 𝐸 = 𝐸𝑎𝚤𝑎 and 𝐵 = 𝐵𝑎𝚤𝑎

𝐹 = −𝐼(𝐸 + 𝐼𝐵) . (14.63)

Under the parity transformation 𝑃 (14.50), the electric field 𝐸 changes sign, whereas the magnetic field 𝐵

does not, which is as it should be:

𝑃 : 𝐸 → −𝐸 , 𝐵 → 𝐵 . (14.64)
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In view of the isomorphism (14.33), the electromagnetic field bivector 𝐹 can be written as the complex
quaternion

𝐹 =

{︂
0 𝐵1 𝐵2 𝐵3

0 −𝐸1 −𝐸2 −𝐸3

}︂
. (14.65)

According to the rule (14.61), the electromagnetic field bivector 𝐹 Lorentz transforms as 𝐹 → 𝑅𝐹𝑅, which
is a powerful and elegant way to Lorentz transform the electromagnetic field.
A 4-vector 𝑎 ≡ 𝛾𝛾𝑚𝑎

𝑚 is a multivector of grade 1 in the spacetime algebra. A general odd multivector in
the spacetime algebra is the sum of a vector (grade 1) part 𝑎 and a pseudovector (grade 3) part 𝐼𝑏 = 𝐼𝛾𝛾𝑚𝑏

𝑚.
The odd multivector can be written as the product of the time basis vector 𝛾𝛾0 and an even multivector 𝑞

𝑎+ 𝐼𝑏 = 𝛾𝛾0𝑞 = 𝛾𝛾0

(︀
𝑎0 + 𝐼𝚤𝑎𝑎

𝑎 − 𝐼𝑏0 + 𝚤𝑎𝑏
𝑎
)︀
. (14.66)

By the isomorphism (14.33), the even multivector 𝑞 is equivalent to the complex quaternion

𝑞 =

{︂
𝑎0 𝑏1 𝑏2 𝑏3

−𝑏0 𝑎1 𝑎2 𝑎3

}︂
. (14.67)

According to the usual transformation law (13.56) for multivectors, the rule for Lorentz transforming the
odd multivector 𝛾𝛾0𝑞 is

𝑅 : 𝛾𝛾0𝑞 → 𝑅𝛾𝛾0𝑞𝑅 = 𝛾𝛾0𝑅
⋆𝑞𝑅 . (14.68)

In the last expression of (14.68), the factor 𝛾𝛾0 has been brought to the left, to be consistent with the
convention (14.66) that an odd multivector is 𝛾𝛾0 on the left times an even multivector on the right. Notice
that commuting 𝛾𝛾0 through 𝑅 converts the latter to its complex conjugate 𝑅⋆ (with respect to 𝐼), which is
true because 𝛾𝛾0 commutes with the quaternionic imaginaries 𝚤𝑎, but anticommutes with the pseudoscalar 𝐼.
Thus if the components of an odd multivector are stored as a complex quaternion (14.67), then that complex
quaternion 𝑞 Lorentz transforms as

𝑅 : 𝑞 → 𝑅⋆𝑞𝑅 (odd multivector) . (14.69)

In OpenGL convention, 𝑞 → 𝑅
⋆
𝑞𝑅. The rule (14.69) again instructs to multiply three complex quaternions

𝑅⋆, 𝑞, and 𝑅, a one-line expression in a c++ program. The transformation rule (14.69) for an odd multivector
encoded as a complex quaternion differs from that (14.61) for an even multivector in that the first factor 𝑅
is complex conjugated (with respect to 𝐼).
A vector 𝑎 differs from a pseudovector 𝐼𝑏 in that the vector 𝑎 changes sign under a parity transforma-

tion 𝑃 whereas the pseudovector 𝐼𝑏 does not. However, the behaviour of a pseudovector under a normal
Lorentz transformation (which preserves parity) is identical to that of a vector. Thus in practical situations
two 4-vectors 𝑎 and 𝑏 can be encoded into a single complex quaternion (14.67), and Lorentz transformed
simultaneously, enabling two transformations to be done for the price of one.
Finally, a Dirac spinor 𝜓 is equivalent to a complex quaternion 𝑞 (§14.9). It Lorentz transforms as

𝑅 : 𝑞 → 𝑅𝑞 (spinor) . (14.70)
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In OpenGL convention, where rotations accumulate to the right instead of left, 𝑞 → 𝑞𝑅.

Exercise 14.6. Interpolate a Lorentz transformation. Argue that the interpolating Lorentz rotor 𝑅(𝑡)
that corresponds to uniform rotation and acceleration between initial and final Lorentz rotors 𝑅0 and 𝑅1 as
the parameter 𝑡 varies uniformly from 0 to 1 is

𝑅(𝑡) = 𝑅0 exp [𝑡 ln(𝑅1/𝑅0)] . (14.71)

Exercise 14.7. Exponential and logarithm of a complex quaternion. What are the (1) exponential
and (2) logarithm of a complex quaternion in terms of its components? Address the issue of the multi-valued
character of the logarithm.
Solution.

1. Exponential of a complex quaternion. Decompose the complex quaternion 𝑝 into the sum of a
complex number 𝑤 and a complex bivector 𝑛𝜃 of complex modulus 𝜃 and unimodular complex direction
𝑛 (satisfying 𝑛𝑛 = 1). Then

𝑒𝑝 = 𝑒𝑤+𝑛𝜃 = 𝑒𝑤(cos 𝜃 + 𝑛 sin 𝜃) . (14.72)

2. Logarithm of a complex quaternion. Essentially, reverse the procedure for exponentiation. Denote
the logarithm of the complex quaternion 𝑞 by ln 𝑞 ≡ 𝑝 ≡ 𝑤 + 𝑛𝜃. The non-quaternionic part of the
logarithm is the complex number 𝑤 given by the (complex) logarithm of the (complex) modulus of 𝑞,

𝑤 = 1
2 ln(𝑞𝑞) . (14.73)

The complex quaternion 𝑞 scaled to unit modulus is then

𝑞√
𝑞𝑞

= cos 𝜃 + 𝑛 sin 𝜃 , (14.74)

whose non-quaternionic part cos 𝜃 defines the (complex) angle 𝜃, and whose quaternionic part 𝑛 sin 𝜃,
when divided by sin 𝜃, yields the unimodular complex quaternion 𝑛. The complex logarithm 𝑤 is as usual
ambiguous by additive multiples of 2𝜋𝐼, while the complex argument 𝜃 of the cos and sin is ambiguous
by additive multiples of 2𝜋. But in addition there is (a) an ambiguity of a choice of sign between 𝑛

and sin 𝜃, and (b) an ambiguity of a choice of sign between 𝑒𝑤 and the sign of cos 𝜃 + 𝑛 sin 𝜃. The first
ambiguity may be resolved by fixing the real part of 𝜃 to lie in the interval [0, 𝜋). The second ambiguity
may be resolved by fixing the real part of 𝑒𝑤 to be positive, achieved by setting the imaginary part of
𝑤 to lie in the interval (−𝜋/2, 𝜋/2]. For rotors, which are unimodular by definition, 𝑒𝑤 = 1 and 𝑤 = 0.

Exercise 14.8. Spline a Lorentz transformation. A spline is a polynomial that interpolates between two
points with given values and derivatives at the two points. Confirm that the cubic spline of a real function
𝑓(𝑥) with given initial and final values 𝑓0 and 𝑓1 and given initial and final derivatives 𝑓 ′0 and 𝑓 ′1 at 𝑥 = 0

and 𝑥 = 1 is

𝑓(𝑥) = 𝑓0 + 𝑓 ′0𝑥+ [3(𝑓1 − 𝑓0)− 2𝑓 ′0 − 𝑓 ′1]𝑥2 + [2(𝑓0 − 𝑓1) + 𝑓 ′0 + 𝑓 ′1]𝑥
3 . (14.75)

The case in which the derivatives at the endpoints are set to zero, 𝑓 ′0 = 𝑓 ′1 = 0, is called the “natural” spline.
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Argue that a Lorentz rotor can be splined by splining the quaternionic components of the logarithm of the
Lorentz rotor.

Exercise 14.9. The wrong way to implement a Lorentz transformation. The principal purpose of
this exercise is to persuade you that Lorentz transforming a 4-vector by the rule (14.69) is a much better
idea than Lorentz transforming by multiplying by an explicit 4× 4 matrix. Suppose that the Lorentz rotor
𝑅 is the complex quaternion

𝑅 =

{︂
𝑤𝑅 𝑥𝑅 𝑦𝑅 𝑧𝑅
𝑤𝐼 𝑥𝐼 𝑦𝐼 𝑧𝐼

}︂
. (14.76)

Show that the Lorentz transformation (14.69) transforms the 4-vector 𝑎𝑚𝛾𝛾𝑚 = {𝑎0𝛾𝛾0, 𝑎
1𝛾𝛾1, 𝑎

2𝛾𝛾2, 𝑎
3𝛾𝛾3} as

(note that the 4 × 4 rotation matrix is written to the left of the 4-vector in accordance with the physics
convention that rotations accumulate to the left):

𝑅 :

⎛⎜⎜⎝
𝑎0𝛾𝛾0

𝑎1𝛾𝛾1

𝑎2𝛾𝛾2

𝑎3𝛾𝛾3

⎞⎟⎟⎠→
⎛⎜⎜⎝

|𝑤|2 + |𝑥|2 + |𝑦|2 + |𝑧|2 2 (−𝑤𝑅𝑥𝐼 + 𝑤𝐼𝑥𝑅 + 𝑦𝑅𝑧𝐼 − 𝑦𝐼𝑧𝑅)
2 (−𝑤𝑅𝑥𝐼 + 𝑤𝐼𝑥𝑅 − 𝑦𝑅𝑧𝐼 + 𝑦𝐼𝑧𝑅) |𝑤|2 + |𝑥|2 − |𝑦|2 − |𝑧|2

2 (−𝑤𝑅𝑦𝐼 + 𝑤𝐼𝑦𝑅 − 𝑧𝑅𝑥𝐼 + 𝑧𝐼𝑥𝑅) 2 (𝑥𝑅𝑦𝑅 + 𝑥𝐼𝑦𝐼 + 𝑤𝑅𝑧𝑅 + 𝑤𝐼𝑧𝐼)

2 (−𝑤𝑅𝑧𝐼 + 𝑤𝐼𝑧𝑅 − 𝑥𝑅𝑦𝐼 + 𝑥𝐼𝑦𝑅) 2 (𝑧𝑅𝑥𝑅 + 𝑧𝐼𝑥𝐼 − 𝑤𝑅𝑦𝑅 − 𝑤𝐼𝑦𝐼)
2 (−𝑤𝑅𝑦𝐼 + 𝑤𝐼𝑦𝑅 + 𝑧𝑅𝑥𝐼 − 𝑧𝐼𝑥𝑅) 2 (−𝑤𝑅𝑧𝐼 + 𝑤𝐼𝑧𝑅 + 𝑥𝑅𝑦𝐼 − 𝑥𝐼𝑦𝑅)
2 (𝑥𝑅𝑦𝑅 + 𝑥𝐼𝑦𝐼 − 𝑤𝑅𝑧𝑅 − 𝑤𝐼𝑧𝐼) 2 (𝑧𝑅𝑥𝑅 + 𝑧𝐼𝑥𝐼 + 𝑤𝑅𝑦𝑅 + 𝑤𝐼𝑦𝐼)

|𝑤|2 − |𝑥|2 + |𝑦|2 − |𝑧|2 2 (𝑦𝑅𝑧𝑅 + 𝑦𝐼𝑧𝐼 − 𝑤𝑅𝑥𝑅 − 𝑤𝐼𝑥𝐼)
2 (𝑦𝑅𝑧𝑅 + 𝑦𝐼𝑧𝐼 + 𝑤𝑅𝑥𝑅 + 𝑤𝐼𝑥𝐼) |𝑤|2 − |𝑥|2 − |𝑦|2 + |𝑧|2

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑎0𝛾𝛾0

𝑎1𝛾𝛾1

𝑎2𝛾𝛾2

𝑎3𝛾𝛾3

⎞⎟⎟⎠ , (14.77)

where | | signifies the absolute value of a complex number, as in |𝑤|2 = 𝑤2
𝑅 +𝑤2

𝐼 . As a simple example, show
that the transformation (14.77) in the case of a Lorentz boost by velocity 𝑣 along the 1-axis, where the rotor
𝑅 takes the form (14.43), is

𝑅 :

⎛⎜⎜⎝
𝑎0𝛾𝛾0

𝑎1𝛾𝛾1

𝑎2𝛾𝛾2

𝑎3𝛾𝛾3

⎞⎟⎟⎠→
⎛⎜⎜⎝

𝛾 𝛾𝑣 0 0

𝛾𝑣 𝛾 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑎0𝛾𝛾0

𝑎1𝛾𝛾1

𝑎2𝛾𝛾2

𝑎3𝛾𝛾3

⎞⎟⎟⎠ , (14.78)

with 𝛾 the familiar Lorentz gamma factor

𝛾 = cosh 𝜃 =
1√

1− 𝑣2
, 𝛾𝑣 = sinh 𝜃 =

𝑣√
1− 𝑣2

. (14.79)

Exercise 14.10. Transform a 4-vector into a desired frame. Find Lorentz boosts that transform
respectively (1) a timelike 4-vector 𝑎𝑘 to point along the 0-axis, and (2) a null 4-vector 𝑎𝑘 to point along the
0-1 null axis. Find a spatial rotation that transforms (3) a 4-vector {𝑎0, 𝑎𝑎} so that its spatial part points
along the 1-axis, leaving the time component 𝑎0 unchanged.
Solution.
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1. Lorentz boost of a timelike 4-vector. Let 𝑎 ≡ ±
√︀
−𝑎𝑘𝑎𝑘 be the magnitude of the timelike 4-vector

𝑎𝑘, with sign chosen to be that of 𝑎0. The Lorentz boost

{𝑤𝑅, 𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼} =
1√︀

2𝑎(𝑎0 + 𝑎)
{𝑎0+𝑎, 𝑎1, 𝑎2, 𝑎3} (14.80)

transforms 𝑎𝑘 to {𝑎, 0, 0, 0}.
2. Lorentz boost of a null 4-vector. Choose 𝑎 to be a non-zero real number with sign equal to that of
𝑎0. The Lorentz boost

{𝑤𝑅, 𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼} =
1√︀

2𝑎(𝑎0 ± 𝑎1)
{𝑎0+𝑎, 𝑎1∓𝑎, 𝑎2, 𝑎3} (14.81)

transforms 𝑎𝑘 to {𝑎,±𝑎, 0, 0}.
3. Spatial rotation of a 4-vector. Let 𝑎 ≡

√
𝑎𝑎𝑎𝑎 be the spatial magnitude of the spatial 4-vector

𝑎𝑘 = {𝑎0, 𝑎𝑎}. The spatial rotation

{𝑤𝑅, 𝑥𝑅, 𝑦𝑅, 𝑧𝑅} =
1√︀

2𝑎(𝑎1 + 𝑎)
{𝑎1+𝑎, 0, 𝑎3,−𝑎2} (14.82)

transforms 𝑎𝑘 to {𝑎0, 𝑎, 0, 0}, leaving the time component 𝑎0 unchanged.

14.6 Killing vector fields of Minkowski space

The geometry of Minkowski space is unchanged under two continuous groups of symmetries, the 4-dimensional
group of translations, and the 6-dimensional group of Lorentz transformations. A symmetry transformation is
a transformation of the coordinates that, with a suitable choice of coordinates, leaves the metric unchanged.
Independent of the choice of coordinates, a symmetry transformation is a transformation that leaves the
proper spacetime distance between any two points unchanged.
Any infinitesimal symmetry transformation defines a Killing vector 𝜉𝜇, §7.32, which shifts the coordinates

by an infinitesimal amount,

𝑥𝜇 → 𝑥𝜇 + 𝜖𝜉𝜇 , (14.83)

with 𝜖 an infinitesimal real number. The infinitesimal transformation defines a flow field, called a Killing
vector field, in the spacetime. The basic Killing vector fields of Minkowski space have been met earlier in
this book. The Killing field associated with a translation is a set of parallel straight lines (timelike, null, or
spacelike) in Minkowski space. The Killing field associated with a spatial rotation is a set of nested spacelike
circles about a spatial axis, Figure 1.13. The Killing field associated with a pure Lorentz boost is a set of
nested timelike, null, and spacelike hyperbolae, Figure 1.14.
The most general Killing vector field of Minkowski space is a linear combination of translational and Lorentz

Killing vectors with constant coefficients. The Killing field associated with a pure Lorentz transformation
(no translational component) always has at least one fixed point, the origin, which is unchanged by the
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Lorentz transformation. The addition of a translational component corresponds to uniform translational
motion (possibly superluminal) of the origin of the Lorentz transformation. In some cases the composition
of a translation and a Lorentz transformation simplifies to a Lorentz transformation. For example, a Lorentz
transformation (either a spatial rotation or a Lorentz boost) in a given 2-dimensional plane, coupled with a
translation in the same plane, always has a fixed point, and is equivalent to another Lorentz transformation
in the same plane with origin at the fixed point.
The remainder of this section considers the Killing field of a pure Lorentz transformation (no translational

component). The Killing vector associated with a Lorentz transformation is its generator, which is a bivector,
or equivalently complex quaternion, 𝜃 ≡ 𝜃𝑅 + 𝐼𝜃𝐼 . The real part 𝜃𝑅 of the bivector is the generator of a
spatial rotation, while the imaginary part 𝜃𝐼 is the generator of a Lorentz boost. The decomposition of the
bivector into real and imaginary parts is analogous to the decomposition of the electromagnetic field into
magnetic and electric parts, equation (14.63). The complex modulus squared |𝜃|2 of the bivector,

|𝜃|2 ≡ 𝜃𝜃 = −𝜃2 = 𝜃2𝐼 − 𝜃2𝑅 − 2𝐼𝜃𝑅 · 𝜃𝐼 , (14.84)

is invariant under Lorentz transformations. By a suitable Lorentz transformation, the bivector 𝜃 may be
adjusted arbitrarily, subject only to the condition that its complex modulus is fixed, that is, 𝜃2𝐼 − 𝜃2𝑅 and
𝜃𝑅 · 𝜃𝐼 are constant.
If the bivector is non-null, |𝜃| ≠ 0, then by a suitable Lorentz transformation the real (magnetic) 𝜃𝑅

and imaginary (electric) 𝜃𝐼 parts can be taken to be parallel, directed along a common unimodular spatial
direction, 𝑛, say. So transformed, the bivector 𝜃 is the complex quaternion

𝜃 = (𝜃𝑅 + 𝐼𝜃𝐼) 𝚤 · 𝑛 . (14.85)

The bivector (14.85) generates a uniform proper spatial rotation about the 𝑛 axis, coupled with a uniform
proper acceleration along the 𝑛 axis. A Killing trajectory 𝑥(𝜆) ≡ 𝑥𝑚(𝜆)𝛾𝛾𝑚, parametrized by affine parameter
𝜆 along the trajectory, is obtained by Lorentz transforming an initial 4-vector 𝑥0 ≡ 𝑥(0) by a rotor 𝑅 ≡
𝑒−𝜆𝜃/2, equation (14.35),

𝑥 = 𝑅𝑥0𝑅 . (14.86)

Define Killing coordinates 𝛼 and 𝜑 by

𝛼 ≡ 𝜆𝜃𝐼 , 𝜑 ≡ 𝜆𝜃𝑅 . (14.87)

If the unimodular direction 𝑛 is taken to be the 𝑥-direction, then Minkowski coordinates 𝑥𝑚 ≡ {𝑡, 𝑥, 𝑦, 𝑧}
along a Killing trajectory (14.86) starting at 𝑥𝑚0 = {0, 𝑙, 𝑟, 0} are

{𝑡, 𝑥, 𝑦, 𝑧} = { 𝑙 sinh𝛼 , 𝑙 cosh𝛼 , 𝑟 cos𝜑 , 𝑟 sin𝜑 } . (14.88)

The Killing trajectory (14.88) is arranged, without loss of generality, such that it is initially at rest in the
parallel 𝑥-direction, and moving with some initial velocity 𝑣⊥ in the perpendicular 𝑧-direction,

𝑣⊥ =
𝑑𝑧

𝑑𝑡

⃒⃒⃒⃒
init

=
𝑟 𝑑𝜑

𝑙 𝑑𝛼
. (14.89)
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Figure 14.2 3D spacetime diagram of a sample of (blue) timelike Killing trajectories in Minkowski space. The two

outermost of the trajectories shown lie on the light cylinder, and are lightlike. Motion in the 𝑧 spatial direction is

suppressed. The trajectories accelerate with uniform proper linear acceleration in the 𝑥-direction, and with uniform

rotation in the 𝑦–𝑧 plane. The trajectories shown are for the case of a Killing vector with equal acceleration and

rotational components, |𝜃𝐼 | = |𝜃𝑅| (corresponding to the motion of charges in equal electric and magnetic fields,

|𝐸| = |𝐵|, Exercise 14.11). The crossing (purple) lines are spacelike lines of constant affine parameter 𝜆.

A trajectory is timelike provided that

|𝑣⊥| < 1 . (14.90)

Null trajectories, with |𝑣⊥| = 1, define the light cylinder. Killing trajectories outside the light cylinder are
spacelike. The metric with respect to Killing coordinates {𝛼, 𝜑} and comoving coordinates {𝑙, 𝑟} is

𝑑𝑠2 = − 𝑙2𝑑𝛼2 + 𝑑𝑙2 + 𝑑𝑟2 + 𝑟2𝑑𝜑2 . (14.91)

The proper time along a Killing trajectory 𝑑𝑙 = 𝑑𝑟 = 0 is

𝑑𝜏 =
√︀
𝑙2𝑑𝛼2 − 𝑟2𝑑𝜑2 = 𝑙|𝜃𝐼 |

√︁
1− 𝑣2⊥ 𝑑𝜆 = 𝑟|𝜃𝑅|

√︁
𝑣−2⊥ − 1 𝑑𝜆 . (14.92)

The condition that 𝜆 be an affine parameter, 𝑑𝜆 = 𝑑𝜏/𝑚, implies that the lengths 𝑙 and 𝑟 are related to 𝜃𝐼
and 𝜃𝑅 by

𝑙 =
𝑚𝛾⊥
|𝜃𝐼 |

, 𝑟 =
𝑚𝛾⊥|𝑣⊥|
|𝜃𝑅|

, (14.93)
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where 𝛾⊥ ≡ 1/
√︀
1− 𝑣2⊥ is the Lorentz gamma-factor corresponding to the velocity 𝑣⊥. The 4-momentum

𝑝 ≡ 𝑑𝑥/𝑑𝜆 and 4-acceleration 𝜅 ≡ 𝑑𝑝/𝑑𝜆 along the Killing trajectory are

𝑝 = 𝑅𝑝0𝑅 , 𝜅 = 𝑅𝜅0𝑅 , (14.94)

with initial values

𝑝0 =
𝑑𝑥

𝑑𝜆

⃒⃒⃒⃒
0

= − 1
2 [𝜃,𝑥0] , 𝜅0 =

𝑑𝑝

𝑑𝜆

⃒⃒⃒⃒
0

= − 1
2 [𝜃,𝑝0] . (14.95)

Figure 14.2 illustrates a sample of Killing trajectories for the case of equal boost and rotational components,
|𝜃𝐼 | = |𝜃𝑅|.
The above was for the case where the generating bivector 𝜃 of the symmetry transformation was non-null.

Alternatively, the generating bivector may be null, 𝜃𝜃 = 0. In this case the real and imaginary parts of the
bivector are orthogonal, 𝜃𝑅 · 𝜃𝐼 = 0, and their magnitudes are equal, |𝜃𝑅| = |𝜃𝐼 |, equation (14.84). A null
bivector is also nilpotent, 𝜃2 = 0, so the rotor 𝑅 obtained by exponentiating 𝜃 is linear in 𝜃,

𝑅 ≡ 𝑒−𝜆𝜃/2 = 1− 𝜆𝜃/2 . (14.96)

A Killing trajectory 𝑥 starting from an initial 4-vector 𝑥0 is

𝑥 ≡ 𝑅𝑥0𝑅 = 𝑥0 −
𝜆

2
[𝜃,𝑥0] , (14.97)

which is a straight line passing through 𝑥0. It can be checked that the line may be spacelike or null, but
never timelike. It is not clear whether this is a useful result.

Exercise 14.11. Motion of a charged particle in uniform parallel electric and magnetic fields.
Calculate the trajectory in Minkowski space of a particle of mass 𝑚 and charge 𝑞 in an electromagnetic field
where the electric and magnetic fields are uniform and parallel, 𝐸 = 𝐸𝑛 and 𝐵 = 𝐵𝑛 (Landau and Lifshitz,
1975, §22, Problem 1).
Solution. As long as the electromagnetic field 𝐹 = 𝐵 − 𝐼𝐸, equation (14.63), is non-null, |𝐹 | ≠ 0, the
electric and magnetic fields can be made parallel by a suitable Lorentz transformation. The electric and
magnetic fields are unchanged by a complex (with respect to 𝐼) Lorentz transformation along the common
direction 𝑛, that is, by a combination of a spatial rotation about 𝑛 and a Lorentz boost along 𝑛. Thus the
symmetry of Minkowski space under Lorentz transformations along 𝑛 is preserved by the introduction of
uniform electric and magnetic fields along 𝑛. The trajectories of charged particles are Killing trajectories of
Lorentz transformations along the direction 𝑛. The equation of motion (4.44),

𝑑𝑝

𝑑𝜆
= 1

2𝑞[𝐹 ,𝑝] , (14.98)

implies that the Killing bivector is 𝜃 = −𝑞𝐹 , or equivalently

𝜃𝐼 = 𝑞𝐸 , 𝜃𝑅 = −𝑞𝐵 . (14.99)
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14.7 Dirac matrices

The multiplication rules (14.1) for the basis vectors 𝛾𝛾𝑚 of the spacetime algebra are identical to the
rules (14.5) governing the Clifford algebra of the Dirac 𝛾-matrices used in the Dirac theory of relativistic
spin- 12 particles.
The Dirac 𝛾-matrices are conventionally represented by 4 × 4 complex (with respect to the quantum-

mechanical imaginary 𝑖) unitary matrices. The matrices act on 4-component complex (with respect to 𝑖)
Dirac spinors, which are spin- 12 particles, §14.8. Four complex components are precisely what is needed to
represent a complex quaternion, or Dirac spinor, §14.9.
An essential feature of a successful theory of relativistic spinors is the existence of an inner product

of spinors, necessary to allow a scalar probability to be defined. The systematic construction of a scalar
product of spinors is deferred to Chapter 39, §39.5. Meanwhile, in the traditional Dirac approach, a spinor
𝜓 is represented as a column vector with 4 complex (with respect to 𝑖) components, while its Hermitian
conjugate 𝜓† is a row vector with 4 complex components that are the complex conjugates (with respect to 𝑖)
of the components of 𝜓. The product 𝜓†𝜓 is a real number, but is not satisfactory as a scalar product since it
is not Lorentz invariant. Rather, 𝜓†𝜓 proves to be the time component 𝑛0 of a 4-vector number current 𝑛𝑘,
which the Dirac equation then shows to be covariantly conserved, 𝐷𝑘𝑛

𝑘 = 0, equation (41.20). The number
current 𝑛𝑘 is interpreted as a conserved probability current. The requirement that the Dirac number current
density 𝑛0 be positive imposes the condition, equation (39.101), that taking the Hermitian conjugate of any
of the basis vectors 𝛾𝛾𝑚 be equivalent to raising its index,

𝛾𝛾†𝑚 = 𝛾𝛾𝑚 . (14.100)

Condition (14.100) is the same as requiring that the basis vectors be unitary matrices, 𝛾𝛾−1𝑚 = 𝛾𝛾†𝑚.
The high-energy physics community commonly adopts the +−−− metric signature, which is opposite to

the convention adopted here. With the high-energy +−−− signature, the traditional Dirac representation
of unitary 𝛾-matrices satisfying the scalar product condition (14.5) is

𝛾𝛾0 =

(︂
1 0

0 −1

)︂
, 𝛾𝛾𝑎 =

(︂
0 −𝜎𝑎
𝜎𝑎 0

)︂
, (14.101)

where 1 denotes the unit 2× 2 matrix, and 𝜎𝑎 denote the three 2× 2 Pauli matrices (13.112). The choice of
𝛾𝛾0 as a diagonal matrix is motivated by Dirac’s discovery that eigenvectors of the time basis vector 𝛾𝛾0 with
eigenvalues of opposite sign define particles and antiparticles in their rest frames (see §14.8).
With the −+++ metric signature adopted here, the Dirac representation of the 𝛾-matrices can be

taken to be

𝛾𝛾0 = 𝑖

(︂
1 0

0 −1

)︂
, 𝛾𝛾𝑎 =

(︂
0 𝜎𝑎
𝜎𝑎 0

)︂
. (14.102)

The representation (14.102) has the advantage that the resulting chiral basis vectors are all real, equa-
tions (39.15). In the representation (14.102), the bivectors 𝜎𝑎 and 𝐼𝜎𝑎 and the pseudoscalar 𝐼 of the space-
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time algebra are

𝛾𝛾0𝛾𝛾𝑎 = 𝜎𝑎 = 𝑖

(︂
0 𝜎𝑎
−𝜎𝑎 0

)︂
, 1

2𝜀𝑎𝑏𝑐𝛾𝛾𝑏𝛾𝛾𝑐 = 𝐼𝜎𝑎 = 𝑖

(︂
𝜎𝑎 0

0 𝜎𝑎

)︂
, 𝐼 =

(︂
0 −1
1 0

)︂
. (14.103)

The Hermitian conjugates of the bivector and pseudoscalar basis elements are

𝜎†𝑎 = 𝜎𝑎 , (𝐼𝜎𝑎)
† = −𝐼𝜎𝑎 , 𝐼† = −𝐼 . (14.104)

The conventional chiral matrix 𝛾5 of Dirac theory is defined to be −𝑖 times the pseudoscalar,

𝛾5 ≡ −𝑖𝛾𝛾0𝛾𝛾1𝛾𝛾2𝛾𝛾3 = −𝑖𝐼 =

(︂
0 𝑖

−𝑖 0

)︂
. (14.105)

The chiral matrix 𝛾5 is Hermitian (𝛾†5 = 𝛾5) and unitary (𝛾−15 = 𝛾†5), so its square is the unit matrix,

𝛾†5 = 𝛾5 , 𝛾25 = 1 . (14.106)

14.8 Dirac spinors

A Dirac spinor is a spin- 12 particle in Dirac’s theory of relativistic spin- 12 particles. A Dirac spinor 𝜓 is a
complex (with respect to the quantum-mechanical imaginary 𝑖) linear combination of 4 basis spinors 𝜖𝑎 with
indices 𝑎 running over {⇑↑,⇑↓,⇓↑,⇓↓}, a total of 8 degrees of freedom in all,

𝜓 = 𝜓𝑎𝜖𝑎 . (14.107)

The basis spinors 𝜖𝑎 are basis elements of a super spacetime algebra, Chapter 39. In the Dirac representa-
tion (14.102), the four basis spinors are the column spinors

𝜖⇑↑ =

⎛⎜⎜⎝
1

0

0

0

⎞⎟⎟⎠ , 𝜖⇑↓ =

⎛⎜⎜⎝
0

1

0

0

⎞⎟⎟⎠ , 𝜖⇓↑ =

⎛⎜⎜⎝
0

0

1

0

⎞⎟⎟⎠ , 𝜖⇓↓ =

⎛⎜⎜⎝
0

0

0

1

⎞⎟⎟⎠ . (14.108)

The Dirac 𝛾-matrices operate by pre-multiplication on Dirac spinors 𝜓, yielding other Dirac spinors. The
basis spinors are eigenvectors of the time basis vector 𝛾𝛾0 and of the bivector 𝐼𝜎3, with 𝜖⇑ and 𝜖⇓ denoting
eigenvectors of 𝛾𝛾0, and 𝜖↑ and 𝜖↓ eigenvectors of 𝐼𝜎3,

𝛾𝛾0 𝜖⇑ = 𝑖 𝜖⇑ , 𝛾𝛾0 𝜖⇓ = −𝑖 𝜖⇓ , 𝐼𝜎3 𝜖↑ = 𝑖 𝜖↑ , 𝐼𝜎3 𝜖↓ = −𝑖 𝜖↓ . (14.109)

The bivector 𝐼𝜎3 is the generator of a spatial rotation about the 3-axis (𝑧-axis), equation (14.32). Simulta-
neous eigenvectors of 𝛾𝛾0 and 𝐼𝜎3 exist because 𝛾𝛾0 and 𝐼𝜎3 commute.
A pure spin-up Dirac spinor 𝜖↑ can be rotated into a pure spin-down spinor 𝜖↓, or vice versa, by a spatial

rotation about the 1-axis or 2-axis. By contrast, a pure time-up spinor 𝜖⇑ cannot be rotated into a pure
time-down spinor 𝜖⇓, or vice versa, by any Lorentz transformation. Consider for example trying to rotate
the pure time-up spin-up 𝜖⇑↑ spinor into any combination of pure time-down 𝜖⇓ spinors. According to the
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expression (14.122), the Dirac spinor 𝜓 obtained by Lorentz transforming the 𝜖⇑↑ spinor is pure 𝜖⇓ only if the
corresponding complex quaternion 𝑞 is pure imaginary (with respect to 𝐼). But a pure imaginary quaternion
has negative squared modulus 𝑞𝑞, so cannot be equivalent to any unimodular rotor.
Thus the pure time-up and pure time-down spinors 𝜖⇑ and 𝜖⇓ are distinct spinors that cannot be trans-

formed into each other by any Lorentz transformation. The two spinors represent distinct species, particles
and antiparticles (see §14.10).
Although a pure time-up spinor cannot be transformed into a pure time-down spinor or vice versa by any

Lorentz transformation, the time-up and time-down spinors 𝜖⇑ and 𝜖⇓ do mix under Lorentz transformations.
The manner in which Dirac spinors transform is described in §14.9.
The choice of time-axis 𝛾𝛾0 and spin-axis 𝛾𝛾3 with respect to which the eigenvectors are defined can of course

be adjusted arbitrarily by a Lorentz boost and a spatial rotation. The eigenvectors of a particular time-axis
𝛾𝛾0 correspond to either particles or antiparticles that are at rest in that frame. The eigenvectors associated
with a particular spin-axis 𝛾𝛾3 correspond to particles or antiparticles that are either pure spin-up or pure
spin-down in that frame.

14.9 Dirac spinors as complex quaternions

In §13.15 it was found that a spin- 12 object in 3D space, a Pauli spinor, is isomorphic to a real quaternion, or
equivalently scaled 3D rotor, equation (13.122). In the relativistic theory, the corresponding spin- 12 object,
a Dirac spinor 𝜓, is isomorphic (14.113) to a complex quaternion. The 4 complex degrees of freedom of the
Dirac spinor 𝜓 are equivalent to the 8 degrees of freedom of a complex quaternion. A physically interesting
complication arises in the relativistic case because a non-trivial Dirac spinor can be null, isomorphic to a
null complex quaternion, whereas any non-trivial Pauli spinor is necessarily non-null. The cases of non-null
(massive) and null (massless) Dirac spinors are considered respectively in §14.10 and §14.11. If the Dirac
spinor is non-null, then it is equivalent to a scaled rotor, equation (14.140), but if the Dirac spinor is null,
then it is not simply a scaled rotor. The present section establishes an isomorphism (14.113) between Dirac
spinors and complex quaternions that is valid in general, regardless of whether the Dirac spinor is null or
not.
If 𝑎 is a spacetime multivector, equivalent to an element of the Clifford algebra of Dirac 𝛾-matrices, then

under rotation by Lorentz rotor 𝑅, the multivector 𝑎 operating on the Dirac spinor 𝜓 transforms as

𝑅 : 𝑎𝜓 → (𝑅𝑎𝑅)(𝑅𝜓) = 𝑅𝑎𝜓 . (14.110)

This shows that a Dirac spinor 𝜓 Lorentz transforms, by construction, as

𝑅 : 𝜓 → 𝑅𝜓 . (14.111)

The rule (14.111) is precisely the transformation rule (13.75) for spacetime rotors under Lorentz transfor-
mations: under a rotation by rotor 𝑅, a rotor 𝑆 transforms as 𝑆 → 𝑅𝑆. More generally, the transformation
law (14.111) holds for any linear combination of Dirac spinors 𝜓. The isomorphism (14.34) between spacetime
rotors and unimodular quaternions, coupled with linearity, shows that the vector space of Dirac spinors is
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isomorphic to the vector space of complex quaternions. Specifically, any Dirac spinor 𝜓 can be expressed
uniquely in the form of a 4× 4 matrix 𝑞, the Dirac representation of a complex quaternion 𝑞, acting on the
time-up spin-up column vector 𝜖⇑↑ (the precise translation between Dirac spinors and complex quaternions
is left as Exercises 14.12 and 14.13):

𝜓 = 𝑞 𝜖⇑↑ . (14.112)

In this section (including the Exercises) the 4× 4 matrix 𝑞 is written in boldface to distinguish it from the
quaternion 𝑞 that it represents; but the distinction is not fundamental. The mapping (14.112) establishes an
isomorphism between the vector spaces of Dirac spinors and quaternions

𝜓 ↔ 𝑞 . (14.113)

The isomorphism means that there is a one-to-one correspondence between Dirac spinors 𝜓 and complex
quaternions 𝑞, and that they transform in the same way under Lorentz transformations.
The isomorphism between the vector spaces of Dirac spinors and complex quaternions does not extend to

multiplication; that is, the product of two Dirac spinors 𝜓1 and 𝜓2 equivalent to the complex 4× 4 matrices
𝑞1 and 𝑞2 does not equal the Dirac spinor equivalent to the product 𝑞1𝑞2. The problem is that the Dirac
representation of a Dirac spinor 𝜓 is a column vector, and two column vectors cannot be multiplied. The
question of how to multiply Dirac spinors is resumed in Chapter 39 on the super spacetime algebra.

14.9.1 Reverse Dirac spinor

An essential feature of any viable theory of spinors is the existence of a scalar product of spinors. The scalar
product must be a complex (with respect to the quantum mechanical imaginary 𝑖) number that is invariant
under Lorentz transformations. Now the product 𝑞𝑞 of the reverse of a quaternion with itself is a Lorentz-
invariant complex (with respect to 𝐼) number. This suggests defining a row Dirac spinor 𝜓 reverse to the
column Dirac spinor 𝜓 defined by equation (14.112) by

𝜓 ≡ 𝜖⊤⇑↑ 𝑞 , (14.114)

where 𝑞 is the matrix representation of the reverse 𝑞 of the complex quaternion 𝑞, and 𝜖⊤𝑎 denotes the basis of
row Dirac spinors obtained by transposing the basis of column Dirac spinors defined by equations (14.108),

𝜖⊤⇑↑ =
(︀
1 0 0 0

)︀
, 𝜖⊤⇑↓ =

(︀
0 1 0 0

)︀
, 𝜖⊤⇓↑ =

(︀
0 0 1 0

)︀
, 𝜖⊤⇓↓ =

(︀
0 0 0 1

)︀
.

(14.115)
The reverse Dirac spinor 𝜓 is also called the Dirac adjoint spinor. It is related to the Hermitian conjugate
Dirac spinor 𝜓† by equation (14.130), and is the same as the Dirac row conjugate spinor 𝜓 · discussed in
Chapter 39, equation (39.99).
As found in equation (14.125a), 𝜓𝜓 is a Lorentz-invariant real number. More generally, the product 𝜒𝜓

of a row spinor 𝜒 with a column spinor 𝜓 is a Lorentz-invariant complex (with respect to 𝑖) number, and
therefore provides a viable definition of a scalar product of Dirac spinors. The problem of defining a scalar
product of Dirac spinors is resumed in §39.5.1.
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Exercise 14.12. Translate a Dirac spinor into a complex quaternion. Given any Dirac spinor in the
Dirac representation (14.102),

𝜓 = 𝜓𝑎𝜖𝑎 =

⎛⎜⎜⎝
𝜓⇑↑

𝜓⇑↓

𝜓⇓↑

𝜓⇓↓

⎞⎟⎟⎠ , (14.116)

show that the corresponding complex quaternion 𝑞, and the equivalent 4×4 matrix 𝑞 such that 𝜓 = 𝑞 𝜖⇑↑, are
(the complex conjugates 𝜓𝑎* of the components 𝜓𝑎 of the spinor are with respect to the quantum-mechanical
imaginary 𝑖)

𝑞 =

{︂
Re𝜓⇑↑ Im𝜓⇑↓ −Re𝜓⇑↓ Im𝜓⇑↑

Re𝜓⇓↑ Im𝜓⇓↓ −Re𝜓⇓↓ Im𝜓⇓↑

}︂
↔ 𝑞 =

⎛⎜⎜⎝
𝜓⇑↑ −𝜓⇑↓* −𝜓⇓↑ 𝜓⇓↓*

𝜓⇑↓ 𝜓⇑↑* −𝜓⇓↓ −𝜓⇓↑*
𝜓⇓↑ −𝜓⇓↓* 𝜓⇑↑ −𝜓⇑↓*
𝜓⇓↓ 𝜓⇓↑* 𝜓⇑↓ 𝜓⇑↑*

⎞⎟⎟⎠ . (14.117)

Show that the reverse complex quaternion 𝑞 and the equivalent 4 × 4 matrix 𝑞 in the Dirac representa-
tion (14.102), are

𝑞 =

{︂
Re𝜓⇑↑ − Im𝜓⇑↓ Re𝜓⇑↓ − Im𝜓⇑↑

Re𝜓⇓↑ − Im𝜓⇓↓ Re𝜓⇓↓ − Im𝜓⇓↑

}︂
↔ 𝑞 =

⎛⎜⎜⎝
𝜓⇑↑* 𝜓⇑↓* −𝜓⇓↑* −𝜓⇓↓*
−𝜓⇑↓ 𝜓⇑↑ 𝜓⇓↓ −𝜓⇓↑
𝜓⇓↑* 𝜓⇓↓* 𝜓⇑↑* 𝜓⇑↓*

−𝜓⇓↓ 𝜓⇓↑ −𝜓⇑↓ 𝜓⇑↑

⎞⎟⎟⎠ . (14.118)

Conclude that the reverse spinor 𝜓 defined by equation (14.114) is

𝜓 ≡ 𝜖⊤⇑↑ 𝑞 =
(︀
𝜓⇑↑* 𝜓⇑↓* −𝜓⇓↑* −𝜓⇓↓*

)︀
. (14.119)

Exercise 14.13. Translate a complex quaternion into a Dirac spinor. Show that the complex quater-
nion 𝑞 ≡ 𝑤 + 𝚤𝑥+ 𝚥𝑦 + 𝑘𝑧 is equivalent in the Dirac representation (14.102) to the 4× 4 matrix 𝑞

𝑞 =

{︂
𝑤𝑅 𝑥𝑅 𝑦𝑅 𝑧𝑅
𝑤𝐼 𝑥𝐼 𝑦𝐼 𝑧𝐼

}︂
↔ 𝑞 =

⎛⎜⎜⎝
𝑤𝑅 + 𝑖𝑧𝑅 𝑖𝑥𝑅 + 𝑦𝑅 −𝑤𝐼 − 𝑖𝑧𝐼 − 𝑖𝑥𝐼 − 𝑦𝐼
𝑖𝑥𝑅 − 𝑦𝑅 𝑤𝑅 − 𝑖𝑧𝑅 − 𝑖𝑥𝐼 + 𝑦𝐼 −𝑤𝐼 + 𝑖𝑧𝐼
𝑤𝐼 + 𝑖𝑧𝐼 𝑖𝑥𝐼 + 𝑦𝐼 𝑤𝑅 + 𝑖𝑧𝑅 𝑖𝑥𝑅 + 𝑦𝑅
𝑖𝑥𝐼 − 𝑦𝐼 𝑤𝐼 − 𝑖𝑧𝐼 𝑖𝑥𝑅 − 𝑦𝑅 𝑤𝑅 − 𝑖𝑧𝑅

⎞⎟⎟⎠ . (14.120)

Show that the reverse quaternion 𝑞, the complex conjugate (with respect to 𝐼) quaternion 𝑞⋆, and the reverse
complex conjugate (with respect to 𝐼) quaternion 𝑞⋆ are respectively equivalent to the 4× 4 matrices

𝑞 ↔ 𝑞 = −𝛾𝛾0𝑞
†𝛾𝛾0 , (14.121a)

𝑞⋆ ↔ 𝑞† = −𝛾𝛾0𝑞𝛾𝛾0 , (14.121b)

𝑞⋆ ↔ 𝑞† = −𝛾𝛾0𝑞𝛾𝛾0 , (14.121c)
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where 𝛾𝛾0 is the Dirac 𝛾-matrix given by equation (14.102). Conclude that the Dirac spinor 𝜓 ≡ 𝑞 𝜖⇑↑
corresponding to the complex quaternion 𝑞 is

𝜓 ≡ 𝑞 𝜖⇑↑ =

⎛⎜⎜⎝
𝑤𝑅 + 𝑖𝑧𝑅
𝑖𝑥𝑅 − 𝑦𝑅
𝑤𝐼 + 𝑖𝑧𝐼
𝑖𝑥𝐼 − 𝑦𝐼

⎞⎟⎟⎠ , (14.122)

that the reverse spinor 𝜓, equation (14.114), is

𝜓 ≡ 𝜖⊤⇑↑ 𝑞 =
(︀
𝑤𝑅 − 𝑖𝑧𝑅 − 𝑖𝑥𝑅 − 𝑦𝑅 −𝑤𝐼 + 𝑖𝑧𝐼 𝑖𝑥𝐼 + 𝑦𝐼

)︀
, (14.123)

and that the Hermitian conjugate spinor 𝜓† is

𝜓† ≡ 𝜖⊤⇑↑ 𝑞
† =

(︀
𝑤𝑅 − 𝑖𝑧𝑅 −𝑖𝑥𝑅 − 𝑦𝑅 𝑤𝐼 − 𝑖𝑧𝐼 − 𝑖𝑥𝐼 − 𝑦𝐼

)︀
. (14.124)

Hence conclude that 𝜓𝜓 and 𝜓†𝜓 are

𝜓𝜓 = Re(𝑞𝑞) = 𝑞𝑅𝑞𝑅 − 𝑞𝐼𝑞𝐼 , (14.125a)

𝜓†𝜓 = 𝑞𝑅𝑞𝑅 + 𝑞𝐼𝑞𝐼 , (14.125b)

with

𝑞𝑅𝑞𝑅 = 𝑤2
𝑅 + 𝑥2𝑅 + 𝑦2𝑅 + 𝑧2𝑅 , (14.126a)

𝑞𝐼𝑞𝐼 = 𝑤2
𝐼 + 𝑥2𝐼 + 𝑦2𝐼 + 𝑧2𝐼 . (14.126b)

Exercise 14.14. Pseudoscalar times a Dirac spinor. In §14.10 it will be found that multiplying a Dirac
spinor 𝜓 by the pseudoscalar 𝐼 converts it to an antispinor. In Chapter 39, equation (39.134), it will be seen
that 𝐼𝜓 is the 𝑃𝑇 conjugate of 𝐼, the spinor obtained by reversing all 4 axes of space and time. Show that
the product 𝐼𝑞 of the pseudoscalar 𝐼 with the complex quaternion 𝑞 ≡ 𝑤 + 𝚤𝑥+ 𝚥𝑦 + 𝑘𝑧 is equivalent in the
Dirac representation (14.102) to the 4× 4 matrix 𝐼𝑞

𝐼𝑞 =

{︂
−𝑤𝐼 −𝑥𝐼 −𝑦𝐼 −𝑧𝐼
𝑤𝑅 𝑥𝑅 𝑦𝑅 𝑧𝑅

}︂
↔ 𝐼𝑞 =

⎛⎜⎜⎝
−𝑤𝐼 − 𝑖𝑧𝐼 − 𝑖𝑥𝐼 − 𝑦𝐼 −𝑤𝑅 − 𝑖𝑧𝑅 − 𝑖𝑥𝑅 − 𝑦𝑅
− 𝑖𝑥𝐼 + 𝑦𝐼 −𝑤𝐼 + 𝑖𝑧𝐼 − 𝑖𝑥𝑅 + 𝑦𝑅 −𝑤𝑅 + 𝑖𝑧𝑅
𝑤𝑅 + 𝑖𝑧𝑅 𝑖𝑥𝑅 + 𝑦𝑅 −𝑤𝐼 − 𝑖𝑧𝐼 − 𝑖𝑥𝐼 − 𝑦𝐼
𝑖𝑥𝑅 − 𝑦𝑅 𝑤𝑅 − 𝑖𝑧𝑅 − 𝑖𝑥𝐼 + 𝑦𝐼 −𝑤𝐼 + 𝑖𝑧𝐼

⎞⎟⎟⎠ .

(14.127)
Conclude that the Dirac antispinor 𝐼𝜓 ≡ 𝐼𝑞 𝜖⇑↑ corresponding to the complex quaternion 𝐼𝑞 is

𝐼𝜓 = 𝐼𝑞 𝜖⇑↑ =

⎛⎜⎜⎝
−𝑤𝐼 − 𝑖𝑧𝐼
− 𝑖𝑥𝐼 + 𝑦𝐼
𝑤𝑅 + 𝑖𝑧𝑅
𝑖𝑥𝑅 − 𝑦𝑅

⎞⎟⎟⎠ , (14.128)

Conclude that the pseudomagnitude 𝜓𝐼𝜓 is

𝜓𝐼𝜓 = − Im(𝑞𝑞) = −2(𝑤𝑅𝑤𝐼 + 𝑥𝑅𝑥𝐼 + 𝑦𝑅𝑦𝐼 + 𝑧𝑅𝑧𝐼) . (14.129)
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Exercise 14.15. Relation between 𝜓 and 𝜓†. Show that 𝜓 and 𝜓† are related by

𝜓 = −𝑖𝜓†𝛾𝛾0 , 𝜓† = −𝑖𝜓𝛾𝛾0 , (14.130)

by showing from equations (14.123) and (14.124) that

𝜓† = −𝑖𝜖⊤⇑↑ 𝑞𝛾𝛾0 . (14.131)

The same result follows from equation (14.121b). The Hermitian conjugate matrix is 𝑞† = −𝛾𝛾0𝑞𝛾𝛾0, and
𝜖⊤⇑↑ 𝛾𝛾0 = 𝑖𝜖⊤⇑↑, so 𝜓

† ≡ 𝜖⊤⇑↑ 𝑞
† = −𝑖𝜖⊤⇑↑ 𝑞𝛾𝛾0.

Exercise 14.16. Translate a Dirac spinor into a pair of Pauli spinors. Show that in terms of the
real and imaginary (with respect to 𝐼) parts of the complex quaternion 𝑞, the equivalent 4× 4 matrix 𝑞 is

𝑞 = 𝑞𝑅 + 𝐼𝑞𝐼 ↔ 𝑞 =

(︂
𝑞𝑅 −𝑞𝐼
𝑞𝐼 𝑞𝑅

)︂
, (14.132)

where 𝑞𝑅 and 𝑞𝐼 are the complex 2×2 special unitary matrices equivalent to the real quaternions 𝑞𝑅 and 𝑞𝐼 ,
equation (13.130). Show that the reverse quaternion 𝑞, the complex conjugate (with respect to 𝐼) quaternion
𝑞⋆, and the reverse complex conjugate (with respect to 𝐼) quaternion 𝑞⋆ are respectively

𝑞 ↔ 𝑞 =

(︃
𝑞†𝑅 −𝑞†𝐼
𝑞†𝐼 𝑞†𝑅

)︃
, (14.133a)

𝑞⋆ ↔ 𝑞† =

(︂
𝑞𝑅 𝑞𝐼
−𝑞𝐼 𝑞𝑅

)︂
, (14.133b)

𝑞⋆ ↔ 𝑞† =

(︃
𝑞†𝑅 𝑞†𝐼
−𝑞†𝐼 𝑞†𝑅

)︃
. (14.133c)

Conclude that the Dirac spinor 𝜓 ≡ 𝑞 𝜖⇑↑ corresponding to the complex quaternion 𝑞 is

𝜓 ≡ 𝑞 𝜖⇑↑ =

(︂
𝜓𝑅
𝜓𝐼

)︂
, (14.134)

where 𝜓𝑅 and 𝜓𝐼 are the Pauli spinors corresponding to the real quaternions 𝑞𝑅 and 𝑞𝐼 , equation (13.131).
Conclude further that the antispinor 𝐼𝜓 is

𝐼𝜓 ≡ 𝐼𝑞 𝜖⇑↑ =
(︂
−𝜓𝐼
𝜓𝑅

)︂
, (14.135)

that the reverse spinor 𝜓, equation (14.114), is

𝜓 ≡ 𝜖⊤⇑↑ 𝑞 =
(︁
𝜓†𝑅 −𝜓†𝐼

)︁
, (14.136)

and that the Hermitian conjugate spinor 𝜓† is

𝜓† ≡ 𝜖⊤⇑↑ 𝑞
† =

(︁
𝜓†𝑅 𝜓†𝐼

)︁
. (14.137)
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Hence conclude that 𝜓𝜓, 𝜓𝐼𝜓, and 𝜓†𝜓 are given by

𝜓𝜓 = 𝜓†𝑅𝜓𝑅 − 𝜓
†
𝐼𝜓𝐼 , (14.138a)

𝜓𝐼𝜓 = −(𝜓†𝑅𝜓𝐼 + 𝜓†𝐼𝜓𝑅) , (14.138b)

𝜓†𝜓 = 𝜓†𝑅𝜓𝑅 + 𝜓†𝐼𝜓𝐼 . (14.138c)

Exercise 14.17. Is the group of Lorentz rotors isomorphic to SU(4)? Previously, Exercise 13.10,
it was found that the group Spin(3) of spatial rotors in 3 dimensions is isomorphic to SU(2). Is the group
Spin(3, 1) of Lorentz rotors isomorphic to the group SU(4) of complex 4 × 4 unitary matrices with unit
determinant?
Solution. No. The Dirac representation of the group Spin(3, 1) of Lorentz rotors shares with SU(4) the
property that its matrices are complex 4× 4 matrices with unit determinant. From the equivalence (14.120),
the determinant of the 4× 4 complex matrix 𝑞 equivalent to a complex quaternion 𝑞 is

det 𝑞 = (𝑞𝑞)⋆(𝑞𝑞) . (14.139)

Since a Lorentz rotor is unimodular, with 𝑞𝑞 = 1, its Dirac representation has unit determinant. However,
the Dirac representation of a Lorentz rotor is not unitary (its inverse is not its Hermitian conjugate), despite
the fact that all the generators of the group, namely the 6 bivectors 𝜎𝑎 and 𝐼𝜎𝑎, are unitary. Rather, the
inverse of a rotor 𝑅 is its reverse 𝑅, related to its Hermitian conjugate by equation (14.121a). The condition
for the matrices of a group to be unitary is that the generators be skew-Hermitian (they equal minus their
Hermitian conjugates). The 3 spatial generators 𝐼𝜎𝑎 are indeed skew-Hermitian, but the 3 boost generators
𝜎𝑎 are Hermitian.

14.10 Non-null Dirac spinor

A non-null, or massive, Dirac spinor 𝜓 is one that is isomorphic (14.113) to a non-null complex quaternion 𝑞.
A non-null complex quaternion can be factored as a non-zero complex (with respect to 𝐼) scalar 𝜆 = 𝜆𝑅+𝐼𝜆𝐼
times a unimodular complex (with respect to 𝐼) quaternion 𝑅, a Lorentz rotor. Thus a non-null Dirac spinor
can be expressed as, equation (14.112) (the boldface for 𝑞, adopted in §14.9 to distinguish a quaternion 𝑞
from its matrix representation 𝑞, is dropped henceforth, since the distinction is not fundamental),

𝜓 = 𝑞 𝜖⇑↑ , 𝑞 = 𝜆𝑅 . (14.140)

The complex scalar 𝜆 can be taken without loss of generality to lie in the right hemisphere of the complex
plane (positive real part), since a minus sign can be absorbed into a spatial rotation by 2𝜋 of the rotor
𝑅. There is no further ambiguity in the decomposition (14.140) into scalar and rotor, because the squared
modulus 𝜆𝑅𝜆𝑅 = 𝜆2 of the scaled rotor 𝜆𝑅 is the same for any decomposition (do not confuse reversion
with complex conjugation; the reverse of a scalar is itself, 𝜆 = 𝜆; the product 𝜆2 is a complex (with respect
to 𝐼) number).
The fact that a non-null Dirac spinor 𝜓 encodes a Lorentz rotor shows that a non-null Dirac spinor in
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some sense “knows” about the Lorentz structure of spacetime. It is profound that the Lorentz structure of
spacetime is built in to a non-null Dirac particle.
As discussed in §14.8, a pure time-up eigenvector 𝜖⇑ represents a particle in its own rest frame, while a pure

time-down eigenvector 𝜖⇓ represents an antiparticle in its own rest frame. The time-up spin-up eigenvector
𝜖⇑↑ is by definition (14.140) equivalent to the unit scaled rotor, 𝜆𝑅 = 1, so in this case the scalar 𝜆 is
pure real. Lorentz transforming the eigenvector multiplies it by a rotor, but leaves the scalar 𝜆 unchanged,
therefore pure real. Conversely, if the time-up spin-up eigenvector 𝜖⇑↑ is multiplied by the imaginary 𝐼, then
according to the expression (14.122) the resulting spinor can be Lorentz transformed into a pure 𝜖⇓ spinor,
corresponding to a pure antiparticle. Thus one may conclude that the real and imaginary parts (with respect
to 𝐼) of the complex scalar 𝜆 = 𝜆𝑅 + 𝐼𝜆𝐼 correspond respectively to particles and antiparticles.
The Lorentz-invariant decomposition of a non-null Dirac spinor 𝜓 into its particle 𝜓⇑ and antiparticle 𝜓⇓

parts is accomplished by

𝜓 = 𝜓⇑ + 𝐼𝜓⇓ , 𝜓⇑ ≡
Re𝜆

𝜆
𝜓 , 𝜓⇓ ≡

Im𝜆

𝜆
𝜓 , 𝜆 =

√︁
𝜓𝜓 − 𝐼(𝜓𝐼𝜓) . (14.141)

The decomposition (14.141) is not the same as the decomposition (14.134) of the Dirac spinor into a pair of
Pauli spinors. The decomposition (14.141) into particle and antiparticle parts is Lorentz-invariant, whereas
the Pauli spinors of the decomposition (14.134) mix under Lorentz boosts. The Lorentz-invariant magnitude
𝜓𝜓 of the Dirac spinor, equation (14.125a), is the difference between the probabilities 𝜆2𝑅 of particles and 𝜆2𝐼
of antiparticles,

𝜓𝜓 = 𝜓⇑𝜓⇑ − 𝜓⇓𝜓⇓ , 𝜓⇑𝜓⇑ = 𝜆2𝑅 , 𝜓⇓𝜓⇓ = 𝜆2𝐼 . (14.142)

Thus 𝜓𝜓 is positive for particles, negative for antiparticles. The Lorentz-invariant pseudomagnitude 𝜓𝐼𝜓,
equation (14.129), is minus twice the product 𝜆𝑅𝜆𝐼 of the amplitudes of particles and antiparticles,

𝜓𝐼𝜓 = −𝜓⇑𝜓⇓ − 𝜓⇓𝜓⇑ , 𝜓⇑𝜓⇓ = 𝜓⇓𝜓⇑ = 𝜆𝑅𝜆𝐼 . (14.143)

The sum of the probabilities 𝜆2𝑅 of particles and 𝜆2𝐼 of antiparticles equals the number density in the rest
frame, which can be written in the manifestly Lorentz-invariant form

𝜓⇑𝜓⇑ + 𝜓⇓𝜓⇓ = 𝜆2𝑅 + 𝜆2𝐼 =

√︁
(𝜓𝛾𝛾𝑚𝜓)(𝜓𝛾𝛾𝑚𝜓) . (14.144)

Since 𝜆𝑅 and 𝜆𝐼 are invariant under Lorentz transformations, all three terms 𝜓⇑𝜓⇑, 𝜓⇓𝜓⇓, and 𝜓⇑𝜓⇓ = 𝜓⇓𝜓⇑
are Lorentz-invariant scalars.

Concept question 14.18. Is 𝜓𝜓 real or complex? If 𝜓 ≡ 𝜆 𝜖⇑↑ is a Dirac spinor corresponding to a
complex quaternion 𝜆 = 𝜆𝑅 + 𝐼𝜆𝐼 with no quaternionic part (so 𝜆 = 𝜆), should it not be that

𝜓𝜓 = 𝜖⊤⇑↑ 𝜆𝜆 𝜖⇑↑ = 𝜖⊤⇑↑ 𝜆
2 𝜖⇑↑ = 𝜆2 , (14.145)

which is a complex number, not a real number? Answer. No. Do not confuse the quantum-mechanical
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imaginary 𝑖 with the pseudoscalar 𝐼. The combination 𝜖⊤⇑↑ 𝐼 𝜖⇑↑ does not equal 𝐼 𝜖
⊤
⇑↑𝜖⇑↑. The complex (with

respect to 𝐼) number 𝜆, and its matrix representation 𝜆 are, equation (14.120),

𝜆 = 𝜆𝑅 + 𝐼𝜆𝐼 ↔ 𝜆 = 𝜆𝑅

(︂
1 0

0 1

)︂
+ 𝑖𝜆𝐼

(︂
0 1

1 0

)︂
, (14.146)

where the 1’s in the matrices on the right hand side denote the 2× 2 unit matrix. The product 𝜓𝜓 is

𝜓𝜓 =
(︀
𝜆𝑅 0 𝑖𝜆𝐼 0

)︀⎛⎜⎜⎝
𝜆𝑅
0

𝑖𝜆𝐼
0

⎞⎟⎟⎠ = 𝜆2𝑅 − 𝜆2𝐼 , (14.147)

in agreement with equation (14.142), not equation (14.145).

Concept question 14.19. Is 𝜓𝛾𝛾𝑚𝜓 a scalar or a 4-vector? Under a Lorentz transformation 𝜓𝛾𝛾𝑚𝜓

transforms as

𝑅 : 𝜓𝛾𝛾𝑚𝜓 → 𝜓𝑅𝑅𝛾𝛾𝑚𝑅𝑅𝜓 = 𝜓𝛾𝛾𝑚𝜓 , (14.148)

which appears to be a scalar. Yet 𝜓𝛾𝛾𝑚𝜓 also looks like it transforms as a 4-vector. Which is it? Answer.
The transformations of spinors 𝜓 = 𝜓𝑎𝜖𝑎 and vectors 𝑎 = 𝑎𝑚𝛾𝛾𝑚 considered in this Chapter are active
transformations, §13.9, which rotate the basis spinors 𝜖𝑎 and vectors 𝛾𝛾𝑚 while keeping coefficients 𝜓𝑎 and
𝑎𝑚 fixed. Under active transformations the combination 𝜓𝑎𝜓 is indeed a scalar, transforming as

𝑅 : 𝜓𝑎𝜓 → 𝜓𝑅𝑅𝑎𝑅𝑅𝜓 = 𝜓𝑎𝜓 . (14.149)

In fact 𝜓𝑎𝜓 is a scalar product by construction, as will be explored in greater depth in a later Chapter, §39.5,
so the fact that it transforms like a scalar should not be a surprise. However, as usual, one is free to make
choices as to whether a transformation is active (bodily rotates an object) or passive (rotates the frame while
leaving the object itself unchanged), §13.9. In most of this book, the convention is that transformations are
passive, meaning that a transformation rotates both the coefficients and basis elements of a spinor 𝜓 = 𝜓𝑎𝜖𝑎
or vector 𝑎 = 𝑎𝑚𝛾𝛾𝑚, while leaving the spinor or vector itself unchanged. With the passive convention, 𝜓𝛾𝛾𝑚𝜓
indeed transforms as a covariant vector (while 𝜓𝑎𝜓 = 𝜓𝑎𝑚𝛾𝛾𝑚𝜓 transforms as a scalar, the transformation of
the covariant vector 𝛾𝛾𝑚 cancelling against the transformation of the contravariant vector 𝑎𝑚). The advantage
of the passive convention is that the transformation properties of an object are evident from the indices
attached to it. However, the active convention of the present Chapter is needed in order to establish the
fundamentals of how spinors transform.

14.11 Null Dirac Spinor

A null Dirac spinor is a Dirac spinor 𝜓 constructed from a null complex quaternion 𝑞 acting on the
rest-frame eigenvector 𝜖⇑↑,

𝜓 = 𝑞 𝜖⇑↑ , 𝑞𝑞 = 0 . (14.150)
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Physically, a null Dirac spinor represents a spin- 12 particle moving at the speed of light. A non-trivial null
spinor must be moving at the speed of light because if it were not, then there would be a rest frame where
the rotor part of the spinor 𝜓 = 𝜆𝑅 𝜖⇑↑ would be unity, 𝑅 = 1, and the spinor, being non-trivial, 𝜆 ̸= 0,
would not be null. The null condition (14.150) is a complex constraint, which eliminates 2 of the 8 degrees of
freedom of a complex quaternion, so that a null spinor has 6 degrees of freedom. The null condition 𝑞𝑞 = 0

is equivalent to the two conditions

𝜓𝜓 = 𝜓𝐼𝜓 = 0 . (14.151)

Any non-trivial null complex quaternion 𝑞 can be written uniquely as the product of a real quaternion 𝜆𝑈
and a null factor (1− 𝐼𝑛) (Exercise 14.1):

𝑞 = 𝜆𝑈(1− 𝐼𝑛) . (14.152)

Here 𝜆 is a positive real scalar, 𝑈 is a purely spatial (i.e. real, with no 𝐼 part) rotor, and 𝑛 = 𝚤𝑎𝑛𝑎, 𝑎 = 1, 2, 3, is
a real unimodular vector quaternion, satisfying 𝑛𝑎𝑛𝑎 = 1 with real 𝑛𝑎. Physically, equation (14.152) contains
the instruction to boost to light speed in the direction 𝑛, then scale by the real scalar 𝜆 and rotate spatially
by 𝑈 . The minus sign in front of 𝐼𝑛 comes from that the fact that a boost in direction 𝑛 is described by a
rotor 𝑅 = cosh(𝜃/2) − 𝐼𝑛 sinh(𝜃/2), equation (14.42), which becomes proportional to 1 − 𝐼𝑛 as the boost
tends to infinity, 𝜃 → ∞. The 1 + 3 + 2 = 6 degrees of freedom from the real scalar 𝜆, the spatial rotor 𝑈 ,
and the real unimodular vector 𝑛 in the expression (14.152) are precisely the number needed to specify a
null quaternion. The boost axis 𝑛 is Lorentz-invariant. For if the boost factor 1− 𝐼𝑛 is Lorentz transformed
by pre-multiplying by any complex quaternion 𝑝+ 𝐼𝑟, then the result

(𝑝+ 𝐼𝑟)(1− 𝐼𝑛) = (𝑝+ 𝑟𝑛)(1− 𝐼𝑛) (14.153)

is the same unchanged boost factor 1− 𝐼𝑛 pre-multiplied by the real quaternion 𝑝+ 𝑟𝑛, the latter being a
product of a real scalar and a pure spatial rotation. Equation (14.153) is true because 𝑛2 = −1. The null
Dirac spinor 𝜓 corresponding to the null complex quaternion 𝑞, equation (14.152), is

𝜓 ≡ 𝑞 𝜖⇑↑ = 𝜆𝑈(1− 𝐼𝑛) 𝜖⇑↑ . (14.154)

The boost axis 𝑛 specifies the direction of the boost relative to the spin rest frame, where the spin is pure
up ↑. Because the boost axis 𝑛 is Lorentz-invariant, Lorentz transforming a given null Dirac spinor fills out
only 4 of the 6 degrees of freedom of null spinors.

Concept question 14.20. The boost axis of a null spinor is Lorentz-invariant. It may seem counter-
intuitive that the boost axis 𝑛 of a null spinor is Lorentz-invariant. Should not a spatial rotation rotate the
boost direction, the direction in which the null spinor moves?Answer. The direction 𝑛 specifies the direction
of the boost axis relative to the spin axis. A Lorentz transformation of a null spinor effectively rotates both
boost and spin directions simultaneously. For example, if the boost and spin axes are parallel in one frame,
then they are parallel in any frame.
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Equation (14.153) shows that a Lorentz transformation of the null Dirac spinor 𝜓 (14.154) is equivalent
to a scaling and a spatial rotation of that spinor,

(𝑝+ 𝐼𝑟)𝜓 = (𝑝+ 𝐼𝑟)𝜆𝑈(1− 𝐼𝑛) 𝜖⇑↑ = (𝑝+ 𝑟𝑛′)𝜓 , (14.155)

where

𝑛′ = 𝑈𝑛𝑈 . (14.156)

The real quaternion 𝑝 + 𝑟𝑛′ on the right hand side of equation (14.155) is not necessarily unimodular (a
spatial rotor) even if the complex quaternion 𝑝+ 𝐼𝑟 on the left hand side is unimodular (a Lorentz rotor). As
a simple example, a Lorentz boost 𝑒−𝐼𝑛𝜃/2 by rapidity 𝜃 along the boost axis 𝑛, equation (14.42), multiplies
the null spinor (1− 𝐼𝑛) 𝜖⇑↑ by the real scalar 𝑒𝜃/2. Physically, when a null spinor is Lorentz transformed, it
gets blueshifted (multiplied by a real scalar).
The spinor reverse to the spinor (14.154) is

𝜓 ≡ 𝜖⊤⇑↑ 𝑞 = 𝜖⊤⇑↑ (1 + 𝐼𝑛)𝜆𝑈 . (14.157)

The spinor is null, 𝑞𝑞 = 0, because the boost factor is null, (1 + 𝐼𝑛)(1− 𝐼𝑛) = 0.

14.11.1 Weyl spinor

A Weyl spinor is a null Dirac spinor in the special case where the boost axis 𝑛 in equation (14.154) aligns
with the spin axis. For a right-handed spinor, the boost and spin axes point in the same direction. For a
left-handed spinor, the boost and spin axes point in opposite directions. If the spin axis is taken along the
positive 3-direction (𝑧-axis), as in the Dirac representation (14.102), then for a right-handed spinor, the
boost direction is 𝑛 = 𝚤3, while for a left-handed spinor, the boost direction is 𝑛 = −𝚤3.
The bivector 𝚤3 generates a spatial rotation about the 3-axis, yielding, in the Dirac representation, 𝑖 when

acting on the spin-up eigenvector, 𝚤3 𝜖↑ = 𝑖 𝜖↑, equation (14.109). For right- and left-handed Weyl spinors,
the null boost factor 1− 𝐼𝚤 · 𝑛 acting on the rest-frame spinor 𝜖⇑↑ becomes

(1− 𝐼𝚤 · 𝑛) 𝜖⇑↑ = (1∓ 𝐼𝚤3) 𝜖⇑↑ = (1∓ 𝐼𝑖) 𝜖⇑↑ = (1± 𝛾5) 𝜖⇑↑ , (14.158)

where 𝛾5 ≡ −𝑖𝐼 is the chiral operator. A general right- or left-handed Weyl spinor may be written uniquely
as the right- or left-handed basis spinor defined by equation (14.158) pre-multiplied by a positive real scalar
𝜆 and a purely spatial rotor 𝑈 ,

𝜓R
L
= 𝜆𝑈(1± 𝛾5)𝜖⇑↑ . (14.159)

A Weyl spinor has definite chirality, positive for a right-handed spinor 𝜓R, negative for a left-handed spinor
𝜓L,

𝛾5𝜓R
L
= ±𝜓R

L
. (14.160)



14.11 Null Dirac Spinor 383

The complex quaternionic components of the right- or left-handed basis Weyl spinors (14.158) are

(1∓ 𝐼𝚤3) 𝜖⇑↑ = (1± 𝜎3) 𝜖⇑↑ =

{︂
1 0 0 0

0 0 0 ±1

}︂
, (14.161)

the Dirac representation of the bivector 𝜎3 being given by equations (14.103), which translates to a complex
quaternion in accordance with the equivalence (14.117). If the components of the real quaternion in equa-
tion (14.159) are 𝜆𝑈 = {𝑤, 𝑥, 𝑦, 𝑧}, then the complex quaternionic components of the right- or left-handed
Weyl spinor are

𝜓R
L
=

{︂
𝑤 𝑥 𝑦 𝑧

∓𝑧 ∓𝑦 ±𝑥 ±𝑤

}︂
. (14.162)

Concept question 14.21. What makes Weyl spinors special? What is special about choosing the
boost axis 𝑛 of a null spinor to align with the spin axis? Why not consider null spinors with arbitrary boost
axis 𝑛? Answer. The property that the boost axis aligns with the spin axis is Lorentz invariant. If the boost
aligns with the spin in one frame, then it does so in any Lorentz-transformed frame. This is the same thing
as saying that chirality is a Lorentz invariant. In the Standard Model of Physics, §42.1, the fundamental
fermions are natively massless right- or left-handed Weyl spinors. The fermions acquire their masses through
interaction with a scalar Higgs field. Right- and left-handed fermions are distinctly different because only
left-handed fermions (and right-handed antifermions) feel weak interactions.

The extension of the spacetime algebra to a super spacetime algebra, wherein the spacetime algebra of
multivectors is shown to be isomorphic to the algebra of outer products of spinors, is resumed in Chapter 39.



15

Geometric Differentiation and Integration

The problem of integrating over a curved hypersurface crops up routinely in general relativity, for example
in developing the Lagrangian or Hamiltonian mechanics of a field, Chapter 16. The apparatus developed
by mathematicians to allow integration over curved hypersurfaces is called differential forms, §15.6. The
geometric algebra provides an elegant way to understand differential forms.
In standard calculus, integration is inverse to differentiation. In the theory of differential forms, integration

is inverse to something called exterior differentiation, §15.9. The exterior derivative, conventionally written
d (distinguished here by latin font), is the (coordinate and tetrad) scalar derivative operator

d ≡ 𝑑𝑥𝜈 𝜕

𝜕𝑥𝜈
∧ , (15.1)

the wedge ∧ signifying that the derivative is a curl. A more explicit definition of the exterior derivative is
given by equation (15.63). A closely related derivative is the covariant spacetime derivative 𝐷 defined by

𝐷 ≡ 𝑒𝜈𝐷𝜈 = 𝛾𝛾𝑛𝐷𝑛 , (15.2)

where 𝐷𝜈 and 𝐷𝑛 are respectively the coordinate- and tetrad-frame covariant derivatives. The exterior
derivative d is isomorphic to the torsion-free covariant spacetime curl �̊�∧ (see equation (15.67) for a more
precise statement of the isomorphism),

d↔ �̊�∧ . (15.3)

The first part of this Chapter shows how to take the covariant derivative of a multivector, and defines
the covariant spacetime derivative 𝐷. The second part, starting from §15.6, shows how these ideas relate
to differential forms and the exterior derivative, and derives the main result of the theory, the generalized
Stokes’ theorem.
If torsion is present, then the torsion-full covariant derivative differs from the torsion-free covariant deriva-

tive, equation (2.68). In sections 15.1–15.4, the covariant derivative𝐷𝑛 and the covariant spacetime derivative
𝐷 signify either the torsion-full or the torsion-free derivative; all the results hold either way. In the theory of
differential forms, however, starting at §15.6, the covariant spacetime derivative is the torsion-free derivative
�̊� even when torsion is present.

384
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In this Chapter 𝑁 denotes the dimension of the parent manifold in which the hypersurface of integration
is embedded. In the standard spacetime of general relativity, 𝑁 equals 4 and the signature is −+++, but
all the results extend to manifolds of arbitrary dimension and arbitrary signature.

15.1 Covariant derivative of a multivector

The geometric algebra suggests an alternative approach to covariant differentiation in general relativity, in
which the connection is treated as a vector of operators Γ̂𝑛, the covariant derivative 𝐷𝑛 being written

𝐷𝑛 = 𝜕𝑛 + Γ̂𝑛 . (15.4)

Acting on any object, the connection operator Γ̂𝑛 generates a Lorentz transformation.
In the spacetime algebra, a Lorentz transformation (13.48) by rotor 𝑅 transforms a multivector 𝑎 by 𝑎→

𝑅𝑎𝑅. The generator of a Lorentz transformation is a bivector. The rotor corresponding to an infinitesimal
Lorentz transformation generated by a bivector Γ is 𝑅 = 𝑒𝜖Γ/2 = 1+ 1

2𝜖Γ. The resulting infinitesimal Lorentz
transformation transforms the multivector 𝑎 by 𝑎→ 𝑎+ 1

2𝜖[Γ,𝑎], where [Γ,𝑎] ≡ Γ𝑎−𝑎Γ is the commutator.
It follows that the action of the connection operator Γ̂𝑛 on a multivector 𝑎 must take the form

Γ̂𝑛𝑎 = 1
2 [Γ𝑛,𝑎] (15.5)

for some set of bivectors Γ𝑛. Since rotation does not change the grade of a multivector, [Γ𝑛,𝑎] for each 𝑛 is
a multivector with the same grade as 𝑎.

Concept question 15.1. Commutator versus wedge product of multivectors. Is the commutator
1
2 [𝑎, 𝑏] of two multivectors the same as their wedge product 𝑎∧ 𝑏? Answer. No. In the first place, the wedge
product anticommutes only if both 𝑎 and 𝑏 have odd grade, equation (13.32). In the second place, the anti-
commutator selects all grade components of the geometric product that anticommute, per equation (13.28).
The only case where 𝑎∧ 𝑏 = 1

2 [𝑎, 𝑏] is true is where either 𝑎 or 𝑏 is a vector (a multivector of grade 1), and
both 𝑎 and 𝑏 are odd.

To establish the relation between the bivectors Γ𝑛 and the usual tetrad connections Γ𝑘𝑚𝑛, consider the
covariant derivative of the vector 𝑎 = 𝑎𝑚𝛾𝛾𝑚:

𝐷𝑛𝑎 = 𝜕𝑛𝑎+ 1
2 [Γ𝑛,𝑎] = 𝛾𝛾𝑚𝜕𝑛𝑎

𝑚 + 1
2 [Γ𝑛,𝛾𝛾𝑚]𝑎𝑚 . (15.6)

Notice that the directed derivative 𝜕𝑛 in equation (15.6) is to be interpreted as acting only on the components
𝑎𝑚 of the vector, not on the tetrad 𝛾𝛾𝑚; rather, the variation of the tetrad under parallel transport is embodied
in the 1

2 [Γ𝑛,𝛾𝛾𝑚] term. The expression (15.6) must agree with the expression (11.35) obtained in the earlier
treatment, namely

𝐷𝑛𝑎 = 𝛾𝛾𝑚𝜕𝑛𝑎
𝑚 + Γ𝑘𝑚𝑛𝛾𝛾𝑘𝑎

𝑚 . (15.7)
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Comparison of equations (15.6) and (15.7) shows that

1
2 [Γ𝑛,𝛾𝛾𝑚] = Γ𝑘𝑚𝑛𝛾𝛾𝑘 . (15.8)

The 𝑁 -tuple (not vector) of bivectors Γ𝑛 satisfying equation (15.8) is

Γ𝑛 ≡ 1
2Γ𝑘𝑙𝑛𝛾𝛾

𝑘 ∧𝛾𝛾𝑙 (15.9)

(the factor of 1
2 would disappear if the implicit summation were over distinct antisymmetric pairs 𝑘𝑙 of

indices). Equation (15.9) can be proved with the help of the identity

1
2 [𝛾𝛾

𝑘 ∧𝛾𝛾𝑙,𝛾𝛾𝑚] = 𝛿𝑙𝑚𝛾𝛾𝑘 − 𝛿𝑘𝑚𝛾𝛾𝑙 . (15.10)

The same formula (15.5) applies, with the bivector Γ𝑛 given by the same equation (15.9), if the vector 𝑎 is
expressed as a sum 𝑎 = 𝑎𝑚𝛾𝛾𝑚 over its covariant 𝑎𝑚 rather than contravariant 𝑎𝑚 components. In this case

𝐷𝑛𝑎 = 𝛾𝛾𝑚𝜕𝑛𝑎𝑚 + 1
2 [Γ𝑛,𝛾𝛾

𝑚]𝑎𝑚 , (15.11)

which reproduces the earlier equations (11.40) and (11.41),

𝐷𝑛𝑎 = 𝛾𝛾𝑚𝜕𝑛𝑎𝑚 − Γ𝑚𝑘𝑛𝛾𝛾
𝑘𝑎𝑚 , (15.12)

since
1
2 [Γ𝑛,𝛾𝛾

𝑚] = −Γ𝑚𝑘𝑛𝛾𝛾𝑘 . (15.13)

The same formula (15.5) with the same bivector (15.9) applies to any multivector, which follows because the
connection operator Γ̂𝑛 is additive over any product of vectors or multivectors:

Γ̂𝑛𝑎𝑏 = 1
2 [Γ𝑛,𝑎𝑏] =

1
2 [Γ𝑛,𝑎]𝑏+

1
2𝑎[Γ𝑛, 𝑏] = (Γ̂𝑛𝑎)𝑏+ 𝑎(Γ̂𝑛𝑏) . (15.14)

To summarize, the covariant derivative of a multivector 𝑎 can be written

𝐷𝑛𝑎 = 𝜕𝑛𝑎+ 1
2 [Γ𝑛,𝑎] , (15.15)

with the 𝑁 -tuple of bivectors Γ𝑛 given by equation (15.9). In equation (15.15), as previously in equa-
tion (15.6), for a multivector 𝑎 = 𝛾𝛾𝐴𝑎

𝐴, the directed derivative 𝜕𝑛 is to be interpreted as acting only on
the components 𝑎𝐴 of the multivector, 𝜕𝑛𝑎 = 𝛾𝛾𝐴 𝜕𝑛𝑎

𝐴. Equation (15.15) is just another way to write the
covariant derivative of a multivector, yielding exactly the same result as the earlier method from §11.9.
The earlier (§11.9) and multivector approaches to covariant differentiation can be combined as needed.

For example, the covariant derivative of a covariant vector 𝑎𝑚 of multivectors is

𝐷𝑛𝑎𝑚 = 𝜕𝑛𝑎𝑚 − Γ𝑘𝑚𝑛𝑎𝑘 +
1
2 [Γ𝑛,𝑎𝑚] . (15.16)

As always, covariant differentiation is defined so that it commutes with the tetrad basis elements; that is,
covariant derivatives of the tetrad basis elements vanish by construction,

𝐷𝑛𝛾𝛾𝑚 = 0 . (15.17)
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For example, equation (15.17) is implied by the equality

𝐷𝑛(𝛾𝛾𝑚𝑎
𝑚) = 𝛾𝛾𝑚𝐷𝑛𝑎

𝑚 , (15.18)

which is true by construction.
The covariant derivative of a multivector 𝑎 can also be expressed as a coordinate derivative

𝐷𝜈𝑎 =
𝜕𝑎

𝜕𝑥𝜈
+ 1

2 [Γ𝜈 ,𝑎] , (15.19)

where the coordinate and directed derivatives are related as usual by 𝜕/𝜕𝑥𝜈 = 𝑒𝑛𝜈 𝜕𝑛, and where the
connection vector Γ𝜈 is related to the tetrad connection Γ𝑛 defined by equation (15.9) by

Γ𝜈 ≡ 𝑒𝑛𝜈Γ𝑛 . (15.20)

The components Γ𝑘𝑙𝜈 ≡ 𝑒𝑛𝜈Γ𝑘𝑙𝑛 of Γ𝜈 ≡ 1
2Γ𝑘𝑙𝜈𝛾𝛾

𝑘 ∧𝛾𝛾𝑙 constitute a coordinate-frame vector, but not a tetrad-
frame tensor. The connection Γ𝜈 is given by equation (15.20), not by a direct relation to the coordinate-frame
connections Γ𝜇𝜈𝜅, that is, Γ𝜈 ̸= 1

2Γ𝜅𝜆𝜈 𝑒
𝜅 ∧ 𝑒𝜆.

15.2 Riemann tensor of bivectors

As discussed in §2.19.2, the commutator of the covariant derivative defines two fundamental geometric
objects, the torsion tensor 𝑆𝑛𝑘𝑙 and the Riemann curvature tensor 𝑅𝑘𝑙𝑚𝑛. The commutator can be written

[𝐷𝑘, 𝐷𝑙] = 𝑆𝑛𝑘𝑙𝐷𝑛 + �̂�𝑘𝑙 , (15.21)

where 𝑆𝑛𝑘𝑙 is the torsion tensor, and the Riemann curvature operator �̂�𝑘𝑙 is an operator whose action on any
tensor was given previously by equation (2.114). Define the Riemann antisymmetric tensor of bivectors 𝑅𝑘𝑙

by

𝑅𝑘𝑙 ≡ 1
2𝑅𝑘𝑙𝑚𝑛 𝛾𝛾

𝑚 ∧𝛾𝛾𝑛 (15.22)

(again, the factor of 1
2 would disappear if the implicit summation were over distinct antisymmetric pairs 𝑚𝑛

of indices). Acting on any multivector 𝑎, the Riemann curvature operator yields

�̂�𝑘𝑙𝑎 = 1
2 [𝑅𝑘𝑙,𝑎] , (15.23)

which is an antisymmetric tensor of multivectors of the same grade as 𝑎. The Riemann tensor of bivectors
𝑅𝑘𝑙, equation (15.22), is related to the connection 𝑁 -tuple of bivectors Γ𝑘, equation (15.9), by

𝑅𝑘𝑙 = 𝜕𝑘Γ𝑙 − 𝜕𝑙Γ𝑘 + 1
2 [Γ𝑘,Γ𝑙] + (Γ𝑚𝑘𝑙 − Γ𝑚𝑙𝑘 − 𝑆𝑚𝑘𝑙 )Γ𝑚 , (15.24)

where, in conformity with the convention of equation (15.15), directed derivatives 𝜕𝑘Γ𝑙 are to be interpreted
as acting only on the components Γ𝑚𝑛𝑙 of Γ𝑙 ≡ 1

2Γ𝑚𝑛𝑙𝛾𝛾
𝑚 ∧𝛾𝛾𝑛, not on the tetrad axes 𝛾𝛾𝑚. Equation (15.24)

can be derived either from the tetrad-frame expression (11.60) for the Riemann tensor, or from the expres-
sion (15.15) for the covariant derivative of a multivector.
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Transforming equation (15.24) into a coordinate frame,𝑅𝜅𝜆 = 𝑒𝑘𝜅𝑒
𝑙
𝜆𝑅𝑘𝑙, and substituting equation (11.75)

gives, with or without torsion, the elegant expression

𝑅𝜅𝜆 =
𝜕Γ𝜆
𝜕𝑥𝜅

− 𝜕Γ𝜅
𝜕𝑥𝜆

+ 1
2 [Γ𝜅,Γ𝜆] , (15.25)

which can also be written as the commutator

1
2𝑅𝜅𝜆 =

[︂
𝜕

𝜕𝑥𝜅
+ 1

2Γ𝜅 ,
𝜕

𝜕𝑥𝜆
+ 1

2Γ𝜆

]︂
. (15.26)

Equation (15.25) is Cartan’s second equation of structure, explored in depth in §16.14.2. The components
of 𝑅𝜅𝜆 = 1

2𝑅𝜅𝜆𝑚𝑛𝛾𝛾
𝑚 ∧𝛾𝛾𝑛 constitute the Riemann tensor 𝑅𝜅𝜆𝑚𝑛 in the mixed coordinate-tetrad basis,

equation (11.76).

15.3 Torsion tensor of vectors

Define the torsion antisymmetric tensor of vectors 𝑆𝜅𝜆 by (the minus sign is chosen so that equation (15.29)
resembles equation (15.25))

𝑆𝜅𝜆 ≡ −𝑆𝑚𝜅𝜆 𝛾𝛾𝑚 . (15.27)

In components, the torsion tensor of vectors 𝑆𝜅𝜆 is, from equation (11.49),

𝑆𝜅𝜆 =

(︂
𝜕𝑒𝑚𝜆
𝜕𝑥𝜅

− 𝜕𝑒𝑚𝜅
𝜕𝑥𝜆

+ Γ𝑚𝜅𝜆 − Γ𝑚𝜆𝜅

)︂
𝛾𝛾𝑚 , (15.28)

which can be written elegantly

𝑆𝜅𝜆 =
𝜕𝑒𝜆
𝜕𝑥𝜅

− 𝜕𝑒𝜅
𝜕𝑥𝜆

+ 1
2 [Γ𝜅, 𝑒𝜆]−

1
2 [Γ𝜆, 𝑒𝜅] , (15.29)

where 𝑒𝜅 ≡ 𝑒𝑘𝜅𝛾𝛾𝑘 are the usual tangent basis vectors, and again the coordinate derivative 𝜕/𝜕𝑥𝜅 is to be
interpreted as acting only on the components 𝑒𝑘𝜅 of 𝑒𝜅, not on the tetrad axes 𝛾𝛾𝑘. Equation (15.29) is
Cartan’s first equation of structure, §16.14.2. Equation (15.29) can also be written in terms of covariant
derivatives

𝑆𝜅𝜆 = 𝐷𝜅𝑒𝜆 −𝐷𝜆𝑒𝜅 . (15.30)

15.4 Covariant spacetime derivative

The covariant derivative 𝐷𝑛, equation (15.4), acts on multivectors, but it does not yield a multivector (it
yields a vector of multivectors). A covariant derivative that does map multivectors to multivectors is the
covariant spacetime derivative 𝐷 defined by

𝐷 ≡ 𝛾𝛾𝑛𝐷𝑛 . (15.31)
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The covariant spacetime derivative 𝐷 is a sum of a directed derivative 𝜕 and a connection operator Γ̂,

𝐷 = 𝜕 + Γ̂ , 𝜕 ≡ 𝛾𝛾𝑛𝜕𝑛 , Γ̂ ≡ 𝛾𝛾𝑛Γ̂𝑛 . (15.32)

The action of the connection operator Γ̂ on a multivector 𝑎 is

Γ̂𝑎 = 1
2𝛾𝛾

𝑛[Γ𝑛,𝑎] (15.33)

(not Γ̂𝑎 = 1
2 [Γ,𝑎]). The covariant spacetime derivative of a multivector 𝑎 is

𝐷𝑎 = 𝛾𝛾𝑛𝐷𝑛𝑎 = 𝛾𝛾𝑛
(︀
𝜕𝑛𝑎+ 1

2 [Γ𝑛,𝑎]
)︀
. (15.34)

The covariant spacetime derivative (15.31) can equally well be written in terms of the coordinate deriva-
tives,

𝐷 ≡ 𝑒𝜈𝐷𝜈 . (15.35)

The covariant spacetime derivative (15.34) of a multivector can then also be written

𝐷𝑎 = 𝑒𝜈𝐷𝜈𝑎 = 𝑒𝜈
(︂
𝜕𝑎

𝜕𝑥𝜈
+ 1

2 [Γ𝜈 ,𝑎]

)︂
. (15.36)

Acting on a multivector 𝑎, the covariant spacetime derivative 𝐷 yields a sum of two multivectors, a
covariant divergence 𝐷 · 𝑎 with one grade lower that 𝑎, and a covariant curl 𝐷∧𝑎 with one grade higher
than 𝑎,

𝐷𝑎 = 𝐷 · 𝑎+𝐷∧𝑎 multivector . (15.37)

In the particular case that 𝑎 is a scalar 𝑎 (a multivector of grade 0), the covariant divergence (defined to be
one grade lower than 𝑎) is zero, 𝐷 · 𝑎 = 0. If torsion vanishes, the curl 𝐷∧𝑎 is essentially the same as the
exterior derivative in the mathematics of differential forms, §15.9.
The covariant spacetime divergence and curl of a grade-𝑝 multivector 𝑎 = (1/𝑝!)𝛾𝛾𝑙𝑚...𝑛𝑎𝑙𝑚...𝑛 are

𝐷 · 𝑎 =
1

(𝑝−1)!
𝛾𝛾𝑚...𝑛(𝐷 · 𝑎)𝑚...𝑛 , (𝐷 · 𝑎)𝑚...𝑛 = 𝐷𝑙𝑎𝑙𝑚...𝑛 , (15.38a)

𝐷∧𝑎 =
1

(𝑝+1)!
𝛾𝛾𝑘𝑙𝑚...𝑛(𝐷∧𝑎)𝑘𝑙𝑚...𝑛 , (𝐷∧𝑎)𝑘𝑙𝑚...𝑛 = (𝑝+ 1)𝐷[𝑘𝑎𝑙𝑚...𝑛] . (15.38b)

The factorial factors could be dropped if the implicit summations were taken over distinct antisymmetric
sequences of indices, but are retained here for explicitness. For example, the components of the covariant
divergences and curls of a scalar 𝜙, a vector 𝐴 = 𝛾𝛾𝑛𝐴𝑛, and a bivector 𝐹 = 1

2𝛾𝛾
𝑚 ∧𝛾𝛾𝑛𝐹𝑚𝑛, are respectively

𝐷 · 𝜙 = 0 , (𝐷∧𝜙)𝑛 = 𝐷𝑛𝜙 = 𝜕𝑛𝜙 , (15.39a)

𝐷 ·𝐴 = 𝐷𝑛𝐴𝑛 , (𝐷∧𝐴)𝑚𝑛 = 𝐷𝑚𝐴𝑛 −𝐷𝑛𝐴𝑚 , (15.39b)

(𝐷 · 𝐹 )𝑛 = 𝐷𝑚𝐹𝑚𝑛 , (𝐷∧𝐹 )𝑙𝑚𝑛 = 𝐷𝑙𝐹𝑚𝑛 +𝐷𝑚𝐹𝑛𝑙 +𝐷𝑛𝐹𝑙𝑚 . (15.39c)

A divergence can be converted to a curl, and vice versa, by post-multiplying by the pseudoscalar 𝐼𝑁 ,

𝐷∧(𝑎𝐼𝑁 ) = (𝐷 · 𝑎)𝐼𝑁 , 𝐷 · (𝑎𝐼𝑁 ) = (𝐷∧𝑎)𝐼𝑁 , (15.40)
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which works because the pseudoscalar 𝐼𝑁 is covariantly constant, and multiplying by it flips the grade of a
multivector from 𝑝 to 𝑁−𝑝.
The curl of the wedge product of a grade-𝑝 multivector 𝑎 with a multivector 𝑏 satisfies the Leibniz-like

rule

𝐷∧(𝑎∧ 𝑏) = (𝐷∧𝑎)∧ 𝑏+ (−)𝑝𝑎∧(𝐷∧ 𝑏) . (15.41)

The square of the covariant spacetime derivative is

𝐷𝐷 = 𝐷 ·𝐷 +𝐷∧𝐷 = 𝐷𝑘𝐷
𝑘 + 1

2𝛾𝛾
𝑘 ∧𝛾𝛾𝑙[𝐷𝑘, 𝐷𝑙] , (15.42)

which is a sum of the scalar d’Alembertian wave operator � ≡ 𝐷𝑘𝐷
𝑘, and a bivector operator whose

components constitute the commutator of the covariant derivative, equation (15.21).
For vanishing torsion, the squared spacetime curl of a multivector 𝑎 vanishes. For example, for a grade 1

multivector 𝑎 = 𝑎𝑛𝛾𝛾𝑛,

𝐷∧𝐷∧𝑎 = 1
2𝛾𝛾

𝑘 ∧𝛾𝛾𝑙 ∧𝛾𝛾𝑚𝑅𝑘𝑙𝑚𝑛𝑎𝑛 = 0 , (15.43)

which vanishes thanks to the cyclic symmetry of the Riemann tensor, 𝑅[𝑘𝑙𝑚]𝑛 = 0, valid for vanishing torsion.

Exercise 15.2. Leibniz rule for the covariant spacetime derivative.

1. What is the covariant derivative 𝐷𝑚(𝑎𝑏) of a geometric product of multivectors 𝑎 and 𝑏 in terms of
covariant derivatives of each of 𝑎 and 𝑏?

2. What is the covariant spacetime derivative 𝐷(𝑎𝑏) of a geometric product or multivectors 𝑎 and 𝑏 in
terms of covariant spacetime derivatives of each of 𝑎 and 𝑏?

Solution.
1. The covariant derivative 𝐷𝑚(𝑎𝑏) satisfies the Leibniz rule

𝐷𝑚(𝑎𝑏) = (𝐷𝑚𝑎)𝑏+ 𝑎𝐷𝑚𝑏 . (15.44)

2. If 𝑎 is a multivector of grade 𝑝, then the covariant spacetime derivative 𝐷(𝑎𝑏) satisfies the Leibniz-like
rule

𝐷(𝑎𝑏) ≡ 𝛾𝛾𝑚𝐷𝑚(𝑎𝑏) = 𝛾𝛾𝑚
(︀
(𝐷𝑚𝑎)𝑏+ 𝑎𝐷𝑚𝑏

)︀
= (𝐷𝑎)𝑏+ (−)𝑝

(︀
− (𝑎 ·𝐷)𝑏+ (𝑎∧𝐷)𝑏

)︀
. (15.45)

15.5 Torsion-full and torsion-free covariant spacetime derivative

The results of §15.1–§15.4 hold with or without torsion.
As in §2.12 and §11.15, when torsion is present and one wishes to make the torsion part explicit, it is con-

venient to distinguish torsion-free quantities with a˚overscript. The torsion-full and torsion-free connection
𝑁 -tuples Γ𝑛 and Γ̊𝑛 are related by

Γ𝑛 = Γ̊𝑛 +𝐾𝑛 , (15.46)
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where the contortion vector of bivectors 𝐾𝑛 is defined, analogously to equation (15.9), in terms of the
contortion tensor 𝐾𝑘𝑙𝑛 equation (11.56), by

𝐾𝑛 = 1
2𝐾𝑘𝑙𝑛 𝛾𝛾

𝑘 ∧𝛾𝛾𝑙 , (15.47)

implicitly summed over distinct indices 𝑘 and 𝑙. Acting on a multivector 𝑎, the torsion-full and torsion-free
covariant spacetime derivatives 𝐷 and �̊� are related by

𝐷𝑎 = �̊�𝑎+ 1
2𝛾𝛾

𝑛[𝐾𝑛,𝑎] . (15.48)

From equation (15.25), the Riemann tensor of bivectors 𝑅𝜅𝜆 splits into torsion-free and contortion parts,

𝑅𝜅𝜆 =
𝜕(Γ̊𝜆 +𝐾𝜆)

𝜕𝑥𝜅
− 𝜕(Γ̊𝜅 +𝐾𝜅)

𝜕𝑥𝜆
+ 1

2 [Γ̊𝜅 +𝐾𝜅, Γ̊𝜆 +𝐾𝜆]

= �̊�𝜅𝜆 +𝐷𝜅𝐾𝜆 −𝐷𝜆𝐾𝜅 +
1
2 [𝐾𝜅,𝐾𝜆] . (15.49)

15.6 Differential forms

Differential forms, or 𝑝-forms, are invariant measures of integration over a 𝑝-dimensional hypersurface in
an 𝑁 -dimensional manifold. In §13.1 it was seen that the wedge product of 𝑝 vectors defines a directed
𝑝-dimensional volume, illustrated in Figure 13.1. A 𝑝-form is essentially the same thing, but with the vectors
taken to be infinitesimals. The purpose of 𝑝-forms is to allow integration over 𝑝-dimensional hypersurfaces
in a coordinate-independent fashion. By construction, a differential form is a coordinate (and tetrad) scalar,
as is essential for integration to be coordinate-independent.
In an 𝑁 -dimensional manifold with coordinates 𝑥𝜇, a 1-form expressed in the coordinate frame is

𝑎 = 𝑎𝜇 𝑑𝑥
𝜇 . (15.50)

By definition, the differential 𝑑𝑥𝜇 transforms under coordinate transformations like a contravariant coordinate
vector. Requiring that the 1-form 𝑎 defined by equation (15.50) be a coordinate scalar imposes that 𝑎𝜇
must be a covariant coordinate vector. When the 1-form 𝑎 is integrated over any line (= 1-dimensional
hypersurface) in the manifold, the result is independent of the choice of coordinates, as desired.
A 2-form expressed in a coordinate frame is

𝑎 = 1
2 𝑎𝜇𝜈 𝑑𝑥

𝜇 ∧ 𝑑𝑥𝜈 , (15.51)

implicitly summed over all antisymmetric pairs 𝜇𝜈. The factor of 1
2 cancels the double-counting of pairs,

ensuring that each distinct antisymmetric pair 𝜇𝜈 counts once. The factor of 1
2 could be omitted if the if the

implicit sum were taken over only distinct antisymmetric pairs 𝜇𝜈. The wedge product 𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 of differ-
entials defines a parallelogram, a directed infinitesimal element of area, whose 2-dimensional direction is the
(𝑑𝑥𝜇–𝑑𝑥𝜈)-plane, and whose magnitude is the area of the parallelogram. The wedge product is antisymmetric,

𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 = −𝑑𝑥𝜈 ∧ 𝑑𝑥𝜇 . (15.52)
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The wedge product 𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 transforms as an antisymmetric contravariant rank-2 coordinate tensor. Re-
quiring that the 2-form 𝑎 defined by equation (15.51) be a coordinate scalar imposes that 𝑎𝜇𝜈 must be
a covariant rank-2 coordinate tensor, which can be taken to be antisymmetric without loss of generality.
To see that the antisymmetric prescription recovers correctly the usual behaviour of areal elements of inte-
gration, consider the particular case where the 2-dimensional surface of integration is spanned by just two
coordinates, 𝑥 and 𝑦, all other coordinates being constant on the surface. Under a coordinate transformation
{𝑥, 𝑦} → {𝑥′, 𝑦′}, the wedge product of differentials transforms as

𝑑𝑥′ ∧ 𝑑𝑦′ =
(︂
𝜕𝑥′

𝜕𝑥
𝑑𝑥+

𝜕𝑥′

𝜕𝑦
𝑑𝑦

)︂
∧
(︂
𝜕𝑦′

𝜕𝑥
𝑑𝑥+

𝜕𝑦′

𝜕𝑦
𝑑𝑦

)︂
=

(︂
𝜕𝑥′

𝜕𝑥

𝜕𝑦′

𝜕𝑦
− 𝜕𝑥′

𝜕𝑦

𝜕𝑦′

𝜕𝑥

)︂
𝑑𝑥∧ 𝑑𝑦 . (15.53)

The factor relating the two areal elements is the familiar Jacobian determinant |𝜕{𝑥′, 𝑦′}/𝜕{𝑥, 𝑦}|. The
definition (15.51) of the 2-form 𝑎 is by construction coordinate-invariant, and is therefore valid when more
than 2 coordinates vary over the surface of integration. However, it is always possible to erect a local
coordinate system in which only 2 of the coordinates vary over the 2-dimensional surface of integration.
In general, a 𝑝-form expressed in a coordinate frame is

𝑎 =
1

𝑝!
𝑎𝜇1...𝜇𝑝

𝑑𝑥𝜇1 ∧ ...∧ 𝑑𝑥𝜇𝑝 . (15.54)

The factor of 1/𝑝! ensures that each distinct index sequence 𝜇1...𝜇𝑝 is counted only once. The 1/𝑝! factor
could be dropped if the implicit sum were taken over distinct antisymmetric sequences of indices. Thus
equation (15.54) could also be written

𝑎 = 𝑎Λ 𝑑
𝑝𝑥Λ , (15.55)

where the sum is only over distinct antisymmetric sequences Λ of 𝑝 indices. The wedge product 𝑑𝑥𝜇1 ∧ ...∧ 𝑑𝑥𝜇𝑝

of differentials is totally antisymmetric. It transforms like an antisymmetric contravariant rank-𝑝 tensor. Re-
quiring that the 𝑝-form 𝑎 defined by equation (15.54) be coordinate-invariant imposes that 𝑎𝜇1...𝜇𝑝

be a
(without loss of generality antisymmetric) covariant rank-𝑝 coordinate tensor.
The definition (15.54) of a 𝑝-form extends to the case 𝑝 = 0. A 0-form is simply a scalar 𝑎.

15.7 Differential forms in an arbitrary frame

Differential forms are not restricted to coordinate frames. In any arbitrary tetrad frame, which may or may
not be a coordinate frame, and which may or may not be orthonormal, the invariant expression (15.55) for
a 𝑝-form may be written

𝑎 = 𝑎𝐾 𝑑
𝑝𝑥𝐾 , (15.56)

implicitly summed over distinct antisymmetric sequences 𝐾 of 𝑝 tetrad indices. Coordinate indices Λ = 𝜅...𝜆

are converted in the usual way to tetrad indices 𝐾 = 𝑘...𝑙 using the vielbein 𝑒𝑘𝜅 and its inverse 𝑒𝑘𝜅,

𝑎𝑘...𝑙 = 𝑒𝑘
𝜅... 𝑒𝑙

𝜆 𝑎𝜅...𝜆 , 𝑑𝑝𝑥𝑘...𝑙 = 𝑒𝑘𝜅... 𝑒
𝑙
𝜆 𝑑

𝑝𝑥𝜅...𝜆 . (15.57)

The entire apparatus of differential forms translates into any arbitrary frame.



15.8 Wedge product of differential forms 393

15.8 Wedge product of differential forms

The wedge product of differential forms is defined consistent with the wedge product of multivectors, equa-
tion (13.31). The wedge product of a 1-form 𝑎 with a 1-form 𝑏 defines a 2-form

𝑎∧ 𝑏 = 𝑎𝜇𝑑𝑥
𝜇 ∧ 𝑏𝜈𝑑𝑥𝜈 = 𝑎[𝜇𝑏𝜈]𝑑𝑥

𝜇 ∧ 𝑑𝑥𝜈 = 1
2 (𝑎𝜇𝑏𝜈 − 𝑎𝜈𝑏𝜇) 𝑑𝑥

𝜇 ∧ 𝑑𝑥𝜈 , (15.58)

implicitly summed over both indices 𝜇 and 𝜈. If instead the implicit sum were taken over distinct antisym-
metric pairs 𝜇𝜈 of indices, then there would be an extra factor of 2 in the third expression, and the 1

2 in
the last expression would disappear. In general, the wedge product of a 𝑝-form 𝑎 with a 𝑞-form 𝑏 defines a
(𝑝+𝑞)-form 𝑎∧ 𝑏,

𝑎∧ 𝑏 =

(︂
1

𝑝!
𝑎𝜇1...𝜇𝑝𝑑𝑥

𝜇1 ∧ ...∧ 𝑑𝑥𝜇𝑝

)︂
∧
(︂
1

𝑞!
𝑏𝜈1...𝜈𝑞𝑑𝑥

𝜈1 ∧ ...∧ 𝑑𝑥𝜈𝑞
)︂

=
1

𝑝!𝑞!
𝑎[𝜇1...𝜇𝑝

𝑏𝜈1...𝜈𝑞 ]𝑑𝑥
𝜇1 ∧ ...∧ 𝑑𝑥𝜇𝑝 ∧ 𝑑𝑥𝜈1 ∧ ...∧ 𝑑𝑥𝜈𝑞 . (15.59)

If the forms are expressed as sums 𝑎 ≡ 𝑎Λ 𝑑
𝑝𝑥Λ and 𝑏 ≡ 𝑏Π 𝑑

𝑞𝑥Π over distinct antisymmetric sequences Λ

and Π of respectively 𝑝 and 𝑞 indices, then their wedge product is

𝑎∧ 𝑏 = 𝑎Λ𝑏Π 𝑑
𝑝+𝑞𝑥ΛΠ =

(𝑝+ 𝑞)!

𝑝!𝑞!
𝑎[Λ𝑏Π] 𝑑

𝑝+𝑞𝑥ΛΠ , (15.60)

where the second expression is implicitly summed over distinct antisymmetric sequences Λ and Π of 𝑝 and
𝑞 indices, while the last expression is implicitly summed over distinct antisymmetric sequences ΛΠ of 𝑝+𝑞
indices.
The wedge product is symmetric or antisymmetric as 𝑝𝑞 is even or odd,

𝑎∧ 𝑏 = (−)𝑝𝑞𝑏∧𝑎 , (15.61)

consistent with the wedge product (13.31) of two multivectors.
The wedge product of a 0-form (scalar) 𝑎 with a differential form 𝑏 is just their ordinary product,

𝑎∧ 𝑏 = 𝑎𝑏 if 𝑎 is a scalar , (15.62)

consistent with the result (13.34) for multivectors.

15.9 Exterior derivative

The exterior derivative of a differential form is constructed so that integration and exterior differentiation
are inverse to each other, §15.12. In the abstract language of differential forms, the exterior derivative is
denoted d, and the exterior derivative of a 𝑝-form 𝑎 is the (𝑝+1)-form d𝑎 defined by

d𝑎 ≡ d

(︂
1

𝑝!
𝑎𝜇1...𝜇𝑝 𝑑𝑥

𝜇1 ∧ ...∧𝑥𝜇𝑝

)︂
≡ 1

𝑝!

𝜕𝑎𝜇1...𝜇𝑝

𝜕𝑥𝜈
𝑑𝑥𝜈 ∧ 𝑑𝑥𝜇1 ∧ ...∧ 𝑑𝑥𝜇𝑝 , (15.63)
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in which the left and right hand sides are implicitly summed over all antisymmetric sets of indices 𝜇1...𝜇𝑝
and 𝜈𝜇1...𝜇𝑝 respectively. Equation (15.63) makes explicit the meaning of the definition (15.1) of the exterior
derivative d. Thanks to the antisymmetry of the wedge product of differentials, the exterior derivative (15.63)
may be rewritten

d𝑎 =
1

𝑝!
𝜕[𝜈𝑎𝜇1...𝜇𝑝] 𝑑𝑥

𝜈 ∧ 𝑑𝑥𝜇1 ∧ ...∧ 𝑑𝑥𝜇𝑝 , (15.64)

where 𝜕𝜈 ≡ 𝜕/𝜕𝑥𝜈 . If the 𝑝-form is expressed as a sum 𝑎 ≡ 𝑎Λ 𝑑
𝑝𝑥Λ over distinct antisymmetric sequences

Λ of 𝑝 indices, then its exterior derivative is the (𝑝+1)-form

d𝑎 = 𝜕𝜈𝑎Λ 𝑑
𝑝+1𝑥𝜈Λ = (𝑝+ 1) 𝜕[𝜈𝑎Λ] 𝑑

𝑝+1𝑥𝜈Λ , (15.65)

where the second expression is implicitly summed over indices 𝜈 and over distinct antisymmetric sequences
Λ of 𝑝 indices, while the last expression is implicitly summed over distinct antisymmetric sequences 𝜈Λ of
𝑝+1 indices.
The antisymmetrized coordinate derivative is just equal to the antisymmetrized torsion-free covariant

derivative (Exercise 2.6),

𝜕[𝜈𝑎𝜇1...𝜇𝑝] = 𝐷[𝜈𝑎𝜇1...𝜇𝑝] , (15.66)

which is true even when torsion is present (that is, the antisymmetrized coordinate derivative equals the
antisymmetrized torsion-free covariant derivative, not the antisymmetrized torsion-full covariant derivative).
The antisymmetrized coordinate derivative is a covariant coordinate tensor despite the fact that the deriva-
tives are coordinate not covariant derivatives, and this is true whether or not torsion is present. Thus the
exterior derivative d𝑎 is coordinate-invariant, with or without torsion. In an arbitrary frame, not necessarily
a coordinate frame or an orthonormal frame, the exterior derivative of a 𝑝-form 𝑎 is its torsion-free covariant
curl,

d𝑎 = (𝑝+ 1)𝐷[𝑛𝑎𝐾] 𝑑
𝑝+1𝑥𝑛𝐾 , (15.67)

implicitly summed over distinct antisymmetric sequences 𝑛𝐾 of 𝑝+1 tetrad indices.
The simplest case is the exterior derivative of a 0-form (scalar) 𝜙, which according to the definition (15.63)

is the one-form

d𝜙 ≡ 𝜕𝜙

𝜕𝑥𝜈
𝑑𝑥𝜈 . (15.68)

The next simplest case is the exterior derivative of a one-form 𝑎, which according to the definition (15.63)
is the 2-form

d𝑎 = d(𝑎𝜈 𝑑𝑥
𝜈) =

𝜕𝑎𝜈
𝜕𝑥𝜇

𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈

=
1

2

(︂
𝜕𝑎𝜈
𝜕𝑥𝜇

− 𝜕𝑎𝜇
𝜕𝑥𝜈

)︂
𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 (15.69)

= 1
2

(︀
𝐷𝜇𝑎𝜈 −𝐷𝜈𝑎𝜇

)︀
𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 , (15.70)
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implicitly summed over both indices 𝜇 and 𝜈. The factors of 1
2 would disappear if the sum were only over

distinct antisymmetric pairs 𝜇𝜈.
The exterior derivative of the wedge product of a 𝑝-form 𝑎 with a 𝑞-form 𝑏 satisfies the same Leibniz-like

rule (15.41) as the spacetime curl,

d(𝑎∧ 𝑏) ≡ (d𝑎)∧ 𝑏+ (−)𝑝𝑎∧(d𝑏) . (15.71)

15.9.1 The square of the exterior derivative vanishes

The exterior derivative has the notable property that its square vanishes,

dd𝑎 =
1

𝑝!
𝜕[𝜈1𝜈2𝑎𝜇1...𝜇𝑝] 𝑑𝑥

𝜈1 ∧ 𝑑𝑥𝜈2 ∧ 𝑑𝑥𝜇1 ∧ ...∧ 𝑑𝑥𝜇𝑝 = 0 , (15.72)

because coordinate derivatives commute. The analogous statement in the geometric algebra is that the
torsion-free covariant spacetime curl squared of a multivector 𝑎 vanishes, equation (15.43),

�̊�∧ �̊�∧𝑎 = 0 . (15.73)

15.10 Hodge dual form

The Hodge dual *𝑎 of a differential form 𝑎 is most easily defined by taking advantage of the isomorphism
between the geometric algebra and differential forms. The Hodge dual of a multivector 𝑎 is defined to be the
multivector 𝐼𝑁𝑎 obtained by premultiplying by the pseudoscalar 𝐼𝑁 , equation (13.24).
The pseudoscalar 𝐼𝑁 can be expressed as

𝐼𝑁 = 𝜀𝑀𝛾𝛾𝑀 , (15.74)

where 𝑀 runs over the one distinct antisymmetric sequence 1...𝑁 of 𝑁 indices, and 𝜀𝑀 is the total antisym-
metric tensor normalized to 𝜀1...𝑁 = 1 in an orthonormal frame, as is the convention of this book. Thus the
dual 𝐼𝑁𝑎 of a grade-𝑝 multivector 𝑎 = 𝑎𝐾𝛾𝛾𝐾 may be written

𝐼𝑁𝑎 = 𝐼𝑁𝑎
𝐾𝛾𝛾𝐾 = 𝜀𝐿𝐾𝛾𝛾𝐿𝐾 𝑎

𝐾𝛾𝛾𝐾 = (−)[𝑝/2]𝜀𝐿𝐾𝑎𝐾𝛾𝛾𝐿 = (−)[𝑝/2]𝜀𝐿𝐾𝑎𝐾𝛾𝛾𝐿 , (15.75)

implicitly summed over distinct antisymmetric sequences 𝐾 of 𝑝 indices, and the one distinct sequence 𝐿
of 𝑞 = 𝑁−𝑝 indices complementary to 𝐾. In the third expression of equations (15.75), the indices 𝐿𝐾
of the pseudoscalar 𝛾𝛾𝐿𝐾 have been ordered without loss of generality to end with the sequence 𝐾. The
associativity of the multivector product means that 𝛾𝛾𝐿𝐾𝛾𝛾𝐾 = 𝛾𝛾𝐿(𝛾𝛾𝐾𝛾𝛾𝐾); the (−)[𝑝/2] factor comes from
the square 𝛾𝛾𝐾𝛾𝛾𝐾 of a grade-𝑝 multivector, which in an orthonormal frame is

𝛾𝛾𝐾𝛾𝛾𝐾 = 𝛾𝛾𝑘1...𝑘𝑝𝛾𝛾𝑘1...𝑘𝑝 = (−)[𝑝/2]𝛾𝑘1𝑘1 ... 𝛾𝑘𝑝𝑘𝑝 , (15.76)

with 𝛾𝑘𝑙 the orthonormal tetrad metric (the Euclidean metric if all dimensions are spatial, or the Minkowski
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metric if one dimension is a time dimension). Equation (15.75) can be cast as a sum over dual multivectors
𝐼𝑁𝛾𝛾𝐾 ,

𝐼𝑁𝑎 = 𝑎𝐾(𝐼𝑁𝛾𝛾𝐾) , 𝐼𝑁𝛾𝛾𝐾 = (−)[𝑝/2]𝜀𝐿𝐾𝛾𝛾𝐿 = (−)[𝑝/2]+𝑝𝑞𝜀𝐾𝐿𝛾𝛾𝐿 , (15.77)

where 𝐿 runs over the one distinct antisymmetric sequence complementary to 𝐾. The (−)𝑝𝑞 factor in the
rightmost expression of equations (15.77) comes from permuting the 𝑝 indices 𝐾 and 𝑞 indices 𝐿 through
each other, 𝜀𝐿𝐾 = (−)𝑝𝑞𝜀𝐾𝐿. Alternatively, equation (15.75) can be cast as a sum over dual coefficients *𝑎𝐿,

𝐼𝑁𝑎 = *𝑎𝐿𝛾𝛾𝐿 ,
*𝑎𝐿 = (−)[𝑝/2]𝜀𝐿𝐾𝑎𝐾 , (15.78)

where 𝐾 runs over the one distinct antisymmetric sequence complementary to 𝐿.
The dual *𝑎 of a 𝑝-form 𝑎 = 𝑎Λ 𝑑

𝑝𝑥Λ is defined to be the 𝑞-form, analogously to the multivector dual (15.75),

*𝑎 ≡ (−)[𝑝/2]𝜀ΠΛ𝑎
Λ 𝑑𝑞𝑥Π , (15.79)

implicitly summed over distinct antisymmetric sequences Λ of 𝑝 indices, and the one distinct sequence Π of
𝑞 = 𝑁−𝑝 indices complementary to Λ. As with the multivector expression (15.77), the form dual (15.79) can
be cast as a sum over dual volume elements *𝑑𝑞𝑥Λ,

*𝑎 = 𝑎Λ
*𝑑𝑞𝑥Λ , *𝑑𝑞𝑥Λ = (−)[𝑝/2]𝜀ΠΛ 𝑑

𝑞𝑥Π = (−)[𝑝/2]+𝑝𝑞𝜀ΛΠ 𝑑
𝑞𝑥Π . (15.80)

The dual volume element *𝑑𝑞𝑥Λ is an element of a 𝑞-dimensional space, but its index Λ is a totally anti-
symmetric sequence of 𝑝 = 𝑁−𝑞 indices. Alternatively, as with the multivector expression (15.78), the form
dual (15.79) can be cast as a sum over dual coefficients, *𝑎Π,

*𝑎 = *𝑎Π 𝑑
𝑞𝑥Π , *𝑎Π = (−)[𝑝/2]𝜀ΠΛ𝑎

Λ . (15.81)

Taking the double dual of a multivector 𝑎 multiplies it by the pseudoscalar squared 𝐼2𝑁 ,

**𝑎 = 𝐼2𝑁𝑎 = ±(−)[𝑁/2]𝑎 , (15.82)

where the ± sign is the determinant of the orthonormal tetrad metric (+ for the Euclidean metric, −
for the Minkowski metric). The same result (15.82) holds for the double dual **𝑎 of a differential form
𝑎. The same factor ±(−)[𝑁/2] can be deduced in a lengthier fashion by taking the double dual along the
lines of equation (15.75). There is a factor of (−)[𝑝/2] from taking the dual of the grade-𝑝 vector 𝑎, as in
equation (15.75); a further factor of (−)[𝑞/2] comes from taking the dual of the grade-𝑞 dual vector *𝑎; a
factor of (−)𝑝𝑞 comes from permuting indices of the pseudoscalar, 𝜀𝐿𝐾 = (−)𝑝𝑞𝜀𝐾𝐿; and a final ± sign, the
determinant of the tetrad metric, comes from 𝜀𝑀𝜀

𝑀 = ±. The overall sign is, for any 𝑝 and 𝑞 = 𝑁−𝑝,

± (−)[𝑝/2]+[𝑞/2]+𝑝𝑞 = ±(−)[𝑁/2] . (15.83)

The reader may check that equation (15.83) holds for all values of 𝑝+𝑞 = 𝑁 , with each of 𝑝 and 𝑞 either
even or odd.
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Concept question 15.3. Calculating with the totally antisymmetric tensor. The most difficult
thing in all of mathematics is getting the sign right. This is certainly true with the totally antisymmetric
tensor. Is there a sure fire way to get the sign right? Answer. The key point is that there is an isomorphism
between the totally antisymmetric tensor and the geometric algebra. In an orthonormal frame,

𝜀𝑘...𝑙 ↔ 𝛾𝛾𝑘 ∧ ...∧𝛾𝛾𝑙 . (15.84)

In a general coordinate frame,

𝜀𝜅...𝜆 ↔ 𝑒𝜅 ∧ ...∧ 𝑒𝜆 . (15.85)

Indices are raised and lowered, and transformed between tetrad and coordinate frames, in the usual way,
using the tetrad and coordinate metrics, and the vielbein.

15.11 Relation between coordinate- and tetrad-frame volume elements

Consider a 𝑝-dimensional hypersurface embedded inside an 𝑁 -dimensional manifold. Choose an orthonormal
tetrad such that the first 𝑝 basis elements 𝛾𝛾1, ... ,𝛾𝛾𝑝 of the tetrad are tangent to the 𝑝-dimensional hyper-
surface, while the last 𝑁 − 𝑝 basis elements 𝛾𝛾𝑝+1, ... ,𝛾𝛾𝑁 are orthogonal to it. (Such a choice is not always
possible. An example is the case of an integral along a null geodesic. But even in that case an integral can
be defined — the affine distance — by a suitable limiting procedure. Whatever the case, if an integral can
be defined, some version of the equations below applies.) With respect to an orthonormal tetrad frame,
the components 𝑑𝑝𝑥1...𝑝 of the 𝑝-volume element transform like the 𝑝-dimensional pseudoscalar 𝐼𝑝. Thus the
orthonormal tetrad-frame 𝑝-volume element is invariant, the proper 𝑝-volume element. The coordinate- and
tetrad-frame 𝑝-volume elements, which are tensors, are related by the vielbein in the usual way, leading to
the result that

𝑒1...𝑝𝜇1...𝜇𝑝
𝑑𝑝𝑥𝜇1...𝜇𝑝 = 𝑑𝑝𝑥1...𝑝 , (15.86)

where 𝑒1...𝑝𝜇1...𝜇𝑝
is the determinant of the 𝑝× 𝑝 vielbein matrix 𝑒𝑚𝜇 with 𝑚 running from 1 to 𝑝 and 𝜇 running

from 𝜇1 to 𝜇𝑝,

𝑒1...𝑝𝜇1...𝜇𝑝
≡

⃒⃒⃒⃒
⃒⃒⃒ 𝑒

1
𝜇1

. . . 𝑒1𝜇𝑝

...
...

𝑒𝑝𝜇1
. . . 𝑒𝑝𝜇𝑝

⃒⃒⃒⃒
⃒⃒⃒ = 𝑝! 𝑒1[𝜇1

... 𝑒𝑝𝜇𝑝] . (15.87)

Equation (15.86) is summed over the
(︀
𝑁
𝑝

)︀
distinct sets of 𝑝 coordinate indices 𝜇1...𝜇𝑝 drawn from the 𝑁

coordinate indices. Equation (15.86) implies that 𝑒1...𝑝𝜇1...𝜇𝑝
𝑑𝑝𝑥𝜇1...𝜇𝑝 is the proper 𝑝-volume element.

Dual proper 𝑞-volume elements are related similarly,

𝑒1...𝑝𝜇1...𝜇𝑝

*𝑑𝑞𝑥𝜇1...𝜇𝑝 = *𝑑𝑞𝑥1...𝑝 . (15.88)
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15.12 Generalized Stokes’ theorem

The most important result in the mathematics of differential forms is a generalization of the theorems of
Cauchy, Gauss, Green, and Stokes relating the integral of a derivative of a function to a surface integral of the
function. In the mathematicians’ compact notation, the generalized Stokes’ theorem says that the integral
of the exterior derivative d𝑎 of a 𝑝-form 𝑎 over a (𝑝+1)-dimensional hypersurface 𝑉 equals the integral of
the 𝑝-form 𝑎 over the 𝑝-dimensional boundary 𝜕𝑉 of the hypersurface:∫︁

𝑉

d𝑎 =

∮︁
𝜕𝑉

𝑎 . (15.89)

More explicitly, if 𝑎 = 𝑎𝜇1...𝜇𝑝
𝑑𝑝𝑥𝜇1...𝜇𝑝 is a 𝑝-form, Stokes’ theorem states∫︁

𝑉

(𝑝+ 1)𝜕[𝜈𝑎𝜇1...𝜇𝑝] 𝑑
𝑝+1𝑥𝜈𝜇1...𝜇𝑝 =

∮︁
𝜕𝑉

𝑎𝜇1...𝜇𝑝 𝑑
𝑝𝑥𝜇1...𝜇𝑝 , (15.90)

implicitly summed over distinct sequences 𝜈𝜇1...𝜇𝑝 and 𝜇1...𝜇𝑝 of respectively 𝑝+1 and 𝑝 indices. In an
arbitrary frame, not necessarily either a coordinate frame or an orthonormal frame, Stoke’s theorem (15.90)
is ∫︁

𝑉

(�̊�∧𝑎)𝐿 𝑑𝑝+1𝑥𝐿 =

∫︁
𝑉

(𝑝+ 1)𝐷[𝑛𝑎𝐾] 𝑑
𝑝+1𝑥𝑛𝐾 =

∮︁
𝜕𝑉

𝑎𝐾 𝑑
𝑝𝑥𝐾 , (15.91)

implicitly summed over distinct sequences 𝐿 = 𝑛𝐾 and 𝐾 of respectively 𝑝+1 and 𝑝 indices. In a coordinate
frame, the torsion-free covariant curl reduces to an ordinary curl, 𝐷[𝜈𝑎Λ] = 𝜕[𝜈𝑎Λ], Exercise 2.6.
In the case of a 0-form (scalar) 𝜙, the exterior derivative d𝜙, equation (15.68), is the total derivative. The

integral of the 1-form d𝜙 along any line (1-dimensional hypersurface) 𝑥𝜇(𝜆) parametrized by an arbitrary
differentiable parameter 𝜆, from initial value 𝜆0 to final value 𝜆1, is∫︁ 𝜆1

𝜆0

d𝜙 =

∫︁ 𝜆1

𝜆0

𝜕𝜙

𝜕𝑥𝜈
𝑑𝑥𝜈 =

∫︁ 𝜆1

𝜆0

𝜕𝜙

𝜕𝑥𝜈
𝑑𝑥𝜈

𝑑𝜆
𝑑𝜆 =

∫︁ 𝜆1

𝜆0

𝑑𝜙

𝑑𝜆
𝑑𝜆 = 𝜙(𝜆1)− 𝜙(𝜆0) . (15.92)

Equation (15.92) can be recognized as the fundamental theorem of calculus. Equation (15.92) is equa-
tion (15.89) or (15.91) for the case where 𝑎 is the 0-form (scalar) 𝜙. The hypersurface 𝑉 is the 1-dimensional
path of integration. The boundary 𝜕𝑉 is the two endpoints of the path.
Here is a sketch of a proof of the generalized Stokes’ theorem (15.89). The key ingredient is that d𝑎 is

coordinate-invariant, so one can use any convenient coordinate system to evaluate the integral, and the result
will be independent of the choice of coordinates.
First, partition the hypersurface 𝑉 into rectangular patches. Rectangular means that a system of coordi-

nates can be chosen such that the patch extends over a fixed finite interval 𝑥𝜇0 ≤𝑥𝜇≤𝑥
𝜇
1 of each coordinate.

Figure 15.1 illustrates a partition of a 2-dimensional disk into five rectangular patches. Thanks to the ar-
bitrariness of the choice of coordinates, although each patch appears to be non-rectangular, coordinates
can always be chosen so that the patch is rectangular with respect to those coordinates. Notice that the
(𝑝+1)-dimensional hypersurface could be embedded in a higher dimensional manifold, so there could poten-
tially be more coordinates available than the dimension of the hypersurface; but again the arbitrariness of
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Figure 15.1 Partition of a disk into five rectangular patches. The arrowed circles show the direction of circulation of

the integral over the boundary of each patch.

coordinates means that coordinates can always be chosen such that only 𝑝+1 of them vary over the (𝑝+1)-
dimensional hypersurface, the remaining coordinates being constant. With such convenient coordinates, the
integral over a patch is a straightforward integration in Euclidean space. For simplicity, consider the integral
in 2 dimensions. The integral over a single rectangular patch 𝑥0 ≤ 𝑥 ≤ 𝑥1 and 𝑦0 ≤ 𝑦 ≤ 𝑦1 is∫︁

patch

d𝑎 =

∫︁ 𝑦1

𝑦0

∫︁ 𝑥1

𝑥0

(︂
𝜕𝑎𝑦
𝜕𝑥
− 𝜕𝑎𝑥

𝜕𝑦

)︂
𝑑𝑥∧ 𝑑𝑦

=

∫︁ 𝑦1

𝑦0

(︂∫︁ 𝑥1

𝑥0

𝜕𝑎𝑦
𝜕𝑥

𝑑𝑥

)︂
∧ 𝑑𝑦 −

∫︁ 𝑥1

𝑥0

(︂∫︁ 𝑦1

𝑦0

𝜕𝑎𝑥
𝜕𝑦

𝑑𝑦

)︂
∧ 𝑑𝑥

=

∫︁ 𝑦1

𝑦0

(︂∫︁ 𝑥1

𝑥0

𝜕𝑎𝑦
𝜕𝑥

𝑑𝑥

)︂
𝑑𝑦 −

∫︁ 𝑥1

𝑥0

(︂∫︁ 𝑦1

𝑦0

𝜕𝑎𝑥
𝜕𝑦

𝑑𝑦

)︂
𝑑𝑥

=

∫︁ 𝑦1

𝑦0

[𝑎𝑦(𝑥1)− 𝑎𝑦(𝑥0)] 𝑑𝑦 −
∫︁ 𝑥1

𝑥0

[𝑎𝑥(𝑦1)− 𝑎𝑥(𝑦0)] 𝑑𝑥

=

∮︁
𝜕patch

𝑎𝜇 𝑑𝑥
𝜇 =

∮︁
𝜕patch

𝑎 . (15.93)

The first line of equations (15.93) is the standard expression (15.70) for the exterior derivative of a 1-form
𝑎; the double count over pairs of indices eliminates the factor of 1

2 . The second line of equations (15.93)
rearranges the first. The third line of equations (15.93) differs from the second by the loss of the ∧ signs;
the equality holds because

∫︀
(𝜕𝑎𝑥/𝜕𝑦) 𝑑𝑦 is a scalar for any interval of integration, and the wedge product of

a scalar with a differential form is just the ordinary product of the scalar with the form, equation (15.62).
The fourth line of equations (15.93) follows from the fundamental theorem of calculus, equation (15.92). The
integral contains 4 contributions, corresponding to the 4 edges of the rectangular patch. The signs of the
4 contributions are such that they circulate anti-clockwise about the patch, as illustrated in Figure 15.1.
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The last line of equations (15.93) expresses the fourth in more compact notation, with 𝜕patch denoting the
boundary, the 4 edges, of the patch. Equations (15.93) prove Stokes’ theorem for a patch.
The final step of the proof is to add together the contributions from all the patches of the partition.

Where two patches abut, the contributions from the common edge cancel, because consistent circulation
about the boundaries causes the integral along the common edge to be in opposite directions, as illustrated
in Figure 15.1. Once again, the coordinate-invariant character of the differential form 𝑎 ensures that the
integral along a prescribed path is independent of the choice of coordinates, so the contributions from
abutting edges of patches do indeed cancel.

15.13 Exact and closed forms

Consider the 1-form d𝜑 defined by the exterior derivative of the azimuthal angle 𝜑 around a circle. The
integral of the angle around the circle is ∫︁ 2𝜋

0

d𝜑 = 2𝜋 . (15.94)

But since the circle has no boundary, should not Stokes’ theorem imply that the integral vanishes? The
resolution of the problem is that 𝜑 is not a single-valued scalar. The 1-form d𝜑 constructed from 𝜑 is well-
defined, being single-valued and continuous everywhere on the circle, but 𝜑 itself is not. The circle can be
cut at any point, and a single-valued scalar 𝜑 defined on the cut circle. But since the scalar is discontinuous
at the cut point, the contributions on the boundary do not cancel, but rather produce a finite contribution,
namely 2𝜋.
A differential form 𝐹 is said to be exact if it can be expressed as the exterior derivative of a differential

form 𝐴,

𝐹 = d𝐴 . (15.95)

Stokes’ theorem implies that an integral of an exact form over a surface with no boundary must vanish. The
condition of exactness is a global condition. The above example 1-form d𝜑 in equation (15.94) is not exact,
because 𝜑 is not a single-valued 0-form (scalar).
A differential form 𝐹 is said to be closed if its exterior derivative vanishes,

d𝐹 = 0 . (15.96)

The rule dd = 0 implies that every exact form is closed. The inverse theorem, that every closed form is
exact, is true locally, but not globally. Poincaré’s lemma states that a form that is closed over a volume
𝑉 that is continuously contractible to point is exact over that volume. The condition of being closed can be
thought of as a local test of exactness. The example form d𝜑 is closed, but not exact. In the Cartesian 𝑥–𝑦
plane, the 1-form d𝜑 is

d𝜑 = datan(𝑦/𝑥) =
𝑥 d𝑦 − 𝑦 d𝑥
𝑥2 + 𝑦2

, (15.97)
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which is singular at the origin 𝑥 = 𝑦 = 0. Consistent with Poincaré’s lemma, the 1-form d𝜑 is not continuously
contractible to a point.
The above example illustrates that topological properties of differentiable manifolds, such as winding

number, can be inferred from the behaviour of integrals.

15.14 Generalized Gauss’ theorem

In physics, Stokes’ theorem (15.91) is most commonly encountered in the form of Gauss’ theorem, which
relates the volume integral of the divergence of a vector to the integral of the flux of the vector through the
surface of the volume. The relation (15.40) shows that a covariant curl as required by Stokes’ theorem (15.91)
can be converted to a covariant divergence by post-multiplying by the pseudoscalar 𝐼𝑁 ,

�̊�∧(𝑎𝐼𝑁 ) = (�̊� · 𝑎)𝐼𝑁 . (15.98)

If 𝑎 = 𝑎𝐾 𝑑
𝑝𝑥𝐾 is a 𝑝-form, substituting equation (15.98) into Stokes’ theorem (15.91) gives the generalized

Gauss’ theorem in an arbitrary (not necessarily coordinate or orthonormal) frame, with 𝑞 ≡ 𝑁−𝑝,∫︁
𝑉

(�̊� · 𝑎)𝐿 *𝑑𝑞+1𝑥𝐿 =

∫︁
𝑉

𝐷𝑛𝑎𝑛𝐿
*𝑑𝑞+1𝑥𝐿 =

∮︁
𝜕𝑉

𝑎𝐾
*𝑑𝑞𝑥𝐾 , (15.99)

where (�̊� · 𝑎)𝐿 denotes the components of the torsion-free covariant divergence, equation (15.38a), *𝑑𝑞𝑥𝐾

denotes the dual 𝑞-volume element, equation (15.80), and 𝐾 and 𝐿 are implicitly summed over distinct
antisymmetric sequences of 𝑝 and 𝑝−1 indices respectively.
In the mathematicians’ notation, Gauss’ theorem (15.99) is

(−)(𝑝+1)(𝑞−1)
∫︁
𝑉

*(d𝑎) = (−)𝑝𝑞
∮︁
𝜕𝑉

*𝑎 , (15.100)

the signs coming from commuting the pseudoscalar 𝐼𝑁 through d𝑎 on the left hand side and through 𝑎 on
the right hand side. Equivalently,

(−)𝑁−1
∫︁
𝑉

*(d𝑎) =

∫︁
𝑉

d(*𝑎) =

∮︁
𝜕𝑉

*𝑎 , (15.101)

the (−)𝑁−1 sign coming from commuting the pseudoscalar through the 1-form exterior derivative d.
In the remainder of this book, the dual 𝑞-volume element *𝑑𝑞𝑥𝑘...𝑙 is often abbreviated to 𝑑𝑞𝑥𝑘...𝑙 without

the Hodge star symbol, since the dual nature is usually evident from the number of indices 𝑘...𝑙, which is 𝑞
for the standard 𝑞-volume, or 𝑝 ≡ 𝑁−𝑞 for the dual 𝑞-volume. The only ambiguity occurs when 𝑞 = 𝑝 = 𝑁/2.
For example, the dual 𝑁 -volume element, which is a scalar, will be abbreviated to 𝑑𝑁𝑥, whereas the standard
𝑁 -volume element, which is a pseudoscalar, is written 𝑑𝑁𝑥1...𝑁 .
Beware that physics texts commonly use 𝑑𝑁𝑥 to denote the pseudoscalar 𝑁 -volume, and 𝑒 𝑑𝑁𝑥 or equiv-

alently
√
−𝑔 𝑑𝑁𝑥 to denote the dual scalar 𝑁 -volume. The common physics convention seems designed to
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confuse the smart student who expects a notation that manifests, not obscures, the transformational prop-
erties of a volume element.
The simplest and most common application of Gauss’ theorem is where 𝑎 = 𝑎𝑚𝑑𝑥

𝑚 is a 1-form, in which
case ∫︁

𝑉

𝐷𝑛𝑎𝑛 𝑑
𝑁𝑥 =

∮︁
𝜕𝑉

𝑎𝑛 𝑑
𝑁−1𝑥𝑛 , (15.102)

where, as just remarked, 𝑑𝑁𝑥 and 𝑑𝑁−1𝑥𝑛 denote respectively the dual scalar 𝑁 -volume and the dual vector
(𝑁−1)-volume.

15.15 Dirac delta-function

A Dirac delta-function can be thought of as a special function that is infinity at the origin, zero everywhere
else, and has unit volume in the sense that it yields one when integrated over any region containing the
origin. In curved spacetime, in order that the integral be a scalar, the 𝑝-dimensional Dirac delta-function
must transform oppositely to the 𝑝-dimensional volume element.
The 𝑝-dimensional Dirac delta-function 𝛿𝑝(𝑥) is defined such that for any scalar function 𝑓(𝑥), the integral

over any 𝑝-volume element containing the origin 𝑥 = 0,∫︁
𝑓(𝑥) 𝛿𝑝𝐾(𝑥) 𝑑𝑝𝑥𝐾 = 𝑓(0) , (15.103)

yields the value 𝑓(0) of the function at the origin. The 𝑝-dimensional Dirac delta-function is an antisymmetric
tensor of rank 𝑝, with components 𝛿𝑝𝐾(𝑥), where 𝐾 runs over distinct antisymmetric sequences of 𝐾 indices.
The dual 𝑞-dimensional Dirac delta-function *𝛿𝑞(𝑥) with 𝑞 ≡ 𝑁−𝑝, is defined to behave similarly when

integrated over the dual 𝑞-volume element *𝑑𝑞𝑥𝐾 defined by equation (15.80),∫︁
𝑓(𝑥) *𝛿𝑞𝐾(𝑥) *𝑑𝑞𝑥𝐾 = 𝑓(0) . (15.104)

The dual 𝑞-dimensional Dirac delta-function *𝛿𝑞(𝑥) is an antisymmetric tensor of rank 𝑝, with components
*𝛿𝑞𝐾(𝑥) where 𝐾 runs over distinct antisymmetric sequences of 𝑝 indices.
As with the dual 𝑞-volume, the dual Dirac delta-function *𝛿𝑞𝑘...𝑙(𝑥) will often be abbreviated in this book

to 𝛿𝑞𝑘...𝑙(𝑥) without the Hodge star symbol, since the dual nature can usually be inferred from the number 𝑝
of indices 𝑘...𝑙.
The most common use of the Dirac delta-function is in integration over 𝑁 -dimensional space,∫︁

𝑓(𝑥) 𝛿𝑁(𝑥) 𝑑𝑁𝑥 = 𝑓(0) , (15.105)

where 𝛿𝑁(𝑥) and 𝑑𝑁𝑥 denote respectively the dual scalar 𝑁 -dimensional Dirac delta-function, and the dual
scalar 𝑁 -volume. The lack of indices on 𝛿𝑁 (𝑥) and 𝑑𝑁𝑥 signals that they are scalars.
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15.16 Integration of multivector-valued forms

In Chapter 16, §16.14, it will be found that the Hilbert action of general relativity takes its most insightful
form when expressed in the language of multivector-valued forms. These are forms whose coefficients are
themselves multivectors,

𝑎 = 𝑎Λ 𝑑
𝑝𝑥Λ = 𝑎𝐾Λ 𝛾𝛾𝐾 𝑑𝑝𝑥Λ , (15.106)

implicitly summed over distinct sequences 𝐾 of multivector indices and distinct sequences Λ of 𝑝 coordinate
indices. The advantage of the multivector-valued forms notation is that it makes manifest the two distinct
symmetries of general relativity: Lorentz transformations, encoded in the transformation of the multivector,
and translations (coordinate transformations), encoded in the transformation of the form.
Stokes’ theorem for multivector-valued forms is an immediate generalization of Stokes’s theorem (15.89)

for forms: the integral of the exterior derivative d𝑎 of a 𝑝-form multivector 𝑎, equation (15.106), over a
(𝑝+1)-dimensional hypersurface 𝑉 equals the integral of the 𝑝-form multivector 𝑎 over the 𝑝-dimensional
boundary 𝜕𝑉 of the hypersurface: ∫︁

𝑉

d𝑎 =

∮︁
𝜕𝑉

𝑎 . (15.107)

In other words, the fact that the coordinate components 𝑎Λ of the form 𝑎 are themselves multivectors leaves
Stokes’ theorem intact and unchanged.

Exercise 15.4. Action principle for strings and branes in arbitrary dimensions. The action for a
point particle is, up to a factor, the integral of the proper time along the worldline of the particle, equa-
tion (4.7). Similarly, a consistent action for a (𝑝−1)-dimensional object in 𝑁 -dimensional spacetime is, up
to a factor, the integral of the proper area of the 𝑝-dimensional worldtube of the object. String theorists call
such an object a (𝑝−1)-brane, with 𝑝 = 1 for a point particle and 𝑝 = 2 for a string. Let 𝜆𝛼, 𝛼 = 1, ..., 𝑝, be
𝑝 coordinates on the 𝑝-dimensional worldtube of the brane. The action of the (𝑝−1)-brane is

𝑆𝑝 = −𝜇
∫︁ f

i

𝑑𝑝𝜆 = −𝜇
∫︁ f

i

𝑒 𝑑𝑝𝜆1...𝑝 , (15.108)

where 𝑑𝑝𝜆 is the dual scalar 𝑝-volume element, 𝑑𝑝𝜆1...𝑝 is the pseudoscalar 𝑝-volume element, and 𝑒 ≡ 𝑒1...𝑝1...𝑝

is the vielbein determinant, equation (15.87). The action has units of mass × length (angular momentum),
so the constant 𝜇, the tension of the brane, has units of mass/length𝑝−1. For example, for a string, 𝑝 = 2,
the tension 𝜇 has dimensions of mass per unit length. Notice that it is built into the action (15.108) that the
tension 𝜇 of the brane, its mass per unit proper length𝑝−1, is constant. Thus the brane behaves like a thin
shell with a vacuum internal equation of state. The minus sign in the brane action (15.108) arises for the
same reason as the minus sign in the action (4.7) for a particle: when one dimension is timelike, the principle
of least spatial area is replaced by the principle of most spacetime area. A positive 𝜇 implies a positive proper
mass/length𝑝−1 of the brane. For strings, 𝑝 = 2, the action (15.108) is known as the Nambu-Goto action.
1. Derive the equations of motion that follow from the action (15.108).
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2. As previously for a point particle, §4.3, the standard version of the brane Lagrangian, equation (15.113),
involves a square root, and is not in (super-)Hamiltonian form. Recast the action (15.108) into (super-)
Hamiltonian form.

3. Derive the energy-momentum tensor of the brane.
Solution.
1. Standard Lagrangian. The Lagrangian of the (𝑝−1)-brane with action (15.108) is 𝐿𝑝 = −𝜇𝑒. The

Lagrangian approach requires that the Lagrangian be expressed in terms of coordinates and velocities.
Let 𝑥𝜇 be 𝑁 coordinates of the 𝑁 -dimensional spacetime in which the brane propagates, with line-
element 𝑑𝑠2 = 𝑔𝜇𝜈 𝑑𝑥

𝜇𝑑𝑥𝜈 . The coordinates 𝑥𝜇 on the worldtube are functions 𝑥𝜇(𝜆𝛼) of the worldtube
coordinates 𝜆𝛼. The induced metric ℎ𝛼𝛽 on the 𝑝-dimensional worldtube of the brane, satisfying 𝑑𝑠2 =

ℎ𝛼𝛽 𝑑𝜆
𝛼𝑑𝜆𝛽 , is related to the metric 𝑔𝜇𝜈 of the full spacetime by

ℎ𝛼𝛽 = 𝑔𝜇𝜈
𝜕𝑥𝜇

𝜕𝜆𝛼
𝜕𝑥𝜈

𝜕𝜆𝛽
= 𝑔𝜇𝜈𝑢

𝜇
𝛼𝑢

𝜈
𝛽 , (15.109)

where the velocities 𝑢𝜇𝛼 are defined by

𝑢𝜇𝛼 ≡
𝜕𝑥𝜇

𝜕𝜆𝛼
, 𝜇 = 1, ..., 𝑁 , 𝛼 = 1, ..., 𝑝 . (15.110)

In terms of an orthonormal tetrad whose first 𝑝 vectors 𝛾𝛾𝑎 are tangent to the worldtube, the metric ℎ𝛼𝛽
of the worldtube is

ℎ𝛼𝛽 ≡ 𝜂𝑎𝑏 𝑒𝑎𝛼𝑒𝑏𝛽 . (15.111)

Coordinate indices 𝜇, 𝜈, ... are raised and lowered with the spacetime metric 𝑔𝜇𝜈 , while worldtube indices
𝛼, 𝛽, ... are raised and lowered with the worldtube metric ℎ𝛼𝛽 . The determinant ℎ of the metric on the
worldtube is

ℎ ≡ |ℎ𝛼𝛽 | = |𝜂𝑎𝑏||𝑒𝑎𝛼||𝑒𝑏𝛽 | = −𝑒2 , (15.112)

where 𝑒 is the vielbein determinant, the same determinant as that in the action (15.108). The minus
sign in equation (15.112) assumes that the worldtube progresses in time, so that one of the dimensions
of the worldtube is timelike, hence |𝜂𝑎𝑏| = −1. The Lagrangian of the (𝑝−1)-brane is then

𝐿𝑝 = −𝜇𝑒 = −𝜇
√
−ℎ = −𝜇

√︁
−|ℎ𝛼𝛽 | = −𝜇

√︃
−
⃒⃒⃒⃒
𝑔𝜇𝜈

𝜕𝑥𝜇

𝜕𝜆𝛼
𝜕𝑥𝜈

𝜕𝜆𝛽

⃒⃒⃒⃒
= −𝜇

√︁
− |𝑔𝜇𝜈𝑢𝜇𝛼𝑢𝜈𝛽 | . (15.113)

The variation of the Lagrangian satisfies, from equation (2.77) for the variation of a determinant,

𝑒−1𝛿𝐿𝑝 = −𝜇 𝛿 ln 𝑒 = − 1
2𝜇 𝛿 lnℎ = − 1

2𝜇ℎ
𝛼𝛽𝛿ℎ𝛼𝛽 = − 1

2𝜇ℎ
𝛼𝛽𝛿 (𝑔𝜇𝜈𝑢

𝜇
𝛼𝑢

𝜈
𝛽) . (15.114)

The variations of the Lagrangian with respect to the velocities 𝑢𝜅𝛼 and coordinates 𝑥𝜅 are therefore

𝑝𝜅
𝛼 ≡ 𝛿𝐿𝑝

𝛿𝑢𝜅𝛼
= −𝜇𝑒ℎ𝛼𝛽𝑔𝜅𝜈

𝜕𝑥𝜈

𝜕𝜆𝛽
= −𝜇𝑒𝑢𝜅𝛼 , (15.115a)

𝛿𝐿𝑝
𝛿𝑥𝜅

= − 1
2𝜇𝑒ℎ

𝛼𝛽 𝜕𝑔𝜇𝜈
𝜕𝑥𝜅

𝜕𝑥𝜇

𝜕𝜆𝛼
𝜕𝑥𝜈

𝜕𝜆𝛽
= −𝜇𝑒Γ̊𝜇𝜈𝜅𝑢𝜇𝛼𝑢𝜈𝛼 , (15.115b)
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the variation (15.115a) with respect to velocities 𝑢𝜅𝛼 defining the generalized momenta 𝑝𝜅𝛼. In equa-
tion (15.115b) the coordinate derivatives of the metric have been replaced by torsion-free coordinate
connections (Christoffel symbols), equation (2.59); the connections are torsion-free because the co-
ordinate connection symmetrized over its first two indices is the torsion-free coordinate connection,
Γ(𝜇𝜈)𝜅 = Γ̊𝜇𝜈𝜅, equation (2.64). Linearity of the derivative, equation (4.3), implies that the variation of
the velocity equals the velocity of the variation, 𝛿(𝜕𝑥𝜅/𝜕𝜆𝛼) = 𝜕𝛿𝑥𝜅/𝜕𝜆𝛼. The variation of the brane
action with respect to coordinates and velocities is then

𝛿𝑆𝑝 =

∫︁ f

i

(︂
𝑝𝜅
𝛼 𝜕𝛿𝑥

𝜅

𝜕𝜆𝛼
+
𝜕𝐿𝑝
𝜕𝑥𝜅

𝛿𝑥𝜅
)︂
𝑑𝑝𝜆1...𝑝 . (15.116)

The first term on the right hand side of equation (15.116) can be integrated by parts. To do so, recall
that Gauss’ theorem (15.99) involves the integral of a torsion-free divergence, which in the present
application takes the form ∫︁

𝐷𝛼𝑎
𝛼 𝑑𝑝𝜆 =

∮︁
𝑎𝛼 𝑑

𝑝−1𝜆𝛼 , (15.117)

with 𝑑𝑝𝜆 = 𝑒 𝑑𝑝𝜆1...𝑝 = 𝑒1...𝑝1...𝑝 𝑑
𝑝𝜆1...𝑝 and 𝑑𝑝−1𝜆𝛼 = 𝑒1...𝑝−11... ̸𝛼...𝑝 𝑑

𝑝−1𝜆1...̸𝛼...𝑝 the dual proper 𝑝 and 𝑝−1
volume elements. The integration by parts is accomplished through

𝑝𝜅
𝛼 𝜕𝛿𝑥

𝜅

𝜕𝜆𝛼
=

𝜕

𝜕𝜆𝛼
(𝑝𝜅

𝛼𝛿𝑥𝜅)− 𝜕𝑝𝜅
𝛼

𝜕𝜆𝛼
𝛿𝑥𝜅 = 𝑒𝐷𝛼

(︀
𝑒−1𝑝𝜅

𝛼𝛿𝑥𝜅
)︀
− 𝜕𝑝𝜅

𝛼

𝜕𝜆𝛼
𝛿𝑥𝜅 . (15.118)

The variation of the action (15.116) becomes, after integration by parts,

𝛿𝑆𝑝 =

∮︁ f

i

𝑒−1𝑝𝜅𝛼𝛿𝑥
𝜅 𝑑𝑝−1𝜆𝛼 −

∫︁ f

i

(︂
𝜕𝑝𝜅

𝛼

𝜕𝜆𝛼
− 𝜕𝐿𝑝
𝜕𝑥𝜅

)︂
𝛿𝑥𝜅 𝑑𝑝𝜆1...𝑝 . (15.119)

As usual, application of least action requires the coordinates to be held fixed on the boundary, so 𝛿𝑥𝜅

vanishes on the boundary, and the surface term in equation (15.119) vanishes. Requiring the variation
of the action to vanish for all possible variations of 𝛿𝑥𝜅 on the worldtube then implies the equation of
motion

𝜕𝑝𝜅
𝛼

𝜕𝜆𝛼
=
𝛿𝐿𝑝
𝛿𝑥𝜅

= −𝜇𝑒Γ̊𝜇𝜈𝜅𝑢𝜇𝛼𝑢𝜈𝛼 . (15.120)

The equation of motion (15.120) may also be written as the vanishing of the torsion-free covariant
divergence of the velocity 𝑢𝜅𝛼 = −𝑝𝜅𝛼/(𝜇𝑒),

𝐷𝛼𝑢𝜅
𝛼 = 𝜕𝛼𝑢𝜅

𝛼 + Γ̊𝛼𝛽𝛼𝑢𝜅
𝛽 − Γ̊𝜇𝜈𝜅𝑢

𝜇𝛼𝑢𝜈𝛼 = 0 , (15.121)

in which the connection term Γ̊𝛼𝛽𝛼 = 𝜕 ln 𝑒/𝜕𝜆𝛽 (all worldtube indices), equation (2.79), enforces covari-

ance with respect to the worldtube coordinate index 𝛼 of the velocity, while the connection term Γ̊𝜇𝜈𝜅
(all external indices) enforces covariance with respect to the external coordinate index 𝜅 of the velocity.
As a check, for a point particle, 𝑝 = 1, of mass 𝜇 = 𝑚, the Lagrangian (15.113) is 𝐿𝑚 = −𝑚𝑒 with

𝑒 = 𝑑𝜏/𝑑𝜆, equation (4.8), the induced metric (15.136) is ℎ00 = −𝑒2 with inverse ℎ00 = −𝑒−2, the
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momentum (15.115a) is 𝑝𝜅 = 𝑚𝑒−1𝑔𝜅𝜈𝑑𝑥
𝜈/𝑑𝜆 = 𝑚𝑔𝜅𝜈𝑑𝑥

𝜈/𝑑𝜏 , and the equation of motion (15.120)
reduces to

𝑑𝑝𝜅
𝑑𝜆

= 𝑚Γ̊𝜇𝜈𝜅
𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆

𝑑𝜆

𝑑𝜏
, (15.122)

in agreement with equation (4.12).
2. (Super-)Hamiltonian. The standard brane Lagrangian (15.113) is not in (super-)Hamiltonian form.

To take Hamiltonian form, the brane action must take the form, analogous to the action (4.69) for a
point particle,

𝑆𝑝 =

∫︁ f

i

(︂
𝑝𝜇
𝛼 𝜕𝑥

𝜇

𝜕𝜆𝛼
−𝐻𝑝

)︂
𝑑𝑝𝜆1...𝑝 , (15.123)

with brane Lagrangian

𝐿𝑝 = 𝑝𝜇
𝛼 𝜕𝑥

𝜇

𝜕𝜆𝛼
−𝐻𝑝 . (15.124)

The brane Hamiltonian is to be considered as a function 𝐻𝑝(𝑥
𝜇, 𝑝𝜇

𝛼) of independent coordinates 𝑥𝜇 and
momenta 𝑝𝜇𝛼. However, as in the case of a point particle, §4.6, the equations of motion must be indepen-
dent of the arbitrary coordinates 𝜆𝛼 that label the worldtube: the Hamiltonian must be reparametriza-
tion independent. To achieve independence with respect to the choice of worldtube coordinates, it is
necessary to treat the brane Hamiltonian as a function 𝐻𝑝(𝑥

𝜇, 𝑝𝜇
𝛼, ℎ𝛼𝛽) not only of coordinates and

momenta, but also of an independent worldtube metric ℎ𝛼𝛽 . Invariance of the Hamiltonian with respect
to variations of the worldtube metric ℎ𝛼𝛽 emerges as an equation of motion (15.128c).
The variation of the first term in the integrand of the action (15.123) is

𝛿

(︂
𝑝𝜇
𝛼 𝜕𝑥

𝜇

𝜕𝜆𝛼

)︂
= 𝛿𝑝𝜇

𝛼 𝜕𝑥
𝜇

𝜕𝜆𝛼
+ 𝑝𝜇

𝛼 𝜕𝛿𝑥
𝜇

𝜕𝜆𝛼
= 𝛿𝑝𝜇

𝛼 𝜕𝑥
𝜇

𝜕𝜆𝛼
+

𝜕

𝜕𝜆𝛼
(𝑝𝜇

𝛼𝛿𝑥𝜇)− 𝜕𝑝𝜇
𝛼

𝜕𝜆𝛼
𝛿𝑥𝜇

= 𝛿𝑝𝜇
𝛼 𝜕𝑥

𝜇

𝜕𝜆𝛼
+ 𝑒𝐷𝛼

(︀
𝑒−1𝑝𝜇

𝛼𝛿𝑥𝜇
)︀
− 𝜕𝑝𝜇

𝛼

𝜕𝜆𝛼
𝛿𝑥𝜇 . (15.125)

The term involving the torsion-free divergence integrates by parts to a surface term. The variation of
the action (15.123) with Hamiltonian 𝐻𝑝(𝑥

𝜇, 𝑝𝜇
𝛼, ℎ𝛼𝛽) is

𝛿𝑆𝑝 =

∮︁ f

i

𝑒−1𝑝𝜇𝛼𝛿𝑥
𝜇 𝑑𝑝−1𝜆𝛼

+

∫︁ f

i

(︂
𝛿𝑝𝜇

𝛼

(︂
𝜕𝑥𝜇

𝜕𝜆𝛼
− 𝛿𝐻𝑝

𝛿𝑝𝜇𝛼

)︂
−
(︂
𝜕𝑝𝜇

𝛼

𝜕𝜆𝛼
+
𝛿𝐻𝑝

𝛿𝑥𝜇

)︂
𝛿𝑥𝜇 − 𝛿𝐻𝑝

𝛿ℎ𝛼𝛽
𝛿ℎ𝛼𝛽

)︂
𝑑𝑝𝜆1...𝑝 . (15.126)

The surface term vanishes provided that the coordinates are held fixed, 𝛿𝑥𝜇 = 0, on the boundary.
The (super-)Hamiltonian that correctly recovers the relation (15.115a) between brane velocities and
momenta, and the brane equations of motion (15.120), is

𝐻𝑝 = −
1

2𝜇𝑒
ℎ𝛼𝛽𝑔

𝜇𝜈𝑝𝜇
𝛼𝑝𝜈

𝛽 − (𝑝−2)𝜇𝑒
2

, (15.127)
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in which 𝑒 is to be considered a function 𝑒 =
√
−ℎ =

√︀
−|ℎ𝛼𝛽 | of the worldtube metric ℎ𝛼𝛽 . Coordinate

indices 𝜇, 𝜈, ... are raised and lowered with the spacetime metric 𝑔𝜇𝜈 , while worldtube indices 𝛼, 𝛽, ...
are raised and lowered with the independent worldtube metric ℎ𝛼𝛽 .

The equations of motion that follow from the vanishing of the variation (15.126) of the brane action
with the brane Hamiltonian (15.127) are

𝑢𝜇𝛼 ≡
𝜕𝑥𝜇

𝜕𝜆𝛼
=

𝛿𝐻𝑝

𝛿𝑝𝜇𝛼
= − 1

𝜇𝑒
ℎ𝛼𝛽𝑔

𝜇𝜈𝑝𝜈
𝛽 , (15.128a)

𝜕𝑝𝜅
𝛼

𝜕𝜆𝛼
=−𝛿𝐻𝑝

𝛿𝑥𝜅
=

1

2𝜇𝑒
ℎ𝛼𝛽

𝜕𝑔𝜇𝜈

𝜕𝑥𝜅
𝑝𝜇
𝛼𝑝𝜈

𝛽 , (15.128b)

0 =
𝛿𝐻𝑝

𝛿ℎ𝛼𝛽
= − 1

2𝜇𝑒

(︁
𝑔𝜇𝜈𝑝𝜇

𝛼𝑝𝜈
𝛽 − 1

2ℎ
𝛼𝛽
(︀
𝑝𝜇
𝛾𝑝𝜇𝛾 − (𝑝−2)(𝜇𝑒)2

)︀)︁
. (15.128c)

Equation (15.128c) imposes that ℎ𝛼𝛽 be proportional to 𝑔𝜇𝜈𝑝𝜇𝛼𝑝𝜈𝛽 . Taking the trace of equation (15.128c),
and bearing in mind that ℎ𝛼𝛽ℎ𝛼𝛽 = 𝛿𝛼𝛼 = 𝑝 (the brane dimension), implies the normalization condition

0 = ℎ𝛼𝛽
𝛿𝐻𝑝

𝛿ℎ𝛼𝛽
=
𝑝− 2

4𝜇𝑒

(︀
𝑝𝜇
𝛾𝑝𝜇𝛾 − 𝑝(𝜇𝑒)2

)︀
. (15.129)

For all branes except strings, equation (15.129) implies the normalization

𝑔𝜇𝜈𝑝𝜇
𝛼𝑝𝜈

𝛽 = (𝜇𝑒)2ℎ𝛼𝛽 for 𝑝 ̸= 2 . (15.130)

The reason there is no normalization condition for strings is that, under a conformal rescaling of the
worldtube metric ℎ𝛼𝛽 by a scale factor 𝑎,

ℎ𝛼𝛽 → 𝑎2ℎ𝛼𝛽 , ℎ ≡ |ℎ𝛼𝛽 | → 𝑎2𝑝ℎ , 𝑒 ≡
√
−ℎ→ 𝑎𝑝𝑒 , (15.131)

the brane Hamiltonian (15.127) transforms as

𝐻𝑝 → −
𝑎2−𝑝

2𝜇𝑒
ℎ𝛼𝛽𝑔

𝜇𝜈𝑝𝜇
𝛼𝑝𝜈

𝛽 − (𝑝−2)𝜇𝑒𝑎𝑝

2
, (15.132)

which implies that the Hamiltonian (15.127) is conformally invariant for a string,

𝐻𝑝 → 𝐻𝑝 for 𝑝 = 2 . (15.133)

The conformal invariance (15.133), commonly called Weyl invariance, of the string Hamiltonian implies
that equation (15.129) is satisfied automatically without any normalization condition on ℎ𝛼𝛽 . The
conformal invariance of the string Hamiltonian is at the heart of some of the magic of string theory.

For non-strings, 𝑝 ̸= 2, the normalization (15.130) along with equations (15.128a) and (15.128c)
recover the relation (15.136) for the worldtube metric ℎ𝛼𝛽 . After the normalization (15.130) is imposed,
the value of the brane Hamiltonian (15.127) is

𝐻𝑝 = 𝜇𝑒(1− 𝑝) for 𝑝 ̸= 2 . (15.134)
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The value of the brane Lagrangian (15.124) is

𝐿𝑝 = 𝑝𝜇
𝛼𝑢𝜇𝛼 −𝐻𝑝 = −𝜇𝑒 for 𝑝 ̸= 2 , (15.135)

in agreement with the standard brane Lagrangian (15.113).

For strings, 𝑝 = 2, let the true worldtube metric be denoted with a happy sign, ℎ̆𝛼𝛽 ,

ℎ̆𝛼𝛽 ≡ 𝑔𝜇𝜈𝑢𝜇𝛼𝑢𝜈𝛽 . (15.136)

For strings, equation (15.128c) implies that ℎ𝛼𝛽 is proportional to the true worldtube metric ℎ̆𝛼𝛽 , but
leaves the normalization arbitrary. For strings, the Hamiltonian (15.127), with momenta 𝑝𝜇𝛼 eliminated
in favour of velocities 𝑢𝜇𝛼 using equation (15.128a), is

𝐻𝑝 = − 1
2𝜇𝑒ℎ

𝛼𝛽ℎ̆𝛼𝛽 for 𝑝 = 2 . (15.137)

But for strings, the product 𝑒ℎ𝛼𝛽 with 𝑒 =
√
−ℎ is unchanged by the normalization of ℎ𝛼𝛽 , so can be

replaced by 𝑒ℎ̆𝛼𝛽 with 𝑒 =
√︀
−ℎ̆. Thus the string Hamiltonian (15.137) is, regardless of the normalization

of ℎ𝛼𝛽 ,

𝐻𝑝 = −𝜇𝑒 for 𝑝 = 2 , (15.138)

which agrees with the non-string Hamiltonian (15.134) if 𝑒 is interpreted as the true vielbein determinant
𝑒. The value of the string Lagrangian (15.124) is

𝐿𝑝 = −𝜇𝑒 for 𝑝 = 2 , (15.139)

again in agreement with the standard brane Lagrangian (15.113).

Equation (15.128b) with (15.128a) implies

𝜕𝑝𝜅
𝛼

𝜕𝜆𝛼
= −𝜇𝑒ℎ𝛼𝛽Γ̊𝜇𝜈𝜅𝑢𝜇𝛼𝑢𝜈𝛽 , (15.140)

which recovers the brane equation of motion (15.120), for branes of arbitrary dimension 𝑝. For strings,
𝑝 = 2, the factor 𝑒ℎ𝛼𝛽 in the equation of motion (15.140) can be replaced by 𝑒ℎ̆𝛼𝛽 , affirming that
equation (15.140) is correctly normalized also for 𝑝 = 2.

For a point particle, 𝑝 = 1, of mass 𝜇 = 𝑚, the brane Hamiltonian (15.127) reduces to the nice
Hamiltonian (4.96) (absent electromagnetism) if the scale factor 𝑎 in the latter is identified with

𝑎 =
𝑒

𝑚
, (15.141)

where 𝑒 ≡
√︀
−|ℎ00|.

For a string, 𝑝 = 2, the brane Lagrangian (15.124) with Hamiltonian (15.127) is essentially the
Polyakov (1981) Lagrangian.

3. The energy-momentum tensor 𝑇𝛼𝑎 of a brane is obtained by varying the brane action 𝑆𝑝 with respect to
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the worldtube vielbein 𝑒𝑎𝛼, equation (16.117). The energy-momentum tensor of the brane is proportional
to the worldtube vielbein, so the brane has a vacuum equation of state,

𝑇𝛼𝑎 = − 𝛿𝐿𝑝
𝛿𝑒𝑎𝛼

= 𝜇
𝛿𝑒

𝛿𝑒𝑎𝛼
= −𝜇𝑒𝑎𝛼 . (15.142)

In the coordinate frame, the brane energy-momentum is

𝑇𝛼𝛽 = −𝜇ℎ𝛼𝛽 . (15.143)

The brane Lagrangian is independent of the Lorentz connections Γ𝑎𝑏𝛼, so the brane carries no torsion,
equation (16.121).



16

Action principle for electromagnetism and
gravity

One of the profound realisations of physics in the second half of the twentieth century was that the four forces
of the Standard Model of physics — the electromagnetic, weak, strong (or colour), and gravitational forces
— all emerge from an action that is invariant with respect to local symmetries called gauge transformations.
Gauge transformations rotate internal degrees of freedom of fields at each point of spacetime.
The simplest of the forces is the electromagnetic force, which is based on the 1-dimensional unitary group

U(1) of rotations about a circle. Since the mid 1970s, the electromagnetic group has been understood to
be the unbroken remnant of a larger electroweak group U𝑌 (1) × SU(2), which through interactions with a
scalar field called the Higgs field breaks down to the electromagnetic group U(1) at collision energies less
than the electroweak scale of about 1TeV (the U𝑌 (1) electroweak hypercharge group is not the same as the
U(1) electromagnetic group). The group SU(𝑁) is the special unitary group in 𝑁 dimensions, the group of
𝑁 -dimensional unitary matrices of unit determinant. The colour group is SU(3).
The gravitational force is likewise a gauge force. The gravitational group is the group of spacetime trans-

formations, also known as the Poincaré group, which is the product of the 6-dimensional Lorentz group of
rotations and the 4-dimensional group of translations.1

It is quite remarkable that so much of physics is captured by so simple a mathematical structure as a
group of symmetries. During the 1980s there was hope that perhaps all of physics might be described by
some theory-of-everything group, and all that was left to do was to discover that group and figure out its
consequences. That hope was not realised.
Gravity has been at the heart of the problem. Whereas the three other forces are successfully described by

renormalizable quantum field theories, albeit equipped with a large number of seemingly arbitrary param-
eters, gravity has resisted quantization. Currently the most successful (some would dispute that adjective)

1 Technically the Poincaré group refers to the global symmetries of Minkowski space, where rotations do not commute with
translations (rotation followed by translation yields a different result from translation followed by rotation). The Poincaré
group is said to be a semi-direct product of rotations and translations. In general relativity, the translation group of
Minkowski space is replaced by general coordinate transformations, which commute with local Lorentz transformations. In
general relativity, coordinate transformations should be thought of as simply relabelling coordinates while leaving the
underlying physical spacetime unchanged; and similarly local Lorentz transformation should be thought of as changing the
tetrad axes with respect to which the locally inertial frame is measured, again while leaving the underlying spacetime
unchanged.

410
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theory of quantum gravity is string theory, or more specifically superstring theory (which includes spin-12
particles), or more specifically some enveloping theory that contains not only strings, 1-dimensional objects
sweeping out 2-dimensional worldsheets, but also fundamental objects, branes, of other dimensions. The
topic of string theory is beyond the scope of this book. Suffice to say that string theory is apparently a much
larger and richer theory than a putative theory of just our Universe. The good thing is that string theory
(probably) contains the laws of physics of our Universe. The embarrassing thing (embarras de richesses,
advocates would say) is that string theory (probably) contains many other possible laws of physics. This has
led to the conjecture that our Universe is just one of a multiverse of universes with different sets of laws
of physics. Such ideas are fascinating, but at present distanced from experimental or observational reality.
String theory remains work in progress.

This Chapter starts by applying the action principle to the simple example of an unspecified template
field 𝜙, deriving the Euler-Lagrange equations in §16.1, and Hamilton’s equations in §16.2.

The Chapter goes on to apply the action principle to the simplest example of a gauge field, the electromag-
netic field, first in index notation, §16.5, and then in the more difficult but powerful language of differential
forms, §16.6. The electromagnetic example brings out features that appear in more complicated form in
the gravitational field. Notably, the covariant equations of motion for the electromagnetic field resolve into
genuine equations of motion for physical degrees of freedom, constraint equations whose ongoing satisfaction
is guaranteed by conservation laws arising from gauge symmetries, and identities that define auxiliary fields
that arise in a covariant treatment.

The Chapter then proceeds to apply the action principle to the Hilbert (1915) Lagrangian to derive the
equations of motion of gravity, namely the Einstein equations, along with equations for the connection
coefficients. The tetrad-frame approach followed in this Chapter makes manifest the dependence of Hilbert’s
Lagrangian on the two distinct symmetries of general relativity, namely symmetry with respect to local
Lorentz transformations, and symmetry with respect to general coordinate transformations.

The Chapter treats the gravitational action using three different mathematical languages, progressing
from the more explicit to the more abstract. The first approach, starting at §16.7, lays out all indices
explicitly. The second approach, §16.13, uses multivectors. The final approach, §16.14, uses multivector-
valued differential forms. The multivector forms notation provides an elegant formulation of the definitions
of curvature and torsion, equations (16.208) and (16.212), first formulated by Cartan (1904), and elegant
versions of the equations of motion (16.250) that govern them. The dense, abstract notation can be hard to
unravel (which is why more explicit approaches are helpful), but offers the clearest picture of the structure
of the gravitational equations. A clear picture is essential both from the practical perspective of numerical
relativity, and from the esoteric perspective of aspiring to a deeper understanding of the unsolved mysteries
of (quantum) gravity.

As expounded in Chapter 15, 𝑑4𝑥 denotes the invariant scalar 4-volume element, equation (15.80), while
𝑑4𝑥0123 denotes the pseudoscalar coordinate 4-volume element, the indices 0123 serving as a reminder that
the coordinate 4-volume element is a totally antisymmetric coordinate tensor of rank 4. The two are related
by a factor of the determinant 𝑒 of the vierbein, 𝑑4𝑥 = 𝑒 𝑑4𝑥0123, equation (15.88).
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16.1 Euler-Lagrange equations for a generic field

Let 𝜙(𝑥𝜇) denote some unspecified classical continuous field defined throughout spacetime. The least action
principle asserts that the equations of motion governing the field can be obtained by minimizing an action
𝑆, which is asserted to be an integral over spacetime of a certain scalar Lagrangian. The scalar Lagrangian is
asserted to be a function 𝐿(𝜙,𝐷𝜇𝜙) of “coordinates” which are the values of the field 𝜙(𝑥𝜇) at each point of
spacetime, and of “velocities” which are the torsion-free covariant derivatives 𝐷𝜇𝜙 of the field. The torsion-
free covariant derivatives are prescribed because application of the least action principle involves integration
by parts, and, as established in Chapter 15, equations (15.91) or (15.99), it is precisely the torsion-free
covariant derivative that can be integrated to yield surface terms.
It should be commented that in the case of spinors 𝜓, the Lagrangian can be considered to be a function

𝐿(𝜓,𝐷𝜇𝜓) of the spinor field 𝜓 and its torsion-full covariant dervative 𝐷𝜇𝜓, since Gauss’ theorem occurs in
a form (40.21) where the contortion contribution vanishes on integration by parts. The action principle for
spinor fields is deferred to Chapter 41.
The Lagrangian 𝐿(𝜙,𝐷𝜇𝜙) is actually a function of functions. Mathematicians refer to such a thing as

a functional. Derivatives of a functional with respect to the functions it depends on are called functional
derivatives, or variational derivatives, and are denoted with a 𝛿 symbol. For example, the derivative of the
functional 𝐿 with respect to the function 𝜙 is denoted 𝛿𝐿/𝛿𝜙.
Least action postulates that the evolution of the field is such that the action

𝑆 =

∫︁ 𝜆f

𝜆i

𝐿(𝜙,𝐷𝜇𝜙) 𝑑
4𝑥 (16.1)

takes a minimum value with respect to arbitrary variations of the field, subject to the constraint that the field
is fixed on its boundary, the initial and final surfaces. The integral in equation (16.1) is over 4-dimensional
spacetime between a fixed initial 3-dimensional hypersurface and a fixed final 3-dimensional hypersurface,
labelled respectively 𝜆i and 𝜆f . The variation 𝛿𝑆 of the action with respect to the field and its derivatives is

𝛿𝑆 =

∫︁ 𝜆f

𝜆i

(︃
𝛿𝐿

𝛿𝜙
𝛿𝜙+

𝛿𝐿

𝛿(𝐷𝜇𝜙)
𝛿(𝐷𝜇𝜙)

)︃
𝑑4𝑥 = 0 . (16.2)

Linearity of the covariant derivative,

𝐷𝜇(𝜙+ 𝛿𝜙) = 𝐷𝜇𝜙+𝐷𝜇(𝛿𝜙) , (16.3)

implies that the variation of the derivative equals the derivative of the variation, 𝛿(𝐷𝜇𝜙) = 𝐷𝜇(𝛿𝜙). Define
the canonical momentum 𝜋𝜇 conjugate to the field 𝜙 to be

𝜋𝜇 ≡ 𝛿𝐿

𝛿(𝐷𝜇𝜙)
. (16.4)

The second term in the integrand of equation (16.2) can be written

𝜋𝜇𝛿(𝐷𝜇𝜙) = 𝐷𝜇(𝜋
𝜇𝛿𝜙)− (𝐷𝜇𝜋

𝜇)𝛿𝜙 , (16.5)
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The first term on the right hand side of equation (16.5) is a torsion-free covariant divergence, which integrates
to a surface term. With the second term in the integrand of equation (16.2) thus integrated by parts, the
variation of the action is

𝛿𝑆 =

[︂∮︁
𝜋𝜇𝛿𝜙 𝑑

3𝑥𝜇
]︂𝜆f

𝜆i

+

∫︁ 𝜆f

𝜆i

(︂
𝛿𝐿

𝛿𝜙
−𝐷𝜇𝜋

𝜇

)︂
𝛿𝜙 𝑑4𝑥 = 0 . (16.6)

The surface term in equation (16.6), which is an integral over each of the three-dimensional initial and
final hypersurfaces, vanishes since by hypothesis the fields are fixed on the initial and final hypersurfaces,
𝛿𝜙i = 𝛿𝜙f = 0. Consequently the integral term must also vanish. Least action demands that the integral
vanish for all possible variations 𝛿𝜙 of the field. The only way this can happen is that the integrand must
be identically zero. The result is the Euler-Lagrange equations of motion for the field,

𝐷𝜇𝜋
𝜇 =

𝛿𝐿

𝛿𝜙
. (16.7)

All of the above derivations carry through with the field 𝜙 replaced by a set of fields 𝜙𝑖, with conjugate
momenta 𝜋𝜇𝑖 ≡ 𝛿𝐿/𝛿(𝐷𝜇𝜙𝑖). The index 𝑖 could simply enumerate a list of fields, or it could signify the
components of a set of fields that transform into each other under some group of symmetries.

16.2 Super-Hamiltonian formalism

The Lagrangians 𝐿 of the fields that Nature fields turn out to be writable in super-Hamiltonian form

𝐿 = 𝜋𝜇𝐷𝜇𝜙−𝐻 , (16.8)

in which the super-Hamiltonian 𝐻(𝜙, 𝜋𝜇) is a scalar function of the field 𝜙 and its conjugate momenta 𝜋𝜇,
defined in terms of the Lagrangian by equation (16.4).
Varying the action with Lagrangian (16.8) with respect to the field 𝜙 and its conjugate momenta 𝜋𝜇 gives

𝛿𝑆 =

∫︁ 𝜆f

𝜆i

(︂
𝜋𝜇𝐷𝜇𝛿𝜙+ 𝛿𝜋𝜇𝐷𝜇𝜙−

𝛿𝐻

𝛿𝜙
𝛿𝜙− 𝛿𝜋𝜇 𝛿𝐻

𝛿𝜋𝜇

)︂
𝑑4𝑥 . (16.9)

Integrating the first term in the integrand by parts brings the variation of the action to

𝛿𝑆 =

[︂∮︁
𝜋𝜇𝛿𝜙 𝑑3𝑥𝜇

]︂𝜆f

𝜆i

+

∫︁ 𝜆f

𝜆i

[︂
−
(︂
𝐷𝜇𝜋

𝜇 +
𝛿𝐻

𝛿𝜙

)︂
𝛿𝜙+ 𝛿𝜋𝜇

(︂
𝐷𝜇𝜙−

𝛿𝐻

𝛿𝜋𝜇

)︂]︂
𝑑4𝑥 . (16.10)

The principle of least action requires that the variation vanish with respect to arbitrary variations 𝛿𝜙 and
𝛿𝜋𝜇 of the field and its conjugate momenta, subject to the condition that the field is held fixed on the initial
and final hypersurfaces. The result is Hamilton’s equations of motion,

𝐷𝜇𝜋
𝜇 = −𝛿𝐻

𝛿𝜙
, 𝐷𝜇𝜙 =

𝛿𝐻

𝛿𝜋𝜇
. (16.11)

Hamilton’s equations (16.11) for the field 𝜙 can be compared to Hamilton’s equations (4.72) for particles.
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16.3 Conventional Hamiltonian formalism

The conventional Hamiltonian is not the same as the super-Hamiltonian. In the conventional Hamiltonian
formalism, the coordinates 𝑥𝜇 are split into a time coordinate 𝑡 and spatial coordinates 𝑥𝛼. The momentum
𝜋 conjugate to the field 𝜙 is defined to be

𝜋 ≡ 𝛿𝐿

𝛿(𝐷𝑡𝜙)
. (16.12)

The conventional Hamiltonian 𝐻 is defined in terms of the Lagrangian 𝐿 by

𝐻 = 𝜋𝐷𝑡𝜙− 𝐿 . (16.13)

In the context of general relativity, the covariant super-Hamiltonian approach to fields is, as in the case of
point particles, §4.10, simpler and more natural than the non-covariant conventional Hamiltonian approach.
Indeed, the most straightforward way to implement the conventional Hamiltonian approach is to use the
super-Hamiltonian approach, and then carry out a 3+1 split into space and time coordinates at the end,
rather than doing a 3+1 split at the outset.

16.4 Symmetries and conservation laws

Associated with every symmetry is a conserved quantity. The relation between symmetries and conserved
quantities is called Noether’s theorem (Noether, 1918), equations (16.17) and (16.18). Examples of
Noether’s theorem include local electromagnetic gauge symmetry implying conservation of electric charge
(§16.5.6), local Lorentz symmetry implying conservation of angular-momentum (§16.11.1), and general co-
ordinate transformations implying conservation of energy-momentum (§16.11.2).
All four of the known forces of Nature, including gravity, arise from local symmetries, in which the La-

grangian is invariant under symmetry transformations that are allowed to vary arbitrarily over spacetime.
Commonly, such transformations change not just one field, but multiple fields at the same time. However,
the Lagrangian of an individual field may by itself be symmetric, to the extent that the field does not inter-
act with other fields. For example, the local gauge symmetry of electromagnetism changes simultaneously
the electromagnetic field and all charged fields, and that symmetry implies the law of conservation of total
electric charge. However, an individual field, such as an electron field or a proton field, may individually
conserve charge, to the extent that the field does not interact with other fields.
Consider varying the template field 𝜙(𝑥) by a transformation with a prescribed shape 𝛿𝜙(𝑥) as a function

of spacetime,

𝜙(𝑥)→ 𝜙(𝑥) + 𝜖 𝛿𝜙(𝑥) , (16.14)

where 𝜖 is an infinitesimal constant parameter. The torsion-free covariant derivatives 𝐷𝑚𝜙 of the field
transform correspondingly as

𝐷𝑚𝜙→ 𝐷𝑚𝜙+ 𝜖𝐷𝑚(𝛿𝜙) . (16.15)
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The torsion-free covariant derivative is prescribed for the reason explained at the beginning of §16.1. The
variation (16.14) is a symmetry of the field if the Lagrangian 𝐿(𝜙,𝐷𝑚𝜙) is unchanged by it. The vanishing
of the variation of the Lagrangian implies

0 =
𝛿𝐿

𝛿𝜖

=
𝛿𝐿

𝛿𝜙
𝛿𝜙+

𝛿𝐿

𝛿(𝐷𝑚𝜙)
𝐷𝑚(𝛿𝜙)

= 𝐷𝑚

(︃
𝛿𝐿

𝛿(𝐷𝑚𝜙)
𝛿𝜙

)︃
+

(︃
𝛿𝐿

𝛿𝜙
−𝐷𝑚

𝛿𝐿

𝛿(𝐷𝑚𝜙)

)︃
𝛿𝜙

= 𝐷𝑚 (𝜋𝑚𝛿𝜙) +

(︂
𝛿𝐿

𝛿𝜙
−𝐷𝑚𝜋

𝑚

)︂
𝛿𝜙 , (16.16)

with 𝜋𝑚 the momentum conjugate to the field, equation (16.4). The Euler-Lagrange equation of motion (16.7)
for the field implies that the second term on the last line of (16.16) vanishes. Consequently the current 𝑗𝑚

defined by

𝑗𝑚 ≡ 𝜋𝑚𝛿𝜙 (16.17)

is covariantly conserved,

𝐷𝑚𝑗
𝑚 = 0 . (16.18)

The result (16.18) is Noether’s theorem.

16.5 Electromagnetic action

Electromagnetism is a gauge field based on the simplest of all continuous groups, the 1-dimensional unitary
group U(1) of rotations about a circle.

16.5.1 Electromagnetic gauge transformations

Under an electromagnetic gauge transformation, a field 𝜙 of charge 𝑒 transforms as

𝜙→ 𝑒−𝑖𝑒𝜃𝜙 , (16.19)

where the phase 𝜃(𝑥) is some arbitrary function of spacetime. The charge 𝑒 is dimensionless (in units 𝑐 = ~ =

1). The Lagrangian of the charged field 𝜙 involves the torsion-free derivative 𝐷𝜇𝜙 of the field. The torsion-
free covariant derivative is prescribed for the reason explained at the beginning of §16.1. To ensure that the
Lagrangian remains invariant also under an electromagnetic gauge transformation (16.19), the derivative 𝐷𝜇

must be augmented by an electromagnetic connection 𝐴𝜇, which equals the thing historically known as the
electromagnetic potential. The result is an electromagnetic gauge-covariant derivative 𝐷𝜇 + 𝑖𝑒𝐴𝜇 with
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the defining property that, when acting on the charged field 𝜙, it transforms under the electromagnetic gauge
transformation (16.19) as

(𝐷𝜇 + 𝑖𝑒𝐴𝜇)𝜙→ 𝑒−𝑖𝑒𝜃(𝐷𝜇 + 𝑖𝑒𝐴𝜇)𝜙 . (16.20)

In other words, the gauge-covariant derivative of the field 𝜙 is required to transform under electromagnetic
gauge transformations in the same way as the field 𝜙. The gauge-covariant derivative 𝐷𝜇 + 𝑖𝑒𝐴𝜇 transforms
correctly provided that the gauge field 𝐴𝜇 transforms under the electromagnetic gauge transformation (16.19)
as

𝐴𝜇 → 𝐴𝜇 +𝐷𝜇𝜃 . (16.21)

Since 𝜃 is a scalar phase, its covariant derivative reduces to its partial derivative, 𝐷𝜇𝜃 = 𝜕𝜃/𝜕𝑥𝜇.

16.5.2 Electromagnetic field tensor

The commutator of the gauge-covariant derivative 𝐷𝜇+𝑖𝑒𝐴𝜇 defines the electromagnetic field tensor 𝐹𝜇𝜈 ,

[𝐷𝜇 + 𝑖𝑒𝐴𝜇, 𝐷𝜈 + 𝑖𝑒𝐴𝜈 ] ≡ 𝑖𝑒𝐹𝜇𝜈 . (16.22)

The electromagnetic field 𝐹𝜇𝜈 has the key property that it is invariant under an electromagnetic gauge
transformation (16.19), in contrast to the electromagnetic potential 𝐴𝜈 itself. Explicitly, the electromagnetic
field 𝐹𝜇𝜈 is, from equation (16.22),

𝐹𝜇𝜈 ≡ 𝐷𝜇𝐴𝜈 −𝐷𝜈𝐴𝜇

=
𝜕𝐴𝜈
𝜕𝑥𝜇

− 𝜕𝐴𝜇
𝜕𝑥𝜈

, (16.23)

the second line of which follows because the coordinate connections cancel in a torsion-free covariant co-
ordinate curl, equation (2.72). The expression on the second line of equations (16.23) is invariant under
an electromagnetic gauge transformation (16.21) thanks to the commutation of coordinate derivatives,
𝜕2𝜃/𝜕𝑥𝜇𝜕𝑥𝜈 − 𝜕2𝜃/𝜕𝑥𝜈𝜕𝑥𝜇 = 0, so the electromagnetic field 𝐹𝜇𝜈 is electromagnetic gauge-invariant as
claimed. If the torsion-free derivative 𝐷𝜇 in equation (16.23) were replaced by the torsion-full derivative 𝐷𝜇,
then the electromagnetic field 𝐹𝜇𝜈 would not be electromagnetic gauge-invariant.

16.5.3 Source-free Maxwell’s equations

For brevity, denote the electromagnetic gauge-covariant derivative by 𝒟𝜇 ≡ 𝐷𝜇+ 𝑖𝑒𝐴𝜇. The gauge-covariant
derivative satisfies the Jacobi identity

[𝒟[𝜆, [𝒟𝜇,𝒟𝜈]]] = 0 . (16.24)

The electromagnetic Jacobi identity (16.24) implies that

𝐷𝜆𝐹𝜇𝜈 +𝐷𝜇𝐹𝜈𝜆 +𝐷𝜈𝐹𝜆𝜇 = 0 . (16.25)
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Since the torsion-free coordinate connections cancel in such an antisymmetrized expression, equation (16.25)
can also be written

𝜕𝐹𝜇𝜈
𝜕𝑥𝜆

+
𝜕𝐹𝜈𝜆
𝜕𝑥𝜇

+
𝜕𝐹𝜆𝜇
𝜕𝑥𝜈

= 0 . (16.26)

Equations (16.26) constitute a set of 4 equations comprising the source-free Maxwell’s equations.

16.5.4 Electromagnetic Lagrangian

The electromagnetic action 𝑆e is

𝑆e =

∫︁ 𝜆f

𝜆i

𝐿e 𝑑
4𝑥 , (16.27)

with electromagnetic Lagrangian

𝐿e ≡ −
1

16𝜋
𝐹𝜇𝜈𝐹𝜇𝜈 , (16.28)

where 𝐹𝜇𝜈 is the electromagnetic field tensor defined by equation (16.23). The electromagnetic Lagrangian
𝐿e, equation (16.28) is, as required, a scalar with respect to electromagnetic gauge transformations (16.21),
as well as with respect to coordinate and tetrad transformations. The justification for the choice (16.28) is
that it reproduces Maxwell’s equations, which have ample experimental verification. The Lagrangian (16.28)
is normalized to Gaussian units. High-energy physicists commonly used Heaviside units (SI units with 𝜀0 =

𝜇0 = 1), for which the normalization factor is 1/4 instead of 1/(16𝜋).
The momenta conjugate to the electromagnetic coordinates 𝐴𝜈 are, modulo a factor, the electromagnetic

field components 𝐹𝜇𝜈 ,

𝛿𝐿e

𝛿(𝐷𝜇𝐴𝜈)
= − 1

4𝜋
𝐹𝜇𝜈 . (16.29)

In Heaviside instead of Gaussian units, the factor is 1 instead of 4𝜋, which explains why high-energy theorists
prefer Heaviside units.
In the presence of electrically charged matter, the matter action generically contains an interaction term

𝑆𝑞

𝑆𝑞 =

∫︁ 𝜆f

𝜆i

𝐿𝑞 𝑑
4𝑥 , (16.30)

with interaction Lagrangian 𝐿𝑞 taking the form

𝐿𝑞 = 𝐴𝜈𝑗
𝜈 , (16.31)

where 𝑗𝜈 is the electric current vector.
The combined electromagnetic and charged matter action 𝑆 = 𝑆e + 𝑆𝑞 is, with the Lagrangian expressed
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as required in terms of the electromagnetic coordinates 𝐴𝜈 and their velocities 𝐷𝜇𝐴𝜈 ,

𝑆 =

∫︁ 𝜆f

𝜆i

[︂
− 1

16𝜋

(︁
𝐷𝜇𝐴𝜈 −𝐷𝜈𝐴𝜇

)︁(︁
𝐷𝜇𝐴𝜈 −𝐷𝜈𝐴𝜇

)︁
+ 𝑗𝜈𝐴𝜈

]︂
𝑑4𝑥 . (16.32)

Varying the action (16.32) with respect to the electromagnetic coordinates 𝐴𝜈 and their velocities 𝐷𝜇𝐴𝜈 ,
along the same lines as equations (16.2)–(16.6) for the template field 𝜙, yields

𝛿𝑆 = − 1

4𝜋

[︂∮︁
𝐹𝜇𝜈𝛿𝐴𝜈 𝑑

3𝑥𝜇

]︂𝜆f

𝜆i

+
1

4𝜋

∫︁ 𝜆f

𝜆i

(︁
𝐷𝜇𝐹

𝜇𝜈 + 4𝜋𝑗𝜈
)︁
𝛿𝐴𝜈 𝑑

4𝑥 . (16.33)

Least action requires that the variation of the action with respect to arbitrary variations 𝛿𝐴𝜈 be zero, subject
to the constraint that the field is fixed on the boundary of integration, 𝛿𝐴𝜈 = 0. The resulting Euler-Lagrange
equations (16.7) are

𝐷𝜇𝐹
𝜈𝜇 = 4𝜋𝑗𝜈 . (16.34)

The factor 4𝜋 disappears if Heaviside units are used in place of Gaussian units. The Euler-Lagrange equa-
tions (16.34) constitute 4 equations comprising the source-full Maxwell’s equations.

16.5.5 Electromagnetic super-Hamiltonian

The electromagnetic Lagrangian (16.28), coupled with the charged matter interaction Lagrangian (16.31), is
in super-Hamiltonian form 𝐿e + 𝐿𝑞 = 𝑝𝜇𝜕𝜇𝑞 −𝐻 with coordinates 𝑞 = 𝐴𝜈 and momenta 𝑝𝜇 = −𝐹𝜇𝜈/4𝜋,

𝐿e = −
1

4𝜋
𝐹𝜇𝜈𝐷𝜇𝐴𝜈 −𝐻 , (16.35)

and super-Hamiltonian 𝐻

𝐻 ≡ − 1

16𝜋
𝐹𝜇𝜈𝐹𝜇𝜈 −𝐴𝜈𝑗𝜈 . (16.36)

The Hamiltonian (16.36) looks like the Lagrangian but with a flip of the sign of the interaction term 𝐴𝜈𝑗
𝜈 .

The electromagnetic Hamiltonian (16.36) is expressed as required in terms of the coordinates 𝐴𝜈 and the
momenta 𝐹𝜇𝜈 .
Varying the action with Lagrangian (16.35) with respect to the coordinates 𝐴𝜈 and momenta 𝐹𝜇𝜈 gives

𝛿𝑆 =
1

4𝜋

∫︁ (︀
−𝐹𝜇𝜈𝐷𝜇𝛿𝐴𝜈 − 𝛿𝐹𝜇𝜈𝐷𝜇𝐴𝜈 +

1
2𝛿𝐹

𝜇𝜈𝐹𝜇𝜈 + 4𝜋𝑗𝜈𝛿𝐴𝜈
)︀
𝑑4𝑥 . (16.37)

Integrating the first term in the integrand of equation (16.37) by parts yields

𝛿𝑆 = − 1

4𝜋

∮︁
𝐹𝜇𝜈𝛿𝐴𝜈 𝑑

3𝑥𝜇 +
1

4𝜋

∫︁ [︁(︀
𝐷𝜇𝐹

𝜇𝜈 + 4𝜋𝑗𝜈
)︀
𝛿𝐴𝜈 − 1

2

(︀
𝐷𝜇𝐴𝜈 −𝐷𝜈𝐴𝜇 + 𝐹𝜇𝜈

)︀
𝛿𝐹𝜇𝜈

]︁
𝑑4𝑥 . (16.38)

The surface term vanishes provided that the electromagnetic coordinates 𝐴𝜈 are held fixed on the boundary.
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Requiring that the variation of the action vanish with respect to arbitrary variations 𝛿𝐴𝜈 and 𝛿𝐹𝜇𝜈 of the
coordinates and momenta then yields Hamilton’s equations,

𝐷𝜇𝐹
𝜈𝜇 = 4𝜋𝑗𝜈 , (16.39a)

𝐷𝜇𝐴𝜈 −𝐷𝜈𝐴𝜇 = 𝐹𝜇𝜈 . (16.39b)

The first Hamilton equation (16.39a) reproduces the Euler-Lagrange equation (16.34) obtained in the La-
grangian approach. The second Hamilton equation (16.39b) implies, as an equation of motion, the rela-
tion (16.23) between the field 𝐹𝜇𝜈 and the derivatives of 𝐴𝜈 that was simply assumed in the Lagrangian
approach.

16.5.6 Electric charge conservation

Maxwell’s source-full equations (16.34) enforce covariant conservation of electric charge 𝑗𝜈 ,

𝐷𝜈𝑗
𝜈 = 0 . (16.40)

At a more profound level, the conservation of electric charge is a consequence of symmetry with respect to
electromagnetic gauge transformations. Under an electromagnetic gauge transformation, the field 𝐴𝜈 varies
as, equation (16.21),

𝛿𝐴𝜈 = 𝐷𝜈𝜃 . (16.41)

There are many distinct electrically charged fields in nature (for example, electrons and protons), and the
action for each distinct charged field is electromagnetic gauge-invariant (absent interactions that create or
destroy charged fields). The variation of a charged matter field under an electromagnetic gauge transforma-
tion (16.19) is

𝛿𝑆𝑞 =

∫︁
𝑗𝜈𝐷𝜈𝜃 𝑑

4𝑥 . (16.42)

Integrating equation (16.42) by parts gives

𝛿𝑆𝑞 =

∮︁
𝑗𝜈𝜃 𝑑3𝑥𝜈 −

∫︁ (︀
𝐷𝜈𝑗

𝜈
)︀
𝜃 𝑑4𝑥 . (16.43)

Electromagnetic gauge-invariance requires that the variation vanish with respect to arbitrary choices of the
gauge parameter 𝜃, subject to the condition that 𝜃 is fixed on the boundary. Covariant conservation of electric
charge follows,

𝐷𝜈𝑗
𝜈 = 0 . (16.44)

The charge conservation law (16.44) is an example of Noether’s theorem (Noether, 1918), which relates
symmetries and conservation laws.
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16.5.7 Electromagnetic wave equation

Eliminating 𝐹𝜇𝜈 from Hamilton’s equations (16.39) yields a second order differential equation for the elec-
tromagnetic potential 𝐴𝜈 ,

− �̊𝐴𝜈 +𝑅𝜈𝜆𝐴
𝜆 +𝐷𝜈𝐷𝜇𝐴

𝜇 = 4𝜋𝑗𝜈 , (16.45)

where �̊ ≡ 𝐷𝜇𝐷
𝜇 is the torsion-free d’Alembertian. The last term 𝐷𝜈𝐷𝜇𝐴

𝜇 on the left hand side of equa-
tion (16.45) may be eliminated by imposing the Lorenz (not Lorentz!) gauge condition 𝐷𝜇𝐴

𝜇 = 0. Equa-
tion (16.45) is a wave equation with the torsion-free Ricci tensor 𝑅𝜈𝜆 acting as an effective potential, and
the electromagnetic current 𝑗𝜈 acting as a source.

16.5.8 Space+time (3+1) split of the electromagnetic equations

In Chapter 4 it was found that, applied to point particles, the action principle yielded equal numbers of co-
ordinates and momenta, and Hamilton’s equations supplied first order differential equations determining the
evolution of each and every one of the coordinates and momenta. This was true in both the super-Hamiltonian
and conventional Hamiltonian approaches, where Hamilton’s equations were respectively equations (4.72)
and (4.75).
Applied to fields, the super-Hamiltonian approach does not yield equal numbers of coordinates and mo-

menta, and Hamilton’s equations cannot be interpreted straightforwardly as equations of motion for each
and every one of the coordinates and momenta. For example, in the electromagnetic case, the first set of
Hamilton’s equations (16.39a) apparently constitute 4 equations for 6 momenta 𝐹 𝜈𝜇, while the second set
of Hamilton’s equations (16.39b) apparently constitute 6 equations for 4 coordinates 𝐴𝜈 . The mismatch
of numbers of equations is not a practical barrier to solving Hamilton’s equations of motion. Hamilton’s
equations (16.39) comprise 10 equations for 10 unknowns. If, for example, the 6 equations (16.39b) are in-
terpreted not as first order differential equations of motion for the coordinates 𝐴𝜈 , but rather as defining the
6 momenta 𝐹𝜇𝜈 , then eliminating the momenta yields a set of 4 second order differential wave equations for
the 4 coordinates 𝐴𝜈 , equation (16.45) (see §27.6 for further exposition). Treating the 6 equations (16.39b)
as identities is the same as reverting to the Lagrangian, or second order, approach.
It is nevertheless desirable to attain a better understanding of the first order Hamiltonian formalism

for fields, partly so as to understand how to integrate the field equations numerically, and partly because
quantization of fields, as usually implemented, requires identifying the physical degrees of freedom in a
matching number of fields and their conjugate momenta.
The problem of mismatching numbers of coordinates and momenta in the super-Hamiltonian formalism

arises because symmetry under general coordinate transformations means that different configurations of
fields are symmetrically equivalent. The covariant super-Hamiltonian description contains more fields than
there are physical degrees of freedom.
Dirac’s (1964) solution to the mismatch of numbers of equations is to break general covariance by splitting

spacetime into space and time coordinates, and to interpret only the equations involving time derivatives
of the fields as genuine equations of motion, while the remainder of the equations, those not involving
time derivatives, are “constraints,” relations between the fields that serve to remove the redundant degrees
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of freedom. In the relativist community, the term “constraint” is commonly used to describe an equation
which must be arranged to be satisfied in the initial conditions, but which is guaranteed thereafter by some
conservation law. Some of Dirac’s constraint equations, which Dirac calls “first-class constraints,” are of
this character, but others, which Dirac calls “second-class constraints,” are identities that effectively define
some fields in terms of others. This book follows the relativists’ convention that a constraint is an equation
whose ongoing satisfaction is guaranteed by a conservation law, a first-class constraint. Dirac’s second-class
constraint equations will be called identities.
Suppose then that the coordinates are split into time and space components, 𝑥𝜇 = {𝑡, 𝑥𝛼}. In electro-

magnetism, the Hamilton’s equations (16.39) involving time derivatives of the coordinates and momenta are

3 equations of motion: 𝐷𝑡𝐹
𝛼𝑡 +𝐷𝛽𝐹

𝛼𝛽 = 4𝜋𝑗𝛼 , (16.46a)

3 equations of motion: 𝐷𝑡𝐴𝛼 −𝐷𝛼𝐴𝑡 = 𝐹𝑡𝛼 . (16.46b)

Equation (16.46a) comprises 3 equations of motion for the 3 momenta 𝐹𝛼𝑡, while equation (16.46b) comprises
3 equations of motion for the 3 coordinates 𝐴𝛼. The physical degrees of freedom are thus identified as the
3 spatial coordinates 𝐴𝛼 and their 3 conjugate momenta 𝐹𝛼𝑡, which comprise the 3 components 𝐸𝛼 ≡ 𝐹 𝑡𝛼

of the electric field. The remaining electromagnetic Hamilton’s equations (16.39), those not involving time
derivatives of the coordinates and momenta, are

1 constraint: 𝐷𝛽𝐹
𝑡𝛽 = 4𝜋𝑗𝑡 , (16.47a)

3 identities: 𝐷𝛼𝐴𝛽 −𝐷𝛽𝐴𝛼 = 𝐹𝛼𝛽 . (16.47b)

The first equation (16.47a) has the property that, as long as the equation is satisfied on the initial spatial
hypersurface, then conservation of electric charge ensures that the equation continues to be satisfied there-
after. Of course, in numerical computations charge is conserved only so long as the equations of motion of
charged matter are chosen such as to conserve electric charge, as they should be. If the matter equations
conserve charge, then the constraint equation (16.47a) is redundant, but provides a numerical check that
electric charge is being conserved.
The second set of equations (16.47b) are identities relating the 3 purely spatial components 𝐹𝛼𝛽 , which

comprise the 3 components 𝐵𝛼 ≡ 𝜀𝑡𝛼𝛽𝛾𝐹𝛽𝛾 of the magnetic field, to the spatial curl of the spatial coordinates
𝐴𝛼. Since the equations of motion (16.46b) already determine completely the spatial coordinates 𝐴𝛼, the
identities (16.47b) cannot be independent equations, but must be interpreted as defining the magnetic field as
an auxiliary field that does not represent additional physical degrees of freedom. The magnetic field is needed
as part of the equations of motion, the second term on the left hand side of the equation of motion (16.46a).
The magnetic field could be discarded after having been replaced by the curl of 𝐴𝛼 in accordance with
the identity (16.47b); but the magnetic field is part of the covariant 4-dimensional electromagnetic field
tensor 𝐹𝜇𝜈 , and discarding the magnetic field would obscure the covariant structure of the electromagnetic
equations.
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16.6 Electromagnetic action in forms notation

Especially in the mathematical literature, actions are often written in the compact notation of differential
forms, §15.6. The advantage of forms notation is not that it makes calculations any easier, but rather that
it reveals the structure of the action unburdened by indices. Once one gets over the language barrier, forms
notation can be a powerful clarifier.
In this section 16.6, implicit sums are over distinct antisymmetric sequences of indices, since this removes

the ubiquitous factorial factors that would otherwise appear.

16.6.1 Electromagnetic potential and field forms

The electromagnetic potential 1-form 𝐴 and field 2-form 𝐹 are defined by

𝐴 ≡ 𝐴𝜈 𝑑𝑥𝜈 , (16.48a)

𝐹 ≡ 𝐹𝜇𝜈 𝑑2𝑥𝜇𝜈 , (16.48b)

where in the case of 𝐹 the implicit summation is over distinct antisymmetric pairs 𝜇𝜈 of indices. With the
electromagnetic gauge-covariant derivative 1-form denoted 𝒟𝒟𝒟 ≡ (𝐷𝜇+ 𝑖𝑒𝐴𝜇)𝑑𝑥

𝜇 for brevity, the field 2-form
𝐹 is defined by the commutator of the gauge-covariant derivative,

[𝒟𝒟𝒟,𝒟𝒟𝒟] ≡ 𝑖𝑒𝐹 . (16.49)

Equation (16.49) implies that the field 2-form 𝐹 is the exterior derivative of the potential 1-form 𝐴,

𝐹 = d𝐴 =

(︂
𝜕𝐴𝜈
𝜕𝑥𝜇

− 𝜕𝐴𝜇
𝜕𝑥𝜈

)︂
𝑑2𝑥𝜇𝜈 , (16.50)

implicitly summed over distinct antisymmetric pairs 𝜇𝜈 of indices.

16.6.2 Electromagnetic potential and field multivectors

When working with forms, it is often easier to do calculations in multivector language. In multivector
language, the electromagnetic potential is a vector 𝐴, while the electromagnetic field is a bivector 𝐹 ,

𝐴 ≡ 𝐴𝑛 𝛾𝛾𝑛 , (16.51a)

𝐹 ≡ 𝐹𝑚𝑛 𝛾𝛾𝑚 ∧𝛾𝛾𝑛 , (16.51b)

with in the case of 𝐹 implicit summation over distinct antisymmetric pairs 𝑚𝑛 of indices. The field 𝐹 ,
equation (16.50), is in multivector language the torsion-free covariant curl of the potential 𝐴,

𝐹 = �̊�∧𝐴 . (16.52)

In multivector language, the combined electromagnetic (16.28) and charged interaction (16.31) Lagrangian
is the scalar

𝐿e + 𝐿𝑞 =
1

8𝜋
𝐹 · 𝐹 +𝐴 · 𝑗 , (16.53)
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where 𝑗 ≡ 𝑗𝑛 𝛾𝛾𝑛 is the electric current vector. The action is

𝑆 =

∫︁
(𝐿e + 𝐿𝑞) 𝑑

4𝑥 . (16.54)

Recall that the scalar volume element 𝑑4𝑥 that goes into the action (16.54) is really the dual scalar 4-
volume *𝑑4𝑥, equation (15.80). To convert to forms language, the Hodge dual must be transferred from the
volume element to the integrand. In multivector language, the required result is

(𝑎 · 𝑏) · *𝑑4𝑥 ≡ (𝑎 · 𝑏) · (𝐼 𝑑4𝑥) =
(︀
(𝑎 · 𝑏)𝐼

)︀
· 𝑑4𝑥 =

(︀
𝐼(𝑎 · 𝑏)

)︀
· 𝑑4𝑥 =

(︀
(𝐼𝑎)∧ 𝑏

)︀
· 𝑑4𝑥 , (16.55)

where the second expression is the definition (15.80) of the dual volume element, the third expression is an
application of the multivector triple-product relation (13.39), the fourth holds because 𝑎 · 𝑏 is a scalar and
therefore commutes with the pseudoscalar 𝐼, and the last expression is another application of the triple-
product relation (13.39). The action (16.54) is thus, in multivector language,

𝑆 =

∫︁ (︂
1

8𝜋
(𝐼𝐹 )∧𝐹 + (𝐼𝑗)∧𝐴

)︂
· 𝑑4𝑥 . (16.56)

16.6.3 Electromagnetic Lagrangian 4-form

In forms notation, the action (16.56) is

𝑆 =

∫︁
𝐿e + 𝐿𝑞 , (16.57)

with Lagrangian 4-form

𝐿e + 𝐿𝑞 =
1

8𝜋
*𝐹 ∧𝐹 + *𝑗 ∧𝐴 . (16.58)

Here 𝐴 and 𝐹 are the potential 1-form and field 2-form defined by equations (16.48). The symbol * denotes
the form dual, equation (15.79). The dual *𝐹 is a 2-form, while the dual *𝑗 is the 3-form dual of the 1-form
electric current 𝑗 ≡ 𝑗𝜈 𝑑𝑥𝜈 .

16.6.4 Electromagnetic super-Hamiltonian 4-form

The Lagrangian 4-form (16.58) is in super-Hamiltonian form 𝑝∧d𝑞−𝐻 with coordinates 𝑞 = 𝐴 and momenta
𝑝 = *𝐹 /4𝜋,

𝐿e + 𝐿𝑞 =
1

4𝜋
*𝐹 ∧d𝐴−𝐻 , (16.59)

and super-Hamiltonian 4-form

𝐻 =
1

8𝜋
*𝐹 ∧𝐹 − *𝑗 ∧𝐴 . (16.60)

The variation of the action with Lagrangian (16.59) with respect to the coordinates 𝐴 and momenta *𝐹 is

𝛿𝑆 =
1

4𝜋

∫︁
*𝐹 ∧d𝛿𝐴+ 𝛿 *𝐹 ∧d𝐴− 𝛿 *𝐹 ∧𝐹 + 4𝜋 *𝑗 ∧ 𝛿𝐴 . (16.61)
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Integrating the *𝐹 ∧d𝛿𝐴 term in equation (16.61) by parts brings the variation of the action to

𝛿𝑆 =
1

4𝜋

∮︁
*𝐹 ∧ 𝛿𝐴+

1

4𝜋

∫︁
−(d*𝐹 − 4𝜋 *𝑗)∧ 𝛿𝐴+ 𝛿 *𝐹 ∧(d𝐴− 𝐹 ) . (16.62)

Requiring that the variation of the action vanish with respect to arbitrary variations 𝛿𝐴 and 𝛿 *𝐹 of the
electromagnetic coordinates and momenta, subject to the condition that 𝐴 is fixed on the boundary, yields
Hamilton’s equations,

d*𝐹 = 4𝜋 *𝑗 , (16.63a)

d𝐴 = 𝐹 . (16.63b)

The first Hamilton equation (16.63a) is a 3-form with 4 components comprising Maxwell’s source-full equa-
tions. The second Hamilton equation (16.63b) is a 2-form with 6 components that enforce the relation (16.50)
between the electromagnetic field 𝐹 and the electromagnetic potential 𝐴 that is assumed in the Lagrangian
formalism.
Taking the exterior derivative of the first Hamilton equation (16.63a) yields, since d2 = 0, the electric

current conservation law

d*𝑗 = 0 . (16.64)

Taking the exterior derivative of the second Hamilton equation (16.63b) yields

d𝐹 = 0 , (16.65)

which comprises Maxwell’s source-free equations.

16.6.5 Electromagnetic wave equation in forms notation

As is common, it is easier to manipulate form equations by translating them into multivector language. In
multivector language, the electromagnetic Hamilton’s equations (16.63) are

�̊� · 𝐹 = −4𝜋𝑗 , (16.66a)

�̊�∧𝐴 = 𝐹 . (16.66b)

Applying the multivector triple-product relation (13.40) gives the multivector identities (the torsion-free curl
of 𝐴 vanishes, equation (15.43), so �̊��̊�𝐴 has only a vector part, no trivector part)

�̊��̊�𝐴 = �̊�(�̊�𝐴) = �̊� · (�̊�∧𝐴) + �̊�∧(�̊� ·𝐴)

= (�̊��̊�)𝐴 = (�̊� · �̊�)𝐴+ (�̊�∧ �̊�) ·𝐴 . (16.67)

Eliminating 𝐹 from Hamilton’s equations (16.66) then yields a second order differential equation for the
electromagnetic potential 𝐴,

− �̊𝐴− (�̊�∧ �̊�) ·𝐴+ �̊�(�̊� ·𝐴) = 4𝜋𝑗 , (16.68)
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where �̊ ≡ �̊� · �̊� is the torsion-free d’Alembertian operator. Equation (16.68) is equation (16.45) expressed
in multivector language. The last term on the left hand side of equation (16.68) can be made to vanish by
imposing the Lorenz gauge condition �̊� ·𝐴 = 0, in which case equation (16.68) reduces to

− �̊𝐴− (�̊�∧ �̊�) ·𝐴 = 4𝜋𝑗 , (16.69)

or more simply

− (�̊��̊�)𝐴 = 4𝜋𝑗 . (16.70)

Equation (16.70) is a wave equation for the electromagnetic potential 𝐴, with source the electric current 𝑗.

16.6.6 Space+time (3+1) split of the electromagnetic equations in forms notation

As discussed in §16.5.8, the super-Hamiltonian approach yields different numbers of coordinates and mo-
menta, and the resulting Hamilton’s equations are unbalanced. Hamilton’s equations (16.63) have the ap-
pearance of first order differential equations of motion for the momenta and coordinates, but the first equa-
tion (16.63a) is 4 equations for the 6 components of the momenta *𝐹 , while the second equation (16.63b) is
6 equations for the 4 components of the coordinates 𝐴.
The solution to the problem is, as in §16.5.8, to break general covariance by splitting spacetime into

time and space coordinates, 𝑥𝜇 = {𝑡, 𝑥𝛼}, and to interpret only those Hamilton’s equations involving time 𝑡
derivatives as genuine equations of motion, while the remaining equations are either constraint equations or
identities.
In splitting a form 𝑎 into time and space components, it is convenient to adopt a notation in which the

form 𝑎𝑡 (subscripted 𝑡) represents all the temporal parts of the form, while the form 𝑎�̄� (subscripted �̄�)
represents the remaining all-spatial components. The bars on the time and spatial indices 𝑡 and �̄� serves
to distinguish the forms 𝑎𝑡 ≡ 𝑎𝑡𝐴 𝑑

𝑝𝑥𝑡𝐴 and 𝑎�̄� ≡ 𝑎𝛼𝐴 𝑑
𝑝𝑥𝛼𝐴 from their components 𝑎𝑡𝐴 and 𝑎𝛼𝐴. Thus a

1-form 𝑎 ≡ 𝑎𝜅 𝑑𝑥𝜅 splits into

𝑎 = 𝑎𝑡 + 𝑎�̄� ≡ 𝑎𝑡 𝑑𝑡+ 𝑎𝛼 𝑑𝑥
𝛼 , (16.71)

while a 2-form 𝑎 ≡ 𝑎𝜅𝜆 𝑑𝑥𝜅𝜆 splits into

𝑎 = 𝑎𝑡 + 𝑎�̄� ≡ 𝑎𝑡𝛼 𝑑2𝑥𝑡𝛼 + 𝑎𝛼𝛽 𝑑
2𝑥𝛼𝛽 , (16.72)

implicitly summed over distinct sequences of indices. The time component of the exterior product of two
forms 𝑎 and 𝑏 is

(𝑎∧ 𝑏)𝑡 = 𝑎𝑡 ∧ 𝑏�̄� + 𝑎�̄� ∧ 𝑏𝑡 (16.73)

with no minus signs, the minus signs from the antisymmetry of indices cancelling the minus signs from
commuting 𝑑𝑡 through a spatial form.
The electromagnetic field 2-form 𝐹 splits as

𝐹 = 𝐹𝑡 + 𝐹�̄� = 𝐹𝑡𝛼 𝑑𝑥
𝑡𝛼 + 𝐹𝛽𝛾 𝑑𝑥

𝛽𝛾 , (16.74)
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whose time and space parts encode the electric and magnetic fields. The dual electromagnetic field 2-form
*𝐹 splits as

*𝐹 = *𝐹𝑡 +
*𝐹�̄� = 𝜀𝑡𝛼𝛽𝛾𝐹

𝛽𝛾 𝑑𝑥𝑡𝛼 + 𝜀𝑡𝛼𝛽𝛾𝐹
𝑡𝛼 𝑑𝑥𝛽𝛾 , (16.75)

whose time and space parts conversely encode the magnetic and electric fields. With the definitions 𝐸𝛼 ≡ 𝐹 𝑡𝛼
and 𝐵𝛼 ≡ 𝜀𝑡𝛼𝛽𝛾𝐹𝛽𝛾 of electric and magnetic field components, the form expression (16.75) agrees with the
equivalent multivector expression (14.63).
The time components of Hamilton’s equations (16.63) comprise 3 equations of motion for the 3 spatial

components *𝐹�̄� of the momenta, which is the electric field, and 3 equations of motion for the 3 spatial
components 𝐴�̄� of the coordinates,

3 equations of motion: (d*𝐹 )𝑡 ≡ d𝑡
*𝐹�̄� + d𝛼

*𝐹𝑡 = 4𝜋 *𝑗𝑡 , (16.76a)

3 equations of motion: (d𝐴)𝑡 ≡ d𝑡𝐴�̄� + d𝛼𝐴𝑡 = 𝐹𝑡 . (16.76b)

The exterior time and space derivatives here are the 1-forms d𝑡 = 𝑑𝑡 𝜕/𝜕𝑡, and d𝛼 = 𝑑𝑥𝛼 𝜕/𝜕𝑥𝛼. Equa-
tions (16.76) are the same as equations (16.46), but in forms notation in place of index notation. In translating
the forms equations (16.76) into indexed equations (16.46), note minus signs that come from commuting 𝑑𝑡
through a spatial form, for example d𝛼𝐴𝑡 = 𝑑𝑥𝛼 𝜕/𝜕𝑥𝛼 𝑑𝑡𝐴𝑡 = −𝜕𝐴𝑡/𝜕𝑥𝛼 𝑑2𝑥𝑡𝛼. The remaining Hamilton’s
equations (16.63), those not involving any time derivatives, are

1 constraint: d𝛼
*𝐹�̄� = 4𝜋 *𝑗�̄� , (16.77a)

3 identities: d𝛼𝐴�̄� = 𝐹�̄� . (16.77b)

In accordance with the relativists’ convention, an equation is a constraint if it must be arranged to be
satisfied on the initial hypersurface 𝑡i of constant time, but is guaranteed thereafter by some conservation
law. Equation (16.77a) is an example of such a constraint equation, in this case guaranteed by conservation
electric charge. The 4-dimensional equation representing conservation of charge,

d (d*𝐹 − 4𝜋 *𝑗) = −4𝜋d*𝑗 = 0 , (16.78)

becomes in a 3+1 split

d𝑡 (d
*𝐹 − 4𝜋 *𝑗)�̄� + d𝛼 (d

*𝐹 − 4𝜋 *𝑗)𝑡 = 0 . (16.79)

The second term on the left hand side of equation (16.79) vanishes on the equation of motion (16.76a), so
equation (16.79) reduces to

d𝑡 (d
*𝐹 − 4𝜋 *𝑗)�̄� = 0 . (16.80)

If the spatial components (d*𝐹 −4𝜋 *𝑗)�̄� are arranged to vanish on the initial spatial hypersurface of constant
time, then the equation of motion (16.80) guarantees that those spatial components vanish thereafter. Pro-
vided, of course, that the equations governing the charged matter are arranged to satisfy charge conservation,
as they should.
Equation (16.77b) on the other hand, which expresses the magnetic field 𝐹�̄� as the spatial curl of the

spatial potential 𝐴�̄�, is a constraint in Dirac’s (1964) sense, but not in the relativists’ sense, since it is
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not guaranteed by any conservation law. As in §16.5.8, this book follows the relativists’ convention that
a constraint is an equation whose ongoing satisfaction is guaranteed by a conservation law, a first-class
constraint. Dirac’s second-class constraint equations are called identities.

16.6.7 3+1 split of the variation of the electromagnetic action

The equations of motion (16.76) and constraint and identities (16.77) follow directly from splitting Hamilton’s
equations (16.46) into time and space parts; but they can also be derived more fundamentally from splitting
the variation (16.62) of the action into time and space parts,

𝛿𝑆 =

[︂
1

4𝜋

∮︁
*𝐹 ∧ 𝛿𝐴

]︂𝑡f
𝑡i

(16.81)

+
1

4𝜋

∫︁ 𝑡f

𝑡i

−(d*𝐹 − 4𝜋 *𝑗)𝑡 ∧ 𝛿𝐴�̄� − (d*𝐹 − 4𝜋 *𝑗)�̄� ∧ 𝛿𝐴𝑡 + 𝛿 *𝐹�̄� ∧(d𝐴− 𝐹 )𝑡 + 𝛿 *𝐹𝑡 ∧(d𝐴− 𝐹 )�̄� .

From this variation it can be seen that the equations of motion (16.76) arise from minimizing the action
with respect to the 3 spatial coordinates 𝐴�̄� and 3 spatial momenta *𝐹�̄�. The 1 constraint (16.77a) arises
from minimizing the action with respect to the 1 time component 𝐴𝑡 of the coordinates, and the 3 iden-
tities (16.77b) from minimizing with respect to the 3 time components *𝐹𝑡 of the momenta. Now 𝐴𝑡 is a
gauge variable: it can be adjusted arbitrarily by an electromagnetic gauge transformation,

𝐴𝑡 → 𝐴𝑡 + d𝑡𝜃 . (16.82)

Minimizing the action with respect to the gauge variable 𝐴𝑡 yields the constraint equation (16.77a) that
effectively expresses current conservation.
The mere fact that 𝐴𝑡 can be be treated as a gauge variable does not mean that it must be treated as a

gauge variable. Other gauge-fixing choices can be made; see §27.6 for further discussion of this issue.
The time components *𝐹𝑡 of the momenta constitute the magnetic field. The dual of *𝐹𝑡 constitutes the

spatial components of 𝐹�̄�. The magnetic field *𝐹𝑡, or equivalently its dual 𝐹�̄�, is not a gauge field (that
is, it cannot be adjusted by a gauge transformation), but rather an auxiliary field that arises when the
electromagnetic field is treated as a generally covariant 4-dimensional object. Minimizing the action (16.81)
with respect to the magnetic field *𝐹𝑡 determines its own components, the identities (16.77b).

16.6.8 Conventional electromagnetic Hamiltonian

The conventional Hamiltonian 𝐻 is defined by

𝐻 ≡ 1

4𝜋
*𝐹�̄� ∧d𝑡𝐴�̄� − 𝐿 . (16.83)
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The combined electromagnetic and charged interaction Lagrangian (16.59) can be written

𝐿 =
1

4𝜋

[︀
d𝛼 (

*𝐹�̄� ∧𝐴𝑡) +
*𝐹�̄� ∧d𝑡𝐴

− (d*𝐹 − 4𝜋 *𝑗)�̄� ∧𝐴𝑡 +
*𝐹𝑡 ∧(d𝐴− 𝐹 )�̄� − 1

2
*𝐹�̄� ∧𝐹𝑡 + 1

2
*𝐹𝑡 ∧𝐹�̄� + 4𝜋 *𝑗𝑡 ∧𝐴�̄�

]︀
. (16.84)

Dropping the total derivative term d𝛼 (
*𝐹�̄� ∧𝐴𝑡) from the Lagrangian (16.84), and inserting the rest into

the defining equation (16.83) yields the conventional Hamiltonian

𝐻 =
1

4𝜋

[︀
(d*𝐹 − 4𝜋 *𝑗)�̄� ∧𝐴𝑡 − *𝐹𝑡 ∧(d𝐴− 𝐹 )�̄� + 1

2
*𝐹�̄� ∧𝐹𝑡 − 1

2
*𝐹𝑡 ∧𝐹�̄� − 4𝜋 *𝑗𝑡 ∧𝐴�̄�

]︀
. (16.85)

The first term in the Hamiltonian (16.85) is the constraint (16.77a) wedged with the gauge variable 𝐴𝑡,
while the second term is the identity (16.77b) wedged with the auxiliary field *𝐹𝑡, the magnetic field. Both
terms vanish on the equations of motion. The third and fourth terms (*𝐹�̄� ∧𝐹𝑡 − *𝐹𝑡 ∧𝐹�̄�) /(8𝜋) go over
to (𝐸2 +𝐵2)/(8𝜋) 𝑑4𝑥 in flat space, and comprise the energy density of the electromagnetic field. The final
term − 𝑗 ·𝐴 𝑑4𝑥 is an interaction term.
The conventional Hamiltonian (16.85) is a function of spatial coordinates 𝐴�̄� and their conjugate spatial

momenta *𝐹�̄�, and also a function of the time components 𝐴𝑡 and *𝐹𝑡 of the coordinates and momenta. The
spatial derivatives 𝑑�̄�𝐴�̄� and 𝑑�̄� *𝐹�̄� in the conventional Hamiltonian are to be interpreted as functions of the
coordinates and momenta, not as separate degrees of freedom. One should think of 𝐴𝛽(𝑥

𝛼) and *𝐹𝛽𝛾(𝑥𝛼)
as being infinite collections of fields indexed by the spatial position 𝑥𝛼; the spatial derivatives of the fields
are then effectively linear combinations of those fields.
Varying the conventional Hamiltonian (16.85) with respect to 𝐴�̄�, 𝐴𝑡, *𝐹�̄�, and *𝐹𝑡 recovers Hamilton’s

equations (16.76) and(16.77). In executing the variation, the terms involving the varied derivatives 𝛿(d𝛼𝐴�̄�) =

d𝛼𝛿𝐴�̄� and 𝛿(𝑑�̄� *𝐹�̄�) = 𝑑�̄�𝛿
*𝐹�̄� can be integrated by parts.

16.7 Gravitational action

As shown by Hilbert (1915) contemporaneously with Einstein’s discovery of the final, successful version of
general relativity, Einstein’s equations can be derived by the principle of least action applied to the action

𝑆g =

∫︁
𝐿g 𝑑

4𝑥 , (16.86)

with scalar Hilbert Lagrangian

𝐿g ≡
1

16𝜋𝐺
𝑅 , (16.87)

where 𝑅 is the Ricci scalar, and 𝐺 is Newton’s gravitational constant. The motivation for the Hilbert
action (16.86) is that the Ricci scalar 𝑅 is the only non-vanishing scalar that can be constructed linearly
from the Riemann curvature tensor 𝑅𝑘𝑙𝑚𝑛.
Least action requires the Lagrangian to be written as a function of the “coordinates” and “velocities”
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of the gravitational field. The traditional approach, following Hilbert, is to take the coordinates to be the
10 components 𝑔𝜇𝜈 of the metric tensor. The gravitational Lagrangian 𝐿g is then a function not only of
the coordinates 𝑔𝜇𝜈 and their velocities 𝜕𝑔𝜇𝜈/𝜕𝑥𝜅, but also of their second derivatives 𝜕2𝑔𝜇𝜈/𝜕𝑥𝜅𝜕𝑥𝜆. The
presence of the second derivatives (“accelerations”) might seem problematic, but they can be removed into a
surface term by integration by parts, leaving a Lagrangian that contains only first derivatives.
A modified approach, with a different choice of “coordinates” for the gravitational field, brings out the

Hamiltonian structure of the Hilbert Lagrangian, and makes transparent the dependence of the Hilbert
Lagrangian on the two distinct symmetries underlying general relativity, namely general coordinate transfor-
mations, and local Lorentz transformations. In terms of the Riemann tensor (11.76) (valid with or without
torsion) written in a mixed coordinate-tetrad basis, the Hilbert Lagrangian (16.87) is (units 𝑐 = 𝐺 = 1)

𝐿g =
1

16𝜋
𝑒𝑚𝜅𝑒𝑛𝜆𝑅𝜅𝜆𝑚𝑛 =

1

16𝜋
𝑒𝑚𝜅𝑒𝑛𝜆

(︂
𝜕Γ𝑚𝑛𝜆
𝜕𝑥𝜅

− 𝜕Γ𝑚𝑛𝜅
𝜕𝑥𝜆

+ Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅 − Γ𝑝𝑚𝜅Γ𝑝𝑛𝜆

)︂
. (16.88)

As usual in this book, greek (brown) indices are coordinate indices, while latin (black) indices are tetrad
indices in a tetrad with prescribed constant metric 𝛾𝑚𝑛. If the tetrad is orthonormal, then the tetrad metric
is Minkowski, 𝛾𝑚𝑛 = 𝜂𝑚𝑛, but any tetrad with constant metric 𝛾𝑚𝑛, such as Newman-Penrose, will do. The
Lagrangian (16.88) manifests the dependence of the gravitational Lagrangian on coordinate transformations,
encoded in the 16 components of the inverse vierbein 𝑒𝑚𝜅, and on Lorentz transformations, encoded in the
24 connections Γ𝑚𝑛𝜅. The connections Γ𝑚𝑛𝜅 form a coordinate vector (index 𝜅) of generators of Lorentz
transformations (antisymmetric indices𝑚𝑛), and they constitute the connection associated with a local gauge
group of Lorentz transformations. The Lorentz connections Γ𝑚𝑛𝜅 are sometimes called “spin connections” in
the literature. In a local gauge theory such as electromagnetism or Yang-Mills, the connections Γ𝑚𝑛𝜅 would
be interpreted as the “coordinates” of the field.
The mixed coordinate-tetrad expression for the Riemann tensor 𝑅𝜅𝜆𝑚𝑛 on the right hand side of equa-

tion (16.88) is not the same as the coordinate expression (2.112), despite the resemblance of the two ex-
pressions. There are 24 Lorentz connections Γ𝑚𝑛𝜅, but 40 (without torsion, or 64 with torsion) coordinate
connections Γ𝜇𝜈𝜅. It is possible — indeed, this is the traditional Hilbert approach — to work entirely with
coordinate-frame expressions, the coordinate metric and the coordinate connections, without introducing
tetrads. The advantage of the mixed coordinate-tetrad approach is that it makes manifest the fact that the
Hilbert Lagrangian is invariant with respect to two distinct symmetries, coordinate transformations encoded
in the tetrad, and local Lorentz transformations encoded in the Lorentz connections. Extremization of the
Hilbert action with respect to the tetrad yields Einstein’s equations, with source the energy-momentum of
matter. Extremization of the Hilbert action with respect to the Lorentz connections yields expressions for
those connections in terms of the tetrad and its derivatives, with source the spin angular-momentum of
matter.
Whereas a purely coordinate approach to extremizing the Hilbert action is possible, a purely tetrad

approach is not. In general relativity, tetrad axes 𝛾𝛾𝑚(𝑥𝜇) are defined at each point 𝑥𝜇 of spacetime. The
coordinates 𝑥𝜇 of the spacetime manifold provide the canvas upon which tetrads can be erected, and through
which tetrads can be transported. It is possible to do without tetrads by working with coordinate tangent
axes 𝑒𝜇 and the associated coordinate connections, but it is not possible to do without coordinates.
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If the Lorentz connections Γ𝑚𝑛𝜅 are taken to be the coordinates of the gravitational field, then the
corresponding canonical momenta are (a factor of 8𝜋 is inserted for convenience; or one could use units
where 8𝜋𝐺 = 1 in place of the units 𝐺 = 1 adopted here)

𝑒𝑚𝑛𝜅𝜆 ≡ 8𝜋 𝛿𝐿g

𝛿(𝜕Γ𝑚𝑛𝜆/𝜕𝑥𝜅)
= 1

2 (𝑒
𝑚𝜅𝑒𝑛𝜆 − 𝑒𝑚𝜆𝑒𝑛𝜅) . (16.89)

The momentum tensor 𝑒𝑚𝑛𝜅𝜆 is antisymmetric in 𝑚𝑛 and in 𝜅𝜆, and as such apparently has 6 × 6 = 36

components, but the requirement that it be expressible in terms of the vierbein in accordance with the right
hand side of equation (16.89) means that the momentum tensor has only 16 independent degrees of freedom.
The approach followed below, §16.8, is to treat the 16 components of the vierbein 𝑒𝑚𝜅 as the independent
degrees of freedom. (A possible approach, not followed here, is to work with the 36-component momentum
tensor 𝑒𝑚𝑛𝜅𝜆 instead of the 16-component vierbein, subjecting the momentum to the identities (constraints,
in Dirac’s terminology)

𝜀𝜅𝜆𝜇𝜈𝑒
𝑘𝑙𝜅𝜆𝑒𝑚𝑛𝜇𝜈 = 𝜀𝑘𝑙𝑚𝑛 , (16.90)

which is a symmetric 6× 6 matrix of conditions, or 21 conditions, except that the normalization of 𝜀𝜅𝜆𝜇𝜈 =

−𝑒[𝜅𝜆𝜇𝜈], where 𝑒 is the vierbein determinant, is arbitrary, so equations (16.90) constitute a set of 20 distinct
identities.)
The gravitational Lagrangian (16.88) can be written

𝐿g =
1

8𝜋
𝑒𝑚𝑛𝜅𝜆

(︂
𝜕Γ𝑚𝑛𝜆
𝜕𝑥𝜅

+ Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅

)︂
. (16.91)

The Lagrangian (16.91) is in (super)-Hamiltonian form 𝐿g = 𝑝𝜅𝜕𝜅𝑞 − 𝐻g with coordinates 𝑞 = Γ𝑚𝑛𝜆 and
momenta 𝑝𝜅 = 𝑒𝑚𝑛𝜅𝜆/8𝜋,

𝐿g =
1

8𝜋
𝑒𝑚𝑛𝜅𝜆

𝜕Γ𝑚𝑛𝜆
𝜕𝑥𝜅

−𝐻g , (16.92)

and (super-)Hamiltonian 𝐻g(Γ𝑚𝑛𝜆, 𝑒
𝑚𝑛𝜅𝜆)

𝐻g = − 1

8𝜋
𝑒𝑚𝑛𝜅𝜆𝛾𝑝𝑞Γ𝑝𝑚𝜆Γ𝑞𝑛𝜅 . (16.93)

Since a coordinate curl is a torsion-free covariant curl, equation (2.72), the coordinate partial derivatives
𝜕/𝜕𝑥𝜅 in the Lagrangian (16.91) or in the definition (16.89) of momenta could be replaced by torsion-free
covariant derivatives 𝐷𝜅, as was done earlier in the case of the electromagnetic field, equation (16.35).
The development below works with coordinate derivatives, but one could equally well choose to work with
torsion-free covariant derivatives.

16.7.1 The Lorentz connection is not a tetrad tensor, but any variation of it is

The Lorentz connection Γ𝑚𝑛𝜆 ≡ 𝑒𝑙𝜆Γ𝑚𝑛𝑙 is a coordinate vector but not a tetrad tensor. Although the Lorentz
connection is not a tetrad tensor, any variation of it with respect to an infinitesimal local Lorentz trans-
formation of the tetrad is a tetrad tensor. Generators of Lorentz transformations are antisymmetric tetrad
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tensors, Exercise 11.2. Under a local Lorentz transformation generated by the infinitesimal antisymmetric
tensor 𝜖𝑛𝑚, a tetrad vector 𝑎𝑛 varies as

𝑎𝑛 → 𝑎′𝑛 = 𝑎𝑛 + 𝛿𝑎𝑛 = 𝑎𝑛 + 𝜖𝑛
𝑚𝑎𝑚 . (16.94)

The variation 𝛿𝑎𝑛 of the tetrad vector,

𝛿𝑎𝑛 = 𝜖𝑛
𝑚𝑎𝑚 , (16.95)

is thus also a tetrad vector. The Lorentz connection is defined by Γ𝑚𝑛𝜆 ≡ 𝛾𝛾𝑚 · 𝜕𝛾𝛾𝑛/𝜕𝑥𝜆, equation (11.37).
Its variation under an infinitesimal Lorentz transformation generated by the antisymmetric tensor 𝜖𝑛𝑚 is

𝛿Γ𝑚𝑛𝜆 = 𝛿

(︂
𝛾𝛾𝑚 ·

𝜕𝛾𝛾𝑛
𝜕𝑥𝜆

)︂
= 𝛾𝛾𝑚 ·

𝜕(𝜖𝑛
𝑝𝛾𝛾𝑝)

𝜕𝑥𝜆
+ 𝜖𝑚

𝑝𝛾𝛾𝑝 ·
𝜕𝛾𝛾𝑛
𝜕𝑥𝜆

=
𝜕𝜖𝑛𝑚
𝜕𝑥𝜆

+ 𝜖𝑛
𝑝Γ𝑚𝑝𝜆 + 𝜖𝑚

𝑝Γ𝑝𝑛𝜆

= 𝐷𝜆𝜖𝑛𝑚 a coordinate and tetrad tensor . (16.96)

Equation (16.96) shows that the variation 𝛿Γ𝑚𝑛𝜆 is a covariant derivative of a tetrad tensor, therefore a
coordinate and tetrad tensor. The variation of the Lorentz connection by a derivative under an infinitesimal
Lorentz transformation is analogous to the variation 𝛿𝐴𝜆 = 𝜕𝜆𝜃 of the electromagnetic potential 𝐴𝜆 by the
gradient of a scalar 𝜃 under a gauge transformation of an electromagnetic field.
As a corollary, it follows that although the Hamiltonian 𝐻g, equation (16.93), is not a tetrad scalar, any

variation of it with respect to an infinitesimal local Lorentz transformation is a scalar.

16.8 Variation of the gravitational action

The gravitational action 𝑆g with the Lagrangian (16.91) is

𝑆g =
1

8𝜋

∫︁
𝑒𝑚𝑛𝜅𝜆

(︂
𝜕Γ𝑚𝑛𝜆
𝜕𝑥𝜅

+ Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅

)︂
𝑒 𝑑4𝑥0123 . (16.97)

Equations of motion governing the 16 vierbein 𝑒𝑚𝜅 and the 24 Lorentz connections Γ𝑚𝑛𝜅 are obtained
by varying the action (16.97) with respect to these fields. As shown below, variation with respect to the
vierbein 𝑒𝑚𝜅 yields Einstein’s equations in vacuo, equation (16.105), while variation with respect to the
Lorentz connections Γ𝑚𝑛𝜅 recovers the torsion-free expression (11.54) for the tetrad-frame connections Γ𝑚𝑛𝑘,
equation (16.110).
The approach of treating the vierbein and connections as independent fields to be varied is the Hamiltonian

(as opposed to Lagrangian) approach. In the context of the Hilbert action, the Hamiltonian approach is
commonly called the Palatini approach, after Palatini (1919), who first treated the 10 components of the
coordinate metric 𝑔𝜇𝜈 and the 40 coordinate connections Γ𝜇𝜈𝜅 as independent fields.
Before the gravitational action is varied, the spacetime is a manifold equipped with coordinates 𝑥𝜇, but

there is no prior coordinate metric 𝑔𝜇𝜈 , since the metric is determined by the vierbein, which remain un-
specified until determined by the variation itself. Therefore, in varying the action, it is necessary to take the
coordinate volume element 𝑑4𝑥0123, which is a pseudoscalar, as the primitive measure of volume. The scalar
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volume element 𝑑4𝑥 is related to the pseudoscalar coordinate volume element by a factor of the determinant
𝑒 of the vierbein, 𝑑4𝑥 = 𝑒 𝑑4𝑥0123, equation (15.88), and this determinant 𝑒 must be varied when the vierbein
are varied.
Varying the action (16.97) with respect to the vierbein 𝑒𝑚𝜅 and the Lorentz connections Γ𝑚𝑛𝜅 yields

𝛿𝑆g =
1

8𝜋

∫︁ [︂
𝑒𝑚𝑛𝜅𝜆

𝜕𝛿Γ𝑚𝑛𝜆
𝜕𝑥𝜅

+ 𝑒𝑚𝑛𝜅𝜆𝛿(Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅) +

(︂
𝜕Γ𝑚𝑛𝜆
𝜕𝑥𝜅

+ Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅

)︂
𝑒−1𝛿(𝑒 𝑒𝑚𝑛𝜅𝜆)

]︂
𝑒 𝑑4𝑥0123 .

(16.98)
To arrive at Hamilton’s equations, the first term of the integrand on the right hand side of equation (16.98)
(the 𝑝𝜅𝜕𝜅(𝛿𝑞) term) must be integrated by parts, which is accomplished by

𝑒𝑚𝑛𝜅𝜆
𝜕𝛿Γ𝑚𝑛𝜆
𝜕𝑥𝜅

=
𝑒−1𝜕(𝑒 𝑒𝑚𝑛𝜅𝜆𝛿Γ𝑚𝑛𝜆)

𝜕𝑥𝜅
− 𝑒−1𝜕(𝑒 𝑒𝑚𝑛𝜅𝜆)

𝜕𝑥𝜅
𝛿Γ𝑚𝑛𝜆 . (16.99)

Since 𝑒𝑚𝑛𝜅𝜆𝛿Γ𝑚𝑛𝜆 is a coordinate tensor (and also a tetrad tensor, equation (16.96)), the first term on the
right hand side of equation (16.99) is a torsion-free covariant divergence in accordance with equation (2.74)
(the˚atop 𝐷𝜅 is a reminder that it is torsion-free),

𝑒−1𝜕(𝑒 𝑒𝑚𝑛𝜅𝜆𝛿Γ𝑚𝑛𝜆)

𝜕𝑥𝜅
= 𝐷𝜅

(︀
𝑒𝑚𝑛𝜅𝜆𝛿Γ𝑚𝑛𝜆

)︀
, (16.100)

and therefore integrates to a surface term in accordance with Gauss’ theorem (15.102). The remaining terms
in the integrand of equation (16.98) must be expressed in terms of the variations 𝛿Γ𝑝𝑛𝜅 and 𝛿𝑒𝑚𝜅 of the
connections and vierbein. The second term in the integrand on the right hand side of equation (16.98) is

𝑒𝑚𝑛𝜅𝜆𝛿(Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅) = 2 𝑒𝑚𝑛𝜅𝜆Γ𝑝𝑚𝜆𝛿Γ𝑝𝑛𝜅 . (16.101)

The variation 𝛿 ln 𝑒 of the vierbein determinant 𝑒 in may be written in terms of the variation 𝛿𝑒𝑚𝜅 of the
vierbein, equation (2.77),

𝛿 ln 𝑒 = −𝑒𝑚𝜅 𝛿𝑒𝑚𝜅 . (16.102)

The last term in the integrand on the right hand side of equation (16.98) is then(︂
𝜕Γ𝑚𝑛𝜆
𝜕𝑥𝜅

+ Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅

)︂
𝑒−1𝛿(𝑒 𝑒𝑚𝑛𝜅𝜆) = 1

2𝑅𝜅𝜆𝑚𝑛 𝑒
−1𝛿
(︀
𝑒 𝑒𝑚𝜅𝑒𝑛𝜆

)︀
=
(︀
𝑅𝜅𝑚 − 1

2𝑒𝑚𝜅𝑅
)︀
𝛿𝑒𝑚𝜅 = 𝐺𝑘𝑚 𝑒

𝑘
𝜅 𝛿𝑒

𝑚𝜅 ,

(16.103)
where 𝐺𝑘𝑚 ≡ 𝑅𝑘𝑚 − 1

2𝛾𝑘𝑚𝑅 is the tetrad-frame Einstein tensor. The 1
2𝛾𝑘𝑚𝑅 part of the Einstein tensor

comes from variation of the vierbein determinant, equation (16.102).
The substitutions (16.99)–(16.103) bring the variation (16.98) of the gravitational action to

8𝜋 𝛿𝑆g =

∮︁
𝑒𝑚𝑛𝜅𝜆𝛿Γ𝑚𝑛𝜆 𝑑

3𝑥𝜅

+

∫︁ [︂(︂
− 𝑒−1𝜕(𝑒 𝑒𝑚𝑛𝜅𝜆)

𝜕𝑥𝜅
+ 2Γ[𝑚

𝑝𝜅𝑒
𝑛]𝑝𝜅𝜆

)︂
𝛿Γ𝑚𝑛𝜆 +𝐺𝜅𝑚 𝛿𝑒

𝑚𝜅

]︂
𝑑4𝑥 . (16.104)

The surface term vanishes provided that the connections Γ𝑚𝑛𝜆 are held fixed on the boundary of integration,
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so that their variation 𝛿Γ𝑚𝑛𝜆 vanishes on the boundary. Hamilton’s equations follow from extremizing the
remaining integral. Extremizing the action (16.104) with respect to the variation 𝛿𝑒𝑚𝜅 of the vierbein yields
Einstein’s equations in vacuo,

𝐺𝑘𝑚 = 0 . (16.105)

Extremizing the action with respect to the variation 𝛿Γ𝑚𝑛𝜆 of the Lorentz connections gives

𝑒−1𝜕(𝑒 𝑒𝑚𝑛𝜅𝜆)

𝜕𝑥𝜅
= 2Γ[𝑚

𝑝𝜅𝑒
𝑛]𝑝𝜅𝜆 . (16.106)

Abbreviate the left hand side of equation (16.106) by

𝑓 𝑙𝑚𝑛 ≡ 𝑒𝑙𝜆
𝑒−1𝜕(𝑒 𝑒𝑚𝑛𝜅𝜆)

𝜕𝑥𝜅
, (16.107)

which is antisymmetric in its last two indices, 𝑓𝑙𝑚𝑛 = 𝑓𝑙[𝑚𝑛]. In terms of the vierbein derivatives 𝑑𝑙𝑚𝑛 defined
by equation (11.33), the quantities 𝑓𝑙𝑚𝑛 defined by equation (16.107) are

𝑓𝑙𝑚𝑛 = 𝑑𝑙[𝑚𝑛] − 𝛾𝑙𝑚𝑑𝑘[𝑘𝑛] + 𝛾𝑙𝑛𝑑
𝑘
[𝑘𝑚] . (16.108)

Inverting equation (16.106) yields the tetrad-frame connections Γ𝑚𝑛𝑙 in terms of 𝑓𝑙𝑚𝑛,

Γ𝑚𝑛𝑙 = 2𝑓𝑙𝑚𝑛 − 3𝑓[𝑙𝑚𝑛] + 2𝛾𝑙[𝑚𝑓
𝑝
𝑛]𝑝 . (16.109)

Inserting the expression (16.108) into equations (16.109) yields the standard torsion-free expression (11.54)
for the tetrad-frame connection Γ𝑚𝑛𝑙 in terms of vierbein derivatives 𝑑𝑚𝑛𝑙,

Γ𝑚𝑛𝑙 = Γ̊𝑚𝑛𝑙 = 2𝑑𝑙[𝑚𝑛] − 3𝑑[𝑙𝑚𝑛] . (16.110)

The expression for the Ricci scalar in the Hilbert Lagrangian (16.88) is valid with or without torsion, but
extremization of the action in vacuo has yielded the torsion-free connection. There remains the possibility
that torsion could be generated by matter, §16.11.

16.9 Trading coordinates and momenta

In the Hamiltonian approach, the coordinates and momenta appear on an equal footing. A Lagrangian in
Hamiltonian form 𝐿 = 𝑝 𝜕𝑞−𝐻 can be replaced by an alternative Lagrangian 𝐿′ = − 𝑞 𝜕𝑝−𝐻 which differs
from the original by a total derivative, 𝐿′ = 𝐿 − 𝜕(𝑝𝑞), and thus yields identical equations of motion. The
alternative Lagrangian 𝐿′ is in Hamiltonian form with 𝑞 → 𝑝 and 𝑝→ −𝑞.
Consider integrating the first term of the gravitational Lagrangian (16.91) by parts (this is essentially the

same integration by parts as (16.99), but with the connection Γ𝑚𝑛𝜆 itself instead of the varied connection
𝛿Γ𝑚𝑛𝜆),

𝑒𝑚𝑛𝜅𝜆
𝜕Γ𝑚𝑛𝜆
𝜕𝑥𝜅

=
𝑒−1𝜕(𝑒 𝑒𝑚𝑛𝜅𝜆Γ𝑚𝑛𝜆)

𝜕𝑥𝜅
− 𝑒−1𝜕(𝑒 𝑒𝑚𝑛𝜅𝜆)

𝜕𝑥𝜅
Γ𝑚𝑛𝜆 . (16.111)

Now 𝑒𝑚𝑛𝜅𝜆Γ𝑚𝑛𝜆 is a coordinate tensor but not a tetrad tensor. However, its variation with respect to any
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infinitesimal Lorentz transformation is a tetrad tensor, §16.7.1. Therefore the variation of the first term
on the right hand side of equation (16.111) is a torsion-free covariant divergence 𝐷𝜅𝛿(𝑒

𝑚𝑛𝜅𝜆Γ𝑚𝑛𝜆), which
can be discarded from the Lagrangian without changing the equations of motion. The resulting alternative
gravitational Lagrangian is

8𝜋 𝐿′g = −𝑒
−1𝜕(𝑒 𝑒𝑚𝑛𝜅𝜆)

𝜕𝑥𝜅
Γ𝑚𝑛𝜆 + 𝑒𝑚𝑛𝜅𝜆Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅 . (16.112)

Again, this alternative Lagrangian is a coordinate scalar but not a tetrad scalar, but any variation of it is a
tetrad scalar, so is a satisfactory Lagrangian.
In this alternative Lagrangian (16.112), the coordinates are the vierbein 𝑒𝑛𝜆, and the corresponding canon-

ically conjugate momenta are

𝜋𝑛
𝜅
𝜆 ≡

8𝜋 𝛿𝐿′g
𝜕(𝜕𝑒𝑛𝜆/𝜕𝑥𝜅)

= 𝑒𝑚𝜅𝜋𝑛𝑚𝜆 , (16.113)

where 𝜋𝑛𝑚𝜆 and Γ𝑛𝑚𝜆 are related by

𝜋𝑛𝑚𝜆 ≡ Γ𝑛𝑚𝜆 − 𝑒𝑛𝜆Γ𝑝𝑚𝑝 + 𝑒𝑚𝜆Γ
𝑝
𝑛𝑝 , Γ𝑛𝑚𝜆 = 𝜋𝑛𝑚𝜆 − 1

2 𝑒𝑛𝜆𝜋
𝑝
𝑚𝑝 +

1
2 𝑒𝑚𝜆𝜋

𝑝
𝑛𝑝 . (16.114)

Like the tetrad connection Γ𝑛𝑚𝜆, the covariant momentum 𝜋𝑛𝑚𝜆 is antisymmetric in its first two indices
𝑛𝑚, and therefore has 6 × 4 = 24 independent components. The traces are related by 𝜋𝑝𝑚𝑝 = −2Γ𝑝𝑚𝑝. The
alternative Lagrangian (16.112) is in Hamiltonian form 𝐿′g = 𝑝𝜅𝜕𝜅𝑞 − 𝐻g with coordinates 𝑞 = 𝑒𝑛𝜆 and
momenta 𝑝𝜅 = 𝜋𝑛

𝜅
𝜆/8𝜋,

𝐿′g =
1

8𝜋
𝜋𝑛

𝜅
𝜆
𝜕𝑒𝑛𝜆

𝜕𝑥𝜅
−𝐻g , (16.115)

and the same (super-)Hamiltonian (16.93) as before.
Equations of motion come from varying the alternative action 𝛿𝑆′g with respect to the coordinates 𝑒𝑚𝜅 and

momenta 𝜋𝑚𝑛𝜆. The coefficients of the variations 𝛿𝑒𝑚𝜅 and 𝛿𝜋𝑚𝑛𝜆 are linear combinations of the coefficients
of 𝛿𝑒𝑚𝜅 and 𝛿Γ𝑚𝑛𝜆 in the varied action of equation (16.104). The end result is the same equations of motion
as before, equations (16.105) and (16.110). The only difference is that variation of the alternative action
gives a revised surface term,

8𝜋 𝛿𝑆′g =

∮︁
𝜋𝑛𝑚𝜆𝛿𝑒

𝑛𝜆 𝑑3𝑥𝑚 +

∫︁
as eq. (16.104) . (16.116)

The surface term vanishes provided that the vierbein 𝑒𝑛𝜆 is held fixed on the boundary.

16.10 Matter energy-momentum and the Einstein equations with matter

Einstein’s equations in vacuo, equation (16.105), emerged from varying the gravitational action with respect
to the vierbein. Einstein’s equations including matter are obtained by including the variation of the matter
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action with respect to the vierbein. The variation of the matter action 𝑆m with respect to the vierbein defines
the energy-momentum tensor 𝑇𝜅𝑚 of matter,

𝛿𝑆m = −
∫︁
𝑇𝜅𝑚 𝛿𝑒

𝑚𝜅 𝑑4𝑥 . (16.117)

Adding the variation (16.104) of the gravitational action and the variation (16.117) of the matter action
gives

8𝜋 (𝛿𝑆g + 𝛿𝑆m) =

∫︁
(𝐺𝜅𝑚 − 8𝜋 𝑇𝜅𝑚) 𝛿𝑒𝑚𝜅 𝑑4𝑥 , (16.118)

extremization of which implies Einstein’s equations in the presence of matter

𝐺𝜅𝑚 = 8𝜋 𝑇𝜅𝑚 . (16.119)

The Einstein equations (16.119) constitute a set of 16 equations. Conditions on the energy-momentum
imposed by the invariance of the matter action under local Lorentz transformations and under coordinate
transformations are discussed in §§16.11.1 and 16.11.2 below.
If the matter action is 𝑆m =

∫︀
𝐿m 𝑑

4𝑥, then the matter energy-momentum is the sum of a part from the
variation of the matter Lagrangian 𝐿m, and a part from the variation of the vierbein determinant in the
scalar volume element 𝑑4𝑥 ≡ 𝑒 𝑑4𝑥0123,

𝑇𝜅𝑚 = − 𝛿𝐿m

𝛿𝑒𝑚𝜅
+ 𝐿m𝑒𝑚𝜅 . (16.120)

16.11 Spin angular-momentum

In the standard U𝑌 (1)× SU(2)× SU(3) model of physics, the connections associated with the gauge groups
are dynamical fields, the gauge bosons, which include photons, weak gauge bosons, and gluons. As has been
seen above, the gauge symmetries of general relativity include not only coordinate transformations, encoded
in the vierbein 𝑒𝑚𝜅, but also Lorentz transformations, encoded in the Lorentz connection Γ𝑚𝑛𝜆. Treating
the vierbein as a dynamical field leads to Einstein’s equations (16.119) and standard general relativity. If the
Lorentz connection is treated similarly as a dynamical field, as it surely should be, then the inevitable con-
sequence is the extension of general relativity to include torsion, which is called Einstein-Cartan theory.
Einstein-Cartan theory follows general relativity in taking the Lagrangian to be the Hilbert Lagrangian, the

only difference being that the Lorentz connections Γ𝑚𝑛𝜆 in the Riemann tensor are allowed to have torsion.
The Riemann tensor with torsion equals the torsion-free Riemann tensor plus extra terms depending on the
contortion, equation (15.49). Since torsion is a tensor, it is possible to include additional torsion-dependent
terms in the Lagrangian (Hammond, 2002; Hehl, 2012; Blagojević and Hehl, 2013), but the various possible
extensions go beyond the scope of this book.
As shown below, in Einstein-Cartan theory, torsion vanishes in empty space, and it does not propagate as

a wave, unlike the (trace-free, Weyl part of the) Riemann curvature. Consequently conventional experimental
tests of gravity do not rule out torsion. The gravitational force is intrinsically much weaker than the other
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three forces of the standard model. It makes itself felt only because gravity is long-ranged, and cumulative
with mass. Since torsion in Einstein-Cartan theory is local, it is hard to detect.
Just as the variation of the matter action with respect to the vierbein 𝑒𝑚𝜅 defines the energy-momentum

tensor 𝑇𝑘𝑚, so also the variation of the matter action with respect to the Lorentz connections Γ𝑚𝑛𝜆 defines
the spin angular-momentum tensor Σ𝜆𝑚𝑛,

𝛿𝑆m = 1
2

∫︁
Σ𝜆𝑚𝑛 𝛿Γ𝑚𝑛𝜆 𝑑

4𝑥 (16.121)

(implicitly summed over both indices𝑚 and 𝑛). The spin angular-momentum tensor Σ𝜆𝑚𝑛 is so-called because
it is sourced by the spin of fermionic fields such as Dirac fields, Exercise 16.5. The spin angular-momentum
vanishes for gauge fields such as the electromagnetic field, Exercise 16.4. Like the torsion tensor 𝑆𝜆𝑚𝑛, the
spin angular-momentum Σ𝜆𝑚𝑛 is antisymmetric in its last two indices 𝑚𝑛. Adding the variation (16.104) of
the gravitational action and the variation (16.121) of the matter action gives

8𝜋 (𝛿𝑆g + 𝛿𝑆m) =

∫︁ (︂
− 𝑒−1𝜕(𝑒 𝑒𝑚𝑛𝜅𝜆)

𝜕𝑥𝜅
+ 2Γ[𝑚

𝑝𝜅𝑒
𝑛]𝑝𝜅𝜆 + 4𝜋Σ𝜆𝑚𝑛

)︂
𝛿Γ𝑚𝑛𝜆 𝑑

4𝑥 , (16.122)

extremization of which implies

𝑒−1𝜕(𝑒 𝑒𝑚𝑛𝜅𝜆)

𝜕𝑥𝜅
= 2Γ[𝑚

𝑝𝜅𝑒
𝑛]𝑝𝜅𝜆 + 4𝜋Σ𝜆𝑚𝑛 . (16.123)

Inverting equation (16.123) along the lines of equations (16.106)–(16.110) recovers the usual expression (11.55)
for the torsion-full tetrad connection Γ𝑚𝑛𝜆 as a sum of the torsion-free connection Γ̊𝑚𝑛𝜆 given by equa-
tion (16.110), and a contortion tensor 𝐾𝑚𝑛𝜆,

Γ𝑚𝑛𝜆 = Γ̊𝑚𝑛𝜆 +𝐾𝑚𝑛𝜆 , (16.124)

with the contortion tensor 𝐾𝑚𝑛𝑙 being related to the spin angular-momentum Σ𝑙𝑚𝑛 by

𝐾𝑚𝑛𝑙 = 8𝜋
(︀
−Σ𝑙𝑚𝑛 + 3

2Σ[𝑙𝑚𝑛] − 𝛾𝑙[𝑚Σ𝑝𝑛]𝑝
)︀
. (16.125)

The contortion 𝐾𝑚𝑛𝑙 is related to the torsion 𝑆𝑚𝑛𝑙 by equations (11.56). Equation (16.125) implies that the
torsion 𝑆𝜆𝑚𝑛 is related to the spin angular-momentum Σ𝜆𝑚𝑛 by

𝑆𝜆𝑚𝑛 = 8𝜋
(︁
Σ𝜆𝑚𝑛 + 𝑒[𝑚

𝜆 Σ𝑘𝑛]𝑘

)︁
. (16.126)

Equation (16.126) inverts to

𝑆𝜆𝑚𝑛 + 2 𝑒[𝑚
𝜆 𝑆𝑘𝑛]𝑘 = 8𝜋Σ𝜆𝑚𝑛 . (16.127)

Equation (16.127) relating the torsion to the spin angular-momentum is the analogue of Einstein’s equa-
tions (16.119) relating the Einstein tensor to the matter energy-momentum. Whereas the Einstein equa-
tions (16.119) determine only 10 of the 20 components of the Riemann tensor (for vanishing torsion) leav-
ing 10 components (the Weyl tensor) to describe tidal forces and gravitational waves, the torsion equa-
tions (16.127) determine all 24 components of the torsion tensor in terms of the 24 components of the spin
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angular-momentum. Thus, at least in this vanilla version of general relativity with torsion, torsion vanishes
in empty space, and it cannot propagate as a wave.
An equivalent spin angular-momentum tensor Σ̃𝜆𝑚𝑛 is obtained by varying the matter action with respect

to 𝜋𝑚𝑛𝜆 in place of Γ𝑚𝑛𝜆,

𝛿𝑆m = 1
2

∫︁
Σ̃𝜆𝑚𝑛 𝛿𝜋𝑚𝑛𝜆 𝑑

4𝑥 . (16.128)

The relation between the torsion 𝑆𝜆𝑚𝑛 and the modified spin angular-momentum Σ̃𝜆𝑚𝑛 is

𝑆𝜆𝑚𝑛 = 8𝜋 Σ̃𝜆𝑚𝑛 . (16.129)

Comparing equation (16.129) to equation (16.126) shows that the modified and original spin angular-
momenta Σ̃𝜆𝑚𝑛 and Σ𝜆𝑚𝑛 differ by a trace term,

Σ̃𝜆𝑚𝑛 = Σ𝜆𝑚𝑛 + 𝑒[𝑚
𝜆 Σ𝑘𝑛]𝑘 , Σ𝜆𝑚𝑛 = Σ̃𝜆𝑚𝑛 + 2 𝑒[𝑚

𝜆 Σ̃𝑘𝑛]𝑘 . (16.130)

As seen above, the torsion, contortion, and spin angular-momentum tensors are all invertibly related to each
other. The relations between them are conceptually clearer when decomposed into irreducible parts. Each is
a 24-component tensor that decomposes into a 4-component trace part, a 4-component totally antisymmetric
part, and a remaining 16-component trace-free antisymmetry-free part. The torsion 𝑆𝑙𝑚𝑛, contortion 𝐾𝑙𝑚𝑛,
and spin angular-momentum Σ𝑙𝑚𝑛 package these parts with different weights. The three parts are related
by

𝑆𝑘𝑛𝑘 = 𝐾𝑘
𝑛𝑘 = −4𝜋Σ𝑘𝑛𝑘 = 8𝜋Σ̃𝑘𝑛𝑘 trace part , (16.131a)

𝑆[𝑙𝑚𝑛] = 2𝐾[𝑚𝑛𝑙] = 8𝜋Σ[𝑙𝑚𝑛] = 8𝜋Σ̃[𝑙𝑚𝑛] totally antisymmetric part , (16.131b)

𝑆𝑙𝑚𝑛 = −𝐾𝑚𝑛𝑙 = 8𝜋Σ𝑙𝑚𝑛 = 8𝜋Σ̃𝑙𝑚𝑛 trace-free, antisymmetry-free part . (16.131c)

16.11.1 Conservation of angular-momentum and the symmetry of the

energy-momentum tensor

The action 𝑆m of any matter field is invariant under Lorentz transformations. Symmetry under Lorentz
transformations implies a conservation law (16.136) of angular-momentum. If torsion vanishes, the conserva-
tion law (16.136) implies that the energy-momentum tensor 𝑇𝑚𝑛 of the field is symmetric, equation (16.137).
I thank Prof. Fred Hehl for pointing out that the antisymmetric part of the energy-momentum tensor can
be interpreted consistently as half the divergence of orbital angular-momentum, §19(c) of Corson (1953),
so that equation (16.136) can be interpreted as a conservation law of total angular momentum, spin plus
orbital.
Equation (16.95) gives the variation of a tetrad vector under a local Lorentz transformation generated by

the infinitesimal antisymmetric tensor 𝜖𝑚𝑛. Under such an infinitesimal Lorentz transformation, the vierbein
tensor 𝑒𝑚𝜅 varies as

𝛿𝑒𝑚𝜅 = 𝜖𝑚𝑛𝑒
𝑛𝜅 = 𝜖𝑚𝜅 . (16.132)
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Equation (16.96) gives the variation of the Lorentz connection under an infinitesimal Lorentz transformation
generated by 𝜖𝑚𝑛,

𝛿Γ𝑚𝑛𝜆 = −𝐷𝜆𝜖𝑚𝑛 . (16.133)

The coefficients of the variation 𝛿𝑆m of the matter action with respect to 𝛿𝑒𝑚𝜅 and 𝛿Γ𝑚𝑛𝜆 are by definition
the energy-momentum and spin angular-momentum of the matter, equations (16.121) and (16.117). Inserting
the variations (16.132) and (16.133) with respect to Lorentz transformations yields the variation of the matter
action under a Lorentz transformation,

𝛿𝑆m = −
∫︁ (︀

1
2Σ

𝜆𝑚𝑛𝐷𝜆𝜖𝑚𝑛 + 𝑇𝜅𝑚𝜖
𝑚𝜅
)︀
𝑑4𝑥 . (16.134)

An integration by parts brings the variation to

𝛿𝑆m = −
∮︁

1
2Σ𝜆

𝑚𝑛𝜖𝑚𝑛 𝑑
3𝑥𝜆 +

∫︁ (︁
1
2𝐷𝜆Σ

𝜆𝑚𝑛 + 𝑇 [𝑚𝑛]
)︁
𝜖𝑚𝑛 𝑑

4𝑥 . (16.135)

Requiring that the matter action be invariant under Lorentz transformations imposes that the variation
(16.135) must vanish under arbitrary variations of the antisymmetric Lorentz generators 𝜖𝑚𝑛, subject to the
generators being fixed on the initial and final hypersurfaces of integration. Therefore the integrand of the
rightmost integral in equation (16.135) must vanish, implying the conservation law

1
2𝐷𝜆Σ

𝜆𝑚𝑛 + 𝑇 [𝑚𝑛] = 0 . (16.136)

If the spin angular-momentum of the matter component vanishes, Σ𝜆𝑚𝑛 = 0, then the energy-momentum
tensor of the matter component is symmetric,

𝑇𝑚𝑛 = 𝑇𝑛𝑚 . (16.137)

16.11.2 Conservation of energy-momentum

The action 𝑆m of any matter field is also invariant under coordinate transformations. Symmetry under
coordinate transformations implies a conservation law (16.145) for the energy-momentum 𝑇𝑚𝑛 of the field.
Under a coordinate transformation generated by the coordinate shift 𝛿𝑥𝜇 = 𝜖𝜇, the variation of any

quantity is given by minus its Lie derivative ℒ𝜖 with respect to the coordinate shift 𝜖𝜇, equation (7.125).
The Lie derivative of a coordinate tensor is given by equation (7.153), and this equation continues to hold
for tensors that are tetrad as well as coordinate tensors, the tetrad components being treated as coordinate
scalars (because tetrad components are unchanged under a coordinate transformation). However, a difficulty
arises because the Lie derivative of a tetrad tensor is not a tetrad tensor (see Concept Question 26.2).
Consequently, although the vierbein is a coordinate and tetrad tensor, its Lie derivative is a coordinate
tensor but not a tetrad tensor. The solution to the difficulty is pointed out at the beginning of §5.2.1 of Hehl
et al. (1995): the Lagrangian is a Lorentz scalar, so its coordinate derivative is also its Lorentz-covariant
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derivative. Thus in varying the Lagrangian, the coordinate derivative of any tetrad tensor can be replaced
by its Lorentz-covariant derivative. The Lorentz-covariant Lie derivative ℒΓ𝜖 of the vierbein is

ℒΓ𝜖𝑒
𝑚𝜅 = − 𝑒𝑚𝜆 𝜕𝜖

𝜅

𝜕𝑥𝜆
+ 𝜖𝜆

(︂
𝜕𝑒𝑚𝜅

𝜕𝑥𝜆
+ Γ𝑚𝑛𝜆𝑒

𝑛𝜅

)︂
= −𝐷𝑚𝜖𝜅 − 𝜖𝜆𝐾𝑚𝜅𝜆

= −𝐷𝑚𝜖𝜅 − 𝜖𝑙𝑆𝜅𝑚𝑙 , (16.138)

which differs from equation (26.18) in that the derivative of 𝑒𝑚𝜅 on the right hand side of the first line
is covariant with respect to the tetrad index 𝑚. The expressions on the second and third lines of equa-
tions (16.138) are equivalent; the second line is in terms of the torsion-free covariant derivative 𝐷, while the
third line is in terms of the torsion-full covariant derivative 𝐷. Thus the vierbein tensor 𝑒𝑚𝜅 varies under a
coordinate transformation as, equation (26.18),

𝛿𝑒𝑚𝜅 = −ℒΓ𝜖𝑒
𝑚𝜅 = 𝐷𝑚𝜖𝜅 + 𝜖𝜆𝐾

𝑚𝜅𝜆 . (16.139)

The Lorentz connection Γ𝑚𝑛𝜆 is not a tetrad-frame tensor, so the usual formula for the Lie derivative
does not apply. Rather, the variation 𝛿Γ𝑚𝑛𝜆 of the Lorentz connection follows from a difference of covariant
derivatives,

𝛿𝐷𝜆𝑎𝑛 −𝐷𝜆𝛿𝑎𝑛 = 𝛿(𝜕𝜆𝑎𝑛 − Γ𝑚𝑛𝜆𝑎𝑚)− (𝜕𝜆𝛿𝑎𝑛 − Γ𝑚𝑛𝜆𝛿𝑎𝑚) = −(𝛿Γ𝑚𝑛𝜆)𝑎𝑚 . (16.140)

Thus the variation of the Lorentz connection under a coordinate transformation by 𝜖𝜅 satisfies

(𝛿Γ𝑚𝑛𝜆)𝑎
𝑚 = ℒΓ𝜖(𝐷𝜆𝑎𝑛)−𝐷𝜆ℒΓ𝜖𝑎𝑛 = 𝜖𝜅

(︂
𝜕

𝜕𝑥𝜅
𝐷𝜆𝑎𝑛 − Γ𝑚𝑛𝜅𝐷𝜆𝑎𝑚

)︂
+ (𝐷𝜅𝑎𝑛)

𝜕𝜖𝜅

𝜕𝑥𝜆
−𝐷𝜆(𝜖

𝜅𝐷𝜅𝑎𝑛)

= 𝜖𝜅𝑎𝑚𝑅𝜆𝜅𝑚𝑛 . (16.141)

Equation (16.141) is true for arbitrary 𝑎𝑚, so

𝛿Γ𝑚𝑛𝜆 = 𝜖𝜅𝑅𝜆𝜅𝑚𝑛 . (16.142)

Inserting the variations (16.139) and (16.142) of the vierbein and Lorentz connection into the varia-
tions (16.117) and (16.121) of the matter action yields the variation of the matter action under a coordinate
transformation by 𝜖𝜅,

𝛿𝑆m =

∫︁ [︁
−𝑇𝜅𝑚

(︁
𝐷𝑚𝜖𝜅 + 𝜖𝜆𝐾

𝑚𝜅𝜆
)︁
+ 1

2Σ
𝜆𝑚𝑛 𝜖𝜅𝑅𝜆𝜅𝑚𝑛

]︁
𝑑4𝑥 . (16.143)

An integration by parts brings the variation of the matter action to

𝛿𝑆m = −
∮︁
𝑇𝜅𝜆𝜖

𝜅 𝑑3𝑥𝜆 +

∫︁ (︁
𝐷𝑚𝑇𝜅𝑚 + 𝑇𝑚𝑛𝐾𝑚𝑛𝜅 +

1
2Σ

𝜆𝑚𝑛𝑅𝜆𝜅𝑚𝑛

)︁
𝜖𝜅 𝑑4𝑥 . (16.144)

Invariance of the action under coordinate transformations requires that the variation (16.144) vanish for
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arbitrary coordinate shifts 𝜖𝜅 that vanish on the boundary. Therefore the integrand of the rightmost integral
in equation (16.144) must vanish, implying the law of conservation of energy-momentum,

𝐷𝑚𝑇𝜅𝑚 + 𝑇𝑚𝑛𝐾𝑚𝑛𝜅 +
1
2Σ

𝜆𝑚𝑛𝑅𝜆𝜅𝑚𝑛 = 0 . (16.145)

Since the contortion 𝐾𝑚𝑛𝜅 is antisymmetric in its first two indices 𝑚𝑛, the second term of the conservation
law (16.145) depends on the antisymmetric part 𝑇 [𝑚𝑛] of the energy-momentum tensor.
If the spin angular-momentum of the matter component vanishes, Σ𝜆𝑚𝑛 = 0, then its matter energy-

momentum tensor 𝑇𝑚𝑛 is symmetric, equation (16.136), and the energy-momentum conservation equa-
tion (16.145) of the matter component simplifies to

𝐷𝑚𝑇
𝑛𝑚 = 0 . (16.146)

Concept question 16.1. Can the coordinate metric be Minkowski in the presence of torsion?

Can the coordinate metric be the Minkowski metric 𝑔𝜇𝜈 = 𝜂𝜇𝜈 over a finite region of spacetime where torsion
does not vanish? Answer. As discussed in Concept Question 2.5, yes, torsion could technically be finite even
in flat (Minkowski) space. In practice, no, because torsion at any point of spacetime is determined by the
spin angular-momentum of matter there, which contributes energy-momentum that ensures that the metric
is not Minkowski over the finite region (of course, the metric can always be made locally Minkowski).

Concept question 16.2. What kinds of metric or vierbein admit torsion? Answer. Any kind.
Coordinate derivatives of the metric or vierbein determine torsion-free connections, placing no constraint on
torsion.

Concept question 16.3. Why the names matter energy-momentum and spin angular-momentum?

What is the justification for calling 𝑇𝜅𝑚 the matter energy-momentum and Σ𝜆𝑚𝑛 the spin angular-momentum?
Answer. In flat spacetime, conservation of energy and momentum are associated with translation symmetry
with respect to time and space. Conservation of angular momentum is associated with rotational symme-
try of space. In general relativity, these global symmetries are replaced by local symmetries. Translation
symmetry is replaced by symmetry under coordinate transformations; rotational symmetry is replaced by
symmetry under local Lorentz transformations (which include Lorentz boosts as well as spatial rotations).
The matter energy-momentum tensor 𝑇𝜅𝑚 satisfies a conservation law (16.145) that arises as a result of
symmetry under coordinate transformations. The spin angular-momentum tensor Σ𝜆𝑚𝑛 satisfies a conser-
vation law (16.136) that arises as a result of symmetry under local Lorentz transformations. The reason for
the adjective “spin” is that, as seen in Exercises 16.4 and 16.5, spin angular-momentum vanishes for bosonic
fields such as electromagnetism, but is non-vanishing for fermionic (half-integral spin) fields.

Exercise 16.4. Energy-momentum and spin angular-momentum of the electromagnetic field.De-
rive the energy-momentum and spin angular-momentum of the electromagnetic field. The energy-momentum
and spin angular-momentum of a field are defined by equations (16.117) and (16.121).
Solution.
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1. Energy-momentum of the electromagnetic field. The Lagrangian of the electromagnetic field is,
equation (16.28),

𝐿 ≡ − 1

16𝜋
𝑔𝜅𝜇𝑔𝜆𝜈𝐹𝜅𝜆𝐹𝜇𝜈 , (16.147)

where the inverse metric is in terms of the vierbein,

𝑔𝜅𝜇 = 𝜂𝑘𝑚𝑒
𝑘𝜅𝑒𝑚𝜇 . (16.148)

The fact that the Lagrangian depends on the vierbein only in the symmetrized combination constituting
the inverse metric guarantees that the energy-momentum tensor is symmetric. The variation of the
electromagnetic Lagrangian (16.147) with respect to the vierbein is

𝛿𝐿 = − 1

4𝜋
𝐹𝜅𝜆𝐹𝑘

𝜆 𝛿𝑒𝑘𝜅 . (16.149)

An additional contribution to the energy-momentum comes from variation of the vierbein determinant
in the volume element, equation (16.120). The resulting tetrad-frame energy-momentum tensor 𝑇𝑘𝑙 of
the electromagnetic field is the symmetric tensor

𝑇𝑘𝑙 =
1

4𝜋

(︂
𝐹𝑘𝑚𝐹𝑙

𝑚 − 1

4
𝛾𝑘𝑙𝐹𝑚𝑛𝐹

𝑚𝑛

)︂
. (16.150)

The factor 1/4𝜋 factor is for Gaussian units, and is not present in Heaviside units.
2. Spin angular-momentum of the electromagnetic field. The Lagrangian of the electromagnetic

field depends on the torsion-free curl of the electromagnetic potential, so does not involve any Lorentz
connections. Therefore the spin angular-momentum of the electromagnetic field is zero,

Σ𝑙𝑚𝑛 = 0 . (16.151)

Exercise 16.5. Energy-momentum and spin angular-momentum of a Dirac field. Find the energy-
momentum and spin angular-momentum of a Dirac spinor field.
Solution.

1. Energy-momentum of a Dirac field. The Lagrangian of a Dirac field is, equation (41.4),

𝐿 = 1
2𝜓 ·

(︀
𝑒𝑘𝜆𝛾𝛾𝑘𝐷𝜆 +𝑚

)︀
𝜓 − 1

2𝜓 ·
(︀
𝑒𝑘𝜆𝛾𝛾𝑘𝐷𝜆 +𝑚

)︀
𝜓 , (16.152)

where the (torsion-full) covariant derivative is𝐷𝜆 = 𝜕𝜆+
1
4Γ𝑚𝑛𝜆 𝛾𝛾

𝑚 ∧𝛾𝛾𝑛 (implicit sum over both indices
𝑚 and 𝑛). The two terms in the Lagrangian (16.152) are complex conjugates of each other, ensuring
that the Lagrangian is real. Variation with respect to the vierbein 𝑒𝑘𝜆 yields the energy-momentum
tensor 𝑇𝑙𝑘 = 𝑒𝑙

𝜆𝑇𝜆𝑘, which is not symmetric in 𝑙𝑘,

𝑇𝑙𝑘 = 1
2𝜓 · 𝛾𝛾𝑘𝐷𝑙𝜓 − 1

2𝜓 · 𝛾𝛾𝑘𝐷𝑙𝜓 . (16.153)

The fact that energy-momentum tensor of a Dirac field is not symmetric is associated with the fact that
the spin-angular momentum of the field does not vanish, §16.11.1. The Dirac Lagrangian 𝐿 vanishes on
the equations of motion, so the contribution to the energy-momentum, equation (16.120), arising from
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variation of the vierbein determinant in the scalar volume element 𝑑4𝑥 ≡ 𝑒 𝑑4𝑥0123 vanishes. Again, the
two terms in the energy-momentum (16.153) are complex conjugates of each other, ensuring that the
energy-momentum is real.

2. Spin angular-momentum of a Dirac field. Variation with respect to the connection Γ𝑚𝑛𝜆 yields the
spin angular-momentum Σ𝑙𝑚𝑛 ≡ 𝑒𝑙𝜆Σ𝜆𝑚𝑛, which is a trivector current totally antisymmetric in 𝑙𝑚𝑛,

Σ𝑙𝑚𝑛 = 1
2𝜓 · 𝛾𝛾𝑙 ∧𝛾𝛾𝑚 ∧𝛾𝛾𝑛𝜓 . (16.154)

The possible vector current contribution cancels between the two terms on the right hand side of
equation (16.152).

Exercise 16.6. Electromagnetic field in the presence of torsion. Does torsion affect the propagation
of the electromagnetic field?
Solution. No. The electromagnetic field equations involve only torsion-free derivatives, so the propagation
of the electromagnetic field is unaffected by torsion.

Exercise 16.7. Dirac spinor field in the presence of torsion. How does torsion affect the propagation
of a massive Dirac spin-12 field? Assume for simplicity that the background metric is Minkowski, that the
spinor field is uniform (a plane wave) and at rest, and that the spin angular-momentum Σ𝑚𝑛𝑘 is uniform.
Solution. The torsion-free part of the connection vanishes for a Minkowski metric, so the only non-vanishing
part of the connection is the contortion 𝐾𝑚𝑛𝑘. If the spin angular-momentum is uniform, then so is the
contortion. The equation of motion of a Dirac spinor field of rest mass 𝑚 is[︀

𝛾𝛾𝑘(𝜕𝑘 +
1
4𝐾𝑚𝑛𝑘 𝛾𝛾

𝑚 ∧𝛾𝛾𝑛) +𝑚
]︀
𝜓 = 0 . (16.155)

For simplicity, go to the rest frame of the spinor field, where the particle is in a time-up and spin-up eigenstate
𝜓 ∝ 𝜖⇑↑, equation (14.108), which means that the particle is a particle, not an antiparticle, and its spin is
along the positive 3-direction. The only Dirac 𝛾-matrices that are non-vanishing when acting on a spinor 𝜓
in this state are 𝛾𝛾0 and 𝛾𝛾1 ∧𝛾𝛾2. Thus the equation of motion in the rest frame is(︀

𝜕0 +
3
2𝐾[012] +𝐾𝑎

0𝑎 +𝑚
)︀
𝜓 = 0 . (16.156)

The solutions are

𝜓 ∝ 𝑒−𝑖(𝑚+𝛿𝑚)𝑡 , (16.157)

where the mass change 𝛿𝑚 is

𝛿𝑚 = 3
2𝐾[012] +𝐾𝑎

0𝑎 = 4𝜋𝐺
(︀
Σ[012] − Σ𝑎0𝑎

)︀
, (16.158)

the contortion being related to the spin angular-momentum Σ𝑚𝑛𝑘 by equations (16.131). Thus the effect of
torsion is to change the effective mass 𝑚 of the spinor particle. The trace part of the spin angular-momentum
produces a mass change that has opposite signs for particles and antiparticles, but is independent of the
direction of the spin of the particle, while the totally antisymmetric part of the spin angular-momentum
produces a mass change that depends on the direction of the spin of the particle. As seen in Exercise 16.5, a
Dirac spinor field produces only a totally antisymmetric spin angular-momentum Σ[𝑚𝑛𝑘]. This antisymmetric
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component is directional, so tends to cancel if the spins of the background system of spinor particles are
pointed in random directions. The antisymmetric spin angular-momentum is significant only if the spins
of the background particles are aligned. Whatever the case, since the gravitational coupling 𝐺 is so weak
compared to typical electromagnetic couplings, the resulting change in the mass of a spinor is typically tiny.

16.12 Lagrangian as opposed to Hamiltonian formulation

In the Lagrangian approach to the least action principle, as opposed to the Hamiltonian approach followed
above, the Lagrangian is required to be a function of the coordinates and velocities, as opposed to the
momenta. For gravity, the coordinates are the vierbein 𝑒𝑛𝜆, and the velocities are their coordinate derivatives
𝜕𝑒𝑛𝜆/𝜕𝑥𝜅. In the Lagrangian approach, the Lorentz connections Γ𝑚𝑛𝜆 are not independent coordinates, but
rather are taken to be given in terms of the coordinates and velocities 𝑒𝑛𝜆 and 𝜕𝑒𝑛𝜆/𝜕𝑥𝜅. In other words,
the Lorentz connections are assumed to satisfy the equations of motion that in the Hamiltonian approach
are derived by varying the action with respect to the connections.
The Hilbert Lagrangian depends not only on the vierbein and its first derivatives, but also on its second

derivatives. To bring the Hilbert Lagrangian to a form that depends only on the first, not second, derivatives
of the vierbein, the Hilbert action must be integrated by parts. This is precisely the integration by parts
that was carried out in the previous section §16.9. In the Lagrangian approach, the alternative Lagrangian
𝐿′g given by equation (16.112) provides a satisfactory Lagrangian, once the connections Γ𝑚𝑛𝜅 are expressed
in terms of the vierbein 𝑒𝑚𝜅 and its first derivatives.

16.12.1 Quadratic gravitational Lagrangian

The derivative term on the right hand side of the expression (16.112) for the Lagrangian 𝐿′g was previously
determined by Hamilton’s equations to be given by equation (16.106), in which the connection proved to
be the torsion-free connection. Substituting equation (16.106) (with torsion-free connection Γ̊𝑚𝑝𝜅) brings the
alternative Lagrangian (16.112) to

8𝜋 𝐿′g = 𝑒𝑚𝑛𝜅𝜆
(︁
− 2 Γ̊𝑝𝑚𝜆Γ𝑝𝑛𝜅 + Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅

)︁
= 𝑒𝑚𝑛𝜅𝜆

(︁
− Γ̊𝑝𝑚𝜆Γ̊𝑝𝑛𝜅 +𝐾𝑝

𝑚𝜆𝐾𝑝𝑛𝜅

)︁
, (16.159)

the last step of which follows from expanding the torsion-full connection as a sum of the torsion-free con-
nection and the contortion tensor, Γ𝑚𝑛𝜅 = Γ̊𝑚𝑛𝜅 + 𝐾𝑚𝑛𝜅, equation (11.55). The torsion-free connections
Γ̊𝑝𝑛𝜅 ≡ 𝑒𝑘𝜅Γ̊𝑝𝑛𝑘 here are given by expression (16.110) (same as equation (11.54)), which are functions of the
vierbein, linear in its first derivatives. The Lagrangian (16.159) is quadratic in the torsion-free connections,
and therefore quadratic in the first derivatives of the vierbein, but independent of any second derivatives.
If torsion vanishes, as general relativity assumes, then

8𝜋 𝐿′g = − 𝑒𝑚𝑛𝜅𝜆 Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅 . (16.160)

Thus, for vanishing torsion, the first (“surface”) term in the original alternative Lagrangian (16.112) equals
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minus twice the second (“quadratic”) term. Padmanabhan (2010) has termed this property of the Hilbert
Lagrangian “holographic,” and has suggested that it points to profound consequences.

16.12.2 A quick way to derive the quadratic gravitational Lagrangian

There is a quick way to derive the quadratic gravitational Lagrangian (16.159) that seems like it should not
work, but it does. Suppose, incorrectly, that the Lorentz connections Γ𝑚𝑛𝜆 formed a coordinate and tetrad
tensor. Then contracting the Riemann tensor would give the Ricci scalar in the form

𝑅 = 2𝐷𝜅

(︀
𝑒𝑚𝑛𝜅𝜆Γ𝑚𝑛𝜆

)︀
+ 2 𝑒𝑚𝑛𝜅𝜆

(︀
− Γ̊𝑝𝑚𝜆Γ̊𝑝𝑛𝜅 +𝐾𝑝

𝑚𝜆𝐾𝑝𝑛𝜅

)︀
. (16.161)

Discarding the torsion-free covariant divergence recovers the quadratic gravitational Lagrangian (16.159).
Why does this work? The answer is that, as discussed in §16.12, although Γ𝑚𝑛𝜆 is not a tetrad tensor, it is a
tetrad tensor with respect to infinitesimal tetrad transformations about the value that satisfies the equations
of motion. In the Lagrangian formalism, the connections are assumed to satisfy their equations of motion.
Since least action invokes only infinitesimal variations of the coordinates and tetrad, for the purposes of
applying least action, the argument 𝑒𝑚𝑛𝜅𝜆Γ𝑚𝑛𝜆 of the covariant divergence can be treated as a tensor, and
the covariant divergence thus discarded legitimately.

16.13 Gravitational action in multivector notation

The derivation of the gravitational equations of motion from the Hilbert action can be translated into
multivector language. Translating into multivector language does not make calculations any easier, but,
by removing some of the blizzard of indices, it makes the structure of the gravitational Lagrangian more
manifest. The multivector approach followed in this section 16.13 is a stepping stone to the even more
compact, abstract, and powerful notation of multivector-valued differential forms, dealt with starting from
§16.14.

16.13.1 Multivector gravitational Lagrangian

In multivector notation, the Hilbert Lagrangian (16.88) is

𝐿g ≡
1

16𝜋
(𝑒𝜆 ∧ 𝑒𝜅) ·𝑅𝜅𝜆 =

1

16𝜋
(𝑒𝜆 ∧ 𝑒𝜅) ·

(︂
𝜕Γ𝜆
𝜕𝑥𝜅

− 𝜕Γ𝜅
𝜕𝑥𝜆

+ 1
2 [Γ𝜅,Γ𝜆]

)︂
, (16.162)

implicitly summed over both indices 𝜅 and 𝜆. In equation (16.162), 𝑒𝜅 = 𝑒𝑚
𝜅𝛾𝛾𝑚 are the usual coordinate

(co)tangent vectors, equation (11.6), and the bivectors Γ𝜅 and 𝑅𝜅𝜆 are given by equations (15.20) and
(15.25). The dot in equation (16.162) signifies the multivector dot product, equation (13.35), which here is
a scalar product of bivectors. The order of 𝑒𝜆 ∧ 𝑒𝜅 is flipped to cancel a minus sign from taking a scalar
product of bivectors.
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Applying the multivector triple-product relation (13.39) to the derivative term in the rightmost expression
of equation (16.162) brings the Hilbert Lagrangian to

𝐿g =
1

16𝜋

(︀
2 𝑒𝜆 · (𝜕 · Γ𝜆) + 1

2 (𝑒
𝜆 ∧ 𝑒𝜅) · [Γ𝜅,Γ𝜆]

)︀
, (16.163)

where 𝜕 ≡ 𝑒𝜅 𝜕/𝜕𝑥𝜅. The form of the Lagrangian (16.163) indicates that the “velocities” corresponding
to the “coordinates” Γ𝜆 are 𝜕 · Γ𝜆. The Lagrangian (16.163) is in (super-)Hamiltonian form with bivector
coordinates Γ𝜆, vector velocities 𝜕 · Γ𝜆, and vector momenta 𝑒𝜆/8𝜋,

𝐿g =
1

8𝜋
𝑒𝜆 · (𝜕 · Γ𝜆)−𝐻g , (16.164)

and (super-)Hamiltonian 𝐻g(Γ𝜆, 𝑒
𝜆) (compare (16.93))

𝐻g = − 1

32𝜋
(𝑒𝜆 ∧ 𝑒𝜅) · [Γ𝜅,Γ𝜆] . (16.165)

Whereas in tensor notation the gravitational coordinates and momenta appeared to be objects of different
types, with different numbers of indices, in multivector notation the coordinates and momenta are all mul-
tivectors, albeit of different grades. In multivector notation, the number of coordinates Γ𝜆 and momenta 𝑒𝜆

is the same, 4.

16.13.2 Variation of the multivector gravitational Lagrangian

In multivector notation, the fields to be varied in the gravitational Lagrangian are the Lorentz connection
bivectors Γ𝜆 and the coordinate vectors 𝑒𝜅. In multivector notation, when the fields are varied, it is the
coefficients Γ𝑘𝑙𝜆 and 𝑒𝑘𝜅 that are varied, the tetrad basis vectors 𝛾𝛾𝑘 being considered fixed. Thus the variation
𝛿Γ𝜆 of the Lorentz connections is

𝛿Γ𝜆 ≡ 1
2 (𝛿Γ𝑘𝑙𝜆)𝛾𝛾

𝑘 ∧𝛾𝛾𝑙 (16.166)

(implicitly summed over all indices; the factor of 1
2 would disappear if the sum were over distinct antisym-

metric indices 𝑘𝑙). The variation 𝛿𝑒𝜅 of the coordinate vectors is

𝛿𝑒𝜅 ≡ (𝛿𝑒𝑘
𝜅)𝛾𝛾𝑘 . (16.167)

As remarked in §16.8, when the vierbein are varied, the variation of the determinant 𝑒 of the vierbein that
goes into the scalar volume element 𝑑4𝑥 = 𝑒 𝑑4𝑥0123 must be taken into account. The variation of the vierbein
determinant is related to the variation 𝛿𝑒𝜅 of the coordinate vectors by

𝛿 ln 𝑒 = −𝑒𝑘𝜅 𝛿𝑒𝑘𝜅 = −𝑒𝜅 · 𝛿𝑒𝜅 . (16.168)

The variation of the gravitational action with the multivector Lagrangian (16.169) is

𝛿𝑆g =
1

16𝜋

∫︁ [︂
(𝑒𝜆 ∧ 𝑒𝜅) ·

(︂
2
𝜕𝛿Γ𝜆
𝜕𝑥𝜅

+ 1
2𝛿[Γ𝜅,Γ𝜆]

)︂
+ 𝑒−1𝛿(𝑒 𝑒𝜆 ∧ 𝑒𝜅) ·𝑅𝜅𝜆

]︂
𝑑4𝑥 . (16.169)
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The first term in the integrand of equation (16.169) integrates by parts to

(𝑒𝜆 ∧ 𝑒𝜅) · 𝜕𝛿Γ𝜆
𝜕𝑥𝜅

= 𝐷𝜅

(︀
(𝑒𝜆 ∧ 𝑒𝜅) · 𝛿Γ𝜆

)︀
− 𝑒−1𝜕(𝑒 𝑒𝜆 ∧ 𝑒𝜅)

𝜕𝑥𝜅
· 𝛿Γ𝜆 . (16.170)

The second term in the integrand of equation (16.169) is

1
2 (𝑒

𝜆 ∧ 𝑒𝜅) · 𝛿[Γ𝜅,Γ𝜆] = (𝑒𝜆 ∧ 𝑒𝜅) · [Γ𝜅, 𝛿Γ𝜆] = [𝑒𝜆 ∧ 𝑒𝜅,Γ𝜅] · 𝛿Γ𝜆 , (16.171)

the last step of which follows from the multivector triple-product relation (13.39) and the fact that (half)
the anticommutator of two bivectors is the bivector part of their geometric product. The third term in the
integrand of equation (16.169) is

𝑅𝜅𝜆 · 𝑒−1𝛿(𝑒 𝑒𝜆 ∧ 𝑒𝜅) = 2𝑅𝜅𝜆 · (𝑒𝜆 ∧ 𝛿𝑒𝜅)−
(︀
𝑅𝜅𝜆 · (𝑒𝜆 ∧ 𝑒𝜅)

)︀
𝑒𝜇 · 𝛿𝑒𝜇

=
(︀
2𝑅𝜅𝜆 · 𝑒𝜆 −𝑅 𝑒𝜅

)︀
· 𝛿𝑒𝜅

= 2𝐺𝜅 · 𝛿𝑒𝜅 , (16.172)

where the second line again follows from the multivector triple-product relation (13.39), and 𝐺𝜅 is the
Einstein vector

𝐺𝜅 ≡ 𝑅𝜅𝜆 · 𝑒𝜆 − 1
2𝑅 𝑒𝜅 =

(︀
𝑅𝜅𝑚 − 1

2𝑅𝑒𝑚𝜅
)︀
𝛾𝛾𝑚 . (16.173)

The manipulations (16.170)–(16.172) bring the variation (16.169) of the action to

𝛿𝑆g =
1

8𝜋

∮︁
(𝑒𝜆 ∧ 𝑒𝜅) · 𝛿Γ𝜆 𝑑3𝑥𝜅 +

1

8𝜋

∫︁ [︂(︂
− 𝑒−1𝜕(𝑒 𝑒𝜆 ∧ 𝑒𝜅)

𝜕𝑥𝜅
+ 1

2 [𝑒
𝜆 ∧ 𝑒𝜅,Γ𝜅]

)︂
· 𝛿Γ𝜆 +𝐺𝜅 · 𝛿𝑒𝜅

]︂
𝑑4𝑥 .

(16.174)
The surface term vanishes provided that Γ𝜆 is held fixed on the boundaries of integration. Extremizing the
action (16.174) with respect to the variation 𝛿𝑒𝜅 of coordinate vectors yields the Einstein equations in vacuo,

𝐺𝜅 = 0 . (16.175)

Extremizing the action (16.174) with respect to the variation 𝛿Γ𝜆 of the Lorentz connections yields the
multivector equivalent of equation (16.106),

𝑒−1𝜕(𝑒 𝑒𝜆 ∧ 𝑒𝜅)
𝜕𝑥𝜅

= 1
2 [𝑒

𝜆 ∧ 𝑒𝜅,Γ𝜅] . (16.176)

The left hand side of equation (16.176) is

𝑒−1𝜕(𝑒 𝑒𝜆 ∧ 𝑒𝜅)
𝜕𝑥𝜅

= 𝜕 ∧ 𝑒𝜆 − 𝑒𝜆 ∧
(︀
𝑒𝜇 · (𝜕 ∧ 𝑒𝜇)

)︀
. (16.177)

The “velocities” of the coordinate vectors are their curls 𝜕 ∧ 𝑒𝜆,

𝜕 ∧ 𝑒𝜆 ≡ 𝑒𝜅 ∧ 𝜕𝑒
𝜆

𝜕𝑥𝜅
= 𝑑𝜆[𝑚𝑛]𝛾𝛾

𝑚 ∧𝛾𝛾𝑛 (16.178)

implicitly summed over both indices 𝑚 and 𝑛. The 𝑑𝜆𝑚𝑛 ≡ 𝑒𝑙𝜆𝑑𝑙𝑚𝑛 in equation (16.178) are the vierbein
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derivatives defined by equation (11.33). Equation (16.176) solves to yield the torsion-free relation between
the connections Γ𝜆 and the velocities 𝜕 ∧ 𝑒𝜆 of the coordinate vectors,

Γ𝜆 = Γ̊𝜆 = 𝜕 ∧ 𝑒𝜆 − 𝑒𝜆 ·
(︀
𝑒𝜇 ∧(𝜕 ∧ 𝑒𝜇)

)︀
, 𝜕 ∧ 𝑒𝜆 = Γ̊𝜆 − 2 𝑒𝜆 · (𝑒𝜇 ∧ Γ̊𝜇) . (16.179)

16.13.3 Alternative multivector gravitational action

As in §16.9, since the Lagrangian (16.162) is in Hamiltonian form, the coordinates Γ𝜆 and momenta 𝑒𝜆 can
be traded without changing the equations of motion. Integrating the Lagrangian (16.162) by parts gives

8𝜋𝐿g =
𝑒−1𝜕

(︀
(𝑒𝜆 ∧ 𝑒𝜅) · Γ𝜆

)︀
𝜕𝑥𝜅

− 𝑒−1𝜕(𝑒 𝑒𝜆 ∧ 𝑒𝜅)
𝜕𝑥𝜅

· Γ𝜆 + 1
4 (𝑒

𝜆 ∧ 𝑒𝜅) · [Γ𝜅,Γ𝜆] . (16.180)

As in §16.9, the connection Γ𝜆 is not a tetrad tensor, but any infinitesimal variation of it is, §16.7.1,
so the variation of the first term on the right hand side of equation (16.180) is a covariant divergence
𝐷𝜅𝛿

(︀
(𝑒𝜆 ∧ 𝑒𝜅) · Γ𝜆

)︀
, which can be discarded from the Lagrangian without changing the equations of mo-

tion.
The middle term on the right hand side of equation (16.180) can be written

− Γ𝜆 ·
𝑒−1𝜕(𝑒 𝑒𝜆 ∧ 𝑒𝜅)

𝜕𝑥𝜅
= 𝜋𝜆 · (𝜕 ∧ 𝑒𝜆) , (16.181)

where 𝜕 ∧ 𝑒𝜆 is given by equation (16.178), and 𝜋𝜆 is the trace-modified Lorentz connection bivector

𝜋𝜆 = Γ𝜆 − 𝑒𝜆 ∧(𝑒𝜇 · Γ𝜇) , Γ𝜆 = 𝜋𝜆 − 1
2 𝑒𝜆 ∧(𝑒

𝜇 · 𝜋𝜇) , (16.182)

with components

𝜋𝜆 = 1
2 𝜋𝑚𝑛𝜆 𝛾𝛾

𝑚 ∧𝛾𝛾𝑛 . (16.183)

The components 𝜋𝑚𝑛𝜆 are as given by equation (16.114).
Discarding the torsion-free divergence from the Lagrangian (16.180) yields the alternative Lagrangian

𝐿′g =
1

8𝜋
𝜋𝜆 · (𝜕 ∧ 𝑒𝜆)−𝐻g , (16.184)

with the same (super-)Hamiltonian (16.165) as before. The alternative Lagrangian (16.184) is in Hamiltonian
form with coordinates 𝑒𝜆, velocities 𝜕 ∧ 𝑒𝜆, and corresponding canonically conjugate momenta 𝜋𝜆/(8𝜋). As
with the alternative Lagrangian (16.112) in index notation, the alternative Lagrangian (16.184) in multivector
notation is not a tetrad scalar because the Lorentz connection is not a tetrad tensor, but any infinitesimal
variation of it is a (coordinate and) tetrad tensor, so the alternative Lagrangian (16.184) is satisfactory
despite not being a tetrad scalar.
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16.13.4 Einstein equations with matter, in multivector notation

In multivector notation, Einstein’s equations including matter are obtained by including the variation of the
matter action with respect to the variation 𝛿𝑒𝜅 of the coordinate vectors. The variation defines the matter
energy-momentum vector 𝑇𝜅,

𝛿𝑆m = −
∫︁

𝑇𝜅 · 𝛿𝑒𝜅 𝑑4𝑥 , (16.185)

with

𝑇𝜅 = 𝑇𝜅𝑚 𝛾𝛾𝑚 . (16.186)

The combined variation of the gravitational and matter actions with respect to 𝛿𝑒𝜅 is

8𝜋(𝛿𝑆g + 𝛿𝑆m) =

∫︁
(𝐺𝜅 − 8𝜋 𝑇𝜅) · 𝛿𝑒𝜅 𝑑4𝑥 , (16.187)

extremization of which yields Einstein’s equations with matter,

𝐺𝜅 = 8𝜋 𝑇𝜅 . (16.188)

16.13.5 Spin angular-momentum in multivector notation

Just as the variation of the matter action with respect to the the variation 𝛿𝑒𝜅 of the coordinate vectors
defines the matter energy-momentum vector 𝑇𝜅, so also the variation of the matter action with respect to
the variation 𝛿Γ𝜆 of the Lorentz connection bivectors defines the spin angular-momentum bivector Σ𝜆,

𝛿𝑆m =

∫︁
Σ𝜆 · 𝛿Γ𝜆 𝑑4𝑥 , (16.189)

with (the minus sign is introduced for the same reason as the minus in equation (15.27))

Σ𝜆 ≡ − 1
2 Σ

𝜆
𝑚𝑛 𝛾𝛾

𝑚 ∧𝛾𝛾𝑛 , (16.190)

implicitly summed over both indices 𝑚 and 𝑛. As in §16.11, the usual expression (15.46) for the torsion-full
tetrad connections Γ𝜆 as a sum of the torsion-free connection Γ̊𝜆 and the contortion 𝐾𝜆 is recovered,

Γ𝜆 = Γ̊𝜆 +𝐾𝜆 , (16.191)

provided that the torsion bivector 𝑆𝜆 ≡ − 1
2 𝑆

𝜆
𝑚𝑛 𝛾𝛾

𝑚 ∧𝛾𝛾𝑛 is related to the spin angular-momentum bivector
Σ𝜆 by

𝑆𝜆 = 8𝜋
(︀
Σ𝜆 − 1

2 𝑒
𝜆 ∧(𝑒𝜇 ·Σ𝜇)

)︀
, 𝑆𝜆 − 𝑒𝜆 ∧(𝑒𝜇 · 𝑆𝜇) = 8𝜋Σ𝜆 . (16.192)
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16.14 Gravitational action in multivector forms notation

Especially in the mathematical literature, actions are often written in the even more compact notation of
differential forms. The reward, if you can get over the language barrier, is a succinct picture of the structure
of the gravitational action and equations of motion. For example, forms notation facilitates the intricate
problem of executing a satisfactory 3+1 split of the gravitational equations, §16.15. If you aspire to a deeper
understanding of numerical relativity or of quantum gravity, you would do well to understand forms.
As seen in §16.7, the Hilbert action is most insightful when the local Lorentz symmetry of general rela-

tivity, encoded in the tetrad 𝛾𝛾𝑚, is kept distinct from the symmetry with respect to coordinate transforma-
tions, encoded in the tangent vectors 𝑒𝜇. The distinction can be retained in forms language by considering
multivector-valued forms. Local Lorentz transformations transform the multivectors while keeping the forms
unchanged, while coordinate transformations transform the forms while keeping the multivectors unchanged.
To avoid conflict between multivector and form notations, it is convenient to reserve the wedge sign ∧ to

signify a wedge product of multivectors, not of forms. No ambiguity results from omitting the wedge sign for
forms, since there is only one way to multiply forms, the exterior product2. Similarly, it is convenient to reserve
the Hodge duality symbol * to signify the dual of a form, equation (15.79), not the dual of a multivector, and
to write 𝐼𝑎 for the Hodge dual of a multivector 𝑎, equation (13.24). The form dual of a 𝑝-form 𝑎 = 𝑎Λ 𝑑

𝑝𝑥Λ

with multivector coefficients 𝑎Λ is the multivector 𝑞-form *𝑎 given by (this is equation (15.79) generalized
to allow multivector coefficients)

*𝑎 ≡ (*𝑎)Π 𝑑
𝑞𝑥Π = (−)𝑝𝑞𝑎Λ

*𝑑𝑞𝑥Λ = 𝜀ΠΛ 𝑎Λ 𝑑𝑞𝑥Π , (16.193)

implicitly summed over distinct sequences Λ and Π of respectively 𝑝 and 𝑞 ≡ 𝑁 − 𝑝 (in 𝑁 dimensional
spacetime) coordinate indices. The dual (16.193) is a form dual, not a multivector dual. If 𝑎 is a multivector
of grade 𝑛 (not necessarily equal to 𝑝 or 𝑞), the dual form *𝑎 remains a multivector of the same grade 𝑛.
The double dual of a multivector form 𝑎, both a multivector dual and a form dual, crops up often enough
to merit its own notation, a double-asterisk overscript **,

**
𝑎 ≡ 𝐼 *𝑎 . (16.194)

In this section 16.14 and in the remainder of this Chapter, unless otherwise stated, implicit sums are over
distinct antisymmetric sequences of indices, since this removes the ubiquitous factorial factors that otherwise
appear. For example, the wedge product of two multivectors 𝑎 and 𝑏 is

𝑎∧ 𝑏 = (𝑎𝑘𝛾𝛾
𝑘)∧ (𝑏𝑙𝛾𝛾𝑙) = 2 𝑎[𝑘𝑏𝑙] 𝛾𝛾

𝑘 ∧𝛾𝛾𝑙 = 2 𝑎𝑘𝑏𝑙 𝛾𝛾
𝑘 ∧𝛾𝛾𝑙 , (16.195)

implicitly summed over distinct antisymmetric pairs of indices 𝑘𝑙. In any expression for a multivector form
in components, it can be helpful to think of the multivector and form indices as each carrying an implicit
antisymmetrization symbol [...], as in the example 𝑎[𝑘𝑏𝑙] of equation (16.195). The antisymmetrization symbol
will usually not be made explicit, both for brevity and to avoid a certain awkwardness of notation.

2 This is not true. The entire apparatus of multivectors can be translated into forms language. However, I take the point of
view that, since multivectors are easier to manipulate than forms, there is not much to be gained from such a translation.
The only occasion I find that necessitates introducing a dot product of forms is in deriving the law of conservation of
energy-momentum in multivector forms language, equation (16.299).



450 Action principle for electromagnetism and gravity

It is convenient to adopt the convention that the commutator of a multivector 𝑝-form 𝑎 with a multivector
𝑞-form 𝑏 is commuting if 𝑝 and 𝑞 are both odd, anticommuting otherwise,

[𝑎, 𝑏] =

{︂
[𝑏,𝑎] 𝑝 and 𝑞 odd ,
−[𝑏,𝑎] otherwise .

(16.196)

The advantage of this convention is that the contribution of the Lorentz connection to the covariant derivative
of any multivector form 𝑎 is always the commutator 1

2 [Γ,𝑎]. For example, the expression (15.26) for the
Riemann tensor in terms of the commutator of the covariant derivative carries through to the language of
multivector-valued forms, equation (16.208). The anticommutation of the multivectors is deemed to cancel
the anticommutation of forms when 𝑝 and 𝑞 are both odd. For example, if 𝑎 and 𝑏 are two 1-forms, then
their commutator is

[𝑎, 𝑏] = [𝑎𝜅, 𝑏𝜆] 𝑑
2𝑥𝜅𝜆 = (𝑎𝜅𝑏𝜆 − 𝑏𝜆𝑎𝜅) 𝑑

2𝑥𝜅𝜆 = (𝑎𝜅𝑏𝜆 + 𝑏𝜅𝑎𝜆) 𝑑
2𝑥𝜅𝜆 = [𝑏,𝑎] , (16.197)

implicitly summed over distinct antisymmetric indices 𝜅𝜆. As a corollary, the (anti-)commutator of a 𝑝-form
𝑎 with itself vanishes if 𝑝 is (odd) even,

{𝑎,𝑎} = 0 𝑝 odd , (16.198a)

[𝑎,𝑎] = 0 𝑝 even . (16.198b)

Exercise 16.8. Commutation of multivector forms.

1. Argue that if 𝑎 ≡ 𝑎𝐾Λ 𝛾𝛾𝐾 𝑑𝑝𝑥Λ is a multivector form of grade 𝑘 and form index 𝑝, and 𝑏 ≡ 𝑎𝐾Λ 𝛾𝛾𝐾 𝑑𝑞𝑥Λ

is a multivector form of grade 𝑙 and form index 𝑞, then the grade 𝑘+ 𝑙− 2𝑛 component of their product
𝑎𝑏 commutes or anticommutes as

⟨𝑎𝑏⟩𝑘+𝑙−2𝑛 = (−)𝑘𝑙−𝑛+𝑝𝑞 ⟨𝑏𝑎⟩𝑘+𝑙−2𝑛 . (16.199)

As particular cases of equation (16.199), conclude that

𝑎 · 𝑎 = 0 𝑝 odd , (16.200a)

𝑎∧𝑎 = 0 𝑘 + 𝑝 odd . (16.200b)

2. What is the form index of the product 𝑎𝑏 of multivector forms 𝑎 and 𝑏 of form index 𝑝 and 𝑞?
Solution.

1. This is a combination of equations (13.28) and (15.61).
2. A product of forms is always their exterior product, so the form index of the product 𝑎𝑏 is 𝑝+ 𝑞.

16.14.1 Interval, connection

In multivector notation, the gravitational coordinates and momenta proved to be Γ𝜅 and 𝑒𝜅 (or vice versa).
In forms notation, the corresponding coordinates and momenta are the Lorentz connection bivector 1-form
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Γ and the line interval vector 1-form 𝑒 defined by

Γ ≡ Γ𝜅 𝑑𝑥
𝜅 = Γ𝑘𝑙𝜅 𝛾𝛾

𝑘 ∧𝛾𝛾𝑙 𝑑𝑥𝜅 , (16.201a)

𝑒 ≡ 𝑒𝜅 𝑑𝑥
𝜅 = 𝑒𝑘𝜅 𝛾𝛾

𝑘 𝑑𝑥𝜅 , (16.201b)

with, for Γ, implicit summation over distinct antisymmetric sets of indices 𝑘𝑙. The Lorentz connection 1-
form Γ and coordinate interval 1-form 𝑒 are abstract coordinate and tetrad gauge-invariant objects, whose
components in any coordinate and tetrad frame constitute the Lorentz connection Γ𝑘𝑙𝜅 and the vierbein 𝑒𝑘𝜅
in the mixed coordinate-tetrad basis.
The line interval 𝑒 is essentially the same as the object 𝑑𝑥 first introduced in this book in equation (2.19).

I contemplated using the symbol 𝑑𝑥 in place of 𝑒 everywhere in this Chapter, to emphasize that using forms
language does not require switching to a whole new set of symbols. But 𝑒 is the symbol for the line-interval
form conventionally used in the literature; and the symbol 𝑑𝑥 risks being misinterpreted as a composition of
𝑑 and 𝑥 (for example, an exterior derivative of 𝑥), as opposed to the single holistic object 𝑑𝑥 that it really
is. Moreover, if the dot product 𝑒 · 𝑒 is defined (as here) to be a form, then that dot product is not the same
as the scalar spacetime interval squared 𝑑𝑠2 = 𝑑𝑥 · 𝑑𝑥, equation (2.25) (see Concept Question 16.9).
It is convenient to use the symbol 𝑒𝑝 to denote the normalized 𝑝-volume element,

𝑒𝑝 ≡ 1

𝑝!

𝑝 terms⏞  ⏟  
𝑒∧ ...∧ 𝑒 , (16.202)

which is both a 𝑝-form and a grade-𝑝 multivector. The factor of 1/𝑝! compensates for the multiple counting
of distinct indices, and ensures that 𝑒𝑝 correctly measures the 𝑝-volume element.

Concept question 16.9. Scalar product of the interval form 𝑒. In Chapter 2, the scalar product of
the line interval with itself defined its scalar length squared, 𝑑𝑠2 = 𝑑𝑥 · 𝑑𝑥 = 𝑔𝜇𝜈 𝑑𝑥

𝜇𝑑𝑥𝜈 , equation (2.25).
Is this still true in multivector forms language? Answer. No. A differential 𝑝-form represents physically a
𝑝-volume element, and as such is always a sum of antisymmetrized products of 𝑝 intervals. The scalar product
of the interval 1-form 𝑒 with itself is

𝑒 · 𝑒 = 2 𝑔𝜇𝜈 𝑑
2𝑥𝜇𝜈 = 0 (16.203)

(implicitly summed over distinct antisymmetric sequences 𝜇𝜈, hence the factor 2). The scalar product van-
ishes because of the symmetry of the metric 𝑔𝜇𝜈 and the antisymmetry of the area element 𝑑2𝑥𝜇𝜈 .
A different version of a dot product of forms (not much used in this book) can be defined in precise analogy

to a dot product of multivectors to yield a form of smaller form index, equation (16.284). This form dot
product of the interval 1-form 𝑒 with itself yields the 0-form

𝑒 . 𝑒 = 𝑒𝜈𝑚𝑒𝑛𝜈𝛾𝛾
𝑚𝛾𝛾𝑛 = 𝜂𝑚𝑛𝛾𝛾

𝑚𝛾𝛾𝑛 = 4 , (16.204)

which again differs from the scalar product 𝑑𝑠2 = 𝑑𝑥 · 𝑑𝑥.
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16.14.2 Curvature and torsion forms

The Riemann bivector 2-form 𝑅 is defined by

𝑅 ≡ 𝑅𝜅𝜆 𝑑
2𝑥𝜅𝜆 = 𝑅𝜅𝜆𝑚𝑛 𝛾𝛾

𝑚 ∧𝛾𝛾𝑛 𝑑2𝑥𝜅𝜆 , (16.205)

again implicitly summed over distinct antisymmetric indices 𝑚𝑛 and 𝜅𝜆. The exterior derivative of the
Lorentz connection 1-form is, equation (15.70), the 2-form

dΓ =

(︂
𝜕Γ𝜆
𝜕𝑥𝜅

− 𝜕Γ𝜅
𝜕𝑥𝜆

)︂
𝑑2𝑥𝜅𝜆 =

(︂
𝜕Γ𝑚𝑛𝜆
𝜕𝑥𝜅

− 𝜕Γ𝑚𝑛𝜅
𝜕𝑥𝜆

)︂
𝛾𝛾𝑚 ∧𝛾𝛾𝑛 𝑑2𝑥𝜅𝜆 , (16.206)

implicitly summed over distinct antisymmetric indices 𝑚𝑛 and 𝜅𝜆. The commutator 1
4 [Γ,Γ] of the 1-form Γ

with itself is the bivector 2-form

1
4 [Γ,Γ] =

1
2 [Γ𝜅,Γ𝜆] 𝑑

2𝑥𝜅𝜆 = (Γ𝑝𝑚𝜆Γ𝑝𝑛𝜅 − Γ𝑝𝑚𝜅Γ𝑝𝑛𝜆) 𝛾𝛾
𝑚 ∧𝛾𝛾𝑛 𝑑2𝑥𝜅𝜆 , (16.207)

again implicitly summed over distinct antisymmetric indices 𝑚𝑛 and 𝜅𝜆. The commutator [Γ,Γ] of the
bivector 1-form Γ is symmetric, the anticommutation of multivectors cancelling against the anticommutation
of 1-forms, equation (16.196). Equations (16.206) and (16.207) imply that the Riemann 2-form 𝑅 is related
to the Lorentz connection 1-form Γ by

𝑅 ≡ dΓ+ 1
4 [Γ,Γ] . (16.208)

Equation (16.208) is Cartan’s second equation of structure. It constitutes the definition of Riemann
curvature 𝑅 in terms of the Lorentz connection Γ.
The torsion vector 2-form 𝑆 is defined by (the minus sign ensures that Cartan’s equation (16.212) takes

conventional form, given the definition (11.48) of the components 𝑆𝑚𝜅𝜆)

𝑆 ≡ −𝑆𝑚𝜅𝜆 𝛾𝛾𝑚 𝑑2𝑥𝜅𝜆 , (16.209)

implicitly summed over distinct antisymmetric indices 𝜅𝜆. The exterior derivative of the line interval 1-form
𝑒 is the 2-form

d𝑒 ≡
(︂
𝜕𝑒𝜆
𝜕𝑥𝜅

− 𝜕𝑒𝜅
𝜕𝑥𝜆

)︂
𝑑2𝑥𝜅𝜆 =

(︂
𝜕𝑒𝑚𝜆
𝜕𝑥𝜅

− 𝜕𝑒𝑚𝜅
𝜕𝑥𝜆

)︂
𝛾𝛾𝑚 𝑑2𝑥𝜅𝜆 = −2 𝑑𝑚𝜅𝜆 𝛾𝛾𝑚 𝑑2𝑥𝜅𝜆 , (16.210)

again implicitly summed over distinct antisymmetric indices 𝜅𝜆. The 𝑑𝑚𝜅𝜆 in the rightmost expression of
equations (16.210) are the vierbein derivatives defined by equation (11.32). The commutator 1

2 [Γ, 𝑒] of the
1-forms Γ and 𝑒 is the vector 2-form

1
2 [Γ, 𝑒] = [Γ𝜅, 𝑒𝜆] 𝑑

2𝑥𝜅𝜆 = −2Γ𝑚𝜅𝜆 𝛾𝛾𝑚 𝑑2𝑥𝜅𝜆 , (16.211)

implicitly summed over distinct antisymmetric indices 𝜅𝜆. The fundamental relation (11.49), or equiva-
lently (15.29), between the torsion and the vierbein derivatives and Lorentz connections translates in multi-
vector forms language to, from equations (16.209)–(16.211),

𝑆 ≡ d𝑒+ 1
2 [Γ, 𝑒] . (16.212)
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Equation (16.212) is Cartan’s first equation of structure. Cartan’s equations of structure (16.212)
and (16.208), introduced by Cartan (1904), are not equations of motion; rather, they are compact and
elegant expressions of the definition (11.58) of torsion and curvature. Equations of motion (16.250) for the
torsion and curvature are obtained from extremizing the Hilbert action.

16.14.3 Area and volume forms

The other factor in the gravitational Lagrangian (16.162) is 𝑒𝜅 ∧ 𝑒𝜆. The 2-form corresponding to 𝑒𝜅 ∧ 𝑒𝜅 is
the element of area 𝑒2 defined by equation (16.202),

𝑒2 = 1
2 𝑒∧ 𝑒 = 𝑒𝜅 ∧ 𝑒𝜆 𝑑2𝑥𝜅𝜆 = (𝑒𝑚𝜅𝑒𝑛𝜆 − 𝑒𝑚𝜆𝑒𝑛𝜅)𝛾𝛾𝑚 ∧𝛾𝛾𝑛 𝑑2𝑥𝜅𝜆 , (16.213)

implicitly summed over distinct antisymmetric pairs 𝑚𝑛 and 𝜅𝜆 of indices.
The exterior derivative d𝑒𝑝 of the 𝑝-volume element is

d𝑒𝑝 = (−)𝑝−1𝑒𝑝−1 ∧d𝑒 . (16.214)

The 1/𝑝! factor in the definition (16.202) of the 𝑝-volume element absorbs the factor of 𝑝 from differentiating
𝑝 products of 𝑒. The (−)𝑝−1 sign comes from commuting d𝑒 past 𝑒𝑝−1.
The form dual of the 𝑝-volume 𝑒𝑝 is the dual 𝑞-volume, *(𝑒𝑝) ≡ *𝑒𝑞, which in turn equals the pseudoscalar

𝐼 times the 𝑞-volume, equation (15.80),

*(𝑒𝑝) = *𝑒𝑞 = 𝐼 𝑒𝑞 . (16.215)

The 𝑝-volume and its 𝑞-form dual are both multivectors of grade 𝑝. For example, the form dual, equa-
tion (16.193), of the area element 𝑒2 is the dual area element *𝑒2,

*𝑒2 = 𝜀𝜅𝜆𝜇𝜈 𝑒
𝜇 ∧ 𝑒𝜈 𝑑2𝑥𝜅𝜆 = 2 𝜀𝜅𝜆𝜇𝜈 𝑒𝑚

𝜇𝑒𝑛
𝜈 𝛾𝛾𝑚 ∧𝛾𝛾𝑛 𝑑2𝑥𝜅𝜆 = 2 𝜀𝑘𝑙𝑚𝑛𝑒

𝑘
𝜅𝑒
𝑙
𝜆 𝛾𝛾

𝑚 ∧𝛾𝛾𝑛 𝑑2𝑥𝜅𝜆 , (16.216)

implicitly summed over distinct antisymmetric indices 𝜅𝜆, 𝜇𝜈, 𝑘𝑙, and 𝑚𝑛. The exterior derivative d *𝑒𝑞 of
the dual 𝑞-volume element is

d *𝑒𝑞 = (−)𝑁−1𝐼 d𝑒𝑞 = (−)𝑝𝐼 (𝑒𝑞−1 ∧d𝑒) = (−)𝑝(𝐼 𝑒𝑞−1) · d𝑒 = (−)𝑝 *𝑒𝑞−1 · d𝑒 , (16.217)

the third equality following from the duality relation (13.41).

Exercise 16.10. Triple products involving products of the interval form 𝑒. Let 𝑎 be a multivector
form of grade 𝑛 and any form index.
1. Show that

𝑒∧(𝑒 · 𝑎) = 𝑒 · (𝑒∧𝑎) . (16.218)

2. Conclude that if 𝑛 ≥ 𝑞 then

𝑒𝑝 ∧(𝑒𝑞 · 𝑎) = 𝑒𝑞 · (𝑒𝑝 ∧𝑎) . (16.219)
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3. Prove that the grade 𝑝+ 𝑛− 𝑞 part of the multivector form 𝑒𝑝+𝑞𝑎 is

⟨𝑒𝑝+𝑞𝑎⟩𝑝+𝑛−𝑞 = 𝑒𝑞 · (𝑒𝑝 ∧𝑎) . (16.220)

Equation (16.220) is equivalent to

⟨𝑒𝑝+𝑞𝑎⟩𝑝+𝑛−𝑞 = ⟨𝑒𝑞⟨𝑒𝑝𝑎⟩𝑝+𝑛⟩𝑝+𝑛−𝑞 . (16.221)

The proof below of equations (16.220) or (16.221) uses the triple-product relation (13.40). The proof
demonstrates along the way the triple-product relation

⟨𝑒𝑝⟨𝑒𝑞𝑎⟩𝑞+𝑛−2𝑙⟩𝑝+𝑞+𝑛−2𝑘−2𝑙 =
(𝑘 + 𝑙)!

𝑘!𝑙!

(𝑝+ 𝑞 − 𝑘 − 𝑙)!
(𝑝− 𝑘)!(𝑞 − 𝑙)!

⟨𝑒𝑝+𝑞𝑎⟩𝑝+𝑞+𝑛−2𝑘−2𝑙 . (16.222)

Solution.

1. Equation (16.218) can be proved by expanding the multivector forms 𝑒 and 𝑎 in components. Equa-
tion (16.218) remains true in the special case where 𝑎 is a scalar (grade 0), in which case 𝑒 · 𝑎 = 0 by
definition (13.36), and 𝑒 · 𝑒 = 0, equation (16.203).

2. Equation (16.219) follows from successive application of equation (16.218).

3. Equation (16.221) can be proved by induction. Certainly equation (16.221) holds for 𝑝 = 0 or 𝑞 = 0, in
which case the equation becomes an identity. Recall that, in view of the way that volume elements 𝑒𝑝

are normalized, equation (16.202),

𝑒𝑝+𝑞 =
𝑝!𝑞!

(𝑝+ 𝑞)!
𝑒𝑝 ∧ 𝑒𝑞 . (16.223)

The triple-product relation (13.40), along with the fact that 𝑒 · 𝑒 = 0, implies

⟨𝑒𝑝+𝑞𝑎⟩𝑝+𝑞+𝑛−2𝑚 =
𝑝!𝑞!

(𝑝+ 𝑞)!

𝑚∑︁
𝑙=0

⟨𝑒𝑝⟨𝑒𝑞𝑎⟩𝑞+𝑛−2𝑙⟩𝑝+𝑞+𝑛−2𝑚 . (16.224)

Assume that equation (16.220) is inductively true up to some 𝑝 and 𝑞. The inductive hypothesis (16.220)
implies

⟨𝑒𝑞𝑎⟩𝑞+𝑛−2𝑙 = 𝑒𝑙 · (𝑒𝑞−𝑙 ∧𝑎) (16.225)

subject to the conditions that 𝑞 − 𝑙, 𝑙, 𝑛, and 𝑞 + 𝑛 − 2𝑙 are all non-negative integers. Inserting the
hypothesis (16.225), and a similar one for ⟨𝑒𝑝...⟩, into equation (16.224) implies that the summand on
the right hand side of equation (16.224) is

⟨𝑒𝑝⟨𝑒𝑞𝑎⟩𝑞+𝑛−2𝑙⟩𝑝+𝑞+𝑛−2𝑘−2𝑙 = 𝑒𝑘 ·
(︀
𝑒𝑝−𝑘 ∧

(︀
𝑒𝑙 · (𝑒𝑞−𝑙 ∧𝑎)

)︀)︀
. (16.226)

The sum in equation (16.224) is over non-negative integers 𝑘 and 𝑙 satisfying 𝑘 + 𝑙 = 𝑚, 𝑘 ≤ 𝑝, and
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𝑙 ≤ 𝑞. By equation (16.219), the summand (16.226) rearranges as

⟨𝑒𝑝⟨𝑒𝑞𝑎⟩𝑞+𝑛−2𝑙⟩𝑝+𝑞+𝑛−2𝑘−2𝑙 = (𝑒𝑘 ∧ 𝑒𝑙) · (𝑒𝑝−𝑘 ∧ 𝑒𝑞−𝑙 ∧𝑎)

=
(𝑘 + 𝑙)!

𝑘!𝑙!

(𝑝+ 𝑞 − 𝑘 − 𝑙)!
(𝑝− 𝑘)!(𝑞 − 𝑙)!

𝑒𝑘+𝑙 · (𝑒𝑝+𝑞−𝑘−𝑙 ∧𝑎)

=
𝑚!

𝑘!𝑙!

(𝑝+ 𝑞 −𝑚)!

(𝑝− 𝑘)!(𝑞 − 𝑙)!
𝑒𝑚 · (𝑒𝑝+𝑞−𝑚 ∧𝑎) . (16.227)

Equation (16.224) thus reduces to

⟨𝑒𝑝+𝑞𝑎⟩𝑝+𝑞+𝑛−2𝑚 = 𝑒𝑚 · (𝑒𝑝+𝑞−𝑚 ∧𝑎) 𝑝!𝑞!

(𝑝+ 𝑞)!

∑︁
𝑘+𝑙=𝑚, 𝑘≤𝑝, 𝑙≤𝑞

𝑚!(𝑝+ 𝑞 −𝑚)!

𝑘!𝑙!(𝑝− 𝑘)!(𝑞 − 𝑙)!
. (16.228)

The summed term on the right hand side of equation (16.228) equals (𝑝 + 𝑞)!/(𝑝!𝑞!), cancelling the
prefactor 𝑝!𝑞!/(𝑝+ 𝑞)!. To prove this, it suffices to restrict to 𝑝 = 1 or 𝑞 = 1, with 𝑚 ≥ 1 (the result is
trivial for 𝑚 = 0), and then the general result follows by induction. For 𝑝 = 1 the sum is over 𝑘 = 0 and
1, while for 𝑞 = 1 the sum is over 𝑙 = 0 and 1. For example, for 𝑞 = 1,

𝑝!1!

(𝑝+ 1)!

1∑︁
𝑙=0

𝑚!(𝑝+ 1−𝑚)!

(𝑚− 𝑙)!𝑙!(𝑝+ 𝑙 −𝑚)!(1− 𝑙)!
=

1

𝑝+ 1

[︀
(𝑝+ 1−𝑚) +𝑚

]︀
= 1 . (16.229)

Thus, at least for 𝑝 = 1 or 𝑞 = 1, equation (16.228) reduces to

⟨𝑒𝑝+𝑞𝑎⟩𝑝+𝑞+𝑛−2𝑚 = 𝑒𝑚 · (𝑒𝑝+𝑞−𝑚 ∧𝑎) , (16.230)

reproducing the to-be-proved equation (16.220). The result for 𝑝 = 1 or 𝑞 = 1 establishes the desired re-
sult (16.220) inductively for all 𝑝 and 𝑞. Equation (16.227) and (16.230) together imply equation (16.222).

16.14.4 Gravitational Lagrangian 4-form

Recall that the scalar volume element 𝑑4𝑥 that goes into the action is really the dual scalar 4-volume *𝑑4𝑥,
equation (15.80). To convert to forms language, the Hodge dual must be transferred from the volume ele-
ment to the integrand. In multivector language, the required result is equation (16.55), invoked previously
to convert the electromagnetic Lagrangian to forms language. Translated back into forms language, equa-
tion (16.55) says that a “scalar product” of 2-forms 𝑎 and 𝑏 over a dual scalar volume element is the 4-form
equal to the exterior product of the dual form *𝑎 with the form 𝑏.
The gravitational action thus becomes

𝑆g =

∫︁
𝐿g , (16.231)

where 𝐿g is the gravitational Lagrangian scalar 4-form corresponding to the Lagrangian (16.162),

𝐿g ≡ −
1

8𝜋
*𝑒2 ·𝑅 = − 1

8𝜋
*𝑒2 ·

(︀
dΓ+ 1

4 [Γ,Γ]
)︀
. (16.232)
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The dot in *𝑒2 ·𝑅 signifies a scalar product of the bivectors *𝑒2 and 𝑅. The minus sign comes from taking
a scalar product of bivectors. The product *𝑒2 ·𝑅 is an exterior product of two 2-forms, hence a 4-form. As
remarked at the beginning of this section 16.14, the wedge sign for the exterior product of forms is suppressed
because it conflicts with the wedge sign for a multivector product, and because it is unnecessary, there being
only one way to multiply forms. The Lagrangian 4-form (16.232) is in Hamiltonian form 𝐿g = 𝑝 · d𝑞 −𝐻g

with coordinates 𝑞 = Γ and momenta 𝑝 = −*𝑒2/(8𝜋), and (super-)Hamiltonian 4-form

𝐻g =
1

32𝜋
*𝑒2 · [Γ,Γ] . (16.233)

The Lagrangian scalar 4-form (16.232) can be written elegantly, from the expression (16.215) for the dual
volume *𝑒2 and the duality relation (13.41),

𝐿g ≡ −
𝐼

8𝜋
𝑒2 ∧𝑅 = − 𝐼

8𝜋
𝑒2 ∧

(︀
dΓ+ 1

4 [Γ,Γ]
)︀
. (16.234)

Expanded in components, the gravitational Lagrangian 4-form (16.232) or (16.234) is

𝐿g = − 1

8𝜋
𝜀𝜇𝜈𝜋𝜌 (𝑒

𝜋 ∧ 𝑒𝜌) ·𝑅𝜅𝜆 𝑑
4𝑥𝜅𝜆𝜇𝜈 = − 𝐼

8𝜋
𝑒𝜇 ∧ 𝑒𝜈 ∧𝑅𝜅𝜆 𝑑

4𝑥𝜅𝜆𝜇𝜈 , (16.235)

implicitly summed over distinct antisymmetric indices 𝜅𝜆, 𝜇𝜈, and 𝜋𝜌. The Lagrangian 4-form (16.234)
is in Hamiltonian form 𝐿g = 𝐼(𝑝∧d𝑞) − 𝐻g with coordinates 𝑞 = Γ and momenta 𝑝 = −𝑒2/(8𝜋), and
(super-)Hamiltonian scalar 4-form

𝐻g =
𝐼

32𝜋
𝑒2 ∧[Γ,Γ] . (16.236)

16.14.5 Variation of the gravitational action in multivector forms notation

Equations of motion for the gravitational field are obtained by varying the action with respect to the Lorentz
connection Γ and the line-element 𝑒. In forms notation, when the fields are varied, it is the coefficients Γ𝑘𝑙𝜅
and 𝑒𝑘𝜅 that are varied, the tetrad 𝛾𝛾𝑘 and the line interval 𝑑𝑥𝜅 being considered fixed. Thus the variation
𝛿Γ of the Lorentz connection is

𝛿Γ ≡ (𝛿Γ𝜅) 𝑑𝑥
𝜅 ≡ (𝛿Γ𝑘𝑙𝜅)𝛾𝛾

𝑘 ∧𝛾𝛾𝑙 𝑑𝑥𝜅 , (16.237)

implicitly summed over distinct antisymmetric indices 𝑘𝑙, and the variation 𝛿𝑒 of the line interval is

𝛿𝑒 ≡ (𝛿𝑒𝜅) 𝑑𝑥
𝜅 ≡ (𝛿𝑒𝑘𝜅)𝛾𝛾

𝑘 𝑑𝑥𝜅 . (16.238)

The variation 𝛿𝑒𝑝 of the 𝑝-volume element defined by equation (16.202) is

𝛿𝑒𝑝 = 𝑒𝑝−1 ∧ 𝛿𝑒 . (16.239)

The variation 𝛿 *𝑒𝑞 of the dual 𝑞-volume element is

𝛿 *𝑒𝑞 = 𝐼 𝛿𝑒𝑞 = 𝐼(𝑒𝑞−1 ∧ 𝛿𝑒) = (𝐼𝑒𝑞−1) · 𝛿𝑒 = *𝑒𝑞−1 · 𝛿𝑒 , (16.240)
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the third equality following from the duality relation (13.41).
The variation of the action with gravitational Lagrangian (16.234) with respect to the fields Γ and 𝑒 is

𝛿𝑆g = − 𝐼

8𝜋

∫︁
𝑒2 ∧d(𝛿Γ) + 1

4 𝑒
2 ∧ 𝛿[Γ,Γ] + 𝛿(𝑒2)∧𝑅 . (16.241)

The first term integrates by parts to

𝑒2 ∧d(𝛿Γ) = d(𝑒2 ∧ 𝛿Γ)− d(𝑒2)∧ 𝛿Γ . (16.242)

The second term in the integrand of (16.241) is

1
4 𝑒

2 ∧ 𝛿[Γ,Γ] = 1
2 𝑒

2 ∧[Γ, 𝛿Γ] = 1
2 [𝑒

2,Γ]∧ 𝛿Γ = − 1
2 [Γ, 𝑒

2]∧ 𝛿Γ , (16.243)

the second step of which applies the multivector triple-product relation (13.39). The coefficients of the ∧ 𝛿Γ
terms in equations (16.242) and (16.243) combine to

− d(𝑒2)− 1
2 [Γ, 𝑒

2] = 𝑒∧𝑆 , (16.244)

the torsion 𝑆 being defined by equation (16.212). To switch between commutators [Γ, 𝑒] and commutators
[Γ, 𝑒2], use the result (16.218) along with the fact that 𝑒 · 𝑎 = 1

2 [𝑒,𝑎] for any bivector form 𝑎. The third
term in the integrand of (16.241) is

𝛿(𝑒2)∧𝑅 = 𝛿𝑒∧ 𝑒∧𝑅 = 𝛿𝑒∧
**
𝐺 , (16.245)

where
**
𝐺 ≡ 𝑒∧𝑅 is the double dual, equation (16.194), of the Einstein vector 1-form 𝐺 ≡ 𝐺𝜈𝑛 𝛾𝛾𝑛 𝑑𝑥𝜈 ,

𝐺 ≡ 𝐼 *(𝑒∧𝑅)

= 𝜀𝑘
𝑙𝑚𝑛 𝜀𝜅

𝜆𝜇𝜈 𝑒𝑙𝜆𝑅𝜇𝜈𝑚𝑛 𝛾𝛾
𝑘 𝑑𝑥𝜅

= −3! 𝑒[𝑘[𝜅𝑒𝑚𝜇𝑒𝑛]𝜈]𝑅𝜇𝜈𝑚𝑛 𝛾𝛾𝑘 𝑑𝑥𝜅

=
(︀
𝑅𝜅𝑘 − 1

2𝑅𝑒𝑘𝜅
)︀
𝛾𝛾𝑘 𝑑𝑥𝜅 , (16.246)

implicitly summed over distinct antisymmetric sequences𝑚𝑛 and 𝜇𝜈, and over all 𝑘, 𝑙, 𝜅, and 𝜆. The factor of
3! on the third line of equations (16.246) is the number of permutations of the indices of a 3-form. Combining
equations (16.242)–(16.245) brings the variation (16.241) of the gravitational action to

𝛿𝑆g = − 𝐼

8𝜋

∮︁
𝑒2 ∧ 𝛿Γ− 𝐼

8𝜋

∫︁
(𝑒∧𝑆)∧ 𝛿Γ+ 𝛿𝑒∧(𝑒∧𝑅) . (16.247)

The variation of the matter action 𝑆m with respect to 𝛿Γ and 𝛿𝑒 defines the spin angular-momentum Σ

(compare equation (16.121)), and the matter energy-momentum 𝑇 (compare equation (16.117)),

𝛿𝑆m = −
∫︁
*Σ · 𝛿Γ+ 𝛿𝑒 · *𝑇 = 𝐼

∫︁
**
Σ∧ 𝛿Γ+ 𝛿𝑒∧

**
𝑇 , (16.248)

where
**
Σ and

**
𝑇 are the double duals, equation (16.194), of the spin angular-momentum Σ and energy-

momentum 𝑇 of the matter. The components of the spin angular-momentum bivector 1-form Σ and the
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energy-momentum vector 1-form 𝑇 are (the minus sign in the definition of Σ conforms to the convention for
the definition of torsion 𝑆, equation (16.209))

Σ ≡ Σ𝜅 𝑑𝑥
𝜅 = −Σ𝜅𝑙𝑚 𝛾𝛾𝑙 ∧𝛾𝛾𝑚 𝑑𝑥𝜅 , (16.249a)

𝑇 ≡ 𝑇𝜅 𝑑𝑥
𝜅 = 𝑇𝜅𝑚 𝛾𝛾𝑚 𝑑𝑥𝜅 , (16.249b)

with, for Σ, implicit summation over distinct antisymmetric sets of indices 𝑘𝑙. Extremizing the combined
gravitational and matter actions with respect to 𝛿Γ and 𝛿𝑒 yields the torsion and Einstein equations of
motion in the form

𝑒∧𝑆 = 8𝜋
**
Σ , (16.250a)

𝑒∧𝑅 = 8𝜋
**
𝑇 . (16.250b)

The torsion equation of motion (16.250a) is a bivector 3-form with 6 × 4 = 24 components, while the
Einstein equation of motion (16.250b) is a pseudovector 3-form with 4 × 4 = 16 components. The Einstein
equation (16.250b) is equivalent to the traditional expression

𝐺 = 8𝜋𝑇 . (16.251)

The contracted Bianchi identities (16.406) enforce conservation laws for the total spin angular-momentum
**
Σ and total matter energy-momentum

**
𝑇 , §16.14.8 and §16.14.9.

Notice that if the area element 𝑒2 had been taken to be the momentum conjugate to Γ, rather than the
line element 𝑒, all the components of the area element 𝑒2 being considered to be independent degrees of
freedom, then the variation (16.241) of the gravitational action with respect to 𝑒2 would have yielded an
equation of motion for the Riemann tensor 𝑅 rather than for the Einstein tensor 𝐺, and the theory would
not be general relativity. To recover general relativity, it is necessary to treat the area element as a wedge
product 𝑒2 = 1

2𝑒∧ 𝑒 of the line interval 𝑒.

16.14.6 Alternative gravitational action in multivector forms notation

As in §16.9 and §16.13.3, the coordinates and momenta can be traded without changing the equations of
motion. Integrating the −𝑒2 ∧dΓ term in the Lagrangian (16.234) by parts gives

−𝑒2 ∧dΓ = −d(𝑒2 ∧Γ) + d𝑒∧(𝑒∧Γ)
= d𝜗+ 𝜋 ∧d𝑒 , (16.252)

where 𝜋 is the momentum conjugate to 𝑒, a trivector 2-form with 24 components,

𝜋 ≡ −𝑒∧Γ , (16.253)

and 𝜗 is the expansion, the contraction of 𝜋, a pseudoscalar 3-form with 4 components,

𝜗 ≡ 1
2𝑒∧𝜋 = −𝑒2 ∧Γ . (16.254)
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The double dual of the expansion is the scalar 1-form
**
𝜗 = Γ𝑚𝜅𝑚 𝑑𝑥

𝜅 . (16.255)

The transpose (16.271) of the double dual of the expansion is
**
𝜗⊤ = Γ𝑚𝑘𝑚 𝛾𝛾𝑘 , (16.256)

whose tetrad time component Γ𝑚0𝑚 is what is commonly called the expansion, §18.3, justifying the nomen-
clature.
The total exterior derivative term d𝜗 in equation (16.252) is the Gibbons-Hawking-York boundary term

(York, 1972; Gibbons and Hawking, 1977). Discarding the boundary term d𝜗 yields the alternative La-
grangian

𝐿′g ≡ 𝐿g − d𝜗 =
𝐼

8𝜋
𝜋 ∧d𝑒−𝐻g =

𝐼

8𝜋
𝜋 ∧

(︀
d𝑒+ 1

4 [Γ, 𝑒]
)︀
, (16.257)

with 𝐻g is the same (super-)Hamiltonian as before, equation (16.236). The alternative Lagrangian (16.257)
is in Hamiltonian form with coordinates 𝑒 and momenta 𝜋/(8𝜋).
The Lorentz connection Γ, which is a bivector 1-form, and the momentum 𝜋, which is a pseudovector

2-form, both have the same number of components, 24. The components are invertibly related to each other,
the Lorentz connection Γ being given in terms of the momentum 𝜋 by

Γ = − **𝜋⊤ + 𝑒∧
**
𝜗⊤ , (16.258)

where ⊤ denotes the transpose operation (16.271).
Variation of the gravitational action 𝑆′g with the alternative Lagrangian (16.257) yields

𝛿𝑆′g =
𝐼

8𝜋

∮︁
𝜋 ∧ 𝛿𝑒+

𝐼

8𝜋

∫︁
𝛿𝜋 ∧𝑆 −Π∧ 𝛿𝑒 , (16.259)

where the curvature pseudovector 3-form Π is defined to be

Π ≡ 𝑒∧𝑅− 𝑆 ∧Γ = d𝜋 + 1
2 [Γ,𝜋]−

1
4 𝑒∧[Γ,Γ] . (16.260)

Previously, variation of the matter action 𝑆m with respect to 𝛿Γ and 𝛿𝑒 defined the (double duals of the) spin
angular-momentum Σ and matter energy-momentum 𝑇 , equation (16.248). Variation of the matter action
𝑆m instead with respect to 𝛿𝜋 and 𝛿𝑒 defines modified versions Σ̃ and 𝑇 of the spin angular-momentum and
energy-momentum,

𝛿𝑆m = 𝐼

∫︁
− 𝛿𝜋 ∧ Σ̃+ 𝑇 ∧ 𝛿𝑒 . (16.261)

where the vector 2-form Σ̃ is (the minus sign conforms to the convention for the torsion 𝑆 and spin angular-
momentum Σ, equations (16.209) and (16.249a))

Σ̃ = −Σ̃𝜆𝑚𝑛 𝛾𝛾𝑚 ∧𝛾𝛾𝑛 𝑑𝑥𝜆 . (16.262)

The original Σ and modified Σ̃ spin angular-momenta are invertibly related to each other (similarly to the
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way that the momentum 𝜋 and connection Γ are invertibly related, equations (16.253) and (16.258)), while
the (double dual of the) original 𝑇 and modified 𝑇 energy-momenta differ by a term depending on the spin
angular-momentum,

**
Σ = 𝑒∧ Σ̃ , Σ̃ = Σ⊤ − 𝑒∧ **𝜎⊤ , (16.263a)
**
𝑇 = 𝑇 − Σ̃∧Γ , (16.263b)

where 𝜎 is the contraction of
**
Σ, a pseudoscalar 3-form with 4 components,

𝜎 ≡ 1
2𝑒∧

**
Σ = 𝑒2 ∧ Σ̃ . (16.264)

In components, the relation (16.263a) between the original Σ and modified Σ̃ spin angular-momenta is
equation (16.130). The components of the double dual **𝜎 and its transpose are (compare equations (16.255)

and (16.256) for
**
𝜗 and

**
𝜗⊤)

**
𝜎 = −Σ̃𝑘𝜈𝑘 𝑑𝑥𝜈 = 1

2Σ
𝑘
𝜈𝑘 𝑑𝑥

𝜈 ,
**
𝜎⊤ = −Σ̃𝑘𝑛𝑘 𝛾𝛾𝑛 = 1

2Σ
𝑘
𝑛𝑘 𝛾𝛾

𝑛 . (16.265)

The equations of motion for the torsion 𝑆 and curvature Π are

𝑆 = 8𝜋Σ̃ , (16.266a)

Π = 8𝜋𝑇 . (16.266b)

More explicitly, the equations of motion (16.266) are

d𝑒+ 1
2 [Γ, 𝑒] = 8𝜋Σ̃ , (16.267a)

d𝜋 + 1
2 [Γ,𝜋]−

1
4 𝑒∧[Γ,Γ] = 8𝜋𝑇 . (16.267b)

The expansion 𝜗 is a pseudoscalar, so its exterior derivative equals its Lorentz-covariant exterior derivative,
d𝜗 = d𝜗+ 1

2 [Γ,𝜗], which is

d𝜗 = 1
2

(︀
d𝑒+ 1

2 [Γ, 𝑒]
)︀
∧𝜋 − 1

2 𝑒∧
(︀
d𝜋 + 1

2 [Γ,𝜋]
)︀
, (16.268)

which rearranges to

d𝜗+ 1
4 𝑒

2 ∧[Γ,Γ] = − 𝑒2 ∧𝑅+ 𝑒∧𝑆 ∧Γ . (16.269)

The first term on the right hand side of equation (16.269) is proportional to the double-dual of the trace 𝐺

of the Einstein tensor, 𝑒2 ∧𝑅 =
**
𝐺. If 𝑒2 ∧𝑅 and 𝑒∧𝑆 are replaced by their matter energy-momentum and

spin angular-momentum sources in accordance with equation (16.250), then the equation of motion (16.269)
for the expansion becomes

d𝜗+ 1
4 𝑒

2 ∧[Γ,Γ] = 8𝜋
(︀
− 1

2

**
𝑇 +

**
Σ∧Γ

)︀
. (16.270)
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16.14.7 Transpose of a multivector form

The transpose 𝑎⊤ of a multivector form 𝑎 ≡ 𝑎𝐾Λ 𝛾𝛾𝐾 𝑑𝑝𝑥Λ of grade 𝑛 and form index 𝑝 is defined to be the
multivector form, of grade 𝑝 and form index 𝑛, with multivector and form indices transposed,

𝑎⊤ =
(︀
𝑎𝐾Λ 𝛾𝛾𝐾 𝑑𝑝𝑥Λ

)︀⊤ ≡ 𝑒𝐾Π𝑒𝐿
Λ 𝑎𝐾Λ 𝛾𝛾𝐿 𝑑𝑝𝑥Π = 𝑎Π𝐿 𝛾𝛾𝐿 𝑑𝑘𝑥Π , (16.271)

implicitly summed over distinct sequences 𝐾, 𝐿, Λ, Π of indices. For example, the transpose of a vector
2-form is the bivector 1-form(︀

𝑎𝑘𝜆𝜇 𝛾𝛾
𝑘 𝑑2𝑥𝜆𝜇

)︀⊤ ≡ 𝑒𝑘𝜅𝑒𝑙𝜆𝑒𝑚𝜇 𝑎𝑘𝜆𝜇 𝛾𝛾𝑙 ∧𝛾𝛾𝑚 𝑑𝑥𝜅 = 𝑎𝜅𝑙𝑚 𝛾𝛾𝑙 ∧𝛾𝛾𝑚 𝑑𝑥𝜅 . (16.272)

The transpose of a symmetric tensor 𝑎, one satisfying, 𝑎𝑘𝜆 ≡ 𝑎𝑘𝑙𝑒𝑙𝜆 = 𝑎𝑙𝑘𝑒
𝑙
𝜆 ≡ 𝑎𝜆𝑘, is itself,

𝑎⊤ = (𝑎𝑘𝜆 𝛾𝛾
𝑘 𝑑𝑥𝜆)⊤ = 𝑎𝜆𝑘 𝛾𝛾

𝑘 𝑑𝑥𝜆 = 𝑎𝑘𝜆 𝛾𝛾
𝑘 𝑑𝑥𝜆 = 𝑎 . (16.273)

As a particular example, the vierbein is symmetric in this sense, because the tetrad metric is symmetric,
𝑒𝑘𝜆 = 𝜂𝑘𝑙𝑒

𝑙
𝜆, so the transpose of the line interval 𝑒 is itself,

𝑒⊤ = (𝑒𝑘𝜆 𝛾𝛾
𝑘 𝑑𝑥𝜆)⊤ = 𝑒𝑘𝜅𝑒𝑙

𝜆𝑒𝑘𝜆 𝛾𝛾
𝑙 𝑑𝑥𝜅 = 𝑒𝑙𝜅 𝛾𝛾

𝑙 𝑑𝑥𝜅 = 𝑒 . (16.274)

The transpose of a wedge product of multivector forms 𝑎 and 𝑏 is the wedge product of their transposes,

(𝑎∧ 𝑏)⊤ = 𝑎⊤∧ 𝑏⊤ . (16.275)

The transpose of the double dual of a multivector form 𝑎 is the double dual of its transpose,

**
𝑎
⊤
=
**
𝑎⊤ . (16.276)

Equations (16.275) and (16.276) say that the operation of transposition commutes both with taking the
wedge product and with taking the double dual. Note however that the operations of taking the wedge
product and taking the double dual do not commute.

16.14.8 Conservation of angular momentum in multivector forms language

The action 𝑆m of any individual matter field is Lorentz invariant. Lorentz symmetry implies a conservation
law (16.281) of angular momentum.
Under an infinitesimal Lorentz transformation generated by the bivector 𝜖 = 𝜖𝑘𝑙 𝛾𝛾

𝑘 ∧𝛾𝛾𝑙, any multivector
form 𝑎 whose multivector components transform like a tensor varies as, equation (16.95),

𝛿𝑎 = 1
2 [𝜖,𝑎] . (16.277)

In particular, since the vierbein 𝑒𝑘𝜅 is a tetrad vector, the variation of the line interval 𝑒 ≡ 𝑒𝑘𝜅 𝛾𝛾𝑘 𝑑𝑥𝜅 under
an infinitesimal Lorentz transformation is

𝛿𝑒 = 1
2 [𝜖, 𝑒] . (16.278)

The components of the Lorentz connection Γ ≡ Γ𝑚𝑛𝜆 𝛾𝛾
𝑚 ∧𝛾𝛾𝑛 𝑑𝑥𝜆 do not constitute a tetrad tensor, so do
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not transform like equation (16.277). Rather, the Lorentz connection transforms as equation (16.96), which
in multivector forms language translates to

𝛿Γ = −
(︀
d𝜖+ 1

2 [Γ, 𝜖]
)︀
. (16.279)

Inserting the variations (16.278) and (16.279) of the line interval 𝑒 and Lorentz connection Γ into the
variation (16.248) of the matter action yields the variation of the matter action under an infinitesimal
Lorentz transformation generated by the bivector 𝜖,

𝛿𝑆m = 𝐼

∫︁
−
**
Σ∧

(︀
d𝜖+ 1

2 [Γ, 𝜖]
)︀
+ 1

2 [𝜖, 𝑒]∧
**
𝑇

= 𝐼

∮︁
**
Σ∧ 𝜖− 𝐼

∫︁ (︀
d
**
Σ+ 1

2 [Γ,
**
Σ]− 𝑒 ·

**
𝑇
)︀
∧ 𝜖 . (16.280)

Invariance of the action under local Lorentz transformations requires that the variation (16.280) must vanish
for arbitrary choices of the bivector 𝜖 vanishing on the initial and final hypersurfaces. Consequently the spin

angular-momentum
**
Σ must satisfy the covariant conservation equation

d
**
Σ+ 1

2 [Γ,
**
Σ]− 𝑒 ·

**
𝑇 = 0 . (16.281)

Equation (16.281) is the same as the conservation equation (16.136) derived previously in index notation.
Equation (16.281) is consistent with the contracted torsion Bianchi identity (16.406a), which enforces the
angular-momentum conservation equation (16.281) summed over all species. If the spin angular-momentum
of a matter component vanishes, then the conservation equation (16.281) implies that the energy-momentum
tensor of that matter component is symmetric,

𝑒 ·
**
𝑇 = 0 . (16.282)

16.14.9 Conservation of energy-momentum in multivector forms language

The action 𝑆m of any individual matter field is invariant under coordinate transformations. Symmetry under
coordinate transformations implies a conservation law (16.299) for the energy-momentum of the field.
Any infinitesimal 1-form 𝜖 ≡ 𝜖𝜅 𝑑𝑥𝜅 generates an infinitesimal coordinate transformation

𝑥𝜅 → 𝑥𝜅 + 𝜖𝜅 . (16.283)

As discussed in §7.34, the variation of any quantity 𝑎 with respect to an infinitesimal coordinate transforma-
tion 𝜖 is, by construction, minus its Lie derivative, −ℒ𝜖𝑎, with respect to the vector 𝜖𝜅. The Lie derivative
of a form is written most elegantly in terms of a dot product of forms. As usual, algebraic operations with
forms are derived most easily by translating from multivector language into forms language. Thus the dot
product of a 1-form 𝜖 with a 𝑝-form 𝑎 ≡ 𝑎Λ 𝑑𝑝𝑥Λ is, mirroring the multivector dot product (13.35) (the form
dot . is written slightly larger than the multivector dot · to distinguish the two),

𝜖 .𝑎 ≡ 𝑝 𝜖𝜅𝑎𝜅Λ 𝑑𝑝−1𝑥Λ , (16.284)
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implicitly summed over distinct antisymmetric sets of indices 𝜅Λ. The form dot product of a 1-form 𝜖 and
a 0-form is zero, consistent with the convention (13.36) for multivectors. A useful result is that for any two
multivector forms 𝑎 and 𝑏 with product 𝑎𝑏 (a geometric product of multivectors and an exterior product of
forms), the dot product of the 1-form 𝜖 with the product 𝑎𝑏 is

𝜖 .(𝑎𝑏) = (𝜖 .𝑎)𝑏+ (−)𝑝𝑎(𝜖 . 𝑏) , (16.285)

where 𝑝 is the form index of 𝑎.
From the definition (7.151) of the Lie derivative of a coordinate tensor, it can be shown (Exercise 16.11

asks you to do this) that the Lie derivative of a 𝑝-form 𝑎 with respect to a 1-form 𝜖 is given by the elegant
expression

ℒ𝜖𝑎 = 𝜖 .(d𝑎) + d(𝜖 .𝑎) , (16.286)

which is known as Cartan’s magic formula. Cartan’s magic formula (16.286), along with the vanishing of
the exterior derivative squared, d2 = 0, implies that, acting on forms, the Lie derivative ℒ𝜖 commutes with
the exterior derivative d,

ℒ𝜖d𝑎− dℒ𝜖𝑎 = 0 . (16.287)

Cartan’s magic formula (16.286) holds also for multivector-valued forms, since multivectors are coordinate
scalars (they are unchanged by coordinate transformations). However, a difficulty arises because the Lie
derivative of a tetrad tensor is not a tetrad tensor (see Concept Question 26.2). Consequently the Lie
derivative of neither the line interval nor the Lorentz connection is a tetrad tensor. However, as pointed
out at the beginning of §5.2.1 of Hehl et al. (1995), the Lagrangian is a Lorentz scalar, so in varying the
Lagrangian 4-form 𝐿, the exterior derivative can be replaced by the Lorentz-covariant exterior derivative,
d𝑎→ DΓ𝑎 ≡ d𝑎+ 1

2 [Γ,𝑎] (see §16.17.1),

ℒ𝜖𝐿 = ℒΓ𝜖𝐿 ≡ 𝜖 .(DΓ𝐿) + DΓ(𝜖 .𝐿) . (16.288)

Thus the variation of the Lagrangian under a coordinate transformation can be carried out using the Lorentz-
covariant Lie derivative

ℒΓ𝜖𝑎 ≡ 𝜖 .(DΓ𝑎) + DΓ(𝜖 .𝑎) (16.289)

in place of the usual Lie derivative (16.286). The advantage of this replacement is that the Lorentz-covariant
Lie derivatives of the line interval and Lorentz connection are then (coordinate and tetrad) tensors, and
the resulting law of conservation of energy-momentum is manifestly tensorial, as it should be. The Lorentz-
covariant derivative DΓ is torsion-free acting on coordinate indices, but torsion-full acting on multivector
(Lorentz) indices. An alternative version of the covariant magic formula (16.289) in terms of the torsion-free
exterior derivative D̊ and the contortion 𝐾 is

ℒΓ𝜖𝑎 = 𝜖 .(D̊𝑎) + D̊(𝜖 .𝑎) + 1
2 [𝜖 .𝐾,𝑎] , (16.290)

which follows from Γ = Γ̊ +𝐾 and the relation (16.285). As a particular example of the Lorentz-covariant
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magic formula (16.289), the variation 𝛿𝑒 of the line interval under an infinitesimal coordinate transforma-
tion (16.283) generated by 𝜖 is

𝛿𝑒 = −ℒΓ𝜖𝑒 = − 𝜖 .(DΓ𝑒)−DΓ(𝜖 . 𝑒) = −d(𝜖 . 𝑒)− 1
2 [Γ, 𝜖 . 𝑒]− 𝜖 .𝑆 . (16.291)

Alternatively, in terms of the torsion-free exterior derivative D̊,

𝛿𝑒 = −ℒΓ𝜖𝑒 = − D̊(𝜖 . 𝑒)− 1
2 [𝜖 .𝐾, 𝑒] = −d(𝜖 . 𝑒)− 1

2 [Γ̊, 𝜖 . 𝑒]− 1
2 [𝜖 .𝐾, 𝑒] , (16.292)

which is the forms version of equation (16.139) derived earlier in index notation.
The Lorentz connection Γ is a coordinate tensor but not a tetrad tensor, so the covariant magic for-

mula (16.289) does not apply to the Lorentz connection. Rather, the variation 𝛿Γ of the Lorentz connection
follows from the difference

𝛿DΓ𝑎−DΓ𝛿𝑎 = 𝛿
(︀
d𝑎+ 1

2 [Γ,𝑎]
)︀
−
(︀
d𝛿𝑎+ 1

2 [Γ, 𝛿𝑎]
)︀
= 1

2 [𝛿Γ,𝑎] . (16.293)

Thus the variation 𝛿Γ of the Lorentz connection under an infinitesimal coordinate transformation generated
by 𝜖 satisfies

1
2 [𝛿Γ,𝑎] = −ℒΓ𝜖DΓ𝑎+DΓℒΓ𝜖𝑎 = − 𝜖 .(DΓDΓ𝑎) + DΓDΓ(𝜖 .𝑎) = − 1

2𝜖 .[𝑅,𝑎] + 1
2 [𝑅, 𝜖 .𝑎] = − 1

2 [𝜖 .𝑅,𝑎] ,
(16.294)

where 𝑅 is the Riemann curvature bivector 2-form. Equation (16.293) holds for all multivector forms 𝑎, so

𝛿Γ = −ℒΓ𝜖Γ = −𝜖 .𝑅 . (16.295)

which is the forms version of equation (16.142) derived earlier in index notation.
Inserting the variations (16.291) and (16.295) of the line interval 𝑒 and Lorentz connection Γ into the

variation (16.248) of the matter action yields the variation of the action under an infinitesimal coordinate
transformation (16.283) generated by the 1-form 𝜖,

𝛿𝑆m = −𝐼
∫︁ (︀

d(𝜖 . 𝑒) + 1
2 [Γ, 𝜖 . 𝑒] + 𝜖 .𝑆)︀∧ **𝑇 +

**
Σ∧(𝜖 .𝑅) . (16.296)

Integrating the d(𝜖 . 𝑒)∧ **𝑇 term by parts, and rearranging the 1
2 [Γ, 𝜖 . 𝑒]∧

**
𝑇 term using the multivector

triple-product relation (13.39), yields

𝛿𝑆m = −𝐼
∮︁
(𝜖 . 𝑒)∧ **𝑇 + 𝐼

∫︁
(𝜖 . 𝑒)∧(︀d**𝑇 + 1

2 [Γ,
**
𝑇 ]
)︀
− (𝜖 .𝑆)∧ **𝑇 − **Σ∧(𝜖 .𝑅) . (16.297)

Invariance of the action under coordinate transformations requires that the variation (16.297) must vanish
for arbitrary choices of the 1-form 𝜖 vanishing on the initial and final hypersurfaces. Consequently the matter

energy-momentum
**
𝑇 must satisfy the conservation equation

(𝜖 . 𝑒)∧(︀d**𝑇 + 1
2 [Γ,

**
𝑇 ]
)︀
− (𝜖 .𝑆)∧ **𝑇 − **Σ∧(𝜖 .𝑅) = 0 . (16.298)

Equivalently, in terms of the torsion-free connection Γ̊ and the contortion 𝐾,

(𝜖 . 𝑒)∧(︀d**𝑇 + 1
2 [Γ̊,

**
𝑇 ]
)︀
− 1

2 [𝜖 .𝐾, 𝑒]∧
**
𝑇 −

**
Σ∧(𝜖 .𝑅) = 0 . (16.299)
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I don’t know a way to recast equations (16.298) or (16.299) in multivector forms notation with the arbitrary
1-form 𝜖 factored out, but in components equation (16.299) reduces to equation (16.145) derived earlier.

If the spin angular-momentum of a matter component vanishes,
**
Σ = 0, then the energy-momentum

conservation law (16.299) for that matter component simplifies to

d
**
𝑇 + 1

2 [Γ̊,
**
𝑇 ] = 0 . (16.300)

If the energy-momentum conservation law (16.298) is summed over all matter components, and the total

spin angular-momentum
**
Σ and energy-momentum

**
𝑇 eliminated in favour of torsion 𝑆 and curvature 𝑅

using Hamilton’s equations (16.250), then the law of conservation of total energy-momentum becomes

(𝜖 . 𝑒)∧(︀d(𝑒∧𝑅) + 1
2 [Γ, 𝑒∧𝑅]

)︀
− (𝜖 .𝑆)∧ 𝑒∧𝑅− 𝑒∧𝑆 ∧(𝜖 .𝑅) = 0 , (16.301)

which by the relation (16.285) rearranges to

(𝜖 . 𝑒)∧(︀d(𝑒∧𝑅) + 1
2 [Γ, 𝑒∧𝑅]− 𝑆 ∧𝑅

)︀
= 0 . (16.302)

Equation (16.302) is true for arbitrary infinitesimal 𝜖, so the law of conservation of total energy-momentum
is

d(𝑒∧𝑅) + 1
2 [Γ, 𝑒∧𝑅]− 𝑆 ∧𝑅 = 0 , (16.303)

which agrees with the contracted Bianchi identity (16.406b).

Exercise 16.11. Lie derivative of a form. Confirm from the definition (7.151) that the Lie derivative of
a 𝑝-form is indeed given by Cartan’s magic formula (16.286).

16.15 Space+time (3+1) split in multivector forms notation

As discussed in §16.5.8, when applied to fields, the super-Hamiltonian approach does not yield equal numbers
of coordinates and momenta. The problem arises because symmetry under general coordinate transformations
means that different configurations of fields are symmetrically equivalent. To permit manifest covariance,
the super-Hamiltonian formalism is forced to admit more fields than there are physical degrees of freedom.
As found previously with the electromagnetic field, §16.6.6, the solution to the problem is to break general
covariance by splitting spacetime into separate space and time coordinates.
Executing a 3+1 split of the gravitational equations successfully, in the sense of achieving a balanced

number of coordinates and momenta with the right number of physical degrees of freedom, is, unsurprisingly,
a more complicated challenge than splitting the electromagnetic equations.
In splitting a multivector form 𝑎 into time and space components, it is convenient to adopt the notation

of §16.6.6, generalized to multivector-valued forms. A multivector 𝑝-form 𝑎 splits into a component 𝑎𝑡
(subscripted 𝑡) that represents all the coordinate time 𝑡 parts of the form, and a component 𝑎�̄� (subscripted
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�̄�) that represents the remaining spatial-coordinate components. The 𝑡 and �̄� subscripts should be interpreted
as labels, not indices. Thus a multivector 𝑝-form 𝑎 splits as

𝑎 = 𝑎𝑡 + 𝑎�̄� ≡ 𝑎𝐴𝑡Λ 𝛾𝛾𝐴 𝑑𝑝𝑥𝑡Λ + 𝑎𝐴Λ 𝛾𝛾𝐴 𝑑𝑝𝑥Λ , (16.304)

implicitly summed over distinct antisymmetric sequences of indices. Note that only the coordinates are being
split: the Lorentz indices are not split into time and space parts. The option of also splitting the Lorentz
indices is explored further in §16.16, equation (16.328).
The time component of a product (geometric product of multivectors, exterior product of forms) of any

two multivector forms 𝑎 and 𝑏 satisfies

(𝑎𝑏)𝑡 = 𝑎𝑡𝑏�̄� + 𝑎�̄�𝑏𝑡 , (16.305)

with no minus signs (minus signs from the antisymmetry of form indices cancel minus signs from commuting
𝑑𝑡 through a spatial form). The space component of a product of two multivector forms 𝑎 and 𝑏 satisfies

(𝑎𝑏)�̄� = 𝑎�̄�𝑏�̄� . (16.306)

16.15.1 3+1 split of the gravitational Lagrangian in multivector forms notation

Consider first a 3+1 split of the standard gravitational Lagrangian (16.234). The gravitational coordinates
in this case are the Lorentz connections Γ, and their conjugate momentum are the components of the line
interval 𝑒. Actually, the momentum canonically conjugate to the Lorentz connection Γ in the standard
gravitational Lagrangian (16.234) is the area element 𝑒2, but as remarked at the end of §16.14.5, if all
components of the area element are considered independent, then variation of the action with respect to all
those components does not lead to general relativity. The fix is to consider the area element to be a product
𝑒2 = 1

2𝑒∧ 𝑒, in which the physical degrees of freedom are contained in the line element 𝑒.
After the space+time 3+1 split, the coordinates are the spatial components of the Lorentz connection Γ�̄�,

which is a bivector 1-form with 6 × 3 = 18 components, and the momentum is the spatial line interval 𝑒�̄�,
which is a vector 1-form with 4× 3 = 12 components,

Γ�̄� = Γ𝛼 𝑑𝑥
𝛼 = Γ𝑘𝑙𝛼 𝛾𝛾

𝑘 ∧𝛾𝛾𝑙 𝑑𝑥𝛼 , (16.307a)

𝑒�̄� = 𝑒𝛼 𝑑𝑥
𝛼 = 𝑒𝑘𝛼 𝛾𝛾

𝑘 𝑑𝑥𝛼 . (16.307b)

The mismatch between the number 18 of components of the spatial connection Γ�̄� and the number 12
of components of the spatial line interval 𝑒�̄� is problematic. Despite the mismatch, it is useful to pursue
the approach further, because it leads to a set of constraint equations commonly called the Gaussian and
Hamiltonian constraints. These constraints are analogous to the electromagnetic constraint (16.77a), which
has the property that, if it is satisfied initially, then conservation of electric charge guarantees it there-
after. Conservation of electric charge is a consequence of electromagnetic gauge symmetry. The Gaussian
and Hamiltonian constraints are similarly constraint equations which, if satisfied initially, are guaranteed
thereafter respectively by the conservation equations for spin angular-momentum and energy-momentum.
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These conservation equations are in turn a consequence of symmetries under Lorentz transformations and
coordinate transformations.
The equations of motion (16.309) and constraint equations (16.310) follow directly from splitting equa-

tions (16.250) into time and space parts, but they can be derived at a more fundamental level by splitting
the variation 𝛿𝑆 of the action into time and space parts. Splitting the variation 𝛿𝑆g of the gravitational
action, equation (16.247), into time and space parts gives

𝛿𝑆g = − 𝐼

8𝜋

∮︁ 𝑡f

𝑡i

(𝑒2 ∧ 𝛿Γ)𝑡 −
[︂∮︁

(𝑒2 ∧ 𝛿Γ)�̄�
]︂𝑡f
𝑡i

− 𝐼

8𝜋

∫︁
(𝑒∧𝑆)𝑡 ∧ 𝛿Γ�̄� + 𝛿𝑒�̄� ∧(𝑒∧𝑅)𝑡 + (𝑒∧𝑆)�̄� ∧ 𝛿Γ𝑡 + 𝛿𝑒𝑡 ∧(𝑒∧𝑅)�̄� . (16.308)

The two surface integrals are respectively over the timelike spatial boundary of the 4-volume from 𝑡i to 𝑡f ,
and over the two spacelike caps of the 4-volume at 𝑡i and 𝑡f . Variation of the combined gravitational and
matter actions with respect to the variations 𝛿Γ�̄� and 𝛿𝑒�̄� of the spatial coordinates and momenta yields
the equations of motion,

18 equations of motion: (𝑒∧𝑆)𝑡 = 8𝜋
**
Σ𝑡 , (16.309a)

12 equations of motion: (𝑒∧𝑅)𝑡 = 8𝜋
**
𝑇 𝑡 . (16.309b)

These are just the coordinate time components of the equations of motion (16.250). Variation with respect
to the variations 𝛿Γ𝑡 and 𝛿𝑒𝑡 of the time components of the coordinates and momenta yields the Gaussian
and Hamiltonian constraints,

6 Gaussian constraints: (𝑒∧𝑆)�̄� = 8𝜋
**
Σ�̄� , (16.310a)

4 Hamiltonian constraints: (𝑒∧𝑅)�̄� = 8𝜋
**
𝑇 �̄� . (16.310b)

These are the purely spatial coordinate components of the equations of motion (16.250). Whereas the equa-
tions of motion (16.309) involve derivatives with respect to time 𝑡, the constraint equations (16.310) involve
no time derivatives. More explicitly, the equations of motion (16.309) are

18 equations of motion: 𝑒�̄� ∧
(︀
d𝑡𝑒�̄� + 1

2 [Γ𝑡, 𝑒�̄�] + d𝛼𝑒𝑡 +
1
2 [Γ�̄�, 𝑒𝑡]

)︀
+ 𝑒𝑡 ∧𝑆�̄� = 8𝜋

**
Σ𝑡 , (16.311a)

12 equations of motion: 𝑒�̄� ∧
(︀
d𝑡Γ�̄� + d𝛼Γ𝑡 +

1
2 [Γ�̄�,Γ𝑡]

)︀
+ 𝑒𝑡 ∧𝑅�̄� = 8𝜋

**
𝑇 𝑡 . (16.311b)

The exterior time derivative here is the 1-form d𝑡 ≡ 𝑑𝑡 𝜕/𝜕𝑡. The equations of motion (16.311) are problematic
not only because they remain unbalanced despite the 3+1 split, but also because the time derivative is not
d𝑡 but rather 𝑒�̄� ∧d𝑡.
Both Γ𝑡 and 𝑒𝑡 can be treated as gauge variables: the 6 components of Γ𝑡 can be adjusted arbitrarily by a

Lorentz transformation; and the 4 components of 𝑒𝑡 can be adjusted arbitrarily by a coordinate transforma-
tion. Thus the Gaussian and Hamiltonian constraint equations (16.310) can be interpreted as representing

conserved Noether charges. The spin angular-momentum
**
Σ�̄� on the right hand side of the Gaussian con-

straint equation (16.310a) satisfies the conservation law (16.281). The energy-momentum
**
𝑇 �̄� on the right
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hand side of the Hamiltonian constraint equation (16.310b) satisfies the conservation law (16.299). The left
hand sides of the Gaussian and Hamiltonian constraints satisfy corresponding conservation laws enforced by
the contracted Bianchi identities (16.406). The Gaussian and Hamiltonian constraints are constraint equa-
tions in the sense commonly used by relativists: if the equations are arranged to be satisfied on the initial
spatial hypersurface of constant time, then the conservation equations ensure that the equations will continue
to be satisfied thereafter.

16.15.2 Conventional gravitational Hamiltonian

The conventional Hamiltonian is not the same as the super-Hamiltonian. Whereas the super-Hamiltonian
approach is fully covariant, and the super-Hamiltonian (16.236) is a pseudoscalar 4-form, the conventional
Hamiltonian approach picks out the coordinate time dimension as special, and the conventional Hamiltonian
is the time component of a different pseudoscalar 4-form, equation (16.318).
Split into time and spatial components, the gravitational Lagrangian 4-form (16.234) is

𝐿g = − 𝐼

8𝜋

(︀
𝑒2�̄� ∧

(︀
d𝑡Γ�̄� + d𝛼Γ𝑡 +

1
2 [Γ�̄�,Γ𝑡]

)︀
+ 𝑒𝑡 ∧(𝑒∧𝑅)�̄�

)︀
. (16.312)

The 𝑒2�̄� ∧d𝑡Γ�̄� term in the Lagrangian (16.312) indicates that the momentum conjugate to the 18-component
spatial connection Γ�̄� is the 18-component spatial area element 𝑒2�̄�. But, as discussed in the §16.15.1 above,
the spatial area element 𝑒2�̄� has excess degrees of freedom compared to the 12-component line interval 𝑒�̄�. The
fix adopted in §16.15.1 was to regard the spatial line interval 𝑒�̄� rather than the spatial area element as the
conjugate momentum. Indeed, if all 18 degrees of freedom of the area element were treated as independent,
then the Einstein equation (16.309b) would be replaced by an equation for 𝑅�̄� in place of (𝑒∧𝑅)�̄�, and
the result would not be general relativity, contradicting observation and experiment. To treat Γ�̄� and 𝑒�̄� as
conjugate variables, the 𝑒2�̄� ∧d𝑡Γ�̄� term may be rewritten

𝑒2�̄� ∧d𝑡Γ�̄� = 1
2 𝑒�̄� ∧ (𝑒�̄� ∧d𝑡Γ�̄�) . (16.313)

Equation (16.313) effectively replaces the time derivative d𝑡 with 𝑒�̄� ∧d𝑡, consistent with the time derivative
in the equations of motion (16.311). The remaining terms in the gravitational Lagrangian (16.312) rearrange
as follows. The d𝛼Γ𝑡 term integrates by parts to

𝑒2�̄� ∧d𝛼Γ𝑡 = d𝛼
(︀
𝑒2�̄� ∧Γ𝑡

)︀
− (d𝑒2)�̄� ∧Γ𝑡 . (16.314)

The 1
2 [Γ�̄�,Γ𝑡] term rearranges by the multivector triple-product relation (13.39) to

1
2 𝑒

2
�̄� ∧[Γ�̄�,Γ𝑡] = 1

2 [𝑒
2,Γ]�̄� ∧Γ𝑡 = 1

2 [Γ, 𝑒
2]�̄� ∧Γ𝑡 . (16.315)

The coefficients of the ∧Γ𝑡 terms in equations (16.314) and (16.315) are(︀
− d𝑒2 − 1

2 [Γ, 𝑒
2]
)︀
�̄�
= (𝑒∧𝑆)�̄� , (16.316)
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where 𝑆 is the torsion defined by equation (16.212). The manipulations (16.313)–(16.316) bring the gravita-
tional action to

𝑆g = − 𝐼

8𝜋

∮︁ 𝑡f

𝑡i

𝑒2�̄� ∧Γ𝑡 −
𝐼

8𝜋

∫︁
1
2 𝑒�̄� ∧ (𝑒�̄� ∧d𝑡Γ�̄�) + (𝑒∧𝑆)�̄� ∧Γ𝑡 + 𝑒𝑡 ∧(𝑒∧𝑅)�̄� . (16.317)

With the surface term discarded, the gravitational action (16.317) is in conventional Hamiltonian form
𝐿g = 𝐼

(︀
𝑝∧(𝑒∧d𝑡𝑞)

)︀
−𝐻g with coordinates 𝑞 ≡ Γ�̄� and momenta 𝑝 ≡ −𝑒�̄�/(16𝜋), and a somewhat strange

time derivative 𝑒�̄� ∧d𝑡. The conventional (not super-) Hamiltonian 4-form 𝐻g is

𝐻g =
𝐼

8𝜋

(︀
(𝑒∧𝑆)�̄� ∧Γ𝑡 + 𝑒𝑡 ∧(𝑒∧𝑅)�̄�

)︀
. (16.318)

The conventional Hamiltonian (16.318) is a sum of the Gaussian and Hamiltonian constraint variables
(𝑒∧𝑆)�̄� and (𝑒∧𝑅)�̄�, equations (16.310), wedged with the gauge variables Γ𝑡 and 𝑒𝑡.
The Hamiltonian (16.318) is fine as a conventional Hamiltonian in which the coordinates and momenta are

the 18-component spatial connection Γ�̄� and the 12-component spatial line interval 𝑒�̄�. But the Hamiltonian
cannot be satisfactory because it yields only 12 equations of motion (16.311b) for the 18 components of Γ�̄�,
and because the time derivative in those equations is 𝑒�̄� ∧d𝑡 rather than d𝑡. Ultimately, these problems stem
from the fact that there remain redundant degrees of freedom in Γ�̄� despite the 3+1 split.

16.15.3 3+1 split of the alternative gravitational Lagrangian in multivector forms

notation

A 3+1 split of the alternative Lagrangian (16.257) yields a more promising result: a balanced set of equa-
tions of motion, and a time derivative that is just d𝑡 ≡ 𝜕/𝜕𝑡 𝑑𝑡 as opposed to 𝑒�̄� ∧d𝑡. In the alternative
Lagrangian, the gravitational coordinates are the line interval 𝑒, and their conjugate momenta are 𝜋 defined
by equation (16.253). After the 3+1 split, the coordinates are the spatial components 𝑒�̄� of the line interval,
which is a vector 1-form with 4 × 3 = 12 components, while the momenta are the spatial components 𝜋�̄�,
which is a trivector 2-form also with 4× 3 = 12 components.
Once again, the equations of motion (16.320) and constraints and identities (16.324) follow directly from

splitting equations (16.266) into time and space parts, but they can be derived more fundamentally by
splitting the variation 𝛿𝑆 of the action into time and space parts. Splitting the variation 𝛿𝑆g of the alternative
gravitational action (16.259) into time and space parts gives

𝛿𝑆′g =
𝐼

8𝜋

∮︁ 𝑡f

𝑡i

(𝜋 ∧ 𝛿𝑒)𝑡+
𝐼

8𝜋

[︂∮︁
(𝜋 ∧ 𝛿𝑒)�̄�

]︂𝑡f
𝑡i

+
𝐼

8𝜋

∫︁
𝛿𝜋�̄� ∧𝑆𝑡−Π�̄� ∧ 𝛿𝑒𝑡+ 𝛿𝜋𝑡 ∧𝑆�̄�− 𝛿𝑒�̄� ∧Π𝑡 . (16.319)

Variation of the combined gravitational and matter actions with respect to the variations 𝛿𝑒�̄� and 𝛿𝜋�̄� of
the spatial coordinates and momenta yields 12 + 12 = 24 equations of motion involving time derivatives,

12 equations of motion: 𝑆𝑡 = 8𝜋Σ̃𝑡 , (16.320a)

12 equations of motion: Π𝑡 = 8𝜋𝑇𝑡 . (16.320b)
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Variation of the action with respect to the variations 𝛿𝑒𝑡 and 𝛿𝜋𝑡 of the time components of the coordinates
and momenta yields 6 identities and 10 constraint equations involving only spatial derivatives,

6 Gaussian constraints and 6 identities: 𝑆�̄� = 8𝜋Σ̃�̄� , (16.321a)

4 Hamiltonian constraints: Π�̄� = 8𝜋𝑇�̄� . (16.321b)

The Gaussian constraints are the subset of equations (16.321a) comprising

6 Gaussian constraints: (𝑒∧𝑆)�̄� = 8𝜋(𝑒∧ Σ̃)�̄� . (16.322)

More explicitly, the equations of motion (16.320) are

12 equations of motion: d𝑡𝑒�̄� + 1
2 [Γ𝑡, 𝑒�̄�] + d𝛼𝑒𝑡 +

1
2 [Γ�̄�, 𝑒𝑡] = 8𝜋Σ̃𝑡 , (16.323a)

12 equations of motion: d𝑡𝜋�̄� + 1
2 [Γ𝑡,𝜋�̄�] + d𝛼𝜋𝑡 +

1
2 [Γ�̄�,𝜋𝑡]−

1
4 (𝑒∧[Γ,Γ])𝑡 = 8𝜋𝑇𝑡 , (16.323b)

and the constraints and identities (16.321) are

6 Gaussian constraints and 6 identities:
(︀
d𝑒+ 1

2 [Γ, 𝑒]
)︀
�̄�
= 8𝜋Σ̃�̄� , (16.324a)

4 Hamiltonian constraints:
(︀
d𝜋 + 1

2 [Γ,𝜋]−
1
4 𝑒∧[Γ,Γ]

)︀
�̄�
= 8𝜋𝑇�̄� . (16.324b)

The Gaussian constraints (16.322) are

6 Gaussian constraints: (d𝑒2 − 𝑒 · 𝜋)�̄� = 8𝜋(𝑒∧ Σ̃)�̄� . (16.325)

Equations (16.323a) comprise 12 equations of motion for the 12 coordinates 𝑒�̄�, while equations (16.323b)
comprise 12 equations of motion for the 12 momenta 𝜋�̄�. The equations of motion (16.323) do not suffer
from the peculiarities of the earlier equations of motion (16.311): the time evolution operator is d𝑡 ≡ 𝑑𝑡 𝜕/𝜕𝑡;
and the number of equations of motion matches the number of dynamical variables.

16.15.4 Gravomagnetic field

To solve the system of gravitational equations (16.323) and (16.324), it is necessary to isolate the 6 identities
from the 6 Gaussian constraints in equation (16.324a). Whereas constraint equations can be discarded after
being imposed in the initial conditions (because conservation laws ensure their ongoing satisfaction during
subsequent evolution), identities must be calculated at each time step. The 6 identities are equations (16.342)
below.
The spatial Lorentz connection Γ�̄� has 18 components, whereas its contraction the spatial momentum

𝜋�̄� = −(𝑒∧Γ)�̄�, equation (16.253), has only 12. The extra 6 components of the spatial Lorentz connection
are redundant. The 6 identities (16.324a) can be interpreted as defining the 6 redundant components of
the spatial Lorentz connection Γ�̄� in terms of spatial exterior derivatives d𝛼𝑒�̄� of the spatial line interval
𝑒�̄�. These 6 redundant components, denoted /Γ�̄� (with a slash), can be called the gravomagnetic field,
equation (16.334), since the situation is analogous to that in electromagnetism, where the 3-component
magnetic field is redundant because it can be replaced by the spatial exterior derivative of the spatial
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components of the electromagnetic potential, equation (16.77b). Although the gravomagnetic field /Γ�̄� is
redundant, it must still be calculated because the equations of motion (16.323) depend on it.
To isolate the gravomagnetic field from the other components of the spatial Lorentz connection Γ�̄�, let 𝛾𝛾0

denote the future-pointing tetrad vector normal to spatial hypersurfaces. The ADM formalism, Chapter 17,
makes the gauge choice of imposing that the tetrad time vector 𝛾𝛾0 be normal to spatial hypersurfaces. Choos-
ing the vector 𝛾𝛾0 to be normal to spatial hypersurfaces is equivalent to imposing the ADM conditions (17.7)
on the vierbein and its inverse,

𝑒0𝛼 = 𝑒𝑎
𝑡 = 0 . (16.326)

However, in the present context the vector 𝛾𝛾0 should be interpreted as the future-pointing normal to spatial
hypersurfaces, regardless of whether it happens also to be the tetrad time vector. The normal to spatial
hypersurfaces is related by a Lorentz boost to any arbitrary tetrad time vector. In what follows, the vector
𝛾𝛾0 will be referred to as the tetrad time vector, and 0 as the tetrad time index, on the grounds that 𝛾𝛾0 is
timelike while the three vectors 𝛾𝛾𝑎, 𝑎 = 1, 2, 3, orthogonal to it are spacelike, regardless of whether 𝛾𝛾0 is or
is not the chosen tetrad time axis. The point of requiring 𝛾𝛾0 to be normal to spatial hypersurfaces is that
spatial tetrad and coordinate indices can then be transformed freely between each other using the spatial
vierbein 𝑒𝑎𝛼 and its inverse 𝑒𝑎𝛼,

𝑒𝑎𝛼𝑎𝑎 = 𝑒𝑘𝛼𝑎𝑘 = 𝑎𝛼 , 𝑒𝑎
𝛼𝑎𝛼 = 𝑒𝑎

𝜅𝑎𝜅 = 𝑎𝑎 . (16.327)

The extension of the sum over 3 spatial indices 𝑎 (or 𝛼) to 4 spacetime indices 𝑘 (or 𝜅) in equations (16.327)
is thanks to the conditions (16.326), which hold as long as 𝛾𝛾0 is normal to the spatial hypersurface, as is
being required.
It is convenient to extend the 3+1 form-splitting notation (16.304) to a double 3+1 split in which tetrad

(Lorentz) indices as well as coordinate indices are split out. Thus a multivector form 𝑎 splits into 4 compo-
nents 𝑎0̄𝑡, 𝑎0̄�̄�, 𝑎�̄�𝑡, and 𝑎�̄��̄� that represent respectively the time-time, time-space, space-time, and space-
space components of the multivector form,

𝑎 = 𝑎0̄𝑡 + 𝑎0̄�̄� + 𝑎�̄�𝑡 + 𝑎�̄��̄� ≡ 𝑎0𝐴𝑡Λ 𝛾𝛾0 ∧𝛾𝛾𝐴 𝑑𝑝𝑥𝑡Λ + 𝑎0𝐴Λ 𝛾𝛾0 ∧𝛾𝛾𝐴 𝑑𝑝𝑥Λ + 𝑎𝐴𝑡Λ 𝛾𝛾𝐴 𝑑𝑝𝑥𝑡Λ + 𝑎𝐴Λ 𝛾𝛾𝐴 𝑑𝑝𝑥Λ ,

(16.328)
implicitly summed over distinct antisymmetric sequences of tetrad and coordinate indices 𝐴 and Λ. In the
notation (16.328), the ADM gauge condition (16.326) is

𝑒0̄�̄� = 0 . (16.329)

The 18-component spatial Lorentz connection Γ�̄� splits into 9+9 components,

Γ�̄� = Γ0̄�̄� + Γ�̄��̄� =
(︀
Γ0𝑏𝛼 𝛾𝛾

0 + Γ𝑎𝑏𝛼 𝛾𝛾
𝑎
)︀
∧𝛾𝛾𝑏 𝑑𝑥𝛼 . (16.330)

The time 0̄ tetrad components Γ0𝑏𝛼 are part of what is commonly called the extrinsic curvature, 𝐾𝑏𝜅 ≡
Γ𝑏0𝜅 = −Γ0𝑏𝜅, §17.1.4, while the spatial �̄� tetrad components Γ𝑎𝑏𝛼 are part of what is referred to elsewhere
in this book as the restricted connection Γ̂𝑎𝑏𝜅 ≡ Γ𝑎𝑏𝜅, §17.1.5. The 9-component extrinsic curvature Γ0̄�̄� is
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invertibly related to the 9-component momentum, 𝜋0̄�̄�

𝜋0̄�̄� = 𝑒�̄��̄� ∧Γ0̄�̄� , (16.331)

which holds thanks to the ADM condition (16.329). The 9-component all-spatial Lorentz connection Γ�̄��̄�
resolves into a 3-component spatial trace (16.333), and a 6-component trace-free part, the gravomagnetic
field /Γ�̄��̄�, equation (16.334),

Γ�̄��̄� = − 1
2𝑒�̄��̄� ∧

**
𝜋⊤�̄��̄� + /Γ�̄��̄� . (16.332)

The slashed notation /Γ�̄��̄� for the 6-component gravomagnetic field symbolizes that it is trace-free, and also
that it is the part of the 18-component spatial Lorentz connection Γ�̄� not contained in the 12-component
spatial momentum 𝜋�̄�. The 3-component spatial trace of the all-spatial Lorentz connection is

TrΓ�̄��̄� ≡ 𝑒𝑎𝛼Γ𝑎𝑏𝛼 𝛾𝛾𝑏 = Γ𝛼𝑏𝛼 𝛾𝛾
𝑏 = −**𝜋⊤�̄��̄� , (16.333)

where the vector 0-form **
𝜋⊤�̄��̄� is the transpose of the spatial double dual of the all-spatial momentum 𝜋�̄��̄�.

The spatial trace (16.333) is to be distinguished from the spacetime trace (16.256); the latter includes an
additional contribution from Γ0̄. The 3-component all-spatial momentum 𝜋�̄��̄� may be called the BSSN
variable, because the equation of motion for this variable is the key equation that distinguishes the BSSN
formalism, §16.16.2, from the ADM formalism, §16.16.1.
The 6-component trace-free part of the all-spatial Lorentz connection defines the gravomagnetic field /Γ�̄��̄�,

/Γ�̄��̄� ≡ Γ�̄��̄� + 1
2𝑒�̄��̄� ∧

**
𝜋⊤�̄��̄� = /Γ𝑎𝑏𝛼 𝛾𝛾

𝑎 ∧𝛾𝛾𝑏 𝑑𝑥𝛼 = (Γ𝑎𝑏𝛼 − 𝑒𝑎𝛼Γ𝛾𝑏𝛾)𝛾𝛾
𝑎 ∧𝛾𝛾𝑏 𝑑𝑥𝛼 . (16.334)

The 6 identities that define the gravomagnetic field /Γ�̄��̄� are part of the 12-component expression (16.321a)
for the spatial torsion 𝑆�̄� in terms of the spatial spin angular-momentum Σ̃�̄�. The 12-component spatial
torsion 𝑆�̄� splits into 3+9 components (the minus sign conforms to Cartan’s convention, equation (16.209)),

𝑆�̄� = 𝑆0̄�̄� + 𝑆�̄��̄� = −
(︀
𝑆0𝛼𝛽 𝛾𝛾

0 + 𝑆𝑎𝛼𝛽 𝛾𝛾
𝑎
)︀
𝑑2𝑥𝛼𝛽 . (16.335)

The 3-component time 0̄ tetrad part 𝑆0̄�̄� is invertibly related to the 3-component (𝑒∧𝑆)0̄�̄�,

(𝑒∧𝑆)0̄�̄� = 𝑒�̄��̄� ∧𝑆0̄�̄� , (16.336)

so the equation for 𝑆0̄�̄� is part of the Gaussian constraints (16.322). The 9-component all-spatial torsion 𝑆�̄��̄�
resolves into a 3-component trace (16.338) and a 6-component trace-free part /𝑆�̄��̄� (the slashed notation /𝑆�̄��̄�
symbolizing that it is trace-free),

𝑆�̄��̄� = 1
2𝑒�̄��̄� ∧

**
𝑠 �̄��̄� + /𝑆�̄��̄� . (16.337)

The 3-component spatial trace of the all-spatial torsion is, compare equation (16.131a) (the minus signs are
Cartan, again),

Tr𝑆�̄��̄� ≡ −𝑒𝑎𝛽𝑆𝑎𝛼𝛽 𝑑𝑥𝛼 = −𝑆𝛽𝛼𝛽 𝑑𝑥
𝛼 = −**𝑠⊤�̄��̄� , (16.338)

where the scalar 1-form **
𝑠⊤�̄��̄� is the transpose of the spatial double dual of the spatial bivector 3-form 𝑠�̄��̄�

defined by

𝑠�̄��̄� ≡ (𝑒∧𝑆)�̄��̄� . (16.339)
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The equation for 𝑠�̄��̄� is part of the Gaussian constraints (16.322). The components of the double dual **𝑠 and
its transpose **𝑠⊤ are

**
𝑠 �̄��̄� = 𝑆𝑏𝑎𝑏 𝛾𝛾

𝑎 ,
**
𝑠⊤�̄��̄� = 𝑆𝑏𝛼𝑏 𝑑𝑥

𝛼 . (16.340)

The 6-component trace-free part /𝑆�̄� of the all-spatial torsion is, equation (16.337),

/𝑆�̄��̄� = 𝑆�̄��̄� − 1
2𝑒�̄��̄� ∧

**
𝑠⊤�̄��̄� = −/𝑆𝑎𝛼𝛽 𝛾𝛾𝑎 𝑑2𝑥𝛼𝛽 = −(𝑆𝑎𝛼𝛽 + 𝑒𝑎𝛼𝑆

𝛾
𝛽𝛾)𝛾𝛾

𝑎 𝑑2𝑥𝛼𝛽 . (16.341)

The 6 identities in equations (16.321a) are, finally,

6 identities: /𝑆�̄��̄� = 8𝜋 /̃Σ�̄��̄� . (16.342)

More explicitly, the 6 identities (16.342) are

6 identities:
(︀
d̸𝑒 + 1

2 [/Γ, 𝑒]
)︀
�̄��̄�

= 8𝜋 /̃Σ�̄��̄� , (16.343)

where d̸𝑒�̄��̄� is the trace-free part of the all-spatial exterior derivative d𝑒�̄��̄� of the line interval. Equa-
tion (16.342) defines the gravomagnetic field /Γ�̄��̄� in term of the spin angular-momentum /̃Σ�̄��̄� and spatial
derivatives of the line interval. Note that [/Γ, 𝑒]�̄��̄� is invertibly related to /Γ�̄��̄�,

1
2 [/Γ, 𝑒]�̄��̄� = /Γ�̄��̄� · 𝑒�̄��̄� = /Γ𝑎𝑏𝛼(𝑒

𝑏
𝛽 𝛾𝛾

𝑎 − 𝑒𝑎𝛽 𝛾𝛾𝑏) 𝑑2𝑥𝛼𝛽 = −2/Γ𝑎𝛼𝛽 𝛾𝛾𝑎 𝑑2𝑥𝛼𝛽 . (16.344)

16.15.5 Alternative conventional Hamiltonian

The conventional Hamiltonian is not the same as the super-Hamiltonian. The conventional Hamiltonian was
discussed for the standard gravitational Lagrangian (16.234) in §16.15.2. The present section considers the
conventional Hamiltonian for the alternative gravitational Lagrangian (16.257).
Splitting the alternative Lagrangian 𝐿′g, equation (16.257), into time and space components, and rearrang-

ing along lines similar to those leading to the gravitational action (16.317), brings the alternative gravitational
action 𝑆′g to

𝑆′g =
𝐼

8𝜋

∮︁ 𝑡f

𝑡i

𝜋�̄� ∧ 𝑒𝑡 +
𝐼

8𝜋

∫︁
𝜋�̄� ∧d𝑡𝑒�̄� + 𝜋𝑡 ∧𝑆�̄� −Π�̄� ∧ 𝑒𝑡 . (16.345)

With the surface term discarded, the gravitational action (16.345) is in conventional Hamiltonian form with
coordinates 𝑒�̄� and momenta 𝜋�̄�/(8𝜋). The alternative conventional (not super-) Hamiltonian 𝐻 ′g is

𝐻 ′g =
𝐼

8𝜋
(−𝜋𝑡 ∧𝑆�̄� +Π�̄� ∧ 𝑒𝑡) . (16.346)

Part of deriving equation (16.346) involves proving that

(𝑒�̄� ∧Γ𝑡)∧(𝑒 · Γ)�̄� = (𝑒∧Γ)�̄� ∧(𝑒�̄� · Γ𝑡) . (16.347)

The alternative conventional Hamiltonian (16.346) is a sum of constraint and identities variables 𝑆�̄� and Π�̄�,
equations (16.321), wedged with time components 𝑒𝑡 and 𝜋𝑡 of the coordinates and momenta. Whereas the
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standard conventional Hamiltonian (16.318) depended only on constraint and gauge variables, the alternative
conventional Hamiltonian (16.346) depends in addition on the gravomagnetic field /Γ�̄��̄�.
In contrast to the conventional Hamiltonian (16.318), the alternative conventional Hamiltonian (16.346)

accomplishes the goal of a balanced number, 12 each, of coordinates and momenta.

16.15.6 WEBB formalism

The system of 24 Hamiltonian equations of motion (16.323) is a set of coupled first-order partial differential
equations. The system is integrable, but integrability does not guarantee that their numerical integration is
stable. A set of coupled partial differential equations is numerically stable if they are strongly hyperbolic, as
described in §17.7.1.
The thing that complicates the analysis of the hyperbolicity of the equations of motion (16.323) is that

they involve not only the coordinates and momenta 𝑒�̄� and 𝜋�̄� and their first derivatives, but also the gravo-
magnetic field /Γ�̄��̄�, which itself depends on spatial derivatives d𝛼 of the coordinates 𝑒�̄�, equation (16.343).
The term d�̄�𝜋𝑡 in the Einstein equations (16.323b) then includes some second-order spatial derivatives of
𝑒�̄�, while the terms 1

2 [Γ�̄�,𝜋𝑡] and
1
4𝑒𝑡 ∧[Γ�̄�,Γ�̄�] include terms quadratic in spatial derivatives of 𝑒�̄�.

The difficulty can be overcome by promoting the gravomagnetic field /Γ�̄��̄� to a set of 6 independent
variables governed by their own equation of motion. The operation of promoting derivatives of variables to
independent variables and enlarging the system of differential equations is called prolongation. The system
obtained by prolonging the gravomagnetic field is the WEBB formalism (Buchman and Bardeen, 2005), a
system of tetrad-based equations proposed by Buchman and Bardeen (2003) based on the work of Estabrook,
Robinson, and Wahlquist (1997). Buchman and Bardeen (2003) prove that the WEBB system is strongly
hyperbolic for at least some prescriptions for the gauge variables 𝑒𝑡 and Γ𝑡.
The 6 equations of motion governing the prolonged gravomagnetic field /Γ�̄��̄� are

6 equations of motion: (d/𝑆)�̄�𝑡 = 8𝜋(d /̃Σ)�̄�𝑡 . (16.348)

Since the second exterior derivative vanishes identically, d2 = 0, and the trace-free all-spatial torsion is given
by the left hand side of equation (16.343), the equations of motion (16.348) reduce to

6 equations of motion:
(︀
d 1
2 [𝑒, /Γ]

)︀
�̄�𝑡

= 8𝜋(d /̃Σ)�̄�𝑡 . (16.349)

The original 6 identities (16.342) become constraints, because although they must be arranged to be satisfied
on the initial spatial hypersurface, they are guaranteed thereafter by the Bianchi identity (16.403a),

6 gravomagnetic constraints: /𝑆�̄��̄� = 8𝜋 /̃Σ�̄��̄� . (16.350)

In all, after the gravomagnetic field is prolonged, the original 40 Hamiltonian equations (16.320) and (16.321)
become 46 equations, consisting of 30 equations of motion, 16 constraints, and zero identities.
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16.16 ADM gauge condition

Section 16.15.1 rejected the possibility of treating the 18-component spatial connection Γ�̄� as the gravitational
coordinates, and the 18-component spatial area element 𝑒2�̄� as their conjugate momenta, on the grounds that
the area element contains excess degrees of freedom compared to the 12-component spatial line interval 𝑒�̄�.
However, the idea of working with Γ�̄� and 𝑒2�̄�, as opposed to 𝑒�̄� and 𝜋�̄�, is attractive, firstly because in gauge
theories such as electromagnetism the coordinates are the connections 𝐴, §16.6, the (Lorentz) connections of
gravity are Γ, and secondly because black hole thermodynamics points to area as the thing that is somehow
quantized in general relativity.
One way to reduce the excess degrees of freedom in the area element is to impose gauge conditions on the

spatial line interval 𝑒�̄�. A natural strategy is to impose the 3-component ADM gauge condition 𝑒0̄�̄� = 0,
which was invoked earlier, equation (16.329), to separate out the 6 identities of the Hamiltonian system of
equations, §16.15.4. The gauge choice (16.329) is the starting point of the ADM formalism, Chapter 17, and
is carried over into the BSSN formalism, §17.8. The gauge choice (16.329) is also a basic ingredient of Loop
Quantum Gravity, §??.
The ADM gauge condition (16.329) reduces the number of degrees of freedom of the spatial line interval

𝑒�̄� from 12 to 3 × 3 = 9, and of the spatial area element 𝑒2�̄� from 18 to the same number, 3 × 3 = 9. The
9 components of the spatial line interval and spatial area element subject to the ADM gauge condition are
invertibly related to each other. The spatial area element 𝑒2�̄��̄� is the 9-component bivector 2-form

𝑒2�̄��̄� = 1
2 (𝑒∧ 𝑒)�̄��̄� = 2 𝑒𝑎𝛼𝑒𝑏𝛽 𝛾𝛾

𝑎 ∧𝛾𝛾𝑏 𝑑2𝑥𝛼𝛽 . (16.351)

The momenta conjugate to the spatial area element 𝑒2�̄��̄� are the 3× 3 = 9 components of the spatial Lorentz
connections Γ0̄�̄� with one Lorentz index the tetrad time index 0, also called (minus) the extrinsic curvature,
§17.1.4,

Γ0̄�̄� = Γ0𝑎𝛼 𝛾𝛾
0 ∧𝛾𝛾𝑎 𝑑𝑥𝛼 . (16.352)

It looks as though the goal of having the coordinates and conjugate momenta be the connection Γ�̄� and
area element 𝑒2�̄� has been achieved, but notice this success has been won by trickery. The ADM gauge
choice (16.329) is a condition on the line element 𝑒, not on the area element 𝑒2. Imposing the ADM gauge
condition still requires that the area element be a product 𝑒2 = 1

2𝑒∧ 𝑒 of the line element 𝑒.
Double-splitting the variation 𝛿𝑆g of the gravitational action, equation (16.247) into time and space parts

gives

𝛿𝑆g = − 𝐼

8𝜋

∮︁ 𝑡f

𝑡i

(𝑒2 ∧ 𝛿Γ)0̄𝑡 −
[︂∮︁

(𝑒2 ∧ 𝛿Γ)0̄�̄�
]︂𝑡f
𝑡i

− 𝐼

8𝜋

∫︁
(𝑒∧𝑆)0̄𝑡 ∧ 𝛿Γ�̄��̄� + (𝑒∧𝑆)�̄�𝑡 ∧ 𝛿Γ0̄�̄� + (𝑒∧𝑆)0̄�̄� ∧ 𝛿Γ�̄�𝑡 + (𝑒∧𝑆)�̄��̄� ∧ 𝛿Γ0̄𝑡

+ 𝛿𝑒�̄��̄� ∧(𝑒∧𝑅)0̄𝑡 + 𝛿𝑒0̄�̄� ∧(𝑒∧𝑅)�̄�𝑡 + 𝛿𝑒�̄�𝑡 ∧(𝑒∧𝑅)0̄�̄� + 𝛿𝑒0̄𝑡 ∧(𝑒∧𝑅)�̄��̄� . (16.353)

Variation of the combined gravitational and matter actions with respect to the variations 𝛿Γ0̄�̄� and 𝛿𝑒�̄��̄�
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yields 9 + 9 = 18 equations of motion for the area element 𝑒2�̄��̄� and their conjugate momenta Γ0̄�̄�,

9 equations of motion: (𝑒∧𝑆)�̄�𝑡 = 8𝜋
**
Σ�̄�𝑡 , (16.354a)

9 equations of motion: (𝑒∧𝑅)0̄𝑡 = 8𝜋
**
𝑇 0̄𝑡 , (16.354b)

while variation with respect to 𝛿𝑒0̄�̄� yields the 3 equations of motion

3 equations of motion: (𝑒∧𝑅)�̄�𝑡 = 8𝜋
**
𝑇 �̄�𝑡 . (16.355)

Note that the ADM gauge condition 𝑒0̄�̄� = 0 is a gauge condition, fixed after equations of motion are
derived, so it is correct to vary 𝑒0̄�̄� in the action, leading to equation (16.355). Explicitly, the equations of
motion (16.354) and (16.355) are, similarly to equations (16.311),

9 eqs. of motion: −d𝑡𝑒
2
�̄��̄� + 1

2 [Γ�̄�𝑡, 𝑒
2
�̄��̄�]− 𝑒�̄��̄� ∧

(︀
d𝛼𝑒�̄�𝑡 +

1
2 [Γ�̄��̄�, 𝑒�̄�𝑡]

)︀
+ 𝑒�̄�𝑡 ∧𝑆�̄��̄� = 8𝜋

**
Σ�̄�𝑡 , (16.356a)

9 eqs. of motion: 𝑒�̄��̄� ∧
(︀
d𝑡Γ0̄�̄� + 1

2 [Γ�̄�𝑡,Γ0̄�̄�] + d𝛼Γ0̄𝑡 +
1
2 [Γ�̄��̄�,Γ0̄𝑡]

)︀
+ 𝑒�̄�𝑡 ∧𝑅0̄�̄� = 8𝜋

**
𝑇 0̄𝑡 , (16.356b)

3 eqs. of motion: 𝑒�̄��̄� ∧
(︀
d𝑡Γ�̄��̄� + d𝛼Γ𝑡 +

1
2 [Γ�̄��̄�,Γ𝑡]

)︀
+ 𝑒�̄�𝑡 ∧𝑅�̄��̄� = 8𝜋

**
𝑇 �̄�𝑡 . (16.356c)

Equation (16.355) is an equation of motion in the sense that it involves a time derivative d𝑡Γ�̄��̄�; but Γ�̄��̄�
is not one of the momenta Γ0̄�̄� conjugate to the area element 𝑒2�̄��̄�, so equation (16.355) has a different
status from the 9 + 9 equations of motion (16.354). In the ADM formalism, §16.16.1, equation (16.355)
is discarded as redundant with the 3 momentum constraints (16.357d), on the grounds that the energy-
momentum tensor is symmetric (for vanishing torsion). The BSSN formalism on the other hand, §16.16.2,
retains equation (16.355) as a distinct equation of motion.
The earlier equations (16.311) had the problem that the time derivative in the equation of motion for

Γ�̄� was 𝑒�̄� ∧d𝑡 as opposed to just d𝑡. Equation (16.356b) seems to have the same difficulty, but here it
is no longer a problem, because the 9-component trivector 3-form 𝑒�̄��̄� ∧ d𝑡Γ0̄�̄� is invertibly related to the
9-component bivector 2-form d𝑡Γ0̄�̄�, so equation (16.356b) can be rearranged as an equation for d𝑡Γ0̄�̄�.
Variation of the action with respect to 𝛿Γ�̄��̄�, 𝛿Γ�̄�𝑡, 𝛿Γ0̄𝑡, 𝛿𝑒�̄�𝑡 and 𝛿𝑒0̄𝑡 yields 9 identities and 10 constraints

involving only spatial derivatives

9 identities: (𝑒∧𝑆)0̄𝑡 = 8𝜋
**
Σ0̄𝑡 , (16.357a)

3 Gaussian constraints: (𝑒∧𝑆)0̄�̄� = 8𝜋
**
Σ0̄�̄� , (16.357b)

3 Gaussian constraints: (𝑒∧𝑆)�̄��̄� = 8𝜋
**
Σ�̄��̄� , (16.357c)

3 momentum constraints: (𝑒∧𝑅)0̄�̄� = 8𝜋
**
𝑇 0̄�̄� , (16.357d)

1 Hamiltonian constraint: (𝑒∧𝑅)�̄��̄� = 8𝜋
**
𝑇 �̄��̄� . (16.357e)

The 9 identities (16.357a) are not equations of motion (they involve no time derivatives), despite having a
form index 𝑡. Explicitly,

9 identities: 1
2 [Γ0̄𝑡, 𝑒

2
�̄��̄�] +

1
2 [Γ0̄�̄�, 𝑒

2
�̄�𝑡] = 8𝜋

**
Σ0̄𝑡 . (16.358)
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16.16.1 ADM formalism

The previous section 16.16 explored the form of the Hamiltonian system of equations when the ADM gauge
condition (16.329) is imposed, and the coordinates and momenta are taken to be the extrinsic curvature Γ0̄�̄�

and the spatial area element 𝑒2�̄��̄�. However, the traditional ADM formalism goes further than just imposing
a gauge condition. The ADM formalism is pursued at length in Chapter 17 in traditional (coordinate and
tetrad) index notation. Here it is useful to offer a few comments on the ADM formalism in the present
context of multivector forms notation.
The ADM formalism imposes the ADM gauge condition (16.329), 𝑒0̄�̄� = 0, from the outset, reducing

the degrees of freedom of the spatial line interval 𝑒𝛼 from 12 to 9. The ADM formalism further assumes
from the outset that torsion vanishes. One of the consequences of vanishing torsion is that the energy-
momentum tensor is symmetric, equation (16.282). This motivates the ADM strategy of simply discarding the
6 antisymmetric components of the Einstein equations, the 6 antisymmetric components of the 12 equations
of motion (16.323b). Discarding the antisymmetric Einstein’s equations seems innocent enough, until one
realises that antisymmetric part of the energy-momentum tensor is a source in the law of conservation of
spin angular-momentum, equation (16.281), which law is responsible for the 6 Gaussian constraints (16.322).
Thus discarding the 6 antisymmetric Einstein equations is equivalent to using up the 6 Gaussian constraints.
As a corollary, the 6 Gaussian constraints can no longer be treated as constraints; rather, they must be
treated as identities.
Finally, the usual ADM strategy (though not a necessary one — see Chapter 17), is to work entirely with

coordinate-frame quantities. An advantage of this approach is that all quantities are spatially Lorentz gauge-
invariant (the ADM gauge choice (16.329) removes the gauge freedom of Lorentz boosts). In particular, the
9 components 𝑒𝑎𝛼 of the spatial line interval reduce to the 6 components of the Lorentz gauge-invariant
spatial metric 𝑔𝛼𝛽 , and the 24 Lorentz connections are replaced by the 6 components of the symmetric (for
vanishing torsion) extrinsic curvatures Γ𝛼0𝛽 together with the 3×6 = 18 torsion-free coordinate-frame spatial
connections (Christoffel symbols) Γ𝛼𝛽𝛾 .
In all, in the ADM formalism there are 6 + 6 = 12 equations of motion for 𝑔𝛼𝛽 and Γ𝛼0𝛽 , 18 identities for

Γ𝛼𝛽𝛾 , and 4 Hamiltonian constraints, a total of 34 equations altogether. The 6 equations lost compared to
the 40 of the Hamiltonian system (16.320) and (16.321) are the 6 antisymmetric Einstein equations.

16.16.2 BSSN formalism

The BSSN formalism, discussed further in Chapter 17, §17.8, has gained popularity because it is strongly
hyperbolic, and therefore has better numerical stability when applied to problems such as the merger of two
black holes.
The BSSN formalism follows ADM for the most part, in particular imposing the ADM gauge choice (16.329).

However, instead of discarding all 6 antisymmetric components of the 12 Einstein equations (16.323b), BSSN
retains the 3 antisymmetric components Π�̄�𝑡, which govern the evolution of the 3-component all-spatial mo-
mentum 𝜋�̄��̄�, equation (16.333). BSSN thereby keeps 3 Gaussian constraints, the ones governing the evolution
of the 3-component all-spatial contracted torsion (𝑒∧𝑆)�̄��̄� equation (16.339).
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In all, the BSSN equations constitute 6 + 6 + 3 = 15 equations of motion for the spatial metric 𝑔𝛼𝛽 ,
the (symmetric, for vanishing torsion) extrinsic curvature Γ𝛼0𝛽 , and the BSSN variable Γ𝛼𝑏𝛼 (eq. 16.333), 15
identities for the torsion-free coordinate-frame connections Γ𝛼𝛽𝛾 , 4 Hamiltonian constraints, and 3 Gaussian
constraints, a total of 37 equations altogether. The 3 equations lost compared to the 40 of the Hamiltonian
system (16.320) and (16.321) are the 3 antisymmetric spatial Einstein equations.

Exercise 16.12. Gravitational equations in arbitrary spacetime dimensions. In multivector forms
language in 𝑁 spacetime dimensions:
1. What is the Hilbert gravitational Lagrangian? What is the gravitational super-Hamiltonian?
2. What is the variation of the gravitational Lagrangian?
3. What are the gravitational equations of motion?
4. What is the space+time (𝑁−1)+1 split of the gravitational equations of motion?
5. What is the alternative Hilbert gravitational Lagrangian?
6. What is the variation of the alternative gravitational Lagrangian?
7. What is the space+time (𝑁−1)+1 split of the alternative gravitational equations of motion?
8. What is the space+time (𝑁−1)+1 split of the gravitational equations of motion when the ADM gauge

condition (16.329) is imposed?
Solution.

1. The Hilbert gravitational Lagrangian in 𝑁 spacetime dimensions is the scalar 𝑁 -form, generalizing
equation (16.234),

𝐿g = − 𝐼𝑁
𝜅𝑁

𝑒𝑁−2 ∧𝑅 , (16.359)

where 𝐼𝑁 is the 𝑁 -dimensional spacetime pseudoscalar, and 𝜅𝑁 is Newton’s gravitational constant,
suitably normalized, in 𝑁 spacetime dimensions. The Lagrangian (16.359) is in super-Hamiltonian form

𝐿g = − 𝐼𝑁
𝜅𝑁

𝑒𝑁−2 ∧dΓ−𝐻g , (16.360)

with super-Hamiltonian, generalizing equation (16.236),

𝐻g =
𝐼𝑁
4𝜅𝑁

𝑒𝑁−2 ∧[Γ,Γ] . (16.361)

2. The variation of the gravitational action in 𝑁 spacetime dimensions is, generalizing equation (16.247),

𝛿𝑆g = (−)𝑁−1 𝐼𝑁
𝜅𝑁

∮︁
𝑒𝑁−2 ∧ 𝛿Γ− 𝐼𝑁

𝜅𝑁

∫︁
(𝑒𝑁−3 ∧𝑆)∧ 𝛿Γ+ 𝛿𝑒∧(𝑒𝑁−3 ∧𝑅) . (16.362)

The variation of the matter action is defined by equations (16.248) in any spacetime dimension. With
matter, the equations of motion generalizing equations (16.250) are

1
2𝑁

2(𝑁 − 1) equations of motion: 𝑒𝑁−3 ∧𝑆 = 𝜅𝑁
**
Σ , (16.363a)

𝑁2 equations of motion: 𝑒𝑁−3 ∧𝑅 = 𝜅𝑁
**
𝑇 . (16.363b)



16.16 ADM gauge condition 479

The pseudobivector pseudo 1-form set of equations (16.363a) governing the torsion have the same num-
ber of components as the vector 2-form torsion 𝑆 defined by equation (16.209), so completely determine
the torsion in terms of the spin angular momentum Σ. Thus in 𝑁 spacetime dimensions, as in 4 space-
time dimensions, torsion vanishes in empty space, and does not propagate. By contrast, the pseudovector
pseudo 1-form set of equations (16.363b) constitute 𝑁2 equations governing the

(︀
1
2𝑁(𝑁 − 1)

)︀2
com-

ponents of the bivector 2-form Riemann curvature 𝑅 defined by equation (16.205); the equations of
motion (16.363b) determine only the contracted components of the Riemann tensor. The remaining
1
4 (𝑁 + 1)𝑁2(𝑁 − 3) components of the Riemann tensor are governed by Bianchi identities, §16.17. In
𝑁 > 3 spacetime dimensions, as in 4 spacetime dimensions, Riemann curvature does not vanish in empty
space, but rather propagates as a wave.

3. Split into time and space parts, the spacetime equations of motion (16.363) split into equations of motion
that involve time derivatives d𝑡 of the 𝑁(𝑁 −1) spatial momenta 𝑒 and 1

2𝑁(𝑁 −1)2 spatial coordinates
Γ, generalizing equations (16.309),

1
2𝑁(𝑁 − 1)2 equations of motion: (𝑒𝑁−3 ∧𝑆)𝑡 = 𝜅𝑁

**
Σ𝑡 , (16.364a)

𝑁(𝑁 − 1) equations of motion: (𝑒𝑁−3 ∧𝑅)𝑡 = 𝜅𝑁
**
𝑇 𝑡 , (16.364b)

and purely spatial constraint equations involving no time derivatives d𝑡, generalizing equations (16.310),

1
2𝑁(𝑁 − 1) Gaussian constraints: (𝑒𝑁−3 ∧𝑆)�̄� = 𝜅𝑁

**
Σ�̄� , (16.365a)

𝑁 Hamiltonian constraints: (𝑒𝑁−3 ∧𝑅)�̄� = 𝜅𝑁
**
𝑇 �̄� . (16.365b)

4. The alternative Hilbert gravitational Lagrangian in 𝑁 spacetime dimensions is, generalizing equa-
tion (16.257),

𝐿′g = (−)𝑁−1 𝐼𝑁
𝜅𝑁

𝜋 ∧d𝑒−𝐻g , (16.366)

where 𝜋 is momentum pseudovector (𝑁−2)-form, generalizing equation (16.253),

𝜋 ≡ (−)𝑁−3𝑒𝑁−3 ∧Γ , (16.367)

and 𝐻g is the same super-Hamiltonian (16.361) as before.

5. The variation of the alternative action (16.366) is, generalizing equation (16.259)

𝛿𝑆′g =
𝐼𝑁
𝜅𝑁

∮︁
𝜋 ∧ 𝛿𝑒+ (−)𝑁−1 𝐼𝑁

𝜅𝑁

∫︁
𝛿𝜋 ∧𝑆 +Π∧ 𝛿𝑒 , (16.368)

where the curvature pseudovector (𝑁−1)-form Π is, generalizing equations (16.260),

Π ≡ 𝑒𝑁−3 ∧𝑅− 𝑒𝑁−4 ∧𝑆 ∧Γ = d𝜋 + 1
2 [Γ,𝜋] +

1
4 𝑒

𝑁−3 ∧[Γ,Γ] . (16.369)

Note that the 𝑒𝑁−4 term in the middle expression vanishes for 𝑁 = 3. The variation of the matter
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action is defined by equations (16.261) in any spacetime dimension. With matter, the equations of
motion generalizing equations (16.266) are

1
2𝑁

2(𝑁 − 1) equations of motion: 𝑆 = 𝜅𝑁 Σ̃ , (16.370a)

𝑁2 equations of motion: Π = 𝜅𝑁 𝑇 . (16.370b)

6. Split into time and space parts, the alternative spacetime equations of motion (16.370) split into equa-
tions of motion that involve time derivatives d𝑡 of the 𝑁(𝑁 − 1) spatial coordinates 𝑒 and 𝑁(𝑁 − 1)

spatial momenta 𝜋, generalizing equations (16.320),

𝑁(𝑁 − 1) equations of motion: 𝑆𝑡 = 𝜅𝑁 Σ̃𝑡 , (16.371a)

𝑁(𝑁 − 1) equations of motion: Π𝑡 = 𝜅𝑁 𝑇𝑡 , (16.371b)

and purely spatial equations involving no time derivatives d𝑡, generalizing equations (16.321),

1
2𝑁(𝑁 − 1)(𝑁 − 3) gravomagnetic identities: /𝑆�̄��̄� = 𝜅𝑁 /̃Σ�̄��̄� (16.372a)

1
2𝑁(𝑁 − 1) Gaussian constraints: (𝑒𝑁−3 ∧𝑆)�̄� = 𝜅𝑁 (𝑒𝑁−3 ∧ Σ̃)�̄� , (16.372b)

𝑁 Hamiltonian constraints: Π�̄� = 𝜅𝑁 𝑇�̄� . (16.372c)

Prolonging the gravomagnetic field /Γ�̄��̄� replaces the identities (16.372a) by the same number each of
equations of motion and constraints, generalizing equations (16.348) and (16.350),

1
2𝑁(𝑁 − 1)(𝑁 − 3) equations of motion:

(︀
d 1
2 [𝑒, /Γ]

)︀
�̄�𝑡

= 𝜅𝑁 (d /̃Σ)�̄�𝑡 , (16.373a)
1
2𝑁(𝑁 − 1)(𝑁 − 3) gravomagnetic constraints: (𝑒𝑁−3 ∧𝑆)�̄� = 𝜅𝑁 (𝑒𝑁−3 ∧ Σ̃)�̄� . (16.373b)

7. ADM imposes the 𝑁 − 1 ADM gauge conditions 𝑒0̄�̄� = 0, equation (16.329), reducing the number of
degrees of freedom of the spatial line-element 𝑒 to (𝑁−1)2, and likewise the number of degrees of freedom
of the spatial area element 𝑒𝑁−2 to (𝑁−1)2. The momenta conjugate to the spatial area element are
−Γ0̄�̄�, again with (𝑁−1)2 degrees of freedom. There are 2(𝑁−1)2 equations of motion for the spatial
area element and their conjugate momenta, generalizing equations (16.354),

(𝑁 − 1)2 equations of motion: (𝑒𝑁−3 ∧𝑆)�̄�𝑡 = 𝜅𝑁
**
Σ�̄�𝑡 , (16.374a)

(𝑁 − 1)2 equations of motion: (𝑒𝑁−3 ∧𝑅)0̄𝑡 = 𝜅𝑁
**
𝑇 0̄𝑡 . (16.374b)

There are a further 𝑁−1 equations of motion that are discarded in the ADM formalism (incidentally
demoting the Gaussian constraints (16.376c) from constraints to identities) but retained in the BSSN
formalism, generalizing equation (16.355),

𝑁 − 1 equations of motion: (𝑒𝑁−3 ∧𝑅)�̄�𝑡 = 𝜅𝑁
**
𝑇 �̄�𝑡 . (16.375)

The remaining equations, containing no time derivatives d𝑡, comprise 1
2 (𝑁−1)

2(𝑁−2) identities and
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1
2𝑁(𝑁+1) constraints, generalizing equations (16.357),

1
2 (𝑁 − 1)2(𝑁 − 2) identities: (𝑒𝑁−3 ∧𝑆)0̄𝑡 = 𝜅𝑁

**
Σ0̄𝑡 , (16.376a)

1
2 (𝑁 − 1)(𝑁 − 2) Gaussian constraints: (𝑒𝑁−3 ∧𝑆)0̄�̄� = 𝜅𝑁

**
Σ0̄�̄� , (16.376b)

𝑁 − 1 Gaussian constraints: (𝑒𝑁−3 ∧𝑆)�̄��̄� = 𝜅𝑁
**
Σ�̄��̄� , (16.376c)

𝑁 − 1 momentum constraints: (𝑒𝑁−3 ∧𝑅)0̄�̄� = 𝜅𝑁
**
𝑇 0̄�̄� , (16.376d)

1 Hamiltonian constraint: (𝑒𝑁−3 ∧𝑅)�̄��̄� = 𝜅𝑁
**
𝑇 �̄��̄� . (16.376e)

Exercise 16.13. Volume of a ball and area of a sphere. What is the volume 𝑉𝑁 of a unit 𝑁 -ball, and
the area 𝑆𝑁 of a unit 𝑁 -dimensional sphere? A unit 𝑁 -ball is the interior of a unit (𝑁−1)-sphere, and an
𝑁 -sphere is the boundary of a unit (𝑁+1)-ball.
Solution. The volume 𝑉𝑁 of an 𝑁 -ball is the area 𝑆𝑁−1𝑅𝑁−1 of an (𝑁−1)-sphere of radius 𝑅 integrated
over 𝑅 from 0 to 1,

𝑉𝑁 = 𝑆𝑁−1

∫︁ 1

0

𝑅𝑁−1 𝑑𝑅 , (16.377)

yielding

𝑉𝑁 =
𝑆𝑁−1
𝑁

. (16.378)

The volume of an 𝑁 -ball is also the volume 𝑉𝑁−1 𝑟𝑁−1 of an (𝑁−1)-ball of radius 𝑟 = sin 𝜃 integrated over
height 𝑧 = cos 𝜃 from −1 to 1,

𝑉𝑁 = 𝑉𝑁−1

∫︁ 1

−1
𝑟𝑁−1 𝑑𝑧 = 𝑉𝑁−1

∫︁ 𝜋

0

sin𝑁𝜃 𝑑𝜃 . (16.379)

The integral
∫︀ 𝜋
0
sin𝑁𝜃 𝑑𝜃 can be expressed in terms of Γ functions. Iterated twice, equation (16.379) gives

the recurrence relation

𝑉𝑁 =
2𝜋𝑉𝑁−2
𝑁

. (16.380)

Equations (16.378) and (16.380) imply

𝑆𝑁 = 2𝜋𝑉𝑁−1 . (16.381)

Initial values of the recurrence are 𝑉1 = 2 and 𝑉2 = 𝜋. General expressions for the volume and area are

𝑉𝑁 =
𝜋𝑁/2

Γ
(︀
𝑁
2 + 1

)︀ , 𝑆𝑁 =
2𝜋(𝑁+1)/2

Γ
(︀
𝑁+1
2

)︀ . (16.382)
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16.17 Bianchi identities in multivector forms notation

The Bianchi identities, equations (16.403) below, are differential identities satisfied by the torsion 𝑆 and
Riemann 𝑅 tensors. The Bianchi identities are identities in the sense that if the torsion and Riemann
tensors are expressed in terms of the line interval 𝑒 and Lorentz connection Γ in accordance with Cartan’s
equations (16.212) and (16.208), then the Bianchi identities are satisfied automatically. The contracted
Bianchi identities (16.406) enforce conservation laws on the total spin angular-momentum Σ and matter
energy-momentum 𝑇 .
In this section the number 𝑁 of spacetime dimensions is arbitrary. The caret on various symbols in this

section, such as Γ̂, equation (16.386), signifies that they are operators; Γ̂ should not be confused with the
restricted Lorentz connection Γ̂𝑚𝑛𝑙 considered in the next Chapter, equation (17.27).

16.17.1 Covariant exterior derivative of a multivector form

The exterior derivatives d of the multivector forms Γ and 𝑒 in equations (16.206) and (16.210) were applied
to the coordinate indices, but not to the tetrad indices. A covariant exterior derivative D, distinguished like
the coordinate exterior derivative d by latin font, can be defined that is covariant not only with respect
to coordinate transformations but also with respect to Lorentz transformations. In this context, covariance
means that D commutes with both coordinate and Lorentz transformations. There is a torsion-free covariant
exterior derivative D̊, and a torsion-full covariant exterior derivative D.
If 𝑎 is a multivector 𝑝-form, then its torsion-free covariant exterior derivative D̊𝑎 is a sum of the coordinate

exterior derivative plus a torsion-free Lorentz connection term, equation (15.4),

D̊𝑎 ≡ d𝑎+
^̊
Γ𝑎 , (16.383)

where the torsion-free Lorentz connection operator ^̊
Γ acting on the multivector form 𝑎 is, equation (15.19),

^̊
Γ𝑎 ≡ 1

2 [Γ̊,𝑎] , (16.384)

with Γ̊ ≡ Γ̊𝑘𝑙𝜅 𝛾𝛾
𝑘 ∧𝛾𝛾𝑙 𝑑𝑥𝜅 the torsion-free bivector 1-form, the torsion-free version of equation (16.201a).

The torsion-full covariant exterior derivative D𝑎 is a sum of the coordinate exterior derivative plus a
torsion-full Lorentz connection term plus a torsion term,

D𝑎 ≡ d𝑎+ Γ̂𝑎+ 𝑆𝑎 , (16.385)

where the Lorentz connection operator Γ̂ acting on the multivector form 𝑎 is, equation (15.19),

Γ̂𝑎 ≡ 1
2 [Γ,𝑎] . (16.386)

The torsion-full Lorentz connection bivector 1-form Γ, equation (16.201a), is as usual the sum of the torsion-
free Lorentz connection Γ̊ and the contortion 𝐾, equations (11.55),

Γ = Γ̊+𝐾 . (16.387)
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The coordinate exterior derivative d is a torsion-free covariant curl, so the torsion operator 𝑆 in equa-
tion (16.385) must be included when torsion does not vanish, as for example in equation (2.71). The torsion
operator 𝑆 is essentially the antisymmetric part of the coordinate connection, which is the only part of the
coordinate connection that survives in a (covariant) exterior derivative. The torsion operator 𝑆 acts only
on the coordinate indices of the form 𝑎, while the Lorentz connection operator Γ̂ acts only on the tetrad
indices of the multivector 𝑎. If 𝑎 = 𝑎𝜆Π 𝑑

𝑝𝑥𝜆Π is a multivector 𝑝-form, with implicit summation over distinct
antisymmetric sequences 𝜆Π of 𝑝 indices, then the torsion term 𝑆𝑎 is the multivector (𝑝+1)-form defined by

𝑆𝑎 ≡ 𝑝(𝑝+ 1)

2
𝑆𝜇𝜅𝜆𝑎𝜇Π 𝑑

𝑝+1𝑥𝜅𝜆Π , (16.388)

implicitly summed over distinct antisymmetric sequences 𝜅𝜆Π of 𝑝+1 indices. If 𝑎 is a 0-form (a coordinate
scalar), then the torsion term vanishes, 𝑆𝑎 = 0. In components, the covariant exterior derivative D𝑎,
equation (16.385), of the multivector 𝑝-form 𝑎 is the (𝑝+ 1)-form

D𝑎 = (𝑝+ 1)𝐷𝜅𝑎𝜆Π 𝑑
𝑝+1𝑥𝜅𝜆Π = (𝑝+ 1)

(︀
𝜕𝜅𝑎𝜆Π + 1

2 [Γ𝜅,𝑎𝜆Π] +
1
2𝑝𝑆

𝜇
𝜅𝜆𝑎𝜇Π

)︀
𝑑𝑝+1𝑥𝜅𝜆Π , (16.389)

with the implicit summation over distinct antisymmetric sequences 𝜅𝜆Π of 𝑝+ 1 indices.
The covariant exterior derivative D (in both torsion-free and torsion-full versions) acting on the product

of a multivector 𝑝-form 𝑎 and a multivector 𝑞-form 𝑏 satisfies the same Leibniz-like rule as the exterior
derivative d, equation (15.71),

D(𝑎𝑏) = (D𝑎)𝑏+ (−)𝑝𝑎(D𝑏) . (16.390)

16.17.2 A third, Lorentz-covariant, exterior derivative

A third exterior derivative that is Lorentz-covariant but not coordinate-covariant crops up often enough
to warrant a special notation. The Lorentz-covariant derivative DΓ, subscripted Γ as a reminder that it is
covariant only with respect to Lorentz indices, is

DΓ ≡ d + Γ̂ , (16.391)

which is torsion-free acting on coordinate indices, and torsion-full acting on multivector indices. The Lorentz-
covariant derivative DΓ satisfies the same Leibniz-like rule (16.390) as the other exterior derivatives.
The derivative DΓ is not coordinate-covariant in the sense that it does not commute with the vierbein,

that is, acting on the line interval 𝑒, it yields the torsion 𝑆, equation (16.393),

DΓ𝑒 = 𝑆 . (16.392)

However, the derivative DΓ satisfies other conditions for being a covariant derivative: it yields a (coordinate
and tetrad) tensor when acting on a (coordinate and tetrad) tensor.
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16.17.3 Torsion from the covariant exterior derivative

By construction, the covariant exterior derivative D (in either torsion-free or torsion-full versions) commutes
with both coordinate and Lorentz transformations. Thus the covariant exterior derivative of the line-element
𝑒 defined by equation (16.201b) vanishes, D𝑒 = 0. Applied to the line interval 𝑒, equation (16.385) recovers
the definition (16.212) of the torsion vector 2-form 𝑆, Cartan’s first equation of structure,

0 = D𝑒 = d𝑒+ 1
2 [Γ, 𝑒]− 𝑆 , (16.393)

since 𝑆𝑒 is just minus the vector 2-form torsion 𝑆,

𝑆𝑒 = 𝑆𝜇𝜅𝜆𝑒𝑚𝜇 𝛾𝛾
𝑚 𝑑2𝑥𝜅𝜆 = 𝑆𝑚𝜅𝜆 𝛾𝛾

𝑚 𝑑2𝑥𝜅𝜆 = −𝑆 . (16.394)

The torsion-free version of Cartan’s equation (16.393) is d𝑒 + 1
2 [Γ̊, 𝑒] = 0. Subtracting this from the

torsion-full Cartan’s equation (16.393) yields the relation between the torsion 𝑆 and the contortion 𝐾,

𝑆 = 1
2 [𝐾, 𝑒] . (16.395)

Equation (16.395) can be inverted to yield 𝐾 in terms of 𝑆. The relation between torsion and contortion
was given previously in index notation as equations (11.56).

16.17.4 Riemann curvature from the covariant exterior derivative

Whereas the square of the coordinate exterior derivative vanishes because of the commutation of coordinate
partial derivatives, dd = 0, the square of the covariant exterior derivative does not vanish. In components,
the square DD is

DD ≡ [𝐷𝜅, 𝐷𝜆] 𝑑
2𝑥𝜅𝜆 , (16.396)

implicitly summed over distinct antisymmetric pairs of indices 𝜅𝜆. Acting on any multivector form 𝑎, the
square of the covariant exterior derivative gives (compare equation (15.21))

DD𝑎 = �̂�𝑎+ 𝑆D𝑎 . (16.397)

If 𝑎 = 𝑎𝜇Π 𝑑
𝑝𝑥𝜇Π is a multivector 𝑝-form, then the Riemann operator �̂� acting on 𝑎 is the (𝑝+2)-form (the

DΓ𝑆 term in the following equation was given previously in components by equation (11.69))

�̂�𝑎 = (DΓDΓ +DΓ𝑆)𝑎 =
(𝑝+ 1)(𝑝+ 2)

2

(︀
1
2 [𝑅𝜅𝜆,𝑎𝜇Π] +

1
3𝑝𝑅𝜅𝜆𝜇

𝜈𝑎𝜈Π
)︀
𝑑𝑝+2𝑥𝜅𝜆𝜇Π , (16.398)

implicitly summed over distinct antisymmetric sequences 𝜅𝜆𝜇Π of 𝑝+2 indices. The components of the Rie-
mann tensor are those of the Riemann bivector 2-form 𝑅 ≡ 𝑅𝜅𝜆 𝑑

2𝑥𝜅𝜆, equation (16.205). Equation (16.398)
recovers the definition (16.208) of the Riemann curvature 𝑅 in terms of the Lorentz connection Γ, Cartan’s
second equation of structure. In equation (16.397), the scalar 2-form covariant derivative operator 𝑆D acting
on the multivector 𝑝-form 𝑎 = 𝑎Π 𝑑

𝑝𝑥Π is, from equations (16.388) and (16.389), the (𝑝+ 2)-form

𝑆D𝑎 =
(𝑝+ 1)2(𝑝+ 2)

2
𝑆𝜇𝜅𝜆𝐷[𝜇𝑎Π] 𝑑

𝑝+2𝑥𝜅𝜆Π , (16.399)

implicitly summed over distinct antisymmetric sequences 𝜅𝜆Π of 𝑝+ 2 indices.
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16.17.5 Bianchi identities

The Jacobi identity for the covariant exterior derivative is

D(DD)− (DD)D = 0 . (16.400)

Applied to an arbitrary multivector form 𝑎, the Jacobi identity (16.400) implies

0 = D(DD)𝑎− (DD)D𝑎 = D(�̂�+ 𝑆D)𝑎− (�̂�+ 𝑆D)D𝑎 = (D�̂�− 𝑆�̂�)𝑎+ (D𝑆 − 𝑆𝑆 − �̂�)D𝑎 . (16.401)

Equation (16.401) holds for arbitrary 𝑎, so the coefficients of 𝑎 and D𝑎 must vanish, implying the Bianchi
identities

D𝑆 − 𝑆𝑆 + 1
2 [𝑒,𝑅] = 0 , (16.402a)

D𝑅− 𝑆𝑅 = 0 , (16.402b)

where 𝑆 is the vector 2-form torsion (16.209) with 1
2𝑁

2(𝑁−1) components, and 𝑅 is the bivector 2-form

Riemann curvature (16.205) with
(︀
1
2𝑁(𝑁−1)

)︀2
components. These equations (16.402) were given previ-

ously in component form by equations (11.68) and (11.90). Equation (16.402a) is a vector 3-form, with
1
6𝑁

2(𝑁−1)(𝑁−2) components, while equation (16.402b) is a bivector 3-form, with 1
12𝑁

2(𝑁−1)2(𝑁−2)
components. Equivalently, in terms of the exterior derivative d instead of the covariant exterior derivative
D, the Bianchi identities (16.402) are

d𝑆 + 1
2 [Γ,𝑆] +

1
2𝑒 ·𝑅 = 0 , (16.403a)

d𝑅+ 1
2 [Γ,𝑅] = 0 . (16.403b)

16.17.6 Interpretation of the Bianchi identities

The torsion Bianchi identity (16.403a) looks like a covariant conservation equation for torsion 𝑆, except that
there is a source term 𝑒 ·𝑅, a vector 3-form whose 1

6𝑁
2(𝑁−1)(𝑁−2) components are

𝑒 ·𝑅 = 1
2 [𝑒,𝑅] = 𝑅[𝜅𝜆𝜇]𝑛 𝛾𝛾

𝑛 𝑑3𝑥𝜅𝜆𝜇 . (16.404)

Since torsion 𝑆 is determined completely by its equation of motion (16.370a) in terms of the spin angular-
momentum Σ, the torsion Bianchi identity (16.403a) can be interpreted as determining 𝑒 · 𝑅 in terms of
the torsion and its derivatives. I thank Fred Hehl for pointing out (2017, private communication) that the
𝑒 ·𝑅 term can be interpreted as the covariant exterior derivative of orbital angular momentum, §19(c) of
Corson (1953), so that the Bianchi identity (16.403a) can be interpreted as enforcing conservation of total
angular momentum, spin plus orbital. If torsion 𝑆 vanishes, or more generally if it satisfies the covariant
conservation equation d𝑆+ 1

2 [Γ,𝑆] = 0, then 𝑒 ·𝑅 = 0. The remaining
(︀
1
2𝑁(𝑁−1)

)︀2− 1
6𝑁

2(𝑁−1)(𝑁−2) =
1
12 (𝑁+1)𝑁2(𝑁−1) components of the Riemann tensor constitute its torsion-free part �̊�, equation (15.49).
The Riemann Bianchi identity (16.403b) looks like a covariant conservation equation for the Riemann

tensor 𝑅. In contrast to the torsion 𝑆, the Riemann tensor 𝑅 is not determined completely by its equation
of motion in terms of the matter energy-momentum 𝑇 . Rather, the equation of motion (16.363b) determines
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only the contracted part 𝑒𝑁−3 ∧𝑅 of the Riemann tensor, the double dual of the vector 1-form Einstein
tensor. The Riemann Bianchi identity (16.403b) has 1

12𝑁
2(𝑁−1)2(𝑁−2) components. Of these components,

1
24𝑁

2(𝑁−1)(𝑁−2)(𝑁−3) provide an equation for d(𝑒 ·𝑅), which are differential constraints on the antisym-
metric part 𝑒 ·𝑅 of the Riemann tensor, a further 𝑁 components provide an equation for d(𝑒𝑁−3 ∧𝑅), which
are constraints on the Einstein tensor, and the remaining 1

24 (𝑁+2)𝑁(𝑁−3)(𝑁2−𝑁+4) components provide
Maxwell-like differential equations on the torsion-free part of the Riemann tensor, as discussed previously
in §3.2. These Maxwell-like equations govern the behaviour of gravitational waves, which are encoded in
the torsion-free part of the Riemann tensor that is not determined by the equations of motion, namely the
1
12 (𝑁+2)(𝑁+1)𝑁(𝑁−3)-component torsion-free Weyl tensor. The torsion-free Weyl tensor is subject to a
1
48𝑁

2(𝑁−1)2(𝑁−3)-component bivector 4-form conservation law,

DΓ(DΓ𝑅) = (DΓDΓ)𝑅 = 1
2 [𝑅,𝑅] = 0 , (16.405)

the last step of which follows from equation (16.198b). Equation (16.405) represents conservation of the Weyl
current, equation (3.13).

16.17.7 Contracted Bianchi identities

The equations of motion (16.363) for torsion and curvature are sourced by the spin angular-momentum and
matter energy-momentum. The Bianchi identities (16.403) on the other hand are independent of matter
sources. The Bianchi identities impose differential constraints on the equations of motion that must be
satisfied regardless of the form of the spin angular-momentum and matter energy-momentum.
The equations of motion (16.363) are equations for 𝑒𝑁−3 ∧𝑆 and 𝑒𝑁−3 ∧𝑅. Differential constraints on

these combinations are obtained by contracting the Bianchi identities (16.403) by pre-multiplying by 𝑒𝑁−3 ∧.
The contracted Bianchi identities for torsion and Riemann curvature constitute respectively a pseudobivector
𝑁 -form with 1

2𝑁(𝑁−1) components, and a pseudovector 𝑁 -form with 𝑁 components,

d(𝑒𝑁−3 ∧𝑆) + 1
2 [Γ, 𝑒

𝑁−3 ∧𝑆] + (−)𝑁−3𝑒 · (𝑒𝑁−3 ∧𝑅) = 0 , (16.406a)

d(𝑒𝑁−3 ∧𝑅) + 1
2 [Γ, 𝑒

𝑁−3 ∧𝑅] + (−)𝑁−3𝑒𝑁−4 ∧𝑆 ∧𝑅 = 0 . (16.406b)

The final term in the contracted torsion Bianchi identity (16.406a) is a pseudobivector 𝑁 -form whose com-
ponents constitute the antisymmetric part 𝑅[𝜇𝜈] of the Ricci tensor,

𝑒 · (𝑒𝑁−3 ∧𝑅) = 𝑒𝑁−3 ∧(𝑒 ·𝑅) =
𝑁−2
2

[𝑒𝑁−2,𝑅] = −𝑒𝑘𝜅...𝑒𝑙𝜆𝑅𝜇𝜈 𝛾𝛾𝑘 ∧ ...∧𝛾𝛾𝑙 𝑑𝑁𝑥𝜅...𝜆𝜇𝜈 , (16.407)

implicitly summed as usual over distinct antisymmetric sequences 𝑘...𝑙 and 𝜅...𝜆𝜇𝜈 of indices.
Combining the contracted Bianchi identity (16.406b) with the torsion Bianchi identity (16.403a) yields

the pseudovector 𝑁 -form identity for the curvature Π defined by equation (16.369),

dΠ+ 1
2 [Γ,Π] + (−)𝑁−3𝑒𝑁−4

(︀
(𝑒 ·𝑅)∧Γ− 1

4𝑆 ∧[Γ,Γ]
)︀
= 0 . (16.408)
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16.17.8 Interpretation of the contracted Bianchi identities

The contracted torsion Bianchi identity (16.406a) is the 1
2𝑁(𝑁−1)-component conservation law associated

with invariance of the gravitational Lagrangian under Lorentz transformations. The contracted Riemann
identity (16.406b), or equivalently (16.408), is the 𝑁 -component conservation law associated with invariance
of the gravitational Lagrangian under coordinate transformations.
The contracted torsion Bianchi identity (16.406a) enforces continued satisfaction of the Gaussian con-

straint (16.310a). The contracted Riemann Bianchi identity (16.406b) enforces continued satisfaction of the
Hamiltonian constraint (16.310b).
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Conventional Hamiltonian (3+1) approach

In the previous Chapter, gravitational equations of motion were derived from the Hilbert Lagrangian in a fully
covariant fashion, and the (super-)Hamiltonian form of the Hilbert Lagrangian was emphasized. The present
Chapter explores a more traditional non-covariant 3+1 approach, in which the spacetime is foliated into
hypersurfaces of constant time 𝑡, and the system of Einstein (and other) equations is evolved by integrating
from one spacelike hypersurface of constant time to the next.
The traditional 3+1 formalism is called the Arnowitt-Deser-Misner (ADM) formalism, introduced

by Arnowitt, Deser & Misner (1959; 1963). The original purpose of ADM was to cast the gravitational
equations of motion into conventional Hamiltonian form, to facilitate quantization. The goal of quantizing
general relativity failed, but the ADM formalism revealed fundamental insights into the structure of the
Einstein equations (see §16.16.1 of the previous Chapter). The ADM formalism provides the backbone for
modern codes that implement numerical general relativity.
The ADM formalism reveals that, for vanishing torsion, the 6 physical degrees of freedom of the gravita-

tional field can be regarded as being carried by the 6 spatial components 𝑔𝛼𝛽 of the coordinate metric. The 6
spatial Einstein equations constitute partial differential equations of motion of second order in time 𝑡 for the
6 physical degrees of freedom. The remaining 4 degrees of freedom of the coordinate metric can be treated as
gauge degrees of freedom, which can be chosen arbitrarily. The 4 non-spatial Einstein equations are partial
differential equations of first order in time 𝑡, and they are not equations of motion, but rather constraint
equations, which must be arranged to be satisfied in the initial conditions (on the initial hypersurface of
constant time 𝑡), but which are guaranteed thereafter by the contracted Bianchi identities, which enforce
conservation of energy-momentum.
The mere fact that the 6 spatial components 𝑔𝛼𝛽 of the coordinate metric can (if torsion vanishes) be

taken to be the 6 gravitational physical degrees of freedom, and that the remaining 4 degrees of freedom of
the coordinate metric can be treated as gauge degrees of freedom, does not mean that these choices must be
made. Gauge choices other than ADM can be made, and are often preferred. In cosmology for example, the
preferred gauge choice is conformal Newtonian (Copernican) gauge, §29.8, in which only 3 of the 6 physical
perturbations are part of the spatial coordinate metric 𝑔𝛼𝛽 (the scalar Φ and the 2 components of the tensor
ℎ𝑎𝑏), while the remaining 3 physical perturbations are part of the time components 𝑔𝑡𝑡 and 𝑔𝑡𝛼 of the metric
(the scalar Ψ and the 2 components of the vector 𝑊𝑎).

488
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Numerical experiments during the 1990s established that the ADM equations are numerically unstable. The
community of numerical relativists engaged in an intensive effort to understand the cause of the instability,
and to find a numerically stable formalism. The challenge problem was to compute reliably the evolution of
the merger of a pair of black holes, and to calculate the general relativistic radiation produced as a result. The
effort was rewarded in 2005–6 when a number of groups (Pretorius, 2005a; Pretorius, 2006; Baker et al., 2006b;
Baker et al., 2006a; Campanelli et al., 2006; Campanelli, Lousto, and Zlochower, 2006; Diener et al., 2006;
Sopuerta, Sperhake, and Laguna, 2006) reported successful evolution of a binary black hole (or black hole plus
neutron star) merger. The most popular formalism for long-term evolution of spacetimes is the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formalism (Shibata and Nakamura, 1995; Baumgarte and Shapiro,
1998).
This Chapter starts with an exposition of the ADM formalism, §17.1. It goes on to apply the ADM

formalism to Bianchi spacetimes, §17.4, which provide a fine example of the application of the formalism
in a non-trivial case. The gravitational collapse of Bianchi spacetimes reveals that collapse to a singularity
can show a complicated oscillatory behaviour called Belinskii-Khalatnikov-Lifshitz (BKL) oscillations
(Belinskii, Khalatnikov, and Lifshitz, 1970; Belinskii and Khalatnikov, 1971; Belinskii, Khalatnikov, and
Lifshitz, 1972; Belinskii, Khalatnikov, and Lifshitz, 1982; Belinski, 2014), §17.6. The Chapter concludes with
an exposition of the BSSN formalism, §17.8, and the elegant 4-dimensional version of it proposed by Pretorius
(2005), §17.9.
In this Chapter, torsion is assumed to vanish.

17.1 ADM formalism

The ADM formalism splits the spacetime coordinates 𝑥𝜇 into a time coordinate 𝑡 and spatial coordinates
𝑥𝛼, 𝛼 = 1, 2, 3,

𝑥𝜇 ≡ {𝑡, 𝑥𝛼} . (17.1)

At each point of spacetime, the spacelike hypersurface of constant time 𝑡 has a unique future-pointing unit
normal 𝛾𝛾0, defined to have unit length and to be orthogonal to the spatial tangent axes 𝑒𝛼,

𝛾𝛾0 · 𝛾𝛾0 = −1 , 𝛾𝛾0 · 𝑒𝛼 = 0 𝛼 = 1, 2, 3 . (17.2)

The central idea of the ADM approach is to work in a tetrad frame 𝛾𝛾𝑚 consisting of this time axis 𝛾𝛾0,
together with three spatial tetrad axes 𝛾𝛾𝑎, also called the triad, that are orthogonal to the tetrad time axis
𝛾𝛾0, and therefore lie in the 3D spatial hypersurface of constant time,

𝛾𝛾0 · 𝛾𝛾𝑎 = 0 𝑎 = 1, 2, 3 . (17.3)

The tetrad metric 𝛾𝑚𝑛 in the ADM formalism is thus

𝛾𝑚𝑛 =

(︂
−1 0

0 𝛾𝑎𝑏

)︂
, (17.4)
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and the inverse tetrad metric 𝛾𝑚𝑛 is correspondingly

𝛾𝑚𝑛 =

(︂
−1 0

0 𝛾𝑎𝑏

)︂
, (17.5)

whose spatial part 𝛾𝑎𝑏 is the inverse of 𝛾𝑎𝑏. Given the conditions (17.2) and (17.3), the vierbein 𝑒𝑚𝜇 and
inverse vierbein 𝑒𝑚𝜇 take the form

𝑒𝑚𝜇 =

(︂
𝛼 0

−𝑒𝑎𝛼𝛽𝛼 𝑒𝑎𝛼

)︂
, 𝑒𝑚

𝜇 =

(︂
1/𝛼 𝛽𝛼/𝛼

0 𝑒𝑎
𝛼

)︂
, (17.6)

where 𝛼 and 𝛽𝛼 are the lapse and shift (see next paragraph), and 𝑒𝑎𝛼 and 𝑒𝑎𝛼 represent the spatial vierbein
and inverse vierbein, which are inverse to each other, 𝑒𝑎𝛼𝑒𝑏𝛼 = 𝛿𝑎𝑏 . As can be read off from equations (17.6),
the following off-diagonal time-space components of the vierbein and its inverse vanish, as a direct conse-
quence of the ADM gauge choices (17.2),

𝑒0𝛼 = 𝑒𝑎
𝑡 = 0 . (17.7)

The ADM line-element is

𝑑𝑠2 = −𝛼2𝑑𝑡2 + 𝑔𝛼𝛽 (𝑑𝑥
𝛼 − 𝛽𝛼𝑑𝑡)

(︀
𝑑𝑥𝛽 − 𝛽𝛽𝑑𝑡

)︀
, (17.8)

where 𝑔𝛼𝛽 is the spatial coordinate metric

𝑔𝛼𝛽 = 𝛾𝑎𝑏𝑒
𝑎
𝛼𝑒
𝑏
𝛽 . (17.9)

Essentially all the tetrad formalism developed in Chapter 11 carries through, subject only to the condi-
tions (17.2) and (17.3). As usual in the tetrad formalism, coordinate indices are lowered and raised with the
coordinate metric, tetrad indices are lowered and raised with the tetrad metric, and coordinate and tetrad
indices can be transformed to each other with the vierbein and its inverse.
The vierbein coefficient 𝛼 is called the lapse, while 𝛽𝛼 is called the shift. Physically, the lapse 𝛼 is the

rate at which the proper time 𝜏 of the tetrad rest frame elapses per unit coordinate time 𝑡, while the shift 𝛽𝛼

is the velocity at which the tetrad rest frame moves through the spatial coordinates 𝑥𝛼 per unit coordinate
time 𝑡,

𝛼 =
𝑑𝜏

𝑑𝑡
, 𝛽𝛼 =

𝑑𝑥𝛼

𝑑𝑡
. (17.10)

These relations (17.10) follow from the fact that the 4-velocity in the tetrad rest frame is by definition
𝑢𝑚 ≡ {1, 0, 0, 0}, so the coordinate 4-velocity 𝑢𝜇 ≡ 𝑒𝑚𝜇𝑢𝑚 of the tetrad rest frame is

𝑑𝑥𝜇

𝑑𝜏
≡ 𝑢𝜇 = 𝑒0

𝜇 =
1

𝛼
{1, 𝛽𝛼} . (17.11)

The proper time derivative 𝑑/𝑑𝜏 in the tetrad rest frame is just equal to the directed derivative 𝜕0 in the
time direction 𝛾𝛾0,

𝑑

𝑑𝜏
= 𝑢𝜇

𝜕

𝜕𝑥𝜇
= 𝜕0 . (17.12)
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Coordinate and tetrad derivatives 𝜕/𝜕𝑥𝜇 and 𝜕𝑚 are related to each other as usual by the vierbein and
its inverse,

𝜕

𝜕𝑡
= 𝛼𝜕0 − 𝛽𝑎𝜕𝑎 , 𝜕0 =

1

𝛼

(︂
𝜕

𝜕𝑡
+ 𝛽𝛼

𝜕

𝜕𝑥𝛼

)︂
, (17.13a)

𝜕

𝜕𝑥𝛼
= 𝑒𝑎𝛼𝜕𝑎 , 𝜕𝑎 = 𝑒𝑎

𝛼 𝜕

𝜕𝑥𝛼
, (17.13b)

where 𝛽𝑎 ≡ 𝑒𝑎𝛼𝛽
𝛼. By construction, the only coordinate derivative involving the directed time derivative

𝜕0 is the coordinate time derivative 𝜕/𝜕𝑡, and conversely the only directed derivative involving a coordinate
time derivative 𝜕/𝜕𝑡 is the directed time derivative 𝜕0.

Concept question 17.1. Does Nature pick out a preferred foliation of time? In the ADM formal-
ism, spacetime must be foliated into spacelike hypersurfaces of constant time, but the choice of foliation can
be made arbitrarily. Does Nature pick out any particular foliation? Answer. Yes, apparently. The Cosmic
Microwave Background defines a preferred frame of reference in cosmology. More precisely, the preferred
cosmological frame is defined by conformal Newtonian (Copernican) gauge, §29.8, which is that gauge for
which the retained gravitational perturbations are precisely the physical perturbations. What caused the
preferred frame to be established is mysterious, but it must have happened during or before early infla-
tion, when the different parts of what became our Universe were in causal contact. Interestingly, conformal
Newtonian gauge does not conform to ADM gauge choices: in conformal Newtonian gauge, only 3 of the 6
physical perturbations (Φ and ℎ𝑎𝑏) are part of the spatial metric, while the remaining 3 physical perturba-
tions (Ψ and 𝑊𝑎) are part of the lapse and shift. Conformal Newtonian gauge holds as long as gravitational
perturbations are weak, which is true even in highly non-linear collapsed systems such as galaxies and solar
systems. Conformal Newtonian gauge breaks down in strongly gravitating systems such as black holes.

17.1.1 Traditional ADM approach

The traditional ADM approach sets the spatial tetrad axes 𝛾𝛾𝑎 equal to the spatial coordinate tangent axes
𝑒𝛼,

𝛾𝛾𝑎 = 𝛿𝛼𝑎 𝑒𝛼 (traditional ADM) , (17.14)

equivalent to choosing the spatial vierbein to be the unit matrix, 𝑒𝑎𝛼 = 𝛿𝛼𝑎 . It is natural however to extend the
ADM approach into a full tetrad approach, allowing the spatial tetrad axes 𝛾𝛾𝑎 to be chosen more generally,
subject only to the condition (17.3) that they be orthogonal to the tetrad time axis, and therefore lie in the
hypersurface of constant time 𝑡. For example, the spatial tetrad 𝛾𝛾𝑎 can be chosen to form 3D orthonormal
axes, 𝛾𝑎𝑏 ≡ 𝛾𝛾𝑎 · 𝛾𝛾𝑏 = 𝛿𝑎𝑏, so that the full 4D tetrad metric 𝛾𝑚𝑛 is Minkowski.
This Chapter follows the full tetrad approach to the ADM formalism, but all the results hold for the

traditional case where the spatial tetrad axes are set equal to the coordinate spatial axes, equation (17.14).
Bianchi spacetimes, discussed in §17.4, provide an illustrative example of the application of the ADM
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formalism to a case where it is advantageous to choose the tetrad to be neither orthonormal nor equal to
the coordinate tangent axes.

17.1.2 Spatial vectors and tensors

Since the tetrad time axis 𝛾𝛾0 in the ADM formalism is defined uniquely by the choice of hypersurfaces of
constant time 𝑡, there is no freedom of tetrad transformations of the time axis distinct from temporal coor-
dinate transformations (no distinct freedom of Lorentz boosts). However, there is still freedom of coordinate
transformations of the spatial coordinate axes 𝑒𝛼, and tetrad transformations of the spatial tetrad axes 𝛾𝛾𝑎
(spatial rotations).
A covariant spatial coordinate vector 𝐴𝛼 is defined to be a vector that transforms like the spatial

coordinate axes 𝑒𝛼. Likewise a covariant spatial tetrad vector 𝐴𝑎 is defined to be a vector that transforms
like the spatial tetrad axes 𝛾𝛾𝑎. The usual apparatus of vectors and tensors carries through. For spatial
tensors, coordinate and tetrad spatial indices are lowered and raised with respectively the spatial coordinate
and tetrad 3-metrics 𝑔𝛼𝛽 and 𝛾𝑎𝑏 and their inverses, and spatial indices are transformed between coordinate
and tetrad frames with the spatial vierbein 𝑒𝑎𝛼 and its inverse.

17.1.3 ADM gravitational coordinates and momenta

The ADM formalism follows the conventional Hamiltonian approach of regarding the velocities of the fields
as being their time derivatives 𝜕/𝜕𝑡 (as opposed to their 4-gradients 𝜕/𝜕𝑥𝜅), and the momenta as derivatives
of the Lagrangian with respect to these velocities.
If the Lorentz connections Γ𝑚𝑛𝜆 are taken to be the coordinates of the gravitational field, then the

corresponding conjugate momenta are, equation (16.89) with the factor 8𝜋 replaced by 16𝜋𝛼 for convenience,

16𝜋𝛼
𝛿𝐿g

𝛿(𝜕Γ𝑚𝑛𝜆/𝜕𝑡)
= 𝛼(𝑒𝑚𝑡𝑒𝑛𝜆 − 𝑒𝑚𝜆𝑒𝑛𝑡) . (17.15)

But ADM imposes 𝑒𝑎𝑡 = 0, equations (17.6), so for the momentum to be non-vanishing, one of 𝑚 or 𝑛, say
𝑛, must be the tetrad time index 0. Since the momentum is antisymmetric in 𝑚𝑛, the other tetrad index 𝑚
must be a spatial tetrad index 𝑎. Moreover since the momentum is antisymmetric in 𝑡𝜆, the coordinate index
𝜆 must be a spatial coordinate index 𝛼. Finally, with 𝑒0𝑡 = −1/𝛼, the non-vanishing momenta conjugate to
the Lorentz connections are

16𝜋𝛼
𝛿𝐿g

𝛿(𝜕Γ𝑎0𝛼/𝜕𝑡)
= 𝑒𝑎𝛼 . (17.16)

This shows that the coordinates Γ𝑚𝑛𝜆 with non-vanishing conjugate momenta are Γ𝑎0𝛼 with middle (or first)
index the tetrad time index 0 and the other two indices spatial, and that the momenta conjugate to these
coordinates are the spatial vierbein 𝑒𝑎𝛼.
If on the other hand the vierbein 𝑒𝑛𝜆 are taken to be the coordinates of the gravitational field, then the
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corresponding canonically conjugate momenta are, with a factor of 8𝜋𝛼 thrown in for convenience,

8𝜋𝛼
𝛿𝐿′g

𝜕(𝜕𝑒𝑛𝜆/𝜕𝑡)
= 𝛼𝑒𝑚𝑡𝜋𝑛𝑚𝜆 , (17.17)

where 𝜋𝑛𝑚𝜆 are related to the Lorentz connections Γ𝑛𝑚𝜆 by equation (16.114). But again ADM imposes
𝑒𝑎𝑡 = 0, so the tetrad index 𝑚 must be the time tetrad index 0. Since 𝜋𝑛𝑚𝜆 is antisymmetric in its first two
indices, the tetrad index 𝑛 must be a spatial tetrad index 𝑎. And then the non-vanishing of the coordinate
𝑒𝑛𝜆 = 𝑒𝑎𝜆 requires that 𝜆 also be a spatial coordinate index 𝛽. Thus the non-vanishing momenta conjugate
to the vierbein coordinates are

8𝜋𝛼
𝛿𝐿′g

𝜕(𝜕𝑒𝑎𝛽/𝜕𝑡)
= −𝜋𝑎0𝛽 , (17.18)

in which the momenta 𝜋𝑎0𝛽 are related to the Lorentz connections Γ𝑎0𝛽 by, from equations (16.114) with
𝑒0𝛽 = 0,

𝜋𝑎0𝛽 ≡ Γ𝑎0𝛽 − 𝑒𝑎𝛽Γ𝑐0𝑐 , Γ𝑎0𝛽 = 𝜋𝑎0𝛽 − 1
2𝑒𝑎𝛽𝜋

𝑐
0𝑐 . (17.19)

This shows that the coordinates 𝑒𝑛𝜆 with non-vanishing conjugate momenta are the spatial vierbein 𝑒𝑎𝛼,
and that the momenta conjugate to these coordinates are 𝜋𝑎0𝛽 with middle (or first) index the tetrad time
index 0 and the other two indices spatial.
As remarked before equation (16.116), the same equations of motion are obtained whether the action is

varied with respect to either 𝜋𝑎0𝛽 or Γ𝑎0𝛽 , so one can choose either 𝜋𝑎0𝛽 or Γ𝑎0𝛽 as the momentum variables
conjugate to the coordinates 𝑒𝑎𝛼. The original choice of Arnowitt, Deser, and Misner (1963) was 𝜋𝑎0𝛽 , but
equations using Γ𝑎0𝛽 were proposed by Smarr and York (1978) and York (1979).
A reminder: do not confuse the Lorentz connections Γ𝑚𝑛𝜆 (of which there are 24) with the coordinate

connections Γ𝜇𝜈𝜆 (of which there are 40, for vanishing torsion). The Lorentz connections Γ𝑚𝑛𝜆 with final index
a coordinate index 𝜆 are related to the Lorentz connections Γ𝑚𝑛𝑙 with all tetrad indices by, equation (15.20),

Γ𝑚𝑛𝜆 ≡ 𝑒𝑙𝜆Γ𝑚𝑛𝑙 . (17.20)

17.1.4 ADM acceleration and extrinsic curvature

In the previous subsection 17.1.3 it was found that, given the choice (17.6) of ADM vierbein, the momentum
variables that emerge naturally are the Lorentz connections Γ𝑎0𝑏 whose middle (or first) index is the tetrad
time index 0, and whose other two indices 𝑎𝑏 are both spatial indices. This set of Lorentz connections is called
the extrinsic curvature, commonly denoted 𝐾𝑎𝑏. As will be shown momentarily, the extrinsic curvature
𝐾𝑎𝑏 is a spatial tetrad tensor. The other set of Lorentz connections that transforms like a spatial tensor are
the connections Γ𝑎00, which are called the acceleration 𝐾𝑎. The combined set of connections with middle
index 0 is called the generalized extrinsic curvature 𝐾𝑚0𝑙 ≡ Γ𝑚0𝑙. The non-vanishing components of
the generalized extrinsic curvature constitute the acceleration and the extrinsic curvature (the remaining
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components vanish, Γ000 = Γ00𝑎 = 0):

𝐾𝑎 ≡ 𝐾𝑎00 ≡ Γ𝑎00 ≡ 𝛾𝛾𝑎 · 𝜕0𝛾𝛾0 a spatial vector , (17.21a)

𝐾𝑎𝑏 ≡ 𝐾𝑎0𝑏 ≡ Γ𝑎0𝑏 ≡ 𝛾𝛾𝑎 · 𝜕𝑏𝛾𝛾0 a spatial tensor . (17.21b)

The acceleration 𝐾𝑎 and the extrinsic curvature 𝐾𝑎𝑏 form a spatial vector and tensor because the time
axis 𝛾𝛾0 is a spatial scalar, so its derivatives 𝜕0𝛾𝛾0 and 𝜕𝑏𝛾𝛾0 constitute respectively a spatial scalar and a
spatial vector. The vanishing of the ADM tetrad metric 𝛾0𝑎 with one time index 0 and one spatial index 𝑎,
equation (17.4), implies that the generalized extrinsic curvature is antisymmetric in its first two indices,

𝐾0𝑎𝑙 = −𝐾𝑎0𝑙 , (17.22)

which remains true even in the traditional ADM case, equation (17.14), where the spatial tetrad metric 𝛾𝑎𝑏
is not constant. The unique non-vanishing contraction of the generalized extrinsic curvature is

𝐾𝑛 ≡ 𝐾𝑚
𝑛𝑚 = {𝐾𝑚

0𝑚,𝐾
𝑚
𝑎𝑚} = {𝐾0,𝐾𝑎} , (17.23)

whose space part is the acceleration 𝐾𝑎, and whose time part is the trace 𝐾 of the extrinsic curvature 𝐾𝑎𝑏,

𝐾0 = 𝐾 ≡ 𝐾𝑎
𝑎 . (17.24)

The acceleration𝐾𝑎 is justly named because the geodesic equation shows that its contravariant components
𝐾𝑎 constitute the acceleration experienced in the tetrad rest frame, where 𝑢𝑚 = {1, 0, 0, 0},

𝐷𝑢𝑎

𝐷𝜏
= 𝑢𝑛𝜕𝑛𝑢

𝑎 + Γ𝑎𝑚𝑛𝑢
𝑚𝑢𝑛 = 𝐾𝑎

00 = 𝐾𝑎 . (17.25)

The extrinsic curvature 𝐾𝑎𝑏 describes how the unit normal 𝛾𝛾0 to the 3-dimensional spatial hypersurface of
constant time changes over the hypersurface, and can therefore be regarded as embodying the curvature of
the 3-dimensional spatial hypersurface embedded in the 4-dimensional spacetime.
Momenta 𝜋𝑎𝑏 analogous to those defined by equations (17.19) are related to the extrinsic curvatures 𝐾𝑎𝑏

by

𝜋𝑎𝑏 = 𝐾𝑎𝑏 − 𝛾𝑎𝑏𝐾 , 𝐾𝑎𝑏 = 𝜋𝑎𝑏 − 1
2𝛾𝑎𝑏𝜋 , (17.26)

where 𝜋 ≡ 𝜋𝑎𝑎 = −2𝐾 is the trace of 𝜋𝑎𝑏.

17.1.5 Decomposition of connections and curvatures

As seen in the previous subsection 17.1.4, the Lorentz connections decompose into a part, the generalized
extrinsic curvature 𝐾𝑚0𝑙 ≡ Γ𝑚0𝑙 with middle (or first) index the tetrad time index 0, that transforms like a
tensor under under spatial tetrad transformations, and a remainder, the restricted connections Γ̂𝑎𝑏𝑙 ≡ Γ𝑎𝑏𝑙
with first two indices 𝑎𝑏 spatial, that does not transform like a spatial tensor,

Γ𝑚𝑛𝑙 = Γ̂𝑚𝑛𝑙 +𝐾𝑚𝑛𝑙 . (17.27)

Although the acceleration and extrinsic curvature arise in the first instance as Lorentz connections, for
which the tetrad metric 𝛾𝑚𝑛 is constant, it is useful to allow a more general situation in which the spatial
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tetrad metric 𝛾𝑎𝑏 is arbitrary. Whereas 𝐾𝑚𝑛𝑙 is necessarily antisymmetric in its first two indices 𝑚𝑛, equa-
tion (17.22), the restricted connection Γ̂𝑚𝑛𝑙 need not be (it is antisymmetric in its first two indices if the
spatial tetrad metric 𝛾𝑎𝑏 is constant, but not for example in the traditional ADM case (17.14) where the
spatial tetrad metric equals the spatial coordinate metric). The vanishing components of Γ̂𝑚𝑛𝑙 and 𝐾𝑚𝑛𝑙 are

Γ̂𝑎0𝑙 = Γ̂0𝑎𝑙 = 0 , 𝐾𝑎𝑏𝑙 = 0 . (17.28)

As a result of the decomposition (17.27) of the connections, the Riemann curvature tensor 𝑅𝑘𝑙𝑚𝑛 decomposes
into a restricted part �̂�𝑘𝑙𝑚𝑛, and a part that depends on the generalized extrinsic curvature 𝐾𝑚𝑛𝑙.
Rather than specializing immediately to the ADM case, consider the more general situation in which,

under some restricted subgroup of tetrad transformations, the tetrad-frame connections Γ𝑚𝑛𝑙 decompose
as equation (17.27) into a non-tensorial part Γ̂𝑚𝑛𝑙 and a tensorial part 𝐾𝑚𝑛𝑙. The resemblance of the
decomposition (17.27) to the split (11.55) between the torsion-free and contortion parts of the tetrad-frame
connection is deliberate: in both cases, the tetrad-frame connection Γ𝑚𝑛𝑙 is decomposed into non-tensorial
and tensorial parts. The resulting decomposition of the Riemann curvature tensor is consequently quite
similar in the two cases. However, here 𝐾𝑚𝑛𝑙 is not the contortion, but rather some part of the tetrad-frame
connections that is tensorial under the restricted group of tetrad transformations.
The unique non-vanishing contraction of the tensor 𝐾𝑚𝑛𝑙 is the vector

𝐾𝑛 ≡ 𝐾𝑙
𝑛𝑙 . (17.29)

The placement of indices in equation (17.29) follows the usual convention for general relativistic connections,
that 𝐾𝑘

𝑛𝑙 = 𝛾𝑘𝑚𝐾𝑚𝑛𝑙.
The restricted tetrad-frame derivative �̂�𝑘 with restricted tetrad-frame connection Γ̂𝑚𝑛𝑙 is a covariant

derivative with respect to the restricted group of tetrad transformations. Since the generalized extrinsic
curvature 𝐾𝑚𝑛𝑙 is a tensor with respected to the restricted group, its restricted covariant derivative is also
a restricted tensor. Among other things, this implies that the restricted covariant derivatives �̂�𝑘 of the
vanishing components (17.28) of 𝐾𝑚𝑛𝑙 vanish identically.
The tetrad metric 𝛾𝑙𝑚 commutes by construction with the total covariant derivative 𝐷𝑘, and it also

commutes (even when the tetrad metric is not constant) with the restricted covariant derivative �̂�𝑘, as
follows from

0 = 𝐷𝑘𝛾𝑙𝑚 = �̂�𝑘𝛾𝑙𝑚 −𝐾𝑛
𝑙𝑘𝛾𝑛𝑚 −𝐾𝑛

𝑚𝑘𝛾𝑙𝑛 = �̂�𝑘𝛾𝑙𝑚 −𝐾𝑚𝑙𝑘 −𝐾𝑙𝑚𝑘 = �̂�𝑘𝛾𝑙𝑚 , (17.30)

the last step of which is a consequence of the antisymmetry of the extrinsic curvature in its first two indices.
Therefore tensors involving the restricted covariant derivative can be contracted in the usual way.
In ADM, the extrinsic curvature is tensorial not only with respect to spatial tetrad transformations, but

also with respect to spatial coordinate transformations. In this case, the restricted covariant derivative �̂�𝑘

commutes not only with the tetrad metric, equation (17.30), but also with the vierbein 𝑒𝑚𝜇 and its inverse
𝑒𝑚

𝜇,

0 = 𝐷𝑘𝑒
𝑚
𝜇 = �̂�𝑘𝑒

𝑚
𝜇 +𝐾𝑚

𝑛𝑘𝑒
𝑛
𝜇 −𝐾𝜈

𝜇𝑘𝑒
𝑚
𝜈 = �̂�𝑘𝑒

𝑚
𝜇 +𝐾𝑚

𝜇𝑘 −𝐾𝑚
𝜇𝑘 = �̂�𝑘𝑒

𝑚
𝜇 . (17.31)

Therefore, provided that the extrinsic curvature is tensorial with respect to both coordinate and tetrad spatial
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transformations, tensors involving the restricted covariant derivative can be flipped between coordinate and
tetrad indices in the usual way.
The tetrad-frame Riemann tensor 𝑅𝑘𝑙𝑚𝑛 decomposes into a restricted part �̂�𝑘𝑙𝑚𝑛 and a remainder that

depends on the generalized extrinsic curvature 𝐾𝑚𝑛𝑙 and its restricted covariant derivatives. The derivation
of the decomposition of the Riemann tensor is most elegant in terms of the multivector Riemann tensor 𝑅𝜅𝜆

given by equation (15.25). The decomposition of the Riemann tensor into restricted and extrinsic curvature
parts is, analogously to the decomposition (15.49) of the Riemann tensor into torsion-free and contortion
parts,

𝑅𝜅𝜆 =
𝜕(Γ̂𝜆 +𝐾𝜆)

𝜕𝑥𝜅
− 𝜕(Γ̂𝜅 +𝐾𝜅)

𝜕𝑥𝜆
+ 1

2 [Γ̂𝜅 +𝐾𝜅, Γ̂𝜆 +𝐾𝜆]

= �̂�𝜅𝜆 + �̂�𝜅𝐾𝜆 − �̂�𝜆𝐾𝜅 +
1
2 [𝐾𝜅,𝐾𝜆] , (17.32)

where 𝐾𝜅 ≡ 1
2𝐾𝑚𝑛𝜅 𝛾𝛾

𝑚 ∧𝛾𝛾𝑛 is the generalized extrinsic curvature vector of bivectors. The restricted Rie-
mann tensor �̂�𝜅𝜆 is

�̂�𝜅𝜆 =
𝜕Γ̂𝜆
𝜕𝑥𝜅

− 𝜕Γ̂𝜅
𝜕𝑥𝜆

+ 1
2 [Γ̂𝜅, Γ̂𝜆] . (17.33)

In components, the tetrad-frame Riemann tensor decomposes as

𝑅𝑘𝑙𝑚𝑛 = �̂�𝑘𝑙𝑚𝑛 + �̂�𝑘𝐾𝑚𝑛𝑙 − �̂�𝑙𝐾𝑚𝑛𝑘 +𝐾𝑝
𝑚𝑙𝐾𝑝𝑛𝑘 −𝐾𝑝

𝑚𝑘𝐾𝑝𝑛𝑙 + (𝐾𝑝
𝑘𝑙 −𝐾

𝑝
𝑙𝑘)𝐾𝑚𝑛𝑝 . (17.34)

The restricted Riemann tensor �̂�𝑘𝑙𝑚𝑛 is

�̂�𝑘𝑙𝑚𝑛 = 𝜕𝑘Γ̂𝑚𝑛𝑙 − 𝜕𝑙Γ̂𝑚𝑛𝑘 + Γ̂𝑝𝑚𝑙Γ̂𝑝𝑛𝑘 − Γ̂𝑝𝑚𝑘Γ̂𝑝𝑛𝑙 + (Γ𝑝𝑘𝑙 − Γ𝑝𝑙𝑘)Γ̂𝑚𝑛𝑝 . (17.35)

Equation (17.35) looks like the usual tetrad-frame formula (11.61), with connections replaced by restricted
connections, except that the final term on the right hand side involves the difference Γ𝑝𝑘𝑙 − Γ𝑝𝑙𝑘 of the full
tetrad-frame connection, not just the restricted connection. The part of the Riemann tensor (17.34) that
depends on the generalized extrinsic curvature is manifestly antisymmetric in 𝑘𝑙 and in 𝑚𝑛, but it is not
necessarily symmetric under 𝑘𝑙 ↔ 𝑚𝑛. Thus the restricted Riemann tensor �̂�𝑘𝑙𝑚𝑛 is antisymmetric in 𝑘𝑙

and in 𝑚𝑛, but not necessarily symmetric under 𝑘𝑙↔ 𝑚𝑛.
Contracting the Riemann tensor (17.34) gives the Ricci tensor 𝑅𝑘𝑚,

𝑅𝑘𝑚 = �̂�𝑘𝑚 − �̂�𝑘𝐾𝑚 + �̂�𝑛𝐾
𝑛
𝑚𝑘 −𝐾

𝑝
𝑘𝑛𝐾

𝑛
𝑚𝑝 +𝐾𝑝

𝑚𝑘𝐾𝑝 , (17.36)

with �̂�𝑘𝑚 ≡ 𝛾𝑙𝑛�̂�𝑘𝑙𝑚𝑛 the restricted Ricci tensor. Contracting the Ricci tensor (17.36) yields the Ricci
scalar 𝑅,

𝑅 = �̂�− 2�̂�𝑚𝐾
𝑚 −𝐾𝑝𝑚𝑛𝐾𝑛𝑚𝑝 −𝐾𝑝𝐾𝑝 , (17.37)

with �̂� ≡ 𝛾𝑘𝑚�̂�𝑘𝑚 the restricted Ricci scalar.
A restricted covariant divergence �̂�𝑚𝐴

𝑚 can be converted to a total covariant divergence 𝐷𝑚𝐴
𝑚 through

𝐷𝑚𝐴
𝑚 = �̂�𝑚𝐴

𝑚 +𝐾𝑚
𝑝𝑚𝐴

𝑝 = �̂�𝑚𝐴
𝑚 +𝐾𝑝𝐴

𝑝 . (17.38)
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With the restricted covariant divergence converted to a total covariant divergence, the Ricci scalar (17.37) is

𝑅 = �̂�− 2𝐷𝑚𝐾
𝑚 −𝐾𝑝𝑚𝑛𝐾𝑛𝑚𝑝 +𝐾𝑝𝐾𝑝 . (17.39)

17.1.6 ADM Riemann and Ricci tensors

For ADM, the components of the Riemann curvature tensor 𝑅𝑘𝑙𝑚𝑛 are, from equations (17.34) with the
generalized extrinsic curvature 𝐾𝑚𝑛𝑙 replaced by the acceleration 𝐾𝑎 ≡ 𝐾𝑎00 and the extrinsic curvature
𝐾𝑎𝑏 ≡ 𝐾𝑎0𝑏,

𝑅𝑎0𝑐0 = �̂�𝑎𝐾𝑐 − �̂�0𝐾𝑐𝑎 +𝐾𝑎𝐾𝑐 −𝐾𝑏
𝑎𝐾𝑐𝑏 , (17.40a)

𝑅𝑎𝑏𝑐0 = �̂�𝑎𝐾𝑐𝑏 − �̂�𝑏𝐾𝑐𝑎 − (𝐾𝑏𝑎 −𝐾𝑎𝑏)𝐾𝑐 (17.40b)

= 𝑅𝑐0𝑎𝑏 = �̂�𝑐0𝑎𝑏 +𝐾𝑏𝐾𝑎𝑐 −𝐾𝑎𝐾𝑏𝑐 , (17.40c)

𝑅𝑎𝑏𝑐𝑑 = �̂�𝑎𝑏𝑐𝑑 +𝐾𝑐𝑎𝐾𝑑𝑏 −𝐾𝑐𝑏𝐾𝑑𝑎 . (17.40d)

Equations (17.40a), (17.40b), (17.40c), and (17.40d) are called respectively the Ricci, Codazzi-Mainardi,
BSSN, and Gauss equations. After equations of motion have been obtained, the extrinsic curvature 𝐾𝑎𝑏

will prove to be symmetric (given the ADM gauge condition 𝑒0𝛼 = 0, and assuming vanishing torsion),
and consequently the final term on the right hand side of equation (17.40b) vanishes. At this point however
no equations of motion have yet been obtained: equations are obtained later, §17.2, from variation of the
action. If torsion vanishes, then the Riemann tensor 𝑅𝑘𝑙𝑚𝑛 is symmetric in 𝑘𝑙 ↔ 𝑚𝑛, Exercise 11.6. If
the tetrad connections are replaced by their usual torsion-free expressions in terms of derivatives of the
vierbein, then the symmetries of the Riemann tensor are satisfied identically, so that the right hand sides
of the expressions (17.40b) and (17.40c) for 𝑅𝑎𝑏𝑐0 and 𝑅𝑐0𝑎𝑏 become identical, and one of them can be
discarded. In the ADM formalism, equation (17.40c) for 𝑅𝑐0𝑎𝑏 is discarded as redundant. However, in the
BSSN formalism, §17.8, equation (17.40c) is retained as a distinct equation, and some of the equations
relating the tetrad connections to derivatives of the vierbein are discarded instead.
The restricted Riemann tensor �̂�𝑘𝑙𝑎0 with one of the final two indices the time index 0 vanishes since Γ̂𝑎0𝑙

vanishes, equations (17.28),

�̂�𝑘𝑙𝑎0 = 𝜕𝑘Γ̂𝑎0𝑙 − 𝜕𝑙Γ̂𝑎0𝑘 + Γ̂𝑝𝑎𝑙Γ̂𝑝0𝑘 − Γ̂𝑝𝑎𝑘Γ̂𝑝0𝑙 + (Γ𝑝𝑘𝑙 − Γ𝑝𝑙𝑘)Γ̂𝑎0𝑝 = 0 . (17.41)

The restricted Riemann tensor �̂�𝑘𝑙𝑚𝑛 with one time 0 index does not satisfy the 𝑘𝑙↔ 𝑚𝑛 symmetry of the
full Riemann tensor 𝑅𝑘𝑙𝑚𝑛. The restricted Riemann tensor �̂�𝑐0𝑎𝑏 with one of the first two indices the time
index 0 and the last two indices spatial is

�̂�𝑐0𝑎𝑏 = 𝜕𝑐Γ̂𝑎𝑏0 − 𝜕0Γ̂𝑎𝑏𝑐 + Γ̂𝑑𝑎0Γ̂𝑑𝑏𝑐 − Γ̂𝑑𝑎𝑐Γ̂𝑑𝑏0 + (Γ𝑝𝑐0 − Γ𝑝0𝑐)Γ̂𝑎𝑏𝑝 . (17.42)

The restricted Riemann tensor �̂�𝑎𝑏𝑐𝑑 with all spatial indices is

�̂�𝑎𝑏𝑐𝑑 = 𝜕𝑎Γ̂𝑐𝑑𝑏 − 𝜕𝑏Γ̂𝑐𝑑𝑎 + Γ̂𝑒𝑐𝑏Γ̂𝑒𝑑𝑎 − Γ̂𝑒𝑐𝑎Γ̂𝑒𝑑𝑏 + (Γ̂𝑒𝑎𝑏 − Γ̂𝑒𝑏𝑎)Γ̂𝑐𝑑𝑒 + (𝐾𝑎𝑏 −𝐾𝑏𝑎)Γ̂𝑐𝑑0 . (17.43)

Again, after equations of motion have been obtained, the extrinsic curvature𝐾𝑎𝑏 will proved to be symmetric,
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equation (17.50), so the final term on the right hand side of equation (17.43) vanishes. Consequently the
spatial restricted Riemann tensor �̂�𝑎𝑏𝑐𝑑 depends only on spatial components Γ̂𝑎𝑏𝑐 of the restricted connections
and their spatial derivatives (not on the restricted connections Γ̂𝑎𝑏0 with one time index). For ADM, the
restricted spatial connections coincide with the full spatial connections, Γ̂𝑎𝑏𝑐 = Γ𝑎𝑏𝑐, so for ADM the spatial
restricted Riemann curvature equals the Riemann curvature tensor restricted to the 3-dimensional spatial
hypersurface of constant time. The spatial restricted Riemann tensor �̂�𝑎𝑏𝑐𝑑 satisfies the usual 𝑎𝑏 ↔ 𝑐𝑑

symmetry.
Contracting the Riemann tensor yields the Ricci tensor 𝑅𝑘𝑚,

𝑅00 = �̂�𝑚𝐾
𝑚 −𝐾𝑏𝑎𝐾𝑎𝑏 +𝐾𝑎𝐾𝑎 , (17.44a)

𝑅𝑎0 = − �̂�𝑎𝐾 + �̂�𝑏𝐾𝑏𝑎 −𝐾𝑏(𝐾𝑎𝑏 −𝐾𝑏𝑎) (17.44b)

= 𝑅0𝑎 = �̂�0𝑎 −𝐾𝑏𝐾𝑎𝑏 +𝐾𝑎𝐾 , (17.44c)

𝑅𝑎𝑏 = �̂�𝑎𝑏 − �̂�𝑎𝐾𝑏 + �̂�0𝐾𝑏𝑎 +𝐾𝑏𝑎𝐾 −𝐾𝑎𝐾𝑏 . (17.44d)

If torsion vanishes, then the Ricci tensor 𝑅𝑘𝑚 is symmetric. Again, if the tetrad connections are replaced
by their torsion-free expressions in terms of vierbein derivatives, then the symmetry of the Ricci tensor is
satisfied identically, so that two expressions (17.44b) and (17.44c) are identical, and one of them can be
discarded as redundant. In the ADM formalism, equation (17.44c) is discarded. In the BSSN formalism
however, §17.8, equation (17.44c) is retained, and some of the equations relating the tetrad connections to
derivatives of the vierbein are discarded instead. Like the restricted Riemann tensor, the restricted Ricci
tensor �̂�𝑘𝑚 with one time 0 index is not symmetric. While �̂�𝑎0 vanishes, �̂�0𝑎 does not. The purely spatial
Ricci tensor �̂�𝑎𝑏 is on the other hand symmetric in 𝑎𝑏. For ADM, the purely spatial Ricci tensor �̂�𝑎𝑏 is the
Ricci tensor restricted to the 3-dimensional spatial hypersurface of constant time.
Contracting the Ricci tensor yields the Ricci scalar 𝑅,

𝑅 = �̂�− 2�̂�𝑚𝐾
𝑚 +𝐾𝑏𝑎𝐾𝑎𝑏 +𝐾2 − 2𝐾𝑎𝐾𝑎 . (17.45)

For ADM, the restricted Ricci scalar �̂� is the Ricci scalar restricted to the 3-dimensional spatial hypersurface
of constant time.
Converting the restricted covariant divergence �̂�𝑚𝐾

𝑚 to a total covariant derivative 𝐷𝑚𝐾
𝑚 using equa-

tion (17.38) brings the Ricci scalar to

𝑅 = �̂�− 2𝐷𝑚𝐾
𝑚 +𝐾𝑏𝑎𝐾𝑎𝑏 −𝐾2 . (17.46)

At this point it is common to argue that the covariant divergence 𝐷𝑚𝐾
𝑚 has no effect on equations of

motion, so can be dropped from the Ricci scalar, yielding the so-called ADM Lagrangian

𝐿ADM =
1

16𝜋

(︁
�̂�+𝐾𝑏𝑎𝐾𝑎𝑏 −𝐾2

)︁
. (17.47)

The ADM Lagrangian (17.47) is fine as a Lagrangian, but it is not in Hamiltonian form. Rather, the ADM
Lagrangian (17.47) is in a form analogous to the quadratic Lagrangian (16.159). As discussed in §16.12.1,
the quadratic Lagrangian is valid provided that the tetrad connections satisfy their equations of motion (in
particle physics jargon, the tetrad connections are “on shell”).
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The original purpose of the ADM formalism was to bring the gravitational Lagrangian into (conventional)
Hamiltonian form. As has been seen, §16.7, the Hilbert Lagrangian is already in (super-)Hamiltonian form. In
dropping the covariant divergence 𝐷𝑚𝐾

𝑚 to arrive at the Lagrangian (17.47), one both implicitly assumes
that the equation of motion for 𝐾𝑚 is satisfied, and loses the ability to derive that equation of motion
from the Lagrangian. One could attempt to recover the Hamiltonian form of the Lagrangian from the ADM
Lagrangian (17.47), which would involve re-assuming the equation of motion for 𝐾𝑚, but such a procedure
(widely repeated in the physics literature) seems like shooting oneself in the foot. A sensible approach is to
stick with the Hilbert Lagrangian, which is already in (super-)Hamiltonian form. The (super-)Hamiltonian
approach has already identified the gravitational coordinates and momenta for ADM, §17.1.3, and it also
supplies the equations of motion for ADM, §17.2.

17.2 ADM gravitational equations of motion

As shown in §17.1.3, the gravitational coordinates and momenta in the ADM formalism are the spatial
components 𝑒𝑎𝛽 of the vierbein, and the extrinsic curvatures 𝐾𝑎𝛽 ≡ Γ𝑎0𝛽 , equation (17.21b) (or alternatively,
in place of 𝐾𝑎𝛽 , the trace-corrected extrinsic curvatures 𝜋𝑎𝛽 defined by equations (17.26)).
Gravitational equations of motion in the ADM formalism follow from varying the Hilbert action. All

the equations obtained from varying the Hilbert action in super-Hamiltonian form continue to hold in the
ADM formalism, namely the 24 equations for the (torsion-free) Lorentz connections, and the 10 Einstein
equations (the Einstein tensor is symmetric if torsion vanishes). The difference is that only some of the
equations, namely those that come from varying the action with respect to the gravitational coordinates and
momenta 𝑒𝑎𝛽 and 𝐾𝑎𝛽 , are interpreted as equations of motion that determine the time evolution of those
coordinates and momenta. The remaining equations are interpreted either as identities (in the case of the
Lorentz connections), or as constraints (in the case of the Einstein equations). A constraint equation is one
that must be satisfied in the initial conditions, but is thereafter guaranteed to be satisfied by conservation
laws, here conservation of energy-momentum, guaranteed by the contracted Bianchi identities.
Because the tetrad in this Chapter is being allowed a general form, with not necessarily constant tetrad

metric, the connections are not necessarily Lorentz connections, and the relation between the connections
and derivatives of the vierbein and metric, equation (11.53), is more general than that derived from an action
principle in Chapter 16. Suffice to say that the relation can be derived from an action principle, but that
will not be done here.

17.2.1 ADM connections

Start by considering the equations of motion for the tetrad-frame connections, determined by varying the
Hilbert action with respect to the connections. The connections are given by the usual expressions (11.53) in
terms of the vierbein derivatives 𝑑𝑙𝑚𝑛 defined by equation (11.33) (equations (11.53) allow for a non-constant
spatial tetrad metric 𝛾𝑎𝑏, thus admitting the traditional ADM approach in which the spatial tetrad 𝛾𝛾𝑎 are
set equal to the spatial coordinate tangent axes 𝑒𝛼, equation (17.14)). The non-vanishing tetrad connections
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are, from the general formula (11.53) with vanishing torsion (note that 𝑑0𝑎𝑛 = 0 since 𝑒0𝛼 = 0),

Γ𝑎00 = −Γ0𝑎0 ≡ 𝐾𝑎 = − 𝑑00𝑎 , (17.48a)

Γ𝑎0𝑏 = −Γ0𝑎𝑏 ≡ 𝐾𝑎𝑏 =
1
2 (𝜕0𝛾𝑎𝑏 + 𝑑𝑎𝑏0 + 𝑑𝑏𝑎0 − 𝑑𝑎0𝑏 − 𝑑𝑏0𝑎) , (17.48b)

Γ𝑎𝑏0 ≡ Γ̂𝑎𝑏0 = 𝐾𝑎𝑏 − 𝑑𝑎𝑏0 + 𝑑𝑎0𝑏 , (17.48c)

Γ𝑎𝑏𝑐 ≡ Γ̂𝑎𝑏𝑐 = same as eq. (11.53) , (17.48d)

where the relevant vierbein derivatives 𝑑𝑙𝑚𝑛 are

𝑑00𝑎 = − 1

𝛼
𝜕𝑎𝛼 , 𝑑𝑎0𝑏 = −

1

𝛼
𝑒𝑎𝛼 𝜕𝑏𝛽

𝛼 , 𝑑𝑎𝑏0 = 𝛾𝑎𝑐 𝑒𝑏
𝛽 𝜕0𝑒

𝑐
𝛽 . (17.49)

Equation (17.48b) shows that the extrinsic curvature is symmetric,

𝐾𝑎𝑏 = 𝐾𝑏𝑎 (17.50)

(and consequently so also is the momentum 𝜋𝑎𝑏, equations (17.26)). The symmetry of the extrinsic curvature
is a consequence of the ADM gauge choice 𝑒0𝛼 = 0 along with the assumption of vanishing torsion. The
connections (17.48a) and (17.48b) form, as remarked after equations (17.21), a spatial tetrad vector the ac-
celeration𝐾𝑎, and a spatial tetrad tensor the extrinsic curvature𝐾𝑎𝑏, but the remaining connections (17.48c)
and (17.48d) are not spatial tetrad tensors. Note that the purely spatial tetrad connections Γ𝑎𝑏𝑐, like the
spatial tetrad axes 𝛾𝛾𝑎, transform under temporal coordinate transformations despite the absence of tempo-
ral indices. If the spatial tetrad metric 𝛾𝑎𝑏 is taken to be constant, which is true if for example the spatial
tetrad axes 𝛾𝛾𝑎 are taken to be orthonormal, then the tetrad connections Γ𝑎𝑏0 and Γ𝑎𝑏𝑐, equations (17.48c)
and (17.48d), are antisymmetric in their first two indices. However, equations (17.48) are valid in general,
including in the traditional case where the spatial axes are taken equal to the spatial coordinate tangent
axes, equation (17.14), in which case Γ𝑎𝑏0 and Γ𝑎𝑏𝑐 are not antisymmetric in their first two indices.
In the ADM formalism, an equation of motion for the ADM spatial coordinate metric 𝑔𝛼𝛽 follows from

the vanishing of the restricted covariant time derivative of the spatial tetrad metric 𝛾𝑎𝑏, equation (17.30),

�̂�0𝛾𝑎𝑏 = 0 . (17.51)

With the expressions (17.48c) for the connections Γ̂𝑎𝑏0, the covariant time derivative is

�̂�0𝛾𝑎𝑏 = 𝜕0𝛾𝑎𝑏 − Γ̂𝑐𝑎0𝛾𝑐𝑏 − Γ̂𝑐𝑏0𝛾𝑐𝑎

= 𝜕0𝛾𝑎𝑏 + 𝑑𝑎𝑏0 + 𝑑𝑏𝑎0 − 𝑑𝑎0𝑏 − 𝑑𝑏0𝑎 − 2𝐾𝑎𝑏 . (17.52)

The time derivatives in expression (17.52) are the directed time derivatives 𝜕0𝛾𝑎𝑏 of the spatial tetrad
metric (the tetrad metric 𝛾𝑎𝑏 is not being assumed constant, so as to allow the traditional ADM approach,
equation (17.14)), and the directed time derivatives 𝑑𝑐𝛽0 ≡ 𝜕0𝑒𝑐𝛽 of the spatial vierbein. These time derivatives
appear in the expression (17.52) only in the combination

𝜕0𝛾𝑎𝑏 + 𝑑𝑎𝑏0 + 𝑑𝑏𝑎0 = 𝑒𝑎
𝛼𝑒𝑏

𝛽𝜕0(𝛾𝑐𝑑 𝑒
𝑐
𝛼 𝑒

𝑑
𝛽) = 𝑒𝑎

𝛼𝑒𝑏
𝛽 𝜕0𝑔𝛼𝛽 . (17.53)

Thus the equation of motion (17.51) effectively governs the time evolution of not all 9 components of the
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spatial verbein 𝑒𝑎𝛽 , but rather only the 6 components 𝑔𝛼𝛽 of the spatial coordinate metric, equation (17.9).
Recast in the coordinate frame, the equation of motion (17.51) is

𝜕𝑔𝛼𝛽
𝜕𝑡

+ 𝛽𝛾
𝜕𝑔𝛼𝛽
𝜕𝑥𝛾

+ 𝑔𝛼𝛾
𝜕𝛽𝛾

𝜕𝑥𝛽
+ 𝑔𝛽𝛾

𝜕𝛽𝛾

𝜕𝑥𝛼
= 2𝛼𝐾𝛼𝛽 . (17.54)

Equation (17.54) may also be written

ℒ𝑢𝑔𝛼𝛽 =
1

𝛼

(︂
𝜕𝑔𝛼𝛽
𝜕𝑡

+ ℒ̂𝛽𝑔𝛼𝛽
)︂

= 2𝐾𝛼𝛽 , (17.55)

where ℒ𝑢 denotes the Lie derivative (7.151) with respect to the 4-velocity 𝑢𝜇 = {1/𝛼, 𝛽𝛾/𝛼}, equation (17.11),
and ℒ̂𝛽 denotes the Lie derivative (7.151) with respect to the shift 𝛽𝛾 , restricted to the hypersurface of
constant time (hence the restricted ^ overscript),

ℒ̂𝛽𝑔𝛼𝛽 = 𝛽𝛾
𝜕𝑔𝛼𝛽
𝜕𝑥𝛾

+ 𝑔𝛼𝛾
𝜕𝛽𝛾

𝜕𝑥𝛽
+ 𝑔𝛽𝛾

𝜕𝛽𝛾

𝜕𝑥𝛼
. (17.56)

As is usual with a Lie derivative, equation (7.152), the coordinate derivatives 𝜕/𝜕𝑥𝛼 in equation (17.56) can be
replaced, if desired, by the restricted covariant derivatives �̂�𝛼. Since the restricted covariant derivative of the
spatial coordinate metric 𝑔𝛼𝛽 vanishes, the Lie derivative ℒ̂𝛽𝑔𝛼𝛽 can be written (compare equation (7.154)),

ℒ̂𝛽𝑔𝛼𝛽 = �̂�𝛽𝛽𝛼 + �̂�𝛼𝛽𝛽 . (17.57)

The spatial trace of equation (17.52) provides an equation of motion for the determinant 𝛾 ≡ |𝛾𝑎𝑏| of the
spatial tetrad metric, since 𝛾𝑎𝑏 𝜕0𝛾𝑎𝑏 = 𝜕0 ln 𝛾. With, from equations (17.49),

𝑑𝑎0𝑎 = − 1

𝛼
𝑒𝑎𝛼 𝜕𝑎𝛽

𝛼 = − 1

𝛼

𝜕𝛽𝛼

𝜕𝑥𝛼
, 𝑑𝑎𝑎0 = 𝑒𝑎

𝛽 𝜕0𝑒
𝑎
𝛽 = 𝜕0 ln 𝑒 , (17.58)

where 𝑒 ≡ |𝑒𝑎𝛼| is the determinant of the spatial vierbein, the spatial trace of equation (17.52) provides the
equation of motion

𝜕0 ln(𝛾𝑒
2) +

2

𝛼

𝜕𝛽𝛼

𝜕𝑥𝛼
= 2𝐾 . (17.59)

In the coordinate frame, the trace equation is (see equation (7.23) for the Lie derivative of a metric deter-
minant)

ℒ𝑢 ln 𝑔 =
1

𝛼

(︂
𝜕 ln 𝑔

𝜕𝑡
+ 𝛽𝛼

𝜕 ln 𝑔

𝜕𝑥𝛼
+ 2

𝜕𝛽𝛼

𝜕𝑥𝛼

)︂
= 2𝐾 , (17.60)

where 𝑔 = |𝑔𝛼𝛽 | = 𝛾𝑒2 is the determinant of the coordinate-frame spatial metric.
The expression (17.48b) for the extrinsic curvature𝐾𝑎𝑏 has thus provided an equation of motion (17.55) for

the spatial ADM metric 𝑔𝛼𝛽 . Of the remaining connections (17.48), the acceleration 𝐾𝑎, equation (17.48a),
and the purely spatial connections Γ𝑎𝑏𝑐, equation (17.48d), involve only spatial derivatives of the vierbein,
not time derivatives. These connections are needed in the ADM equations, but are treated as identities rather
than equations of motion. That is, the equation of motion (17.55) determines the time evolution of the spatial
vierbein 𝑒𝑎𝛽 , or rather of the spatial coordinate metric 𝑔𝛼𝛽 , which is the quadratic combination (17.9) of
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the spatial vierbein. With the spatial vierbein on a hypersurface of constant time determined, their spatial
derivatives on the hypersurface follow. These spatial derivatives of the vierbein determine the acceleration
𝐾𝑎 and purely spatial connections Γ𝑎𝑏𝑐 through equations (17.48a) and (17.48d).
The final set of connections is Γ𝑎𝑏0, equation (17.48c). These connections do depend on time derivatives,

and they do appear in the equations of motion (17.52) and (17.63), but they cease to appear explicitly when
the equations of motion are expressed as equations for the coordinate metric 𝑔𝛼𝛽 and the coordinate-frame
extrinsic curvature 𝐾𝛼𝛽 , equations (17.55) and (17.68).

17.2.2 ADM Einstein equations

The Einstein equations follow from varying the Hilbert action with respect to the vierbein 𝑒𝑘𝜅, equa-
tion (16.104). In the ADM formalism, only the spatial Einstein equations, which come from varying with
respect to the spatial vierbein 𝑒𝑎𝛼, are interpreted as equations of motion governing the time evolution of
the system. The remaining equations are interpreted as constraints, §17.2.3.
The spatial Einstein equations are

𝐺𝑎𝑏 = 8𝜋𝑇𝑎𝑏 , (17.61)

which are symmetric for vanishing torsion. Equivalently, with the trace 𝑅 = −8𝜋𝑇 transferred to the right
hand side,

𝑅𝑎𝑏 = 8𝜋
(︀
𝑇𝑎𝑏 − 1

2𝛾𝑎𝑏𝑇
)︀
. (17.62)

Substituting the spatial Ricci tensor from equation (17.44d) transforms the spatial Einstein equations (17.62)
into equations of motion for the extrinsic curvature 𝐾𝑎𝑏,

�̂�0𝐾𝑎𝑏 = �̂�𝑎𝐾𝑏 −𝐾𝑎𝑏𝐾 +𝐾𝑎𝐾𝑏 − �̂�𝑎𝑏 + 8𝜋
(︀
𝑇𝑎𝑏 − 1

2𝛾𝑎𝑏𝑇
)︀
. (17.63)

The restricted covariant time derivative �̂�0𝐾𝑏𝑎 on the left hand side of equation (17.63) is, with for-
mula (17.48c) for the connections Γ̂𝑎𝑏0,

�̂�0𝐾𝑎𝑏 = 𝜕0𝐾𝑎𝑏 − Γ̂𝑐𝑏0𝐾𝑐𝑎 − Γ̂𝑐𝑎0𝐾𝑐𝑏

= 𝜕0𝐾𝑎𝑏 + 𝑑𝑐𝑏0𝐾
𝑐
𝑎 + 𝑑𝑐𝑎0𝐾

𝑐
𝑏 − 𝑑𝑐0𝑏𝐾𝑐

𝑎 − 𝑑𝑐0𝑎𝐾𝑐
𝑏 − 2𝐾𝑐

𝑎𝐾𝑐𝑏 . (17.64)

The time derivatives in equation (17.64) are the directed time derivatives 𝜕0𝐾𝑎𝑏 of the extrinsic curvature,
and the directed time derivatives 𝑑𝑐𝛽0 ≡ 𝜕0𝑒

𝑐
𝛽 of the spatial vierbein. These time derivatives appear in the

expression (17.64) only in a combination analogous to that in equation (17.53),

𝜕0𝐾𝑎𝑏 + 𝑑𝑐𝑏0𝐾
𝑐
𝑎 + 𝑑𝑐𝑎0𝐾

𝑐
𝑏 = 𝑒𝑎

𝛼𝑒𝑏
𝛽 𝜕0𝐾𝛽𝛼 . (17.65)

Just as equation (17.53) picked out the spatial coordinate metric 𝑔𝛼𝛽 , so also equation (17.65) picks out the
coordinate-frame extrinsic curvature 𝐾𝛼𝛽 as the fundamental object whose time evolution is being governed.
Recast in the coordinate frame using equation (17.65), equation (17.64) is

�̂�0𝐾𝛼𝛽 = ℒ𝑢𝐾𝛼𝛽 − 2𝐾𝛾
𝛼𝐾𝛾𝛽 =

1

𝛼

(︂
𝜕𝐾𝛼𝛽

𝜕𝑡
+ ℒ̂𝛽𝐾𝛼𝛽

)︂
− 2𝐾𝛾

𝛼𝐾𝛾𝛽 . (17.66)
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where again ℒ𝑢 denotes the Lie derivative (7.151) with respect to the 4-velocity 𝑢𝜇, equation (17.11), and
ℒ̂𝛽 denotes the Lie derivative (7.151) with respect to the shift 𝛽𝛾 , restricted to the hypersurface of constant
time,

ℒ̂𝛽𝐾𝛼𝛽 = 𝛽𝛾
𝜕𝐾𝛼𝛽

𝜕𝑥𝛾
+𝐾𝛾𝛼

𝜕𝛽𝛾

𝜕𝑥𝛽
+𝐾𝛾𝛽

𝜕𝛽𝛾

𝜕𝑥𝛼
. (17.67)

As usual with a Lie derivative, equation (7.151), the coordinate derivatives 𝜕/𝜕𝑥𝛼 in equation (17.67) can
be replaced, if desired, by the restricted covariant derivatives �̂�𝛼. Substituting equation (17.66) into equa-
tion (17.63) brings the equation of motion for the coordinate-frame extrinsic curvature to

ℒ𝑢𝐾𝛼𝛽 =
1

𝛼

(︂
𝜕𝐾𝛼𝛽

𝜕𝑡
+ ℒ̂𝛽𝐾𝛼𝛽

)︂
= �̂�𝛼𝐾𝛽 + 2𝐾𝛾

𝛼𝐾𝛾𝛽 −𝐾𝛼𝛽𝐾 +𝐾𝛼𝐾𝛽 − �̂�𝛼𝛽 + 8𝜋
(︀
𝑇𝛼𝛽 − 1

2𝑔𝛼𝛽𝑇
)︀
.

(17.68)
All the terms in equation (17.68) are manifestly symmetric in 𝛼𝛽 except for �̂�𝛼𝐾𝛽 , but this too is symmetric,
for vanishing torsion, as follows from

�̂�𝛼𝐾𝛽 =
𝜕2 ln𝛼

𝜕𝑥𝛼𝜕𝑥𝛽
− Γ̂𝛾𝛽𝛼𝐾𝛾 = �̂�𝛽𝐾𝛼 , (17.69)

the coordinate connection Γ̂𝛾𝛽𝛼 being symmetric in its last two indices, for vanishing torsion. Equations (17.55)
and (17.68) constitute the two fundamental sets of equations of motion for the coordinates 𝑔𝛼𝛽 and momenta
𝐾𝛼𝛽 in the ADM formalism.
The spatial trace of equation (17.63) (which is straightforward to take because the tetrad metric 𝛾𝑎𝑏

commutes with the restricted covariant derivative �̂�𝑘) is

𝜕0𝐾 = �̂�𝑎𝐾
𝑎 −𝐾2 +𝐾𝑎𝐾𝑎 − �̂�+ 12𝜋(𝜌− 𝑝) , (17.70)

where the spatial trace 𝑇𝛼𝛼 = 3𝑝 defines the proper monopole pressure 𝑝, and the full spacetime trace is
𝑇 = − 𝜌+ 3𝑝, with 𝜌 the proper energy density. In the coordinate frame, equation (17.70) becomes

ℒ𝑢𝐾 =
1

𝛼

(︂
𝜕𝐾

𝜕𝑡
+ 𝛽𝛼

𝜕𝐾

𝜕𝑥𝛼

)︂
= �̂�𝛼𝐾

𝛼 −𝐾2 +𝐾𝛼𝐾𝛼 − �̂�+ 12𝜋(𝜌− 𝑝) . (17.71)

17.2.3 ADM constraint equations

Unlike the spatial vierbein 𝑒𝑎𝛽 , the vierbein 𝑒0𝜇 with a tetrad time index 0, whose components define
the lapse and shift, equation (17.11), have vanishing canonically conjugate momenta, as shown in §17.1.3.
Consequently, in the ADM formalism, the lapse and shift are not considered to be part of the system of
coordinates and momenta that encode the physical gravitational degrees of freedom. Rather, the lapse 𝛼 and
shift 𝛽𝛼 are interpreted as gauge variables that can be chosen arbitrarily. The 4 gauge degrees of freedom in
the lapse and shift embody the 4 gauge degrees of freedom of coordinate transformations.
Nevertheless, varying the Hilbert action with respect to 𝑒0𝜇 does yield equations of motion, which are the

4 Einstein equations with one tetrad time index 0,

𝐺𝑚0 = 8𝜋𝑇𝑚0 . (17.72)



504 Conventional Hamiltonian (3+1) approach

Combining equations (17.44a) and (17.45) yields an expression for the time-time Einstein component 𝐺00 ≡
𝑅00 − 1

2𝛾00𝑅 = 𝑅00 +
1
2𝑅, while equation (17.44b) gives the space-time Einstein component 𝐺𝑎0 ≡ 𝑅𝑎0,

𝐺00 = 1
2

(︀
�̂�−𝐾𝑎𝑏𝐾𝑏𝑎 +𝐾2

)︀
= 1

2

(︀
�̂�− 𝜋𝑎𝑏𝐾𝑏𝑎

)︀
, (17.73a)

𝐺𝑎0 = �̂�𝑏𝐾𝑏𝑎 − �̂�𝑎𝐾 = �̂�𝑏𝜋𝑏𝑎 . (17.73b)

Whereas the spatial Einstein equations yielded time evolution equations (17.63) or (17.68) for the momenta,
the expressions (17.73) for the time-time and space-time Einstein components involve only spatial derivatives
of the coordinates and momenta, no time derivatives. Since the coordinates and momenta are determined
fully by their equations of motion, equations (17.52) and (17.63), or (17.55) and (17.68), the Einstein equa-
tions (17.72) with at least one time index cannot be independent equations. However, the equations (17.72)
cannot be discarded completely. Rather, the Einstein equations (17.72) must be arranged to be satisfied
in the initial conditions (on the initial hypersurface of constant time 𝑡), whereafter the Bianchi identities
ensure that the constraints are satisfied automatically, as you will confirm in Exercise 17.2. This kind of
equation, which must be satisfied on the initial hypersurface but is thereafter guaranteed by conservation
laws, is called a constraint equation. In the ADM formalism, the time-time Einstein equation is called the
energy constraint or Hamiltonian constraint, while the space-time Einstein equations are called the
momentum constraints:

1
2

(︀
�̂�−𝐾𝑎𝑏𝐾𝑏𝑎 +𝐾2

)︀
= 8𝜋𝑇00 Hamiltonian constraint , (17.74a)

�̂�𝑏𝐾𝑏𝑎 − �̂�𝑎𝐾 = 8𝜋𝑇𝑎0 momentum constraints . (17.74b)

Exercise 17.2. Energy and momentum constraints. Confirm the argument of this section. Suppose
that the spatial Einstein equations are true, 𝐺𝑎𝑏 = 8𝜋𝑇 𝑎𝑏. Show that if the time-time and space-time
Einstein equations 𝐺𝑚0 = 8𝜋𝑇𝑚0 are initially true, then conservation of energy-momentum implies that
these equations must necessarily remain true at all times. [Hint: Conservation of energy-momentum requires
that 𝐷𝑛𝑇

𝑚𝑛 = 0, and the Bianchi identities require that the Einstein tensor satisfies 𝐷𝑛𝐺
𝑚𝑛 = 0, so

𝐷𝑛(𝐺
𝑚𝑛 − 8𝜋𝑇𝑚𝑛) = 0 . (17.75)

By expanding out these equations in full, or otherwise, show that the solution satisfying 𝐺𝑎𝑏 − 8𝜋𝑇 𝑎𝑏 = 0

at all times, and 𝐺𝑚0 − 8𝜋𝑇𝑚0 = 0 initially, is 𝐺𝑚0 − 8𝜋𝑇𝑚0 = 0 at all times.]

17.2.4 ADM Raychaudhuri equation

If the Hamiltonian constraint (17.74a) is used to eliminate the restricted Ricci scalar �̂�, then the trace
equation (17.71) becomes

ℒ𝑢𝐾 =
1

𝛼

(︂
𝜕𝐾

𝜕𝑡
+ 𝛽𝛼

𝜕𝐾

𝜕𝑥𝛼

)︂
= �̂�𝛼𝐾

𝛼 −𝐾𝛼𝛽𝐾𝛽𝛼 +𝐾𝛼𝐾𝛼 − 4𝜋(𝜌+ 3𝑝) . (17.76)
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Equation (17.76) is the Raychaudhuri equation (18.22a) with vanishing vorticity and non-vanishing acceler-
ation 𝐾𝛼.

17.3 Conformally scaled ADM

A common modification of the ADM formalism is to separate out a spatial conformal factor 𝑎, which may
be an arbitrary function of coordinates.
It is neater to separate the conformal factor from the vierbein than from the tetrad metric, so that the

tetrad metric 𝛾𝑎𝑏 can still be allowed to be constant, as in the case of an orthonormal tetrad. If the spatial
vierbein 𝑒𝑎𝛼 is factored as a product of the conformal factor 𝑎 and a conformal vierbein 𝑒𝑎𝛼, then the vierbein
and inverse vierbein become

𝑒𝑎𝛼 = 𝑎 𝑒𝑎𝛼 , 𝑒𝑎
𝛼 = 𝑒𝑎

𝛼/𝑎 . (17.77)

The conformal vierbein and inverse conformal vierbein are inverse to each other, 𝑒𝑎𝛼𝑒𝑏𝛼 = 𝛿𝑎𝑏 . The lapse 𝛼
and shift 𝛽𝛼 are unchanged by the conformal scaling. The spatial conformal coordinate metric defined by
𝑔𝛼𝛽 ≡ 𝛾𝑎𝑏 𝑒𝑎𝛼 𝑒𝑏𝛽 is related to the spatial coordinate metric 𝑔𝛼𝛽 by

𝑔𝛼𝛽 = 𝑎2 𝑔𝛼𝛽 . (17.78)

Section 17.1.5 discussed the splitting of tetrad-frame connections into a generalized extrinsic curvature
𝐾𝑙𝑚𝑛 that behaves like a tensor under some restricted group of transformations, and a restricted connection
Γ̂𝑙𝑚𝑛 that does not transform like a tensor. In the case of ADM, the restricted group of transformations was
spatial transformations of the tetrad 𝛾𝛾𝑚 (that is, transformations that leave the time axis 𝛾𝛾0 unchanged).
The conformal factor 𝑎 is a scalar with respect to the subgroup of spatial tetrad transformations that leave
the conformal factor 𝑎 unchanged. Thus all of the discussion in §17.1.5 carries through with the restricted
group of transformations taken to be spatial transformations that preserve the conformal factor.
The conformal decomposition of the spatial vierbein implies a corresponding conformal decomposition of

the vierbein derivatives 𝑑𝑙𝑚𝑛 defined by equation (11.33). The vierbein derivatives 𝑑𝑙𝑚𝑛 with either of the
first two indices 𝑙𝑚 the time index 0 are unaffected, but the vierbein derivatives 𝑑𝑎𝑏𝑛 with first two indices
𝑎𝑏 spatial decompose as

𝑑𝑎𝑏𝑛 ≡ 𝛾𝑎𝑐 𝑒𝑏𝛼 𝜕𝑛𝑒𝑐𝛼 = 𝛾𝑎𝑐 𝑒𝑏
𝛼 𝑒𝑐𝛼𝜕𝑛 ln 𝑎+ 𝛾𝑎𝑐 𝑒𝑏

𝛼 𝜕𝑛𝑒
𝑐
𝛼 = 𝛾𝑎𝑏 𝜕𝑛 ln 𝑎+ 𝑑𝑎𝑏𝑛 , (17.79)

which is a sum of a part 𝛾𝑎𝑏 𝜕𝑛 ln 𝑎 that depends on derivatives of the conformal factor 𝑎, and a conformal
part 𝑑𝑎𝑏𝑛 that depends on derivatives of the conformal vierbein 𝑒𝑐𝛼. The part 𝛾𝑎𝑏 𝜕𝑛 ln 𝑎 is a spatial tensor
under the restricted group of spatial transformations that leave the conformal factor 𝑎 unchanged. It then
follows that the spatial tetrad-frame connections Γ𝑎𝑏𝑐 split into a restricted part Γ̂𝑎𝑏𝑐 and a tensorial part
𝐾𝑎𝑏𝑐,

Γ𝑎𝑏𝑐 = Γ̂𝑎𝑏𝑐 +𝐾𝑎𝑏𝑐 , (17.80)
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where 𝐾𝑎𝑏𝑐 is the spatial tensor

𝐾𝑎𝑏𝑐 = 𝛾𝑎𝑐 𝜕𝑏 ln 𝑎− 𝛾𝑏𝑐 𝜕𝑎 ln 𝑎 . (17.81)

The acceleration𝐾𝑎 ≡ 𝐾𝑎00, extrinsic curvature𝐾𝑎𝑏 ≡ 𝐾𝑎0𝑏, and restricted connections Γ̂𝑎𝑏0 with final index
the time index 0 are unchanged by the conformal decomposition. Thus the generalized extrinsic curvature
𝐾𝑙𝑚𝑛 now consists of the acceleration 𝐾𝑎00, the extrinsic curvature 𝐾𝑎0𝑏, and the derivatives 𝐾𝑎𝑏𝑐 of the con-
formal factor defined by equation (17.81). The generalized extrinsic curvature 𝐾𝑙𝑚𝑛 remains antisymmetric
in its first two indices,

𝐾𝑙𝑚𝑛 = −𝐾𝑚𝑙𝑛 . (17.82)

The unique non-vanishing contraction 𝐾𝑚 of the generalized extrinsic curvature is (this repeats equa-
tion (17.23))

𝐾𝑚 ≡ 𝐾𝑛
𝑚𝑛 = {𝐾𝑛

0𝑛,𝐾
𝑛
𝑎𝑛} = {𝐾0,𝐾𝑎} , (17.83)

whose time part remains equal to the trace 𝐾 of the extrinsic curvature 𝐾𝑎𝑏, but whose spatial part 𝐾𝑎 is
modified to equal the sum of the acceleration 𝐾𝑎00 and a derivative of the conformal factor,

𝐾𝑎 = 𝐾𝑎00 + 2 𝜕𝑎 ln 𝑎 = 𝜕𝑎 ln(𝛼𝑎
2) . (17.84)

Unlike in ADM, 𝐾𝑎 is not the same as the acceleration 𝐾𝑎00.
The restricted tetrad-frame derivative �̂�𝑘 with restricted tetrad-frame connections Γ̂𝑙𝑚𝑛 is a covariant

derivative with respect to the restricted group of spatial transformations that preserve the conformal fac-
tor 𝑎. The restricted covariant derivative �̂�𝑘 differs from ADM only in that the restricted connections now
exclude the part depending on derivatives of the conformal factor, which have been absorbed into the spatial
components 𝐾𝑎𝑏𝑐 of the generalized extrinsic curvature. The vierbein 𝑒𝑚𝜇 and the tetrad metric 𝛾𝑙𝑚 continue
to commute with the restricted covariant derivative 𝐷𝑘, equations (17.30) and (17.31). All of the discussion
and equations in §17.1.5 carry through unchanged.
The various expressions for the Riemann and Ricci tensors given in §17.1.6 are modified to include addi-

tional terms involving the spatial components 𝐾𝑎𝑏𝑐 of the generalized extrinsic curvature. In particular, the
expressions for the Ricci tensor 𝑅𝑘𝑚 are modified to, from the general equation (17.36),

𝑅00 = − �̂�0𝐾 + �̂�𝑎𝐾
𝑎
00 −𝐾𝑏𝑎𝐾𝑎𝑏 +𝐾𝑎

00𝐾𝑎 , (17.85a)

𝑅𝑎0 = − �̂�𝑎𝐾 + �̂�𝑏𝐾𝑏𝑎 −𝐾𝑎𝑏𝐾
𝑏
00 +𝐾𝑏𝑎𝐾

𝑏 −𝐾𝑐𝑎𝑏𝐾
𝑏𝑐 , (17.85b)

= 𝑅0𝑎 = �̂�0𝑎 − �̂�0𝐾
𝑏
𝑎𝑏 −𝐾𝑏

00𝐾𝑎𝑏 +𝐾𝑎00𝐾 −𝐾𝑏𝑐𝐾𝑐𝑎𝑏 , (17.85c)

𝑅𝑎𝑏 = �̂�𝑎𝑏 − �̂�𝑎𝐾𝑏 + �̂�0𝐾𝑏𝑎 + �̂�𝑐𝐾𝑐𝑏𝑎 +𝐾𝑏𝑎𝐾 −𝐾𝑎00𝐾𝑏00 +𝐾𝑐𝑏𝑎𝐾
𝑐 −𝐾𝑐

𝑎𝑑𝐾
𝑑
𝑏𝑐 . (17.85d)

Like the time-space restricted Ricci tensor �̂�0𝑎, the spatial restricted Ricci tensor �̂�𝑎𝑏 is not symmetric in
𝑎𝑏.
The equations of motion (17.51) or (17.55) for the spatial metric 𝑔𝛼𝛽 remain unchanged by the conformal

decomposition. The equation of motion (17.63) for the extrinsic curvature 𝐾𝑎𝑏 is modified in accordance
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with the modified expression (17.85d) for the spatial Ricci tensor 𝑅𝑎𝑏 to

�̂�0𝐾𝑎𝑏 = �̂�𝑎𝐾𝑏 − �̂�𝑐𝐾𝑐𝑏𝑎 −𝐾𝑎𝑏𝐾 +𝐾𝑎00𝐾𝑏00 −𝐾𝑐𝑏𝑎𝐾
𝑐 +𝐾𝑐

𝑎𝑑𝐾
𝑑
𝑏𝑐 − �̂�𝑎𝑏 + 8𝜋

(︀
𝑇𝑎𝑏 − 1

2𝛾𝑎𝑏𝑇
)︀
. (17.86)

Equation (17.86) is essentially the same as the earlier equation of motion (17.63), but it redistributes terms
involving derivatives of the conformal factor 𝑎 out of the spatial restricted Ricci tensor �̂�𝑎𝑏 into terms
involving 𝐾𝑎 and 𝐾𝑎𝑏𝑐. The coordinate-frame version of the equation of motion (17.68) for the extrinsic
curvature 𝐾𝛼𝛽 is modified similarly to

ℒ𝑢𝐾𝛼𝛽 =
1

𝛼

(︂
𝜕𝐾𝛼𝛽

𝜕𝑡
+ ℒ̂𝛽𝐾𝛼𝛽

)︂
(17.87)

= �̂�𝛼𝐾𝛽 − �̂�𝛾𝐾𝛾𝛽𝛼 + 2𝐾𝛾
𝛼𝐾𝛾𝛽 −𝐾𝛼𝛽𝐾 +𝐾𝛼00𝐾𝛽00 −𝐾𝛾𝛽𝛼𝐾

𝛾 +𝐾𝛾
𝛼𝛿𝐾

𝛿
𝛽𝛾 − �̂�𝛼𝛽 + 8𝜋

(︀
𝑇𝛼𝛽 − 1

2𝑔𝛼𝛽𝑇
)︀
.

Again, this equation of motion is essentially the same as the earlier equation of motion (17.68), with a
redistribution of terms out of �̂�𝛼𝛽 into generalized extrinsic curvatures.

17.4 Bianchi spacetimes

A 3-dimensional Lie group is called a Bianchi space (Bianchi, 1898). A Lie group is a group of symmetry
transformations that is also a differentiable manifold. Lie groups are generated by infinitesimal transforma-
tions called the generators of the group. A 3-dimensional Lie group has 3 linearly independent generators.
The properties of a Lie group are determined by the commutators of its generators, or equivalently by its
structure coefficients 𝑐𝑐𝑎𝑏, equation (17.88), which for a Lie group are taken to be constant. A Bianchi space
is consequently homogeneous. The assumption that a space is a Lie group is stronger than the assumption
that the space is homogeneous, which requires merely that the tetrad-frame Riemann tensor be spatially
constant. However, most homogeneous 3-dimensional spaces are Lie groups, hence Bianchi spaces, the no-
table exception being the closed cylindrical geometry, equation (17.132). Bianchi spaces are homogeneous
but not necessarily isotropic.
Bianchi spacetimes, also known as Bianchi universes, are Bianchi spaces that evolve in time while preserving

the posited Lie group structure. Bianchi spacetimes offer a framework for addressing possible large scale
departures from isotropy in cosmology, and provide the prototype for the Belinskii-Khalatnikov-Lifshitz
(BKL) (Belinskii, Khalatnikov, and Lifshitz, 1982; Belinski, 2014) model of anisotropic gravitational collapse,
§17.6. Bianchi spacetimes present a fine application of both the ADM formalism and the tetrad formalism,
in a situation where the tetrad is neither orthonormal, nor aligned with the coordinates, nor is the tetrad
metric constant (in time).

17.4.1 Bianchi structure coefficients

The assumption that a space is homogeneous requires that the space has a complete set of spacelike Killing
vectors, thus 3 linearly independent spacelike Killing vectors in 3-dimensional space. The spatial components
𝛾𝛾𝑎 of the tetrad can be chosen to coincide with the 3 Killing vectors at each point. Equivalently, the 3 Killing
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vectors can be identified with the directed derivatives 𝜕𝑎 along the 3 spatial tetrad axes (see §7.32). The
commutators of the directed derivatives define the structure coefficients 𝑐𝑐𝑎𝑏,

[𝜕𝑎, 𝜕𝑏] = 𝑐𝑐𝑎𝑏𝜕𝑐 , (17.88)

which are necessarily antisymmetric in their last two indices 𝑎𝑏. Homogeneity does not require that the
structure coefficients be spatially constant; rather, homogeneity requires that the tetrad-frame Riemann
tensor be spatially constant. However, Bianchi spaces are by assumption Lie groups, for which the structure
coefficients are spatially constant. For Bianchi spaces, the Killing vectors 𝜕𝑎 are the generators of the Lie
group, whose properties are determined by the structure coefficients 𝑐𝑐𝑎𝑏. The vector space of real linear
combinations of the generators 𝜕𝑎 defines a Lie algebra, with multiplication defined by equation (17.88).
The structure coefficients must be such that Jacobi identity [𝜕[𝑎, [𝜕𝑏, 𝜕𝑐]]] = 0 is satisfied. If the structure

coefficients are spatially constant, then the Jacobi identity requires

𝑐𝑒𝑑[𝑎𝑐
𝑑
𝑏𝑐] = 0 . (17.89)

17.4.2 Bianchi line-element

A Bianchi spacetime is a Bianchi space that evolves in time while preserving the Lie group spatial structure.
The spatial Bianchi line-element can be constructed out of 1-forms 𝑒𝑎𝛼 𝑑𝑥𝛼 which, being aligned with the
Killing vectors 𝛾𝛾𝑎, are by construction independent of the choice of spatial coordinates 𝑥𝛼. The time coordi-
nate 𝑡 is chosen so that spatial surfaces of constant time are homogeneous. To preserve spatial homogeneity,
the tetrad metric 𝛾𝑎𝑏 ≡ 𝛾𝛾𝑎 · 𝛾𝛾𝑏 must be independent of the spatial coordinates, but it may depend on time
𝑡. As usual in the ADM formalism, the tetrad time axis 𝛾𝛾0 is chosen to be orthogonal to the spatial tetrad
axes 𝛾𝛾𝑎, which lie in the surfaces of constant time. The line-element can thus be taken to be

𝑑𝑠2 = − 𝑑𝑡2 + 𝑔𝛼𝛽 𝑑𝑥
𝛼𝑑𝑥𝛽 = − 𝑑𝑡2 + 𝛾𝑎𝑏(𝑡) 𝑒

𝑎
𝛼𝑒
𝑏
𝛽 𝑑𝑥

𝛼𝑑𝑥𝛽 , (17.90)

which is in ADM form with unit lapse and zero shift. The vierbein and its inverse are

𝑒𝑚𝜇 =

(︂
1 0

0 𝑒𝑎𝛼

)︂
, 𝑒𝑚

𝜇 =

(︂
1 0

0 𝑒𝑎
𝛼

)︂
. (17.91)

The tetrad time derivative coincides with the coordinate time derivative, 𝜕0 = 𝜕/𝜕𝑡. The condition that
the homogeneous spatial structure be preserved in time means that the Killing vectors do not depend on
time, [𝜕0, 𝜕𝑎] = 0, so the vierbein, and the inverse vierbein, are independent of time. However, despite spatial
homogeneity, the spatial vierbein coefficients 𝑒𝑎𝛼 may (and generically do) depend on the spatial coordinates,
as they do for example in FLRW spacetimes. Likewise homogeneity allows that the structure coefficients 𝑐𝑐𝑎𝑏
defined by the commutators of the directed derivatives, equation (17.88), may be functions of the spatial
coordinates. As emphasized above, Bianchi spaces are by assumption those for which the structure coefficients
are spatially constant, but this is not required by homogeneity. Whether or not the structure coefficients are
spatially constant, they satisfy 𝑐𝑐𝑎𝑏 ≡ 2𝑑𝑐[𝑎𝑏], where 𝑑

𝑐
𝑎𝑏 are the spatial components of the vierbein derivatives,

equation (11.33).
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Table 17.1: Classification of Bianchi spaces

Eigenvalues Type
𝑛1 𝑛2 𝑛3 𝑘 = 0 𝑘 ̸= 0

0 0 0 I V
0 0 + II IV
0 − + VI0 VI
0 + + VII0 VII
− + + VIII
+ + + IX

17.4.3 Classification of Bianchi spaces

Bianchi spaces are classified according to the invariant properties of their constant structure coefficients 𝑐𝑐𝑎𝑏.
Choose a point of the spacetime. The structure coefficients at that point can be written in terms of a 3× 3

matrix 𝑛𝑑𝑐, which can be decomposed into symmetric 𝑛(𝑑𝑐) and antisymmetric 𝑛[𝑑𝑐] parts,

𝑐𝑐𝑎𝑏 = 𝜀𝑎𝑏𝑑𝑛
𝑑𝑐 = 𝜀𝑎𝑏𝑑(𝑛

(𝑑𝑐) + 𝑛[𝑑𝑐]) . (17.92)

By an orthogonal rotation of axes the symmetric matrix 𝑛(𝑑𝑐) can be brought to diagonal form with eigen-
values 𝑛𝑐, while the antisymmetric part can be written in terms of a vector 𝑘𝑒,

𝑐𝑐𝑎𝑏 = 𝜀𝑎𝑏𝑑(𝛿
𝑑𝑐𝑛𝑐 − 𝜀𝑑𝑐𝑒𝑘𝑒) (no sum over 𝑐) . (17.93)

The Jacobi identity (17.89) implies that 0 = 𝜀𝑎𝑏𝑐𝑐𝑒𝑑𝑎𝑐
𝑑
𝑏𝑐 = 2𝜀𝑑𝑎𝑓𝑛

𝑓𝑒𝑛𝑎𝑑 = 4𝑛𝑓𝑒𝑘𝑓 , which equals 4𝑛𝑒𝑘𝑒 (no
sum over 𝑒) in each direction 𝑒, thus

𝑛𝑓𝑒𝑘𝑓 = 𝑛𝑒𝑘𝑒 = 0 (each direction 𝑒, no sum over 𝑒) . (17.94)

Thus in each direction, either 𝑛𝑒 or 𝑘𝑒 equals zero. If the vector 𝑘𝑒 is non-vanishing, then without loss of
generality it can be chosen to lie along the 1-direction, 𝑘𝑒 = {𝑘, 0, 0}. The real number 𝑘 can be non-zero
only if 𝑛1 = 0. The commutators (17.88) of the directed derivatives 𝜕𝑎 then reduce to (with at least one of
𝑛1 and 𝑘 zero)

[𝜕3, 𝜕2] = 𝑛1𝜕1 , [𝜕1, 𝜕3] = 𝑛2𝜕2 − 𝑘𝜕3 , [𝜕2, 𝜕1] = 𝑛3𝜕3 + 𝑘𝜕2 . (17.95)

Under a rescaling of axes 𝜕𝑐 ∝ 1/𝑎𝑐, the eigenvalues scale as 𝑛1 ∝ 𝑎1/(𝑎2𝑎3) and cyclically for 𝑛2 and 𝑛3.
Thus by a rescaling of axes, each of the non-zero eigenvalues 𝑛𝑐 can be scaled to any other value of the same
sign. Flipping any axis changes the signs of all the 𝑛𝑐, so the number of positive eigenvalues can always be
chosen to be greater than or equal to the number of negative eigenvalues. Finally, the axes can be reordered
arbitrarily. Thus the invariant properties of the eigenvalues 𝑛𝑐 are the numbers of negative, zero, and positive
eigenvalues. If the parameter 𝑘 is non-zero, and if 𝑛2 and 𝑛3 are non-zero (Bianchi Types VI and VII), then
𝑘 cannot be rescaled independently, since 𝑘 ∝ 1/𝑎1 ∝ |𝑛2𝑛3|1/2 is fixed by the scaling of 𝑛2 and 𝑛3. If on the



510 Conventional Hamiltonian (3+1) approach

other hand either of 𝑛2 and 𝑛3 are non-zero (Bianchi Types V and IV), then 𝑘 can be rescaled independently.
The sign of 𝑘 changes under a flip of the 1-axis, so 𝑘 can be taken to be positive.
Table 17.1 lists the distinct possibilities for the 3 eigenvalues 𝑛𝑒, and gives the corresponding traditional

Bianchi type. Missing from the Table is Type III, which is a special case of Type VI with 𝑘 = 1, if 𝑛2 and
𝑛3 are scaled to ±1. Type III is distinguished by the fact that all three eigenvalues of the matrix 𝑛𝑑𝑐 (the
full matrix, including both symmetric and antisymmetric parts) degenerate to zero.

17.4.4 Bianchi connections and curvatures

The formulae in this section are valid for homogeneous spacetimes regardless of whether the structure
constants 𝑐𝑐𝑎𝑏 are spatially constant.
The non-vanishing tetrad-frame connections are, from equation (11.53),

Γ𝑎𝑏0 = Γ𝑎0𝑏 = −Γ0𝑎𝑏 =
1
2 �̇�𝑎𝑏 , Γ𝑎𝑏𝑐 =

1
2 (𝑐𝑐𝑎𝑏 + 𝑐𝑏𝑎𝑐 − 𝑐𝑎𝑏𝑐) , (17.96)

where the overdot represents the time derivative, �̇�𝑎𝑏 ≡ 𝑑𝛾𝑎𝑏/𝑑𝑡 (an ordinary derivative because 𝛾𝑎𝑏 varies
only in time, not space), and 𝑐𝑐𝑎𝑏 ≡ 𝛾𝑐𝑑𝑐

𝑑
𝑎𝑏. The connections with one time 0 index are symmetric in their

spatial indices 𝑎𝑏, while the purely spatial connections Γ𝑎𝑏𝑐 are antisymmetric in their first two indices 𝑎𝑏. The
tetrad frame is locally inertial (freely falling and non-rotating), as follows from the fact that the acceleration
and precession both vanish, Γ𝑎00 = Γ[𝑎𝑏]0 = 0. Altogether there are 6 + 9 = 15 distinct non-vanishing
connections. If the structure coefficients 𝑐𝑐𝑎𝑏 are spatially constant, then so are the spatial connections Γ𝑎𝑏𝑐,
but more generally the spatial connections can vary in space. For example, the spatial connections are
spatially variable in all of the variants of the FLRW line-element given in Chapter 10 (although FLRW
spacetimes can be realised as Bianchi spacetimes with constant structure coefficients — see §17.5). The
spatial connections Γ𝑎𝑏𝑐 also vary in time because, whereas 𝑐𝑐𝑎𝑏 with one index raised is constant in time, the
coefficients 𝑐𝑐𝑎𝑏 ≡ 𝛾𝑐𝑑𝑐

𝑑
𝑎𝑏 with all indices lowered depend on time through the time-dependent metric 𝛾𝑐𝑑.

Explicitly,

Γ𝑎𝑏𝑐 =
1
2

(︀
𝛾𝑐𝑑𝑐

𝑑
𝑎𝑏 + 𝛾𝑏𝑑𝑐

𝑑
𝑎𝑐 − 𝛾𝑎𝑑𝑐𝑑𝑏𝑐

)︀
. (17.97)

The unique non-vanishing contraction of the spatial connections Γ𝑎𝑏𝑐 is

Γ𝑎𝑏𝑎 = 𝑐𝑎𝑎𝑏 = 𝜀𝑎𝑏𝑐𝑛
𝑐𝑎 = −2𝑘𝑏 , (17.98)

which is constant in time.
The extrinsic curvature 𝐾𝑎𝑏 is by definition

𝐾𝑎𝑏 ≡ Γ𝑎0𝑏 =
1
2 �̇�𝑎𝑏 , (17.99)

with trace

𝐾 ≡ 𝐾𝑎
𝑎 = 1

2𝛾
𝑎𝑏�̇�𝑎𝑏 =

𝑑 ln
√
𝛾

𝑑𝑡
, (17.100)

where 𝛾 ≡ |𝛾𝑎𝑏| is the determinant of the spatial tetrad metric. The last step of equations (17.100) is
an application of equation (2.77). The proper spatial volume element is 𝑑3𝑥 =

√
𝛾 𝑑3𝑥123, so the trace 𝐾
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measures the logarithmic rate of change of a comoving volume element. Positive 𝐾 means that the comoving
volume element is expanding, while negative 𝐾 means that the comoving volume element is contracting.
The tetrad-frame Riemann curvature tensor 𝑅𝑘𝑙𝑚𝑛, which homogeneity requires to be spatially constant

regardless of whether the structure coefficients are spatially constant, is, from equations (17.40),

𝑅𝑎0𝑏0 = −�̇�𝑎𝑏 +𝐾𝑐
𝑎𝐾𝑏𝑐 , (17.101a)

𝑅𝑎𝑏𝑐0 = Γ𝑑𝑐𝑏𝐾𝑑𝑎 − Γ𝑑𝑐𝑎𝐾𝑑𝑏 + (Γ𝑑𝑎𝑏 − Γ𝑑𝑏𝑎)𝐾𝑐𝑑 , (17.101b)

𝑅𝑎𝑏𝑐𝑑 = �̂�𝑎𝑏𝑐𝑑 −𝐾𝑐𝑏𝐾𝑑𝑎 +𝐾𝑐𝑎𝐾𝑑𝑏 , (17.101c)

where �̂�𝑎𝑏𝑐𝑑 is the restricted Riemann tensor,

�̂�𝑎𝑏𝑐𝑑 = 𝜕𝑎Γ𝑐𝑑𝑏 − 𝜕𝑏Γ𝑐𝑑𝑎 + Γ𝑒𝑐𝑏Γ𝑒𝑑𝑎 − Γ𝑒𝑐𝑎Γ𝑒𝑑𝑏 + (Γ𝑒𝑎𝑏 − Γ𝑒𝑏𝑎)Γ𝑐𝑑𝑒 . (17.102)

If the structure coefficients are spatially constant, then the two derivative terms on the right hand side
of equation (17.102) can be dropped. For spatially constant structure coefficients, equations (17.101) and
(17.102) along with equations (17.96) give the Riemann tensor in terms of the structure coefficients 𝑐𝑐𝑎𝑏
and the tetrad metric 𝛾𝑎𝑏, without the need for an explicit form for the vierbein 𝑒𝑎𝛼. If the structure
coefficients were derived from an explicit vierbein, then the usual symmetries of the Riemann tensor (with
vanishing torsion) would be guaranteed. But the symmetries are ensured in any case, since for constant
structure coefficients the Jacobi identity (17.94) implies that the restricted Riemann tensor satisfies the
cyclic symmetry 𝜀𝑏𝑐𝑑�̂�𝑎𝑏𝑐𝑑 = 4𝛾𝑎𝑏𝑛

𝑏𝑐𝑘𝑐 = 0, which in turn ensures that the restricted Riemann tensor �̂�𝑎𝑏𝑐𝑑
is symmetric in 𝑎𝑏↔ 𝑐𝑑, Exercise 11.6.
Contracting the Riemann tensor yields the Ricci tensor 𝑅𝑘𝑚,

𝑅00 = − �̇� −𝐾𝑎𝑏𝐾𝑎𝑏 , (17.103a)

𝑅𝑎0 = Γ𝑏𝑐𝑏𝐾
𝑐
𝑎 − Γ𝑐𝑎𝑏𝐾

𝑏
𝑐 , (17.103b)

𝑅𝑎𝑏 = �̂�𝑎𝑏 + �̇�𝑎𝑏 − 2𝐾𝑐
𝑎𝐾𝑏𝑐 +𝐾𝑎𝑏𝐾 , (17.103c)

where �̂�𝑎𝑏 is the restricted Ricci tensor,

�̂�𝑎𝑏 = −𝜕𝑎Γ𝑐𝑏𝑐 + 𝜕𝑐Γ
𝑐
𝑏𝑎 + Γ𝑒𝑏𝑎Γ

𝑑
𝑒𝑑 − Γ𝑒𝑎𝑑Γ

𝑑
𝑏𝑒 . (17.104)

Again, if the structure coefficients are spatially constant, then the two derivative terms on the right hand
side of equation (17.104) can be dropped. And again, for spatially constant structure coefficients, the Jacobi
identity (17.94) ensures that the restricted Ricci tensor is symmetric, �̂�[𝑎𝑏] = −2𝜀𝑎𝑏𝑑𝑛𝑑𝑐𝑘𝑐 = 0. Contracting
the Ricci tensor yields the Ricci scalar 𝑅,

𝑅 = �̂�+ 2�̇� +𝐾𝑎𝑏𝐾𝑎𝑏 +𝐾2 , (17.105)

where �̂� is the restricted Ricci scalar.
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17.4.5 Gravitational equations of motion for Bianchi spacetimes

The assumption of spatial homogeneity implies that the energy-momentum tensor of a Bianchi spacetime
can vary in time but must be spatially constant. The components of the energy-momentum tensor 𝑇𝑚𝑛 are
the energy density 𝜌(𝑡), the energy flux 𝑓𝑎(𝑡), and the pressure 𝑝𝑎𝑏(𝑡),

𝑇00 = 𝜌 , 𝑇𝑎0 = −𝑓𝑎 , 𝑇𝑎𝑏 = 𝑝𝑎𝑏 . (17.106)

The trace of the energy-momentum tensor is 𝑇 = −𝜌 + 3𝑝 where 𝑝 ≡ 1
3𝑝
𝑎
𝑎. In the special case of a perfect

fluid at rest in the tetrad frame (which is not being assumed here), the energy flux 𝑓𝑎 would vanish, and
the pressure tensor would be proportional to the spatial metric tensor, 𝑝𝑎𝑏 = 𝑝𝛾𝑎𝑏. The ADM equations of
motion for a Bianchi spacetime are, equations (17.52) and (17.63),

𝑑𝛾𝑎𝑏
𝑑𝑡

= 2𝐾𝑎𝑏 , (17.107a)

𝑑𝐾𝑎𝑏

𝑑𝑡
− 2𝐾𝑐

𝑎𝐾𝑏𝑐 +𝐾𝑎𝑏𝐾 + �̂�𝑎𝑏 = 4𝜋 [2𝑝𝑎𝑏 + 𝛾𝑎𝑏(𝜌− 3𝑝)] . (17.107b)

The Hamiltonian constraint and the momentum constraints are

1
2 (−𝐾

𝑎𝑏𝐾𝑎𝑏 +𝐾2 + �̂�) = 8𝜋𝜌 , (17.108a)

Γ𝑏𝑐𝑏𝐾
𝑐
𝑎 − Γ𝑐𝑎𝑏𝐾

𝑏
𝑐 = −8𝜋𝑓𝑎 . (17.108b)

Equations (17.107) combine to yield a second order ordinary differential equation for the spatial tetrad metric
𝛾𝑎𝑏(𝑡). The spatial tetrad metric can be thought of as an ellipsoid, described by the lengths of its 3 axes,
and 3 rotation angles. The general solution to equations (17.107) is a tetrad ellipsoid that evolves in both
size and rotation. Equation (17.103a) gives an equation for the evolution of the expansion rate 𝐾 of the
comoving volume element,

�̇� = −𝐾𝑎𝑏𝐾𝑎𝑏 − 4𝜋(𝜌+ 3𝑝) , (17.109)

which is the same as the trace of the equation of motion (17.107b) minus twice the Hamiltonian con-
straint (17.108a). Equation (17.109) is the Raychaudhuri equation (17.76) in a Bianchi spacetime. Since the
spatial metric 𝛾𝑎𝑏 is positive definite (all positive eigenvalues), 𝐾𝑎𝑏𝐾𝑎𝑏 is positive.

Exercise 17.3. Geodesics in Bianchi spacetimes. Solve for the geodesics of particles in a Bianchi
spacetime.
Solution. The effective Lagrangian of a particle can be taken to be

𝐿 = 1
2𝛾𝑚𝑛𝑝

𝑚𝑝𝑛 , (17.110)

where 𝑝𝑚 ≡ 𝑒𝑚𝜇 𝑑𝑥
𝜇/𝑑𝜆 is the tetrad-frame 4-momentum of the particle (not to be confused with pressure

𝑝). There are 3 integrals of motion 𝑝𝑎 associated with the 3 Killing vectors 𝛾𝛾𝑎, plus 1 integral of motion
associated with conservation of rest mass 𝑚,

𝑝𝑎 = constant (𝑎 = 1, 2, 3) , 𝑝𝑛𝑝𝑛 = −𝑚2 . (17.111)
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The rest mass equation implies that the time component of the tetrad-frame 4-momentum is

𝑝0 =
√︀
𝛾𝑎𝑏𝑝𝑎𝑝𝑏 +𝑚2 . (17.112)

The time component of the momentum may equivalently be written

𝑝0 =
√︁
𝑔𝛼𝛽𝑝𝛼𝑝𝛽 +𝑚2 , (17.113)

where 𝑝𝛼 ≡ 𝑒𝑎𝛼𝑝𝑎. The coordinate 4-momentum is

𝑑𝑥𝜇

𝑑𝜆
≡ 𝑝𝜇 = {𝑝𝑡, 𝑝𝛼} = {𝑝0, 𝑔𝛼𝛽𝑝𝛽} = {𝑝0, 𝛾𝑎𝑏𝑒𝑎𝛼𝑝𝑏} . (17.114)

17.5 Friedmann-Lemaître-Robertson-Walker spacetimes

Friedmann-Lemaître-Robertson-Walker spacetimes are isotropic in addition to being homogeneous. FLRW
spacetimes form a subclass of Bianchi spacetimes for which the 3 scale factors 𝑎𝑎 are all equal. Applying
the vierbein from Table 17.2 with all three scale factors equal reveals that Type IX includes a strictly
closed FLRW universe, while Types V and VII include an open FLRW universe. The special case 𝑘 = 0,
corresponding to Types I and VII0, yields a flat FLRW universe.
Bianchi spaces have spatially constant structure coefficients by assumption, but none of the various versions

of the FLRW line-element given in Chapter 10 have constant structure coefficients. The non-constancy of the
structure coefficients poses no obstacle to casting the Friedmann equations into ADM form. For example,
the isotropic (Poincaré) form (10.26) of the FLRW line-element is

𝑑𝑠2 = − 𝑑𝑡2 + 4𝑎2

[1 + 𝜅(𝑥2 + 𝑦2 + 𝑧2)]
2 (𝑑𝑥

2 + 𝑑𝑦2 + 𝑑𝑧2) , (17.115)

which is in ADM form with unit lapse and zero shift. The line-element (17.115) takes ADM form (17.90)
with spatial tetrad metric

𝛾𝑎𝑏 = 𝑎2𝛿𝑎𝑏 , (17.116)

and spatial vierbein

𝑒𝑎𝛼 =
2𝛿𝛼𝑎

1 + 𝜅(𝑥2 + 𝑦2 + 𝑧2)
. (17.117)

The structure coefficients, equation (17.93), have zero symmetric part, and non-constant antisymmetric part
given by

𝑘𝑒 = 𝜅𝑥𝑒 . (17.118)

The extrinsic curvature 𝐾𝑎𝑏 is

𝐾𝑎𝑏 = 𝑎�̇� 𝛿𝑎𝑏 , (17.119)
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and its trace 𝐾 is 3 times the Hubble parameter,

𝐾 =
3�̇�

𝑎
. (17.120)

The restricted Ricci tensor �̂�𝑎𝑏 is

�̂�𝑎𝑏 = 2𝜅 𝛿𝑎𝑏 , (17.121)

and the restricted Ricci scalar �̂� is

�̂� ≡ 6𝜅

𝑎2
. (17.122)

The Hamiltonian constraint (17.131) is
3

𝑎2
(︀
�̇�2 + 𝜅

)︀
= 8𝜋𝜌 , (17.123)

which reproduces the first of the Friedmann equations (10.30). The equations of motion reduce to

�̈�

𝑎
+ 2

�̇�2

𝑎2
+ 2

𝜅

𝑎2
= 4𝜋(𝜌− 𝑝) . (17.124)

With a factor of the Hamiltonian constraint (17.123) subtracted, the equation of motion (17.124) becomes

�̈�

𝑎
= −4𝜋

3
(𝜌+ 3𝑝) , (17.125)

which reproduces the second of the Friedmann equations (10.30). Equation (17.125) is the Raychaudhuri
equation (17.76) for an FLRW spacetime.

17.6 BKL oscillatory collapse

An application of Bianchi spacetimes that is of particular relevance to black holes is the collapse of a
Type VIII or IX Bianchi spacetime to a singularity, which shows a complicated oscillatory behaviour called
Belinskii-Khalatnikov-Lifshitz (BKL) oscillations (Belinskii, Khalatnikov, and Lifshitz, 1970; Belinskii and
Khalatnikov, 1971; Belinskii, Khalatnikov, and Lifshitz, 1972; Belinskii, Khalatnikov, and Lifshitz, 1982;
Belinski, 2014). BKL oscillations are also called mixmaster oscillations. The prototypical BKL model is
a Bianchi spacetime, which is spatially homogeneous, but Belinskii, Khalatnikov, and Lifshitz (1982) argue
that oscillatory behaviour is generic for collapse to a singularity in general inhomogeneous spacetimes. See
Berger (2002) and Belinski (2014) for reviews.
In BKL collapse, the comoving volume element decreases monotonically to zero in a finite proper time,

but one spatial axis always expands while the other two collapse. When one of the collapsing axes becomes
sufficiently small, it “bounces” and starts expanding, while the previously expanding axis turns around and
starts collapsing. Although the behaviour is deterministic, the sensitivity to initial conditions makes it look
chaotic. Bounces occur irregularly in logarithmic time, so that there is an infinite number of bounces during
the finite proper time that it takes to reach the singularity. Of course, this ignores quantum gravity, which
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presumably does something once either the density or the curvature reaches the Planck scale. Between
BKL bounces, the three spatial axes expand or contract approximately as power laws 𝑎𝑎 ∝∼ 𝑡𝑞𝑎 in time 𝑡
with different exponents 𝑞𝑎, following a behaviour discovered by Kasner (1921), Exercise 17.4. BKL call the
phases between bounces Kasner epochs.
The simplest BKL model is where the axes of the tetrad ellipsoid 𝛾𝑎𝑏(𝑡) of the Bianchi spacetime change

in size, but they do not rotate. This is the model pursued in this section, and that you will explore in
Exercise 17.7. Belinskii, Khalatnikov, and Lifshitz (1982) show that when rotation is included, each BKL
bounce changes not only the expansion or contraction of each axis, but also changes its orientation. The
behaviour between bounces remains Kasner.
The equations of motion (17.107) for a Bianchi spacetime show that non-rotating solutions for the tetrad

metric 𝛾𝑎𝑏 exist if the restricted Ricci tensor �̂�𝑎𝑏 and the pressure tensor 𝑝𝑎𝑏 are diagonal in the frame where
the tetrad metric is diagonal. For such solutions, the extrinsic curvature 𝐾𝑎𝑏 is diagonal in the frame where
the tetrad metric is diagonal, and the momentum constraints (17.108b) then imply that the energy flux 𝑓𝑎
vanishes. All Bianchi Types except IV include solutions for which the restricted Ricci tensor is diagonal.
The tetrad metric 𝛾𝑎𝑏 in the non-rotating diagonal frame is conveniently written in terms of scale factors

𝑎𝑎 along each of the three diagonal directions,

𝛾𝑎𝑏(𝑡) = 𝑎2𝑎 𝛿𝑎𝑏 . (17.126)

The corresponding diagonal extrinsic curvature 𝐾𝑎𝑏 is then, from equation (17.107a),

𝐾𝑎𝑏 = 𝑎𝑎�̇�𝑎 𝛿𝑎𝑏 . (17.127)

The pressure is diagonal by assumption, with pressure 𝑝𝑎 in the 𝑎’th direction,

𝑝𝑎𝑏 = 𝑝𝑎 𝛿𝑎𝑏 . (17.128)

The equation of motion (17.107b) for the extrinsic curvature 𝐾𝑎𝑏 involves the restricted Ricci tensor �̂�𝑎𝑏.
A feature of Bianchi spacetimes (with spatially constant structure coefficients) is that the restricted Ricci
tensor �̂�𝑎𝑏, equation (17.104), is given in terms of the structure coefficients 𝑐𝑐𝑎𝑏 and the tetrad metric 𝛾𝑎𝑏
without the need for an explicit expression for the vierbein. In most (Type VI with 𝑘 ̸= 0 is an exception)
of the solutions for which �̂�𝑎𝑏 is diagonal in the frame where the metric is diagonal, including the BKL
solutions, the symmetric part 𝑛(𝑐𝑑) of the structure coefficients is diagonal in the same frame. In this case,
the components of the restricted Ricci tensor �̂�𝑎𝑏 (17.104) are, in terms of the scale factors 𝑎𝑎 and the
parameters 𝑛𝑐 and 𝑘𝑒 of the structure coefficients, equation (17.92),

�̂�11 = 𝑎21

(︂
𝑛2𝑛3 − 2𝑘21

𝑎21
− 2𝑘22

𝑎22
− 2𝑘23

𝑎23
+

𝑛21𝑎
2
1

2𝑎22𝑎
2
3

− 𝑛22𝑎
2
2

2𝑎23𝑎
2
1

− 𝑛23𝑎
2
3

2𝑎21𝑎
2
2

)︂
, (17.129a)

�̂�23 = 𝑘1

(︂
𝑛2𝑎

2
2 − 𝑛3𝑎33
𝑎21

)︂
, (17.129b)

and similarly with permuted indices for the other components. The off-diagonal components �̂�23 and company
must vanish for the restricted Ricci tensor to be diagonal. Equation (17.129b) shows that one possibility,
which covers the majority of cases (Type VII with 𝑘 ≡ 𝑘1 ̸= 0 and

√
𝑛2 𝑎2 =

√
𝑛3 𝑎3 is an exception), is
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Table 17.2: Bianchi spatial vierbein yielding a diagonal restricted Ricci tensor

Type 𝑒𝑎𝛼 𝑒𝑎
𝛼

I

⎛⎝ 1 0 0

0 1 0

0 0 1

⎞⎠ ⎛⎝ 1 0 0

0 1 0

0 0 1

⎞⎠
V

⎛⎝ 1 0 0

0 𝑒−𝑘𝑥 0

0 0 𝑒−𝑘𝑥

⎞⎠ ⎛⎝ 1 0 0

0 𝑒𝑘𝑥 0

0 0 𝑒𝑘𝑥

⎞⎠
II

⎛⎝ 1 0 0

0 1 0

0 −𝑥 1

⎞⎠ ⎛⎝ 1 0 0

0 1 𝑥

0 0 1

⎞⎠
VI0

⎛⎝ 1 0 0

0 cosh𝑥 − sinh𝑥

0 − sinh𝑥 cosh𝑥

⎞⎠ ⎛⎝ 1 0 0

0 cosh𝑥 sinh𝑥

0 sinh𝑥 cosh𝑥

⎞⎠
III

⎛⎝ 1 0 0

0 1
2𝑒
−2𝑥 1

2𝑒
−2𝑥

0 − 1
2

1
2

⎞⎠ ⎛⎝ 1 0 0

0 𝑒2𝑥 𝑒2𝑥

0 −1 1

⎞⎠
VI

⎛⎝ 1 0 0

0 1
2𝑒
−(𝑘+1)𝑥 1

2𝑒
−(𝑘+1)𝑥

0 − 1
2𝑒
−(𝑘−1)𝑥 1

2𝑒
−(𝑘−1)𝑥

⎞⎠ ⎛⎝ 1 0 0

0 𝑒(𝑘+1)𝑥 𝑒(𝑘+1)𝑥

0 −𝑒(𝑘−1)𝑥 𝑒(𝑘−1)𝑥

⎞⎠
VII0

⎛⎝ 1 0 0

0 cos𝑥 sin𝑥

0 − sin𝑥 cos𝑥

⎞⎠ ⎛⎝ 1 0 0

0 cos𝑥 sin𝑥

0 − sin𝑥 cos𝑥

⎞⎠
VII (with 𝑎2 = 𝑎3)

⎛⎝ 1 0 0

0 𝑒−𝑘𝑥 cos𝑥 𝑒−𝑘𝑥 sin𝑥

0 −𝑒−𝑘𝑥 sin𝑥 𝑒−𝑘𝑥 cos𝑥

⎞⎠ ⎛⎝ 1 0 0

0 𝑒𝑘𝑥 cos𝑥 𝑒𝑘𝑥 sin𝑥

0 −𝑒𝑘𝑥 sin𝑥 𝑒𝑘𝑥 cos𝑥

⎞⎠
VIII

⎛⎝ 1 0 sinh 𝑦

0 cos𝑥 sin𝑥 cosh 𝑦

0 − sin𝑥 cos𝑥 cosh 𝑦

⎞⎠ ⎛⎝ 1 0 0

− sin𝑥 tanh 𝑦 cos𝑥 sin𝑥 sech 𝑦

− cos𝑥 tanh 𝑦 − sin𝑥 cos𝑥 sech 𝑦

⎞⎠
IX

⎛⎝ 1 0 sin 𝑦

0 cos𝑥 sin𝑥 cos 𝑦

0 − sin𝑥 cos𝑥 cos 𝑦

⎞⎠ ⎛⎝ 1 0 0

sin𝑥 tan 𝑦 cos𝑥 sin𝑥 sec 𝑦

cos𝑥 tan 𝑦 − sin𝑥 cos𝑥 sec 𝑦

⎞⎠
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that the antisymmetric part 𝑘𝑒 of the structure coefficients vanishes identically (that is, 𝑘 ≡ 𝑘1 = 0). This
is the solution pursued here, since it is the one that leads to the BKL solutions. In this case, where the
symmetric part of the structure coefficients is diagonal in the frame where the metric is diagonal, and where
the antisymmetric part vanishes identically, the ADM equations of motion (17.107) imply that the equation
of motion for the scale factor 𝑎1 is

�̈�1
𝑎1

+
�̇�1�̇�2
𝑎1𝑎2

+
�̇�1�̇�3
𝑎1𝑎3

+
𝑛2𝑛3
𝑎21

+
𝑛21𝑎

2
1

2𝑎22𝑎
2
3

− 𝑛22𝑎
2
2

2𝑎23𝑎
2
1

− 𝑛23𝑎
2
3

2𝑎21𝑎
2
2

=
𝑅11

𝑎21
= 4𝜋(2𝑝1 + 𝜌− 3𝑝) , (17.130)

and like equations with permuted indices for 𝑎2 and 𝑎3. The Hamiltonian constraint is

�̇�2�̇�3
𝑎2𝑎3

+
�̇�3�̇�1
𝑎3𝑎1

+
�̇�1�̇�2
𝑎1𝑎2

+
𝑛2𝑛3
2𝑎21

+
𝑛3𝑛1
2𝑎22

+
𝑛1𝑛2
2𝑎23

− 𝑛21𝑎
2
1

4𝑎22𝑎
2
3

− 𝑛22𝑎
2
2

4𝑎23𝑎
2
1

− 𝑛23𝑎
2
3

4𝑎21𝑎
2
2

= 8𝜋𝜌 . (17.131)

You will explore how these equations lead to BKL oscillatory collapse to a singularity in Exercise 17.7.
A central part of the Belinskii, Khalatnikov, and Lifshitz (1982) argument that BKL oscillations are generic

in gravitational collapse to a singularity, as opposed to an artefact of the assumption of spatial homogeneity,
involves the dependence on time of the terms in the equations of motion (17.130) (which are really just the
Einstein equations). The terms involving scale factors 𝑎𝑎 but not their time derivatives act as “potentials”
that are responsible for BKL bounces when one of the collapsing scale factors becomes sufficiently small. The
potentials arise from the products of spatial connections in the restricted Ricci tensor �̂�𝑎𝑏, equation (17.104).
The form of the dependence of the restricted Ricci tensor on the scale factors follows from the fact that the
restricted Ricci tensor (17.104) is proportional to two powers of the contravariant metric 𝛾𝑐𝑑, and two powers
of the covariant metric 𝛾𝑐𝑑, and that one of the indices on one of the powers of the covariant metric must
be one of the indices 𝑎 or 𝑏 of the Ricci component 𝑅𝑎𝑏. This form of the dependency of the Ricci tensor on
the metric is generic.
Even though they are not needed in order to write down the Einstein equations, Table 17.2 lists explicit

expressions for the spatial vierbein yielding a diagonal restricted Ricci tensor, which exist for all Bianchi
Types except IV. The coordinates are scaled so that the eigenvalues of the structure coefficients are all 𝑛𝑎 = 0

or ±1. For the tabulated Types with 𝑘 = 0, the time-space components 𝑅0𝑎 of the Ricci tensor also vanish
identically. For the tabulated Types with 𝑘 ̸= 0, the time-space components 𝑅0𝑎 of the Ricci tensor do not
all vanish identically, and their vanishing must be imposed as constraints on the initial conditions.
The notable exception mentioned at the beginning of §17.4 of a homogeneous space that cannot be realised

as a Bianchi space (the vierbein cannot be chosen such that structure coefficients 𝑐𝑐𝑎𝑏 are spatially constant),
at least as long as the structure coefficients are taken to be real, is the closed (𝜅 > 0) cylindrical space
realised by the spatial vierbein

𝑒𝑎𝛼 =

⎛⎝ 1 0 0

0 cos(
√
𝜅𝑥) 0

0 0 1

⎞⎠ , 𝑒𝑎
𝛼 =

⎛⎝ 1 0 0

0 sec(
√
𝜅𝑥) 0

0 0 1

⎞⎠ . (17.132)

An open (𝜅 < 0) cylindrical space on the other hand can be realised as a Bianchi space of Type III, with
the spatial vierbein given in Table 17.2, with 𝜅 = −𝑘/2 = −1/2.
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Exercise 17.4. Kasner spacetime. The Kasner (1921) line-element is

𝑑𝑠2 = − 𝑑𝑡2 + 𝑎2𝑥𝑑𝑥
2 + 𝑎2𝑦𝑑𝑦

2 + 𝑎2𝑧𝑑𝑧
2 , (17.133)

where 𝑎𝛼(𝑡) are functions only of time 𝑡. What Bianchi type is the Kasner line-element (17.133)? Show that
the Kasner line-element (17.133) solves the vacuum Einstein equations if

𝑎𝛼 = |𝑡|𝑞𝛼 (17.134)

with

𝑞𝑥 + 𝑞𝑦 + 𝑞𝑧 = 1 , 𝑞2𝑥 + 𝑞2𝑦 + 𝑞2𝑧 = 1 . (17.135)

Show that a parametric solution of equations (17.135) is

𝑞𝑥 =
−𝑢

1 + 𝑢+ 𝑢2
, 𝑞𝑦 =

1 + 𝑢

1 + 𝑢+ 𝑢2
, 𝑞𝑧 =

𝑢(1 + 𝑢)

1 + 𝑢+ 𝑢2
. (17.136)

Plot the 𝑞𝛼 versus 𝑢. Show that, if 𝑞𝛼 are ordered such that 𝑞1 ≤ 𝑞2 ≤ 𝑞3, then

− 1
3 ≤ 𝑞1 ≤ 0 ≤ 𝑞2 ≤ 2

3 ≤ 𝑞3 ≤ 1 . (17.137)

Solution. Type I.

Exercise 17.5. Schwarzschild interior as a Bianchi spacetime. Inside the horizon of the Schwarzschild
geometry, where the horizon function Δ is negative, the Killing vector associated with time translation
symmetry becomes spacelike, so the spacetime has three spacelike Killing vectors, and is therefore spatially
homogeneous. The line-element inside the horizon is

𝑑𝑠2 = − 𝑑𝑅2 + |Δ|𝑑𝑡2 + 𝑟2
(︀
𝑑𝜃2 + sin2𝜃 𝑑𝜑2

)︀
, (17.138)

where 𝑑𝑅 ≡ 𝑑𝑟/
√︀
|Δ|. The line-element (17.138) is in the form (17.90) with time coordinate 𝑅, spatial

coordinates 𝑡, 𝜃, 𝜑, spatial tetrad metric

𝛾𝑎𝑏 = diag(|Δ|, 𝑟2, 𝑟2) , (17.139)

and spatial vierbein and inverse vierbein

𝑒𝑎𝛼 = diag(1, 1, sin 𝜃) , 𝑒𝑎
𝛼 = diag(1, 1, 1/ sin 𝜃) . (17.140)

What Bianchi type is the Schwarzschild line-element (17.138)? Show that the Schwarzschild interior looks
like a Kasner geometry near the singularity.
Solution. Type V. The interior near the singularity is Kasner (17.133) with 𝑡 ∝ 𝑟3/2, and 𝑞1 = − 1

3 ,
𝑞2 = 𝑞3 = 2

3 .

Exercise 17.6. Kasner spacetime for a perfect fluid.A generalization of the Kasner line-element (17.133)
is

𝑑𝑠2 = − 𝑑𝑡2 +
∑︁
𝛼

𝑎2𝛼 𝑑𝑥
2
𝛼 , (17.141)
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with scale factors

𝑎𝛼 = 𝑎 𝑇 𝑞𝛼−1/3 , (17.142)

where 𝑎(𝑡) and 𝑇 (𝑡) are functions of time 𝑡, and the constants 𝑞𝛼 are Kasner coefficients satisfying equa-
tion (17.135). The overall scale factor 𝑎 satisfies

𝑎 ≡ (𝑎1𝑎2𝑎3)
1/3 . (17.143)

1. Show that the Einstein tensor corresponding to the Kasner line-element (17.141) is diagonal.

2. Show that the energy-momentum is that of a perfect fluid (i.e. the pressure is isotropic, with tetrad-frame
pressures 𝑝𝑎 ≡ 𝑇𝑎𝑎 = 𝑝 all equal) provided that 𝑎 and 𝑇 are related by

𝑎 =

(︂
3𝐾

𝑑𝑡

𝑑 ln𝑇

)︂1/3

, (17.144)

where 𝐾 is a real constant. Notice that the Kasner spacetime is not isotropic even though the energy-
momentum is isotropic.

3. Show that in this case of a perfect fluid the tetrad-frame Einstein equations are

𝐺00 = 3

(︂
�̇�2

𝑎2
− 𝐾2

𝑎6

)︂
= 8𝜋𝜌 , (17.145a)

𝐺𝑎𝑎 = − 2�̈�

𝑎
− �̇�2

𝑎2
− 3𝐾2

𝑎6
= 8𝜋𝑝 . (17.145b)

The Einstein equations (17.145) resemble those (10.29) of the FLRW geometry except that the curvature
terms 𝜅/𝑎2 in FLRW are replaced by terms proportional to −𝐾2/𝑎6.

4. The Hubble parameter is defined by 𝐻 ≡ �̇�/𝑎 as in FLRW. Conclude that the evolution of the scale
factor 𝑎(𝑡) with time 𝑡 is determined by the same equation (10.70) as for FLRW,

𝑡 =

∫︁
𝑑𝑎

𝑎𝐻
. (17.146)

5. Show that the Einstein equations (17.145) enforce that the energy-momentum of the perfect fluid satisfies
the first law of thermodynamics, similarly to FLRW, §10.9.2,

𝑑𝜌𝑎3

𝑑𝑡
+ 𝑝

𝑑𝑎3

𝑑𝑡
= 0 . (17.147)

6. From the first law of thermodynamics, show that for a perfect fluid with equation of state 𝑝/𝜌 = 𝑤 =

constant, the density 𝜌 is related to scale factor 𝑎 by, as in FLRW,

𝜌 ∝ 𝑎−3(1+𝑤) . (17.148)

7. More generally, as in FLRW, the energy-momentum may comprise multiple perfect fluid components 𝑥
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satisfying the first law (17.147). The critical density 𝜌crit is defined in terms of the Hubble parameter 𝐻
in the usual way by equation (10.46). Argue that the Kasner Einstein equation (17.145a) implies that

3𝐻2

8𝜋
≡ 𝜌crit = 𝜌𝐾 +

∑︁
species 𝑥

𝜌𝑥 , (17.149)

which differs from FLRW, equation (10.72), in that the FLRW curvature density 𝜌𝑘 ∝ 𝑎−2, equa-
tion (10.48), is replaced by the Kasner curvature density 𝜌𝐾 ∝ 𝑎−6,

𝜌𝐾 ≡
3𝐾2

8𝜋𝑎6
. (17.150)

The Kasner curvature density 𝜌𝐾 behaves like a perfect fluid with positive energy and an ultra-hard
equation of state, 𝑤 = 1.

8. Define 𝑎𝐾 and 𝐻𝐾 to be the cosmic scale factor and Hubble parameter at density-curvature equality,
where 𝜌 = 𝜌𝐾 = 1

2𝜌crit. Show that

𝐾 =
𝑎3𝐾𝐻𝐾√

2
. (17.151)

9. From equation (17.144) conclude that 𝑇 equals an integral over scale factor 𝑎,

ln𝑇 = 3𝐾

∫︁
𝑑𝑎

𝑎4𝐻
. (17.152)

Conclude that for a single perfect fluid with 𝑝/𝜌 = 𝑤 = constant,

𝑇/𝑇𝐾 =
(𝑎/𝑎𝐾)3[︀

1 +
√︀
1 + (𝑎/𝑎𝐾)3(1−𝑤)

]︀2/(1−𝑤)
. (17.153)

Conclude that the small and large 𝑎 limits of 𝑇 are, for 𝑤 ≤ 1,

𝑇/𝑇𝐾 →

{︃
(𝑎/𝑎𝐾)3 𝑎≪ 𝑎𝐾 ,

1 𝑎≫ 𝑎𝐾 .
(17.154)

Hence conclude that the perfect fluid Kasner solution goes over to vacuum Kasner for small 𝑎 and to
FLRW for large 𝑎. The solution approximates vacuum Kasner at small 𝑎 not because physical den-
sities are going to zero, but rather because the density becomes dominated by the Kasner curvature
density (17.150).

10. For the particular case of a cosmological constant, 𝑤 = −1, show that 𝐾 =
√︀
Λ/3, and that

𝑎/𝑎𝐾 = sinh1/3(
√
3Λ 𝑡) , 𝑇/𝑇𝐾 = tanh(

√
3Λ 𝑡/2) . (17.155)

Exercise 17.7. Oscillatory Belinskii-Khalatnikov-Lifshitz (BKL) instability. The contracting phase
of a Type VIII or IX Bianchi spacetime provides a model of collapse to a singularity that illustrates how
complicated such a collapse can be (Belinskii, Khalatnikov, and Lifshitz, 1982). Type VIII and IX Bianchi
spacetimes have all three eigenvalues 𝑛𝑎 non-zero, and 𝑘𝑎 therefore necessarily all zero.
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1. Define 𝑞𝑎 by

𝑞𝑎 ≡
𝑑 ln 𝑎𝑎
𝑑 ln |𝑡|

, (17.156)

and let 𝑞 be their sum,

𝑞 ≡
∑︁

𝑞𝑎 =
𝑑 ln(𝑎1𝑎2𝑎3)

𝑑 ln |𝑡|
. (17.157)

Note that in a collapsing spacetime, 𝑡 is negative and tending to zero, and ln |𝑡| → −∞ as |𝑡| → 0, so 𝑞𝑎
is positive for a collapsing scale factor 𝑎𝑎. Define further

𝐴𝑎 ≡ 𝑛𝑎𝑎2𝑎 . (17.158)

Show that, for vanishing energy-momentum, the equations of motion (17.130) are

𝑑𝑞1
𝑑 ln |𝑡|

+ 𝑞1(𝑞 − 1) =
1

2

(︂
𝑡

𝑎1𝑎2𝑎3

)︂2 [︀
(𝐴2 −𝐴3)

2 −𝐴2
1

]︀
, (17.159a)

𝑑𝑞2
𝑑 ln |𝑡|

+ 𝑞2(𝑞 − 1) =
1

2

(︂
𝑡

𝑎1𝑎2𝑎3

)︂2 [︀
(𝐴1 −𝐴3)

2 −𝐴2
2

]︀
, (17.159b)

𝑑𝑞3
𝑑 ln |𝑡|

+ 𝑞3(𝑞 − 1) =
1

2

(︂
𝑡

𝑎1𝑎2𝑎3

)︂2 [︀
(𝐴1 −𝐴2)

2 −𝐴2
3

]︀
, (17.159c)

and that the Hamiltonian constraint (17.131) is

𝑞2 −
∑︁

𝑞2𝑎 =
1

4

(︂
𝑡

𝑎1𝑎2𝑎3

)︂2 [︀
2(𝐴2

1 +𝐴2
2 +𝐴2

3)− (𝐴1 +𝐴2 +𝐴3)
2
]︀
. (17.160)

2. In gravitational collapse, the scale factors 𝑎𝑎 might be expected to become small. Argue that if the right
hand sides of equations (17.159) and (17.160) are neglected, then the solution is the Kasner solution,
with 𝑞𝑎 constant, satisfying equation (17.135).

3. In the Kasner solution, the 𝑞𝑎 satisfy the inequalities (17.137). Argue that if 𝑞𝑎 are ordered 𝑞1 <

𝑞2 < 𝑞3, then Kasner evolution tends to drive the 𝐴𝑎 so that |𝐴1| > |𝐴2| > |𝐴3|. Then argue from
equations (17.159) that the effect of the right hand sides is to drive smaller 𝑞𝑎 to increase, and larger
𝑞𝑎 to decrease.

4. Explore the evolution of the scale factors 𝑎𝑎 numerically. Choose either Type VIII or Type IX: they are
equally fun. You will find better numerical behaviour by transforming to a time variable 𝜏 defined by

𝑑

𝑑𝜏
≡ 𝑎1𝑎2𝑎3

𝑑

𝑑𝑡
=
𝑎1𝑎2𝑎3
𝑡

𝑑

𝑑 ln |𝑡|
, (17.161)

which increases as 𝑡 increases and ln |𝑡| decreases. Define

𝑄𝑎 ≡ − 1
2

𝑑 ln |𝐴𝑎|
𝑑𝜏

=
𝑎1𝑎2𝑎3
−𝑡

𝑞𝑎 , (17.162)
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Figure 17.1 Left panel: Cosmic scale factors 𝑎𝑎 in BKL collapse of a Bianchi Type IX spacetime (with eigenvalues

normalized to 𝑛𝑎 = 1). The thick (black) line is the geometric average (𝑎1𝑎2𝑎3)1/3 of the scale factors, which is

proportional to the cube root of the comoving volume element. Right panel: Logarithmic derivatives 𝑞𝑎 of the scale

factors, equation (17.156). The thick (black) line is the sum 𝑞 ≡ 𝑞1 + 𝑞2 + 𝑞3 of the logarithmic derivatives, which

asymptotes to 1 as collapse proceeds. The initial conditions were 𝑎1 = 𝑎2 = 𝑎3 = 1 and such that the comoving volume

element was initially barely collapsing, 𝑄1 = − 6
7
, 𝑄2 = 0, 𝑄3 = 7

8
, whence

∑︀
𝑄𝑎 = 1

56
. In the initial conditions,

the Hamiltonian constraint (17.164) determines the third 𝑄𝑎 in terms of the other two. Integration established a

posteriori that the initial time was 𝑡0 = −1.6859987. By the end of the plotted era, where 𝜏 = 105, the comoving

volume element had shrunk to 𝑎1𝑎2𝑎3 ≈ 10−230.

which has the same sign as 𝑞𝑎. Show that the equation of motion for 𝐴1 is

𝑑𝑄1

𝑑𝜏
= 1

2

[︀
𝐴2

1 − (𝐴2 −𝐴3)
2
]︀
, (17.163)

and similarly for 𝐴2 and 𝐴3. Show that the Hamiltonian constraint is

𝑄2𝑄3 +𝑄3𝑄1 +𝑄1𝑄2 = 1
2 (𝐴

2
1 +𝐴2

2 +𝐴2
3)− 1

4 (𝐴1 +𝐴2 +𝐴3)
2 . (17.164)

The equation of motion for 𝑡/(𝑎1𝑎2𝑎3) tends to become unstable when 𝑎1𝑎2𝑎3 is small. These circum-
stances are precisely those where 𝑞 = 1 to good accuracy. Thus when instability arises for small 𝑎1𝑎2𝑎3,
it can be worked around by enforcing 𝑞 = 1.

5. Show that for energy-momentum with equation of state 𝑝 = 𝑤𝜌, the proper energy density 𝜌 varies as

𝜌 ∝ (𝑎1𝑎2𝑎3)
−(1+𝑤) . (17.165)

Show that including energy-momentum in the equations of motion amounts to adding terms proportional
to (𝑎1𝑎2𝑎3)

2𝜌 on the right hand sides of equations (17.163). By comparing these terms to the largest
𝐴𝑎 terms on the right hand side, conclude that the influence of energy-momentum is sub-dominant as
|𝑡| → 0.
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6. Following Belinskii, Khalatnikov, and Lifshitz (1970), show that as |𝑡| → 0 the collapse may be described
as a sequence of Kasner epochs punctuated by bounces. The Kasner exponents 𝑞𝑎 before a bounce are
given by equation (17.136) for some 𝑢 ≥ 1. After the bounce, the exponents 𝑞𝑎 satisfy the same equation
with 𝑢 flipped,

𝑢→ −𝑢 . (17.166)

For 𝑢 ≥ 2 the flip reorders the smaller pair of 𝑞𝑎 while the largest 𝑞𝑎 remains the largest. For 1 ≤ 𝑢 ≤ 2

the flip takes the smallest 𝑞𝑎 to the largest, leaving the other pair in original order. To prepare for the
next bounce, reset 𝑢 ≥ 1 by transforming

𝑢→
{︂

(𝑢− 1)−1 1 ≤ 𝑢 ≤ 2 ,

𝑢− 1 𝑢 ≥ 2 .
(17.167)

Solution. Figure 17.1 illustrates an example computation. To avoid premature overflow, the computation
used logarithmic quantities ln 𝑎𝑎 and ln [|𝑡|/(𝑎1𝑎2𝑎3)] as variables.

17.7 Numerical considerations

Numerical experiments during the 1990s established that the ADM equations, whether in the original form
with momenta 𝜋𝑎𝑏, or in the York-modified form with momenta 𝐾𝑎𝑏, are numerically unstable.
The most popular formalism for long-term evolution of spacetimes is the Baumgarte-Shapiro-Shibata-

Nakamura (BSSN) formalism (Shibata and Nakamura, 1995; Baumgarte and Shapiro, 1998), and variants
thereof (Shinkai, 2009; Baumgarte and Shapiro, 2010; Brown et al., 2012). The BSSN formalism differs from
ADM in that it adjoins equations of motion (17.181) for a vector set of 3 BSSN momentum variables �̂�𝛼,
and treats the definition (17.180) of �̂�𝛼 in terms of derivatives of the metric as a constraint equation. The
BSSN equation was discussed in the language of multivector-valued differential forms in §16.16.2.
The superior numerical stability of the BSSN over the ADM formalism can be attributed to the fact that

BSSN is strongly hyperbolic, §17.7.1, whereas ADM is only weakly hyperbolic (Kreiss and Ortiz, 2002;
Nagy, Ortiz, and Reula, 2004).

17.7.1 Strong hyperbolicity

For numerical work, it is not sufficient to have an integrable set of equations. Integrability does not guarantee
good numerical behavior, if small errors in the initial conditions blow up exponentially. A condition that
guarantees good numerical behavior is that the system be strongly hyperbolic (Kreiss and Ortiz, 2002; Nagy,
Ortiz, and Reula, 2004; Hilditch, 2013). Loosely speaking, strong hyperbolicity requires that perturbations
to initial conditions propagate as waves ∼ 𝑒𝑖𝜔𝑡 rather than growing exponentially ∼ 𝑒𝛼𝑡.
Strong hyperbolicity for a first-order system of partial differential equations is defined as follows (Hilditch,
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2013). Let 𝑢𝑖 denote a set of variables satisfying the first-order system

𝜕𝑢𝑖
𝜕𝑡

+𝐴𝛼𝑖𝑗
𝜕𝑢𝑗
𝜕𝑥𝛼

+ · · · = 0 , (17.168)

where · · · does not involve derivatives of the variables. The matrix 𝐴𝛼𝑖𝑗 for each spatial coordinate direction
𝛼 is called the principal symbol of the system. The system is called weakly hyperbolic if, for every direction
𝛼, all the eigenvalues of the principal symbol are real. The system is called strongly hyperbolic if in addition,
for every 𝛼, the eigenvectors of the principal symbol form a complete set, and the eigenvector matrix and
its inverse are uniformly bounded.

17.8 BSSN formalism

BSSN reorganizes the second derivative structure of the spatial Einstein equations so that their behaviour
as wave equations for the spatial metric 𝑔𝛼𝛽 is manifest, equation (17.183). Only the 5 trace-free spatial
Einstein equations are genuine wave equations. The spatial trace of the Einstein equations is a non-wave
equation, the Raychaudhuri equation (17.76).
The Hamiltonian structure of the BSSN formalism was explored previously, in the language of multivector-

valued differential forms, in §16.16.2.

17.8.1 BSSN momentum equation

In the BSSN formalism, the momentum equation is treated as an equation of motion for the evolution with
time 𝑡 of a momentum variable �̂�𝛼. To identify what this momentum variable �̂�𝛼 is, it is most straightforward
to start not with equation (17.40b) for the Riemann components 𝑅𝑎𝑏𝑐0, as does ADM, but rather with
equation (17.40c) for 𝑅𝑐0𝑎𝑏. The 𝑎𝑏 ↔ 𝑐0 symmetry of the Riemann tensor 𝑅𝑎𝑏𝑐0 means that the two
expressions are identical when expanded in terms of vierbein derivatives, but the two expressions package
the connections and their derivatives in different ways. The restricted contribution �̂�𝑐0𝑎𝑏 to the Riemann
tensor, equation (17.42), involves 𝜕0Γ̂𝑎𝑏𝑐, which is a time derivative of an expression Γ̂𝑎𝑏𝑐 involving spatial
derivatives of the vierbein, which looks promising as a precursor of an object whose time evolution might
be governed by a momentum equation. However, the other derivative 𝜕𝑐Γ̂𝑎𝑏0 in �̂�𝑐0𝑎𝑏 also includes mixed
time-space second derivatives of the vierbein.
As with the earlier ADM equations of motion (17.55) for 𝑔𝛼𝛽 and (17.68) for 𝐾𝛼𝛽 , the identity of the object

whose time evolution is being governed becomes manifest in the coordinate frame, where the spatial tetrad
is set equal to the spatial coordinate tangent axes, equation (17.14). The desired equation for the coordinate-
frame Riemann components 𝑅𝛾𝑡𝛼𝛽 can be derived from a combination of equations (17.40c) and (17.40d),
but is obtained more directly from the general equation (17.34), with the restricted Riemann components
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from equation (17.35),

𝑅𝛾𝑡𝛼𝛽 = �̂�𝛾𝑡𝛼𝛽 +𝐾𝛽𝑡𝐾𝛼𝛾 −𝐾𝛼𝑡𝐾𝛽𝛾 , (17.169a)

�̂�𝛾𝑡𝛼𝛽 =
𝜕Γ̂𝛼𝛽𝑡
𝜕𝑥𝛾

− 𝜕Γ̂𝛼𝛽𝛾
𝜕𝑡

+ Γ̂𝛿𝛼𝑡Γ̂
𝛿
𝛽𝛾 − Γ̂𝛿𝛽𝑡Γ̂

𝛿
𝛼𝛾 , (17.169b)

where the greek indices are a reminder that this is a coordinate-frame expression, and where the final terms
in equations (17.34) and (17.35) vanish because of the symmetry Γ𝜇𝜅𝜆 = Γ𝜇𝜆𝜅 of coordinate connections
(Christoffel symbols), for vanishing torsion. As shown below, equation (17.174), the index on the restricted
coordinate connections in equation (17.169b) is raised with the spatial coordinate metric, not with the full
metric,

Γ̂𝛼𝛽𝜇 ≡ 𝑔𝛼𝛾Γ̂𝛾𝛽𝜇 . (17.170)

Thanks to the ADM gauge condition 𝑒0𝛼 = 0, the non-vanishing components of the coordinate-frame gen-
eralized extrinsic curvature 𝐾𝜆𝜇𝜈 ≡ 𝑒𝑙𝜆𝑒

𝑚
𝜇𝑒
𝑛
𝜈𝐾𝑙𝑚𝑛 are, similarly to the tetrad-frame generalized extrinsic

curvature 𝐾𝑙𝑚𝑛, those whose first two indices are one spatial 𝛼 and one time 𝑡 index,

𝐾𝛼𝑡𝜈 = 𝛼𝐾𝛼0𝜈 , (17.171)

which like the tetrad-frame generalized extrinsic curvature is antisymmetric in its first two indices 𝛼𝑡. The
extrinsic curvature is as usual 𝐾𝛼𝛽 ≡ 𝐾𝛼0𝛽 ≡ 𝑒𝑎𝛼𝑒𝑏𝛽𝐾𝑎0𝑏, which is symmetric in 𝛼𝛽, while the acceleration
is as usual 𝐾𝛼 ≡ 𝐾𝛼00 ≡ 𝑒𝑎𝛼𝐾𝑎00. The tensor 𝐾𝛼𝑡 in equation (17.169a) is

𝐾𝛼𝑡 ≡ 𝐾𝛼0𝑡 = 𝑒𝑚𝑡𝐾𝛼0𝑚 = 𝛼𝐾𝛼 − 𝛽𝛿𝐾𝛼𝛿 . (17.172)

The decomposition Γ𝜆𝜇𝜈 = Γ̂𝜆𝜇𝜈 +𝐾𝜆𝜇𝜈 , equation (17.27), holds for coordinate connections, but the coor-
dinate connections differ from the tetrad connections by a vierbein derivative, equation (11.44). Thus the
restricted coordinate-frame connections Γ̂𝜆𝜇𝜈 are related to the restricted tetrad-frame connections Γ̂𝑙𝑚𝑛 by

Γ̂𝜆𝜇𝜈 = 𝑒𝑙𝜆𝑒
𝑚
𝜇𝑒
𝑛
𝜈(𝑑𝑙𝑚𝑛 + Γ̂𝑙𝑚𝑛) . (17.173)

The vierbein derivative 𝑑0𝑎𝑛 with first index 0 and second index 𝑎 spatial vanishes because of the ADM
gauge condition 𝑒0𝛼 = 0. For convenience, define the restricted coordinate connection with first index a tetrad
index 𝑘 by Γ̂𝑘𝜇𝜈 ≡ 𝑒𝑘

𝜆Γ̂𝜆𝜇𝜈 . Since 𝑑0𝑎𝑛 = 0 it follows that the coordinate-frame connection Γ̂0𝛼𝜈 vanishes
like its tetrad-frame counterpart. Consequently the product of coordinate connections Γ̂𝜋𝛼𝑡Γ̂

𝜋
𝛽𝛾 contracted

with the full coordinate metric 𝑔𝜋𝜌 equals the product Γ̂𝛿𝛼𝑡Γ̂𝛿𝛽𝛾 contracted with the spatial metric 𝑔𝛿𝜖,

Γ̂𝜋𝛼𝑡Γ̂
𝜋
𝛽𝛾 = Γ̂𝑝𝛼𝑡Γ̂

𝑝
𝛽𝛾 = Γ̂𝑑𝛼𝑡Γ̂

𝑑
𝛽𝛾 = Γ̂𝛿𝛼𝑡Γ̂

𝛿
𝛽𝛾 , (17.174)

which justifies equation (17.170).
The coordinate connection Γ̂[𝛼𝛽]𝑡 antisymmetrized over its spatial indices 𝛼𝛽 is an antisymmetric spatial

tensor, which can be denoted 𝐹𝛼𝛽 ,

𝐹𝛼𝛽 ≡ Γ̂[𝛼𝛽]𝑡 =
1

2

(︂
𝜕𝛽𝛽
𝜕𝑥𝛼

− 𝜕𝛽𝛼
𝜕𝑥𝛽

)︂
. (17.175)
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The tensorial nature of 𝐹𝛼𝛽 follows from the fact that the coordinate-frame curl of a vector is a tensor,
Exercise 2.6. Expression (17.169b) for the restricted Riemann tensor can thus be written

�̂�𝛾𝑡𝛼𝛽 = �̂�𝛾𝐹𝛼𝛽 −
𝜕Γ̂[𝛼𝛽]𝛾

𝜕𝑡
+ Γ̂(𝛿𝛼)𝑡Γ̂

𝛿
𝛽𝛾 − Γ̂(𝛿𝛽)𝑡Γ̂

𝛿
𝛼𝛾 , (17.176)

in which the only term containing mixed time-space second derivatives is 𝜕Γ̂[𝛼𝛽]𝛾/𝜕𝑡. In equation (17.176),

the coordinate connection Γ̂(𝛼𝛽)𝑡 symmetrized over its spatial indices is

Γ̂(𝛼𝛽)𝑡 =
1

2

𝜕𝑔𝛼𝛽
𝜕𝑡

. (17.177)

Contracting the Riemann tensor 𝑅𝛾𝑡𝛼𝛽 yields the time-space components 𝑅𝑡𝛼 of the Ricci tensor,

𝑅𝑡𝛼 = �̂�𝑡𝛼 −𝐾𝛽
𝑡 𝐾𝛼𝛽 +𝐾𝛼𝑡𝐾 , (17.178a)

�̂�𝑡𝛼 = �̂�𝛽𝐹𝛽𝛼 +
𝜕Γ̂[𝛼𝛽]

𝛽

𝜕𝑡
− Γ̂(𝛿𝛼)𝑡Γ̂

𝛿𝛽
𝛽 + Γ̂(𝛿𝛽)

𝑡Γ̂𝛼𝛿𝛽 , (17.178b)

in which the only term containing mixed time-space derivatives is 𝜕Γ̂[𝛼𝛽]
𝛽/𝜕𝑡. In terms of derivatives of the

metric, Γ̂[𝛼𝛽]
𝛽 is

Γ̂[𝛼𝛽]
𝛽 =

1

2
𝑔𝛽𝛾

(︂
𝜕𝑔𝛼𝛾
𝜕𝑥𝛽

− 𝜕𝑔𝛽𝛾
𝜕𝑥𝛼

)︂
= −1

2

𝑔𝛼𝛾
𝑔

𝜕(𝑔𝑔𝛽𝛾)

𝜕𝑥𝛽
, (17.179)

where 𝑔 ≡ |𝑔𝛼𝛽 | is the determinant of the spatial metric. Equations (17.178) show that the variable Γ̂[𝛼𝛽]
𝛽

appears to be the desired BSSN momentum variable. However, it is common to use a variant BSSN mo-
mentum variable �̂�𝛼 in which the spatial metric is scaled by some power of the spatial metric determinant
𝑔,

�̂�𝛼 ≡ Γ̂𝛼𝛽
𝛽 +

𝑝

2

𝜕 ln 𝑔

𝜕𝑥𝛼
= 2Γ̂[𝛼𝛽]

𝛽 +
(1 + 𝑝)

2

𝜕 ln 𝑔

𝜕𝑥𝛼
= − 𝑔𝛼𝛾

𝑔(1−𝑝)/2
𝜕
(︀
𝑔(1−𝑝)/2𝑔𝛽𝛾

)︀
𝜕𝑥𝛽

, (17.180)

with 𝑝 an adjustable constant. For example, the choice 𝑝 = −1 recovers (twice) the original momentum
variable Γ̂[𝛼𝛽]

𝛽 , the choice 𝑝 = 0 yields a spatial Ricci tensor (17.182) whose only explicit second spatial

derivatives are a Laplacian of the spatial metric, and the choice 𝑝 = 1/3 gives an �̂�𝛼 that depends only on
the scaled spatial metric 𝑔−1/3𝑔𝛼𝛾 with unit determinant (and its inverse 𝑔1/3𝑔𝛽𝛾). In the BSSN formalism,
the evolution of the momentum variable �̂�𝛼 is governed by the momentum equation

1

2

𝜕�̂�𝛼

𝜕𝑡
= − (1 + 𝑝)

4

𝜕2 ln 𝑔

𝜕𝑡𝜕𝑥𝛼
+ Γ̂(𝛿𝛼)𝑡Γ̂

[𝛿𝛽]
𝛽 − Γ̂(𝛿𝛽)

𝑡Γ̂𝛼𝛿𝛽 + �̂�𝛽𝐹𝛼𝛽 +𝐾𝛽
𝑡 𝐾𝛼𝛽 −𝐾𝛼𝑡𝐾 + 8𝜋𝑇𝑡𝛼 . (17.181)

In the BSSN formalism, equation (17.180) is a constraint equation, which must be imposed in the initial
conditions, but which is satisfied automatically thereafter.
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17.8.2 BSSN spatial Ricci tensor

In the BSSN formalism, the spatial components �̂�𝛼𝛽 of the restricted Ricci tensor are recast in terms of the
BSSN variable �̂�𝛼,

�̂�𝛼𝛽 = − 𝑝

2

𝜕2 ln 𝑔

𝜕𝑥𝛼𝜕𝑥𝛽
− 𝑔𝛾𝛿

2

𝜕2𝑔𝛼𝛽
𝜕𝑥𝛾𝜕𝑥𝛿

+
1

2

𝜕�̂�𝛽

𝜕𝑥𝛼
+

1

2

𝜕�̂�𝛼

𝜕𝑥𝛽
− Γ̂𝛿𝛼𝛽Γ̂𝛿𝛾

𝛾 + Γ̂𝛾𝛿𝛼Γ̂𝛽𝛾𝛿 + Γ̂𝛾𝛿𝛽Γ̂𝛼𝛾𝛿 + Γ̂𝛾𝛿𝛼Γ̂𝛾𝛿𝛽 .

(17.182)
The only explicit second spatial derivatives in the expression (17.182) for �̂�𝛼𝛽 are a double gradient of
the spatial metric determinant 𝑔, and a spatial Laplacian of the spatial metric 𝑔𝛼𝛽 , the remaining second
derivatives having been absorbed into first spatial derivatives of the BSSN momentum variable �̂�𝛼.
When the restricted spatial Ricci tensor (17.182) is inserted into the equation of motion (17.68) for the

extrinsic curvature 𝐾𝛼𝛽 , the spatial Laplacian combines with a second time derivative coming from 𝜕𝐾𝛼𝛽/𝜕𝑡

to form a 4-dimensional wave equation for the spatial metric 𝑔𝛼𝛽 . Thus the character of the spatial Einstein
equations as wave equations for the spatial metric 𝑔𝛼𝛽 is manifest in the BSSN formalism. Explicitly, the
spatial Einstein equations, which are just the equations of motion (17.68) for the spatial extrinsic curvature
𝐾𝛼𝛽 , are

1

2

[︃(︂
𝜕

𝛼 𝜕𝑡

)︂2

− 𝑔𝛾𝛿 𝜕2

𝜕𝑥𝛾𝜕𝑥𝛿

]︃
𝑔𝛼𝛽 +

𝜕2 ln(𝛼𝑔−𝑝/2)

𝜕𝑥𝛼𝜕𝑥𝛽
+ ... = 8𝜋

(︂
𝑇𝛼𝛽 −

1

2
𝑔𝛼𝛽𝑇

)︂
, (17.183)

where ... signifies terms involving no higher than first time or space derivatives of the lapse 𝛼, the shift 𝛽𝛼,
the spatial coordinate metric 𝑔𝛼𝛽 , the extrinsic curvatures 𝐾𝛼𝛽 , or the BSSN variable �̂�𝛼.
Commonly, only the 5 trace-free equations of motion for 𝐾𝛼𝛽 are used in the BSSN formalism, the trace

equation being replaced by the Raychaudhuri equation (17.76).

17.8.3 BSSN summary

To summarize, the dynamical variables in the BSSN formalism are the spatial metric 𝑔𝛼𝛽 , the spatial extrinsic
curvature 𝐾𝛼𝛽 , and the spatial BSSN variable �̂�𝛼. The equations of motion for the dynamical variables
are:
1. the 6 equations (17.55) for the spatial metric 𝑔𝛼𝛽 ;
2. the 5 equations constituting the trace-free part of the 6 equations (17.68) for the spatial extrinsic

curvature 𝐾𝛼𝛽 ;
3. the 1 Raychaudhuri equation (17.76) for the trace 𝐾 of the extrinsic curvature;
4. the 3 equations (17.181) for the BSSN variable �̂�𝛼.

The constraint equations, which must be arranged to be satisfied on the initial hypersurface, but which are
thereafter satisfied automatically are:
1. the 1 Hamiltonian constraint (17.74a);
2. the 3 momentum constraints (17.74b);
3. the 3 constraints (17.180) on the BSSN variable �̂�𝛼.
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The Hamiltonian and momentum constraints are differential constraints, elliptic partial differential equations
of second order in the spatial coordinates, which are in general non-trivial to set up. The constraints on �̂�𝛼 on
the other hand are algebraic constraints, which are straightforward to impose once the differential constraints
are solved.

17.9 Pretorius formalism

Pretorius (2005) proposed an elegant 4-dimensional version of the BSSN formalism. A natural 4-dimensional
generalization of the BSSN momentum variable �̂�𝛼 defined by equation (17.180) is (with 𝑝 = 0)

𝐻𝜅 ≡ Γ𝜅𝜆
𝜆 = 2Γ[𝜅𝜆]

𝜆 +
𝜕 ln
√
−𝑔

𝜕𝑥𝜅
= − 𝑔𝜅𝜇√

−𝑔
𝜕(
√
−𝑔 𝑔𝜆𝜇)
𝜕𝑥𝜆

, (17.184)

in which 𝑔 ≡ |𝑔𝜅𝜆| is the determinant of the full 4-dimensional metric. If the coordinates 𝑥𝜅 are treated as
four scalars (they are not; and neither do they form a 4-vector), then the contravariant components 𝐻𝜅 can
be written as minus the (torsion-free) d’Alembertian � ≡ 𝐷𝜆𝐷

𝜆 of the coordinates,

𝐻𝜅 = − 1√
−𝑔

𝜕(
√
−𝑔 𝑔𝜆𝜅)
𝜕𝑥𝜆

= − 1√
−𝑔

𝜕

𝜕𝑥𝜆

(︂√
−𝑔 𝑔𝜆𝜇 𝜕𝑥

𝜅

𝜕𝑥𝜇

)︂
= −�𝑥𝜅 , (17.185)

which motivates calling 𝐻𝜅 the harmonic function. The coordinates 𝑥𝜅 are not scalars, and neither is the
harmonic function 𝐻𝜅 a tensor. In the Pretorius formalism, the Ricci tensor takes the form

𝑅𝜅𝜆 = −1

2
𝑔𝜇𝜈

𝜕2𝑔𝜅𝜆
𝜕𝑥𝜇𝜕𝑥𝜈

+
1

2

𝜕𝐻𝜆

𝜕𝑥𝜅
+

1

2

𝜕𝐻𝜅

𝜕𝑥𝜆
− Γ𝜈𝜅𝜆𝐻𝜈 + Γ𝜇𝜈𝜅Γ𝜆𝜇𝜈 + Γ𝜇𝜈𝜆Γ𝜅𝜇𝜈 + Γ𝜇𝜈𝜅Γ𝜇𝜈𝜆 , (17.186)

in which the only explicit second derivatives are those in the 𝑔𝜇𝜈𝜕2𝑔𝜅𝜆/𝜕𝑥𝜇𝜕𝑥𝜈 term. This second derivative
term has the form of a 4-dimensional coordinate wave operator acting on the 4-dimensional coordinate metric
𝑔𝜅𝜆. The Einstein equations are as usual

𝑅𝜅𝜆 = 8𝜋
(︀
𝑇𝜅𝜆 − 1

2𝑔𝜅𝜆𝑇
)︀
. (17.187)

Despite the covariant 4-dimensional character of the Pretorius formalism, it is still possible to make ADM
gauge choices, §17.1, that is, to foliate the spacetime into hypersurfaces of constant time 𝑡, and to work in
an ADM tetrad whose time axis 𝛾𝛾0 is the future-pointing unit normal to hypersurfaces of constant time 𝑡. In
the ADM tetrad, the tetrad-frame harmonic function 𝐻𝑘 ≡ 𝑒𝑘𝜅𝐻𝜅 with 𝐻𝜅 defined by equation (17.184) is,
in terms of the vierbein derivatives 𝑑𝑘𝑙𝑚 defined by equation (11.33), the tetrad-frame restricted connections
Γ̂𝑘𝑙𝑚, and the generalized extrinsic curvature 𝐾𝑙𝑚𝑛,

𝐻𝑘 ≡ 𝑒𝑘𝜅𝐻𝜅 = 𝑑𝑘𝑚
𝑚 + Γ𝑘𝑚

𝑚 = 𝑑𝑘𝑚
𝑚 + Γ̂𝑘𝑚

𝑚 +𝐾𝑘𝑚
𝑚 = 𝑑𝑘0

0 + �̂�𝑘 −𝐾𝑘 , (17.188)

where �̂�𝑘 ≡ 𝑑𝑘𝑎
𝑎 + Γ̂𝑘𝑎

𝑎 = {0, �̂�𝑎} = {0, 𝑒𝑎𝛼�̂�𝛼}, and �̂�𝛼 is the BSSN momentum variable defined by
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equation (17.180) with 𝑝 = 0. The tetrad-frame components 𝐻𝑘 of the harmonic function are

𝐻0 =
1

𝛼
𝜕0𝛼−𝐾 , (17.189a)

𝐻𝑎 =
1

𝛼
𝑒𝑎𝛼𝜕0𝛽

𝛼 + �̂�𝑎 −𝐾𝑎 . (17.189b)

Pretorius (2005) points out that the arbitrariness of the choice of coordinates 𝑥𝜅 translates into an ar-
bitrariness in the choice of the 4 components 𝐻𝜅 of the harmonic function. Thus instead of treating the
lapse and shift as arbitrarily adjustable functions, the harmonic functions 𝐻𝜅 can be adjusted arbitrarily.
For example, the harmonic function can be chosen to vanish identically, 𝐻𝜅 = 0, a coordinate condition first
proposed by Fock (1957). Equations (17.189) can then be interpreted as evolution equations for the lapse
𝛼 and the shift 𝛽𝛼. In this case the 4 Einstein equations with at least one temporal index are not used as
evolution equations.
However, it is also possible (Bona et al., 2003) to follow the BSSN strategy of choosing the lapse and

shift arbitrarily, in which case the 4 Einstein equations (17.186) with at least one temporal index provide
evolution equations for the harmonic function 𝐻𝜅, and equations (17.189) are constraint equations that must
be imposed on the initial hypersurface, but which are guaranteed thereafter.
As in ADM and BSSN, the Hamiltonian and momentum constraints, along with the conditions (17.185),

must be arranged to be satisfied on the initial hypersurface.

17.10 𝑀+𝑁 split

In situations where fields are highly relativistic, such as inside black holes, or when following gravitational
waves, it can be natural to work in a frame where some of the tetrad axes are null. A null direction 𝛾𝛾𝑣 is
orthogonal to itself, 𝛾𝛾𝑣 ·𝛾𝛾𝑣 = 0, so it is not possible to carry out a 3+1 split of spacetime into a 1-dimensional
space aligned with 𝛾𝛾𝑣 and a 3-dimensional space orthogonal to it. It is however possible, as in the Newman-
Penrose formalism, to carry out a 2+2 split of spacetime into a 2-dimensional space spanned by two null
directions 𝛾𝛾𝑣 and 𝛾𝛾𝑢, and a 2-dimensional space orthogonal to the null directions.
This section 17.10 considers the general case of an 𝑀+𝑁 split of an 𝑀+𝑁 -dimensional spacetime.

17.10.1 𝑀+𝑁 tetrad and extrinsic curvature

In an 𝑀+𝑁 split of spacetime, the tetrad-frame axes 𝛾𝛾𝑚 at each point are split into two orthogonal sets,
of dimensions respectively 𝑁 and 𝑀 . Label the 𝑁 tetrad axes 𝛾𝛾𝑧 of the first set with late letters 𝑧, and the
𝑀 tetrad axes 𝛾𝛾𝑎 of the second set with early letters 𝑎, and let mid letters 𝑘𝑙... run over all indices. The
orthogonality of the tetrad axes from opposite sets is expressed by the 𝑀𝑁 conditions

𝛾𝛾𝑎 · 𝛾𝛾𝑧 = 0 . (17.190)
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In the 𝑀+𝑁 split, the two orthogonal subspaces at each point are fixed a priori, which amounts to making
a specific choice of gauge of the tetrad. The gauge-fixing fixes the two subspaces, but allows tetrad transfor-
mations within each subspace. Under this restricted group of tetrad transformations, the tetrad connections
Γ𝑎𝑧𝑚 with first two indices 𝑎𝑧 from opposite subspaces form a tensor, the generalized extrinsic curvature
𝐾𝑎𝑧𝑚,

𝐾𝑎𝑧𝑚 ≡ Γ𝑎𝑧𝑚 = 𝛾𝛾𝑎 · 𝜕𝑚𝛾𝛾𝑧 . (17.191)

These connections form a tensor under the restricted group because the only potentially non-tensorial con-
tribution to 𝛾𝛾𝑎 · 𝜕𝑚𝛾𝛾𝑧 under a restricted tetrad transformation 𝛾𝛾𝑧 → 𝐿𝑧

𝑦𝛾𝛾𝑦 is

𝛾𝛾𝑎 · 𝛾𝛾𝑦 𝜕𝑚𝐿𝑧𝑦 = 0 , (17.192)

which vanishes because 𝛾𝛾𝑎 and 𝛾𝛾𝑦 are orthogonal. There are 𝑀𝑁(𝑀 + 𝑁) non-vanishing components of
the extrinsic curvature 𝐾𝑎𝑧𝑚 (hence 12 if 𝑀 = 3 and 𝑁 = 1, or 16 if 𝑀 = 𝑁 = 2). The remaining tetrad
connections Γ𝑚𝑛𝑙, namely those with first two indices 𝑚𝑛 from the same subspace, constitute the restricted
connections Γ̂𝑚𝑛𝑙,

Γ̂𝑚𝑛𝑙 ≡ Γ𝑚𝑛𝑙 for 𝑚𝑛 = 𝑦𝑧 or 𝑚𝑛 = 𝑎𝑏 . (17.193)

The vanishing of the mixed components 𝛾𝑎𝑧 of the tetrad metric implies that the generalized extrinsic
curvature is antisymmetric in its first two indices,

𝐾𝑧𝑎𝑙 = −𝐾𝑎𝑧𝑙 . (17.194)

The vanishing components of 𝐾𝑚𝑛𝑙 and Γ̂𝑚𝑛𝑙 are

𝐾𝑎𝑏𝑙 = 𝐾𝑦𝑧𝑙 = 0 , Γ̂𝑎𝑧𝑙 = 0 . (17.195)

17.10.2 𝑀+𝑁 Riemann and Ricci tensors

The extrinsic curvature 𝐾𝑚𝑛𝑙 is a tensor under the restricted group of tetrad transformations. The restricted
Riemann curvature tensor �̂�𝑘𝑙𝑎𝑧 with its last two indices from opposite subspaces vanishes since Γ̂𝑎𝑧𝑘 vanishes,

�̂�𝑘𝑙𝑎𝑧 = 𝜕𝑘Γ̂𝑎𝑧𝑙 − 𝜕𝑙Γ̂𝑎𝑧𝑘 + Γ̂𝑝𝑎𝑙Γ̂𝑝𝑧𝑘 − Γ̂𝑝𝑎𝑘Γ̂𝑝𝑧𝑙 + (Γ𝑝𝑘𝑙 − Γ𝑝𝑙𝑘)Γ̂𝑎𝑧𝑝 = 0 . (17.196)

If torsion vanishes, then the full Riemann curvature tensor 𝑅𝑘𝑙𝑚𝑛 is symmetric in 𝑘𝑙↔ 𝑚𝑛, but the restricted
Riemann tensor �̂�𝑘𝑙𝑚𝑛 is not symmetric. Thus the components �̂�𝑎𝑧𝑘𝑙 of the restricted Riemann curvature
do not vanish even though the components �̂�𝑘𝑙𝑎𝑧 do vanish.
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In the 𝑀+𝑁 split, the expression (17.34) for the Riemann curvature tensor becomes

𝑅𝑤𝑥𝑦𝑧 = �̂�𝑤𝑥𝑦𝑧 +𝐾𝑎
𝑦𝑥𝐾𝑎𝑧𝑤 −𝐾𝑎

𝑦𝑤𝐾𝑎𝑧𝑥 , (17.197a)

𝑅𝑥𝑦𝑎𝑧 = �̂�𝑥𝐾𝑎𝑧𝑦 − �̂�𝑦𝐾𝑎𝑧𝑥 + (𝐾𝑐
𝑥𝑦 −𝐾𝑐

𝑦𝑥)𝐾𝑎𝑧𝑐 (17.197b)

= 𝑅𝑎𝑧𝑥𝑦 = �̂�𝑎𝑧𝑥𝑦 +𝐾𝑐
𝑥𝑧𝐾𝑐𝑦𝑎 −𝐾𝑐

𝑥𝑎𝐾𝑐𝑦𝑧 , (17.197c)

𝑅𝑏𝑦𝑎𝑧 = �̂�𝑏𝐾𝑎𝑧𝑦 − �̂�𝑦𝐾𝑎𝑧𝑏 +𝐾𝑥
𝑏𝑦𝐾𝑎𝑧𝑥 −𝐾𝑐

𝑦𝑏𝐾𝑎𝑧𝑐 , (17.197d)

𝑅𝑏𝑐𝑎𝑧 = �̂�𝑏𝐾𝑎𝑧𝑐 − �̂�𝑐𝐾𝑎𝑧𝑏 + (𝐾𝑥
𝑏𝑐 −𝐾𝑥

𝑐𝑏)𝐾𝑎𝑧𝑥 (17.197e)

= 𝑅𝑎𝑧𝑏𝑐 = �̂�𝑎𝑧𝑏𝑐 +𝐾𝑥
𝑏𝑧𝐾𝑥𝑐𝑎 −𝐾𝑥

𝑏𝑎𝐾𝑥𝑐𝑧 , (17.197f)

𝑅𝑎𝑏𝑐𝑑 = �̂�𝑎𝑏𝑐𝑑 +𝐾𝑧
𝑐𝑏𝐾𝑧𝑑𝑎 −𝐾𝑧

𝑐𝑎𝐾𝑧𝑑𝑏 . (17.197g)

If the tetrad connections are replaced by their torsion-free expressions in terms of derivatives of the vierbein,
then the various alternative expressions for the Riemann tensor become identities. The Ricci tensor 𝑅𝑘𝑚 is

𝑅𝑦𝑧 = �̂�𝑦𝑧 + (�̂�𝑎 +𝐾𝑎)𝐾
𝑎
𝑧𝑦 − �̂�𝑦𝐾𝑧 −𝐾𝑏

𝑦𝑎𝐾
𝑎
𝑧𝑏 , (17.198a)

𝑅𝑧𝑎 = �̂�𝑧𝑏𝑎
𝑏 + (�̂�𝑦 +𝐾𝑦)𝐾

𝑦
𝑎𝑧 − �̂�𝑧𝐾𝑎 −𝐾𝑦

𝑎𝑏𝐾
𝑏
𝑧𝑦 (17.198b)

= 𝑅𝑎𝑧 = �̂�𝑎𝑦𝑧
𝑦 + (�̂�𝑏 +𝐾𝑏)𝐾

𝑏
𝑧𝑎 − �̂�𝑎𝐾𝑧 −𝐾𝑦

𝑎𝑏𝐾
𝑏
𝑧𝑦 (17.198c)

= �̂�𝑦𝐾
𝑦
𝑎𝑧 − �̂�𝑧𝐾𝑎 + �̂�𝑏𝐾

𝑏
𝑧𝑎 − �̂�𝑎𝐾𝑧 − 2𝐾𝑦

𝑎𝑏𝐾
𝑏
𝑧𝑦 +𝐾𝑦

𝑎𝑏𝐾
𝑏
𝑦𝑧 +𝐾𝑦

𝑏𝑎𝐾
𝑏
𝑧𝑦 (17.198d)

𝑅𝑎𝑏 = �̂�𝑎𝑏 + (�̂�𝑧 +𝐾𝑧)𝐾
𝑧
𝑏𝑎 − �̂�𝑎𝐾𝑏 −𝐾𝑧

𝑎𝑦𝐾
𝑦
𝑏𝑧 . (17.198e)

Contracting the Ricci tensor yields the Ricci scalar 𝑅,

𝑅 = �̂�− 2�̂�𝑧𝐾
𝑧 − 2�̂�𝑎𝐾

𝑎 −𝐾𝑏𝑧𝑎𝐾𝑎𝑧𝑏 −𝐾𝑧𝑎𝑦𝐾𝑦𝑎𝑧 −𝐾𝑧𝐾𝑧 −𝐾𝑎𝐾𝑎 . (17.199)

17.11 2+2 split

For the particular case of a 2+2 split, equations (17.198) for the Ricci tensor 𝑅𝑘𝑚 become

𝑅𝑣𝑢 = �̂�𝑣𝑢 − �̂�𝑣𝐾𝑢 + (�̂�𝑎 +𝐾𝑎)𝐾
𝑎
𝑢𝑣 −𝐾𝑏

𝑣𝑎𝐾
𝑎
𝑢𝑏 , (17.200a)

𝑅𝑣𝑣 = − �̂�𝑣𝐾𝑣 + (�̂�𝑎 +𝐾𝑎)𝐾
𝑎
𝑣𝑣 −𝐾𝑏

𝑣𝑎𝐾
𝑎
𝑣𝑏 , (17.200b)

𝑅𝑣+ = �̂�𝑣++− + �̂�𝑣𝐾𝑣+𝑢 − �̂�𝑢𝐾𝑣+𝑣 +𝐾𝑦𝐾
𝑦
+𝑣 −𝐾

𝑦
+𝑏𝐾

𝑏
𝑣𝑦 (17.200c)

= 𝑅+𝑣 = − �̂�+𝑣𝑣𝑢 − �̂�+𝐾+𝑣− + �̂�−𝐾+𝑣+ +𝐾𝑏𝐾
𝑏
𝑣+ −𝐾

𝑦
+𝑏𝐾

𝑏
𝑣𝑦 (17.200d)

= �̂�𝑣𝐾𝑣+𝑢 − �̂�𝑢𝐾𝑣+𝑣 − �̂�+𝐾+𝑣− + �̂�−𝐾+𝑣+ − 2𝐾𝑦
+𝑏𝐾

𝑏
𝑣𝑦 +𝐾𝑦

+𝑏𝐾
𝑏
𝑦𝑣 +𝐾𝑦

𝑏+𝐾
𝑏
𝑣𝑦 , (17.200e)

𝑅++ = (�̂�𝑧 +𝐾𝑧)𝐾
𝑧
++ − �̂�+𝐾+ −𝐾𝑧

+𝑦𝐾
𝑦
+𝑧 , (17.200f)

𝑅+− = �̂�+− + (�̂�𝑧 +𝐾𝑧)𝐾
𝑧
−+ − �̂�+𝐾− −𝐾𝑧

+𝑦𝐾
𝑦
−𝑧 . (17.200g)
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Singularity theorems

Singularity theorems prove that, given a number of plausible assumptions, general relativity commits suicide
inside black holes. The conclusion that there are places, called singularities, inside black holes where the
general relativistic description of spacetime fails is profound. It means that new physics, presumably quantum
gravity in some form, must replace general relativity at singularities. Any viable theory of quantum gravity
must be able to resolve the problem of singularities.
The first singularity theorem was proved by Penrose (1965). The classic book by Hawking and Ellis (1973)

lays out a variety of singularity theorems. As reviewed by Senovilla (1998), singularity theorems state that
given:
1. a trapped surface condition,
2. a positive energy condition,
3. a causality condition,

then there exist geodesics that are incomplete, in the sense that the geodesics reach a point beyond which
they cannot be continued. The power of singularity theorems is that they show that general relativity fails
inside black holes. The weakness of singularity theorems is that they are quite unspecific about the nature
or location of a “singularity.”
This Chapter focuses on the principal ingredients of the singularity theorems, namely the Raychaudhuri

equations, §18.2, and the construction of hypersurface-orthogonal congruences of geodesics, §§18.6 and 18.7.
The Chapter concludes, §18.9, with a brief exposition of the original singularity theorem discovered by
Penrose (1965).

18.1 Congruences

The Raychaudhuri equations govern the evolution of the extrinsic curvature along systems of paths called
congruences, which fill, and do not cross or overlap in, at least some connected region of spacetime.
Congruences may be timelike or null, and they may be geodesic or otherwise. Congruences are often defined
with the restriction that the paths do not cross or overlap anywhere in spacetime, but in this book the more
relaxed condition is imposed, that paths do not cross or overlap over some connected region.

532
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A path is specified by its coordinates 𝑥𝜇(𝜆) as a function of some parameter 𝜆 along the path. The
derivative of the path defines the 4-velocity 𝑢𝜇 along the path,

𝑢𝜇 ≡ 𝑑𝑥𝜇

𝑑𝜆
. (18.1)

If the congruence of paths is timelike, then the parameter 𝜆 may be taken equal to the proper time 𝜏 along
the path. The 4-velocity 𝑢𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜏 then satisfies the normalization condition 𝑢𝜇𝑢𝜇 = −1. The 4-velocity
vector 𝑢 ≡ 𝑒𝜇𝑢

𝜇 defines the tetrad time vector 𝛾𝛾0,

𝛾𝛾0 = 𝑢 . (18.2)

The tetrad time vector 𝛾𝛾0 is the unique future-pointing vector that is tangent to the timelike path and
normalized to 𝛾𝛾0 · 𝛾𝛾0 = −1.
If the congruence of paths is null, then 𝜆 may be any arbitrary parameter, not necessarily an affine

parameter. If the parameter 𝜆 is an affine parameter, then the path is said to be affinely parameterized. The
4-velocity 𝑢𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜆 satisfies the normalization condition 𝑢𝜇𝑢𝜇 = 0 regardless of whether the parameter
𝜆 is affine. The 4-velocity vector 𝑢 ≡ 𝑒𝜇𝑢

𝜇 defines the tetrad null vector 𝛾𝛾𝑣 (say),

𝛾𝛾𝑣 = 𝑢 . (18.3)

Unlike the timelike case, the normalization condition 𝛾𝛾𝑣 ·𝛾𝛾𝑣 = 0 does not determine uniquely the null vector
𝛾𝛾𝑣.
For either a timelike or a null path, the 4-velocity 𝑢 = 𝑢𝑚𝛾𝛾𝑚 has tetrad-frame components

𝑢𝑚 = {1, 0, 0, 0} , (18.4)

whose only non-vanishing component is 𝑢𝑧 = 1, with index 𝑧 = 0 for a timelike path, 𝑧 = 𝑣 for a null path.
The covariant derivative of the 4-velocity along the path is

𝐷𝑛𝑢𝑚 = 𝜕𝑛𝑢𝑚 − Γ𝑘𝑚𝑛𝑢𝑘 = Γ𝑚𝑧𝑛 . (18.5)

The components for spatial 𝑚 = 𝑎 constitute by definition the generalized extrinsic curvature 𝐾𝑎𝑧𝑛, equa-
tion (17.191),

𝐷𝑛𝑢𝑎 = 𝐾𝑎𝑧𝑛 . (18.6)

The 4-velocity along the path evolves as

𝐷𝑢𝑘

𝐷𝜆
= 𝑢𝑛𝜕𝑛𝑢

𝑘 + Γ𝑘𝑚𝑛𝑢
𝑚𝑢𝑛 = Γ𝑘𝑧𝑧 , (18.7)

whose spatial components constitute the acceleration 𝐾𝑎
𝑧𝑧,

𝐷𝑢𝑎

𝐷𝜆
= 𝐾𝑎

𝑧𝑧 . (18.8)

For a timelike geodesic (𝑧 = 0), the time component of the acceleration vanishes automatically, 𝐷𝑢0/𝐷𝜆 =

Γ0
00 = 0. For a null geodesic (𝑧 = 𝑣), the 𝑣-component of the acceleration 𝐷𝑢𝑣/𝐷𝜆 = Γ𝑣𝑣𝑣 = −Γ𝑢𝑣𝑣 vanishes

if the path is affinely parameterized, but not in general. If the null path is affinely parameterized, then the
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4-velocity 𝑢𝑚 coincides (up to a constant factor) with the momentum 𝑝𝑚 along the path. Choosing the path
to be affinely parameterized amounts to choosing the null vector 𝛾𝛾𝑣 such that the momentum 𝑝𝑣 is constant
along the null geodesic, that is, a light ray is neither redshifted nor blueshifted as it propagates along the
affinely parameterized path.
The covariant divergence of the 4-velocity is

𝐷𝑚𝑢
𝑚 = Γ𝑧𝑧𝑧 +𝐾𝑧 . (18.9)

For a timelike congruence, the covariant divergence is just the trace𝐾 ≡ 𝐾0 ≡ 𝐾𝑎
0𝑎 of the extrinsic curvature.

For a null congruence, the covariant divergence is the acceleration Γ𝑣𝑣𝑣 plus the trace𝐾𝑣 ≡ 𝐾𝑎
𝑣𝑎 of the extrinsic

curvature. If the null path is affinely parameterized, then the covariant divergence is just the trace 𝐾𝑣.

18.2 Raychaudhuri equations

TheRaychaudhuri equations, which in their most general form are equations (18.10), govern the evolution
of the extrinsic curvature along arbitrary timelike or null congruences. Actually, the equation traditionally
named after Raychaudhuri (1955) is the equation for the evolution of the trace of the extrinsic curvature.
Here however the full suite of equations for the components of the extrinsic curvature are called Raychaudhuri
equations.
The Raychaudhuri equations come in various flavours, depending on whether the congruence is timelike or

null, whether the congruence is geodesic, and what additional gauge conditions are imposed on the tetrad.
If the congruence is timelike, it is convenient to take the tetrad to be orthonormal, with the time axis 𝛾𝛾0

tangent to the timelike paths, equation (18.2). If the congruence is null, it is convenient to take the tetrad
to be Newman-Penrose, that is, a double-null tetrad, with the null axis 𝛾𝛾𝑣 tangent to the null paths. To
cover both timelike and null cases at the same time, denote the tangent axis by 𝛾𝛾𝑧, with index 𝑧 = 0 in the
timelike case, and 𝑧 = 𝑣 in the null case.
The Raychaudhuri equations are just a subset of the equations (17.197) for the Riemann tensor in an

𝑀+𝑁 split of spacetime, §17.10. In 4 spacetime dimensions, the split is 3+1 for a timelike congruence, and
2+2 for a null congruence. In an 𝑀+𝑁 split of spacetime, the Raychaudhuri equations are the equations for
the components 𝑅𝑏𝑧𝑎𝑧 of the Riemann tensor, equation (17.197d),

�̂�𝑧𝐾𝑎𝑧𝑏 − �̂�𝑏𝐾𝑎𝑧𝑧 −𝐾𝑦
𝑏𝑧𝐾𝑎𝑧𝑦 +𝐾𝑐

𝑧𝑏𝐾𝑎𝑧𝑐 = −𝑅𝑏𝑧𝑎𝑧 (no sum over 𝑧) , (18.10)

with 𝑧 = 0 for a timelike congruence, or 𝑧 = 𝑣 for a null congruence. Equation (18.10) is to be interpreted
as an equation governing the evolution of the extrinsic curvature 𝐾𝑎𝑧𝑏 along any path of the congruence,
that is, along the 𝑧-direction. The evolution depends on the Riemann curvature 𝑅𝑏𝑧𝑎𝑧 encountered along the
path.
The left hand side of equation (18.10) also depends on a derivative of the spatial acceleration 𝐾𝑎𝑧𝑧. A

necessary and sufficient condition for the congruence to be geodesic is that the spatial acceleration vanishes

𝐾𝑎𝑧𝑧 = 0 . (18.11)
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For a geodesic congruence (not necessarily affinely parameterized), the Raychaudhuri equation (18.10) be-
comes

�̂�𝑧𝐾𝑎𝑧𝑏 −𝐾𝑦
𝑏𝑧𝐾𝑎𝑧𝑦 +𝐾𝑐

𝑧𝑏𝐾𝑎𝑧𝑐 = −𝑅𝑏𝑧𝑎𝑧 (no sum over 𝑧) . (18.12)

If the congruence is geodesic, then the tetrad can be chosen to to be parallel-transported along each path
of the congruence. In this case all the components of the tetrad-frame connection with final index 𝑧 vanish

Γ𝑘𝑙𝑧 = 0 . (18.13)

The conditions (18.13) exhaust all the 6 degrees of freedom of Lorentz transformations of the tetrad. In this
case the restricted covariant derivative �̂�𝑧 in the Raychaudhuri equation (18.12) reduces to the directed
derivative 𝜕𝑧, and the equation becomes

𝜕𝑧𝐾𝑎𝑧𝑏 −𝐾𝑦
𝑏𝑧𝐾𝑎𝑧𝑦 +𝐾𝑐

𝑧𝑏𝐾𝑎𝑧𝑐 = −𝑅𝑏𝑧𝑎𝑧 (no sum over 𝑧) . (18.14)

18.3 Raychaudhuri equations for a timelike geodesic congruence

For a congruence of timelike paths, the extrinsic curvature is the spatial tensor 𝐾𝑎𝑏 ≡ 𝐾𝑎0𝑏 ≡ Γ𝑎0𝑏. If the
timelike paths are geodesic, then the acceleration 𝐾𝑎 ≡ 𝐾𝑎00 vanishes. Along a timelike geodesic congruence,
the Raychaudhuri equations (18.12) become

�̂�0𝐾𝑎𝑏 +𝐾𝑐
𝑏𝐾𝑎𝑐 = −𝑅𝑏0𝑎0 . (18.15)

In 4-dimensional spacetime, the 9 components of the extrinsic curvature 𝐾𝑎𝑏 are commonly resolved into
an expansion scalar 𝜗, a 3-component antisymmetric vorticity tensor 𝜛𝑎𝑏, and a 5-component traceless
symmetric shear tensor 𝜎𝑎𝑏,

𝐾𝑎𝑏 = 𝛿𝑎𝑏𝜗+𝜛𝑎𝑏 + 𝜎𝑎𝑏 . (18.16)

Like the extrinsic curvature, the expansion, vorticity, and shear are restricted tensors, that is, tensors with
respect to the restricted group of spatial Lorentz transformations. The trace of the extrinsic curvature is three
times the expansion, 𝐾 ≡ 𝐾𝑎

𝑎 = 3𝜗. The vorticity is sometimes referred to alternatively as the rotation, or
the twist. If desired, the vorticity can be written 𝜛𝑎𝑏 = 𝜀𝑎𝑏𝑐𝜛

𝑐.
If one imagines comoving coordinates attached to the congruence of paths, then the extrinsic curvature

describes the rate at which the comoving volume element distorts, equation (18.5). The expansion 𝜗 equals
one third the logarithmic rate of change of the volume of the comoving volume element, the vorticity is
the rate at which the comoving volume element rotates (see §18.6), and the shear is the rate at which the
comoving volume element distorts tidally.
To see that the expansion measures the logarithmic rate of change of the volume, choose comoving coor-

dinates consisting of the proper time 𝜏 along with 3 spatial coordinates 𝑥𝛼 that remain constant along the
geodesics of the congruence. The comoving coordinate 4-velocity along geodesics is 𝑢𝜇 = {1, 0, 0, 0}. The
inverse vierbein satisfies 𝑒0𝜇 = 𝑢𝜇 = {1, 0, 0, 0}, so the determinant 𝑒 of the full vierbein reduces to the
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determinant of its spatial part, 𝑒 ≡ |𝑒𝑚𝜇| = |𝑒𝑎𝛼|. The trace 𝐾 ≡ 𝐾𝑎
0𝑎 ≡ 𝐾0 equals the covariant divergence

𝐷𝑚𝑢
𝑚, equation (18.9). The expansion 𝜗 thus satisfies

3𝜗 = 𝐾 = 𝐷𝑚𝑢
𝑚 = 𝐷𝜇𝑢

𝜇 =
1
√
𝑔

𝜕(
√
𝑔𝑢𝜇)

𝜕𝑥𝜇
= 𝑢𝜇

𝜕 ln
√
𝑔

𝜕𝑥𝜇
=
𝑑 ln
√
𝑔

𝑑𝜏
, (18.17)

where
√
𝑔 = 𝑒 is the square root of the determinant of the spatial metric of the comoving line-element, which

is the same as the determinant 𝑒 of the vierbein.
In the ADM formalism, the tetrad time vector 𝛾𝛾0 is chosen to be orthogonal to hypersurfaces of constant

time 𝑡. If 𝛾𝛾0 is so chosen, and if torsion vanishes as general relativity assumes, then vorticity 𝜛𝑎𝑏 vanishes,
as shown in §18.6, equation (18.38). This explains why in the ADM formalism the extrinsic curvature 𝐾𝑎𝑏

is symmetric in 𝑎𝑏. The paths of an ADM congruence are vorticity-free, but not necessarily geodesic. They
are geodesic if and only if the lapse 𝛼 is constant, equation (18.38). In the ADM formalism, the expansion
satisfies equation (17.60), which reduces to equation (18.17) if the lapse is unity and the shift vanishes, that
is, if the spatial coordinates are comoving and the time coordinate 𝑡 is the proper time 𝜏 .
Not all congruences are hypersurface-orthogonal, so vorticity does not vanish in general. For example, if

a congruence is chosen to follow the worldlines of a system of dust particles (dust particles being neutral
and collisionless, to ensure that they follow geodesics), then the vorticity, which is related to the angular
momentum of the system of particles, will generically be non-zero.
The vorticity 𝜛𝑎𝑏 ≡ 𝐾[𝑎𝑏], the antisymmetric part of the extrinsic curvature Γ𝑎0𝑏, should be distinguished

from the precession Γ[𝑎𝑏]0 (if the tetrad metric 𝛾𝑎𝑏 is constant, as here, then Γ𝑎𝑏0 is automatically anti-
symmetric in 𝑎𝑏; in the more general case where the tetrad metric is non-constant, as in ADM, §17.2.1, the
precession equals the antisymmetric part of Γ𝑎𝑏0). The condition for the tetrad frame to be locally inertial,
that is, freely falling and non-rotating, is that the acceleration and precession vanish, Γ𝑎00 = Γ[𝑎𝑏]0 = 0.
By a suitable spatial rotation of the tetrad (which rotates the spatial axes 𝛾𝛾𝑎 while leaving the time axis
𝛾𝛾0 unchanged) the precession Γ[𝑎𝑏]0 can be arranged to vanish along a congruence. Whereas the precession
describes the spatial rotation of the tetrad frame with respect to locally inertial, the vorticity is related to
the angular momentum of particles following the congruence. Since the extrinsic curvature is a spatial tensor,
if the vorticity vanishes in one frame, then it vanishes in any spatially rotated frame; and conversely if the
vorticity is non-vanishing in one frame, then it is non-vanishing in any spatially rotated frame.
The Raychaudhuri equations (18.15) for the expansion, vorticity, and shear along a timelike geodesic

congruence are

�̂�0𝜗+ 𝜗2 + 1
3𝜎

𝑎𝑏𝜎𝑎𝑏 − 1
3𝜛

𝑎𝑏𝜛𝑎𝑏 = − 1
3𝑅00 , (18.18a)

(�̂�0 + 2𝜗)𝜛𝑎𝑏 + 𝜎𝑐𝑎𝜛𝑐𝑏 − 𝜎𝑐𝑏𝜛𝑐𝑎 = 0 , (18.18b)

(�̂�0 + 2𝜗)𝜎𝑎𝑏 +
(︀
𝜎𝑐𝑎𝜎𝑐𝑏 − 1

3𝛿𝑎𝑏𝜎
𝑐𝑑𝜎𝑐𝑑

)︀
−
(︀
𝜛𝑐

𝑎𝜛𝑐𝑏 − 1
3𝛿𝑎𝑏𝜛

𝑐𝑑𝜛𝑐𝑑

)︀
= −𝐶0𝑎0𝑏 , (18.18c)

where 𝐶𝑘𝑙𝑚𝑛 is the Weyl tensor, the traceless part of the Riemann tensor. The restricted derivatives in
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equations (18.18) are

�̂�0𝜗 = 𝜕0𝜗 , (18.19a)

�̂�0𝜛𝑎𝑏 = 𝜕0𝜛𝑎𝑏 − Γ𝑐𝑎0𝜛𝑐𝑏 − Γ𝑐𝑏0𝜛𝑎𝑐 , (18.19b)

�̂�0𝜎𝑎𝑏 = 𝜕0𝜎𝑎𝑏 − Γ𝑐𝑎0𝜎𝑐𝑏 − Γ𝑐𝑏0𝜎𝑎𝑐 . (18.19c)

If the tetrad is chosen to be parallel-transported along the geodesic, then all 6 of the tetrad connections
with final index 0 vanish,

Γ𝑘𝑙0 = 0 , (18.20)

including not only the 3 components 𝐾𝑎 ≡ 𝐾𝑎00 of the acceleration, but also the 3 components Γ𝑎𝑏0 of the
precession. In this case, the restricted covariant time derivative simplifies to the directed time derivative,
which is the same as the proper time derivative 𝑑/𝑑𝜏 in the parallel-transported frame,

�̂�0 = 𝜕0 =
𝑑

𝑑𝜏
. (18.21)

Exercise 18.1. Raychaudhuri equations for a non-geodesic timelike congruence. Derive the Ray-
chaudhuri equations for a timelike congruence that is not geodesic.
Solution. The Raychaudhuri equations for a timelike congruence including non-vanishing acceleration 𝐾𝑎

are

�̂�0𝜗+ 𝜗2 + 1
3𝜎

𝑎𝑏𝜎𝑎𝑏 − 1
3𝜛

𝑎𝑏𝜛𝑎𝑏 − 1
3�̂�

𝑎𝐾𝑎 − 1
3𝐾

𝑎𝐾𝑎 = − 1
3𝑅00 , (18.22a)

(�̂�0 + 2𝜗)𝜛𝑎𝑏 + 𝜎𝑐𝑎𝜛𝑐𝑏 − 𝜎𝑐𝑏𝜛𝑐𝑎 +
1
2 (�̂�𝑎𝐾𝑏 − �̂�𝑏𝐾𝑎) = 0 , (18.22b)

(�̂�0 + 2𝜗)𝜎𝑎𝑏 + 𝜎𝑐𝑎𝜎𝑐𝑏 −𝜛𝑐
𝑎𝜛𝑐𝑏 − 1

2 (�̂�𝑎𝐾𝑏 + �̂�𝑏𝐾𝑎)−𝐾𝑎𝐾𝑏

− 1
3𝛿𝑎𝑏(𝜎

𝑐𝑑𝜎𝑐𝑑 −𝜛𝑐𝑑𝜛𝑐𝑑 − �̂�𝑐𝐾𝑐 −𝐾𝑐𝐾𝑐) = −𝐶0𝑎0𝑏 , (18.22c)

with the restricted covariant derivatives given by equations (18.19). If the acceleration is the gradient of a
potential, 𝐾𝑎 = 𝜕𝑎 ln𝛼, and if torsion vanishes as general relativity assumes, then �̂�𝑎𝐾𝑏 − �̂�𝑏𝐾𝑎 = 0, and
vorticity vanishes if it vanishes initially. This is the situation imposed in the ADM formalism. If on the other
hand the acceleration takes a more general form, then vorticity may be generated along the path.

18.4 Raychaudhuri equations for a null geodesic congruence

For a null congruence in 4-dimensional spacetime, it is convenient to work with a Newman-Penrose double-
null tetrad {𝛾𝛾𝑣,𝛾𝛾𝑢,𝛾𝛾+,𝛾𝛾−}, with two null directions at each point, an “outgoing” direction 𝛾𝛾𝑣, and an
“ingoing” direction 𝛾𝛾𝑢. The spin axes 𝛾𝛾+ and 𝛾𝛾− span the two-dimensional spatial plane orthogonal to the
null directions. Late latin indices 𝑧, 𝑦, ... run over null indices 𝑣, 𝑢, early latin indices 𝑎, 𝑏, ... run over spin
indices +, −, and mid latin indices 𝑘, 𝑙, ... run over all four indices.
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The extrinsic curvature constitutes the components 𝐾𝑎𝑧𝑘 ≡ Γ𝑎𝑧𝑘 of the tetrad-frame connections with
first two indices 𝑎𝑧 from opposite subspaces, equation (17.191). If the null congruence along the outgoing
𝑣-direction is geodesic, then the acceleration 𝐾𝑎𝑣𝑣 vanishes. Along outgoing null geodesics, the Raychaudhuri
equations (18.12) are

�̂�𝑣𝐾𝑎𝑣𝑏 +𝐾𝑐
𝑣𝑏𝐾𝑎𝑣𝑐 = −𝑅𝑏𝑣𝑎𝑣 . (18.23)

The condition 𝐾𝑎𝑣𝑣 = 0 that the outgoing null directions of the congruence be geodesic fixes 2 of the
6 degrees of freedom of Lorentz transformations of the tetrad. Additional convenient gauge choices can be
imposed. A common choice is to impose sufficient conditions that the restricted covariant derivative �̂�𝑣 in
the Raychaudhuri equation (18.23) reduces to the directed derivative 𝜕𝑣. This requires that the null axis
𝛾𝛾𝑣 and the 2 spatial axes 𝛾𝛾± (but not the null axis 𝛾𝛾𝑢) of the tetrad be parallel-transported along the null
geodesic congruence. Parallel-transport of 𝛾𝛾𝑣 and 𝛾𝛾± amounts to imposing that 4 of the 6 tetrad connections
vanish,

Γ𝑢𝑣𝑣 = Γ+−𝑣 = 𝐾+𝑣𝑣 = 𝐾−𝑣𝑣 = 0 . (18.24)

The condition Γ𝑢𝑣𝑣 = 0 is the condition that the geodesics along 𝛾𝛾𝑣 be affinely parameterized, while the
condition Γ+−𝑣 = 0 is the condition that the spatial axes 𝛾𝛾± do not rotate in the parallel-transported frame.
Under the conditions (18.24), the restricted covariant derivative in the Raychaudhuri equation (18.23) equals
a derivative with respect to an affine parameter 𝜆 along the null geodesic,

�̂�𝑣 = 𝜕𝑣 = 𝛾𝛾𝑣 · 𝜕 = 𝑢 · 𝜕 =
𝑑𝑥𝜇

𝑑𝜆

𝜕

𝜕𝑥𝜇
=

𝑑

𝑑𝜆
. (18.25)

Other gauge choices can be made. A natural choice is to choose the tetrad so that both outgoing and ingoing
null directions are geodesic. For example, the principal null directions of an ideal black hole are geodesic (the
tetrad that aligns with the principal null directions is the Boyer-Lindquist tetrad). The condition that the
outgoing and ingoing null directions be geodesic translates into the condition that 𝐾𝑎𝑧𝑧 = 0, or explicitly
the 4 conditions

𝐾+𝑣𝑣 = 𝐾−𝑣𝑣 = 𝐾+𝑢𝑢 = 𝐾−𝑢𝑢 = 0 . (18.26)

If the ingoing null direction is geodesic, then the Raychaudhuri equations along the ingoing null geodesic
are the same as equations (18.23) with null indices swapped, 𝑣 ↔ 𝑢. By a suitable Lorentz boost in the
𝛾𝛾𝑣–𝛾𝛾𝑢 plane, it is always possible to arrange that the tetrad frame is affinely parameterized in either the 𝛾𝛾𝑣
or the 𝛾𝛾𝑢 direction (that is, either Γ𝑢𝑣𝑣 or Γ𝑣𝑢𝑢 vanishes), but in general it is not possible to arrange that
both null directions are affinely parameterized. Similarly, by a suitable spatial rotation in the 𝛾𝛾+–𝛾𝛾− plane,
it is always possible to arrange that the spatial axes are parallel-transported along either the 𝛾𝛾𝑣 or the 𝛾𝛾𝑢
direction (that is, either Γ+−𝑣 or Γ+−𝑢 vanishes), but in general it is not possible to arrange that the spatial
axes are parallel-transported along both null directions.
The Raychaudhuri equations (18.23) are equations governing the evolution of the extrinsic curvatures

𝐾𝑎𝑣𝑏 with middle index the null direction 𝑣, and outer indices 𝑎𝑏 spin indices. Analogously to the 3+1

decomposition (18.16), these 4 components are commonly decomposed into an expansion scalar 𝜗, an
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antisymmetric vorticity tensor 𝜛𝑎𝑏 ≡ 𝜀𝑎𝑏𝜛, and a traceless symmetric shear tensor 𝜎𝑎𝑏,

𝐾𝑎𝑣𝑏 = 𝛾𝑎𝑏𝜗+ 𝜀𝑎𝑏𝜛 + 𝜎𝑎𝑏 . (18.27)

Like the extrinsic curvature, the expansion, vorticity, and shear are restricted tensors. As usual in the
Newman-Penrose formalism, complex conjugation flips the spin indices on any tensor, +↔ −, a consequence
of the fact that the Newman-Penrose spin axes 𝛾𝛾+ and 𝛾𝛾− are complex conjugates of each other. The totally
antisymmetric tensor 𝜀𝑎𝑏 in 2-dimensional spin space flips sign under complex conjugation, so is purely
imaginary, 𝜀+− = 𝑖. The expansion and vorticity scalars 𝜗 and 𝜛 are both real. The shear is complex, with
two components that are complex conjugates of each other, 𝜎−− = 𝜎*++.
Just as the timelike expansion equals one third the logarithmic rate of change of the comoving volume

element along a timelike congruence, equation (18.17), so also the null expansion equals one half the log-
arithmic rate of change of the comoving area element along a null congruence. First, notice that along an
outgoing null congruence, the ingoing 𝛾𝛾𝑢 component of the tetrad-frame covariant divergence 𝐷𝑚𝑢

𝑚 van-
ishes, 𝐷𝑢𝑢

𝑢 = 𝜕𝑢𝑢
𝑢 +Γ𝑢𝑚𝑢𝑢

𝑚 = −Γ𝑣𝑣𝑢 = 0 (no sum over 𝑢 or 𝑣). Therefore the covariant divergence equals
the tetrad-frame covariant divergence restricted to the 3-dimensional hypersurface spanned by the outgoing
geodesic direction 𝛾𝛾𝑣 and the spatial directions 𝛾𝛾±. Such a 3-dimensional hypersurface can be constructed
by starting with any spatial 2-surface and projecting “outgoing” null geodesics not necessarily orthogonally
from it. Choose comoving coordinates along the null hypersurface consisting of the affine parameter 𝜆 along
with 2 spatial coordinates 𝑥𝛼 that remain constant along the geodesics of the congruence. The coordinate
3-velocity within the null hypersurface is 𝑢𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜆 = {1, 0, 0}. Then analogously to equation (18.17)
the null expansion satisfies, from equation (18.9) with Γ𝑣𝑣𝑣 = 0 because the congruence is being taken to be
affinely parameterized,

2𝜗 = 𝐾𝑣 = 𝐷𝑚𝑢
𝑚 = 𝐷𝜇𝑢

𝜇 =
1
√
𝑔

𝜕(
√
𝑔𝑢𝜇)

𝜕𝑥𝜇
= 𝑢𝜇

𝜕 ln
√
𝑔

𝜕𝑥𝜇
=
𝑑 ln
√
𝑔

𝑑𝜆
, (18.28)

where 𝑔 is the determinant of 2-dimensional spatial metric of the comoving line-element. Thus the null
expansion 𝜗 equals one half the logarithmic rate of change of the cross-sectional area of the comoving area
element.
In terms of the expansion, vorticity, and shear, the Raychaudhuri equations (18.23) along the outgoing

null geodesic direction 𝑣 are

(�̂�𝑣 + 𝜗)𝜗−𝜛2 + 𝜎++𝜎
*
++ = −4𝜋𝑇𝑣𝑣 , (18.29a)

(�̂�𝑣 + 2𝜗)𝜛 = 0 , (18.29b)

(�̂�𝑣 + 2𝜗)𝜎++ = −𝐶𝑣+𝑣+ . (18.29c)

The restricted covariant derivatives in equations (18.29) are

�̂�𝑣𝜗 = (𝜕𝑣 + Γ𝑢𝑣𝑣)𝜗 , (18.30a)

�̂�𝑣𝜛 = (𝜕𝑣 + Γ𝑢𝑣𝑣)𝜛 , (18.30b)

�̂�𝑣𝜎++ = (𝜕𝑣 + Γ𝑢𝑣𝑣 + 2Γ+−𝑣)𝜎++ . (18.30c)
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expansion ϑ vorticity ϖ shear σ

Figure 18.1 Illustrating how the Sachs optical coefficients, the expansion 𝜗, the vorticity 𝜛, and the shear 𝜎, char-

acterize the rate at which a congruence of light rays changes shape as it propagates. The congruence of light rays is

coming vertically upward out of the paper.

18.5 Sachs optical coefficients

If the null axis 𝛾𝛾𝑣 and the two spatial axes 𝛾𝛾± are taken to be parallel-transported along the null geodesic
directions 𝛾𝛾𝑣 of the congruence, then the tetrad connections Γ𝑢𝑣𝑣 and Γ−+𝑣 in equations (18.29) vanish.
In this case the expansion 𝜗, vorticity 𝜛, and the complex shear 𝜎 ≡ 𝜎++ are commonly called the Sachs
optical coefficients (Sachs, 1961), often referred to as Sachs scalars. The Raychaudhuri equations (18.29)
simplify to

(𝜕𝑣 + 𝜗)𝜗−𝜛2 + 𝜎𝜎* = −4𝜋𝑇𝑣𝑣 , (18.31a)

(𝜕𝑣 + 2𝜗)𝜛 = 0 , (18.31b)

(𝜕𝑣 + 2𝜗)𝜎 = −𝐶𝑣+𝑣+ . (18.31c)

The directed derivative 𝜕𝑣 equals a derivative 𝑑/𝑑𝜆 with respect to an affine parameter along the geodesic
directions, equation (18.25).
The Sachs coefficients characterize how the shape of the congruence of light rays evolves as it propagates,

as illustrated in Figure 18.1. The expansion represents how fast the congruence expands, the vorticity how
fast it rotates, and the shear how fast its ellipticity is changing. The amplitude and phase of the complex
shear represent the amplitude and phase of the major axis of the shear ellipse.

Concept question 18.2. Can vorticity be non-zero while shear vanishes? Answer. Yes. The princi-
pal null congruences of the Λ-Kerr-Newman geometry provide an example of congruences that have non-zero
vorticity but are shear-free, Exercise 23.11.

18.6 Hypersurface-orthogonality for a timelike congruence

Singularity theorems consider special congruences that are both geodesic and vorticity-free. The Raychaud-
huri equation (18.18b) guarantees that if the vorticity 𝜛𝑎𝑏 vanishes on the initial 3-dimensional hypersurface
of a timelike geodesic congruence, then the vorticity will vanish identically everywhere along the congruence.
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This section shows that a timelike congruence is geodesic and vorticity-free if and only if it is hypersurface-
orthogonal, that is, the 4-velocity 𝑢 along the paths is normal to some hypersurface, equations (18.33),
which proves to be a hypersurface of constant proper time, or equivalently of constant action. The next
subsection, §18.6.1, shows how to construct a timelike hypersurface-orthogonal congruence.
The covariant curl of the 4-velocity 𝑢 ≡ 𝛾𝛾0 of a congruence of timelike paths is

𝐷∧𝑢 = 𝛾𝛾𝑚 ∧𝛾𝛾𝑛
(︀
𝜕𝑚𝑢𝑛 − Γ𝑘𝑛𝑚𝑢𝑘

)︀
= 𝛾𝛾𝑚 ∧𝛾𝛾𝑛 Γ𝑛0𝑚 = 𝛾𝛾0 ∧𝛾𝛾𝑎𝐾𝑎 − 𝛾𝛾𝑎 ∧𝛾𝛾𝑏𝜛𝑎𝑏 . (18.32)

The covariant curl is a 6-component bivector whose 3 time-space parts are the acceleration 𝐾𝑎, and whose
3 space-space parts are the vorticity 𝜛𝑎𝑏.
Equation (18.32) shows that the covariant curl 𝐷∧𝑢 vanishes if and only if both the acceleration 𝐾𝑎 and

the vorticity 𝜛𝑎𝑏 vanish. If the curl vanishes, and if torsion vanishes, then by Poincaré’s lemma the 4-velocity
𝑢 is, at least locally, the gradient of a scalar 𝜏 ,

𝐷∧𝑢 = 0 ⇔ 𝑢 = −𝜕𝜏 . (18.33)

The scalar 𝜏 is just the proper time along the geodesics, as follows from

𝑢 · 𝑢 = −𝑢 · 𝜕𝜏 = −𝑑𝑥
𝜇

𝑑𝜏

𝜕𝜏

𝜕𝑥𝜇
= −1 . (18.34)

Thus the 4-velocity 𝑢 is normal to 3-dimensional hypersurfaces of constant proper time 𝜏 .
The action 𝑆 of a freely-falling particle of non-zero mass𝑚 is related to the proper time along the particle’s

worldline by, equation (4.7),

𝑆 = −𝑚𝜏 . (18.35)

Thus the hypersurfaces of a hypersurface-orthogonal timelike congruence are also hypersurfaces of constant
action for massive, freely-falling particles. The covariant momentum 𝑝𝜇 = 𝑚𝑢𝜇 of the particle is the gradient
of the action, equation (4.105),

𝑝𝜇 =
𝜕𝑆

𝜕𝑥𝜇
, (18.36)

which reproduces the result 𝑢 = −𝜕𝜏 .
A weaker condition than the vanishing of 𝐷∧𝑢 is that the curl 𝐷∧(𝑢/𝛼) of the 4-velocity scaled by some

arbitrary factor 𝛼 vanishes. The covariant curl of the scaled 4-velocity 𝑢/𝛼 is

𝛼𝐷∧(𝑢/𝛼) = 𝐷∧𝑢+ 𝑢∧𝜕 ln𝛼 = 𝛾𝛾0 ∧𝛾𝛾𝑎 (𝐾𝑎 − 𝜕𝑎 ln𝛼)− 𝛾𝛾𝑎 ∧𝛾𝛾𝑏𝜛𝑎𝑏 . (18.37)

This curl of the scaled 4-velocity vanishes if and only if the acceleration 𝐾𝑎 is the gradient of a scalar, and
the vorticity 𝜛𝑎𝑏 vanishes,

𝐾𝑎 = 𝜕𝑎 ln𝛼 , 𝜛𝑎𝑏 = 0 . (18.38)

The conditions (18.38) are precisely those established in the ADM formalism, with 𝛼 being the lapse. If
conditions (18.38) hold, then 𝐷∧(𝑢/𝛼) vanishes, and if torsion also vanishes, then by Poincaré’s lemma 𝑢/𝛼

is, at least locally, the gradient of a scalar 𝑡,

𝐷∧(𝑢/𝛼) = 0 ⇔ 𝑢 = −𝛼𝜕𝑡 . (18.39)
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Figure 18.2 Spacetime diagram of Minkowski space illustrating a hypersurface-orthogonal congruence of timelike

geodesics. The congruence is constructed by starting with an initial 3-dimensional spacelike hypersurface (thick like),

here a cosine perturbation from the 𝑡 = 0 hypersurface, and projecting geodesics (blue lines) along its timelike normal

direction. Hypersurfaces of constant proper time 𝜏 (purple lines) to the past or future of the initial hypersurface

remain orthogonal to the geodesics. Generically, as here, the geodesics cross, and the spatial hypersurfaces of constant

proper time correspondingly develop caustics where the hypersurfaces fold and crease.

The scalar coordinate 𝑡 is just the ADM time coordinate, as follows from

𝑢 = 𝛾𝛾0 = −𝛾𝛾0 = −𝑒0𝜇 𝑒𝜇 = −𝛼 𝑒𝑡 = −𝛼 𝑒𝜇
𝜕𝑡

𝜕𝑥𝜇
= −𝛼𝜕𝑡 . (18.40)

18.6.1 Construction of timelike, geodesic, hypersurface-orthogonal congruences

It is straightforward to construct a timelike, geodesic, hypersurface-orthogonal congruence by starting with
any 3-dimensional spacelike hypersurface and projecting geodesics into the past and future along the normal
to the spacelike hypersurface, as illustrated in Figure 18.2. The geodesics are orthogonal to hypersurfaces
of constant proper time 𝜏 , or equivalently of constant action 𝑆 = −𝑚𝜏 , starting at 𝜏 = 0 (or 𝑆 = 0) on
the initial spacelike hypersurface. Generically, the resulting geodesics will cross at some point in the past
or future or both, and the hypersurface correspondingly develops caustics, as in Figure 18.2. Geodesics
remain orthogonal to hypersurfaces of constant proper time 𝜏 even after they cross, but the proper time 𝜏
is multiply-valued at spacetime points crossed by multiple geodesics.
Caustics in collisionless streams of stars are often observed in deep images of elliptical galaxies, as illustrated

in Figure 18.3. When galaxies collide, the gravitational potentials of the galaxies merge, but because galaxies
are mostly empty space, the stars in the galaxies do not collide. When a small galaxy with a small velocity
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Figure 18.3 This deep image of the elliptical galaxy NGC 474 shows shells caused by caustics in collisionless streams

of stars originating from small galaxies accreted by NGC 474 over the last billion years. Astronomy Picture of the

Day, 2011 July 26. Image credit: P.-A. Duc (CEA, CFHT), Atlas 3D Collaboration.

dispersion in its stars falls into a larger galaxy, the smaller galaxy is tidally disrupted by the larger galaxy,
but the stars from the smaller galaxy continue to orbit the larger galaxy in coherent collisionless streams,
forming caustics where the star streams turn around in the merged gravitational potential.

18.7 Hypersurface-orthogonality for a null congruence

For massive particles, the proper time 𝜏 , or equivalently the action 𝑆 = −𝑚𝜏 = −𝑚2𝜆, where 𝜆 is the
affine parameter, progresses along geodesics, and momenta along geodesics are orthogonal to hypersurfaces of
constant action, equation (18.36). For massless particles on the other hand, the action does not progress along
null geodesics. For a null congruence, it is not possible to start from an initial 3-dimensional hypersurface
over which the action vanishes, and to project null geodesics into the past and future from this initial
hypersurface, because the failure of the action to progress along null geodesics would then imply that the
action would vanish everywhere, and the spacetime would cease to be foliated into hypersurfaces of constant
action to which geodesics were putatively orthogonal.
Rather, the action must be allowed to vary along the initial 3-dimensional hypersurface of a null congruence.
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The action on the initial 3-dimensional hypersurface foliates it into 2-dimensional spatial surfaces of constant
action. At each point on each 2-dimensional surface there are exactly 2 null directions orthogonal to the spatial
2-surface, one “outgoing,” the other “ingoing.” Projecting null geodesics along these null directions defines
a pair of 3-dimensional null hypersurfaces along which the action is constant. The result is a spacetime
that is foliated into pairs of outgoing and ingoing 3-dimensional null hypersurfaces of constant outgoing (+)
and ingoing (−) action 𝑆±. The values of the actions are determined by their values on the initial non-null
3-dimensional hypersurface.
Null congruences constructed in this way are said to be hypersurface-orthogonal. This definition of

hypersurface-orthogonality for null congruences does not require that equation (18.36) holds across all of
the 4-dimensional spacetime. Rather, hypersurface-orthogonality for null congruences imposes that equa-
tion (18.36) holds in the massless limit along each 3-dimensional null hypersurface of constant action,

𝑝𝜇 = lim
𝑚→0

𝑚2 𝜕𝜆

𝜕𝑥𝜇
. (18.41)

To see why the definition of hypersurface-orthogonality for null congruences does not impose that the con-
dition (18.36) hold over the entire 4-dimensional spacetime, suppose contrarily that it did. The 4-momentum
along an outgoing null geodesic of the congruence satisfies 𝑝 = 𝑝𝑣𝛾𝛾𝑣 = 𝑝𝑢𝛾𝛾

𝑢 (no sum over 𝑣 or 𝑢). Poincaré’s
lemma implies that equation (18.36) holds, at least locally, if and only if the covariant curl of the 4-momentum
vanishes, 𝐷∧𝑝 = 0. The covariant curl of the 4-momentum is, similarly to equation (18.32),

𝐷∧𝑝 = 𝛾𝛾𝑚 ∧𝛾𝛾𝑛
(︀
𝜕𝑚𝑝𝑛 − Γ𝑘𝑛𝑚𝑝𝑘

)︀
= −𝑝𝑣 𝛾𝛾𝑚 ∧𝛾𝛾𝑛 Γ𝑣𝑛𝑚 , (18.42)

which vanishes if and only if Γ𝑣[𝑛𝑚] = 0. This is a set of 6 conditions on the tetrad connections, requiring
not only that the 2 spatial components of the acceleration 𝐾𝑎𝑣𝑣 and the 1 component of vorticity 𝐾𝑣[−+] ≡
𝜛+− ≡ 𝜀+−𝜛 vanish, but also that the 1 component of acceleration Γ𝑢𝑣𝑣 along the null direction 𝛾𝛾𝑣 and
the 2 components Γ𝑣[𝑎𝑢] vanish. While the 6 Lorentz gauge freedoms allow these 6 tetrad-frame connections
to be chosen to vanish along the outgoing congruence, the corresponding 6 connections along the ingoing
congruence cannot be made to vanish at the same time. Moreover the Raychaudhuri equations (18.29) have
no dependence on the 2 components Γ𝑣[𝑎𝑢], and the vorticity equation (18.29b) allows vorticity to vanish
without requiring that Γ𝑢𝑣𝑣 vanishes.
Thus hypersurface-orthogonality for null congruences is conventionally defined by the weaker condition

that the limiting equation (18.41) hold along each 3-dimensional null hypersurface. This requires that only
the components 𝑝∧(𝐷∧𝑝) of the covariant curl tangent to each 3-dimensional null hypersurface vanish,
not that the covariant curl vanish identically throughout spacetime. The components of the covariant curl
restricted to the null hypersurface are

𝑝∧(𝐷∧𝑝) = −(𝑝𝑣)2 𝛾𝛾𝑢 ∧
(︀
𝛾𝛾𝑣 ∧𝛾𝛾𝑎𝐾𝑎𝑣𝑣 − 𝛾𝛾𝑎 ∧𝛾𝛾𝑏𝜛𝑎𝑏

)︀
. (18.43)

The covariant curl (18.43) is a 3-component bivector whose time-space part is proportional to the spatial
acceleration𝐾𝑎𝑣𝑣, and whose space-space part is proportional to the vorticity𝜛𝑎𝑏 ≡ 𝜀𝑎𝑏𝜛. Unlike the timelike
case, equation (18.37), the hypersurface-orthogonality condition (18.43) for null congruences is unchanged
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Figure 18.4 3D spacetime diagram of Minkowski space illustrating a pair of hypersurface-orthogonal congruences of

null geodesics (blue lines) emerging from a 2-dimensional spacelike surface (thick line). The spacelike curves (purple

lines) on the two null hypersurfaces are lines of constant affine parameter 𝜆. These lines of constant affine parameter

trace the intersections of null hypersurfaces in the remaining spacetime provided that the congruences are constructed

to have translation symmetry in the 𝑦-direction (and in the suppressed 𝑧-direction), in which case other null hyper-

surfaces are parallel to the two shown, translated in the 𝑦-direction. This Figure would look the same as Figure 18.2

if projected on to the 𝑡–𝑥 plane.

by scaling the momentum 𝑝 by some arbitrary factor 𝛼, since

𝛼𝑝∧ (𝐷∧(𝑝/𝛼)) = 𝑝∧(𝐷∧𝑝) + 𝑝∧𝑝∧𝜕 ln𝛼 = 𝑝∧(𝐷∧𝑝) , (18.44)

because 𝑝∧𝑝 = 0.

The Raychaudhuri equation (18.29b) for the vorticity 𝜛 along an outgoing geodesic of a null congruence
implies that if the vorticity vanishes on the initial 2-dimensional spatial hypersurface spanned by 𝛾𝛾±, then it
is guaranteed to vanish thereafter. Thus a null geodesic congruence that is initially hypersurface-orthogonal
will remain hypersurface-orthogonal thereafter. Note that equation (18.29b) allows the vorticity to vanish
identically without imposing that the geodesic be affinely parameterized, that is, without imposing that Γ𝑢𝑣𝑣
vanishes.

Hypersurface-orthogonality along the outgoing null congruence imposes only 3 conditions on the tetrad,
namely that the outgoing spatial acceleration 𝐾𝑎𝑣𝑣 and the outgoing vorticity 𝜛+− ≡ 𝐾𝑣[−+] vanish. The 6
Lorentz gauge freedoms allow hypersurface-orthogonality to be imposed simultaneously along both outgoing
and ingoing null congruences, by demanding that the spatial accelerations 𝐾𝑎𝑧𝑧 and the vorticities 𝐾𝑧[+−]
along both congruences vanish.
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18.7.1 Construction of double-null, geodesic, hypersurface-orthogonal congruences

To construct hypersurface-orthogonal congruences of outgoing and ingoing null geodesics, start with any non-
null (timelike or spacelike) 3-dimensional hypersurface. Foliate the hypersurface into 2-dimensional spatial
surfaces labelled by a time coordinate or a spatial coordinate according to whether the parent 3-hypersurface
is timelike or spacelike. Project null geodesics along the two null directions normal to each spatial 2-surface.
The null geodesics projecting from each 2-surface form a pair of 3-dimensional null hypersurfaces, as illus-
trated by Figure 18.4. Each null hypersurface is labelled by a constant null coordinate whose value is set by
the value of the time or spatial coordinate on the 2-surface. The two geodesic null directions at each point
define the null directions 𝛾𝛾𝑣 and 𝛾𝛾𝑢 of a Newman-Penrose tetrad. The spatial directions orthogonal to the
two null directions define a plane whose tangent directions form the spatial directions 𝛾𝛾+ and 𝛾𝛾− of the
Newman-Penrose tetrad.

Again it should be emphasized that hypersurface-orthogonality for null congruences is defined not by
condition (18.36) imposed over all spacetime, but rather by the limiting condition (18.41) imposed over each
of the 3-dimensional null hypersurfaces of the congruence.

18.8 Focusing theorems

Focusing theorems exist for both timelike and null congruences. The focusing theorem follows from the
Raychaudhuri equation for the expansion 𝜗, coupled with assumptions about the sources in that equation.
The assumptions are:

1. the congruence is hypersurface-orthogonal;

2. the expansion is negative at some point, 𝜗 < 0;

3. the energy-momentum tensor satisfies a positivity condition.

As shown in §§18.6 and 18.7, a hypersurface-orthogonal timelike or null congruence can be constructed
by starting from some arbitrary (spacelike, for a timelike congruence, or non-null, for a null congruence)
initial 3-dimensional hypersurface and projecting geodesics orthogonally from it. The requirement that the
expansion be negative at some point is the reason that singularity theorems posit that a trapped surface has
formed. A trapped surface is defined to be a closed 2-dimensional surface from which the expansions along
both outgoing and ingoing orthogonal null directions are negative everywhere along the surface. Trapped
surfaces exist inside the outer horizon of an ideal black hole, and it is plausible that the formation of a
trapped surface is characteristic of the formation of a black hole. The final condition, a positivity condition
on the energy-momentum tensor, ensures that the energy-momentum source in the Raychaudhuri equation
is positive.
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18.8.1 Focusing theorem for a null geodesic congruence

If the vorticity 𝜛 vanishes, then in the frame parallel-transported along the null congruence, the Raychaud-
huri equation (18.31a) for the expansion 𝜗 along a null congruence simplifies to

𝑑𝜗

𝑑𝜆
+ 𝜗2 + 𝜎𝜎* + 1

2𝐺𝑣𝑣 = 0 . (18.45)

The terms 𝜗2 and 𝜎𝜎* are necessarily positive. The Newman-Penrose component 𝐺𝑣𝑣 of the Einstein tensor
is related to the components in the parent orthonormal tetrad by

𝐺𝑣𝑣 =
1
2𝐺00 +𝐺03 +

1
2𝐺33 . (18.46)

The Einstein component 𝐺𝑣𝑣 has boost weight 2, and is therefore multiplied by 𝑒2𝜃 under a boost by
rapidity 𝜃 in the 3-direction. Consequently positivity of 𝐺𝑣𝑣 in one frame implies positivity of 𝐺𝑣𝑣 in any
frame boosted in the 3-direction. Boosted along the 3-direction into the centre-of-mass frame, where 𝐺03 = 0,
equation (18.46) reduces to

𝐺𝑣𝑣 =
1
2 (𝐺00 +𝐺33) = 4𝜋(𝜌+ 𝑝3) , (18.47)

where 𝜌 is the energy density and 𝑝3 the pressure along the 3-direction. The Einstein component 𝐺𝑣𝑣 is
therefore positive provided that

𝜌+ 𝑝3 ≥ 0 , (18.48)

which is called the null energy condition. If the null energy condition (18.48) holds, then the vorticity-free
Raychaudhuri equation (18.45) shows that the expansion 𝜗 must always decrease.
The Raychaudhuri equation (18.45) can be arranged as

𝑑(1/𝜗)

𝑑𝜆
= 1 +

𝜎𝜎* + 1
2𝐺𝑣𝑣

𝜗2
, (18.49)

whose right hand side is greater than or equal to 1, given the null energy condition (18.48). If the expansion
𝜗 is negative (meaning that light rays are converging), then equation (18.49) shows that 1/𝜗 will reach 0 at
a finite value of the affine parameter 𝜆. In other words, 𝜗 must become negative infinite at some finite value
of 𝜆.
A negative infinite value of the expansion means that the cross-sectional area of the null congruence has

shrunk to zero. This does not mean that a singularity has formed; it means simply that geodesics have reached
a crossing point. For example, Figure 18.4 shows crossing geodesics of a null congruence in Minkowski space.
It is only when all geodesics from a hypersurface-orthogonal congruence reach a crossing point that the
spacetime encounters difficulties. In Figure 18.4, while the expansion is negative along some null geodesics,
it is positive along others.
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Figure 18.5 Spacetime diagram illustrating the dog-leg proposition. The dog-leg proposition asserts that any dog-leg

path that joins 2 events 𝐴 and 𝐵 by a consecutive pair of null or timelike geodesics can be deformed into a strictly

timelike path of longer proper time between 𝐴 and 𝐵. The proposition is an assertion about the global causal structure

of spacetime.

18.8.2 Focusing theorem for timelike geodesic congruence

The proof of the focusing theorem for timelike geodesics is similar to that for null geodesics. For vanishing
vorticity, the Raychaudhuri equation (18.18a) along a timelike geodesic congruence is

𝑑𝜗

𝑑𝜏
+ 𝜗2 + 1

3𝜎
𝑎𝑏𝜎𝑎𝑏 +

1
3𝑅00 = 0 (18.50)

in the orthonormal tetrad frame freely-falling along the geodesic. The component 𝑅00 of the Ricci tensor in
the orthonormal tetrad is

𝑅00 = 4𝜋(𝜌+ 3𝑝) , (18.51)

where 𝜌 is the energy density and 𝑝 ≡ 1
3𝑝
𝑎
𝑎 is the isotropic pressure. The Ricci component 𝑅00 is positive

provided that

𝜌+ 3𝑝 ≥ 0 , (18.52)

which is called the strong energy condition. Note that a cosmological constant violates the strong energy
condition (18.52), but not the null energy condition (18.48).

18.9 Singularity theorems

This section gives an account of one version of the singularity theorems, the original null version proved by
Penrose (1965). See Senovilla (1998) for a review of singularity theorems.
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y

Figure 18.6 Null boundary of the future of a 2-dimensional spacelike surface. The null boundary is a pair of 3-

dimensional null surfaces projecting orthogonally from the 2-surface (thick line), with the parts of the hypersurfaces

excised after geodesic crossing, since the latter parts are connected by timelike geodesics to the 2-surface and are

therefore not part of the null boundary. This is the same as Figure 18.4, but with geodesics terminated where they

cross.

18.9.1 Dog-leg proposition

A building block of singularity theorems is the dog-leg proposition. The dog-leg proposition asserts that
any dog-leg path between two events 𝐴 and 𝐵 that consists of two different timelike or null geodesics joined
together can be deformed into a strictly timelike path of longer proper time between 𝐴 and 𝐵, as illustrated in
Figure 18.5. The dog-leg proposition is a statement about the global causal structure of spacetime. The dog-
leg proposition does not hold inside the inner horizon of a Kerr-Newman black hole, Concept question 18.3.
The dog-leg proposition can be replaced by other plausible hypotheses. Much of the content of the book

by Hawking and Ellis (1973) is concerned with exploring different plausible causality conditions. However,
that will not be done here.

18.9.2 Null singularity theorem

Start with any 2-dimensional spatial surface. The future of this 2-surface is the 4-dimensional region of
spacetime comprising all events that can be reached by some non-spacelike future-pointing path that starts
at some point on the 2-surface. In a local neighbourhood of the 2-surface, the boundary of the future of the
2-surface comprises the pair of 3-dimensional null hypersurfaces projected orthogonally from the 2-surface,
as illustrated by Figure 18.4. The dog-leg proposition then implies that the future boundary is formed only
from orthogonally-projected null geodesics. However, orthogonally-projected geodesics can intersect, as in
Figure 18.4. After two orthogonally-projected geodesics intersect, a point to the future of the intersection can
be reached from the 2-surface by starting on one geodesic and switching to the other at the crossing point.
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This dog-leg null path can be deformed into a timelike curve, and is therefore also not part of the future
null boundary. Therefore the boundary of the future of the 2-surface comprises the pair of 3-dimensional
null hypersurfaces projected orthogonally from the 2-surface, truncated where the null geodesics cross, as
illustrated by Figure 18.6.
Now assume that the 2-dimensional surface is a trapped surface, meaning that the expansion along both

the outgoing and ingoing null geodesic directions projected orthogonally from the 2-surface is negative at
every point of the 2-surface. The focusing theorem implies that the expansion along every such null geodesic
reaches negative infinity at a finite value of the affine parameter 𝜆, indicating that neighbouring null geodesics
are crossing. Points on a null geodesic to the future of a crossing are no longer on the boundary of the future.
Therefore the 3-dimensional boundary of the future of the trapped surface terminates after a finite affine
parameter at a 2-dimensional caustic boundary. This is a contradiction, since the boundary of a boundary
of a manifold is empty. Therefore the future must terminate, as it does for example inside the horizon of the
Schwarzschild geometry.

Concept question 18.3. How do singularity theorems apply to the Kerr geometry? Answer.

The Kerr geometry violates the deg-leg proposition, so for this geometry the future does not terminate, but
rather continues beyond the region where any trapped surface reaches a caustic boundary (see §23.24.1). As
found in Exercise ??, the only geodesics that reach the ring singularity (Singularity or Parallel Singularity)
of a Kerr black hole with 𝑎 ̸= 0 are null geodesics that lie in the equatorial plane. Therefore, to reach the
singularity from a non-equatorial point, it is necessary to follow a geodesic down to the equatorial plane
and then dog-leg to the singularity. Such a path cannot be deformed to a timelike geodesic. Similarly, a
geodesic that starts at the singularity is confined to the equatorial plane, and a dog-leg is required to get
out of the plane. The region that can be reached from the singularity by a dog-legged geodesic is the region
inside the inner horizon. The ingoing and outgoing inner horizons of a Kerr black hole form the boundary of
predictability, also known as the Cauchy horizon. A similar argument applies to the Kerr-Newman geometry,
except that geodesics that hit the singularity must not only be null and equatorial, but also on one of the
ingoing or outgoing principal null congruences, Exercise ??.

Concept question 18.4. How do singularity theorems apply to the Reissner-Nordström geome-

try? In Reissner-Nordström, the only geodesics that hit the singularity are radial null geodesics, Exercise ??.
The Reissner-Nordström violates the dog-leg proposition because a dog-leg path that connects to the singu-
larity cannot be deformed into a strictly timelike path: any path that connects to the singularity must be
null asymptotically near the singularity.



Concept Questions

1. Explain how the equation for the Gullstrand-Painlevé metric (19.22) encodes not merely a metric but a
full vierbein.

2. In what sense does the Gullstrand-Painlevé metric (19.22) depict a flow of space? [Are the coordinates
moving? If not, then what is moving?]

3. If space has no substance, what does it mean that space falls into a black hole?
4. Would there be any gravitational field in a spacetime where space fell at constant velocity instead of

accelerating?
5. In spherically symmetric spacetimes, what is the most important Einstein equation, the one that causes

Reissner-Nordström black holes to be repulsive in their interiors, and causes mass inflation in non-empty
(non Reissner-Nordström) charged black holes?
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What’s important?

1. The tetrad formalism provides a firm mathematical foundation for the concept that space falls faster
than light inside a black hole.

2. Whereas the Kerr-Newman geometry of an ideal rotating black hole contains inside its horizon wormhole
and white hole connections to other universes, real black holes are subject to the mass inflation stability
discovered by Eric Poisson & Werner Israel (Poisson and Israel, 1990).
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Black hole waterfalls

19.1 Tetrads move through coordinates

As already discussed in §11.3, the way in which metrics are commonly written, as a (weighted) sum of squares
of differentials,

𝑑𝑠2 = 𝛾𝑚𝑛 𝑒
𝑚
𝜇 𝑒

𝑛
𝜈 𝑑𝑥

𝜇𝑑𝑥𝜈 , (19.1)

encodes not only a metric 𝑔𝜇𝜈 = 𝛾𝑚𝑛 𝑒
𝑚
𝜇 𝑒

𝑛
𝜈 , but also a vierbein 𝑒𝑚𝜇, and consequently an inverse vierbein

𝑒𝑚
𝜇, and associated tetrad 𝛾𝛾𝑚. Most commonly the tetrad metric is orthonormal (Minkowski), 𝛾𝑚𝑛 = 𝜂𝑚𝑛,

but other tetrad metrics, such as Newman-Penrose, occur. Usually it is self-evident from the form of the
line-element what the tetrad metric 𝛾𝑚𝑛 is in any particular case.
If the tetrad is orthonormal, 𝛾𝑚𝑛 = 𝜂𝑚𝑛, then the 4-velocity 𝑢𝑚 of an object at rest in the tetrad, or

equivalently the 4-velocity of the tetrad rest frame itself, is

𝑢𝑚 = {1, 0, 0, 0} . (19.2)

The tetrad-frame 4-velocity (19.2) of the tetrad rest frame is transformed to a coordinate-frame 4-velocity
𝑢𝜇 in the usual way, by applying the inverse vierbein,

𝑑𝑥𝜇

𝑑𝜏
≡ 𝑢𝜇 = 𝑒𝑚

𝜇𝑢𝑚 = 𝑒0
𝜇 . (19.3)

Equation (19.3) says that the tetrad rest frame moves through the coordinates at coordinate 4-velocity given
by the zeroth row of the inverse vierbein, 𝑑𝑥𝜇/𝑑𝜏 = 𝑒0

𝜇. The coordinate 4-velocity 𝑢𝜇 is related to the lapse
𝛼 and shift 𝛽𝛼 in the ADM formalism by 𝑢𝜇 = {1, 𝛽𝛼}/𝛼, equation (17.11).
The idea that locally inertial frames move through the coordinates provides the simplest way to conceptu-

alize black holes. The motion of locally inertial frames through coordinates is what is meant by the “dragging
of inertial frames” around rotating masses.

Exercise 19.1. Tetrad frame of a rotating wheel. Derive the line-element of Minkowski space adapted
to the tetrad frame of a wheel uniformly rotating at angular velocity 𝜔. Show that a clock attached to the
wheel ticks slow by the Lorentz factor 𝛾 compared to a clock in the non-rotating frame, and that rulers
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attached to the wheel measure the rim to be Lorentz-contracted by a factor 𝛾 compared to the non-rotating
frame.
Solution. Start with the line-element of Minkowski space in cylindrical coordinates 𝑥𝜇 ≡ {𝑡, 𝑟, 𝜑, 𝑧},

𝑑𝑠2 = − 𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑𝜑2 + 𝑑𝑧2 . (19.4)

The vierbein for the line-element (19.4) is 𝑒𝑚𝜇 = diag(1, 1, 𝑟, 1), and the corresponding inverse vierbein is
𝑒𝑚

𝜇 = diag(1, 1, 1/𝑟, 1). Lorentz boost the inverse vierbein into the tetrad frame of the wheel rotating at
velocity 𝑣 = 𝑟𝜔 in the azimuthal 𝜑 direction,

𝑒𝑚
𝜇 =

⎛⎜⎜⎝
𝛾 0 𝛾𝑟𝜔 0

0 1 0 0

𝛾𝑟𝜔 0 𝛾 0

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1/𝑟 0

0 0 0 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝛾 0 𝛾𝜔 0

0 1 0 0

𝛾𝑟𝜔 0 𝛾/𝑟 0

0 0 0 1

⎞⎟⎟⎠ . (19.5)

The coordinate-frame 4-velocity of the wheel’s tetrad frame through the coordinates is

𝑑𝑥𝜇

𝑑𝜏
≡ 𝑢𝜇 = 𝑒0

𝜇 = {𝛾, 0, 𝛾𝜔, 0} , (19.6)

confirming that indeed the wheel is moving at 𝑑𝜑/𝑑𝑡 = 𝜔. The line-element is

𝑑𝑠2 = − 𝛾2(𝑑𝑡− 𝑟2𝜔 𝑑𝜑)2 + 𝑑𝑟2 + 𝛾2𝑟2(𝑑𝜑− 𝜔 𝑑𝑡)2 + 𝑑𝑧2 . (19.7)

A point on the wheel follows 𝑑𝑟 = 𝑑𝜑− 𝜔 𝑑𝑡 = 𝑑𝑧 = 0, so its proper time satisfies

𝑑𝜏 = 𝛾(𝑑𝑡− 𝑟2𝜔 𝑑𝜑) = 𝛾(1− 𝑟2𝜔2)𝑑𝑡 =
𝑑𝑡

𝛾
, (19.8)

demonstrating that a clock on the wheel runs slow by 𝛾 as claimed. Rulers attached to the rim of the wheel
measure distances that are simultaneous in the frame of the wheel, corresponding to 𝑑𝑡− 𝑟2𝜔 𝑑𝜑 = 0. Thus
corotating rulers measure azimuthal distances along the rim of

𝑑𝑙 = 𝛾𝑟(𝑑𝜑− 𝜔 𝑑𝑡) = 𝛾𝑟(1− 𝑟2𝜔2)𝑑𝜑 =
𝑟 𝑑𝜑

𝛾
, (19.9)

demonstrating that the rim is Lorentz-contracted by 𝛾 as claimed.

19.2 Gullstrand-Painlevé waterfall

The Gullstrand-Painlevé metric is a version of the metric for a spherical (Schwarzschild or Reissner-Nordström)
black hole discovered in 1921 independently by Allvar Gullstrand (Gullstrand, 1922) and Paul Painlevé
(Painlevé, 1921). Although Gullstrand’s paper was published in 1922, after Painlevé’s, it appears that Gull-
strand’s work has priority. Gullstrand’s paper was dated 25 May 1921, whereas Painlevé’s is a write up of a
presentation to the Académie des Sciences in Paris on 24 October 1921. Moreover, Gullstrand seems to have
had a better grasp of what he had discovered than Painlevé, for Gullstrand recognized that observables such
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Figure 19.1 Radial velocity 𝛽 in (upper panel) a Schwarzschild black hole, and (lower panel) a Reissner-Nordström

black hole with electric charge 𝑄 = 0.96.

as the redshift of light from the Sun are unaffected by the choice of coordinates in the Schwarzschild geom-
etry, whereas Painlevé, noting that the spatial metric was flat at constant free-fall time, 𝑑𝑡ff = 0, concluded
in his final sentence that, as regards the redshift of light and such, “c’est pure imagination de prétendre tirer
du 𝑑𝑠2 des conséquences de cette nature.”
Although neither Gullstrand nor Painlevé understood it, their metric paints a picture of space falling like

a river, or waterfall, into a spherical black hole, Figure 6.1. The river has two key features: first, the river
flows in Galilean fashion through a flat Galilean background, equation (19.25); and second, as a freely-falling
fishy swims through the river, its 4-velocity, or more generally any 4-vector attached to it, evolves by a
series of infinitesimal Lorentz boosts induced by the change in the velocity of the river from place to place,
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equation (19.30). Because the river moves in Galilean fashion, it can, and inside the horizon does, move
faster than light through the background coordinates. However, objects moving in the river move according
to the rules of special relativity, and so cannot move faster than light through the river.

19.2.1 Gullstrand-Painlevé tetrad

The Gullstrand-Painlevé metric (7.27) is

𝑑𝑠2 = − 𝑑𝑡2ff + (𝑑𝑟 − 𝛽 𝑑𝑡ff)2 + 𝑟2(𝑑𝜃2 + sin2𝜃 𝑑𝜑2) , (19.10)

where 𝛽 is defined to be the radial velocity of a person who free-falls radially from rest at infinity,

𝛽 =
𝑑𝑟

𝑑𝜏
=

𝑑𝑟

𝑑𝑡ff
, (19.11)

and 𝑡ff is the free-fall time, the proper time experienced by a person who free-falls from rest at infinity. The
radial velocity 𝛽 is the (apparently) Newtonian escape velocity

𝛽 = ∓
√︂

2𝑀(𝑟)

𝑟
, (19.12)

where 𝑀(𝑟) is the interior mass within radius 𝑟, and the sign is − (infalling) for a black hole, + (outfalling)
for a white hole. For the Schwarzschild or Reissner-Nordström geometry the interior mass 𝑀(𝑟) is the mass
𝑀 at infinity minus the mass 𝑄2/2𝑟 in the electric field outside 𝑟,

𝑀(𝑟) =𝑀 − 𝑄2

2𝑟
. (19.13)

Figure 19.1 illustrates the velocity fields in Schwarzschild and Reissner-Nordström black holes. Horizons
occur where the radial velocity 𝛽 equals the speed of light

𝛽 = ∓1 , (19.14)

with − for black hole solutions, + for white hole solutions. The phenomenology of Schwarzschild and Reissner-
Nordström black holes has already been explored in Chapters 7 and 8.

Exercise 19.2. Coordinate transformation from Schwarzschild to Gullstrand-Painlevé. Show that
the Schwarzschild metric transforms into the Gullstrand-Painlevé metric under the coordinate transformation
of the time coordinate

𝑑𝑡ff = 𝑑𝑡− 𝛽

1− 𝛽2
𝑑𝑟 . (19.15)

Exercise 19.3. Velocity of a person who free-falls radially from rest. Confirm that 𝛽 given by
equation (21.36) is indeed the velocity (19.11) of a person who free-falls radially from rest at infinity in the
Reissner-Nordström geometry.
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The Gullstrand-Painlevé line-element (19.10) encodes a vierbein with an orthonormal tetrad metric 𝛾𝑚𝑛 =

𝜂𝑚𝑛 through

𝑒0𝜇 𝑑𝑥
𝜇 = 𝑑𝑡ff , (19.16a)

𝑒1𝜇 𝑑𝑥
𝜇 = 𝑑𝑟 − 𝛽 𝑑𝑡ff , (19.16b)

𝑒2𝜇 𝑑𝑥
𝜇 = 𝑟 𝑑𝜃 , (19.16c)

𝑒3𝜇 𝑑𝑥
𝜇 = 𝑟 sin 𝜃 𝑑𝜑 . (19.16d)

Explicitly, the vierbein 𝑒𝑚𝜇 of the Gullstrand-Painlevé line-element (19.10), and the corresponding inverse
vierbein 𝑒𝑚𝜇, are the matrices

𝑒𝑚𝜇 =

⎛⎜⎜⎝
1 0 0 0

−𝛽 1 0 0

0 0 𝑟 0

0 0 0 𝑟 sin 𝜃

⎞⎟⎟⎠ , 𝑒𝑚
𝜇 =

⎛⎜⎜⎝
1 𝛽 0 0

0 1 0 0

0 0 1/𝑟 0

0 0 0 1/(𝑟 sin 𝜃)

⎞⎟⎟⎠ . (19.17)

According to equation (19.3), the coordinate 4-velocity of the tetrad frame through the coordinates is{︂
𝑑𝑡ff
𝑑𝜏

,
𝑑𝑟

𝑑𝜏
,
𝑑𝜃

𝑑𝜏
,
𝑑𝜑

𝑑𝜏

}︂
= 𝑢𝜇 = 𝑒0

𝜇 = {1, 𝛽, 0, 0} , (19.18)

consistent with the claim (19.11) that 𝛽 represents a radial velocity, while 𝑡ff coincides with the proper time
in the tetrad frame.
The tetrad and coordinate axes 𝛾𝛾𝑚 and 𝑒𝜇 are related to each other by the vierbein in the usual way,

𝛾𝛾𝑚 = 𝑒𝑚
𝜇 𝑒𝜇 and 𝑒𝜇 = 𝑒𝑚𝜇 𝛾𝛾𝑚. The Gullstrand-Painlevé orthonormal tetrad axes 𝛾𝛾𝑚 are thus related to

the coordinate axes 𝑒𝜇 by

𝛾𝛾0 = 𝑒𝑡ff + 𝛽𝑒𝑟 , 𝛾𝛾1 = 𝑒𝑟 , 𝛾𝛾2 = 𝑒𝜃/𝑟 , 𝛾𝛾3 = 𝑒𝜑/(𝑟 sin 𝜃) . (19.19)

Physically, the Gullstrand-Painlevé-Cartesian tetrad (19.19) are the axes of locally inertial orthonormal
frames (with spatial axes 𝛾𝛾𝑎 oriented in the polar directions 𝑟, 𝜃, 𝜑) attached to observers who free-fall
radially, without rotating, starting from zero velocity and zero angular momentum at infinity. The fact
that the tetrad axes 𝛾𝛾𝑚 are parallel-transported, without precessing, along the worldlines of the radially
free-falling observers can be confirmed by checking that the tetrad connections Γ𝑛𝑚0 with final index 0 all
vanish, which implies that

𝑑𝛾𝛾𝑚
𝑑𝜏

= 𝜕0𝛾𝛾𝑚 ≡ Γ𝑛𝑚0𝛾𝛾𝑛 = 0 . (19.20)

That the proper time derivative 𝑑/𝑑𝜏 in equation (19.20) of a person at rest in the tetrad frame, with
4-velocity (19.2), is equal to the directed time derivative 𝜕0 follows from

𝑑

𝑑𝜏
= 𝑢𝜇

𝜕

𝜕𝑥𝜇
= 𝑢𝑚𝜕𝑚 = 𝜕0 . (19.21)
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19.2.2 Gullstrand-Painlevé-Cartesian tetrad

The manner in which the Gullstrand-Painlevé line-element depicts a flow of space into a black hole is eluci-
dated further if the line-element is written in Cartesian rather than spherical polar coordinates. Introduce a
Cartesian coordinate system 𝑥𝜇 ≡ {𝑡ff , 𝑥𝛼} ≡ {𝑡ff , 𝑥, 𝑦, 𝑧}. The Gullstrand-Painlevé metric in these Cartesian
coordinates is

𝑑𝑠2 = − 𝑑𝑡2ff + 𝛿𝛼𝛽(𝑑𝑥
𝛼 − 𝛽𝛼𝑑𝑡ff)(𝑑𝑥𝛽 − 𝛽𝛽𝑑𝑡ff) , (19.22)

with implicit summation over spatial indices 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧. The 𝛽𝛼 in the metric (19.22) are the components
of the radial velocity expressed in Cartesian coordinates

𝛽𝛼 = 𝛽
{︁𝑥
𝑟
,
𝑦

𝑟
,
𝑧

𝑟

}︁
. (19.23)

The vierbein 𝑒𝑚𝜇 and inverse vierbein 𝑒𝑚𝜇 encoded in the Gullstrand-Painlevé-Cartesian line-element (19.22)
are

𝑒𝑚𝜇 =

⎛⎜⎜⎝
1 0 0 0

−𝛽1 1 0 0

−𝛽2 0 1 0

−𝛽3 0 0 1

⎞⎟⎟⎠ , 𝑒𝑚
𝜇 =

⎛⎜⎜⎝
1 𝛽𝑥 𝛽𝑦 𝛽𝑧

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ . (19.24)

The tetrad axes 𝛾𝛾𝑚 of the Gullstrand-Painlevé-Cartesian line-element (19.22) are related to the coordinate
tangent axes 𝑒𝜇 by

𝛾𝛾0 = 𝑒𝑡ff + 𝛽𝛼𝑒𝛼 , 𝛾𝛾𝑎 = 𝛿𝛼𝑎 𝑒𝛼 , (19.25)

and conversely the coordinate tangent axes 𝑒𝜇 are related to the tetrad axes 𝛾𝛾𝑚 by

𝑒𝑡ff = 𝛾𝛾0 − 𝛽𝑎𝛾𝛾𝑎 , 𝑒𝛼 = 𝛿𝑎𝛼𝛾𝛾𝑎 . (19.26)

Note that the tetrad-frame contravariant components 𝛽𝑎 of the radial velocity coincide with the coordinate-
frame contravariant components 𝛽𝛼; for clarification of this point see the more general equation (19.54)
for a rotating black hole. The Gullstrand-Painlevé-Cartesian tetrad axes (19.25) are the same as the tetrad
axes (19.19), but rotated to point in Cartesian directions 𝑥, 𝑦, 𝑧 rather than in polar directions 𝑟, 𝜃, 𝜑. Like the
polar tetrad, the Cartesian tetrad axes 𝛾𝛾𝑚 are parallel-transported, without precessing, along the worldlines
of radially free-falling observers, as can be confirmed by checking once again that the tetrad connections
Γ𝑛𝑚0 with final index 0 all vanish.
Remarkably, the transformation (19.25) from coordinate to tetrad axes is just a Galilean transformation

of space and time, which shifts the time axis by velocity 𝛽 along the direction of motion, but which leaves
unchanged both the time component of the time axis and all the spatial axes. In other words, the black
hole behaves as if it were a river of space that flows radially inward through Galilean space and time at the
Newtonian escape velocity.
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19.2.3 Gullstrand-Painlevé fishies

The Gullstrand-Painlevé line-element paints a picture of locally inertial frames falling like a river of space into
a spherical black hole. What happens to fishies swimming in that river? Of course general relativity supplies
a mathematical answer in the form of the geodesic equation of motion (19.27). Does that mathematical
answer lead to further conceptual insight?
Consider a fishy swimming in the Gullstrand-Painlevé river, with some arbitrary tetrad-frame 4-velocity

𝑢𝑚, and consider a tetrad-frame 4-vector 𝑝𝑘 attached to the fishy. If the fishy is in free-fall, then the geodesic
equation of motion for 𝑝𝑘 is as usual

𝑑𝑝𝑘

𝑑𝜏
+ Γ𝑘𝑚𝑛𝑢

𝑛𝑝𝑚 = 0 . (19.27)

As remarked in §11.11, for a constant (for example Minkowski) tetrad metric, as here, the tetrad connections
Γ𝑘𝑚𝑛 constitute a set of four generators of Lorentz transformations, one in each of the directions 𝑛. In
particular Γ𝑘𝑚𝑛𝑢

𝑛 is the generator of a Lorentz transformation along the path of a fishy moving with 4-
velocity 𝑢𝑛. In a small (infinitesimal) time 𝛿𝜏 , the fishy moves a proper distance 𝛿𝜉𝑛 ≡ 𝑢𝑛𝛿𝜏 relative to the
infalling river. This proper distance 𝛿𝜉𝑛 = 𝑒𝑛𝜈𝛿𝑥

𝜈 = 𝛿𝑛𝜈 (𝛿𝑥
𝜈 − 𝛽𝜈𝛿𝑡ff) = 𝛿𝑥𝑛 − 𝛽𝑛𝛿𝜏 equals the distance

𝛿𝑥𝑛 moved relative to the background Gullstrand-Painlevé-Cartesian coordinates, minus the distance 𝛽𝑛𝛿𝜏
moved by the river. The geodesic equation (19.27) says that the change 𝛿𝑝𝑘 in the tetrad 4-vector 𝑝𝑘 in the
time 𝛿𝜏 is

𝛿𝑝𝑘 = −Γ𝑘𝑚𝑛𝛿𝜉𝑛𝑝𝑚 . (19.28)

Equation (19.28) describes an infinitesimal Lorentz transformation −Γ𝑘𝑚𝑛𝛿𝜉𝑛 of the 4-vector 𝑝𝑘.
Equation (19.28) is quite general in general relativity: it says that as a 4-vector 𝑝𝑘 free-falls through a

system of locally inertial tetrads, it finds itself Lorentz-transformed relative those tetrads. What is special
about the Gullstrand-Painlevé-Cartesian tetrad is that the tetrad-frame connections, computed by the usual
formula (11.54), are given by the coordinate gradient of the radial velocity (the following equation is valid
component-by-component despite the non-matching up-down placement of indices)

Γ0
𝑎𝑏 = Γ𝑎0𝑏 = 𝜕𝑏𝛽

𝑎 = 𝛿𝛽𝑏
𝜕𝛽𝑎

𝜕𝑥𝛽
(𝑎, 𝑏 = 1, 2, 3) . (19.29)

The same property, that the tetrad connections are a pure coordinate gradient, holds also for the Doran-
Cartesian tetrad for a rotating black hole, equation (19.57). With the connections (19.29), the change
𝛿𝑝𝑘 (19.28) in the tetrad 4-vector is

𝛿𝑝0 = − 𝛿𝛽𝑎 𝑝𝑎 , 𝛿𝑝𝑎 = − 𝛿𝛽𝑎 𝑝0 , (19.30)

where 𝛿𝛽𝑎 is the change in the velocity of the river as seen in the tetrad frame,

𝛿𝛽𝑎 = 𝛿𝜉𝛽
𝜕𝛽𝑎

𝜕𝑥𝛽
. (19.31)

But equation (19.30) is nothing more than an infinitesimal Lorentz boost by a velocity change 𝛿𝛽𝑎. This
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shows that a fishy swimming in the river follows the rules of special relativity, being Lorentz boosted by tidal
changes 𝛿𝛽𝑎 in the river velocity from place to place.
Is it correct to interpret equation (19.31) as giving the change 𝛿𝛽𝑎 in the river velocity seen by a fishy? Of

course general relativity demands that equation (19.31) be mathematically correct; the issue is merely one
of interpretation. Shouldn’t the change in the river velocity really be

𝛿𝛽𝑎
?
= 𝛿𝑥𝜈

𝜕𝛽𝑎

𝜕𝑥𝜈
, (19.32)

where 𝛿𝑥𝜈 is the full change in the coordinate position of the fishy? No. Part of the change (19.32) in the
river velocity can be attributed to the change in the velocity of the river itself over the time 𝛿𝜏 , which is
𝛿𝑥𝜈river𝜕𝛽

𝑎/𝜕𝑥𝜈 with 𝛿𝑥𝜈river = 𝛽𝜈𝛿𝜏 = 𝛽𝜈𝛿𝑡ff . The change in the velocity relative to the flowing river is

𝛿𝛽𝑎 = (𝛿𝑥𝜈 − 𝛿𝑥𝜈river)
𝜕𝛽𝑎

𝜕𝑥𝜈
= (𝛿𝑥𝜈 − 𝛽𝜈𝛿𝑡ff)

𝜕𝛽𝑎

𝜕𝑥𝜈
, (19.33)

which reproduces the earlier expression (19.31). Indeed, in the picture of fishies being carried by the river,
it is essential to subtract the change in velocity of the river itself, as in equation (19.33), because otherwise
fishies at rest in the river (going with the flow) would not continue to remain at rest in the river.

19.3 Boyer-Lindquist tetrad

The Boyer-Lindquist metric for an ideal rotating black hole was explored already in Chapter 9. With the
tetrad formalism in hand, the advantages of the Boyer-Lindquist tetrad for portraying the Kerr-Newman
geometry become manifest. With respect to the orthonormal Boyer-Lindquist tetrad, the electromagnetic
field is purely radial, and the energy-momentum and Weyl tensors are diagonal. The Boyer-Lindquist tetrad
is aligned with the principal (outgoing and ingoing) null congruences.
The Boyer-Lindquist orthonormal tetrad is encoded in the Boyer-Lindquist metric

𝑑𝑠2 = − 𝑅2Δ

𝜌2
(︀
𝑑𝑡− 𝑎 sin2𝜃 𝑑𝜑

)︀2
+

𝜌2

𝑅2Δ
𝑑𝑟2 + 𝜌2𝑑𝜃2 +

𝑅4 sin2𝜃

𝜌2

(︁
𝑑𝜑− 𝑎

𝑅2
𝑑𝑡
)︁2

, (19.34)

where

𝑅 ≡
√︀
𝑟2 + 𝑎2 , 𝜌 ≡

√︀
𝑟2 + 𝑎2 cos2𝜃 , Δ ≡ 1− 2𝑀𝑟

𝑅2
+
𝑄2

𝑅2
= 1− 𝛽2 . (19.35)

Explicitly, the vierbein 𝑒𝑚𝜇 of the Boyer-Lindquist orthonormal tetrad is

𝑒𝑚𝜇 =

⎛⎜⎜⎝
𝑅
√
Δ/𝜌 0 0 − 𝑎 sin2𝜃𝑅

√
Δ/𝜌

0 𝜌/(𝑅
√
Δ) 0 0

0 0 𝜌 0

− 𝑎 sin 𝜃/𝜌 0 0 𝑅2 sin 𝜃/𝜌

⎞⎟⎟⎠ , (19.36)
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with inverse vierbein 𝑒𝑚𝜇

𝑒𝑚
𝜇 =

1

𝜌

⎛⎜⎜⎝
𝑅/
√
Δ 0 0 𝑎/(𝑅

√
Δ)

0 𝑅
√
Δ 0 0

0 0 1 0

𝑎 sin 𝜃 0 0 1/ sin 𝜃

⎞⎟⎟⎠ , (19.37)

With respect to the Boyer-Lindquist tetrad, only the time component 𝐴𝑡 of the electromagnetic potential
𝐴𝑚 is non-vanishing,

𝐴𝑚 =

{︂
𝑄𝑟

𝜌𝑅
√
Δ
, 0, 0, 0

}︂
. (19.38)

Only the radial components 𝐸 and 𝐵 of the electric and magnetic fields are non-vanishing, and they are
given by the complex combination

𝐸 + 𝐼 𝐵 =
𝑄

(𝑟 − 𝐼𝑎 cos 𝜃)2
, (19.39)

or explicitly

𝐸 =
𝑄
(︀
𝑟2−𝑎2 cos2𝜃

)︀
𝜌4

, 𝐵 =
2𝑄𝑎𝑟 cos 𝜃

𝜌4
. (19.40)

The electromagnetic field (19.39) satisfies Maxwell’s equations (22.56) with zero electric charge and current,
𝑗𝑛 = 0, except at the singularity 𝜌 = 0.
The non-vanishing components of the tetrad-frame Einstein tensor 𝐺𝑚𝑛 are

𝐺𝑚𝑛 =
𝑄2

𝜌4

⎛⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ , (19.41)

which is the energy-momentum tensor of the electromagnetic field. The non-vanishing components of the
tetrad-frame Weyl tensor 𝐶𝑘𝑙𝑚𝑛 are

− 1
2 𝐶0101 = 1

2 𝐶2323 = 𝐶0202 = 𝐶0303 = −𝐶1212 = −𝐶1313 = Re𝐶 , (19.42a)

1
2 𝐶0123 = 𝐶0213 = −𝐶0312 = Im𝐶 , (19.42b)

where 𝐶 is the complex Weyl scalar

𝐶 = − 1

(𝑟 − 𝐼𝑎 cos 𝜃)3

(︂
𝑀 − 𝑄2

𝑟 + 𝐼𝑎 cos 𝜃

)︂
. (19.43)

In the Boyer-Lindquist tetrad, the photon 4-velocity 𝑣𝑚 ≡ 𝑒𝑚𝜇𝑣
𝜇 = 𝑒𝑚𝜇𝑑𝑥

𝜇/𝑑𝜆 on the principal null
congruences is radial,

𝑣𝑡 = ± 𝜌

𝑅
√
Δ
, 𝑣𝑟 = ± 𝜌

𝑅
√
Δ
, 𝑣𝜃 = 0 , 𝑣𝜑 = 0 . (19.44)
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Exercise 19.4. Dragging of inertial frames around a Kerr-Newman black hole. What is the
coordinate-frame 4-velocity 𝑢𝜇 of the Boyer-Lindquist tetrad through the Boyer-Lindquist coordinates?

19.4 Doran waterfall

The picture of space falling into a black hole like a river or waterfall works also for rotating black holes. For
Kerr-Newman rotating black holes, the counterpart of the Gullstrand-Painlevé metric is the Doran (2000)
metric.
The space river that falls into a rotating black hole has a twist. One might have expected that the rotation

of the black hole would be manifested by a velocity that spirals inward, but that is not the case. Instead,
the river is characterized not merely by a velocity but also by a twist. The velocity and the twist together
comprise a 6-dimensional river bivector 𝜔𝑘𝑚, equation (19.58) below, whose electric part is the velocity, and
whose magnetic part is the twist. Recall that the 6-dimensional group of Lorentz transformations is generated
by a combination of 3-dimensional Lorentz boosts and 3-dimensional spatial rotations. A fishy that swims
through the river is Lorentz boosted by tidal changes in the velocity, and rotated by tidal changes in the
twist, equation (19.67).
Thanks to the twist, unlike the Gullstrand-Painlevé metric, the Doran metric is not spatially flat at

constant free-fall time 𝑡ff . Rather, the spatial metric is sheared in the azimuthal direction. Just as the
velocity produces a Lorentz boost that makes the metric non-flat with respect to the time components, so
also the twist produces a rotation that makes the metric non-flat with respect to the spatial components.

19.4.1 Doran-Cartesian coordinates

In place of the polar coordinates {𝑟, 𝜃, 𝜑ff} of the Doran metric, equations (9.33), introduce corresponding
Doran-Cartesian coordinates {𝑥, 𝑦, 𝑧} with 𝑧 taken along the rotation axis of the black hole (the black hole
rotates right-handedly about 𝑧, for positive spin parameter 𝑎)

𝑥 ≡ 𝑅 sin 𝜃 cos𝜑ff , 𝑦 ≡ 𝑅 sin 𝜃 sin𝜑ff , 𝑧 ≡ 𝑟 cos 𝜃 . (19.45)

The metric in Doran-Cartesian coordinates 𝑥𝜇 ≡ {𝑡ff , 𝑥𝛼} ≡ {𝑡ff , 𝑥, 𝑦, 𝑧}, is

𝑑𝑠2 = − 𝑑𝑡2ff + 𝛿𝛼𝛽 (𝑑𝑥
𝛼 − 𝛽𝛼𝛼𝜅𝑑𝑥𝜅)

(︀
𝑑𝑥𝛽 − 𝛽𝛽𝛼𝜆𝑑𝑥𝜆

)︀
(19.46)

where 𝛼𝜇 is the rotational velocity vector

𝛼𝜇 =
{︁
1,

𝑎𝑦

𝑅2
, − 𝑎𝑥

𝑅2
, 0
}︁
, (19.47)

and 𝛽𝜇 is the velocity vector

𝛽𝜇 =
𝛽𝑅

𝜌

{︂
0,

𝑥𝑟

𝑅𝜌
,
𝑦𝑟

𝑅𝜌
,
𝑧𝑅

𝑟𝜌

}︂
. (19.48)
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The rotational velocity and radial velocity vectors are orthogonal

𝛼𝜇𝛽
𝜇 = 0 . (19.49)

For the Kerr-Newman metric, the radial velocity 𝛽 is

𝛽 = ∓
√︀

2𝑀𝑟 −𝑄2

𝑅
(19.50)

with − for black hole (infalling), + for white hole (outfalling) solutions. Horizons occur where

𝛽 = ∓1 , (19.51)

with 𝛽 = −1 for black hole horizons, and 𝛽 = 1 for white hole horizons. Note that the squared magnitude
𝛽𝜇𝛽

𝜇 of the velocity vector is not 𝛽2, but rather differs from 𝛽2 by a factor of 𝑅2/𝜌2:

𝛽𝜇𝛽
𝜇 = 𝛽𝑚𝛽

𝑚 =
𝛽2𝑅2

𝜌2
. (19.52)

The point of the convention adopted here is that 𝛽(𝑟) is any and only a function of 𝑟, rather than depending
also on 𝜃 through 𝜌. Moreover, with the convention here, 𝛽 is ∓1 at horizons, equation (19.51). Finally, the
4-velocity 𝛽𝜇 is simply related to 𝛽 by 𝛽𝜇 = (𝛽/𝑟) 𝜕𝑟/𝜕𝑥𝜇.
The Doran-Cartesian metric (19.46) encodes a vierbein 𝑒𝑚𝜇 and inverse vierbein 𝑒𝑚𝜇

𝑒𝑚𝜇 = 𝛿𝑚𝜇 − 𝛼𝜇𝛽𝑚 , 𝑒𝑚
𝜇 = 𝛿𝜇𝑚 + 𝛼𝑚𝛽

𝜇 . (19.53)

Here the tetrad-frame components 𝛼𝑚 of the rotational velocity vector and 𝛽𝑚 of the radial velocity vector
are

𝛼𝑚 = 𝑒𝑚
𝜇𝛼𝜇 = 𝛿𝜇𝑚𝛼𝜇 , 𝛽𝑚 = 𝑒𝑚𝜇𝛽

𝜇 = 𝛿𝑚𝜇 𝛽
𝜇 , (19.54)

which works thanks to the orthogonality (19.49) of 𝛼𝜇 and 𝛽𝜇. Equation (19.54) says that the covariant tetrad-
frame components of the rotational velocity vector are the same as its covariant coordinate-frame components
in the Doran-Cartesian coordinate system, 𝛼𝑚 = 𝛼𝜇, and likewise the contravariant tetrad-frame components
of the radial velocity vector are the same as its contravariant coordinate-frame components, 𝛽𝑚 = 𝛽𝜇.

19.4.2 Doran-Cartesian tetrad

Like the Gullstrand-Painlevé tetrad, the Doran-Cartesian tetrad 𝛾𝛾𝑚 ≡ {𝛾𝛾0,𝛾𝛾1,𝛾𝛾2,𝛾𝛾3} is aligned with the
Cartesian rest frame 𝑒𝜇 ≡ {𝑒𝑡ff , 𝑒𝑥, 𝑒𝑦, 𝑒𝑧} at infinity, and is parallel-transported, without precessing, by
observers who free-fall from zero velocity and zero angular momentum at infinity, as can be confirmed by
checking that the tetrad connections with final index 0 all vanish, Γ𝑛𝑚0 = 0, equation (19.20).
Let ‖ and ⊥ subscripts denote horizontal radial and azimuthal directions respectively, so that

𝛾𝛾‖ ≡ cos𝜑ff 𝛾𝛾1 + sin𝜑ff 𝛾𝛾2 , 𝛾𝛾⊥ ≡ − sin𝜑ff 𝛾𝛾1 + cos𝜑ff 𝛾𝛾2 ,

𝑒‖ ≡ cos𝜑ff 𝑒𝑥 + sin𝜑ff 𝑒𝑦 , 𝑒⊥ ≡ − sin𝜑ff 𝑒𝑥 + cos𝜑ff 𝑒𝑦 .
(19.55)
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Then the relation between Doran-Cartesian tetrad axes 𝛾𝛾𝑚 and the tangent axes 𝑒𝜇 of the Doran-Cartesian
metric (19.46) is

𝛾𝛾0 = 𝑒𝑡ff + 𝛽𝛼𝑒𝛼 , (19.56a)

𝛾𝛾‖ = 𝑒‖ , (19.56b)

𝛾𝛾⊥ = 𝑒⊥ −
𝑎 sin 𝜃

𝑅
𝛽𝛼𝑒𝛼 , (19.56c)

𝛾𝛾3 = 𝑒𝑧 . (19.56d)

The relations (19.56) resemble those (19.25) of the Gullstrand-Painlevé tetrad, except that the azimuthal
tetrad axis 𝛾𝛾⊥ is shifted radially relative to the azimuthal tangent axis 𝑒⊥. This shift reflects the fact that,
unlike the Gullstrand-Painlevé metric, the Doran metric is not spatially flat at constant free-fall time, but
rather is sheared azimuthally.

19.4.3 Doran fishies

The tetrad-frame connections equal the ordinary coordinate partial derivatives in Doran-Cartesian coordi-
nates of a bivector (antisymmetric tensor) 𝜔𝑘𝑚

Γ𝑘𝑚𝑛 = − 𝛿𝜈𝑛
𝜕𝜔𝑘𝑚
𝜕𝑥𝜈

, (19.57)

which I call the river field because it encapsulates all the properties of the infalling river of space. The
bivector river field 𝜔𝑘𝑚 is

𝜔𝑘𝑚 = 𝛼𝑘𝛽𝑚 − 𝛼𝑚𝛽𝑘 − 𝜀0𝑘𝑚𝑎 𝜁𝑎 , (19.58)

where 𝛽𝑚 = 𝜂𝑚𝑛𝛽
𝑚, the totally antisymmetric tensor 𝜀𝑘𝑙𝑚𝑛 is normalized so that 𝜀0123 = −1, and the vector

𝜁𝑎 points vertically upward along the rotation axis of the black hole

𝜁𝑎 ≡ {0, 0, 0, 𝜁} , 𝜁 ≡ 𝑎
∫︁ 𝑟

∞

𝛽 𝑑𝑟

𝑅2
. (19.59)

The electric part of 𝜔𝑘𝑚, where one of the indices is time 0, constitutes the velocity vector 𝛽𝑎

𝜔0𝑎 = 𝛽𝑎 (19.60)

while the magnetic part of 𝜔𝑘𝑚, where both indices are spatial, constitutes the twist vector 𝜇𝑎 defined by

𝜇𝑎 ≡ 1
2 𝜀

0𝑎𝑘𝑚𝜔𝑘𝑚 = 𝜀0𝑎𝑘𝑚𝛼𝑘𝛽𝑚 + 𝜁𝑎 . (19.61)

The sense of the twist is that induces a right-handed rotation about an axis equal to the direction of 𝜇𝑎 by
an angle equal to the magnitude of 𝜇𝑎. In 3-vector notation, with 𝜇 ≡ 𝜇𝑎, 𝛼 ≡ 𝛼𝑎, 𝛽 ≡ 𝛽𝑎, 𝜁 ≡ 𝜁𝑎,

𝜇 ≡ 𝛼× 𝛽 + 𝜁 . (19.62)
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In terms of the velocity and twist vectors, the river field 𝜔𝑘𝑚 is

𝜔𝑘𝑚 =

⎛⎜⎜⎝
0 𝛽1 𝛽2 𝛽3

−𝛽1 0 𝜇3 −𝜇2

−𝛽2 −𝜇3 0 𝜇1

−𝛽3 𝜇2 −𝜇1 0

⎞⎟⎟⎠ . (19.63)

Note that the sign of the electric part 𝛽 of 𝜔𝑘𝑚 is opposite to the sign of the analogous electric field 𝐸

associated with an electromagnetic field 𝐹𝑘𝑚, equation (4.46); but the adopted signs are natural in that the
river field induces boosts in the direction of the velocity 𝛽𝑎, and right-handed rotations about the twist 𝜇𝑎.
Like a static electric field, the velocity vector 𝛽𝑎 is the gradient of a potential

𝛽𝑎 = 𝛿𝑎𝛼
𝜕

𝜕𝑥𝛼

∫︁ 𝑟

𝛽 𝑑𝑟 , (19.64)

but unlike a magnetic field the twist vector 𝜇𝑎 is not pure curl: rather, it is 𝜇𝑎 + 𝜁𝑎 that is pure curl.
Figure 19.2 illustrates the velocity and twist fields in a Kerr black hole.
With the tetrad connection coefficients given by equation (19.57), the equation of motion (19.27) for a

4-vector 𝑝𝑘 attached to a fishy following a geodesic in the Doran river translates to

𝑑𝑝𝑘

𝑑𝜏
= 𝛿𝜈𝑛

𝜕𝜔𝑘𝑚
𝜕𝑥𝜈

𝑢𝑛𝑝𝑚 . (19.65)

In a proper time 𝛿𝜏 , the fishy moves a proper distance 𝛿𝜉𝑚 ≡ 𝑢𝑚𝛿𝜏 relative to the background Doran-
Cartesian coordinates. As a result, the fishy sees a tidal change 𝛿𝜔𝑘𝑚 in the river field

𝛿𝜔𝑘𝑚 = 𝛿𝜉𝑛
𝜕𝜔𝑘𝑚
𝜕𝑥𝑛

. (19.66)

Consequently the 4-vector 𝑝𝑘 is changed by

𝑝𝑘 → 𝑝𝑘 + 𝛿𝜔𝑘𝑚 𝑝
𝑚 . (19.67)

But equation (19.67) corresponds to an infinitesimal Lorentz transformation by 𝛿𝜔𝑘𝑚, equivalent to a Lorentz
boost by 𝛿𝛽𝑎 and a rotation by 𝛿𝜇𝑎.
As discussed previously with regard to the Gullstrand-Painlevé river, §19.2.3, the tidal change 𝛿𝜔𝑘𝑚,

equation (19.66), in the river field seen by a fishy is not the full change 𝛿𝑥𝜈 𝜕𝜔𝑘𝑚/𝜕𝑥𝜈 relative to the
background coordinates, but rather the change relative to the river

𝛿𝜔𝑘𝑚 = (𝛿𝑥𝜈 − 𝛿𝑥𝜈river)
𝜕𝜔𝑘𝑚
𝜕𝑥𝜈

=
[︀
𝛿𝑥𝜈 − 𝛽𝜈(𝛿𝑡ff − 𝑎 sin2𝜃 𝛿𝜑ff)

]︀ 𝜕𝜔𝑘𝑚
𝜕𝑥𝜈

, (19.68)

with the change in the velocity and twist of the river itself subtracted off.
That there exists a tetrad (the Doran-Cartesian tetrad) where the tetrad-frame connections are a coor-

dinate gradient of a bivector, equation (19.57), is a peculiar feature of ideal black holes. It is an intriguing
thought that perhaps the 6 physical degrees of freedom of a general spacetime might always be encoded in
the 6 degrees of freedom of a bivector, but that is not true.
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Figure 19.2 (Upper panel) velocity 𝛽𝑎 and (lower panel) twist 𝜇𝑎 vector fields for a Kerr black hole with spin parameter

𝑎 = 0.96. Both vectors lie, as shown, in the plane of constant free-fall azimuthal angle 𝜑ff . The vertical bar in the

lower panel shows the length of a twist vector corresponding to a full rotation of 360∘.

Exercise 19.5. River model of the Friedmann-Lemaître-Robertson-Walker metric. Show that the
flat FLRW line-element

𝑑𝑠2 = − 𝑑𝑡2 + 𝑎2(𝑑𝑥2 + 𝑥2𝑑𝑜2) (19.69)

can be re-expressed as

𝑑𝑠2 = − 𝑑𝑡2 + (𝑑𝑟 −𝐻𝑟 𝑑𝑡)2 + 𝑟2𝑑𝑜2 , (19.70)
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where 𝑟 ≡ 𝑎𝑥 is the proper radial distance, and 𝐻 ≡ �̇�/𝑎 is the Hubble parameter. Interpret the line-
element (19.70). Is there a generalization to a non-flat FLRW universe?

Exercise 19.6. Program geodesics in a rotating black hole. Write a graphics program that uses the
prescription (19.66) to draw geodesics of test particles in an ideal (Kerr-Newman) black hole, expressed in
Doran-Cartesian coordinates. Attach 3D bodies to your test particles, and use the same prescription (19.66)
to rotate the bodies. Implement an option to translate to Boyer-Lindquist coordinates.



20

General spherically symmetric spacetimes

20.1 Spherical spacetime

Spherical spacetimes have 2 physical degrees of freedom. Spherical symmetry eliminates any angular degrees
of freedom, leaving 4 adjustable metric coefficients 𝑔𝑡𝑡, 𝑔𝑡𝑟, 𝑔𝑟𝑟, and 𝑔𝜃𝜃. But coordinate transformations
of the time 𝑡 and radial 𝑟 coordinates remove 2 degrees of freedom, leaving a spherical spacetime with a
net 2 physical degrees of freedom. Spherical spacetimes have 4 distinct Einstein equations (20.39). But 2 of
the Einstein equations serve to enforce energy-momentum conservation, so the evolution of the spacetime is
governed by 2 Einstein equations, in agreement with the number of physical degrees of freedom of spherical
spacetime.
The 2 degrees of freedom mean that spherical spacetimes in general relativity have a richer structure than

in Newtonian gravity, which has only one degree of freedom, the Newtonian potential Φ. The richer structure
is most striking in the case of the mass inflation instability, Chapter 21, which is an intrinsically general
relativistic instability, with no Newtonian analogue.

20.2 Spherical line-element

The spherical line-element adopted in this Chapter is, in spherical polar coordinates 𝑥𝜇 ≡ {𝑡, 𝑟, 𝜃, 𝜑},

𝑑𝑠2 = −𝛼2𝑑𝑡2 +
1

𝛽2
1

(𝑑𝑟 − 𝛼𝛽0 𝑑𝑡)2 + 𝑟2𝑑𝑜2 . (20.1)

Here 𝑟 is the circumferential radius, defined such that the circumference around any great circle is 2𝜋𝑟.
The line-element (20.1) is in ADM form (17.8) with lapse 𝛼 and shift 𝛼𝛽0. The notation 𝛽𝑚 is motivated
by fact that {𝛽0, 𝛽1, 0, 0} forms a tetrad-frame 4-vector, equation (20.9). As expounded in §11.3, through
𝑑𝑠2 = 𝜂𝑚𝑛𝑒

𝑚
𝜇𝑒
𝑛
𝜈 𝑑𝑥

𝜇𝑑𝑥𝜈 the line-element (20.1) encodes not only a metric, but also a locally inertial tetrad
𝛾𝛾𝑚 ≡ {𝛾𝛾0,𝛾𝛾1,𝛾𝛾2,𝛾𝛾3}. The off-diagonal character of the line-element allows the tetrad to flow through the
coordinates. This flexibility is especially useful for black holes, since no locally inertial frame can remain at
rest inside the horizon of a black hole.

568
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The vierbein 𝑒𝑚𝜇 can be read off from the line-element (20.1):

𝑒0𝜇 𝑑𝑥
𝜇 = 𝛼𝑑𝑡 , (20.2a)

𝑒1𝜇 𝑑𝑥
𝜇 =

1

𝛽1
(𝑑𝑟 − 𝛼𝛽0 𝑑𝑡) , (20.2b)

𝑒2𝜇 𝑑𝑥
𝜇 = 𝑟 𝑑𝜃 , (20.2c)

𝑒3𝜇 𝑑𝑥
𝜇 = 𝑟 sin 𝜃 𝑑𝜃 . (20.2d)

The vierbein 𝑒𝑚𝜇 and inverse vierbein 𝑒𝑚𝜇 corresponding to the spherical line-element (20.1) are

𝑒𝑚𝜇 =

⎛⎜⎜⎝
𝛼 0 0 0

−𝛼𝛽0/𝛽1 1/𝛽1 0 0

0 0 𝑟 0

0 0 0 𝑟 sin 𝜃

⎞⎟⎟⎠ , 𝑒𝑚
𝜇 =

⎛⎜⎜⎝
1/𝛼 𝛽0 0 0

0 𝛽1 0 0

0 0 1/𝑟 0

0 0 0 1/(𝑟 sin 𝜃)

⎞⎟⎟⎠ . (20.3)

As in the ADM formalism, §17.1, the tetrad time axis 𝛾𝛾0 is chosen to be orthogonal to hypersurfaces of
constant time 𝑡. The directed derivatives 𝜕0 and 𝜕1 along the time and radial tetrad axes 𝛾𝛾0 and 𝛾𝛾1 are

𝜕0 = 𝑒0
𝜇 𝜕

𝜕𝑥𝜇
=

1

𝛼

𝜕

𝜕𝑡
+ 𝛽0

𝜕

𝜕𝑟
, 𝜕1 = 𝑒1

𝜇 𝜕

𝜕𝑥𝜇
= 𝛽1

𝜕

𝜕𝑟
. (20.4)

The tetrad-frame 4-velocity 𝑢𝑚 of a person at rest in the tetrad frame is by definition 𝑢𝑚 = {1, 0, 0, 0}. It
follows that the coordinate 4-velocity 𝑢𝜇 of such a person is

𝑢𝜇 = 𝑒𝑚
𝜇𝑢𝑚 = 𝑒0

𝜇 = {1/𝛼, 𝛽0, 0, 0} . (20.5)

A person instantaneously at rest in the tetrad frame satisfies 𝑑𝑟/𝑑𝑡 = 𝛼𝛽0 according to equation (20.5), so it
follows from the line-element (20.1) that the proper time 𝜏 of a person at rest in the tetrad frame is related
to the coordinate time 𝑡 by

𝑑𝜏 = 𝛼𝑑𝑡 in tetrad rest frame . (20.6)

The directed time derivative 𝜕0 is just the proper time derivative along the worldline of a person continuously
at rest in the tetrad frame (and who is therefore not in free-fall, but accelerating with the tetrad frame),
which follows from

𝑑

𝑑𝜏
=
𝑑𝑥𝜇

𝑑𝜏

𝜕

𝜕𝑥𝜇
= 𝑢𝜇

𝜕

𝜕𝑥𝜇
= 𝑢𝑚𝜕𝑚 = 𝜕0 . (20.7)

By contrast, the proper time derivative measured by a person who is instantaneously at rest in the tetrad
frame, but is in free-fall, is the covariant time derivative

𝐷

𝐷𝜏
=
𝑑𝑥𝜇

𝑑𝜏
𝐷𝜇 = 𝑢𝜇𝐷𝜇 = 𝑢𝑚𝐷𝑚 = 𝐷0 . (20.8)

Since the coordinate radius 𝑟 has been defined to be the circumferential radius, a gauge-invariant definition,
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it follows that the tetrad-frame gradient 𝜕𝑚 of the coordinate radius 𝑟 is a tetrad-frame 4-vector (a coordinate
gauge-invariant object),

𝜕𝑚𝑟 = 𝑒𝑚
𝜇 𝜕𝑟

𝜕𝑥𝜇
= 𝑒𝑚

𝑟 = 𝛽𝑚 = {𝛽0, 𝛽1, 0, 0} a tetrad 4-vector . (20.9)

This accounts for the notation 𝛽0 and 𝛽1 introduced above. The component 𝛽0 can be interpreted as the
radial velocity of the tetrad frame, equation (20.5),

𝛽0 =
𝑑𝑟

𝑑𝜏
. (20.10)

The component 𝛽1 can be interpreted as the energy per unit mass of an object at rest in the tetrad frame,
equation (20.52).
Since 𝛽𝑚 is a tetrad 4-vector, its scalar product with itself must be a scalar. This scalar defines the interior

mass 𝑀(𝑡, 𝑟), also called the Misner-Sharp mass (Misner and Sharp, 1964), by

1− 2𝑀

𝑟
≡ 𝛽𝑚𝛽𝑚 = −𝛽2

0 + 𝛽2
1 a coordinate and tetrad scalar . (20.11)

The interpretation of 𝑀 as the interior mass will become evident below, §20.9.
The horizon function Δ is defined by

Δ ≡ 𝛽𝑚𝛽𝑚 = 1− 2𝑀

𝑟
. (20.12)

Apparent horizons occur where the horizon function is zero, Δ = 0, that is, where the 4 vector 𝛽𝑚 is null, a
gauge-invariant condition. The condition for an apparent horizon is

𝑟 = 2𝑀 , (20.13)

which holds in any spherically symmetric geometry, not just the Schwarzschild geometry. In general the
interior mass 𝑀 varies with radius 𝑟; only in the Schwarzschild geometry is the interior mass 𝑀 constant.
Inside horizons, where the horizon function Δ is negative, the velocity 𝛽0 cannot be zero: the tetrad must

move superluminally through the radial coordinate. Similarly, outside horizons, where the horizon function
Δ is positive, the energy per unit mass 𝛽1 cannot be zero. Inside horizons, the energy per unit mass 𝛽1 can
be either positive, in which case the tetrad frame is called ingoing, or negative, in which case the tetrad
frame is called outgoing. The tetrad can switch between ingoing and outgoing only inside horizons.

Exercise 20.1. Apparent horizon. Show that radial null geodesics in a spherical geometry satisfy

𝑑𝑟

𝑑𝑡
= 𝛼(𝛽0 ± 𝛽1) . (20.14)

An apparent horizon occurs where outgoing radial null geodesics are not moving radially, 𝑑𝑟/𝑑𝑡 = 0. Conclude
that an apparent horizon occurs where (choosing 𝛼 and 𝛽1 positive without loss of generality)

𝛽0 = −𝛽1 . (20.15)
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20.3 Rest diagonal line-element

Although this is not the choice adopted here, the line-element (20.1) can always be brought to diagonal form
by a coordinate transformation 𝑡→ 𝑡× (subscripted × for diagonal) of the time coordinate. The 𝑡–𝑟 part of
the metric is

𝑔𝑡𝑡 𝑑𝑡
2 + 2 𝑔𝑡𝑟 𝑑𝑡 𝑑𝑟 + 𝑔𝑟𝑟 𝑑𝑟

2 =
1

𝑔𝑡𝑡

[︀
(𝑔𝑡𝑡 𝑑𝑡+ 𝑔𝑡𝑟 𝑑𝑟)

2 + (𝑔𝑡𝑡𝑔𝑟𝑟 − 𝑔2𝑡𝑟) 𝑑𝑟2
]︀
. (20.16)

This can be diagonalized by choosing the time coordinate 𝑡× such that

𝑓 𝑑𝑡× = 𝑔𝑡𝑡 𝑑𝑡+ 𝑔𝑡𝑟 𝑑𝑟 (20.17)

for some integrating factor 𝑓(𝑡, 𝑟). Equation (20.17) can be solved by choosing 𝑡× to be constant along
integral curves

𝑑𝑟

𝑑𝑡
= − 𝑔𝑡𝑡

𝑔𝑡𝑟
. (20.18)

The resulting diagonal rest line-element is

𝑑𝑠2 = −𝛼2
×𝑑𝑡

2
× +

𝑑𝑟2

1− 2𝑀/𝑟
+ 𝑟2𝑑𝑜2 . (20.19)

The line-element (20.19) corresponds physically to the case where the tetrad frame is taken to be at rest in
the spatial coordinates, 𝛽0 = 0, as can be seen by comparing it to the earlier line-element (20.1). In changing
the tetrad frame from one moving at 𝑑𝑟/𝑑𝑡 = 𝛼𝛽0 to one that is at rest (at constant circumferential radius 𝑟),
a tetrad transformation has in effect been done at the same time as the coordinate transformation (20.17),
the tetrad transformation being precisely that needed to make the line-element (20.19) diagonal. The metric
coefficient 𝑔𝑟𝑟 in the line-element (20.19) follows from the fact that 𝛽2

1 = 1 − 2𝑀/𝑟 when 𝛽0 = 0, equa-
tion (20.11). The transformed time coordinate 𝑡× is unspecified up to a transformation 𝑡× → 𝑓(𝑡×). If the
spacetime is asymptotically flat at infinity, then a natural way to fix the transformation is to choose 𝑡× to
be the proper time at rest at infinity.

20.4 Comoving diagonal line-element

Although once again this is not the path followed here, the line-element (20.1) can also be brought to diagonal
form by a coordinate transformation 𝑟 → 𝑟×, where, analogously to equation (20.17), 𝑟× is chosen to satisfy

𝑓 𝑑𝑟× = 𝑔𝑡𝑟 𝑑𝑡+ 𝑔𝑟𝑟 𝑑𝑟 ≡
1

𝛽1
(𝑑𝑟 − 𝛼𝛽0 𝑑𝑡) (20.20)

for some integrating factor 𝑓(𝑡, 𝑟). The new coordinate 𝑟× is constant along the worldline of an object at
rest in the tetrad frame, with 𝑑𝑟/𝑑𝑡 = 𝛼𝛽0, equation (20.5), so 𝑟× can be regarded as a comoving radial
coordinate. The comoving radial coordinate 𝑟× could for example be chosen to equal the circumferential
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radius 𝑟 at some fixed instant of coordinate time 𝑡 (say 𝑡 = 0). The diagonal comoving line-element in
this comoving coordinate system takes the form

𝑑𝑠2 = −𝛼2𝑑𝑡2 + 𝜆2𝑑𝑟2× + 𝑟2𝑑𝑜2 , (20.21)

where the circumferential radius 𝑟(𝑡, 𝑟×) is considered to be a function of time 𝑡 and the comoving radial
coordinate 𝑟×. Whereas in the rest line-element (20.19) the tetrad was changed from one that was moving
at 𝑑𝑟/𝑑𝑡 = 𝛼𝛽0 to one that was at rest, here the transformation keeps the tetrad unchanged. In both the
rest and comoving diagonal line-elements (20.19) and (20.21) the tetrad is at rest relative to the respective
radial coordinate 𝑟 or 𝑟×; but whereas in the rest line-element (20.19) the radial coordinate was fixed to be
the circumferential radius 𝑟, in the comoving line-element (20.21) the comoving radial coordinate 𝑟× is a
label that follows the tetrad. Because the tetrad is unchanged by the transformation to the comoving radial
coordinate 𝑟×, the directed time and radial derivatives 𝜕0 and 𝜕1 are unchanged:

𝜕0 =
1

𝛼

𝜕

𝜕𝑡

⃒⃒⃒⃒
𝑟×

=
1

𝛼

𝜕

𝜕𝑡

⃒⃒⃒⃒
𝑟

+ 𝛽0
𝜕

𝜕𝑟

⃒⃒⃒⃒
𝑡

, 𝜕1 =
1

𝜆

𝜕

𝜕𝑟×

⃒⃒⃒⃒
𝑡

= 𝛽1
𝜕

𝜕𝑟

⃒⃒⃒⃒
𝑡

. (20.22)

20.5 Tetrad connections

Now turn the handle to proceed towards the Einstein equations. The non-vanishing tetrad connections
coefficients Γ𝑘𝑚𝑛 corresponding to the spherical line-element (20.1) are

Γ100 = ℎ0 , (20.23a)

Γ101 = ℎ1 , (20.23b)

Γ202 = Γ303 =
𝛽0
𝑟
, (20.23c)

Γ212 = Γ313 =
𝛽1
𝑟
, (20.23d)

Γ323 =
cot 𝜃

𝑟
, (20.23e)

where ℎ0 is the proper radial acceleration (minus the gravitational force) experienced by a person at rest in
the tetrad frame

ℎ0 ≡ 𝜕1 ln𝛼 = 𝛽1
𝜕 ln𝛼

𝜕𝑟
, (20.24)

and ℎ1 is the “Hubble parameter” of the radial flow, as measured in the tetrad rest frame, defined by

ℎ1 ≡ 𝛽0
𝜕 ln𝛼𝛽0
𝜕𝑟

− 𝜕0 ln𝛽1 . (20.25)

The interpretation of ℎ0 as a proper acceleration and ℎ1 as a radial Hubble parameter goes as follows. The
tetrad-frame 4-velocity 𝑢𝑚 of a person at rest in the tetrad frame is by definition 𝑢𝑚 = {1, 0, 0, 0}. If the
person at rest were in free fall, then the proper acceleration would be zero, but because this is a general
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spherical spacetime, the tetrad frame is not necessarily in free fall. The proper acceleration experienced by
a person continuously at rest in the tetrad frame is the proper time derivative 𝐷𝑢𝑚/𝐷𝜏 of the 4-velocity,
which is

𝐷𝑢𝑚

𝐷𝜏
= 𝐷0𝑢

𝑚 = 𝜕0𝑢
𝑚 + Γ𝑚00𝑢

0 = Γ𝑚00 = {0,Γ1
00, 0, 0} = {0, ℎ0, 0, 0} , (20.26)

the first step of which follows from equation (20.8). Similarly, a person at rest in the tetrad frame will
measure the 4-velocity of an adjacent person at rest in the tetrad frame a small proper radial distance 𝛿𝜉1

away to differ by 𝛿𝜉1𝐷1𝑢
𝑚. The Hubble parameter of the radial flow is thus the covariant radial derivative

𝐷1𝑢
𝑚, which is

𝐷1𝑢
𝑚 = 𝜕1𝑢

𝑚 + Γ𝑚01𝑢
0 = Γ𝑚01 = {0,Γ1

01, 0, 0} = {0, ℎ1, 0, 0} . (20.27)

Confined to the (𝛾𝛾0–𝛾𝛾1)-plane (that is, considering only Lorentz transformations in the (𝑡–𝑟)-plane, which
is to say radial Lorentz boosts), the acceleration ℎ0 and Hubble parameter ℎ1 constitute the components of
a tetrad-frame 2-vector ℎ𝑛 = {ℎ0, ℎ1}:

ℎ𝑛 = Γ10𝑛 . (20.28)

The Riemann tensor, equations (20.30) below, involves covariant derivatives 𝐷𝑚ℎ𝑛 of ℎ𝑛. These should be
interpreted either as 4D covariant derivatives of the 4-vector ℎ𝑛 ≡ {ℎ0, ℎ1, 0, 0} with zero angular parts,
or equivalently as 2D covariant derivatives 𝐷(2)

𝑚 ℎ𝑛 confined to the (𝛾𝛾0–𝛾𝛾1)-plane. The contraction ℎ𝑛ℎ𝑛 =

−ℎ20 + ℎ21 is a scalar with respect to radial Lorentz boosts.

Since ℎ1 is a kind of radial Hubble parameter, it can be useful to define a corresponding radial scale factor
𝜆 by

ℎ1 ≡ 𝜕0 ln𝜆 . (20.29)

The scale factor 𝜆 is the same as the 𝜆 in the comoving line-element of equation (20.21). This is true because
ℎ1 is a tetrad connection and therefore coordinate gauge-invariant, and the line-element (20.21) is related
to the line-element (20.1) being considered by a coordinate transformation 𝑟 → 𝑟× that leaves the tetrad
unchanged.



574 General spherically symmetric spacetimes

20.6 Riemann, Einstein, and Weyl tensors

The non-vanishing components of the tetrad-frame Riemann tensor 𝑅𝑘𝑙𝑚𝑛 corresponding to the spherical
line-element (20.1) are

𝑅0101 = 𝐷1ℎ0 −𝐷0ℎ1 , (20.30a)

𝑅0202 = 𝑅0303 = − 1

𝑟
𝐷0𝛽0 , (20.30b)

𝑅1212 = 𝑅1313 = − 1

𝑟
𝐷1𝛽1 , (20.30c)

𝑅0212 = 𝑅0313 = − 1

𝑟
𝐷0𝛽1 = − 1

𝑟
𝐷1𝛽0 , (20.30d)

𝑅2323 =
2𝑀

𝑟3
, (20.30e)

where 𝐷𝑚 denotes the covariant derivative as usual. The non-vanishing components of the tetrad-frame Ricci
tensor 𝑅𝑘𝑚 are

𝑅00 = 𝑅0101 + 2𝑅0202 , (20.31a)

𝑅11 = −𝑅0101 + 2𝑅1212 , (20.31b)

𝑅01 = 2𝑅0212 , (20.31c)

𝑅22 = 𝑅33 = −𝑅0202 +𝑅1212 +𝑅2323 , (20.31d)

whence

𝑅00 = 𝐷1ℎ0 −𝐷0ℎ1 −
2

𝑟
𝐷0𝛽0 , (20.32a)

𝑅11 = −𝐷1ℎ0 +𝐷0ℎ1 −
2

𝑟
𝐷1𝛽1 , (20.32b)

𝑅01 = − 2

𝑟
𝐷0𝛽1 = − 2

𝑟
𝐷1𝛽0 , (20.32c)

𝑅22 = 𝑅33 =
1

𝑟
𝐷0𝛽0 −

1

𝑟
𝐷1𝛽1 +

2𝑀

𝑟3
. (20.32d)

The Ricci scalar is

𝑅 = − 2𝐷1ℎ0 + 2𝐷0ℎ1 +
4

𝑟
𝐷0𝛽0 −

4

𝑟
𝐷1𝛽1 +

4𝑀

𝑟3
. (20.33)

The non-vanishing components of the tetrad-frame Einstein tensor 𝐺𝑘𝑚 are

𝐺00 = 2𝑅1212 +𝑅2323 , (20.34a)

𝐺11 = 2𝑅0202 −𝑅2323 , (20.34b)

𝐺01 = − 2𝑅0212 , (20.34c)

𝐺22 = 𝐺33 = 𝑅0101 +𝑅0202 −𝑅1212 , (20.34d)
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whence

𝐺00 =
2

𝑟

(︂
−𝐷1𝛽1 +

𝑀

𝑟2

)︂
, (20.35a)

𝐺11 =
2

𝑟

(︂
−𝐷0𝛽0 −

𝑀

𝑟2

)︂
, (20.35b)

𝐺01 =
2

𝑟
𝐷0𝛽1 =

2

𝑟
𝐷1𝛽0 , (20.35c)

𝐺22 = 𝐺33 = 𝐷1ℎ0 −𝐷0ℎ1 +
1

𝑟
(𝐷1𝛽1 −𝐷0𝛽0) . (20.35d)

The non-vanishing components of the tetrad-frame Weyl tensor 𝐶𝑘𝑙𝑚𝑛 are

1
2 𝐶0101 = −𝐶0202 = −𝐶0303 = 𝐶1212 = 𝐶1313 = − 1

2 𝐶2323 = 𝐶 , (20.36)

where 𝐶 is the Weyl scalar (the spin 0 component of the Weyl tensor),

𝐶 ≡ 1

6
(𝑅0101 −𝑅0202 +𝑅1212 −𝑅2323) =

1

6

(︀
𝐺00 −𝐺11 +𝐺22

)︀
− 𝑀

𝑟3
. (20.37)

20.7 Einstein equations

The tetrad-frame Einstein equations

𝐺𝑘𝑚 = 8𝜋𝑇 𝑘𝑚 (20.38)

imply that ⎛⎜⎜⎝
𝐺00 𝐺01 0 0

𝐺01 𝐺11 0 0

0 0 𝐺22 0

0 0 0 𝐺33

⎞⎟⎟⎠ = 8𝜋𝑇 𝑘𝑚 = 8𝜋

⎛⎜⎜⎝
𝜌 𝑓 0 0

𝑓 𝑝 0 0

0 0 𝑝⊥ 0

0 0 0 𝑝⊥

⎞⎟⎟⎠ (20.39)

where 𝜌 ≡ 𝑇 00 is the proper energy density, 𝑓 ≡ 𝑇 01 is the proper radial energy flux, 𝑝 ≡ 𝑇 11 is the proper
radial pressure, and 𝑝⊥ ≡ 𝑇 22 = 𝑇 33 is the proper transverse pressure. Proper here means as measured by a
person at rest in the tetrad frame.

20.8 Choose your frame

So far the radial motion of the tetrad frame has been left unspecified. Any arbitrary choice can be made.
For example, the tetrad frame could be chosen to be at rest,

𝛽0 = 0 , (20.40)
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as in the Schwarzschild or Reissner-Nordström line-elements. Alternatively, the tetrad frame could be chosen
to be in free-fall,

ℎ0 = 0 , (20.41)

as in the Gullstrand-Painlevé line-element. For situations where the spacetime contains matter, one natural
choice is the centre-of-mass frame, defined to be the frame in which the energy flux 𝑓 is zero

𝐺01 = 8𝜋𝑓 = 0 . (20.42)

Whatever the choice of radial tetrad frame, tetrad-frame quantities in different radial tetrad frames are
related to each other by a radial Lorentz boost.

20.9 Interior mass

Equations (20.35b) with the middle expression of (20.35c), and (20.35a) with the final expression of (20.35c),
respectively, along with the definition (20.11) of the interior mass 𝑀 , and the Einstein equations (20.39),
imply (note that 𝐷𝑚𝑀 = 𝜕𝑚𝑀 since 𝑀 is a scalar)

𝑝 =
1

𝛽0

(︂
− 1

4𝜋𝑟2
𝜕0𝑀 − 𝛽1𝑓

)︂
, (20.43a)

𝜌 =
1

𝛽1

(︂
1

4𝜋𝑟2
𝜕1𝑀 − 𝛽0𝑓

)︂
. (20.43b)

In the centre-of-mass frame, 𝑓 = 0, these equations reduce to

𝜕0𝑀 = − 4𝜋𝑟2𝛽0 𝑝 , (20.44a)

𝜕1𝑀 = 4𝜋𝑟2𝛽1 𝜌 . (20.44b)

Equations (20.44) amply justify the interpretation of𝑀 as the interior mass. The first equation (20.44a) can
be written

𝑑𝑀

𝑑𝑟
= −4𝜋𝑟2𝑝 , (20.45)

where 𝑑𝑀/𝑑𝑟 = 𝜕0𝑀/𝜕0𝑟 is the total derivative of the mass 𝑀 with respect to radius 𝑟 along the path of
the matter, in the centre-of-mass frame. Equation (20.45) can be recognized as an expression of the first law
of thermodynamics,

𝑑𝐸 + 𝑝 𝑑𝑉 = 0 , (20.46)

with mass-energy 𝐸 equal to 𝑀 and volume 𝑉 equal to 4
3𝜋𝑟

3. The second equation (20.44b) can be written,
since 𝜕1 = 𝛽1 𝜕/𝜕𝑟, equation (20.4),

𝜕𝑀

𝜕𝑟
= 4𝜋𝑟2𝜌 , (20.47)
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which looks exactly like the Newtonian relation between interior mass 𝑀 and density 𝜌. Equation (20.47) is
the Hamiltonian constraint for spherically symmetric spacetimes.
Actually, the apparently Newtonian equation (20.47) is deceiving. The total mass-energy 𝑑𝑀 in a radial

shell should be distinguished from the proper mass-energy 𝑑𝑚 of the shell in its own frame. The proper
3-volume element 𝑑3𝑟 in the centre-of-mass tetrad frame is given by1, equation (15.86),

𝑑3𝑟 = 𝑒 𝑑3𝑥𝑟𝜃𝜑 =
𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑𝜑

𝛽1
, (20.48)

where 𝑒 = |𝑒𝑎𝛼| is the determinant of the the 3×3 spatial vierbein matrix. Thus the proper 3-volume element
𝑑𝑉 ≡ 𝑑3𝑟 of a radial shell of width 𝑑𝑟 is

𝑑𝑉 =
4𝜋𝑟2𝑑𝑟

𝛽1
. (20.49)

Consequently the proper mass-energy 𝑑𝑚 associated with the proper density 𝜌 in a proper radial volume
element 𝑑𝑉 is

𝑑𝑚 = 𝜌 𝑑𝑉 =
4𝜋𝑟2𝜌 𝑑𝑟

𝛽1
, (20.50)

whereas the total mass-energy 𝑑𝑀 from equation (20.47) is

𝑑𝑀 = 𝜌 4𝜋𝑟2𝑑𝑟 = 𝛽1𝜌 𝑑𝑉 . (20.51)

The factor 𝛽1 can be interpreted as the energy per unit mass of the matter,

𝛽1 =
𝑑𝑀

𝑑𝑚
. (20.52)

The difference between the total and proper mass-energy

𝑑𝑀 − 𝑑𝑚 = (𝛽1 − 1)𝜌 𝑑𝑉 (20.53)

can be interpreted as a combination of the kinetic and gravitational energy of the matter.

20.10 Energy-momentum conservation

Covariant conservation of the Einstein tensor 𝐷𝑚𝐺
𝑚𝑛 = 0 implies conservation of energy-momentum

𝐷𝑚𝑇
𝑚𝑛 = 0. The transverse component, 𝑛 = 2, 3, of the conservation equations vanish identically. The

remaining two non-trivial equations represent conservation of energy and of radial momentum, and are

𝐷𝑚𝑇
𝑚0 = 𝜕0𝜌+

2𝛽0
𝑟

(𝜌+ 𝑝⊥) + ℎ1 (𝜌+ 𝑝) +
(︁
𝜕1 +

2𝛽1
𝑟

+ 2ℎ0

)︁
𝑓 = 0 , (20.54a)

𝐷𝑚𝑇
𝑚1 = 𝜕1𝑝+

2𝛽1
𝑟

(𝑝− 𝑝⊥) + ℎ0 (𝜌+ 𝑝) +
(︁
𝜕0 +

2𝛽0
𝑟

+ 2ℎ1

)︁
𝑓 = 0 . (20.54b)

1 The same conclusion follows from considering the spherical line-element (20.1). In the tetrad frame, by construction
𝑑𝑟 − 𝛼𝛽0 𝑑𝑡 = 0, and the proper time satisfies 𝑑𝜏 = 𝛼𝑑𝑡. At constant proper time, the proper radial distance is 𝑑𝑟/𝛽1, from
the line-element (20.1).
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In the centre-of-mass frame, 𝑓 = 0, these energy-momentum conservation equations reduce to

𝜕0𝜌+
2𝛽0
𝑟

(𝜌+ 𝑝⊥) + ℎ1 (𝜌+ 𝑝) = 0 , (20.55a)

𝜕1𝑝+
2𝛽1
𝑟

(𝑝− 𝑝⊥) + ℎ0 (𝜌+ 𝑝) = 0 . (20.55b)

In a general situation where the mass-energy is a sum over several individual components 𝑥,

𝑇𝑚𝑛 =
∑︁

species 𝑥

𝑇𝑚𝑛𝑥 , (20.56)

the individual mass-energy components 𝑥 of the system each satisfy an energy-momentum conservation
equation of the form

𝐷𝑚𝑇
𝑚𝑛
𝑥 = 𝐹𝑛𝑥 , (20.57)

where 𝐹𝑛𝑥 is the flux of energy into component 𝑥. Einstein’s equations enforce energy-momentum conservation
of the system as a whole, so the sum of the energy fluxes must be zero∑︁

species 𝑥

𝐹𝑛𝑥 = 0 . (20.58)

20.10.1 First law of thermodynamics

For an individual species 𝑥, the energy conservation equation (20.54a) in the centre-of-mass frame of the
species, 𝑓𝑥 = 0, can be written

𝐷𝑚𝑇
𝑚0
𝑥 = 𝜕0𝜌𝑥 + (𝜌𝑥 + 𝑝⊥𝑥)𝜕0 ln 𝑟

2 + (𝜌𝑥 + 𝑝𝑥)𝜕0 ln𝜆𝑥 = 𝐹 0
𝑥 , (20.59)

where 𝜆𝑥 is the radial “scale factor,” equation (20.29), in the centre-of-mass frame of the species (the scale
factor is different in different frames). Equation (20.59) can be recognized as an expression of the first law
of thermodynamics for a volume element 𝑉 of species 𝑥, in the form

𝑉 −1
[︁
𝜕0(𝜌𝑥𝑉 ) + 𝑝⊥𝑥 𝑉𝑟 𝜕0𝑉⊥ + 𝑝𝑥 𝑉⊥ 𝜕0𝑉𝑟

]︁
= 𝐹 0

𝑥 , (20.60)

with transverse volume (area) 𝑉⊥ ∝ 𝑟2, radial volume (width) 𝑉𝑟 ∝ 𝜆𝑥, and total volume 𝑉 ∝ 𝑉⊥𝑉𝑟. The
flux 𝐹 0

𝑥 on the right hand side is the heat per unit volume per unit time going into species 𝑥. If the pressure
of species 𝑥 is isotropic, 𝑝⊥𝑥 = 𝑝𝑥, then equation (20.60) simplifies to

𝑉 −1
[︁
𝜕0(𝜌𝑥𝑉 ) + 𝑝𝑥 𝜕0𝑉

]︁
= 𝐹 0

𝑥 , (20.61)

with volume 𝑉 ∝ 𝑟2𝜆𝑥.
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20.11 Structure of the Einstein equations

The spherically symmetric spacetime under consideration is described by 3 vierbein coefficients, 𝛼, 𝛽0, and 𝛽1.
However, some combination of the 3 coefficients represents a gauge freedom, since the spherically symmetric
spacetime has only two physical degrees of freedom. As commented in §20.8, various gauge-fixing choices can
be made, such as choosing to work in the centre-of-mass frame, 𝑓 = 0.
Equations (20.35) give 4 equations for the 4 non-vanishing components of the Einstein tensor. The two

expressions for 𝐺01 are identical when expressed in terms of the vierbein and vierbein derivatives, so are not
distinct equations. Conservation of energy-momentum of the system as a whole is built in to the Einstein
equations, a consequence of the Bianchi identities, so 2 of the Einstein equations are effectively equivalent
to the energy-momentum conservation equations (20.54). If the matter equations are arranged to satisfy
energy-momentum conservation, as they should, then 2 of the Einstein equations are redundant, and can be
dropped.
This leaves 2 independent Einstein equations to describe the 2 physical degrees of freedom of the spacetime.

The 2 equations may be taken to be the evolution equations (20.35c) and (20.35b) for the velocity 𝛽0 and
energy per unit mass 𝛽1,

𝐷0𝛽0 = −𝑀

𝑟2
− 4𝜋𝑟𝑝 , (20.62a)

𝐷0𝛽1 = 4𝜋𝑟𝑓 , (20.62b)

which are valid for any choice of tetrad frame, not just the centre-of-mass frame. The covariant derivatives
on the left hand side of equations (20.62) are more explicitly

𝐷0𝛽0 = 𝜕0𝛽0 − ℎ0𝛽1 , 𝐷0𝛽1 = 𝜕0𝛽1 − ℎ0𝛽0 , (20.63)

where ℎ0 is the proper radial acceleration, equation (20.24).
Equations (20.62) can be taken to be the fundamental equations governing the gravitational field in spher-

ically symmetric spacetimes. It is these equations that are responsible (to the extent that equations may
be considered responsible) for the strange internal structure of Reissner-Nordström black holes, and for
mass inflation. The coefficient 𝛽0 equals the coordinate radial 4-velocity 𝑑𝑟/𝑑𝜏 = 𝜕0𝑟 = 𝛽0 of the tetrad
frame, equation (20.5), and thus equation (20.62a) can be regarded as giving the proper radial acceleration
𝐷2𝑟/𝐷𝜏2 = 𝐷𝛽0/𝐷𝜏 = 𝐷0𝛽0 of the tetrad frame as measured by a person who is in free-fall and instanta-
neously at rest in the tetrad frame. If the acceleration is measured by an observer who is continuously at rest
in the tetrad frame (as opposed to being in free-fall), then the proper acceleration is 𝜕0𝛽0 = 𝐷0𝛽0 + ℎ0𝛽1.
The presence of the extra term ℎ0𝛽1, proportional to the proper acceleration ℎ0 actually experienced by
the observer continuously at rest in the tetrad frame, reflects the principle of equivalence of gravity and
acceleration.
The right hand side of equation (20.62a) can be interpreted as the radial gravitational force, which consists

of two terms. The first term, −𝑀/𝑟2, looks like the familiar Newtonian gravitational force, which is attractive
(negative, inward) in the usual case of positive mass 𝑀 . The second term, −4𝜋𝑟𝑝, proportional to the radial
pressure 𝑝, is what makes spherical spacetimes in general relativity interesting. In a Reissner-Nordström black
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hole, the negative radial pressure produced by the radial electric field produces a radial gravitational repulsion
(positive, outward), according to equation (20.62a), and this repulsion dominates the gravitational force at
small radii, producing an inner horizon. In mass inflation, the (positive) radial pressure of relativistically
counter-streaming outgoing and ingoing streams just above the inner horizon dominates the gravitational
force (inward), and it is this that drives mass inflation.
Like the second half of a vaudeville act, the second Einstein equation (20.62b) also plays an indispensable

role. The energy per unit mass 𝛽1 ≡ 𝜕1𝑟 on the left hand side is the proper radial gradient of the circumfer-
ential radius 𝑟 measured by a person at rest in the tetrad frame. The sign of 𝛽1 determines which way an
observer at rest in the tetrad frame thinks is “outwards,” the direction of larger circumferential radius 𝑟. A
positive 𝛽1 means that the observer thinks the outward direction points away from the black hole, while a
negative 𝛽1 means that the observer thinks the outward direction points towards from the black hole. Outside
the outer horizon 𝛽1 is necessarily positive, because 𝛽𝑚 must be spacelike there. But inside the horizon 𝛽1
may be either positive or negative. A tetrad frame can be defined as “ingoing” if the proper radial gradient
𝛽1 is positive, and “outgoing” if 𝛽1 is negative. In the Reissner-Nordström geometry, ingoing geodesics have
positive energy, and outgoing geodesics have negative energy. However, the definition of outgoing or ingoing
based on the sign of 𝛽1 is general — there is no need for a timelike Killing vector such as would be necessary
to define the (conserved) energy of a geodesic.
Equation (20.62b) shows that the proper rate of change 𝐷0𝛽1 in the radial gradient 𝛽1 measured by an

observer who is in free-fall and instantaneously at rest in the tetrad frame is proportional to the radial energy
flux 𝑓 in that frame. But ingoing observers (𝛽1 positive) tend to see energy flux pointing away from the black
hole (𝑓 positive), while outgoing observers (𝛽1 negative) tend to see energy flux pointing towards the black
hole (𝑓 negative). Thus the change in 𝛽1 tends to be in the same direction as 𝛽1, amplifying 𝛽1 whatever its
sign.

Exercise 20.2. Birkhoff’s theorem. Prove Birkhoff’s theorem from equations (20.62). Birkhoff’s theorem
states that any spherically symmetric spacetime that is devoid of energy-momentum between some inner and
outer radii is Schwarzschild between those radii.

Concept question 20.3. Naked singularities in spherical spacetimes? A singularity forms at zero
radius, 𝑟 = 0, when an apparent horizon develops there, that is, when space starts falling into 𝑟 = 0 at
the speed of light. Can geodesics emerge from such a singularity? A singularity from which geodesics can
emerge is called a naked singularity. Answer. The surprising answer is yes, naked singularities can occur
in spherical spacetimes. To see that this conclusion is surprising, consider the following “proof” that naked
singularities do not exist. The proof relies on the assumption that the interior mass 𝑀 and radial pressure
𝑝 are both positive, or more precisely, that 𝑀/𝑟3 + 4𝜋𝑝 is positive; this is certainly a reasonable physical
assumption for real black holes. As seen in Exercise 20.1, outgoing and ingoing radial null geodesics in
a spherical spacetime follow 𝑑𝑟/𝑑𝑡 = 𝛼(𝛽0 ± 𝛽1), equation (20.14). An apparent horizon forms when the
outgoing null geodesic ceases to move outward, 𝛽0 + 𝛽1 = 0. The outgoing and ingoing null geodesics bound
the future lightcone emerging from the apparent horizon: all radial geodesics, timelike or lightlike, must lie
inside or on the lightcone, so that 𝑑𝑟/𝑑𝑡 ≤ 0 for all radial geodesics at an apparent horizon, with 𝑑𝑟/𝑑𝑡 = 0 for
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the outgoing radial null geodesic. But the Einstein equation (20.62a), which is valid in any frame arbitrarily
Lorentz-boosted in the radial direction, shows that 𝛽0, which equals 𝑑𝑟/𝑑𝜏 in that Lorentz-boosted frame,
must decrease along any geodesic, as long as 𝑀/𝑟3 + 4𝜋𝑝 is positive. Thus once 𝑑𝑟/𝑑𝜏 is zero or negative
along a geodesic, it cannot become positive. In particular, this holds true at zero radius, 𝑟 = 0: as long as
𝑀/𝑟3 + 4𝜋𝑝 is positive, once 𝑑𝑟/𝑑𝜏 is negative at 𝑟 = 0, indicating the appearance of a singularity, then
𝑑𝑟/𝑑𝜏 cannot become positive, and therefore no light ray can emerge from the singularity.
The foregoing “proof” that naked singularities cannot exist in spherical spacetimes is flawed because the

infall velocity 𝛽0 can be multi-valued at the point at zero radius where a singularity first forms. Section 20.16
gives an explicit example for the case of spherically symmetric collapse of pressureless dust.

20.11.1 Comment on the lapse 𝛼

Whereas the Einstein equations (20.62) give evolution equations for the vierbein coefficients 𝛽0 and 𝛽1,
there is no evolution equation for the vierbein coefficient 𝛼, the lapse. Indeed, the Einstein equations involve
the lapse 𝛼 only through the connections ℎ𝑚, equations (20.23a) and (20.23b), and thus only as the radial
derivative 𝜕 ln𝛼/𝜕𝑟, equations (20.24) and (20.25). This reflects the fact that, even after the tetrad frame
is fixed, there is still a coordinate freedom 𝑡 → 𝑡′(𝑡) in the choice of coordinate time 𝑡. Under such a gauge
transformation, 𝛼 transforms as 𝛼→ 𝛼′ = 𝑓(𝑡)𝛼 where 𝑓(𝑡) = 𝜕𝑡/𝜕𝑡′ is an arbitrary function of coordinate
time 𝑡. Only the radial derivative 𝜕 ln𝛼/𝜕𝑟 is independent of this coordinate gauge freedom, and thus the
tetrad-frame Einstein equations depend, through ℎ𝑚, only on this radial derivative, not on 𝛼 itself.
These results are consistent with the arguments in §16.15.1 and §17.2.3 that the lapse 𝛼 can be treated as

a gauge variable, arbitrarily adjustable by a coordinate transformation of the time coordinate.
A possible gauge choice is to set 𝛼 = 1 everywhere. According to equation (20.24), this choice requires

that the proper acceleration in the tetrad-frame vanish, ℎ0 = 0, that is, the tetrad-frame is everywhere in
free fall, as for example in the Gullstrand-Painlevé line-element. I like to think of a free-fall frame as being
realised physically by tracer “dark matter” particles that free-fall radially (from zero velocity, typically) at
infinity, and stream freely, without interacting, through any actual matter that may be present.

20.12 Comparison to ADM (3+1) formulation

The line-element (20.1) is in ADM form with lapse 𝛼, shift 𝛼𝛽0, and spatial metric

𝑔𝛼𝛽 = diag(1/𝛽2
1 , 𝑟

2, 𝑟2 sin2𝜃) . (20.64)

The non-vanishing components of the acceleration 𝐾𝑎 ≡ Γ𝑎00 and of the extrinsic curvature 𝐾𝑎𝑏 ≡ Γ𝑎0𝑏 are

𝐾1 = ℎ0 , (20.65a)

𝐾11 = ℎ1 , 𝐾22 = 𝐾33 =
𝛽0
𝑟
. (20.65b)
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20.13 Spherical electromagnetic field

The internal structure of a charged black hole resembles that of a rotating black hole because the negative
pressure (tension) of the radial electric field produces a gravitational repulsion analogous to the centrifugal
repulsion in a rotating black hole. Since it is much easier to deal with spherical than rotating black holes, it
is common to use charge as a surrogate for rotation in exploring black holes.

20.13.1 Electromagnetic field

The assumption of spherical symmetry means that any electromagnetic field can consist only of a radial elec-
tric field (in the absence of magnetic monopoles). The only non-vanishing components of the electromagnetic
field 𝐹𝑚𝑛 are then

− 𝐹01 = 𝐹10 = 𝐸 =
𝑄

𝑟2
, (20.66)

where 𝐸 is the radial electric field, and 𝑄(𝑡, 𝑟) is the interior electric charge. Equation (20.66) can be regarded
as defining what is meant by the electric charge 𝑄 interior to radius 𝑟 at time 𝑡.

20.13.2 Maxwell’s equations

A radial electric field automatically satisfies the two source-free Maxwell equations. For the radial electric
field (20.66), the other two Maxwell’s equations, the sourced ones (16.34), are

𝜕1𝑄 = 4𝜋𝑟2𝑞 , (20.67a)

𝜕0𝑄 = −4𝜋𝑟2𝑗 , (20.67b)

where 𝑞 ≡ 𝑗0 is the proper electric charge density and 𝑗 ≡ 𝑗1 is the proper radial electric current density in
the tetrad frame.

20.13.3 Electromagnetic energy-momentum tensor

For the radial electric field (20.66), the electromagnetic energy-momentum tensor (16.150) in the tetrad
frame is the diagonal tensor

𝑇𝑚𝑛𝑒 =
𝑄2

8𝜋𝑟4

⎛⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ . (20.68)

The radial electric energy-momentum tensor is independent of the radial motion of the tetrad frame, which
reflects the fact that the electric field is invariant under a radial Lorentz boost. The energy density 𝜌𝑒 and
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radial and transverse pressures 𝑝𝑒 and 𝑝⊥𝑒 of the electromagnetic field are the same as those from a spherical
charge distribution with interior electric charge 𝑄 in flat space

𝜌𝑒 = −𝑝𝑒 = 𝑝⊥𝑒 =
𝑄2

8𝜋𝑟4
=
𝐸2

8𝜋
. (20.69)

The non-vanishing components of the covariant derivative 𝐷𝑚𝑇
𝑚𝑛
𝑒 of the electromagnetic energy-mom-

entum (20.68) are

𝐷𝑚𝑇
𝑚0
𝑒 = 𝜕0𝜌𝑒 +

4𝛽0
𝑟
𝜌𝑒 =

𝑄

4𝜋𝑟4
𝜕0𝑄 = − 𝑗𝑄

𝑟2
= − 𝑗𝐸 , (20.70a)

𝐷𝑚𝑇
𝑚1
𝑒 = 𝜕1𝑝𝑒 +

4𝛽1
𝑟
𝑝𝑒 = −

𝑄

4𝜋𝑟4
𝜕1𝑄 = − 𝑞𝑄

𝑟2
= − 𝑞𝐸 . (20.70b)

The first expression (20.70a), which gives the rate of energy transfer out of the electromagnetic field as the
current density 𝑗 times the electric field 𝐸, is the same as in flat space. The second expression (20.70b),
which gives the rate of transfer of radial momentum out of the electromagnetic field as the charge density 𝑞
times the electric field 𝐸, is the Lorentz force on a charge density 𝑞, and again is the same as in flat space.

20.14 General relativistic stellar structure

Even with the assumption of spherical symmetry, it is by no means easy to solve the system of partial
differential equations that comprise the Einstein equations coupled to mass-energy of various kinds. However,
the system simplifies in some cases.
One simple case is that of a system that is not only spherically symmetric but also static, such as a

star. In this case all time derivatives can be taken to vanish, 𝜕/𝜕𝑡 = 0, and, since the centre-of-mass frame
coincides with the rest frame, it is natural to choose the tetrad frame to be at rest, 𝛽0 = 0. The Einstein
equation (20.62b) then vanishes identically, while the Einstein equation (20.62a) becomes

ℎ0𝛽1 =
𝑀

𝑟2
+ 4𝜋𝑟𝑝 , (20.71)

which expresses the proper acceleration ℎ0 in the rest frame in terms of the familiar Newtonian gravitational
force 𝑀/𝑟2 plus a term 4𝜋𝑟𝑝 proportional to the radial pressure. The radial pressure 𝑝, if positive as is the
usual case for a star, enhances the inward gravitational force, helping to destabilize the star. Because 𝛽0 is
zero, the interior mass 𝑀 given by equation (20.11) reduces to

1− 2𝑀/𝑟 = 𝛽2
1 . (20.72)

When equations (20.71) and (20.72) are substituted into the momentum equation (20.55b), and if the pressure
is taken to be isotropic, so 𝑝⊥ = 𝑝, the result is the Oppenheimer-Volkov equation for general relativistic
hydrostatic equilibrium

𝜕𝑝

𝜕𝑟
= − (𝜌+ 𝑝)(𝑀 + 4𝜋𝑟3𝑝)

𝑟2(1− 2𝑀/𝑟)
. (20.73)
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In the Newtonian limit 𝑝≪ 𝜌 and 𝑀 ≪ 𝑟 this goes over to (with units restored)

𝜕𝑝

𝜕𝑟
= −𝜌𝐺𝑀

𝑟2
, (20.74)

which is the usual Newtonian equation of spherically symmetric hydrostatic equilibrium.

Exercise 20.4. Constant density star. Shortly after communicating to Einstein his celebrated solution,
Schwarzschild (1916) sent Einstein a second letter describing the solution for a constant density star. By
adjoining the interior solution to his exterior solution, Schwarzschild had a consistent solution with no
troubling “singularity” at its horizon.
In a spherically symmetric static spacetime, Einstein’s equations reduce to an equation for the mass 𝑀

interior to 𝑟
𝑑𝑀

𝑑𝑟
= 4𝜋𝑟2𝜌 , (20.75)

and to the Volkov-Oppenheimer equation of hydrostatic equilibrium (20.73).
1. Interior mass. Suppose that the density 𝜌 is constant. From equation (20.75) obtain an expression for

the interior mass 𝑀 as a function of radius 𝑟 and the density 𝜌. [Hint: This is easy.]
2. Hydrostatic equilibrium. Given your expression for 𝑀 , show that the Volkov-Oppenheimer equa-

tion (20.73) rearranges to ∫︁
𝑝𝑐

𝑑𝑝

(𝜌+ 𝑝)(𝜌+ 3𝑝)
= −

∫︁
0

4𝜋𝑟 𝑑𝑟

3− 8𝜋𝑟2𝜌
(20.76)

where 𝑝𝑐 is the central pressure, where the radius is zero, 𝑟 = 0.
3. Solve. Integrate equation (20.76). From the integral evaluated at the edge of the star, where the pressure

is zero, 𝑝 = 0, and the radius is the stellar radius, 𝑟 = 𝑅⋆, argue that

𝜌+ 3𝑝𝑐
𝜌+ 𝑝𝑐

=

√︃
1

1− 2𝑀⋆/𝑅⋆
(20.77)

where 𝑀⋆ ≡ 4
3𝜋𝜌𝑅

3
⋆ is the total mass of the star.

4. Limits. From the condition that the central pressure be positive and finite, 0 < 𝑝𝑐 <∞, deduce that

0 <
2𝑀⋆

𝑅⋆
<

8

9
. (20.78)

5. Comment. Comment on what equation (20.78) implies physically. [Hint: What is the Schwarzschild
radius?]

20.15 Freely-falling dust without shell-crossing

Another case where the spherically symmetric equations simplify is that of neutral, radially freely-falling,
pressureless matter, at least as long as shells of matter do not cross each other. Pressureless matter is
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commonly referred to as “dust” in the literature. The collapse of a uniform sphere of dust was first solved by
Oppenheimer and Snyder (1939). The formalism of freely falling dust is applied in §20.16 to illustrate the
formation of a naked singularity.
It is natural to choose the tetrad frame to be the rest frame of the freely-falling dust. In the dust rest

frame, the energy flux and pressure vanish, 𝑓 = 𝑝 = 𝑝⊥ = 0. The geodesic equation for the freely-falling dust
implies that the proper acceleration vanishes, ℎ0 = 0, equation (20.26).
The equations admit two integrals of motion. The first integral of motion is the interior mass 𝑀 , which

equation (20.44a) shows is constant, 𝜕0𝑀 = 0, along the path of the freely-falling dust.
The second integral of motion is 𝛽1, as follows from the second of the 2 Einstein equations (20.62). Since

the acceleration vanishes, the covariant time derivative coincides with the directed time derivative, 𝐷0 = 𝜕0.
The 2 Einstein equations (20.62) are then

𝜕0𝛽0 = −𝑀
𝑟2

, (20.79a)

𝜕0𝛽1 = 0 . (20.79b)

The second equation (20.79b) shows that 𝛽1 is constant as claimed, an integral of motion along the path of
the freely-falling dust. The first equation (20.79a), in combination with the definition (20.11) of the interior
mass 𝑀 and the constancy of 𝛽1, recovers the constancy of 𝑀 . The definition (20.11) of the interior mass
𝑀 implies that the radial velocity 𝛽0 ≡ 𝑑𝑟/𝑑𝜏 of the freely-falling dust is (the minus sign assumes infalling
dust)

𝛽0 = −
√︁
𝛽2
1 − 1 + 2𝑀/𝑟 . (20.80)

Comparing this to the solution 𝑢𝑟 ≡ 𝑑𝑟/𝑑𝜏 of radially free-falling particles in a Schwarzschild geometry
of mass 𝑀 , equation (7.36), shows that 𝛽1 may be interpreted as the energy 𝐸 per unit mass that the
freely-falling dust would have if there were no further matter (i.e. the geometry were Schwarzschild) outside
the radius of the dust. This interpretation of 𝛽1 is consistent its earlier interpretation as energy per mass,
equation (20.52).
As discussed in §20.11.1, in a free-fall tetrad the lapse 𝛼 can be set equal to unity everywhere, 𝛼 = 1. This

corresponds to setting the time coordinate 𝑡 equal to, up to a shell-dependent constant, the proper time 𝜏
attached to the freely-falling dust. The relation between time 𝑡 and radius 𝑟 along the path of the dust is
obtained by integrating the equation for 𝛽0 ≡ 𝑑𝑟/𝑑𝜏 ,

𝑡− 𝑡𝑀 = 𝜏 =

∫︁
0

𝑑𝑟

𝛽0
=

∫︁
0

𝑑𝑟

−
√︀
𝛽2
1 − 1 + 2𝑀/𝑟

, (20.81)

where the proper time 𝜏 is fixed to zero at the time 𝑡𝑀 when the shell collapses to zero radius. The condition
that shells of positive density collapse to zero radius without crossing requires that the collapse time 𝑡𝑀 be
an increasing function of interior mass 𝑀 . A parametric solution for the radius 𝑟 of the freely-falling dust
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is, with 𝜅 ≡ 1− 𝛽2
1 ,

𝑟 = 2𝑀

⎧⎨⎩
𝜅−1 sin2(𝜅1/2𝜂/2) |𝛽1| < 1

𝜂2/4 |𝛽1| = 1

|𝜅|−1 sinh2(|𝜅|1/2𝜂/2) |𝛽1| > 1

, 𝜏 =𝑀

⎧⎨⎩
𝜅−3/2

[︀
𝜅1/2𝜂 − sin(𝜅1/2𝜂)

]︀
|𝛽1| < 1

𝜂3/6 |𝛽1| = 1

|𝜅|−3/2
[︀
sinh(|𝜅|1/2𝜂)− |𝜅|1/2𝜂

]︀
|𝛽1| > 1

,

(20.82)
where 𝜂 is negative, going to zero as the dust radius 𝑟 collapses to 0. Bound dust, |𝛽1| < 1, reaches a
maximum radius at |𝜅|1/2𝜂 = −𝜋.
It is possible to consider the situation of outgoing dust inside the horizon, for which 𝛽1 is negative. However,

there is a coordinate singularity in the line-element (20.1) at 𝛽1 = 0, and care needs to be taken interpreting
solutions where 𝛽1 passes through zero. The coordinate singularity may be removed by transforming to a
time coordinate different from the free-fall time coordinate. The conclusion is that trajectories with different
signs of 𝛽1 belong to distinct pieces of spacetime that abut along the 𝛽1 = 0 trajectory.
The relation between energy density 𝜌 and the interior mass 𝑀 is determined by equation (20.47). The

initial conditions must be set up to satisfy this equation, but the evolution equations guarantee that equa-
tion (20.47) holds thereafter. The equation is a constraint equation: it is the Hamiltonian constraint. An
explicit expression for the proper (centre-of-mass) density 𝜌 at time 𝑡 and radius 𝑟 is

𝜌 = − 1

4𝜋𝑟2𝛽0 𝜕𝑡/𝜕𝑀 |𝑟
, (20.83)

where the time 𝑡 is given as a function of𝑀 (and 𝛽1(𝑀)) and 𝑟 by equation (20.81), 𝑡(𝑀, 𝑟) = 𝑡𝑀 +
∫︀
𝑑𝑟/𝛽0.

The proper pressure vanishes, as it must for freely-falling dust.

Exercise 20.5. Oppenheimer-Snyder collapse. Solve the Oppenheimer and Snyder (1939) problem of
the spherical collapse of a uniform density sphere of pressureless matter that starts from zero velocity at
infinity.

20.16 Naked singularities in dust collapse

Christodoulou (1984) initiated the study of the formation of naked singularities in spherically symmetric
collapse of dust. Christodoulou showed that if the collapsing dust were sufficiently centrally concentrated,
then the point at which the singularity first formed would be visible to the outside world, a “naked” singularity.
The appearance of naked singularities in spherical collapse of dust is generic, requiring only that the collapsing
dust be sufficiently centrally concentrated.
Since the appearance of naked singularities is generic, it suffices to illustrate the situation in a simple case.

One simplifying assumption is that the dust falls from zero velocity at infinity, so that 𝛽1 = 1, in which case
the infall velocity 𝛽0 of dust shells is (with the index on 𝛽0 dropped for brevity)

𝛽 ≡ 𝛽0 = −
√︂

2𝑀

𝑟
. (20.84)
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Figure 20.1 Spacetime diagram illustrating the formation of a naked singularity in self-similar collapse of dust, for

𝑎 = 18, equation (20.86). Infalling (red) lines show trajectories of infalling dust, which are also contours of constant

interior mass 𝑀 . Approximately diagonal (black) lines show outgoing and ingoing radial null geodesics. Contours are

drawn at intervals of factors of 2. A singularity (cyan) forms where the first shell of mass collapses to zero radius.

The naked singularity is the point at the origin {𝑡, 𝑟} = {0, 0} where the singularity first forms. The apparent horizon

(dashed pink line) is the locus of points where outgoing null rays turn around. The true horizon (thick pink line)

divides outgoing null rays that do not and do reach infinity. In the region of spacetime between the true horizon (thick

pink line) and the Cauchy horizon (thick green line), outgoing null rays emanate from the naked singularity and extend

to infinity. The apparent, true, and Cauchy horizons are all straight lines emanating from the naked singularity at the

origin.

Integrating equation (20.81) with 𝛽1 = 1 gives the relation between the radius 𝑟 and time 𝑡 along the
trajectory of a shell with interior mass 𝑀 ,

2

3
𝑟3/2 =

√
2𝑀(𝑡𝑀 − 𝑡) , (20.85)
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where 𝑡𝑀 , a function of mass 𝑀 , is the time at which the shell collapses to zero radius, 𝑟 = 0.
A second simplifying assumption is self-similarity (see §20.18). In the present case, self-similar solutions

occur when the collapse time 𝑡𝑀 is proportional to the interior mass 𝑀 ,

𝑡𝑀 = 𝑎𝑀 , (20.86)

with 𝑎 some positive dimensionless constant. Given the self-similar assumption (20.86), the relation (20.85)
between the radius 𝑟 and time 𝑡 reduces to a cubic in the infall velocity 𝛽,

𝑎𝛽3 − 2𝑡

𝑟
𝛽 +

4

3
= 0 . (20.87)

Equation (20.87) shows that the infall velocity 𝛽 is constant along lines 𝑡/𝑟 = constant, that is, along straight
lines emanating from the origin at {𝑡, 𝑟} = {0, 0}. The infall velocity 𝛽 varies from 0 at 𝑡/𝑟 = −∞, to −∞
at 𝑡/𝑟 = +∞. The line-element is Gullstrand-Painlevé, equation (7.27), with 𝛽 the real negative solution of
the cubic (20.87). The proper pressure in the tetrad frame is zero (as it should be for dust), and the proper
density 𝜌 is

𝜌 =
1

4𝜋𝑟2
𝛽2

2− 3𝑎𝛽3
, (20.88)

which is positive everywhere.
Radial outgoing (+) and ingoing (−) null rays passing through the infalling dust follow

𝑑𝑟

𝑑𝑡
= 𝛽 ± 1 . (20.89)

Equation (20.89) for null geodesics can be recast as a differential equation between 𝑟 and 𝛽, which integrates
to

𝑟 ∝ exp

[︂∫︁
2(𝛽 ± 1)(2− 3𝑎𝛽3) 𝑑𝛽

𝛽(± 4− 2𝛽 ± 3𝑎𝛽3 + 3𝑎𝛽4)

]︂
. (20.90)

The integrand in equation (20.90) is a rational function of 𝛽, so is integrable in terms of elementary functions.
Special sets of null geodesics occur where the integrand has poles. At poles, null geodesics follow 𝛽 = constant,
corresponding to straight lines emanating from the origin. For outgoing null geodesics (+ in equation (20.90)),
the quartic denominator 4−2𝛽+3𝑎𝛽3+3𝑎𝛽4 has two real roots at 𝛽 < 0 provided that the positive constant
𝑎 exceeds the threshold value

𝑎 ≥ 26

3
+ 5
√
3 ≈ 17.3 . (20.91)

For values of 𝑎 exceeding the threshold (20.91), there is a naked singularity at the origin. The more negative
of the two real roots (smaller radius) marks the location of the true horizon, while the less negative (larger
radius) marks the so-called Cauchy horizon. Radial outgoing null rays inside the true horizon turn around
and fall to the spacelike singularity, never reaching infinity. Radial outgoing null rays between the true and
Cauchy horizons propagate from the naked singularity to infinity.
In mathematics, a Cauchy horizon is defined to be the boundary of predictability. In the present case,

the naked singularity at the origin is considered to be a source of unpredictability, since the direction in
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which geodesics emerge from the naked singularity is ambiguous, not determined uniquely by the direction
of geodesics impinging on it.
Figure 20.1 is a spacetime diagram that illustrates the formation of a naked singularity in self-similar

collapse of dust for the case 𝑎 = 18, which slightly exceeds the threshold (20.91). The roots of the quartic in
this case are

𝛽 = −0.791475 , 𝑡/𝑟 = 4.79558 true horizon ,
𝛽 = − 2

3 , 𝑡/𝑟 = 3 Cauchy horizon .
(20.92)

All outgoing null geodesics inside the true horizon, 𝛽 < −0.791475, in due course turn around and fall to zero
radius, 𝑟 = 0. Outgoing null geodesics between the true and Cauchy horizons, −0.791475 < 𝛽 < − 2

3 , start at
the naked singularity at the origin and reach infinity. Outgoing null geodesics outside the Cauchy horizon,
𝛽 > − 2

3 , start at zero radius before the singularity has formed, and propagate to infinity. The apparent
horizon, where outgoing null rays turn around, 𝛽 = −1, occurs at 𝑡/𝑟 = 25

3 .
The naked singularity in spherical dust collapse has the property that future-directed geodesics can emerge

from it in some directions but not in others. This is a generic feature of naked singularities in general relativity.

20.16.1 Are naked singularities important?

As might be imagined, there is a diversity of opinion regarding the importance of naked singularities in
general relativity. One school of thought holds that singularities that are hidden behind horizons (clothed
singularities) have no effect on outside observers, and in that sense do not matter, at least to the outside
observer. From this perspective naked singularities are important precisely because they can affect an outside
observer. This seems to me a somewhat anthropocentric point of view. It may be that no human ever falls into
a black hole; but in the cosmos objects fall into black holes all the time. Singularity theorems, Chapter 18,
indicate that general relativity fails inside black holes (more generally, wherever a trapped surface has
formed). The question of what physics replaces general relativity where it fails is profound, regardless of
whether humans can see it.
The possible appearance of naked singularities in gravitational collapse offers a potential window to physics

beyond general relativity. However, the collapse of a real black hole is one of the most violent events in
observational astronomy, attended by supernovae and gamma-ray bursts. It is moot whether the signal
from a naked singularity, whatever it might be, would be discernible against the cacophony of astrophysical
processes.

20.17 Thin spherical shells

Sections 20.15 and 20.16 addressed matter that falls freely without shell crossing. Another problem that can
be solved is that of a thin spherical shell. The shell may have internal pressure, and the spherical spacetime
in which it falls need not be empty. The thin shell formalism is used in §20.17.1 to explore the evolution of
a bubble of vacuum energy in empty space, a problem considered by Blau, Guendelman, and Guth (1987).
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As remarked around equation (20.49), the proper radial volume element in the tetrad frame is not 4𝜋𝑟2𝑑𝑟,
but rather 4𝜋𝑟2𝑑𝑟/𝛽1. The surface density “𝜌, energy flux “𝑓 , radial pressure “𝑝, and transverse pressure “𝑝⊥ of
a thin shell are defined to be integrals over the proper radial element 𝑑𝑟/𝛽1,

“𝜌 ≡
∫︁ +

−
𝜌
𝑑𝑟

𝛽1
, “𝑓 ≡

∫︁ +

−
𝑓
𝑑𝑟

𝛽1
, “𝑝 ≡

∫︁ +

−
𝑝
𝑑𝑟

𝛽1
, “𝑝⊥ ≡

∫︁ +

−
𝑝⊥

𝑑𝑟

𝛽1
. (20.93)

Minus the surface transverse pressure −“𝑝⊥ is called the surface tension. The Einstein equations governing
the shell are obtained by equating 8𝜋 (in units, 8𝜋𝐺) times the surface energy-momenta (20.93) to integrals
of the Einstein tensor (20.35) over the proper volume of the shell. The integrals can be done by inspection:
any term involving a covariant radial derivative 𝐷1 integrates to its argument. The Einstein equations for
the spherical shell in its own frame are then

−
2[𝛽1]

+
−

𝑟
= 8𝜋“𝜌 , (20.94a)

0 =
2[𝛽0]

+
−

𝑟
= 8𝜋 “𝑓 , (20.94b)

0 = 8𝜋“𝑝 , (20.94c)

[ℎ0]
+
− +

[𝛽1]
+
−

𝑟
= 8𝜋“𝑝⊥ . (20.94d)

Equation (20.94b) says that the velocity 𝛽0 is constant across the shell, and equations (20.94b) and (20.94c)
say that the radial energy flux “𝑓 and radial pressure “𝑝 vanish in the shell’s own frame, which makes physical
sense.
The Riemann, Ricci, and Einstein tensors are defined in terms of derivatives of the tetrad connections

Γ𝑘𝑙𝑚. Unsurprisingly, integrals of these tensors over the shell are expressible in terms of [Γ𝑘𝑙𝑚]+−. The set of
tetrad connections that are tensors under Lorentz transformations within the shell constitute the extrinsic
curvature “𝐾𝑘𝑚 of the shell, defined to be the set of tetrad connections [Γ𝑘1𝑚]+− with middle index the radial
index 1,

“𝐾𝑘𝑚 ≡ [Γ𝑘1𝑚]+− . (20.95)

Recall that in the ADM formalism the extrinsic curvature 𝐾𝑘𝑚 ≡ Γ𝑘0𝑚 is defined to be the set of tetrad
connections with middle index the time index 0, equations (17.21). In the ADM case the time axis 𝛾𝛾0

is a spatial scalar, and the extrinsic curvature 𝐾𝑘𝑚 is therefore a tetrad tensor with respect to spatial
transformations. In the present case the radial axis 𝛾𝛾1 is a scalar with respect to Lorentz transformations
within the shell, and the connections [Γ𝑘1𝑚]+− with middle index the radial index 1 form a tetrad tensor with
respect to Lorentz transformations within the shell. The Ricci tensor “𝑅𝑘𝑚 ≡

∫︀
𝑅𝑘𝑚 𝑑𝑟/𝛽1 integrated over

the shell, with indices 𝑘,𝑚 running over 0, 2, 3, equals minus the extrinsic curvature of the shell,

“𝑅𝑘𝑚 = − “𝐾𝑘𝑚 . (20.96)

The Einstein tensor “𝐺𝑘𝑚 integrated over the shell, again with indices 𝑘,𝑚 running over 0, 2, 3, is then

“𝐺𝑘𝑚 = “𝑅𝑘𝑚 − 1
2𝜂𝑘𝑚

“𝑅 . (20.97)
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One can confirm that the Einstein tensor (20.97) recovers the left hand sides of the Einstein equations (20.94a)
and (20.94d) for the surface density and transverse pressure “𝜌 and “𝑝⊥.
The proper mass-energy “𝑚 of the shell is, equation (20.94a),

“𝑚 ≡ 4𝜋𝑟2“𝜌 =

∫︁ +

−
𝜌
4𝜋𝑟2𝑑𝑟

𝛽1
= −𝑟[𝛽1]+− . (20.98)

The proper mass-energy “𝑚 of the shell is to be distinguished from the total mass-energy “𝑀 in the shell,

“𝑀 ≡ [𝑀 ]+− =

∫︁ +

−
𝜌 4𝜋𝑟2𝑑𝑟 = −

𝑟[𝛽2
1 ]

+
−

2
, (20.99)

the final expression of which follows from the definition (20.11) of interior mass 𝑀 and the fact that the
velocity 𝛽0 is constant across the shell, equation (20.94b). The proper mass “𝑚 of the shell is related to the
interior mass 𝑀 by

“𝑚 =

∫︁ +

−

𝑑𝑀

𝛽1
= −𝑟[𝛽1]+− , (20.100)

in agreement with equation (20.98). The ratio “𝑀/ “𝑚 of total to proper mass-energy in the shell is

“𝑀

“𝑚
=

[𝛽2
1 ]

+
−

2[𝛽1]
+
−

=
𝛽−1 + 𝛽+

1

2
= 𝛽1 , (20.101)

the average 𝛽1 of the energies per unit mass 𝛽±1 either side of the shell. The energies per unit mass 𝛽±1 either
side of the shell are

𝛽±1 = 𝛽1 ± 1
2 [𝛽1]

+
− =

“𝑀

“𝑚
∓ “𝑚

2𝑟
. (20.102)

The definition (20.11) of interior mass, along with the expressions (20.102) for 𝛽±1 , implies that average
interior mass �̄� of the shell is

�̄� ≡ 𝑀− +𝑀+

2
=
𝑟

2

(︂
1 + 𝛽2

0 −
(𝛽−1 )2 + (𝛽−1 )2

2

)︂
=
𝑟(1 + 𝛽2

0 − 𝛽
2
1)

2
− “𝑚2

8𝑟
. (20.103)

The Einstein equation (20.94b) implies that the shell velocity 𝛽0 is constant across the shell. The defini-
tion (20.11) of interior mass implies expressions for the velocity 𝛽0 in terms of the interior masses 𝑀± and
energies per unit mass 𝛽±1 either side of the shell, and equation (20.103) supplies a second expression for 𝛽0
in terms of the mean interior mass �̄� and the mean energy per unit mass 𝛽1,

𝛽0 =

√︂
(𝛽±1 )2 − 1 +

2𝑀±

𝑟
(20.104a)

=

√︂
𝛽
2
1 − 1 +

2�̄�

𝑟
+

“𝑚2

4𝑟2
. (20.104b)

The sign of the velocity 𝛽0 is + for outfalling, − for infalling.
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Evolution equations for the various energies per unit mass 𝛽1 and for the velocity 𝛽0 follow from evolu-
tion equations for the proper mass “𝑚 of the shell and for the various interior masses. The Einstein equa-
tion (20.62b) in the centre-of-mass frame, 𝑓 = 0, is 𝜕0𝛽1−ℎ0𝛽0 = 0, which with the Einstein equations (20.94)
of the shell implies

0 = 𝜕0[𝛽1]
+
− − 𝛽0[ℎ0]+− = −4𝜋

(︁
𝜕0(𝑟“𝜌) + 𝛽0(“𝜌+ 2“𝑝⊥)

)︁
= −4𝜋𝑟

(︂
𝜕0“𝜌+

2𝛽0
𝑟

(“𝜌+ “𝑝⊥)

)︂
. (20.105)

Equation (20.105) implies that the proper mass-energy “𝑚 of the shell evolves as

𝜕0 “𝑚+ 8𝜋𝑟“𝑝⊥𝛽0 = 0 , (20.106)

which looks like the first law of thermodynamics in the form 𝜕0 “𝑚+ “𝑝⊥𝜕0𝐴 = 0 where 𝐴 ≡ 4𝜋𝑟2 is the proper
area of the shell. The interior masses 𝑀± evolve according to the Einstein equation (20.44a),

𝜕0𝑀
± + 4𝜋𝑟2𝑝±𝛽0 = 0 . (20.107)

The two equations (20.107) may be recast as evolution equations for the total mass “𝑀 ≡ [𝑀 ]+− of the shell
and for the average interior mass �̄� ,

𝜕0 “𝑀 + 4𝜋𝑟2[𝑝]+−𝛽0 = 0 , (20.108a)

𝜕0�̄� + 4𝜋𝑟2𝑝 𝛽0 = 0 , (20.108b)

where [𝑝]+− and 𝑝 ≡ 1
2 (𝑝
− + 𝑝+) are respectively the difference and average of the external radial pressures

𝑝± on the shell. The evolution (20.106) of the proper mass-energy “𝑚 of the shell depends on its equation
of state “𝑝⊥/“𝜌, while the evolution (20.108) of the total mass-energies “𝑀 and �̄� depends on the external
pressures 𝑝±.
Usually it is most straightforward to solve the evolution equations (20.106) and (20.108) for the various

masses “𝑚, “𝑀 , and �̄� , and then to infer the energies per unit mass 𝛽±1 and their average 𝛽1 from equa-
tion (20.102), and the velocity 𝛽0 either any of the two equivalent equations (20.104). However, evolution
equations for 𝛽0, 𝛽

±
1 , and 𝛽1 can be deduced directly, either from the evolution equations for the masses, or

from the Einstein equations (20.62),

𝜕0𝛽0 = 𝛽±1 ℎ
±
0 −

𝑀±

𝑟2
− 4𝜋𝑟𝑝± (20.109a)

= 𝛽1ℎ̄0 −
�̄�

𝑟2
− “𝑚2

4𝑟3
− 4𝜋𝑟𝑝− 2𝜋 “𝑚“𝑝⊥

𝑟
, (20.109b)

𝜕0𝛽
±
1 = 𝛽0ℎ

±
0 , (20.109c)

𝜕0𝛽1 = 𝜕0
“𝑀

“𝑚
= 𝛽0ℎ̄0 , (20.109d)

where ℎ±0 are proper accelerations experienced by observers in the tetrad frame on each side of the shell,
and ℎ̄0 is their average,

ℎ±0 = ℎ̄0 ± 2𝜋(“𝜌+ 2“𝑝⊥) , ℎ̄0 = −
[𝑝]+−

“𝜌
+

2𝛽1“𝑝⊥
𝑟“𝜌

. (20.110)
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Exercise 20.6. Free fall of a thin, pressureless, spherical shell in vacuo. Solve for the evolution of
a thin, pressureless, spherical shell that free falls in vacuo from rest at infinity. This exercise provides the
mathematics behind the calculations reported in §7.28.
Solution. In the particular case of a pressureless shell, “𝑝⊥ = 0, freely falling in vacuo, 𝑝− = 𝑝+ = 0, the
evolution equations (20.106) and (20.106) imply that the proper, total, and mean interior masses “𝑚, “𝑀 , and
�̄� are all constants. The constancy of “𝑚 and “𝑀 implies the constancy of 𝛽1, equation (20.101) (but not
of 𝛽±1 , equation (20.102)). The infall velocity 𝛽0 is given by equation (20.104b). If the shell free falls from
rest at infinity, then 𝛽1 = 1, and the total mass-energy of the shell equals its proper mass-energy, “𝑀 = “𝑚,
equation (20.101). The infall velocity is

𝛽0 = −

√︃
2�̄�

𝑟
+

“𝑀2

4𝑟2
. (20.111)

If the spherical shell is falling towards an object of mass 𝑀∙ (a black hole, say), then the interior masses
inside and outside the shell are𝑀− =𝑀∙ and𝑀+ =𝑀∙+ “𝑀 , and the mean interior mass is �̄� =𝑀∙+

1
2

“𝑀 .

20.17.1 A bubble of vacuum

Blau, Guendelman, and Guth (1987) explored the scenario of a spherically symmetric bubble of positive
vacuum energy density 𝜌Λ that evolves in otherwise empty space. As chronicled by Merali (2017), Blau et al.
were motivated at least in part by the question of what might happen to a mote of vacuum energy that
was somehow created in empty space. Could such a mote develop into an inflating universe? If so, would
the new universe expand out and destroy the surrounding space? Or would the new universe create its own
spacetime?
The geometry is de Sitter inside the bubble, Schwarzschild outside. The interface between the de Sitter

and empty spaces cannot itself be empty, because the finite pressure of the vacuum and the zero pressure
of empty space do not balance. For simplicity, Blau et al. modelled the interface as a thin spherical shell,
which they assumed itself had a vacuum equation of state, “𝑝⊥ = −“𝜌, a so-called domain wall. The interior
masses 𝑀± inside (−) and outside (+) the shell, and the proper mass “𝑚 of the shell, are then

𝑀− = 4
3𝜋𝑟

3𝜌Λ , “𝑚 = 4𝜋𝑟2“𝜌 , 𝑀+ =𝑀 , (20.112)

where the vacuum density 𝜌Λ, shell density “𝜌, and the mass 𝑀 are all constants. The mass 𝑀 is the mass
of the bubble perceived by an observer in the empty space outside the bubble. Equations (20.102) for the
energy per unit mass 𝛽±1 inside (−) and outside (+) the shell, and their average 𝛽1, become

𝛽±1 =
𝑀 − 4

3𝜋𝑟
3(𝜌Λ ± 6𝜋“𝜌2)

4𝜋𝑟2“𝜌
, 𝛽1 =

𝑀 − 4
3𝜋𝑟

3𝜌Λ

4𝜋𝑟2“𝜌
. (20.113)
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The velocity 𝛽0, equation (20.104), is

𝛽0 =

√︁
(𝛽±1 )2 −Δ± , (20.114)

where Δ± ≡ 1− 2𝑀±/𝑟 is the horizon function either side of the shell. The energies per unit mass 𝛽±1 and
𝛽1 are respectively zero at radii 𝑟±1 and 𝑟1 given by

𝑟±1 =

(︂
𝑀

4
3𝜋(𝜌Λ ± 6𝜋“𝜌2)

)︂1/3

, 𝑟1 =

(︂
𝑀

4
3𝜋𝜌Λ

)︂1/3

. (20.115)

For positive mass 𝑀 and vacuum density 𝜌Λ, the radii 𝑟+1 and 𝑟1 are always positive. The radius 𝑟−1 is
positive or negative as 𝜌Λ is larger or smaller than 6𝜋“𝜌2. Blau et al. argue that if the vacuum is GUT scale,
then it might be expected that 𝜌Λ ∼ 𝑚4

GUT and “𝜌 ∼ 𝑚3
GUT in Planck units, in which case “𝜌2/𝜌Λ ∼ 𝑚2

GUT,
which is small compared to 1 if the GUT scale is significantly smaller than the Planck scale, 𝑚GUT ≪ 1. In
that case all of 𝑟±1 and 𝑟1 are positive, and they are ordered

0 < 𝑟+1 . 𝑟1. 𝑟
−
1 . (20.116)

Blau et al. introduce a dimensionless variable 𝑧 ≡ 𝑟/𝑟+1 , in terms of which the energy per unit mass 𝛽+
1 ,

equation (20.113), is

𝛽+
1 =

1√
−𝐸

(︂
1− 𝑧3

𝑧2

)︂
, (20.117)

and the velocity 𝛽0, equation (20.114), satisfies

− 𝐸𝛽2
0 + 𝑉 = 𝐸 , (20.118)

where 𝑉 (𝑧) is a dimensionless effective potential and the constant 𝐸 is an effective dimensionless energy,

𝑉 ≡ −
(︂
1− 𝑧3

𝑧2

)︂2

− 𝜇

𝑧
, (20.119a)

𝐸 ≡ −
(︂

𝜇2

16𝜋“𝜌𝑀

)︂2/3

, (20.119b)

with the constant 𝜇 given by

𝜇 ≡ 24𝜋“𝜌2

𝜌Λ + 6𝜋“𝜌2
. (20.120)

If𝑀 , 𝜌Λ, and “𝜌 are all positive, then the constant 𝜇 is positive, while 𝑉 and 𝐸 are negative. Equation (20.118)
agrees with equation (5.9) of Blau et al. with the translations (there → here)

𝛽𝐷 → 𝛽−1 , 𝛽𝑆 → 𝛽+
1 , 𝜌0 → 𝜌Λ , 𝜒2 → 8

3𝜋𝜌Λ , 𝛾2 → 𝜇 , 𝜎 → “𝜌 . (20.121)

The effective potential 𝑉 defined by equation (20.119a) is a hill that goes through a maximum at a value
𝑧 = 𝑧max that depends on 𝜇. Equivalently, 𝜇 depends on 𝑧max. Figure 20.2 illustrates the effective potential 𝑉
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Figure 20.2 Effective potential 𝑉 , equation (20.119a), of a spherical shell sandwiched between a bubble of vacuum

and empty space, as a function of the dimensionless radius 𝑧 ≡ 𝑟/𝑟+1 , for the case 𝑧max = 1.092. A more realistic

case would have 𝑧max closer to 1, but the larger choice of 𝑧max brings out the behaviour more clearly. The arrowed

horizontal line is an illustrative unbound trajectory of a shell that expands from zero radius to infinity. Unbound

trajectories occur for 𝑀 > 𝑀crit. The radii where the trajectory passes through the de Sitter horizon Δ− = 0, the

Schwarzschild horizon Δ+ = 0, and the places where the energies per unit mass 𝛽±
1 pass through zero, are marked.

The choice 𝑧max =
(︀
1 −

√
5/2 +

√︀
17/4−

√
5
)︀1/3

= 1.092 is a special value for which there happens to be a special

trajectory, the one shown, where the locations Δ− = 0 and 𝛽+
1 = 0 coincide, and also the locations Δ+ = 0 and

𝛽−
1 = 0 coincide. This is similar to Figure 6 of Blau, Guendelman, and Guth (1987).

for the case 𝑧max = 1.092. The value of the constant 𝜇, and of the potential 𝑉max ≡ 𝑉 (𝑧max) at its maximum,
are

𝜇 =
2(𝑧3max − 1)(𝑧3max + 2)

𝑧3max

, 𝑉max = −3(𝑧6max − 1)

𝑧4max

. (20.122)

As 6𝜋“𝜌2/𝜌Λ varies from 0 to 1 to∞, the constant 𝜇 varies from 0 to 2 to 4, and the apex 𝑧max of the potential
varies from 1 to 21/6 to 21/3. The motion of the shell is bounded if 𝐸 < 𝑉max, unbounded if 𝐸 > 𝑉max. The
critical case 𝐸 = 𝑉max occurs at a mass 𝑀 =𝑀crit,

𝑀crit =

√︃
(2− 𝑧3max)(𝑧

3
max + 2)3

72𝜋𝜌Λ(𝑧3max + 1)2
. (20.123)

If 𝑀 < 𝑀crit, then the motion is bounded, while for 𝑀 > 𝑀crit the motion is unbounded. For vacuum
densities sufficiently below the Planck scale, where “𝜌2/𝜌Λ ≪ 1 and hence 𝑧max ≈ 1, the critical mass is
𝑀crit ≈

√︀
3/(32𝜋𝜌Λ), or about 6 grams for 𝑀GUT ≈ 1016 GeV.

Blau et al. were interested in the fate of a mote of vacuum that materializes at small radius and initially
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expands. If the mass of the mote is less than the critical mass 𝑀crit, then the mote momentarily expands,
but then turns around and collapses. No new universe.
If on the other hand the mass of the mote exceeds the critical mass 𝑀crit, then the mote expands from

zero radius to infinity. A new universe is created.
From the perspective of an observer in the pre-existing empty space, the shell materializes at zero radius,

𝑟 = 0, with zero proper mass, “𝑚 = 0, but with finite total mass “𝑀 = 𝑀 , hence infinite energy per unit
mass. The outside observer sees a white hole of mass 𝑀 and horizon size 2𝑀 suddenly come into being. The
shell is inside the White Hole part of the Schwarzschild geometry, Figure 7.17. The outside observer, in the
Universe part of the Schwarzschild geometry, sees the shell born at the white hole singularity, possibly with
attending fireworks, and watches the shell expand into the empty space inside the white hole (the contents
of a white hole are, unlike a black hole, visible to an outside observer). The shell switches from ingoing
(𝛽+

1 > 0) to outgoing (𝛽+
1 < 0) inside the white hole, and, now having negative energy per unit mass 𝛽+

1 ,
exits into the Parallel Universe part of the Schwarzschild geometry. The observer in the Universe sees the
exiting shell redshift and dim to obscurity.
The more interesting perspective is that of an observer who rides with the shell. The shell does not

expand into a pre-existing spacetime, but rather creates its own new spacetime, with both empty and de
Sitter components. The shell can be conceptualized in one lower dimension as the leading circular edge
of an expanding two-sided disk, on the one side of which is empty space, and on the other is de Sitter
space. Looking backwards, the shell observer sees empty space at smaller radii, going back to the white hole.
Looking forwards, the shell observer sees de Sitter space also at smaller radii. The forward looking observer
is looking in the direction where the radius should be larger, but because the spherical shell is expanding
faster than light (Δ− < 0) away from the origin of de Sitter space at 𝑟 = 0, any light that the shell observer
sees necessarily comes from behind them, at smaller radius.
An observer at the origin 𝑟 = 0 of de Sitter space sees the shell expand away from them. Either before or

shortly after passing through the White Hole horizon into the Parallel Universe, the shell expands beyond
the de Sitter horizon of the observer at the origin 𝑟 = 0. The origin observer truly finds themself in an
inflating universe.
Key to this remarkable behaviour is the transition of the shell’s total mass “𝑀 =𝑀− 4

3𝜋𝑟
3𝜌Λ from positive

to negative, which happens between the times that the shell passes through the White Hole and de Sitter
horizons. Does a large negative total shell mass “𝑀 make sense? Recall that the total mass “𝑀 includes not
only rest mass but also kinetic and gravitational contributions, and the gravitational contribution can be
negative. The proper mass “𝑚 = 4𝜋𝑟2“𝜌 of the shell is always positive (and increasing). The mass 4

3𝜋𝑟
3𝜌Λ of

vacuum energy grows huge as the bubble expands, a mass balanced by the negative gravitational total mass
of the shell.
Is the creation of a bubble of vacuum from a white hole singularity realistic? Nope.

20.17.2 A bubble of vacuum from a magnetic monopole

Sakai et al. (2006) argue that a more realistic origin for an inflating universe is a Grand Unified Theory
(GUT) magnetic monopole (’t Hooft, Gerard, 1974; Polyakov, 1974). Magnetic monopoles are predicted by
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Figure 20.3 Effective potential 𝑉 , equation (20.126), of a magnetically charged shell enclosing a bubble of positive

energy vacuum. The parameters are given by equation (20.127). Both configurations have an extremal RN geometry

𝒬 = 𝑀 . On the left, the shell (dot) is in a classically stable configuration. On the right, the vacuum density is

somewhat larger, and the configuration has marginal stability. Thick horizontal bands show the radial ranges where

𝛽+
1 (pinkish) and 𝛽−

1 (greenish) are positive. Vertical dashed lines mark RN (red) and de Sitter (green) horizons 𝑟+

and 𝑟−.

GUTs, where the electromagnetic field gets knotted up in spacetime. GUT monopoles are predicted to have
masses approximately 𝛼−1 = 137 times the GUT mass, or about 1018 GeV, close to the Planck mass. No
monopole has been observed in Nature, but that is not too surprising given their large mass.
Sakai et al. model the scenario using the thin shell formalism, with Reissner-Nordström geometry outside

the shell, de Sitter inside. The parameters of the RN geometry are the mass 𝑀 and magnetic charge 𝒬 of
the magnetic monopole. The de Sitter geometry has positive vacuum density 𝜌Λ. The shell carries all the
magnetic charge of the monopole, so the monopole looks charged from the RN side, uncharged from the de
Sitter side. Sakai et al. model the shell as having a constant mass “𝑚𝒬 attributable to the rest mass of its
magnetic charge, plus a constant vacuum shell density “𝜌𝜆. The interior masses 𝑀± inside (−) and outside
(+) the shell, and the proper mass “𝑚 of the shell, are then

𝑀− = 4
3𝜋𝑟

3𝜌Λ , “𝑚 = “𝑚𝒬 + 4𝜋𝑟2“𝜌𝜆 , 𝑀+ =𝑀 − 𝒬
2

2𝑟
, (20.124)

where𝑀 , 𝒬, 𝜌Λ, “𝑚𝒬, and “𝜌𝜆 are all constants. The translation from Sakai et al.’s notation is (there→ here)

𝛽± → 𝛽±1 , 𝜌→ 𝜌Λ , 𝜎0 → “𝜌𝜆 , 𝜎1 → “𝜌𝒬 =
“𝑚𝒬
4𝜋𝑟2

. (20.125)
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An effective potential 𝑉 for the shell may be defined by

𝑉 ≡ −𝛽2
0 = − (𝛽±1 )2 + 1− 𝑀±

𝑟
, (20.126)

with energies per unit mass 𝛽±1 given by equation (20.102).
The interesting parameter regime is where the RN geometry is near extremal, 𝒬 ≈ 𝑀 . Parameters may

be chosen such that the effective potential 𝑉 , equation (20.126), has a stable or marginally stable point at
zero velocity 𝛽0, as illustrated in Figure 20.3. The left panel of Figure 20.3 shows a stable point; the right
panel a marginally stable point. The parameters of the two cases illustrated are

𝒬 =𝑀 , 𝐻 ≡
√︁

8
3𝜋𝜌Λ =

⎧⎨⎩
√︁

1
2√︁
3
4

𝑀−1 , “𝑚𝒬 =

{︃ √︁
1
2
1
2

𝑀 , “𝜌𝜆 = 0 . (20.127)

Both examples are for an extremal RN geometry, 𝒬 =𝑀 , and in both cases the point of (marginal) stability
is at the RN horizon. The first, stable, choice (left panel of Figure 20.3) is special in that not only 𝛽0 but
also 𝛽+

1 vanishes at the point of stability. The second, marginally stable, choice (right panel of Figure 20.3)
is special by virtue of its marginal stability.
The initial configuration illustrated in the left panel of Figure 20.3 is classically stable. An outside observer

sees a magnetic monopole with magnetic charge 𝒬 equal to its mass 𝑀 . The shell is located at the horizon
of the extremal RN geometry. Inside the shell is vacuum with positive energy 𝜌Λ.
The shell could potentially quantum tunnel out of the stable configuration, or alternatively the monopole

could perhaps be perturbed out of its stable state by a collision of some kind. Or, the parameters might
perhaps be tuned so that the configuration is close to or at marginal stability, as illustrated in the right
panel of Figure 20.3.
Once out of the stable or marginally stable configuration, the shell starts expanding. In both cases shown

in Figure 20.3, the RN energy per unit mass 𝛽+
1 starts at zero in the initial (marginally) stable configuration.

More generally, 𝛽+
1 can be initially positive or negative. But regardless of the initial sign, 𝛽+

1 becomes negative
as the shell expands, indicating that the shell has made its way to a Parallel Universe or Parallel Antiverse
part of the RN geometry, Figure 8.6. As the shell expands, it exits the de Sitter horizon of an observer at
𝑟 = 0.
As in the situation of a bubble of vacuum in empty space considered by Blau, Guendelman, and Guth

(1987), the shell does not expand into a pre-existing spacetime, but rather creates its own new spacetime,
with both RN and de Sitter components. Looking backward, an observer riding the shell sees RN spacetime
at smaller radii. Looking forward, an observer riding the shell sees de Sitter spacetime, also at smaller radii.
Even though the forward-looking observer is looking in the direction of larger radii, they see only smaller
radii because the shell is moving superluminally outward outside the de Sitter horizon of the origin at 𝑟 = 0.
How realistic is the scenario of the creation of an inflating universe from a GUT magnetic monopole? An

object moving outwards in radius with negative RN energy per unit mass 𝛽+
1 is necessarily in a Parallel

part of the RN geometry, and must have negotiated an inner horizon where the outside universe appeared
infinitely blueshifted. In the extremal cases illustrated in Figure 20.3, the inner and outer horizons coincide,
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and an object at rest at the horizon sees the outside universe infinitely blueshifted. In realistic situations,
the diverging concentration of energy at the inner horizon drives an instability that is the principal topic of
Chapter 21. Bottom line: the model is not realistic as it stands.

20.18 Self-similar spherically symmetric spacetime

A fourth way to simplify the system of spherically symmetric equations, transforming them into ordinary
differential equations, is to consider self-similar solutions. The system is more complicated than that of a
static system, or of freely-falling dust, or of thin shells, but still straightforward.
Self-similar solutions are flexible enough to admit multiple components of energy-momentum, which may

interact with each other. Self-similar solutions are especially useful for exploring the inflationary instability
in the vicinity of the inner horizon of a charged spherical black hole, considered in the next Chapter 21.
Charged spherical black holes are not realistic as models of real astronomical black holes, but they have
inner horizons like realistic rotating black holes, so admit inflation.

20.18.1 Self-similarity

The assumption of self-similarity (also known as homothety, if you can pronounce it) is the assumption
that the system possesses conformal time translation invariance. This implies that there exists a conformal
time coordinate 𝑡 such that the geometry at any one time is conformally related to the geometry at any other
time, 𝑔𝜇𝜈 = 𝑒2v𝑡𝑔𝜇𝜈 , where the conformal metric coefficients 𝑔𝜇𝜈(𝑟) are functions only of conformal radius 𝑟,
not of conformal time 𝑡. In terms of conformal coordinates 𝑥𝜇 = {𝑡, 𝑟, 𝜃, 𝜑}, the self-similar line-element is

𝑑𝑠2 = 𝑒2v𝑡
[︀
𝑔𝑡𝑡(𝑟) 𝑑𝑡

2 + 2 𝑔𝑡𝑟(𝑟) 𝑑𝑡 𝑑𝑟 + 𝑔𝑟𝑟(𝑟) 𝑑𝑟
2 + 𝑒2𝑟𝑑𝑜2

]︀
. (20.128)

The choice 𝑒2𝑟 of the coefficient of 𝑑𝑜2 is a gauge choice of the conformal radius 𝑟, chosen here so as to
bring the self-similar line-element into a form (20.132) below that resembles as far as possible the spherical
line-element (20.1). The proper circumferential radius 𝑅 is

𝑅 ≡ 𝑒v𝑡+𝑟 (20.129)

which is to be considered as a function 𝑅(𝑡, 𝑟) of the conformal coordinates 𝑡 and 𝑟. The circumferential
radius 𝑅 has a gauge-invariant meaning, whereas neither 𝑡 nor 𝑟 are independently gauge-invariant. The
conformal factor 𝑅 has the dimensions of length. In self-similar solutions, all quantities are proportional to
some power of 𝑅, and that power can be determined by dimensional analysis. Quantities that depend only
on the conformal radial coordinate 𝑟, independent of the circumferential radius 𝑅, are called dimensionless.
The fact that dimensionless quantities such as the conformal metric coefficients 𝑔𝜇𝜈(𝑟) are independent of

conformal time 𝑡 implies that the tangent vector 𝑒𝑡, which by definition satisfies

𝜕

𝜕𝑡
= 𝑒𝑡 · 𝜕 , (20.130)
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is a conformal Killing vector, §7.32.4, also known as the homothetic vector. The tetrad-frame components of
the conformal Killing vector 𝑒𝑡 defines the tetrad-frame conformal Killing 4-vector 𝜉𝑚,

𝜕

𝜕𝑡
≡ 𝑅𝜉𝑚𝜕𝑚 , (20.131)

in which the factor 𝑅 is introduced so as to make 𝜉𝑚 dimensionless. The conformal Killing vector 𝑒𝑡 is
the generator of the conformal time translation symmetry, and as such it is gauge-invariant (up to a global
rescaling of conformal time, 𝑡 → 𝑎𝑡 for some constant 𝑎). It follows that its dimensionless tetrad-frame
components 𝜉𝑚 constitute a tetrad 4-vector (again, up to global rescaling of conformal time).

20.18.2 Self-similar line-element

The self-similar line-element can be taken to have the same form as the spherical line-element (20.1), but
with the dependence on the dimensionless conformal Killing vector 𝜉𝑚 made manifest:

𝑑𝑠2 = 𝑅2

[︂
− (𝜉0 𝑑𝑡)2 +

1

𝛽2
1

(︀
𝑑𝑟 + 𝛽1 𝜉

1𝑑𝑡
)︀2

+ 𝑑𝑜2
]︂
. (20.132)

The vierbein 𝑒𝑚𝜇 and inverse vierbein 𝑒𝑚𝜇 corresponding to the self-similar line-element (20.132) are

𝑒𝑚𝜇 = 𝑅

⎛⎜⎜⎝
𝜉0 0 0 0

𝜉1 1/𝛽1 0 0

0 0 1 0

0 0 0 sin 𝜃

⎞⎟⎟⎠ , 𝑒𝑚
𝜇 =

1

𝑅

⎛⎜⎜⎝
1/𝜉0 −𝛽1 𝜉1/𝜉0 0 0

0 𝛽1 0 0

0 0 1 0

0 0 0 1/ sin 𝜃

⎞⎟⎟⎠ . (20.133)

It is straightforward to see that the coordinate time components of the vierbein must be 𝑒𝑚𝑡 = 𝑅𝜉𝑚, since
𝜕/𝜕𝑡 = 𝑒𝑚𝑡 𝜕𝑚 equals 𝑅𝜉𝑚𝜕𝑚, equation (20.131).

20.18.3 Tetrad-frame scalars and vectors

Since the conformal factor 𝑅 is gauge-invariant, the directed gradient 𝜕𝑚𝑅 constitutes a tetrad-frame 4-vector
𝛽𝑚 (which unlike 𝜉𝑚 is independent of any global rescaling of conformal time),

𝛽𝑚 ≡ 𝜕𝑚𝑅 . (20.134)

It is straightforward to check that 𝛽1 defined by equation (20.134) is consistent with its appearance in the
vierbein (20.133) provided that 𝑅 ∝ 𝑒𝑟 as earlier assumed, equation (20.129).
With two distinct dimensionless tetrad 4-vectors in hand, 𝛽𝑚 and the conformal Killing vector 𝜉𝑚, three

gauge-invariant dimensionless scalars can be constructed, 𝛽𝑚𝛽𝑚, 𝜉𝑚𝛽𝑚, and 𝜉𝑚𝜉𝑚,

1− 2𝑀

𝑅
= 𝛽𝑚𝛽𝑚 = −𝛽2

0 + 𝛽2
1 , (20.135a)

v ≡ 𝜉𝑚𝛽𝑚 = 𝜉0𝛽0 + 𝜉1𝛽1 =
1

𝑅

𝜕𝑅

𝜕𝑡
, (20.135b)

Δ ≡ − 𝜉𝑚𝜉𝑚 = (𝜉0)2 − (𝜉1)2 . (20.135c)
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The 𝑀 in equation (20.135a), which is essentially the same as equation (20.11), is the interior mass. Equa-
tion (20.135a) is dimensionless, which implies that the interior mass at fixed conformal radius 𝑟 increases
in proportion to the conformal factor, 𝑀 ∝ 𝑅. The dimensionless constant v in equation (20.135b) may be
interpreted as a measure of the expansion velocity of the self-similar spacetime. Because of the freedom of
a global rescaling of conformal time, it is possible to set v = 1 without loss of generality; but that scaling
obscures the physical significance of v as an expansion rate. The choice adopted in the next Chapter, equa-
tion (21.7), is to set v equal to the rate �̇�∙ of increase of the interior mass𝑀 evaluated at a specific conformal
radius, taken to be the sonic point outside the horizon where the boundary conditions are established; the
rate is with respect to the proper time 𝜏𝑑 of collisionless “dark matter” that free-falls radially from zero
velocity far from the black hole,

v ≡ �̇�∙ ≡
𝑑𝑀sonic

𝑑𝜏𝑑
. (20.136)

The proper time 𝜏𝑑 is essentially the free-fall time 𝑡ff of the Gullstrand-Painlevé line-element (19.10), or
equivalently 𝑇 in the line-element (20.139) with 𝛼 = 1 and 𝛽1 = 1. The dimensionless quantity Δ in
equation (20.135c) is the dimensionless horizon function: horizons occur where the horizon function vanishes,

Δ = 0 at horizons . (20.137)

Note that if v is rescaled, then Δ ∝ v
2.

Exercise 20.7. Self-similar line-element. Let 𝑇 and 𝑅 denote time and radius coordinates

𝑇 ≡ 𝑒v𝑡 , 𝑅 ≡ 𝑒v𝑡+𝑟 . (20.138)

Show that the self-similar line-element (20.132) in terms of 𝑇 and 𝑅 is

𝑑𝑠2 = −𝛼2𝑑𝑇 2 +
1

𝛽2
1

(𝑑𝑅− 𝛽0 𝑑𝑇 )2 +𝑅2𝑑𝑜2 , (20.139)

with lapse

𝛼 =
𝜉0𝑅

v𝑇
. (20.140)

The line-element (20.139) is the same as the spherical line-element (20.1) with 𝑡 and 𝑟 in the latter relabelled
𝑇 and 𝑅.

20.18.4 Self-similar diagonal line-element

The self-similar line-element (20.132) can be brought to diagonal form by a coordinate transformation to
diagonal conformal coordinates 𝑡×, 𝑟× (subscripted × for diagonal),

𝑡→ 𝑡× = 𝑡+ 𝑓(𝑟) , 𝑟 → 𝑟× = 𝑟 − v𝑓(𝑟) , (20.141)



602 General spherically symmetric spacetimes

which leaves unchanged the conformal factor 𝑅, equation (20.129). The resulting diagonal metric is (compare
equation (20.19))

𝑑𝑠2 = 𝑅2

(︂
−Δ 𝑑𝑡2× +

𝑑𝑟2×
1− 2𝑀/𝑅+ v

2/Δ
+ 𝑑𝑜2

)︂
. (20.142)

The diagonal line-element (20.142) corresponds physically to the case where the tetrad frame is at rest in
the similarity frame, 𝜉1 = 0, as can be seen by comparing it to the line-element (20.132). The frame can be
called the similarity frame. The form of the metric coefficients in the line-element (20.142) follows from
the line-element (20.132) and the gauge-invariant scalars (20.135).
The conformal Killing vector in the similarity frame is 𝜉𝑚 = {

√
Δ, 0, 0, 0}, and the 4-velocity of the

similarity frame in its own frame is 𝑢𝑚 = {1, 0, 0, 0}. Since both are tetrad 4-vectors, it follows that with
respect to a general tetrad frame (20.132),

𝜉𝑚 = 𝑢𝑚
√
Δ (20.143)

where 𝑢𝑚 is the 4-velocity of the similarity frame with respect to the general tetrad frame. This shows that
the conformal Killing vector 𝜉𝑚 in a general tetrad frame is proportional to the 4-velocity of the similarity
frame through the tetrad frame. In particular, the proper 3-velocity of the similarity frame through the
tetrad frame is

proper 3-velocity of similarity frame through tetrad frame =
𝜉1

𝜉0
. (20.144)

In the models considered in Chapter 21, fluids generically fall inward into the black hole. The velocity of the
tetrad rest frame of an infalling fluid is negative relative to the similarity frame, so the velocity 𝜉1/𝜉0 of the
similarity frame through the tetrad frame is positive.
In the rest frame of any fluid, the Killing vector 𝜉𝑚 remains finite and continuous across horizons, where

Δ = 0, whereas the related 4-velocity 𝑢𝑚, equation (20.143), diverges at horizons. The infall velocity hits the
speed of light at the outer horizon, 𝜉1/𝜉0 = 1, both 𝜉1 and 𝜉0 remaining positive there (while 𝑢𝑚 diverges).
Inside the horizon, the conformal Killing vector 𝜉𝑚 becomes timelike, with positive 𝜉1 exceeding 𝜉0. In some
models, the fluid later drops through an outgoing inner horizon, where 𝜉1/𝜉0 = −1 with 𝜉1 positive and 𝜉0

negative. In general, 𝜉𝑚 is lightlike at horizons,⃒⃒⃒⃒
𝜉1

𝜉0

⃒⃒⃒⃒
= 1 at a horizon . (20.145)

20.18.5 Ray-tracing line-element

It proves useful to introduce a “ray-tracing” conformal radial coordinate 𝑥 related to the coordinate 𝑟× of
the diagonal line-element (20.142) by

𝑑𝑥 ≡
Δ 𝑑𝑟×

[(1− 2𝑀/𝑅)Δ + v
2]

1/2
. (20.146)
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In terms of the ray-tracing coordinate 𝑥, the diagonal metric (20.142) is

𝑑𝑠2 = 𝑅2

(︂
−Δ 𝑑𝑡2× +

𝑑𝑥2

Δ
+ 𝑑𝑜2

)︂
. (20.147)

The line-element (20.147) defines the same similarity tetrad frame as (20.142).

20.18.6 Geodesics

Spherical symmetry and conformal time translation symmetry imply that geodesic motion in spherically
symmetric self-similar spacetimes is described by a complete set of integrals of motion.
The integral of motion associated with conformal time translation symmetry can be obtained from La-

grange’s equations of motion,

𝑑

𝑑𝜏

𝜕𝐿

𝜕𝑢𝑡
=
𝜕𝐿

𝜕𝑡
, (20.148)

with effective Lagrangian 𝐿 = 1
2𝑔𝜇𝜈𝑢

𝜇𝑢𝜈 for a particle with coordinate 4-velocity 𝑢𝜇. The self-similar metric
depends on the conformal time 𝑡 only through the overall conformal factor 𝑔𝜇𝜈 ∝ 𝑅2. The derivative of the
conformal factor is given by 𝜕 ln𝑅/𝜕𝑡 = v, equation (20.135b), so it follows that 𝜕𝐿/𝜕𝑡 = 2v𝐿. For a massive
particle, for which conservation of rest mass implies 𝑔𝜇𝜈𝑢𝜇𝑢𝜈 = −1, Lagrange’s equations (20.148) thus yield

𝑑𝑢𝑡
𝑑𝜏

= −v . (20.149)

In the limit of zero accretion rate, v → 0, equation (20.149) would integrate to give 𝑢𝑡 as a constant, the
energy per unit mass of the geodesic. But here there is conformal time translation symmetry in place of time
translation symmetry, and equation (20.149) integrates to

𝑢𝑡 = −v𝜏 , (20.150)

in which an arbitrary constant of integration has been absorbed into a shift in the zero point of the proper
time 𝜏 . Although the above derivation was for a massive particle, it holds also for a massless particle, with the
understanding that the proper time 𝜏 is constant along a null geodesic. The quantity 𝑢𝑡 in equation (20.150)
is the covariant time component of the coordinate-frame 4-velocity 𝑢𝜇 of the particle; it is related to the
covariant components 𝑢𝑚 of the tetrad-frame 4-velocity of the particle by

𝑢𝑡 = 𝑒𝑚𝑡 𝑢𝑚 = 𝑅𝜉𝑚𝑢𝑚 . (20.151)

Without loss of generality, geodesic motion can be taken to lie in the equatorial plane 𝜃 = 𝜋/2 of the
spherical spacetime. The integrals of motion associated with conformal time translation symmetry, rotational
symmetry about the polar axis, and conservation of rest mass, are, for a massive particle,

𝑢𝑡 = −v𝜏 , 𝑢𝜑 = 𝐿 , 𝑢𝜇𝑢
𝜇 = −1 , (20.152)

where 𝐿 is the orbital angular momentum per unit rest mass of the particle. The coordinate 4-velocity
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𝑢𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜏 that follows from equations (20.152) takes its simplest form in the conformal coordinates
{𝑡×, 𝑥, 𝜃, 𝜑} of the ray-tracing metric (20.147),

𝑢𝑡× =
v𝜏

𝑅2Δ
, 𝑢𝑥 = ± 1

𝑅2

[︀
v
2𝜏2 − (𝑅2 + 𝐿2)Δ

]︀1/2
, 𝑢𝜑 =

𝐿

𝑅2
. (20.153)

20.18.7 Null geodesics

The important case of a massless particle follows from taking the limit of a massive particle with infinite
energy and angular momentum, v𝜏 → ∞ and 𝐿 → ∞ (note that 𝜏 is constant along a null geodesic, and
v𝜏 can be treated as constant in the limit of a massive particle of infinite energy). To obtain finite results,
define an affine parameter 𝜆 by 𝑑𝜆 ≡ v𝜏 𝑑𝜏 , and a 4-velocity in terms of it by 𝑣𝜇 ≡ 𝑑𝑥𝜇/𝑑𝜆. The integrals of
motion (20.152) then become, for a null geodesic,

𝑣𝑡× = −1 , 𝑣𝜑 = 𝐽 , 𝑣𝜇𝑣
𝜇 = 0 , (20.154)

where 𝐽 ≡ 𝐿/(v𝜏) is the (dimensionless) conformal angular momentum of the particle. The 4-velocity 𝑣𝜇

along the null geodesic is then, in terms of the coordinates of the ray-tracing metric (20.147),

𝑣𝑡 =
1

𝑅2Δ
, 𝑣𝑥 = ± 1

𝑅2

(︀
1− 𝐽2Δ

)︀1/2
, 𝑣𝜑 =

𝐽

𝑅2
. (20.155)

Equations (20.155) yield the shape of a null geodesic by quadrature,

𝜑 =

∫︁
𝐽 𝑑𝑥

(1− 𝐽2Δ)1/2
. (20.156)

Equation (20.156) shows that the shape of null geodesics in spherically symmetric self-similar spacetimes
hinges on the behaviour of the dimensionless horizon function Δ(𝑥) as a function of the dimensionless
ray-tracing variable 𝑥. Null geodesics go through periapsis or apoapsis in the self-similar frame where the
denominator of the integrand of (20.156) is zero, corresponding to 𝑣𝑥 = 0.
In the Reissner-Nordström geometry there is a radius, the photon sphere, where photons can orbit in circles

for ever. In non-stationary self-similar solutions there is no conformal radius where photons can orbit for ever
(to remain at fixed conformal radius 𝑟, the photon angular momentum would have to increase in proportion
to the conformal factor 𝑅). There is however a separatrix between null geodesics that do or do not fall
into the black hole, and the conformal radius where this occurs can be called the photon sphere equivalent.
The photon sphere equivalent occurs where the denominator of the integrand of equation (20.156) not only
vanishes, 𝑣𝑥 = 0, but is an extremum, which happens where the horizon function Δ is an extremum,

𝑑Δ

𝑑𝑥
= 0 at photon sphere equivalent . (20.157)
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20.18.8 Dimensional analysis

The spatial conformal coordinates {𝑟, 𝜃, 𝜑} are by definition dimensionless. The tetrad metric 𝛾𝑚𝑛 is dimen-
sionless, while the coordinate metric 𝑔𝜇𝜈 scales as 𝑅2,

𝛾𝑚𝑛 ∝ 𝑅0 , 𝑔𝜇𝜈 ∝ 𝑅2 . (20.158)

The vierbein 𝑒𝑚𝜇, and inverse vierbein 𝑒𝑚𝜇 equations (20.133), scale as

𝑒𝑚𝜇 ∝ 𝑅 , 𝑒𝑚
𝜇 ∝ 𝑅−1 . (20.159)

The tetrad connections Γ𝑘𝑚𝑛 and the tetrad-frame Riemann tensor 𝑅𝑘𝑙𝑚𝑛 scale as

Γ𝑘𝑚𝑛 ∝ 𝑅−1 , 𝑅𝑘𝑙𝑚𝑛 ∝ 𝑅−2 . (20.160)

20.18.9 Variety of self-similar solutions

Self-similar solutions exist provided that the properties of the energy-momentum introduce no additional
dimensional parameters. Dimensional analysis shows that the proper density 𝜌 and radial and transverse
pressure 𝑝 and 𝑝⊥ of any species must scale with conformal factor 𝑅 as

𝜌 ∝ 𝑝 ∝ 𝑝⊥ ∝ 𝑅−2 . (20.161)

The pressure-to-density ratio 𝑤 ≡ 𝑝/𝜌 of any species is dimensionless, and since the ratio can depend only
on the nature of the species itself, not for example on where it happens to be located in the spacetime, it
follows that the ratio 𝑤 must be a constant. It is legitimate for the pressure-to-density ratio to be different in
the radial and transverse directions (as it is for a radial electric field), but otherwise self-similarity requires
that

𝑤 ≡ 𝑝/𝜌 , 𝑤⊥ ≡ 𝑝⊥/𝜌 , (20.162)

be constants for each species. For example, 𝑤 = 1 for an ultrahard fluid (which can mimic the behaviour of
a massless scalar field (Babichev et al., 2008)), 𝑤 = 1/3 for a relativistic fluid, 𝑤 = 0 for pressureless cold
dark matter, 𝑤 = −1 for vacuum energy, and 𝑤 = −1 with 𝑤⊥ = 1 for a radial electric field.
Self-similarity allows that the energy-momentum may consist of several distinct components, such as a rel-

ativistic fluid, plus dark matter, plus an electric field. The components may interact with each other provided
that the properties of the interaction introduce no additional dimensional parameters. Dimensional analysis
shows that the flux 𝐹𝑛 of energy and momentum transferred between any two species, equation (20.57),
must scale as

𝐹𝑛 ∝ 𝑅−3 . (20.163)

20.18.10 Electrical conductivity

The principal reason to consider charged black holes is that stationary charged black holes have inner horizons
like rotating black holes, and it is easier to model spherical charged black holes than rotating black holes.
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The big question, explored using spherical charged black holes in the next Chapter 21, is what happens near
their inner horizons? In exploring this question one should bear in mind that charge is really a surrogate for
rotation.
In self-similar models, a charged black hole acquires its electrical charge from accretion of charged fluid. A

charged fluid will experience a Lorentz force from the electric field, and will therefore exchange momentum
with the electric field. If the fluid is non-conducting, then there is no dissipation, and the interaction between
the charged fluid and electric field automatically introduces no additional dimensional parameters. However,
if the charged fluid is electrically conducting, then the electrical conductivity of the fluid could potentially
introduce an additional dimensional parameter, and this must not be allowed if self-similarity is to be
maintained. Dimensional analysis shows that the electric charge density 𝑞 ≡ 𝑗0, the radial electric current
𝑗 ≡ 𝑗1, and the radial electric field 𝐸 ≡ 𝑄/𝑅2 scale as

𝑞 ∝ 𝑗 ∝ 𝑅−2 , 𝐸 ∝ 𝑅−1 , (20.164)

consistent with the requirement that the flux of energy and momentum on the right hand sides of equa-
tions (20.70) scale as 𝐹𝑛 ∝ 𝑅−3. In diffusive electrical conduction in a fluid of conductivity 𝜎, an electric
field 𝐸 gives rise to a current in the fluid rest frame,

𝑗 = 𝜎𝐸 , (20.165)

which is just Ohm’s law. Dimensional analysis then requires that the conductivity must scale as 𝜎 ∝ 𝑅−1.
The conductivity can depend only on the intrinsic properties of the conducting fluid, and the only intrinsic
property available is its density, which scales as 𝜌 ∝ 𝑅−2. It follows that the conductivity must be proportional
to the square root of the density 𝜌 of the conducting fluid,

𝜎 = 𝜅 𝜌1/2 , (20.166)

where 𝜅 is a dimensionless conductivity constant. The form (20.166) is required by self-similarity, and is
not necessarily realistic (although it is realistic that the conductivity increases with density). However, the
conductivity (20.166) is adequate for the purpose of exploring the consequences of dissipation in simple
models of black holes.
A realistic value of the electrical conductivity of a baryonic plasma at a relativistic temperature 𝑇 is

(Arnold, Moore, and Yaffe, 2000)

𝜎 =
𝐶

𝑒2 ln 𝑒−1
𝑘𝑇

~
(20.167)

where 𝑒 is the dimensionless charge of the electron, the square root of the fine-structure constant, and the
factor 𝐶 ≈ 15 depends on the mix of particle species. This electrical conductivity is huge. A dimensionless
measure of the conductivity (which has units 1/time) is the conductivity 𝜎 times the characteristic timescale
𝑡BH ≡ 𝐺𝑀/𝑐3 of the black hole, which is of order

𝜎𝑡BH ∼
𝑇

𝑇BH
(20.168)

where 𝑘𝑇BH ≡ ~/𝑡BH is the characteristic temperature of the black hole (for a Schwarzschild black hole,
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this characteristic temperature 𝑇BH is 8𝜋 times the Hawking temperature). In the astronomical situation
considered here the temperature 𝑇 of the plasma is huge compared to the characteristic temperature 𝑇BH of
the black hole. Indeed if this were not so, then mass loss by Hawking radiation would tend to compete with
mass gain by accretion, an entirely different situation from the one envisaged here.
Charge is being envisaged here as a surrogate for rotation, and electrical conduction should be interpreted

as a substitute for angular momentum transport. Angular momentum transport is a much weaker process
than electrical conduction (if angular momentum transport were as strong as electrical conduction, then
accretion disks would shed angular momentum as quickly as they shed charge, and accretion disks would not
rotate). In the next Chapter 21, the conductivity is treated as a phenomenological free parameter, greatly
suppressed compared to any realistic conductivity, but nevertheless possibly consistent with what might be
a reasonable rate for the analogous angular momentum transport in a rotating black hole.

20.18.11 Tetrad connections

The expressions for the tetrad connections for the self-similar spacetime (20.132) are the same as those (20.23)
for a general spherically symmetric spacetime. Expressions (20.24) and (20.25) for the proper radial acceler-
ation ℎ0 and the radial Hubble parameter ℎ1 translate in the self-similar spacetime to

ℎ0 ≡ 𝜕1 ln(𝑅𝜉0) , ℎ1 ≡ 𝜕0 ln(𝑅𝜉1) . (20.169)

Comparing equations (20.169) to equations (20.24) and (20.29) shows that the lapse 𝛼 and scale factor 𝜆
translate in the self-similar spacetime to

𝛼 = 𝑅𝜉0 , 𝜆 = 𝑅𝜉1 . (20.170)

20.18.12 Spherical equations carry over to the self-similar case

The tetrad-frame Riemann, Weyl, and Einstein tensors in the self-similar spacetime take the same form as
in the general spherical case, equations (20.30)–(20.35).
Likewise, the equations for the interior mass in §20.9, for energy-momentum conservation in §20.10, for

the first law in §20.10.1, and the various equations for the electromagnetic field in §20.13, all carry through
unchanged.

20.18.13 From partial to ordinary differential equations

The central simplifying feature of self-similar solutions is that they turn a system of partial differential
equations into a system of ordinary differential equations.
By definition, a dimensionless quantity 𝐴(𝑟) is independent of conformal time 𝑡. It follows that the partial

derivative of any dimensionless quantity 𝐴(𝑟) with respect to conformal time 𝑡 vanishes,

0 =
𝜕𝐴(𝑟)

𝜕𝑡
= 𝜉𝑚𝜕𝑚𝐴(𝑟) =

(︀
𝜉0𝜕0 + 𝜉1𝜕1

)︀
𝐴(𝑟) . (20.171)
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Consequently the directed radial derivative 𝜕1𝐹 of a dimensionless quantity 𝐴(𝑟) is related to its directed
time derivative 𝜕0𝐹 by

𝜕1𝐴(𝑟) = −
𝜉0

𝜉1
𝜕0𝐴(𝑟) . (20.172)

Equation (20.172) allows radial derivatives to be converted to time derivatives.

20.18.14 Integration variable

It is desirable to choose an integration variable that varies monotonically. A natural choice is the proper
time 𝜏 in some tetrad frame, since this is guaranteed to increase monotonically. The 4-velocity at rest in
the tetrad frame is by definition 𝑢𝑚 = {1, 0, 0, 0}, so the proper time derivative is related to the directed
conformal time derivative in the tetrad frame by 𝑑/𝑑𝜏 = 𝑢𝑚𝜕𝑚 = 𝜕0.
However, there is another choice of integration variable, the ray-tracing variable 𝑥 defined by equa-

tion (20.146), that is not specifically tied to any tetrad frame, and that has a desirable (tetrad and coordinate)
gauge-invariant meaning. The proper time derivative of any dimensionless function 𝐴(𝑟) in the tetrad frame
is related to its derivative 𝑑𝐴/𝑑𝑥 with respect to the ray-tracing variable 𝑥 by

𝜕0𝐴 = 𝑢𝑚𝜕𝑚𝐴 = (𝑢1𝜕1)sim𝐴 = −𝜉
1

𝑅

𝑑𝐴

𝑑𝑥
. (20.173)

In the third expression, (𝑢1𝜕1)sim𝐴 is 𝑢𝑚𝜕𝑚𝐴 expressed in the similarity frame (20.147), where the di-
rected time and radial derivatives are (𝜕0)sim = (1/(𝑅

√
Δ)) 𝜕/𝜕𝑡× and (𝜕𝑥)sim = (

√
Δ/𝑅) 𝜕/𝜕𝑥. The partial

time derivative 𝜕/𝜕𝑡×|𝑥 = 𝜕/𝜕𝑡|𝑟 vanishes acting on any dimensionless quantity 𝐴(𝑟). The last expression
of (20.173) comes from 𝑢1sim = −𝜉1/

√
Δ in view of equation (20.143), the minus sign coming from the fact

that 𝑢1sim is tetrad relative to similarity frame, while 𝑢1 in equation (20.143) is similarity relative to tetrad
frame.
In summary, the chosen integration variable is the dimensionless ray-tracing variable −𝑥 (with a minus

because −𝑥 increases monotonically with proper time), the derivative with respect to which, acting on any
dimensionless function, is related to the proper time derivative 𝜕0 in any tetrad frame by

− 𝑑

𝑑𝑥
=
𝑅

𝜉1
𝜕0 . (20.174)

Equation (20.174) involves 𝜉1, which is proportional to the proper velocity of the tetrad frame through the
similarity frame, equation (20.145), and which therefore, being initially positive, must always remain positive
in any tetrad frame attached to a fluid, as long as the fluid does not turn back on itself, as must be true for
the self-similar solution to be consistent.

20.18.15 Integrals of motion

As remarked above, equation (20.171), in self-similar solutions 𝜉𝑚𝜕𝑚𝐴(𝑟) = 0 holds for any dimensionless
function 𝐴(𝑟). If both the directed derivatives 𝜕0𝐴(𝑟) and 𝜕1𝐴(𝑟) are known from the Einstein equations or
elsewhere, then the result will be an integral of motion.
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The spherically symmetric, self-similar Einstein equations admit two integrals of motion,

0 = 𝑅𝜉𝑚𝜕𝑚𝛽0 = 𝑅𝛽1(𝜉
0ℎ0 + 𝜉1ℎ1)− 𝜉0

(︂
𝑀

𝑅
+ 4𝜋𝑅2𝑝

)︂
+ 𝜉14𝜋𝑅2𝑓 , (20.175a)

0 = 𝑅𝜉𝑚𝜕𝑚𝛽1 = 𝑅𝛽0(𝜉
0ℎ0 + 𝜉1ℎ1) + 𝜉1

(︂
𝑀

𝑅
− 4𝜋𝑅2𝜌

)︂
+ 𝜉04𝜋𝑅2𝑓 . (20.175b)

Taking 𝜉1 times (20.175a) plus 𝜉0 times (20.175b), and then 𝛽0 times (20.175a) minus 𝛽1 times (20.175b),
gives

0 = v𝑅(𝜉0ℎ0 + 𝜉1ℎ1)− 4𝜋𝑅2
[︀
𝜉0𝜉1(𝜌+ 𝑝)−

(︀
(𝜉0)2 + (𝜉1)2

)︀
𝑓
]︀
, (20.176a)

0 = 𝑅𝜉𝑚𝜕𝑚
𝑀

𝑅
= − v

𝑀

𝑅
+ 4𝜋𝑅2

[︀
𝛽1𝜉

1𝜌− 𝛽0𝜉0𝑝+ (𝛽0𝜉
1 − 𝛽1𝜉0)𝑓

]︀
. (20.176b)

The quantities in square brackets on the right hand sides of equations (20.176) are scalars for each species 𝑥,
so equations (20.176) can also be written

v𝑅(𝜉0ℎ0 + 𝜉1ℎ1) = 4𝜋𝑅2
∑︁

species 𝑥

𝜉0𝑥𝜉
1
𝑥(𝜌𝑥 + 𝑝𝑥) , (20.177a)

v

𝑀

𝑅
= 4𝜋𝑅2

∑︁
species 𝑥

(𝛽𝑥,1𝜉
1
𝑥𝜌𝑥 − 𝛽𝑥,0𝜉0𝑥𝑝𝑥) , (20.177b)

where the sum is over all species 𝑥, and 𝛽𝑥,𝑚 and 𝜉𝑚𝑥 are the 4-vectors 𝛽𝑚 and 𝜉𝑚 expressed in the rest
frame of species 𝑥. Equations (20.177) are scalar equations, valid in any frame of reference.
For any fluid with equation of state 𝑝/𝜌 = 𝑤 = constant, a further integral comes from considering

0 = 𝑅𝜉𝑚𝜕𝑚(𝑅2𝑝) = 𝑅
[︀
𝑤 𝜉0𝜕0(𝑅

2𝜌) + 𝜉1𝜕1(𝑅
2𝑝)
]︀
, (20.178)

and simplifying using the energy conservation equation for 𝜕0𝜌 and the momentum conservation equation
for 𝜕1𝑝.
In the particular case of the electromagnetic field, equation (20.178) reduces to

0 = 𝑅𝜉𝑚𝜕𝑚
𝑄

𝑅
= − v

𝑄

𝑅
+ 4𝜋𝑅2

(︀
𝜉1𝑞 − 𝜉0𝑗

)︀
, (20.179)

which is valid in any radial tetrad frame.
The energy-momentum conservation equations (20.55) with fluxes (20.57) are

𝜕0𝜌+
2𝛽0
𝑅

(𝜌+ 𝑝⊥) + ℎ1 (𝜌+ 𝑝) = 𝐹 0 , (20.180a)

𝜕1𝑝+
2𝛽1
𝑅

(𝑝− 𝑝⊥) + ℎ0 (𝜌+ 𝑝) = 𝐹 1 . (20.180b)

If a species is charged, then the energy flux into the charged species from the electromagnetic field is,
equations (20.70),

𝐹 0 = 𝑗𝐸 , 𝐹 1 = 𝑞𝐸 . (20.181)
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There may be other contributions to the energy-momentum fluxes 𝐹𝑚 if the species exchanges energy-
momentum with another species, for example through collisions. Inserting equations (20.180) into equa-
tion (20.178) yields, in the centre-of-mass frame of a species,

(1 + 𝑤)𝑅(𝜉1ℎ0 + 𝑤𝜉0ℎ1)− 2𝑤⊥(𝜉
1𝛽1 − 𝑤𝜉0𝛽0) =

𝑅

𝜌
(𝜉1𝐹 1 + 𝑤𝜉0𝐹 0) . (20.182)

Equation (20.182) rearranges to

𝑅ℎ0 =
2𝑤⊥𝜉

1(𝜉1𝛽1 − 𝑤𝜉0𝛽0)− 𝑤(1 + 𝑤)𝜉0(𝜀/v) + (𝑅/𝜌)𝜉1(𝜉1𝐹 1 + 𝑤𝜉0𝐹 0)

(1 + 𝑤) [(𝜉1)2 − 𝑤(𝜉0)2]
, (20.183)

where

𝜀 ≡ 4𝜋𝑅2
∑︁

species 𝑥

𝜉0𝑥𝜉
1
𝑥(1 + 𝑤𝑥)𝜌𝑥 (20.184)

summed over all species 𝑥 (including the one under consideration), where 𝜉𝑚𝑥 is in the rest frame of species 𝑥.

20.18.16 Entropy

Substituting the self-similar expression (20.170) for the scale factor 𝜆 into the energy conservation equa-
tion (20.59) for a species in its own centre-of-mass frame gives

𝜕0 ln
[︁
𝜌𝑅2(1+𝑤⊥)(𝑅𝜉1)1+𝑤

]︁
=
𝐹 0

𝜌
. (20.185)

For a fluid with isotropic equation of state 𝑤 = 𝑤⊥, equation (20.185) becomes

𝜕0 ln𝑆 =
𝐹 0

(1 + 𝑤)𝜌
, (20.186)

where 𝑆 is (up to an arbitrary constant) the entropy of a comoving volume element 𝑉 ∝ 𝑅3𝜉1 of the fluid,

𝑆 ≡ 𝑅3𝜉1𝜌1/(1+𝑤) . (20.187)

20.18.17 Summary of equations for accreting, self-similar, spherical, charged black

holes

This section summarizes the equations used in Chapter 21 to compute the evolution of self-similar, spherical,
charged black holes accreting a variety of fluids. For brevity, the index 𝑥 labelling a fluid species is omitted.
Equations (20.190)–(20.195) and (20.199) are valid in any tetrad frame governed by the self-similar line-
element (20.132). Equations (20.188), (20.189), and (20.196)–(20.198) hold in the rest frame of the fluid
in question, the frame where the energy flux 𝑓 of the fluid is zero. For equations holding in the fluid rest
frame, the quantities 𝜉𝑚, 𝛽𝑚, and ℎ𝑚 should be interpreted as evaluated in the fluid rest frame. Some
quantities, notably v, 𝑀/𝑅, 𝑄/𝑅, and Δ are (dimensionless) scalars, taking the same value in any tetrad
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frame. Equations (20.191)–(20.199) are dimensionless, factors of 𝑅 appearing so as to make them so; for
example 𝑅ℎ𝑚, 𝑅2𝜌, 𝑅𝜎 are dimensionless.
Self-similarity requires that each fluid have an equation of state with constant 𝑤 and 𝑤⊥, equations (20.162),

𝑤 ≡ 𝑝/𝜌 , 𝑤⊥ ≡ 𝑝⊥/𝜌 . (20.188)

If the fluid is charged, then self-similarity requires that its conductivity 𝜎 be proportional to the square root
of the proper energy density, equation (20.166),

𝜎 = 𝜅 𝜌1/2 , (20.189)

with constant dimensionless conductivity coefficient 𝜅.
The proper time 𝜏 in any tetrad frame evolves as

− 𝑑𝜏

𝑑𝑥
=
𝑅

𝜉1
, (20.190)

which follows from 𝑑𝑥/𝑑𝜏 = 𝜕0𝑥 and equation (20.174). The circumferential radius 𝑅 in any tetrad frame
evolves as

− 𝑑 ln𝑅

𝑑𝑥
=
𝛽0
𝜉1

, (20.191)

which follows from 𝑑𝑅/𝑑𝜏 = 𝜕0𝑅 = 𝛽0 and equation (20.190).
The defining equations (20.169) for the proper acceleration ℎ0 and Hubble parameter ℎ1 yield equations

for the evolution of the time and radial components of the conformal Killing vector 𝜉𝑚 in any tetrad frame,

−𝑑𝜉
0

𝑑𝑥
= 𝛽1 −𝑅ℎ0 , (20.192a)

−𝑑𝜉
1

𝑑𝑥
= −𝛽0 +𝑅ℎ1 . (20.192b)

In the evolution equation (20.192a) for 𝜉0, equation (20.172) has been used to convert the conformal radial
derivative 𝜕1 to the conformal time derivative 𝜕0, and thence to −𝑑/𝑑𝑥 by equation (20.174).
The Einstein equations (20.38) applied to the two expressions (20.35c) for 𝐺01 yield evolution equations

for the time and radial components of the vierbein coefficients 𝛽𝑚 in any tetrad frame,

−𝑑𝛽0
𝑑𝑥

= − 1

𝜉0
(︀
𝛽1𝑅ℎ1 + 4𝜋𝑅2𝑇 01

)︀
, (20.193a)

−𝑑𝛽1
𝑑𝑥

=
1

𝜉1
(︀
𝛽0𝑅ℎ0 + 4𝜋𝑅2𝑇 01

)︀
. (20.193b)

Again, in the evolution equation (20.193a) for 𝛽0, equation (20.172) has been used to convert the conformal
radial derivative 𝜕1 to the conformal time derivative 𝜕0. The energy flux 𝑇 01 in equations (20.193) is the
total energy flux summed over all species. The 4 evolution equations (20.192) and (20.193) for 𝜉𝑚 and 𝛽𝑚
are not independent: they are related by 𝜉𝑚𝛽𝑚 = v, a constant, equation (20.135b). To maintain numerical
precision, it is important to avoid expressing small quantities as differences of large quantities. In practice,
a suitable choice of variables to integrate proves to be 𝜉0 + 𝜉1, 𝛽0 − 𝛽1, and 𝛽1, each of which can be tiny
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in some circumstances. Starting from these variables, the following equations yield 𝜉0 − 𝜉1, along with the
interior mass 𝑀 and the horizon function Δ, equations (20.135a) and (20.135c), in a fashion that ensures
numerical stability:

𝜉0 − 𝜉1 =
2v− (𝜉0 + 𝜉1)(𝛽0 + 𝛽1)

𝛽0 − 𝛽1
, (20.194a)

2𝑀

𝑅
= 1 + (𝛽0 + 𝛽1)(𝛽0 − 𝛽1) , (20.194b)

Δ = (𝜉0 + 𝜉1)(𝜉0 − 𝜉1) . (20.194c)

Equation (20.194b) is numerically preferable to equation (20.177b), which can suffer loss of precision from
cancellation of large quantities; equation (20.177b) can be used as a check.
The evolution equations (20.192) and (20.193) involve ℎ0 and ℎ1. The integrals of motion considered in

§20.18.15 yield explicit expressions for ℎ0 and ℎ1 not involving any derivatives. For the Hubble parameter
ℎ1, equation (20.177a) gives

𝑅ℎ1 = − 𝜉0

𝜉1
𝑅ℎ0 +

𝜀

v

, (20.195)

where 𝜀 is given by equation (20.184). For the proper acceleration ℎ0, a simple case is that of non-interacting
(collisionless), pressureless, neutral “dark matter,” for which the acceleration vanishes,

ℎ0 = 0 dark matter . (20.196)

For a more general fluid, the integral of motion (20.183) yields an expression for ℎ0. If the fluid exchanges
energy-momentum only with the electromagnetic field, so that the fluxes 𝐹𝑚 are given by equations (20.181),
then the integral of motion (20.183), simplified using the integral of motion (20.179) for 𝑄 and the conduc-
tivity (20.189) in Ohm’s law (20.165), reduces to

𝑅ℎ0 =
𝜉1
{︀
8𝜋𝑤⊥(𝛽1𝜉

1 − 𝑤𝛽0𝜉0)𝑅2𝜌+
[︀
v+ (1 + 𝑤)4𝜋𝑅𝜎𝜉0

]︀
𝑄2/𝑅2 − 𝑤(4𝜋𝜉0𝜀)2/v

}︀
4𝜋𝜀 [(𝜉1)2 − 𝑤(𝜉0)2]

. (20.197)

Finally, equations are needed governing the evolution of the energy densities 𝜌 of the fluids. If a fluid has
isotropic equation of state, 𝑤 = 𝑤⊥, then the energy conservation equation translates into a conservation
equation (20.186) for entropy (20.187). If the fluid exchanges energy-momentum only with the electromag-
netic field, so that the flux 𝐹 0 is given by equations (20.181), then the entropy conservation equation (20.186)
is

− 𝑑 ln𝑆

𝑑𝑥
=

𝜎𝑄2

𝜉1𝑅3(1 + 𝑤)𝜌
. (20.198)

The right hand side of equation (20.198) vanishes if the fluid is uncharged or non-conducting.
For the electromagnetic field, the energy conservation equation (20.70a) becomes

− 𝑑 ln𝑄

𝑑𝑥
= −4𝜋𝑅𝜎

𝜉1
. (20.199)

If there is more than one charged conducting fluid, then the right hand side of equation (20.199) should
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be summed over the charged conducting fluids. Equation (20.199) says that (free) energy coming out of the
electromagnetic field is going into (heat) energy of dissipation of charged conducting fluids. Equation (20.199)
is numerically preferable to equation (20.179), which can suffer loss of precision from cancellation of large
quantities; equation (20.179) can be used as a check.

20.19 Infinite thin planes

The final problem considered in this Chapter is that of an infinite thin plane in vacuo, not because the
problem is soluble, but rather because such a thing cannot exist in general relativity.

20.19.1 Plane symmetric spacetimes

The next section 20.19.2 considers the situation of a putative infinite thin wall. The assumed planar symmetry
of the wall implies that the line-element must take the form

𝑑𝑠2 = −𝛼2𝑑𝑡2 +
1

𝑏21
(𝑑𝑧 − 𝛼𝑏0 𝑑𝑡)2 + 𝑟2(𝑑𝑥2 + 𝑥2𝑑𝜑2) , (20.200)

in which the metric coefficients are functions of time 𝑡 and vertical position 𝑧. The planar line-element (20.200)
is similar but not identical to the spherical line-element (20.1). The radius 𝑟(𝑡, 𝑧) in the line-element (20.200)
is an arbitrary function of 𝑡 and 𝑧. The radius 𝑟(𝑡, 𝑧) can be thought of as a cylindrical cosmic scale factor,
and the coordinate 𝑥 as a comoving cylindrical coordinate. The coefficients 𝑏0(𝑡, 𝑧) and 𝑏1(𝑡, 𝑧) are likewise
arbitrary function of 𝑡 and 𝑧; unlike the spherical case, they are not equal to 𝛽𝑚 ≡ 𝜕𝑚𝑟. Quantities 𝛽𝑚 are
defined to be directed derivatives of the radius 𝑟, the same as in the spherical line-element, equation (20.9),

𝛽𝑚 ≡ 𝜕𝑚𝑟 =
{︂
1

𝛼

𝜕𝑟

𝜕𝑡
+ 𝑏0

𝜕𝑟

𝜕𝑧
, 𝑏1

𝜕𝑟

𝜕𝑧
, 0, 0

}︂
. (20.201)

As in the spherical case, 𝛽𝑚 is a tetrad 4-vector, and its scalar product with itself is a scalar, which defines
the interior mass 𝑀 ,

2𝑀

𝑟
≡ 𝛽2

0 − 𝛽2
1 . (20.202)

The expression (20.202) for the mass 𝑀 interior to 𝑧 differs from the spherical case 2𝑀/𝑟 = 1 + 𝛽2
0 − 𝛽2

1 ,
equation (20.11), because the flat line-element 𝑑𝑥2 + 𝑥2𝑑𝜑2 in (20.200) replaces the spherical line-element
𝑑𝑜2 ≡ 𝑑𝜃2 + sin2𝜃 𝑑𝜑2 in (20.1).
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The tetrad connections are

Γ100 = ℎ0 ≡ 𝜕1 ln𝛼 = 𝑏1
𝜕 ln𝛼

𝜕𝑧
, (20.203a)

Γ101 = ℎ1 ≡ 𝑏0
𝜕 ln𝛼𝑏0
𝜕𝑧

− 𝜕0 ln 𝑏1 , (20.203b)

Γ202 = Γ303 =
𝛽0
𝑟
, (20.203c)

Γ212 = Γ313 =
𝛽1
𝑟
, (20.203d)

Γ323 =
1

𝑟𝑥
, (20.203e)

which differ from the spherical connections (20.23) in ℎ0, ℎ1, and Γ323.
With the changes to the interior mass 𝑀 from equation (20.202), and to the connections ℎ0, ℎ1, and Γ323

from equations (20.203), all the equations in §20.6 for the Riemann, Ricci, Einstein, and Weyl tensors in the
spherical case hold unchanged.

20.19.2 An infinite thin wall?

In Newtonian gravity, an infinite uniform wall produces a uniform gravitational force towards the wall. If the
wall has mass per unit area of “𝜌, then solving Laplace’s equation ∇2𝜑 = 4𝜋𝜌 with a delta-function source
𝜌 = “𝜌 𝛿(𝑧) implies that the gravitational force is the constant 𝑔 ≡ −𝜕𝜑/𝜕𝑧 = −4𝜋“𝜌 at any distance 𝑧 from
the wall. This is not what happens in general relativity (Jones, 2008).
Consider an infinite uniform thin wall in otherwise empty space. The symmetries of the situation imply

that the line-element must take the form (20.200), with 𝑧 the vertical coordinate. As remarked at the end
of §20.19.1, all the equations in §20.6 in the spherical case hold also for the planar line-element (20.200),
provided that 𝛽𝑚, 𝑀 , and ℎ𝑚 are interpreted as being given by equations (20.201), (20.202), and (20.203).
For the planar line-element (20.200), the mass equations (20.44) in the centre-of-mass frame become

𝜕0𝑀

𝜕0𝑟
= −4𝜋𝑟2𝑝 , (20.204a)

𝜕𝑀/𝜕𝑧

𝜕𝑟/𝜕𝑧
= 4𝜋𝑟2𝜌 . (20.204b)

The density and pressure vanish in the vacuum region outside the wall, 𝜌 = 𝑝 = 0. The mass equa-
tions (20.204) then imply that all derivatives of 𝑀 vanish, so the interior mass 𝑀 is constant everywhere
outside the wall.
The vacuum region outside the wall defines no preferred frame, so there is freedom to Lorentz boost

the spacelike 4-vector 𝛽𝑚 in the 𝛾𝛾0–𝛾𝛾1 plane (the 𝑡–𝑧 plane), such that 𝛽1 = 0. In accordance with the
definition (20.201) of 𝛽1, the vanishing of 𝛽1 requires 𝜕𝑟/𝜕𝑧 = 0, that is, 𝑟 is a function only of 𝑡, independent
of 𝑧. Solving Einstein’s equations in vacuo leads to the result that not only 𝑟 but all the metric coefficients
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in the line-element (20.200) are functions only of 𝑡, independent of 𝑧. The resulting vacuum line-element is

𝑑𝑠2 = − 𝑡

2𝑀
𝑑𝑡2 +

𝑑𝑧2

𝑡
+ 𝑡2(𝑑𝑥2 + 𝑥2 𝑑𝜑2) . (20.205)

The spacetime described by the line-element (20.205) has vanishing energy-momentum tensor, but a Weyl
scalar 𝐶 of

𝐶 = −𝑀
𝑡3

. (20.206)

The line-element (20.205) is the Kasner (1921) spacetime (Exercise 17.4) with 𝑞𝑎 = {− 1
3 ,

2
3 ,

2
3}. Which in

turn looks like the Schwarzschild geometry near its singular surface (Exercise 17.5).
It is now apparent why there are difficulties in general relativity in finding a thin wall solution analogous to

that in Newtonian gravity. The putative thin wall solution is actually the superluminally infalling region near
the singular surface of the Schwarzschild geometry. Singularity theorems, Chapter 18, imply that, as long as
the energy-momentum satisfies a positive energy condition, there are geodesics whose future terminates in
such a geometry.
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The interiors of accreting, spherical black
holes

As discussed in Chapter 8, the Reissner-Nordström geometry for an ideal charged spherical black hole
contains mathematical wormhole and white hole extensions to other universes. In reality, these extensions
are not expected to occur, thanks to the mass inflation instability discovered by Poisson and Israel (1990).
This Chapter explores how accretion modifies the internal structure of a spherical black hole. A charged
black hole is not astronomically realistic, but it has an inner horizon like a rotating black hole, and may be
considered a surrogate for a rotating black hole.

Two important lessons emerge from the investigations in this Chapter. The first is that the inner horizon of
an accreting black hole is subject to the inflationary instability discovered by Poisson and Israel (1990). The
instability is called inflation because it grows exponentially. The inflationary instability destroys the inner
horizon, preventing the wormhole and white hole extensions to other universes that occur in the Reissner-
Nordström geometry for an ideal charged spherical black hole. Poisson & Israel dubbed the instability “mass
inflation,” but I tend to prefer the term “inflationary instability” since although the interior mass indeed
increases exponentially during inflation, it is relativistic counter-streaming, not mass, that drives inflation
(Hamilton and Avelino, 2010).

The second important lesson of this Chapter is that dissipation inside a black hole can create a lot of
entropy inside a black hole, causing a problem with the second law of thermodynamics. Normally, the
quantum field theory postulate of locality — the statement that spacelike-separated quantum operators
commute — justifies adding entropy along spacelike surfaces. Locality implies that all field operators can
be set independently along any spacelike surface. Locality is what justifies calculating the entropy of for
example the air in the room you are sitting in by chopping up the volume of the room into small pieces and
adding up the entropies of each piece. But inside a (conformally) stationary black hole, surfaces of constant
(conformal) stationary time are spacelike, and the volume of a spacelike 3-surface over the age 𝑇 of a black
hole since it first collapsed is of order 𝑇𝑅2

+, which for black holes that collapsed long ago is vastly larger
than a naive estimate 𝑅3

+ of the volume of a sphere of horizon radius 𝑅+. As shown in §21.10, if entropy is
accumulated over this vast volume 𝑇𝑅2

+, the cumulative entropy can vastly exceed the Bekenstein-Hawking
(Bekenstein, 1973; Hawking, 1974) entropy, which is 1/4 the area of the horizon in Planck units. Which
would imply a gross violation of the second law of thermodynamics if the black hole subsequently evaporated

616
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radiating only a Hawking amount of entropy. Where did all that accumulated entropy generated inside the
black hole disappear to?

The problem, and its solution (Polhemus, Hamilton, and Wallace, 2009), are intimately related to the
Information Paradox introduced in a seminal paper by Hawking (1976). The Information Paradox is that
black hole evaporation must violate one of two fundamental postulates of quantum field theory, which are

1. Locality: the proposition that spacelike-separated operators commute;

2. Unitarity: the proposition that quantum mechanical evolution is deterministic.

Locality is what enforces causality in quantum field theory. Locality ensures that, although quantum mechan-
ics allows what appears to be instantaneous communication between spacelike-separated points in Einstein-
Podolsky-Rosen (EPR) experiments (Einstein, Podolsky, and Rosen, 1935), no actual information can be
transmitted in such an experiment. The classic EPR experiment is to prepare a pair of particles of non-
zero spin such that their combined spin is 0, then observe the particles at two spacelike-separated receivers.
Quantum mechanics predicts, and experiment confirms (Yin et al., 2017), that the particles will always be
observed to have spin opposite to each other regardless of the direction along which the particles are observed,
even when that direction is changed at the last moment. It is as if there were some kind of instantaneous
communication between the pair. Yet no actual information is transmitted in the experiment, because each
observation leads to spin up or down with equal probability, and neither side can influence which of those
two choices actually occurs.

Applied to black hole interiors, the problem with locality is that information inside a black hole must
exceed the speed of light to escape, which locality prohibits. Hawking (1976) originally argued that this
would cause a breakdown of unitarity, since the Hawking radiation emitted by the black hole would be
causally disconnected from the interior states of the black hole. Hawking argued that Hawking radiation,
being precisely thermal, carries no information. The response to Hawking’s conclusion was not immediate,
but in due course a growing number of physicists, including Gerard t’Hooft, Leonard Susskind, Don Page,
John Preskill, and others started arguing that it was more likely that locality, not unitarity, broke down. After
all, when a black hole radiates Hawking radiation, its mass and area decrease, and the amount of entropy
in the Hawking radiation is approximately equal to (actually slightly larger than) the Bekenstein-Hawking
entropy lost by the black hole. How could the two not be causally related, as unitarity insists? This led to
conjectures that the black hole horizon is a “hologram” that somehow encodes the interior quantum degrees
of freedom of a black hole. The idea of holography was boosted greatly by Maldacena’s (1998) discovery of
AdS-CFT, a string-theory duality between an anti deSitter spacetime and a conformal field theory living on
the boundary of that spacetime. Proponents of holography declared victory (Susskind, 2008). However, it is
fair to say that holography remains incompletely understood, especially in application to real astronomical
black holes.

Anyway, the relevance to the present Chapter is that a breakdown of locality would also save the second
law of thermodynamics from excessive entropy production inside black holes. When two observers fall into
a black hole at two different times or angular positions, they lose causal contact with each other, Concept
Question 7.4, and classically they observe distinct volumes of space. But if locality breaks down, then the
observers can be seeing the same quantum degrees of freedom even though the volumes are distinct. In effect,
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there is only one quantum black hole interior, not many. It is not legitimate to accumulate entropy across
many black hole interiors, even though they are spacelike separated from each other.
All the models presented in this Chapter are spherical and self-similar. See Hamilton and Pollack (2005),

Hamilton and Pollack (2005), Wallace, Hamilton, and Polhemus (2008), and Hamilton and Avelino (2010)
for more detail.

21.1 Boundary conditions and equation of state

The previous Chapter 20 set forward the equations governing spherical spacetimes. This section sets out
the boundary conditions and equation of state adopted for the accreting spherical black hole models in the
remainder of the Chapter.

21.1.1 Boundary conditions at an outer sonic point

Because information can propagate only inward inside the horizon of a black hole, it is natural to set
boundary conditions outside the horizon of an accreting black hole. The policy adopted here is to set boundary
conditions at a sonic point, where the infalling baryonic (subscripted 𝑏) fluid accelerates from subsonic to
supersonic. The proper 3-velocity of the baryons through the self-similar frame is 𝜉1𝑏/𝜉

0
𝑏 , equation (20.145)

(the velocity 𝜉1𝑏/𝜉
0
𝑏 is positive falling inward), and the sound speed is

sound speed =

√︂
𝑝𝑏
𝜌𝑏

=
√
𝑤𝑏 , (21.1)

and sonic points occur where the velocity equals the sound speed

𝜉1𝑏
𝜉0𝑏

= ±
√
𝑤𝑏 at sonic points . (21.2)

The denominator of the expression (20.197) for the proper acceleration ℎ𝑏,0 of the baryonic fluid is zero at
sonic points, indicating that the acceleration will diverge unless the numerator is also zero. Generically, what
happens at a sonic point depends on whether the fluid transitions from subsonic upstream to supersonic
downstream (as here) or vice versa. If (as here) the fluid transitions from subsonic to supersonic, then sound
waves generated by discontinuities near the sonic point can propagate upstream, plausibly modifying the
flow so as to ensure a smooth transition through the sonic point, effectively forcing the numerator, like the
denominator, of the expression (20.197) to pass through zero at the sonic point. Conversely, if the fluid
transitions from supersonic to subsonic, then sound waves cannot propagate upstream to warn the incoming
fluid that a divergent acceleration is coming, and the result is a shock wave, where the fluid accelerates
discontinuously, is heated, and thereby passes from supersonic to subsonic.
The solutions considered here assume that the acceleration ℎ𝑏,0 at the sonic point is not only continuous

(so the numerator of (20.197) is zero) but also differentiable. Such a sonic point is said to be regular, and
the assumption imposes two boundary conditions at the sonic point.
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The accretion in real black holes is likely to be much more complicated, but the assumption of a regular
sonic point is the simplest physically reasonable one.

21.1.2 Mass and charge of the black hole

The mass 𝑀∙ and charge 𝑄∙ of the black hole at any instant are defined here to be those that would be
measured by a distant observer if there were no mass or charge outside the sonic point,

𝑀∙ =𝑀 +
𝑄2

2𝑟
, 𝑄∙ = 𝑄 at the sonic point . (21.3)

The mass 𝑀∙ in equation (21.3) includes the mass-energy 𝑄2/2𝑟 that would be in the electric field outside
the sonic point if there were no charge outside the sonic point, but it does not include mass-energy from any
additional mass or charge that might be outside the sonic point.
In self-similar evolution, the black hole mass 𝑀∙ increases linearly with proper time at rest far from the

black hole. The proper time is recorded on dark matter clocks that free-fall radially from rest far away.
In the approximation that there is vanishing energy-momentum outside the sonic point other than that
in the electric field, the solution outside the sonic point is Gullstrand-Painlevé. The Gullstrand-Painlevé
line-element for dark matter that free falls radially from rest at infinity is equation (20.139) with

𝛽1,𝑑 = 1 (21.4)

and unit lapse, the latter implying, from equation (20.140) with time 𝑇 replaced by the dark matter time
𝜏𝑑,

1 = 𝛼𝑑 =
𝜉0𝑑𝑅𝑑
v 𝜏𝑑

. (21.5)

The sonic point is at fixed conformal radius, and equation (21.5) shows that the dark matter time 𝜏𝑑 =

𝑅𝑑 𝜉
0
𝑑/v at that point increases in proportion to the conformal factor 𝑅𝑑. The mass accretion rate �̇�∙ is

�̇�∙ ≡
𝑑𝑀∙
𝑑𝜏𝑑

=
𝑀∙
𝜏𝑑

=
v𝑀∙
𝑅𝑑𝜉0𝑑

at the sonic point . (21.6)

As remarked following equation (20.135), the residual gauge freedom in the global rescaling of conformal
time allows the expansion rate v to be adjusted at will. One choice suggested by equation (21.6) is to set

�̇�∙ = v , (21.7)

which is equivalent to scaling v such that

𝜉0𝑑 =
𝑀∙
𝑅𝑑

at the sonic point . (21.8)

Equation (21.8) and the boundary condition (21.4) coupled with the scalar relations (20.135a) and (20.135b)
fully determine the dark matter 4-vectors 𝛽𝑑,𝑚 and 𝜉𝑚𝑑 at the sonic point.
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21.1.3 Equation of state

The density 𝜌𝑏 and temperature 𝑇𝑏 of an ideal relativistic baryonic fluid in thermodynamic equilibrium are
related by

𝜌𝑏 =
𝜋2𝑔𝑏
30

𝑇 4
𝑏 , (21.9)

where

𝑔𝑏 = 𝑔B +
7

8
𝑔F (21.10)

is the effective number of relativistic particle species, with 𝑔B and 𝑔F being the number of bosonic and
fermionic species. If the expected increase in 𝑔 with temperature 𝑇 is modelled (so as not to spoil self-
similarity) as a weak power law 𝑔𝑏/𝑔P = 𝑇 𝜖𝑏 , with 𝑔P the effective number of relativistic species at the Planck
temperature, then the relation between density 𝜌𝑏 and temperature 𝑇𝑏 is

𝜌𝑏 =
𝜋2𝑔P
30

𝑇
(1+𝑤)/𝑤
𝑏 , (21.11)

with equation of state parameter 𝑤𝑏 = 1/(3 + 𝜖) slightly less than the standard relativistic value 𝑤 = 1/3.
In the models considered here, the baryonic equation of state is taken to be

𝑤𝑏 = 0.32 . (21.12)

The effective number 𝑔P is fixed by setting the number of relativistic particles species to 𝑔𝑏 = 5.5 at 𝑇𝑏 =
10MeV, corresponding to a plasma of relativistic photons, electrons, and positrons. This corresponds to
choosing the effective number of relativistic species at the Planck temperature to be 𝑔P ≈ 2,400, which is
perhaps not unreasonable. The precise choices of 𝑔𝑏 and 𝑤𝑏 are not crucial.
The chemical potential of the relativistic baryonic fluid is likely to be close to zero, corresponding to equal

numbers of particles and anti-particles. The entropy 𝑆𝑏 of a proper Lagrangian volume element 𝑉 of the
fluid is then

𝑆𝑏 =
(𝜌𝑏 + 𝑝𝑏)𝑉

𝑇𝑏
, (21.13)

which agrees with the earlier expression (20.187), but now has the correct normalization.

21.2 Black hole accreting a neutral relativistic plasma

Perhaps the simplest model of an accreting black hole that one could think of is that of a spherical black
hole accreting a neutral relativistic “baryonic” plasma. In self-similar solutions, the charge of the black hole
is produced self-consistently by the accreted charge of the baryonic fluid, so a neutral fluid produces an
uncharged black hole.



21.2 Black hole accreting a neutral relativistic plasma 621

1010 1020 1030 1040 1050
10−120

10−110

10−100

10−90

10−80

10−70

10−60

10−50

10−40

10−30

10−20

10−10

100

1010

1020

Radius R (Planck units)

(P
la

n
c
k

u
n
it

s)

h
o

ri
z
o
n

P
la

n
c
k

sc
a
le

ρ
b

|C|

dS
b/dSBH

S
o

n
ic

p
o

in
t

R = 0

O
ut

er
ho

ri
zo

n

R
=

∞

R
=
∞

R
=

0

R
=

0

Figure 21.1 An uncharged baryonic plasma falls into an uncharged spherical black hole. The left panel shows in Planck

units, as a function of circumferential radius, the plasma density 𝜌𝑏, the Weyl curvature scalar 𝐶 (which is negative),

and the rate 𝑑𝑆𝑏/𝑑𝑆BH of increase of the plasma entropy per unit increase in the Bekenstein-Hawking entropy of the

black hole, equation (21.44). The mass is 𝑀∙ = 4 × 106 M⊙, the accretion rate is �̇�∙ = 10−16, and the equation of

state is 𝑤𝑏 = 0.32. The right panel shows a Penrose diagram of the model.

Figure 21.1 shows the baryonic density 𝜌𝑏 and Weyl curvature 𝐶 inside the uncharged black hole. The
mass and accretion rate have been taken to be

𝑀∙ = 4× 106 M⊙ , �̇�∙ = 10−16 , (21.14)

which are motivated by the fact that the mass of the supermassive black hole at the centre of the Milky Way
is 4× 106 M⊙, and its accretion rate is of order (Planck units are 𝑐 = 𝐺 = ~ = 1)

Mass of MW black hole
age of Universe

≈ 4× 106 M⊙
1010 yr

≈ 6× 1060 Planck units
4× 1044 Planck units

≈ 10−16 . (21.15)

Figure 21.1 shows that the baryonic plasma plunges uneventfully to a central singularity, just as in the
Schwarzschild solution. The Weyl curvature scalar hits the Planck scale, |𝐶| = 1, while the baryonic proper
density 𝜌𝑏 is still well below the Planck density, so this singularity is curvature-dominated.
Figure 21.1 also shows the rate 𝑑𝑆𝑏/𝑑𝑆BH of increase of the plasma entropy per unit increase in the

Bekenstein-Hawking entropy of the black hole, equation (21.44). The relevance of this quantity is discussed
in §21.10. The constancy of 𝑑𝑆𝑏/𝑑𝑆BH in Figure 21.1 reflects the fact that there is no dissipation in this
model, so no additional entropy is created inside the black hole.
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Figure 21.2 A charged, non-conducting, baryonic plasma falls into a charged black hole. The black hole has an inner

horizon like the Reissner-Nordström geometry. The self-similar solution terminates at an irregular sonic point just

beneath the inner horizon. The mass is 𝑀∙ = 4 × 106 M⊙, accretion rate �̇�∙ = 10−16, equation of state 𝑤𝑏 = 0.32,

and black hole charge-to-mass 𝑄∙/𝑀∙ = 10−5. The right panel shows a Penrose diagram. The inner horizon is a

Cauchy horizon: what happens in the spacetime to the future of the Cauchy horizon is unpredictable.

21.3 Black hole accreting a charged relativistic plasma

The next simplest model one can think of is that of a black hole accreting a charged relativistic plasma.
Because the plasma is charged, the resulting black hole is also charged.

Figure 21.2 shows a black hole with charge-to-mass 𝑄∙/𝑀∙ = 10−5, but otherwise the same parameters
as in the uncharged black hole of §21.2: 𝑀∙ = 4 × 106 M⊙, �̇�∙ = 10−16, and 𝑤𝑏 = 0.32. Inside the outer
horizon, the baryonic plasma, repelled by the electric charge of the black hole self-consistently generated by
the accretion of the charged baryons, becomes outgoing. Like the Reissner-Nordström geometry, the black
hole has an (outgoing) inner horizon. The baryons drop through the inner horizon, shortly after which the
self-similar solution terminates at an irregular sonic point, where the proper acceleration diverges. Normally
this is a signal that a shock must form, but even if a shock is introduced, the plasma still terminates at an
irregular sonic point shortly downstream of the shock. The failure of the self-similar solution to continue
does not invalidate the solution to the past of the inner horizon, because the failure is hidden beneath the
inner horizon, and cannot be communicated to infalling matter above it.

The inner horizon is a Cauchy horizon, meaning that the spacetime to the future of the inner horizon
cannot be predicted uniquely from the past. The ambiguity in the possible presence and location of a shock
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the other side of the Cauchy horizon is a symptom of this unpredictability. Hamilton and Pollack (2005) give
further details.
This solution, in which baryonic matter falls through an outgoing inner horizon, is nevertheless not realistic,

because it assumes that there is no ingoing matter whatsoever, whereas even the tiniest amount of ingoing
energy-momentum, in gravitational waves if nothing else, would suffice to trigger the inflationary instability.
Such ingoing energy-momentum would appear infinitely blueshifted to the outgoing baryons falling through
the inner horizon, which would produce inflation, as in §21.4.

21.4 Black hole accreting charged baryons and dark matter

One way to allow mass inflation in simple models is to admit not one but two fluids that can counter-stream
relativistically through each other. A natural possibility is to feed the black hole not only with a charged
relativistic fluid of baryons but also with neutral pressureless dark matter that streams freely through the
baryons. The charged baryons, being repelled by the electric charge of the black hole, become outgoing, while
the neutral dark matter remains ingoing.
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Figure 21.3 Not only charged baryonic plasma but also neutral pressureless dark matter fall into a black hole. The

dark matter streams freely through the baryonic plasma. The relativistic counter-streaming produces mass inflation

just above the erstwhile inner horizon, where the centre-of-mass density 𝜌 (thick black line) and curvature 𝐶 inflate

rapidly to the Planck scale and beyond. The mass is 𝑀∙ = 4× 106 M⊙, the accretion rate �̇�∙ = 10−16, the baryonic

equation of state 𝑤𝑏 = 0.32, the charge-to-mass 𝑄∙/𝑀∙ = 10−5, the conductivity is zero, and the ratio of dark matter

to baryonic density at the outer sonic point is 𝜌𝑑/𝜌𝑏 = 0.1.
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Figure 21.4 (Left panel) The centre-of-mass density 𝜌 and Weyl curvature |𝐶|, and (right panel) interior mass 𝑀 ,

inside three black holes accreting baryons and dark matter at three different rates �̇�∙ = 0.03, 0.01, and 0.003. In all

three cases the dark-matter-to-baryon ratio at the sonic point is 𝜌𝑑/𝜌𝑏 = 0.1. The smaller the accretion rate, the faster

the centre-of-mass density 𝜌, curvature 𝐶, and interior mass 𝑀 inflate; note that the centre-of-mass energy 𝜌 (thick

black line) and the curvature |𝐶| almost coincide here. For the middle accretion rate �̇�∙ = 0.01 (to avoid confusion,

only this case is plotted), the graph also shows the individual proper densities 𝜌𝑏 of baryons, 𝜌𝑑 of dark matter, and

𝜌𝑒 of electromagnetic energy. During mass inflation, almost all the centre-of-mass energy 𝜌 is in the streaming energy:

the proper densities of individual components remain small. The black hole mass is 𝑀∙ = 4 × 106 M⊙, the baryonic

equation of state is 𝑤𝑏 = 0.32, the charge-to-mass is 𝑄∙/𝑀∙ = 0.8, and the conductivity is zero. The position where

the inner horizon would be for a Reissner-Nordström black hole of 𝑄∙/𝑀∙ = 0.8 is marked, but in fact the inner

horizon is destroyed by the inflationary instability.

Figure 21.3 shows that relativistic counter-streaming between the baryons and the dark matter causes
the centre-of-mass density 𝜌 and the Weyl curvature scalar 𝐶 to inflate quickly up to the Planck scale and
beyond. The ratio of dark matter to baryonic density at the sonic point is 𝜌𝑑/𝜌𝑏 = 0.1, but otherwise the
parameters are the generic parameters of the previous two sections:𝑀∙ = 4×106 M⊙, �̇�∙ = 10−16, 𝑤𝑏 = 0.32,
𝑄∙/𝑀∙ = 10−5, and zero conductivity. Almost all the centre-of-mass energy 𝜌 is in the counter-streaming
energy between the outgoing baryonic and ingoing dark matter. The individual densities 𝜌𝑏 of baryons and
𝜌𝑑 of dark matter (and 𝜌𝑒 of electromagnetic energy) increase only modestly.

A striking feature of mass inflation is that the smaller the accretion rate, the shorter the length scale
of inflation. Not only that, but the smaller one of the outgoing or ingoing streams is relative to the other,
the shorter the length scale of inflation. Figure 21.4 shows black holes with three different accretion rates
�̇�∙ = 0.03, 0.01, and 0.003, all with the same ratio 𝜌𝑑/𝜌𝑏 = 0.1 of the dark-matter-to-baryon density ratio
at the sonic point. The smaller the accretion rate, the faster is inflation. The accretion rates �̇�∙ have been
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chosen to be relatively large so that the inflationary growth rate is discernible easily on the graph. The
centre-of-mass density 𝜌 and Weyl scalar 𝐶 exponentiate along with, and in proportion to, the interior mass
𝑀 , which increases as the radius 𝑟 decreases approximately as (see Hamilton and Avelino (2010) for more
precise estimates)

𝜌 ∝∼ 𝐶 ∝∼𝑀 ∝∼ exp(− ln 𝑟/�̇�∙) . (21.16)

Physically, the scale of length of inflation is set by how close to the inner horizon infalling material approaches
before mass inflation begins. The smaller the accretion rate �̇�∙, the closer the approach, and consequently
the shorter the length scale of inflation.
Figure 21.4 shows that, as in Figure 21.3, almost all the centre-of-mass energy density 𝜌 is in the streaming

energy between the baryons and the dark matter. For one case, �̇�∙ = 0.01, Figure 21.4 shows the individual
densities 𝜌𝑏 of baryons and 𝜌𝑑 of dark matter in their own frames, and 𝜌𝑒 of electromagnetic energy, all of
which remain tiny compared to the streaming energy.
Figure 21.4 also shows that inflation in due course comes to an end, whereupon the spacetime collapses to

a spacelike singularity at zero radius. Hamilton and Avelino (2010) shows that the maximum interior mass
attained is approximately the exponential of the reciprocal of the mass accretion rate,

𝑀max ∼ exp(1/�̇�∙) . (21.17)

For small accretion rates, this interior mass is absurdly huge. For example, for the “realistic” accretion rate
of �̇�∙ = 10−16 adopted in the model of Figure 21.3, the maximum interior mass attained is 𝑀max ∼ 𝑒10

16

,
and the maximum proper streaming density 𝜌 and curvature 𝐶 are similarly ridiculously vast. The density
and curvature vastly exceed the Planck scale.
Curvature is synonymous with tidal force. It seems entirely likely that the tidal force will result in pair

creation once the curvature exceeds the Planck scale. Frolov, Kristjansson, and Thorlacius (2006) show that
in the case a charged black hole in 2 spacetime dimensions, such pair creation does in fact occur. However,
there have been no studies of what happens in the realistic case of 4 spacetime dimensions.

21.5 The black hole collider

The previous section, §21.4, showed that almost all the centre-of-mass energy during mass inflation is in
the energy of counter-streaming. Thus the black hole acts like an extravagantly powerful particle accelerator
(Hamilton and Avelino, 2010).
Each baryon in the black hole collider sees a flux 𝑛𝑑𝑢1 of dark matter particles per unit area per unit

time, where 𝑛𝑑 = 𝜌𝑑/𝑚𝑑 is the proper number density of dark matter particles in their own frame, and 𝑢1 is
the radial component of the proper 4-velocity, the 𝛾𝑣, of the dark matter through the baryons. The 𝛾 factor
in 𝑢1 is the relativistic beaming factor: all frequencies, including the collision frequency, are speeded up by
the relativistic beaming factor 𝛾. As the baryons accelerate through the collider, they spend a proper time
interval 𝑑𝜏/𝑑 ln𝑢1 in each 𝑒-fold of Lorentz factor 𝑢1. The number of collisions per baryon per 𝑒-fold of 𝑢1 is
the dark matter flux (𝜌𝑑/𝑚𝑑)𝑢

1, multiplied by the time 𝑑𝜏/𝑑 ln𝑢1, multiplied by the collision cross-section
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(Ṁ
•
/M

•
)

0.03

0.01

0.003

10−16

Figure 21.5 Collision rate of the black hole collider per 𝑒-fold of velocity 𝑢 (meaning 𝛾𝑣), expressed in units of the

inverse black hole accretion time �̇�∙/𝑀∙. The curves are labelled with their mass accretion rates: �̇�∙ = 0.03, 0.01,

0.003, and 10−16 (the three models with the larger accretion rates are the same as those in Figure 21.4). Stars mark

where the centre-of-mass energy of colliding baryons and dark matter particles exceeds the Planck energy, while disks

show where the Weyl curvature scalar 𝐶 exceeds the Planck scale.

𝜎. The total cumulative number of collisions that have happened in the black hole particle collider equals
this multiplied by the total number of baryons that have fallen into the black hole, which is approximately
equal to the black hole mass 𝑀∙ divided by the mass 𝑚𝑏 per baryon. Thus the total cumulative number of
collisions in the black hole collider is

number of collisions
𝑒-fold of 𝑢1

=
𝑀∙
𝑚𝑏

𝜌𝑑
𝑚𝑑

𝜎𝑢1
𝑑𝜏

𝑑 ln𝑢1
. (21.18)

Figure 21.5 shows, for several different accretion rates �̇�∙, the collision rate 𝑀∙𝜌𝑑𝑢1𝑑𝜏/𝑑 ln𝑢1 of the black
hole collider, expressed in units of the black hole accretion rate �̇�∙. This collision rate, multiplied by
�̇�∙𝜎/(𝑚𝑑𝑚𝑏), gives the number of collisions (21.18) in the black hole. In the units 𝑐 = 𝐺 = 1 being
used here, the mass of a baryon (proton) is 1GeV ≈ 10−54 m. If the cross-section 𝜎 is expressed in canonical
accelerator units of femtobarns (1 fb = 10−43 m2) then the number of collisions (21.18) is

number of collisions
𝑒-fold of 𝑢1

= 1045
(︁ 𝜎

1 fb

)︁(︂300GeV2

𝑚𝑏𝑚𝑑

)︂(︃
�̇�∙

10−16

)︃(︂
𝜌𝑑𝑢

1𝑑𝜏/𝑑 ln𝑢1

0.03 �̇�∙/𝑀∙

)︂
. (21.19)

Particle accelerators measure their cumulative luminosities in inverse femtobarns. Equation (21.19) shows
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that the black hole accelerator delivers about 1045 femtobarns−1 (= 100m2), and it does so in each 𝑒-fold of
collision energy up to the Planck energy and beyond.
To quote the final sentences of Hamilton (2011): “It appears inescapable that Nature is conducting vast

numbers of collision experiments over a broad range of peri- and super-Planckian energies in large numbers
of black holes throughout our Universe. Does Nature do anything interesting with this extravagance — such
as create baby universes — or is it merely a final hurrah en route to nothingness?”

21.6 The mechanism of mass inflation

This section explains why mass inflation occurs, and why it is inevitable as long as even the tiniest streams
of outgoing and ingoing energy-momentum impinge on the inner horizon. The arguments are from Hamilton
and Avelino (2010), which gives more detail. For a taste of how this works out mathematically, Exercise 21.1
takes you through the case of equal pressureless streams.

21.6.1 Reissner-Nordström phase

Figure 21.6 illustrates how the two Einstein equations (20.62) produce the three phases of mass inflation
inside a charged spherical black hole.
During the initial phase, illustrated in the top panel of Figure 21.6, the spacetime geometry is well-

approximated by the vacuum, Reissner-Nordström geometry. During this phase the radial energy flux 𝑓 is
effectively zero, so 𝛽1 remains constant, according to equation (20.62b). The change in the radial velocity 𝛽0,
equation (20.62a), depends on the competition between the Newtonian gravitational force −𝑀/𝑟2, which is
always attractive (tending to make the radial velocity 𝛽0 more negative), and the gravitational force −4𝜋𝑟𝑝
sourced by the radial pressure 𝑝. In the Reissner-Nordström geometry, the static electric field produces a
negative radial pressure, or tension, 𝑝 = −𝑄2/(8𝜋𝑟4), which produces a gravitational repulsion −4𝜋𝑟𝑝 =

𝑄2/(2𝑟3). At some point (depending on the charge-to-mass ratio) inside the outer horizon, the gravitational
repulsion produced by the tension of the electric field exceeds the attraction produced by the interior mass
𝑀 , so that the radial velocity 𝛽0 slows down. This regime, where the (negative) radial velocity 𝛽0 is slowing
down (becoming less negative), while 𝛽1 remains constant, is illustrated in the top panel of Figure 21.6.
If the initial Reissner-Nordström phase were to continue, then the radial 4-gradient 𝛽𝑚 would become

lightlike. In the Reissner-Nordström geometry this does in fact happen, and where it happens defines the
inner horizon. The problem with this is that the lightlike 4-vector 𝛽𝑚 points in one direction for outgoing
frames, and in the opposite direction for ingoing frames. If 𝛽𝑚 becomes lightlike, then outgoing and ingoing
frames are streaming through each other at the speed of light. This is the infinite blueshift at the inner
horizon first pointed out by Penrose (1968).
If there were no matter present, or if there were only one stream of matter, either outgoing or ingoing but

not both, then 𝛽𝑚 could indeed become lightlike. But if both outgoing and ingoing matter are present, even
in the tiniest amount, then it is physically impossible for the outgoing and ingoing frames to stream through
each other at the speed of light.
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Figure 21.6 Spacetime diagrams of the tetrad-frame 4-vector 𝛽𝑚, equation (20.9), illustrating qualitatively the three

successive phases of mass inflation: 1. (top) the Reissner-Nordström phase, where inflation ignites; 2. (middle) the

inflationary phase itself; and 3. (bottom) the collapse phase, where inflation comes to an end. In each diagram, the

arrowed lines labelled outgoing and ingoing illustrate two representative examples of the 4-vector {𝛽0, 𝛽1}, while the
double-arrowed lines illustrate the rate of change of these 4-vectors implied by Einstein’s equations (20.62). Inside

the horizon of a black hole, all locally inertial frames necessarily fall inward, so the radial velocity 𝛽0 ≡ 𝜕0𝑟 is always

negative. A locally inertial frame is outgoing or ingoing depending on whether the proper radial gradient 𝛽1 ≡ 𝜕1𝑟

measured in that frame is negative or positive.

If both outgoing and ingoing streams are present, then as they race through each other ever faster, they
generate a radial pressure 𝑝, and an energy flux 𝑓 , which begin to take over as the main source on the right
hand side of the Einstein equations (20.62). This is how mass inflation is ignited.
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21.6.2 Inflationary phase

The infalling matter now enters the second, mass inflationary phase, illustrated in the middle panel of
Figure 21.6.
During this phase, the gravitational force on the right hand side of the Einstein equation (20.62a) is

dominated by the pressure 𝑝 produced by the counter-streaming outgoing and ingoing matter. The mass 𝑀
is completely sub-dominant during this phase (in this respect, the designation “mass inflation” is misleading,
since although the mass inflates, it does not drive inflation). The counter-streaming pressure 𝑝 is positive,
and so accelerates the radial velocity 𝛽0 (makes it more negative). At the same time, the radial gradient
𝛽1 is being driven by the energy flux 𝑓 , equation (20.62b). For typically low accretion rates, the streams
are cold, in the sense that the streaming energy density greatly exceeds the thermal energy density, even
if the accreted material is at relativistic temperatures. This follows from the fact that for mass inflation to
begin, the gravitational force produced by the counter-streaming pressure 𝑝 must become comparable to that
produced by the mass 𝑀 , which for streams of low proper density requires a hyper-relativistic streaming
velocity. For a cold stream of proper density 𝜌 moving at 4-velocity 𝑢𝑚 ≡ {𝑢0, 𝑢1, 0, 0}, the streaming energy
flux would be 𝑓 ∼ 𝜌𝑢0𝑢1, while the streaming pressure would be 𝑝 ∼ 𝜌(𝑢1)2. Thus their ratio 𝑓/𝑝 ∼ 𝑢0/𝑢1

is slightly greater than one. It follows that, as illustrated in the middle panel of Figure 21.6, the change in
𝛽1 slightly exceeds the change in 𝛽0, which drives the 4-vector 𝛽𝑚, already nearly lightlike, to be even more
nearly lightlike. This is mass inflation.
Inflation feeds on itself. The radial pressure 𝑝 and energy flux 𝑓 generated by the counter-streaming

outgoing and ingoing streams increase the gravitational force. But, as illustrated in the middle panel of
Figure 21.6, the gravitational force acts in opposite directions for outgoing and ingoing streams, tending to
accelerate the streams faster through each other. An intuitive way to understand this is that the gravitational
force is always inwards, meaning in the direction of smaller radius, but the inward direction is towards the
black hole for ingoing streams, and away from the black hole for outgoing streams.
The feedback loop in which the streaming pressure and flux increase the gravitational force, which ac-

celerates the streams faster through each other, which increases the streaming pressure and flux, is what
drives mass inflation. Inflation produces an exponential growth in the streaming energy, and along with it
the interior mass, and the Weyl curvature.

21.6.3 Collapse phase

It might seem that inflation is locked into an exponential growth from which there is no exit. But the Einstein
equations (20.62) have one more trick up their sleave.
For the counter-streaming velocity to continue to increase requires that the change in 𝛽1 from equa-

tion (20.62b) continues to exceed the change in 𝛽0 from equation (20.62a). This remains true as long as the
counter-streaming pressure 𝑝 and energy flux 𝑓 continue to dominate the source on the right hand side of
the equations. But the mass term −𝑀/𝑟2 also makes a contribution to the change in 𝛽0, equation (20.62a).
It turns out (Hamilton and Avelino, 2010) that, at least in the case of collisionless streams, the mass term
exponentiates slightly faster than the pressure term (in Exercise 21.1, for example, this occurs because in
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equation (21.28) there is a +𝛽2 term in the numerator and a −𝛽2 term in the denominator). At a cer-
tain point, the additional acceleration produced by the mass means that the combined gravitational force
𝑀/𝑟2 + 4𝜋𝑟𝑝 exceeds 4𝜋𝑟𝑓 . Once this happens, the 4-vector 𝛽𝑚, instead of being driven to becoming more
lightlike, starts to become less lightlike. That is, the counter-streaming velocity starts to slow. At that point
inflation ceases, and the streams quickly collapse to zero radius.
It is ironic that it is the increase of mass that brings mass inflation to an end. Not only does mass not

drive mass inflation, but as soon as mass begins to contribute significantly to the gravitational force, it brings
mass inflation to an end.

21.7 The far future?

The Penrose diagram of a Reissner-Nordström, Figure 8.7, or Kerr-Newman black hole indicates that an
observer who passes through the outgoing inner horizon sees the entire future of the outside universe go by.
In a sense, this is “why” the outside universe appears infinitely blueshifted.
This raises the question of whether what happens at the outgoing inner horizon of a real black hole indeed

depends on what happens in the far future. If it did, then the conclusions of §21.6, which are based in part
on the proposition that the accretion rate is approximately constant, would be suspect. A lot can happen
in the far future, such as black hole mergers, the Universe ending in a big crunch, Hawking evaporation, or
something else beyond our current ken.
Outgoing and ingoing observers both see each other highly blueshifted near the inner horizon. An outgoing

observer sees ingoing observers from the future, while an ingoing observer sees outgoing observers from the
past. Each stream sees approximately one black hole crossing time elapse on the opposing stream for each
𝑒-fold increase in blueshift (Hamilton and Avelino, 2010).
For astronomically realistic black holes, exponentiating the Weyl curvature up to the Planck scale will take

typically a few hundred 𝑒-folds of blueshift, as illustrated for example in Figure 21.4. Thus what happens at
the inner horizon of a realistic black hole before quantum gravity intervenes depends only on the immediate
past and future of the black hole — a few hundred black hole crossing times — not on the distant future
or past. This conclusion holds even if the accretion rate of one of the outgoing or ingoing streams is tiny
compared to the other.
From a stream’s own point of view on the other hand, the entire inflationary episode goes by in a flash.

21.8 Weak null singularity on the Cauchy horizon?

It is commonly stated in the literature that the generic outcome of inflation is a “weak null singularity on the
Cauchy horizon.” Weak means that the tidal force, the Weyl curvature, exponentiates to infinity in a finite
amount of proper time. Null refers to the fact that the streaming velocity between outgoing and ingoing
streams reaches the speed of light.
In my view this conclusion is incorrect. The conclusion is an artefact of assuming that after collapsing,
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a black hole remains isolated for ever, whereas real astronomical black holes accrete, cosmic microwave
background photons if nothing else. Moreover the conclusion of a weak null singularity ignores the fact that
the diverging tidal force is likely to result in diverging pair creation, and such pairs would surely act as an
effective source of accretion, again precipitating collapse.

The fact that a volume element remains little distorted during inflation even though the tidal force, as
measured by the Weyl curvature scalar, exponentiates to huge values was first pointed out by Ori (1991).
The physical reason for the small tidal distortion despite the huge tidal force is that the proper time over
which the force operates is tiny.

Dafermos (2005) has proved a number of mathematical theorems that establish that a null singularity
forms on the Cauchy horizon of a charged spherical black hole accreting a massless scalar field. The situation
envisaged by the theorems is that of a black hole that collapses and thereafter remains isolated. The collapse
generates an outgoing Price tail of radiation. The theorems assume that the outgoing Price radiation falls off
sufficiently rapidly along outgoing null geodesics, and Dafermos and Rodnianski (2005) have proved that the
required condition on the Price radiation holds for an isolated spherical black hole accreting a massless scalar
field. The theorems confirm the several analytic and numerical studies that have found a null singularity on
the Cauchy horizon (Ori, 1991; Bonanno et al., 1994b; Brady and Smith, 1995; Burko, 1997; Burko and Ori,
1998; Hod and Piran, 1998a; Hod and Piran, 1998b; Ori, 1999; Hansen, Khokhlov, and Novikov, 2005).

Burko (2002; 2003) finds numerically that a null singularity forms only if the scalar field set up outside
the horizon falls off sufficiently rapidly, the required degree of rapidity depending on the parameters of the
problem, such as the charge-to-mass ratio of the black hole. If too much scalar field continues to be accreted,
then no null singularity forms, and the field collapses to a central singularity.

All the results are consistent with the estimate (21.16) that the interior mass inflates exponentially with
an exponent inversely proportional to the mass accretion rate �̇�∙. If the accretion rate goes to zero, �̇�∙ → 0,
then the exponential growth rate becomes infinite, leading to a weak null singularity.

Frolov, Kristjansson, and Thorlacius (2006) have shown that in the simplified case of a 1+1-dimensional
charged black hole, if the effects of pair creation of charged particles are taken into account, then the result
is collapse to a spacelike singularity rather than a null singularity on the Cauchy horizon. The result is
consistent with the argument of the present paper that as long as there is any source that continues to
replenish outgoing and ingoing streams near the inner horizon, the ultimate result will be collapse to a
spacelike singularity. The results of Frolov, Kristjansson, and Thorlacius (2006) suggest that even without
any direct accretion, pair creation provides a sufficient source of outgoing and ingoing streams.
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Exercise 21.1. A collisionless two-stream model of inflation. This problem is from Hamilton and
Avelino (2010). Some of the equations below repeat equations elsewhere in this book, but they are left as is
so that the problem remains self-contained.
Einstein’s equations in a spherically symmetric spacetime imply that the covariant rate of change of the

radial 4-gradient 𝛽𝑚 ≡ 𝜕𝑚𝑟 = {𝜕0𝑟, 𝜕1𝑟, 0, 0} in the frame of any radially moving orthonormal tetrad is
(these are equations (20.62))

𝐷0𝛽0 = −𝑀

𝑟2
− 4𝜋𝑟𝑝 , (21.20a)

𝐷0𝛽1 = 4𝜋𝑟𝑓 , (21.20b)

where 𝐷0 is the tetrad-frame covariant time derivative, 𝑝 is the radial pressure, 𝑓 is the radial energy flux,
and 𝑀 is the interior mass defined by (this is equation (20.11))

2𝑀

𝑟
− 1 ≡ 𝛽2 ≡ −𝛽𝑚𝛽𝑚 = 𝛽2

0 − 𝛽1
2 . (21.21)

1. Freely-falling stream. Consider a stream of matter that is freely falling radially inside the horizon of
a spherically symmetric black hole. Let 𝑢 be the radial component of the tetrad-frame 4-velocity 𝑢𝑚 of
the stream relative to the “no-going” frame where 𝛽1 = 0 (the frame of reference that divides outgoing
frames 𝛽1 < 0 from ingoing frames 𝛽1 > 0):

𝑢𝑚 ≡ {−𝛽0/𝛽,−𝛽1/𝛽, 0, 0} = {
√︀

1 + 𝑢2, 𝑢, 0, 0} . (21.22)

Note that 𝛽0 is negative inside the horizon for both outgoing and ingoing frames. The time component
𝑢0 ≡ −𝛽0/𝛽 =

√
1 + 𝑢2 of the tetrad-frame 4-velocity is positive (as it should be for a proper 4-velocity),

while the radial component 𝑢 ≡ 𝑢1 ≡ −𝛽1/𝛽 of the tetrad-frame 4-velocity is positive outgoing, negative
ingoing. Show that along the worldline of the stream

𝑑 ln𝛽

𝑑 ln 𝑟
=

1

𝛽2

[︂
−𝑀

𝑟
− 4𝜋𝑟2

(︂
𝑝+

𝛽1
𝛽0
𝑓

)︂]︂
, (21.23a)

𝑑 ln𝑢

𝑑 ln 𝑟
=

1

𝛽2

[︂
𝑀

𝑟
+ 4𝜋𝑟2

(︂
𝑝+

𝛽0
𝛽1
𝑓

)︂]︂
. (21.23b)

[Hint: If the stream is freely falling, then the proper time derivative 𝜕0 in the tetrad frame of the stream
equals the covariant time derivative 𝐷0. Thus the proper rates of change of ln𝛽 and ln𝑢 with respect
to ln 𝑟 along the worldline of the stream are

𝑑 ln𝛽

𝑑 ln 𝑟
=
𝜕0 ln𝛽

𝜕0 ln 𝑟
,

𝑑 ln𝑢

𝑑 ln 𝑟
=
𝜕0 ln𝑢

𝜕0 ln 𝑟
. (21.24)
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These can be evaluated through

𝜕0 ln𝛽 = 𝐷0 ln𝛽 =
1

2𝛽2
𝐷0𝛽

2 =
1

2𝛽2
𝐷0(𝛽

2
0 − 𝛽2

1)

=
1

𝛽2
(𝛽0𝐷0𝛽0 − 𝛽1𝐷0𝛽1) , (21.25a)

𝜕0 ln𝑢 = 𝐷0 ln𝑢 = 𝐷0 ln𝛽1 −𝐷0 ln𝛽

=
1

𝛽1
𝐷0𝛽1 −𝐷0 ln𝛽 , (21.25b)

𝜕0 ln 𝑟 =
1

𝑟
𝜕0𝑟 =

𝛽0
𝑟
, (21.25c)

with Einstein’s equations (21.20) substituted into equations (21.25a) and (21.25b).]
2. Equal outgoing and ingoing streams. Consider the symmetrical case of two equal streams of radially

outgoing (𝛽1 < 0) and ingoing (𝛽1 > 0) neutral, pressureless, non-interacting matter (“dust”), each of
proper density 𝜌 in their own frames, freely-falling into a charged black hole. Show that

𝑑 ln𝛽

𝑑 ln 𝑟
= − 1

2𝛽2

(︀
−𝜆+ 𝛽2 + 𝜇𝑢2

)︀
, (21.26a)

𝑑 ln𝑢

𝑑 ln 𝑟
= − 1

2𝛽2

(︀
𝜆− 𝛽2 + 𝜇+ 𝜇𝑢2

)︀
, (21.26b)

where

𝜆 ≡ 𝑄2/𝑟2 − 1 , 𝜇 ≡ 16𝜋𝑟2𝜌 . (21.27)

Hence conclude that
𝑑 ln𝛽

𝑑 ln𝑢
=
−𝜆+ 𝛽2 + 𝜇𝑢2

𝜆− 𝛽2 + 𝜇+ 𝜇𝑢2
. (21.28)

[Hint: The assumption that the streams are neutral, pressureless, and non-interacting is needed to make
the streams freely-falling, so that equations (21.23) are valid. The pressure 𝑝 in the tetrad frame of each
stream is the sum of the electromagnetic pressure 𝑝𝑒 and the streaming pressure 𝑝𝑠

𝑝 = 𝑝𝑒 + 𝑝𝑠 . (21.29)

The electromagnetic pressure 𝑝𝑒 is

𝑝𝑒 = −
𝑄2

8𝜋𝑟4
, (21.30)

with 𝑄 the charge of the black hole, which is constant because the infalling streams are neutral. The
streaming pressure 𝑝𝑠 that each stream sees is

𝑝𝑠 = 𝜌(𝑢1𝑠)
2 , (21.31)

where the streaming 4-velocity 𝑢𝑚𝑠 between the two streams is the 4-velocity of the observed stream
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Lorentz-boosted by the 4-velocity of the observing stream (the radial velocities 𝑢1 of the observed and
observing streams have opposite signs)

𝑢0𝑠 = (𝑢0)2 + (𝑢1)2 = 1 + 2𝑢2 , (21.32a)

𝑢1𝑠 = −2𝑢0𝑢1 = −2𝑢
√︀
1 + 𝑢2 . (21.32b)

The energy flux 𝑓 in the tetrad frame of each stream is the streaming flux 𝑓𝑠

𝑓 = 𝑓𝑠 = 𝜌𝑢0𝑠𝑢
1
𝑠 . (21.33)

You should find that the combinations of streaming pressure and flux that go into equations (21.23) are

𝑝𝑠 +
𝛽1
𝛽0
𝑓𝑠 = 2𝜌𝑢2 , (21.34a)

𝑝𝑠 +
𝛽0
𝛽1
𝑓𝑠 = −2𝜌(1 + 𝑢2) . (21.34b)

]

3. Reissner-Nordström phase. If the accretion rate is small, then initially the stream density 𝜌 is small,
and consequently 𝜇 is small. Argue that in this regime equation (21.28) simplifies to

𝑑 ln𝛽

𝑑 ln𝑢
=
−𝜆+ 𝛽2

𝜆− 𝛽2
. (21.35)

Hence conclude that

𝛽 =
𝐶

𝑢
, (21.36)

where 𝐶 is some constant set by initial conditions (generically, 𝐶 will be of order unity).

4. Transition to mass inflation. Argue that in the Reissner-Nordström phase, 𝛽 becomes small, and 𝑢
grows large, as the streams fall to smaller radius 𝑟. Argue that in due course equation (21.28) becomes
well-approximated by

𝑑 ln𝛽

𝑑 ln𝑢
=
−𝜆+ 𝜇𝑢2

𝜆+ 𝜇𝑢2
. (21.37)

Treating 𝜆 and 𝜇 as constants (which is a good approximation), show that the solution to equation (21.37)
subject to the initial condition set by equation (21.36) is

𝛽 =
𝐶(𝜆+ 𝜇𝑢2)

𝜆𝑢
. (21.38)

[Hint: 𝜆 is positive. In the Reissner-Nordström solution, 𝛽 would go to zero at the inner horizon.]

5. Sketch. Sketch the solution (21.38), plotting 𝑢 against 𝛽 on logarithmic axes. Mark the regime where
mass inflation is occurring.
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6. Inflationary growth rate. Argue that during mass inflation the inflationary growth rate 𝑑 ln𝛽/𝑑 ln 𝑟
is

𝑑 ln𝛽

𝑑 ln 𝑟
= − 𝜆2

2𝐶2𝜇
. (21.39)

Comment on how the inflationary growth rate depends on accretion rate (on 𝜌).

21.9 Black hole accreting a fluid with an ultrahard equation of state

Poisson & Israel’s (1990) original proposal was that mass inflation would be driven by a “Price tail” (Price,
1972) of gravitational radiation generated during the initial collapse of a black hole. But gravitational radia-
tion is spin 2, which cannot be accommodated by a spherically symmetric spacetime. There are no spherical
gravitational waves; the lowest order harmonic of gravitational waves is quadrupole (ℓ = 2).
This has motivated the most common approach in the literature to modeling inflation in spherical space-

times, which is to allow the black hole to accrete a massless scalar (spin 0) field, which does admit spherical
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Figure 21.7 Similar to Figure 21.2, but instead of a relativistic fluid, the black hole accretes a charged fluid 𝜑 with

an ultrahard equation of state 𝑤 = 1, which means that the speed of sound equals the speed of light. The fluid

therefore supports relativistic counter-streaming, as a result of which mass inflation occurs just above the erstwhile

inner horizon. The mass is 𝑀∙ = 4 × 106 M⊙, the accretion rate �̇�∙ = 10−16, the charge-to-mass 𝑄∙/𝑀∙ = 10−5,

and the conductivity is zero.
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(ℓ = 0) waves moving at the speed of light (Christodoulou, 1986; Goldwirth and Tsvi, 1987; Gnedin and
Gnedin, 1993; Bonanno et al., 1994a; Brady, 1995; Brady and Smith, 1995; Burko, 1997; Burko and Ori,
1998; Burko, 1999; Husain and Olivier, 2001; Burko, 2002; Burko, 2003; Martín-Garcia and Gundlach, 2003;
Dafermos, 2005; Hansen, Khokhlov, and Novikov, 2005; Hod and Piran, 1997; Hod and Piran, 1998a; Hod
and Piran, 1998b; Sorkin and Piran, 2001; Oren and Piran, 2003; Dafermos, 2005; Dafermos and Rodnianski,
2005).
No massless scalar field has been observed in nature, although a massive scalar field, the Higgs boson, has

been observed by the Large Hadron Collider with a mass of ≈ 125GeV (ATLAS Collaboration, 2012), and
it is likely that cosmological inflation was driven by a massive scalar field possibly with a mass around a
GUT mass.
An alternative way to model inflation with a single fluid is with a perfect fluid with sound speed equal

to the speed of light,
√
𝑤 = 1. This kind of fluid is called ultrahard. An ultrahard fluid is not the same as

a scalar field, but shares some of its properties (Babichev et al., 2008), notably that it supports spherical
waves moving at the speed of light.
Figure 21.7 shows a black hole that accretes a charged, non-conducting fluid with this ultrahard equation

of state. The parameters are otherwise the same as as in Figure 21.2: a mass of𝑀∙ = 4×106 M⊙, an accretion
rate of �̇�∙ = 10−16, and a black hole charge-to-mass of 𝑄∙/𝑀∙ = 10−5. As the Figure shows, mass inflation
takes place just above the place where the inner horizon would be. During mass inflation, the density 𝜌𝜑 and
the Weyl scalar 𝐶 exponentiate rapidly up to the Planck scale and beyond. The outcome is quite similar to
that of the two-fluid accretion model of Figure 21.3.

21.10 Black hole accreting a conducting charged plasma

As discussed in the introduction to this Chapter, the question of how much entropy might be created inside
the horizon of a black hole has fundamental implications for the Black Hole Information Paradox. This
section illustrates the problem with a toy model in which a spherical black hole accretes a plasma that not
only is charged but also has a finite conductivity, so that dissipation can occur, creating entropy inside the
horizon. The model is not realistic, but the problem it illustrates is a real one.

21.10.1 Entropy creation

Bekenstein (1973) first argued that a black hole should have a quantum entropy proportional to its horizon
area 𝐴, and Hawking (1974) supplied the constant of proportionality 1/4 in Planck units. The Bekenstein-
Hawking entropy 𝑆BH is, in Planck units 𝑐 = 𝐺 = ~ = 1,

𝑆BH =
𝐴

4
. (21.40)
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For a spherical black hole of horizon radius 𝑅+, the area is 𝐴 = 4𝜋𝑅2
+. Hawking showed that a black hole

has a temperature 𝑇H equal to 1/(2𝜋) times the surface gravity 𝜅+ at its horizon, again in Planck units,

𝑇H =
𝜅+
2𝜋

. (21.41)

For a spherical black hole, the surface gravity is 𝜅+ = −𝐷0𝛽0 = 𝑀/𝑟2 + 4𝜋𝑟𝑝 evaluated at the horizon,
equation (20.62a).
The proper velocity of the baryonic fluid through the similarity frame equals 𝜉1𝑏/𝜉

0
𝑏 , equation (20.145).

Thus the entropy 𝑆𝑏, equation (21.13), accreted through the horizon, at conformal radius 𝑟+, per unit proper
time of the fluid is

𝑑𝑆𝑏
𝑑𝜏𝑏

=
4𝜋𝑅2

𝑏𝜉
1
𝑏

𝜉0𝑏

(1 + 𝑤𝑏)𝜌𝑏
𝑇𝑏

⃒⃒⃒⃒
𝑟𝑏=𝑟+

. (21.42)

Meanwhile the horizon radius 𝑅+ expands in proportion to the conformal factor, 𝑅+ ∝ 𝑒v𝑡𝑏 , and 𝑑𝑡𝑏/𝑑𝜏𝑏 =
𝜕0𝑡𝑏 = 1/(𝑅𝑏𝜉

0
𝑏 ), so the Bekenstein-Hawking entropy 𝑆BH = 𝜋𝑅2

+ increases as

𝑑𝑆BH
𝑑𝜏𝑏

=
2𝜋𝑅2

+v

𝑅𝑏𝜉0𝑏
. (21.43)

Putting (21.42) and (21.43) together implies that the entropy 𝑆𝑏 accreted through the horizon per unit
increase of the Bekenstein-Hawking entropy 𝑆BH is

𝑑𝑆𝑏
𝑑𝑆BH

=
2𝑅3

𝑏𝜉
1(1 + 𝑤𝑏)𝜌𝑏
𝑅2

+v𝑇𝑏

⃒⃒⃒⃒
𝑟=𝑟+

. (21.44)

Inside the sonic point, dissipation increases the entropy according to equation (20.198). The entropy varies
as 𝑆𝑏 ∝ 𝑅3

𝑏𝜉
1
𝑏 (1 + 𝑤𝑏)𝜌𝑏/𝑇𝑏, equation (21.13) with volume 𝑉 ∝ 𝑅3

𝑏𝜉
1
𝑏 , so the rate of increase of the entropy

of the black hole, evaluated down to any radius, per unit increase of its Bekenstein-Hawking entropy, is

𝑑𝑆𝑏
𝑑𝑆BH

=
2𝑅3

𝑏𝜉
1
𝑏 (1 + 𝑤𝑏)𝜌𝑏
𝑅2

+v𝑇𝑏
, (21.45)

which looks the same as equation (21.44) but now evaluated at any radius.

21.10.2 Black hole accreting a conducting relativistic plasma

If the electrical conductivity of the plasma is small, then the solutions resemble the non-conducting solutions
of §21.3. But if the conductivity is large enough effectively to neutralize the plasma as it approaches the
centre, then the plasma can plunge all the way to the central singularity, as in the uncharged case in §21.2.
The most entropy is created inside the black hole when the conductivity is tuned to equal, within numerical
accuracy, the critical conductivity above which the plasma collapses to a central singularity.
Figure 21.8 shows the case where the conductivity equals the critical conductivity, here 𝜅𝑏 = 1.24. The

parameters are otherwise the same as in §21.3, a mass of𝑀∙ = 4×106 M⊙, an accretion rate �̇�∙ = 10−16, an
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Figure 21.8 Here the baryonic plasma falling into the black hole is charged, and electrically conducting. The conduc-

tivity is set equal (within numerical accuracy) to the critical conductivity above which the plasma plunges to a central

singularity, since this leads to maximum entropy production inside the horizon. The mass is 𝑀∙ = 4 × 106 M⊙, the

accretion rate �̇�∙ = 10−16, the equation of state 𝑤𝑏 = 0.32, the charge-to-mass 𝑄∙/𝑀∙ = 10−5, and the conductivity

parameter 𝜅𝑏 = 1.24. Arrows show how quantities vary a factor of 10 into the past and future.

equation of state 𝑤𝑏 = 0.32, and a black hole charge-to-mass of 𝑄∙/𝑀∙ = 10−5. The model is from Wallace,
Hamilton, and Polhemus (2008).
The solution at the critical conductivity exhibits the periodic self-similar behaviour first discovered in

numerical simulations by Choptuik (1993), and known as “critical collapse” because it happens at the bor-
derline between solutions that do and do not collapse to a black hole. The ringing of curves in Figure 21.8
is a manifestation of the self-similar periodicity, not a numerical error.
These solutions are not subject to the mass inflation instability, and they could potentially be prototypical

of the behaviour inside realistic rotating black holes. For this to work, the outward transport of angular
momentum inside a rotating black hole must be large enough effectively to produce zero angular momentum
at the centre. Given that angular momentum transport is a rather weak process (Balbus and Hawley, 1998),
it seems likely that real rotating black holes do not dissipate all their spin, and that inflation does occur in
reality.
Figure 21.8 shows that the entropy produced by Ohmic dissipation inside the black hole can potentially

exceed the Bekenstein-Hawking entropy of the black hole by a large factor. The Figure shows the rate
𝑑𝑆𝑏/𝑑𝑆BH of increase of entropy per unit increase in its Bekenstein-Hawking entropy. The rate include
entropy generated down to radius 𝑅; the entropy increases inward because of dissipation. The rate hits
unity, 𝑑𝑆𝑏/𝑑𝑆BH ≈ 1, at a radius of about 10−10 of the horizon radius. If the increase of entropy is followed
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Figure 21.9 This black hole creates a lot of entropy by having a large charge-to-mass 𝑄∙/𝑀∙ = 0.8 and a low accretion

rate �̇�∙ = 10−28, but otherwise the same parameters as in Figure 21.8. The conductivity parameter 𝜅𝑏 = 1.24 is

again at the critical value above which the plasma plunges to a central singularity.

to where the curvature hits the Planck scale, |𝐶| ≈ 1, then the entropy relative to Bekenstein-Hawking is
𝑑𝑆𝑏/𝑑𝑆BH ≈ 1010.
Since the model is self-similar, the shape of the curves in Figure 21.8 is fixed with respect to conformal

units, but the conversion to proper (in this case Planck) units varies; the arrows show how the curves vary a
factor of 10 into the past and future. If the entropy accumulates additively, then instantaneous rate 𝑑𝑆𝑏/𝑑𝑆BH
shown in the Figure can be interpreted as approximately the cumulative entropy created inside the black
hole relative to the Bekenstein-Hawking entropy.
If the entropy created inside a black hole exceeds the Bekenstein-Hawking entropy — here by a factor of

∼ 1010 — and the black hole later evaporates radiating only the Bekenstein-Hawking entropy, then entropy
is destroyed, violating the second law of thermodynamics.
This startling conclusion is premised on the assumption that entropy created inside a black hole accumu-

lates additively, which in turn derives from the assumption that the Hilbert space of states is multiplicative
over spacelike-separated regions. This assumption, called locality, derives from the fundamental proposition
of quantum field theory in flat space that field operators at spacelike-separated points commute. This rea-
soning is essentially the same as originally led Hawking (1976) to conclude that black holes must destroy
information.
Generally, the smaller the accretion rate �̇�∙, the more entropy is produced. If moreover the charge-to-

mass 𝑄∙/𝑀∙ is large, then the entropy can be produced closer to the outer horizon. Figure 21.9 shows a
model with a relatively large charge-to-mass 𝑄∙/𝑀∙ = 0.8, and a low accretion rate �̇�∙ = 10−28. The large
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Figure 21.10 Penrose diagram of the accreting, dissipating black hole of Figures 21.8 or 21.9. The entropy passing

through the spacelike slice before the black hole evaporates (𝑆 ≫ 𝑆BH) exceeds that passing through the spacelike

slice after the black hole evaporates (𝑆 ≈ 𝑆BH), apparently violating the second law of thermodynamics. However, the

entropy passing through any null slice respects the second law (𝑆 < 𝑆BH), consistent with Bousso’s (2002) covariant

entropy bound. Near the singularity there is a proliferation of spacelike-separated patches of spacetime that cease to

be in causal contact because their future lightcones cease to intersect. To preserve the second law of thermodynamics,

locality must break down across these spacelike-separated patches.

charge-to-mass ratio in spite of the relatively high conductivity requires force-feeding the black hole: the
sonic point must be pushed to just above the horizon. The large charge and high conductivity lead to a burst
of entropy production just beneath the horizon.

21.10.3 Holography

The idea that the entropy of a black hole cannot exceed its Bekenstein-Hawking entropy has motivated
holographic conjectures that the degrees of freedom of a volume are somehow encoded on its boundary, and
consequently that the entropy of a volume is bounded by those degrees of freedom. Various counter-examples
dispose of most simple-minded versions of holographic entropy bounds. The most successful entropy bound,
with no known counter-examples, is Bousso’s (2002) covariant entropy bound. The covariant entropy
bound concerns not just any old 3-dimensional volume, but rather the 3-dimensional volume formed by a
null hypersurface, a lightsheet. For example, the horizon of a black hole is a null hypersurface, a lightsheet.
The covariant entropy bound asserts that the entropy that passes (inward or outward) through a lightsheet
that is everywhere converging cannot exceed 1/4 of the 2-dimensional area of the boundary of the lightsheet.
In the self-similar black holes under consideration, the horizon is expanding, and outgoing lightrays that
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sit on the horizon do not constitute a converging lightsheet. However, a spherical shell of ingoing lightrays
that starts on the horizon falls inwards and therefore does form a converging lightsheet, and a spherical shell
of outgoing lightrays that starts just slightly inside the horizon also falls inward and forms a converging
lightsheet. The rate at which entropy 𝑆𝑏 passes through such outgoing or ingoing spherical lightsheets per
unit decrease in the area 𝑆cov ≡ 𝜋𝑅2

𝑏 of the lightsheet is⃒⃒⃒⃒
𝑑𝑆𝑏
𝑑𝑆cov

⃒⃒⃒⃒
=

𝑑𝑆𝑏
𝑑𝑆BH

𝑅2
+

𝑅2
𝑏

v

𝜉1𝑏 |𝛽𝑏,0 ± 𝛽𝑏,1|
=

2𝑅𝑏(1 + 𝑤𝑏)𝜌𝑏
|𝛽𝑏,0 ± 𝛽𝑏,1|𝑇𝑏

, (21.46)

in which the ± sign is + for outgoing, − for ingoing lightsheets. A sufficient condition for Bousso’s covariant
entropy bound to be satisfied is

|𝑑𝑆𝑏/𝑑𝑆cov| ≤ 1 . (21.47)

The same ideas that motivate holography also rescue the second law. If the future lightcones of spacelike-
separated points do not intersect, then the points are permanently out of communication, and can behave
like alternate quantum realities, like Schrödinger’s dead-and-alive quantum cat. Just as it is not legitimate
to the add the entropies of the dead cat and the live cat, so also it is apparently not legitimate to add the
entropies of regions inside a black hole whose future lightcones do not intersect. The states of such separated
regions, instead of being distinct, are quantum entangled with each other.
Figures 21.8 and 21.9 show that the rate |𝑑𝑆𝑏/𝑑𝑆cov| at which entropy passes through outgoing or ingoing

spherical lightsheets is less than one at all scales below the Planck scale. This shows not only that the black
holes obey Bousso’s covariant entropy bound, but also that no individual observer inside the black hole sees
more than the Bekenstein-Hawking entropy on their lightcone. No observer actually witnesses a violation of
the second law.
The Penrose diagram 21.10 illustrates the proliferation of spacetime patches near the singularity that

become causally disconnected because their future lightcones cease to intersect. Holography requires that
patches are quantum entangled with each other so that the quantum degrees of freedom of volumes inside
the black hole are the same Bekenstein-Hawking degrees of freedom regardless of who is observing them.

21.11 Weird stuff at the outer horizon?

A number of papers have suggested that a magical phase transition at, or just outside, the outer horizon
prevents any horizon from forming. Is it true?
For example, could there be there a mass inflation instability at the outer horizon? If there were a White

Hole on the other side of the outer horizon, then indeed an object entering the outer horizon would encounter
an inflationary instability. But in real astronomical black holes formed from the collapse of matter, there is
no White Hole, and no inflationary instability at the outer horizon.
Some have argued that quantum field theory may somehow blow up at the horizon. Invariably these

arguments confuse the true (event) horizon with the illusory horizon, §7.27. General relativity is unambiguous
about what happens at horizons. At least in the macroscopic black holes that exist in our Universe, free-fall
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frames at the horizon of a black hole are locally inertial, and quantum field theory should remain well-behaved
there.
Others have argued that it takes an infinite time for an infalling observer to reach the horizon, and the

black hole evaporates before the observer reaches the horizon, so in effect no horizon ever forms. Again this
is incorrect. The reason an outsider sees an infaller take an infinite time to reach the horizon is a light-travel-
time effect: light emitted at the horizon remains at the horizon for ever, so it takes an infinite time for light
to lift off the horizon, §7.27. In their own frame, an infaller falls through the horizon and reaches the singular
surface in a finite proper time. If a second infaller falls in some time after the first infaller, the second infaller
does not catch up with the first infaller at the horizon. Rather the second infaller sees the first infaller frozen
on the illusory horizon still ahead, still dimming and redshifting away.



22

Ideal rotating black holes

Among the remarkable mathematical properties of the Kerr-Newman line-element is the fact that, as first
shown by Carter (1968), the equations of motion of test particles, massive or massless, neutral or charged,
are Hamilton-Jacobi separable. The trajectories of test particles are thus described by a complete set of
four integrals of motion. Line-elements with this property are called separable. The physically interesting
separable spacetimes are Λ-Kerr-Newman black holes, which are ideal charged rotating black holes in a
background with a cosmological constant Λ.
The proposition of separability imposes certain conditions on the line-element, §22.3, that would be difficult

to guess a priori. In this Chapter, the Kerr solution and its electrovac cousins are derived by separating
systematically the Einstein and Maxwell equations. Although conceptually simple, separating the Einstein
and Maxwell equations is laborious.
Mathematically, the properties of the Kerr-Newman geometry can be traced to symmetries expressed by

the existence of two Killing vectors, associated with stationarity and axisymmetry, and a Killing tensor,
associated with separability, §23.3. It is extraordinary that so simple a set of propositions should lead to so
intricate a web of implications.
There are other ingenious mathematical ways to arrive at the Kerr solution (Stephani et al., 2003). I like

the separable approach not only because of its conceptual simplicity, but also because a generalization of
separability to conformal separability yields solutions for rotating black holes that undergo inflation at their
inner horizon, Chapter 24, as astronomically realistic black holes must.

22.1 Separable geometries

22.1.1 Separable line-element

The Kerr geometry is stationary, axisymmetric, and separable. Choose coordinates 𝑥𝜇 ≡ {𝑡, 𝑥, 𝑦, 𝜑} in which
𝑡 is the time with respect to which the spacetime is stationary, 𝜑 is the azimuthal angle with respect to which
the spacetime is axisymmetric, and 𝑥 and 𝑦 are radial and angular coordinates. In §22.3 it is shown that the

643
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line-element may be taken to be

𝑑𝑠2 = 𝜌2
[︂
− Δ𝑥

(1− 𝜔𝑥𝜔𝑦)2
(𝑑𝑡− 𝜔𝑦 𝑑𝜑)2 +

𝑑𝑥2

Δ𝑥
+
𝑑𝑦2

Δ𝑦
+

Δ𝑦

(1− 𝜔𝑥𝜔𝑦)2
(𝑑𝜑− 𝜔𝑥 𝑑𝑡)2

]︂
, (22.1)

where the conditions of stationarity, axisymmetry, and separability imply that the conformal factor 𝜌 is
separable

𝜌 =
√︁
𝜌2𝑥 + 𝜌2𝑦 , (22.2)

and that
𝜌𝑥, 𝜔𝑥, Δ𝑥 are functions of 𝑥 only ,
𝜌𝑦, 𝜔𝑦, Δ𝑦 are functions of 𝑦 only .

(22.3)

Thanks to the invariant character of the coordinates 𝑡 and 𝜑, the metric coefficients 𝑔𝑡𝑡, 𝑔𝑡𝜑, and 𝑔𝜑𝜑 all
have a gauge-invariant significance,

𝑔𝑡𝑡 =
𝜌2

(1− 𝜔𝑥𝜔𝑦)2
(−Δ𝑥 + 𝜔2

𝑥Δ𝑦) , (22.4a)

𝑔𝑡𝜑 =
𝜌2

(1− 𝜔𝑥𝜔𝑦)2
(𝜔𝑦Δ𝑥 − 𝜔𝑥Δ𝑦) , (22.4b)

𝑔𝜑𝜑 =
𝜌2

(1− 𝜔𝑥𝜔𝑦)2
(−𝜔2

𝑦Δ𝑥 +Δ𝑦) . (22.4c)

The condition 𝑔𝑡𝑡 = 0 defines the boundary of ergospheres, 𝑔𝑡𝜑 = 0 defines the turnaround radius, and
𝑔𝜑𝜑 = 0 defines the boundary of the sisytube. The determinant of the 2× 2 submatrix of 𝑡–𝜑 coefficients is

𝑔𝑡𝑡𝑔𝜑𝜑 − 𝑔2𝑡𝜑 = − 𝜌4

(1− 𝜔𝑥𝜔𝑦)2
Δ𝑥Δ𝑦 . (22.5)

The quantity Δ𝑥 is the horizon function. Horizons occur where the horizon function vanishes Δ𝑥 vanishes.
The quantity Δ𝑦 is the polar function, whose vanishing defines not a horizon, but rather the location of the
(north and south) poles of the geometry. As shown in §23.4, whereas trajectories can pass through a horizon
into a region where Δ𝑥 has opposite sign, trajectories cannot pass through Δ𝑦 = 0 into a region where Δ𝑦

has opposite sign. Without loss of generality, the polar function Δ𝑦 can be taken to be positive, since the
line-element (22.1) with both Δ𝑥 and Δ𝑦 flipped in sign describes the same geometry with flipped signature.

22.1.2 Λ-Kerr-Newman

As shown in §22.6, the Λ-Kerr-Newman line-element is obtained by imposing boundary conditions that, at
least for vanishing cosmological constant, are asymptotically flat far from the black hole, and are non-singular
at the north and south poles, 𝜃 = 0 and 𝜋. For Λ-Kerr-Newman, the radial and angular parts 𝜌𝑥 and 𝜌𝑦 of
the separable conformal factor are

𝜌𝑥 ≡ 𝑟 = 𝑎 cot(𝑎𝑥) , 𝜌𝑦 ≡ 𝑎 cos 𝜃 = −𝑎𝑦 , (22.6)
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where 𝑟 is the ellipsoidal radial coordinate and 𝜃 the polar angle, as conventionally defined, and 𝑎 is the
spin parameter of the black hole. Why use coordinates 𝑥 and 𝑦 in place of 𝑟 and 𝜃? Because the coordinate
derivatives that arise when separating the Einstein and Maxwell equations, §22.4 and §22.5, are simplest
when expressed with respect to 𝑥 and 𝑦. The derivative of 𝑥 is related to that of 𝑟 by

𝜕

𝜕𝑥
= −𝑅2 𝜕

𝜕𝑟
, 𝑅 ≡

√︀
𝑟2 + 𝑎2 =

𝑎

sin(𝑎𝑥)
. (22.7)

For Λ-Kerr-Newman, the coefficients 𝜔𝑥 and 𝜔𝑦 in the line-element (22.1) are

𝜔𝑥 =
𝑎

𝑅2
, 𝜔𝑦 = 𝑎 sin2𝜃 , (22.8)

and the horizon and polar functions Δ𝑥 and Δ𝑦 are (the horizon function Δ𝑥 here is related to the earlier
horizon function Δ, equation (9.3), by Δ𝑥 = 𝑅−2Δ)

Δ𝑥 =
1

𝑅2

(︂
1− 2𝑀∙𝑟

𝑅2
+
𝑄2
∙ +𝒬2

∙
𝑅2

− Λ𝑟2

3

)︂
, (22.9a)

Δ𝑦 = sin2𝜃

(︂
1 +

Λ𝑎2 cos2𝜃

3

)︂
, (22.9b)

where𝑀∙ is the black hole’s mass, 𝑄∙ and 𝒬∙ are its electric and magnetic charge, and Λ is the cosmological
constant. By themselves, Maxwell’s equations preclude magnetic charge, in which case 𝒬∙ = 0. However, any
grand unified theory large enough to predict the quantization of charge (as observed) necessarily contains
magnetic charges (magnetic monopoles) as topological defects. In any case, magnetic charge is retained here
to bring out the symmetry between electric and magnetic charge. The electromagnetic field is purely radial.
The covariant tetrad-frame electromagnetic potential 𝐴𝑘 is

𝐴𝑘 =
1

𝜌

{︃
− 𝑄∙𝑟

𝑅2
√
Δ𝑥

, 0 , 0 , −𝒬∙ cos 𝜃√︀
Δ𝑦

}︃
, (22.10)

and the radial electric and magnetic fields 𝐸 and 𝐵 are given by

𝐸 + 𝐼𝐵 ≡ 𝐹10 + 𝐼𝐹23 =
𝑄∙ + 𝐼𝒬∙
(𝜌𝑥 − 𝐼𝜌𝑦)2

, (22.11)

where 𝐼 is the pseudoscalar of the spacetime algebra, satisfying 𝐼2 = −1. The Weyl tensor (12.27) has only
a (complex) spin 0 component, and is

𝐶 = 𝜓0 = − 1

(𝜌𝑥 − 𝐼𝜌𝑦)3

(︂
𝑀∙ −

𝑄2
∙ +𝒬2

∙
𝜌𝑥 + 𝐼𝜌𝑦

)︂
. (22.12)

The spacetime is singular at

𝜌𝑥 = 𝜌𝑦 = 0 , (22.13)

which is a ring at 𝑟 = 0 and 𝜃 = 𝜋/2.
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22.2 Horizons

Horizons occur where the horizon function Δ𝑥 vanishes,

Δ𝑥 = 0 . (22.14)

For Kerr-Newman with vanishing cosmological constant, there are outer and inner horizons 𝑟± at

𝑟± =𝑀∙ ±
√︀
𝑀2
∙ − 𝑎2 −𝑄2

∙ −𝒬2
∙ . (22.15)

If there is a non-zero cosmological constant Λ, then the horizon condition (22.14) is a quartic in 𝑟, and there
may be as many as 4 horizons. If there is a small positive cosmological constant, then in addition to the usual
outer and inner black hole horizons, there are cosmological horizons at large positive and negative radii. If
the cosmological constant is larger and positive, then there are cosmological horizons with no black hole. If
the cosmological constant is zero or negative, then there are no cosmological horizons. If the cosmological
constant is sufficiently negative, then there is no black hole.

22.3 Conditions from Hamilton-Jacobi separability

This section derives the form (22.1) of the separable line-element from the condition of the separability of the
Hamilton-Jacobi equation, coupled with the assumptions of stationarity and axisymmetry. The Hamilton-
Jacobi equation is solved in Chapter 23 to obtain the trajectories of neutral or charged particles in rotating
charged black holes.
With respect to an orthonormal tetrad, the Hamilton-Jacobi equation for a test particle of mass𝑚 and elec-

tric charge 𝑞 moving in a spacetime with vierbein 𝑒𝑚𝜇 and electromagnetic potential 𝐴𝑚 is, equation (4.110)
or (4.111),

𝜂𝑚𝑛
(︂
𝑒𝑚

𝜇 𝜕𝑆

𝜕𝑥𝜇
− 𝑞𝐴𝑚

)︂(︂
𝑒𝑛
𝜈 𝜕𝑆

𝜕𝑥𝜈
− 𝑞𝐴𝑛

)︂
= −𝑚2 . (22.16)

The Hamilton-Jacobi equation (22.16) is a partial differential equation in the particle action 𝑆, equa-
tion (4.36). Let 𝑒𝑚𝜇 and 𝐴𝑚 denote the inverse vierbein coefficients and tetrad-frame electromagnetic po-
tential with an overall conformal factor 𝜌 factored out:

𝑒𝑚
𝜇 ≡ 𝜌𝑒𝑚𝜇 , 𝐴𝑚 ≡ 𝜌𝐴𝑚 . (22.17)

With respect to the scaled inverse vierbein 𝑒𝑚
𝜇 and electromagnetic potential 𝐴𝑚, the Hamilton-Jacobi

equation (22.16) can be rewritten

𝜂𝑚𝑛
(︂
𝑒𝑚

𝜇 𝜕𝑆

𝜕𝑥𝜇
− 𝑞𝐴𝑚

)︂(︂
𝑒𝑛
𝜈 𝜕𝑆

𝜕𝑥𝜈
− 𝑞𝐴𝑛

)︂
= −𝑚2𝜌2 . (22.18)

To separate the Hamilton-Jacobi equation (22.18), one demands that the left and right hand sides of the
equation be sums of terms each of which depends only on a single coordinate. The “simplest possible way”
(Carter, 1968b) to separate the left hand side of the Hamilton-Jacobi equation (22.18) is to impose that each
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of the individual factors, comprising the scaled inverse vierbein coefficients 𝑒𝑚𝜇, the derivatives 𝜕𝑆/𝜕𝑥𝜇 of
the action, and the scaled potentials 𝐴𝑚, is a function of a single coordinate, and that products of factors
are non-vanishing only when all factors are functions of the same coordinate. The derivatives 𝜕𝑆/𝜕𝑥𝜇 of the
action are each functions of a single coordinate provided that the action 𝑆 is itself a sum of terms 𝑆𝜇 each
depending on a single coordinate 𝑥𝜇,

𝑆 =
∑︁
𝜇

𝑆𝜇(𝑥
𝜇) . (22.19)

Canonical momenta are equal to derivatives of the action, equation (4.105), so the condition (22.19) imposes
that each canonical momentum 𝜋𝜇 be a function only of the corresponding coordinate 𝑥𝜇,

𝜋𝜇 =
𝜕𝑆𝜇
𝜕𝑥𝜇

= function of 𝑥𝜇 . (22.20)

A special case of the condition (22.20) occurs when a canonical momentum 𝜋𝜇 is a constant, which occurs
when the metric is independent of the coordinate 𝑥𝜇, equation (4.50). In the case of the Kerr geometry and its
cousins, the spacetime is stationary and axisymmetric. Stationary means that the geometry is invariant with
respect to some time coordinate 𝑡, while axisymmetry means that the geometry is invariant with respect
to some azimuthal angular coordinate 𝜑. The corresponding canonical momenta 𝜋𝑡 and 𝜋𝜑 are constants
of motion, defining respectively the constant energy 𝐸 and the azimuthal angular momentum 𝐿 of the
trajectory,

𝜋𝑡 =
𝜕𝑆

𝜕𝑡
= −𝐸 , 𝜋𝜑 =

𝜕𝑆

𝜕𝜑
= 𝐿 . (22.21)

If the two remaining coordinates are denoted 𝑥 and 𝑦, then the particle action 𝑆, equation (22.19), is the
sum

𝑆 = −𝐸𝑡+ 𝐿𝜑+ 𝑆𝑥(𝑥) + 𝑆𝑦(𝑦) , (22.22)

where 𝑆𝑥(𝑥) =
∫︀
𝜋𝑥 𝑑𝑥 and 𝑆𝑦(𝑦) =

∫︀
𝜋𝑦 𝑑𝑦, equation (22.20), are respectively functions only of 𝑥 and 𝑦.

Given that 𝜋𝑡 and 𝜋𝜑 are constants, while 𝜋𝑥 and 𝜋𝑦 are respectively functions of 𝑥 and 𝑦, the left hand
side of the Hamilton-Jacobi equation (22.18) separates as a sum of terms each of which depends only on 𝑥
or only on 𝑦 provided that

for each 𝑚,

{︃
either 𝑒𝑚

𝜇 for all 𝜇, and 𝐴𝑚, are functions of 𝑥 only, and 𝑒𝑚𝑦 = 0 ,
or 𝑒𝑚

𝜇 for all 𝜇, and 𝐴𝑚, are functions of 𝑦 only, and 𝑒𝑚𝑥 = 0 .
(22.23)

The case that matches the Kerr and related geometries is the 2+2 choice

the

{︂
top
bottom

}︂
condition of (22.23) holds for

{︂
𝑚 = 0 and 1

𝑚 = 2 and 3

}︂
. (22.24)

Thus separability consistent with Kerr requires that

𝑒0
𝑦 = 𝑒1

𝑦 = 𝑒2
𝑥 = 𝑒3

𝑥 = 0 . (22.25)

Given the separability conditions (22.25), the inverse vierbein coefficients 𝑒0𝑥 and 𝑒3𝑦 can be transformed
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to zero by a tetrad gauge transformation consisting of a Lorentz boost by velocity 𝑒0𝑥/𝑒1𝑥 between tetrad
axes 𝛾𝛾0 and 𝛾𝛾1, and a (commuting) spatial rotation by angle atan(𝑒3

𝑦/𝑒2
𝑦) between tetrad axes 𝛾𝛾2 and 𝛾𝛾3.

Thus without loss of generality,

𝑒0
𝑥 = 𝑒3

𝑦 = 0 . (22.26)

The gauge conditions (22.26) having been effected, the inverse vierbein coefficients 𝑒1𝑡, 𝑒2𝑡, 𝑒1𝜑, and 𝑒2𝜑 can
be eliminated by coordinate gauge transformations 𝑡→ 𝑡′ and 𝜑→ 𝜑′ defined by

𝑑𝑡 = 𝑑𝑡′ +
𝑒1
𝑡

𝑒1𝑥
𝑑𝑥+

𝑒2
𝑡

𝑒2𝑦
𝑑𝑦 , 𝑑𝜑 = 𝑑𝜑′ +

𝑒1
𝜑

𝑒1𝑥
𝑑𝑥+

𝑒2
𝜑

𝑒2𝑦
𝑑𝑦 . (22.27)

Equations (22.27) are integrable because 𝑒1𝜇 and 𝑒2𝜇 are respectively functions of 𝑥 and 𝑦 only. The trans-
formations (22.27) of 𝑡 and 𝜑 are admissible because they preserve the Killing vectors 𝜕/𝜕𝑡 and 𝜕/𝜕𝜑,

𝜕

𝜕𝑡

⃒⃒⃒⃒
𝑥,𝑦,𝜑

=
𝜕

𝜕𝑡′

⃒⃒⃒⃒
𝑥,𝑦,𝜑

,
𝜕

𝜕𝜑

⃒⃒⃒⃒
𝑡,𝑥,𝑦

=
𝜕

𝜕𝜑′

⃒⃒⃒⃒
𝑡,𝑥,𝑦

. (22.28)

Thus without loss of generality

𝑒1
𝑡 = 𝑒2

𝑡 = 𝑒1
𝜑 = 𝑒2

𝜑 = 0 . (22.29)

Finally, coordinate transformations of the 𝑥 and 𝑦 coordinates

𝑥→ 𝑥′ , 𝑦 → 𝑦′ , (22.30)

can be chosen such that 𝑒1𝑥 is any function of 𝑥, and 𝑒2𝑦 is any function of 𝑦. A choice that proves advan-
tageous in separating the Einstein and Maxwell equations is

𝑒1
𝑥𝑒0

𝑡 = 𝑒2
𝑦𝑒3

𝜑 = ±1 . (22.31)

The separability conditions (22.23) with the 2+2 choice (22.24), which imply conditions (22.25), coupled
with the gauge conditions (22.26), (22.29), and (22.31), bring the inverse vierbein 𝑒𝑚𝜇 to the form

𝑒𝑚
𝜇 =

1

𝜌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
Δ𝑥

0 0
𝜔𝑥√
Δ𝑥

0 −
√︀

Δ𝑥 0 0

0 0
√︀
Δ𝑦 0

𝜔𝑦√︀
Δ𝑦

0 0
1√︀
Δ𝑦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (22.32)

where 𝜔𝑥 and Δ𝑥 are some functions of 𝑥, and 𝜔𝑦 and Δ𝑦 are some functions of 𝑦. The minus sign in 𝑒1𝑥

is chosen so that, for Λ-Kerr-Newman, the radial tetrad basis vector 𝛾𝛾1 points outward, the direction of
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increasing radius 𝑟 but decreasing 𝑥. The corresponding vierbein 𝑒𝑚𝜇 is

𝑒𝑚𝜇 = 𝜌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
Δ𝑥

1− 𝜔𝑥𝜔𝑦
0 0 − 𝜔𝑦

√
Δ𝑥

1− 𝜔𝑥𝜔𝑦

0 − 1√
Δ𝑥

0 0

0 0
1√︀
Δ𝑦

0

−
𝜔𝑥
√︀
Δ𝑦

1− 𝜔𝑥𝜔𝑦
0 0

√︀
Δ𝑦

1− 𝜔𝑥𝜔𝑦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (22.33)

which implies the line-element (22.1).
The above form (22.32) of the inverse vierbein was derived from the condition that the left hand side of

the Hamilton-Jacobi equation (22.18) be separable. Given stationarity and axisymmetry, the left hand side
is a sum of two terms, one depending on the radial coordinate 𝑥, the other on the angular coordinate 𝑦. If
the mass 𝑚 is non-zero, then the squared conformal factor 𝜌2 on the right hand side of the Hamilton-Jacobi
equation (22.18) must also separate as a sum of terms depending on 𝑥 and 𝑦. This is the condition (22.2).
If Hamilton-Jacobi separability is demanded only for massless particles, 𝑚 = 0, then a more general class

of conformally separable solutions can be found, which are explored in Chapter 24.

Exercise 22.1. Explore other separable solutions. The above derivation of the form of the line-element
assumed not only separability, but also stationarity and axisymmetry, and the 2+2 choice (22.24) that
matches Kerr. Explore other possible choices (Carter, 1968b).

Exercise 22.2. Explore separable solutions in an arbitrary number 𝑁 of spacetime dimensions.

22.4 Electrovac solutions from separation of Einstein’s equations

As shown in §22.3, the assumptions of stationarity, axisymmetry, and separability, coupled with some
other auxiliary assumptions (separability “in the simplest possible way” (Carter, 1968b)), and the 2+2
choice (22.24)), imposes the form (22.1) of the line-element and the conditions (22.2) and (22.3). Given
this form of the line-element, the Kerr solution and its electrovac cousins can be derived by separating the
Einstein equations systematically.

22.4.1 Electrovac energy-momenta

The energy-momentum of a static radial electromagnetic field is

8𝜋𝑇 𝑒𝑚𝑛 =
𝑄2
∙ +𝒬2

∙
𝜌4

diag(1,−1, 1, 1) . (22.34)
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The energy-momentum of a cosmological constant Λ is

8𝜋𝑇Λ
𝑚𝑛 = −Λ𝜂𝑚𝑛 . (22.35)

22.4.2 Separation of 8 Einstein equations with zero source

Given the form (22.1) of the line-element and the conditions (22.2) and (22.3), 4 of the 10 tetrad-frame
Einstein components 𝐺𝑚𝑛 vanish identically:

𝐺01 = 𝐺02 = 𝐺13 = 𝐺23 = 0 . (22.36)

Of the remaining 6 Einstein components 𝐺𝑚𝑛, the following 4 have zero electrovac source:

𝜌2𝐺12 = −2
√︀
Δ𝑥Δ𝑦

[︂
𝜌
𝜕2(1/𝜌)

𝜕𝑥𝜕𝑦
− 3

4(1− 𝜔𝑥𝜔𝑦)2
𝑑𝜔𝑥
𝑑𝑥

𝑑𝜔𝑦
𝑑𝑦

]︂
, (22.37a)

𝜌2𝐺03 =

√︀
Δ𝑥Δ𝑦

2𝜌2

[︂
𝜕

𝜕𝑥

(︂
𝜌2

1− 𝜔𝑥𝜔𝑦
𝑑𝜔𝑥
𝑑𝑥

)︂
− 𝜕

𝜕𝑦

(︂
𝜌2

1− 𝜔𝑥𝜔𝑦
𝑑𝜔𝑦
𝑑𝑦

)︂]︂
, (22.37b)

𝜌2 (𝐺00 +𝐺11) =
2Δ𝑥

1− 𝜔𝑥𝜔𝑦

[︃
𝜌
𝜕

𝜕𝑥

(︂
(1− 𝜔𝑥𝜔𝑦)

𝜕(1/𝜌)

𝜕𝑥

)︂
+

1

4(1− 𝜔𝑥𝜔𝑦)

(︂
𝑑𝜔𝑦
𝑑𝑦

)︂2
]︃
, (22.37c)

𝜌2 (𝐺22 −𝐺33) =
2Δ𝑦

1− 𝜔𝑥𝜔𝑦

[︃
𝜌
𝜕

𝜕𝑦

(︂
(1− 𝜔𝑥𝜔𝑦)

𝜕(1/𝜌)

𝜕𝑦

)︂
+

1

4(1− 𝜔𝑥𝜔𝑦)

(︂
𝑑𝜔𝑥
𝑑𝑥

)︂2
]︃
. (22.37d)

If the conformal factor 𝜌2 is supposed to separate as a sum of radial and angular parts, equation (22.2), then
the homogeneous version of equation (22.37a) reduces to

𝑑(𝜌2𝑥)

𝑑𝜔𝑥

𝑑(𝜌2𝑦)

𝑑𝜔𝑦
−

(𝜌2𝑥 + 𝜌2𝑦)
2

(1− 𝜔𝑥𝜔𝑦)2
= 0 . (22.38)

Series expansion of (22.38) leads to the result that

𝜌2 ≡ 𝜌2𝑥 + 𝜌2𝑦 =
1− 𝜔𝑥𝜔𝑦

(𝑓0 + 𝑓1𝜔𝑥)(𝑓1 + 𝑓0𝜔𝑦)
, (22.39a)

𝜌𝑥 =

√︂
𝑔0 − 𝑔1𝜔𝑥

(𝑓0𝑔1 + 𝑓1𝑔0)(𝑓0 + 𝑓1𝜔𝑥)
, 𝜌𝑦 =

√︃
𝑔1 − 𝑔0𝜔𝑦

(𝑓0𝑔1 + 𝑓1𝑔0)(𝑓1 + 𝑓0𝜔𝑦)
, (22.39b)

where 𝑓0, 𝑓1, 𝑔0, and 𝑔1 are constants. At this point the constants 𝑔0 and 𝑔1 can be adjusted arbitrarily without
affecting 𝜌: the overall normalization of 𝑔0 and 𝑔1 is cancelled by the normalizing factor of 1/

√
𝑓0𝑔1+𝑓1𝑔0 in

𝜌𝑥 and 𝜌𝑦, and the relative sizes of 𝑔0 and 𝑔1 can be changed by adjusting an arbitrary constant in the split
between 𝜌2𝑥 and 𝜌2𝑦. Given the expression (22.39) for the conformal factor 𝜌, the Einstein component 𝐺03,
equation (22.37b), reduces to

𝜌2𝐺03 =

√︀
Δ𝑥Δ𝑦

2(1− 𝜔𝑥𝜔𝑦)

[︂
𝑑𝜔𝑥
𝑑𝑥

𝑑

𝑑𝑥
ln

(︂
𝑑𝜔𝑥/𝑑𝑥

𝑓0 + 𝑓1𝜔𝑥

)︂
− 𝑑𝜔𝑦

𝑑𝑦

𝑑

𝑑𝑦
ln

(︂
𝑑𝜔𝑦/𝑑𝑦

𝑓1 + 𝑓0𝜔𝑦

)︂]︂
. (22.40)
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Homogeneous solution of this equation can be accomplished by separation of variables, setting each of the
two terms inside square brackets, the first of which is a function only of 𝑥, while the second is a function
only of 𝑦, to the same separation constant 2𝑓2. The result is

𝑑𝜔𝑥
𝑑𝑥

= 2

√︃
(𝑓0 + 𝑓1𝜔𝑥)

[︂
𝑔0 +

1

𝑓0
(𝑓1𝑔0 + 𝑓2)𝜔𝑥

]︂
, (22.41a)

𝑑𝜔𝑦
𝑑𝑦

= 2

√︃
(𝑓1 + 𝑓0𝜔𝑦)

[︂
𝑔1 +

1

𝑓1
(𝑓0𝑔1 + 𝑓2)𝜔𝑦

]︂
, (22.41b)

for some constants 𝑔0 and 𝑔1, which can be taken without loss of generality to equal those in the conformal
factor (22.39). With the conformal factor 𝜌 given by equation (22.39) and 𝑑𝜔𝑥/𝑑𝑥 and 𝑑𝜔𝑦/𝑑𝑦 given by
equations (22.41), the Einstein components 𝐺00 +𝐺11 and 𝐺22 −𝐺33 reduce to

𝜌2 (𝐺00 +𝐺11) = 2Δ𝑥
(𝑓2 + 𝑓0𝑔1 + 𝑓1𝑔0)(𝑓1 + 𝑓0𝜔𝑦)

2

𝑓0𝑓1(1− 𝜔𝑥𝜔𝑦)2
, (22.42a)

𝜌2 (𝐺22 −𝐺33) = 2Δ𝑦
(𝑓2 + 𝑓0𝑔1 + 𝑓1𝑔0)(𝑓0 + 𝑓1𝜔𝑥)

2

𝑓0𝑓1(1− 𝜔𝑥𝜔𝑦)2
. (22.42b)

These vanish provided that the constant 𝑓2 satisfies

𝑓2 = −(𝑓0𝑔1 + 𝑓1𝑔0) . (22.43)

Inserting this value into equations (22.41) implies

𝑑𝜔𝑥
𝑑𝑥

= 2
√︀
(𝑓0 + 𝑓1𝜔𝑥) (𝑔0 − 𝑔1𝜔𝑥) , (22.44a)

𝑑𝜔𝑦
𝑑𝑦

= 2
√︁
(𝑓1 + 𝑓0𝜔𝑦) (𝑔1 − 𝑔0𝜔𝑦) . (22.44b)

The sign of the square root for 𝑑𝜔𝑥/𝑑𝑥 is the same as that for 𝜌𝑥, while the sign of the square root for 𝑑𝜔𝑦/𝑑𝑦
is the same as that for 𝜌𝑦.

22.4.3 Separation of the remaining 2 Einstein equations

Define 𝑌𝑥 and 𝑌𝑦 by

𝑌𝑥 ≡
𝑑Δ𝑥

𝑑𝑥
−Δ𝑥

𝑑

𝑑𝑥
ln

[︂
(𝑓0+𝑓1𝜔𝑥)

𝑑𝜔𝑥
𝑑𝑥

]︂
, (22.45a)

𝑌𝑦 ≡
𝑑Δ𝑦

𝑑𝑦
−Δ𝑦

𝑑

𝑑𝑦
ln

[︂
(𝑓1+𝑓0𝜔𝑦)

𝑑𝜔𝑦
𝑑𝑦

]︂
. (22.45b)
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In terms of 𝑌𝑥 and 𝑌𝑦, the Einstein components 𝐺00 −𝐺11 and 𝐺22 +𝐺33 are

𝜌2 (𝐺00 −𝐺11) (22.46a)

=
1

1− 𝜔𝑥𝜔𝑦

(︂
𝑌𝑥
𝑑 ln𝜔𝑥
𝑑𝑥

− 𝑌𝑦
𝑑 ln𝜔𝑦
𝑑𝑦

)︂
+ 𝑌𝑥

𝑑

𝑑𝑥
ln

(︂
𝑓0+𝑓1𝜔𝑥

𝜔𝑥

)︂
− 𝜕𝑌𝑦

𝜕𝑦
+ 𝑌𝑦

𝑑

𝑑𝑦
ln

[︂
𝜔𝑦(𝑓1+𝑓0𝜔𝑦)

𝑑𝜔𝑦/𝑑𝑦

]︂
,

𝜌2 (𝐺22 +𝐺33) (22.46b)

=
1

1− 𝜔𝑥𝜔𝑦

(︂
𝑌𝑥
𝑑 ln𝜔𝑥
𝑑𝑥

− 𝑌𝑦
𝑑 ln𝜔𝑦
𝑑𝑦

)︂
− 𝑌𝑦

𝑑

𝑑𝑦
ln

(︂
𝑓1+𝑓0𝜔𝑦

𝜔𝑦

)︂
+
𝜕𝑌𝑥
𝜕𝑥
− 𝑌𝑥

𝑑

𝑑𝑥
ln

[︂
𝜔𝑥(𝑓0+𝑓1𝜔𝑥)

𝑑𝜔𝑥/𝑑𝑥

]︂
.

Homogeneous solutions of these equations can be found by supposing that 𝑌𝑥 is a function only of the radial
coordinate radius 𝑥, while 𝑌𝑦 is a function only of the angular coordinate 𝑦, and by separating each of the
equations as

1

(1− 𝜔𝑥𝜔𝑦)

(︃
𝑓0ℎ0+ℎ2𝜔𝑥+𝑓1ℎ1𝜔

2
𝑥

𝜔𝑥
−
𝑓1ℎ1+ℎ2𝜔𝑦+𝑓0ℎ0𝜔

2
𝑦

𝜔𝑦

)︃
− 𝑓0ℎ0+ℎ3𝜔𝑥

𝜔𝑥
+
𝑓1ℎ1+ℎ3𝜔𝑦

𝜔𝑦
= 0 , (22.47)

for some constants ℎ0, ℎ1, ℎ2, and ℎ3. Separating each of equations (22.46) according to the pattern of
equation (22.47) leads to the homogeneous solutions

𝑌𝑥 =
(𝑓0 + 𝑓1𝜔𝑥)(ℎ0 + ℎ1𝜔𝑥)

𝑑𝜔𝑥/𝑑𝑥
, 𝑌𝑦 =

(𝑓1 + 𝑓0𝜔𝑦)(ℎ1 + ℎ0𝜔𝑦)

𝑑𝜔𝑦/𝑑𝑦
. (22.48)

Solutions including the energy-momentum of a static electromagnetic field fall out with little extra work.
With appropriate boundary conditions, this is the Kerr-Newman solution. Solutions with 𝐺00 = −𝐺11 =

𝐺22 = 𝐺33, as is true for a static radial electromagnetic field, are found by taking the difference of equa-
tions (22.46) and separating that difference in the pattern of equation (22.47). The solution is a sum of a
homogeneous solution (22.48) and a particular solution

𝑌𝑥 =
2(𝑄2

∙ +𝒬2
∙)(𝑓0 + 𝑓1𝜔𝑥)

2

𝑑𝜔𝑥/𝑑𝑥
, 𝑌𝑦 = 0 . (22.49)

Inserting equations (22.49) into the Einstein expressions (22.46) yields Einstein components that have pre-
cisely the form (22.34) of the tetrad-frame energy-momentum tensor of a static radial electromagnetic field.
Similarly, solutions including vacuum energy, which has 𝐺00 = −𝐺11 = −𝐺22 = −𝐺33, can be found by

separating the sum of equations (22.46) in the pattern of equation (22.47). A particular solution is

𝑌𝑥 =
2Λ

𝑓21 𝑑𝜔𝑥/𝑑𝑥
, 𝑌𝑦 =

2Λ𝜔2
𝑦

𝑓21 𝑑𝜔𝑦/𝑑𝑦
. (22.50)

Inserting equations (22.50) into the Einstein expressions (22.46) yields Einstein components that have pre-
cisely the form of a cosmological constant, 𝐺𝑚𝑛 = −Λ𝜂𝑚𝑛.
Solving equations (22.45a) and (22.45b) with 𝑌𝑥 and 𝑌𝑦 given by a sum of the homogeneous, electro-

magnetic, and vacuum contributions, equations (22.48), (22.49), and (22.50), yields the general electrovac
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solution for the horizon and polar functions Δ𝑥 and Δ𝑦,

Δ𝑥 = (𝑓0 + 𝑓1𝜔𝑥)

[︃
(𝑘0 + 𝑘1𝜔𝑥)−

2𝑀∙
√︀
(𝑓0 + 𝑓1𝜔𝑥)(𝑔0 − 𝑔1𝜔𝑥)
(𝑓0𝑔1 + 𝑓1𝑔0)3/2

+
(𝑄2
∙ +𝒬2

∙)(𝑓0 + 𝑓1𝜔𝑥)

𝑓0𝑔1 + 𝑓1𝑔0

]︃

− Λ(𝑔0 − 𝑔1𝜔𝑥)
3𝑓1(𝑓0𝑔1 + 𝑓1𝑔0)2

, (22.51a)

Δ𝑦 = (𝑓1 + 𝑓0𝜔𝑦)

[︃
(𝑘1 + 𝑘0𝜔𝑦)−

2𝑁∙
√︀
(𝑓1 + 𝑓0𝜔𝑦)(𝑔1 − 𝑔0𝜔𝑦)
(𝑓0𝑔1 + 𝑓1𝑔0)3/2

]︃
+

Λ𝜔𝑦(𝑔1 − 𝑔0𝜔𝑦)
3𝑓1(𝑓0𝑔1 + 𝑓1𝑔0)2

, (22.51b)

where 𝑘0 and 𝑘1 are arbitrarily adjustable constants arising from the freedom of choice in the constants ℎ0
and ℎ1 of the homogeneous solution. The constant 𝑀∙ in the expression (22.51a) for Δ𝑥 is the black hole’s
mass. The constant 𝑁∙ in the expression (22.51b) for Δ𝑦 is the NUT parameter (Taub, 1951; Newman,
Tamburino, and Unti, 1963; Stephani et al., 2003; Kagramanova et al., 2010), which is to the mass 𝑀∙ as
magnetic charge 𝒬∙ is to electric charge 𝑄∙.

22.5 Electrovac solutions of Maxwell’s equations

22.5.1 Solution of Maxwell’s equations

Write the electromagnetic potential 𝐴𝑘 in terms of a scaled electromagnetic potential 𝒜𝑘, equation (23.2).
Separability of the Hamilton-Jacobi equations requires, equations (22.23) and (22.24), that

𝒜𝑡 , 𝒜𝑥 are functions of 𝑥 only ,
𝒜𝑦 , 𝒜𝜑 are functions of 𝑦 only .

(22.52)

For the line-element (22.1), and with the conditions (22.52), the non-vanishing components of the tetrad-
frame electromagnetic field 𝐹𝑚𝑛 are the radial electric 𝐸 and magnetic 𝐵 fields

𝐸 ≡ 𝐹10 = − 1

𝜌2

(︂
𝑑𝒜𝑡
𝑑𝑥

+
𝜔𝑦𝒜𝑡 −𝒜𝜑
1− 𝜔𝑥𝜔𝑦

𝑑𝜔𝑥
𝑑𝑥

)︂
, (22.53a)

𝐵 ≡ 𝐹23 =
1

𝜌2

(︂
𝑑𝒜𝜑
𝑑𝑦

+
𝜔𝑥𝒜𝜑 −𝒜𝑡
1− 𝜔𝑥𝜔𝑦

𝑑𝜔𝑦
𝑑𝑦

)︂
. (22.53b)

The remaining components of the electromagnetic field vanish identically,

𝐹02 = 𝐹03 = 𝐹12 = 𝐹13 = 0 . (22.54)

Since the electromagnetic field 𝐹𝑚𝑛 does not depend on either 𝒜𝑥 or 𝒜𝑦, these components are pure gauge,
and can be set to zero,

𝒜𝑥 = 𝒜𝑦 = 0 . (22.55)

Since the electromagnetic field given by equations (22.53) and (22.54) is the curl of the potential, the field
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automatically satisfies the source-free Maxwell’s equations, The sourced Maxwell’s equations are

𝐷𝑚𝐹𝑚𝑛 = 4𝜋𝑗𝑛 . (22.56)

Stationary solutions require vanishing current, 𝑗𝑛 = 0. Two of the sourced Maxwell equations vanish identi-
cally, and the corresponding currents vanish automatically:

𝑗1 = 𝑗2 = 0 . (22.57)

Given the expressions (22.44) for 𝑑𝜔𝑥/𝑑𝑥 and 𝑑𝜔𝑦/𝑑𝑦, the remaining two sourced Maxwell’s equations can
be written

−
√
Δ𝑥

𝜌3

[︂
𝜕𝑍𝑡
𝜕𝑥

+ 𝑍𝑡
𝜕

𝜕𝑥
ln

(︂
1

1− 𝜔𝑥𝜔𝑦
𝑑𝜔𝑥
𝑑𝑥

)︂
− 𝑍𝜑

1

1− 𝜔𝑥𝜔𝑦
𝑑𝜔𝑦
𝑑𝑦

]︂
= 4𝜋𝑗0 , (22.58a)

−
√︀
Δ𝑦

𝜌3

[︂
𝜕𝑍𝜑
𝜕𝑦

+ 𝑍𝜑
𝜕

𝜕𝑦
ln

(︂
1

1− 𝜔𝑥𝜔𝑦
𝑑𝜔𝑦
𝑑𝑦

)︂
− 𝑍𝑡

1

1− 𝜔𝑥𝜔𝑦
𝑑𝜔𝑥
𝑑𝑥

]︂
= 4𝜋𝑗3 , (22.58b)

where 𝑍𝑡 and 𝑍𝜑 are defined to be

𝑍𝑡 ≡
𝑑𝜔𝑥
𝑑𝑥

𝜕

𝜕𝑥

(︂
𝒜𝑡

𝑑𝜔𝑥/𝑑𝑥

)︂
, (22.59a)

𝑍𝜑 ≡
𝑑𝜔𝑦
𝑑𝑦

𝜕

𝜕𝑦

(︂
𝒜𝜑

𝑑𝜔𝑦/𝑑𝑦

)︂
. (22.59b)

The homogeneous solutions of equations (22.58) are

𝑍𝑡 = 𝑍𝜑 = 0 . (22.60)

Homogeneous solution of equations (22.59) yields

𝒜𝑡
𝑑𝜔𝑥/𝑑𝑥

≡ − 𝑄∙
2(𝑓0𝑔1 + 𝑓1𝑔0)

, (22.61a)

𝒜𝜑
𝑑𝜔𝑦/𝑑𝑦

= − 𝒬∙
2(𝑓0𝑔1 + 𝑓1𝑔0)

, (22.61b)

where 𝑄∙ and 𝒬∙ are constants of integration, which can be interpreted as respectively the enclosed electric
charge within radius 𝑥, and the enclosed magnetic charge above latitude 𝑦. Inserting the solutions (22.61)
for 𝒜𝑘 into the expressions (22.53) yields the electric and magnetic fields (22.11).

22.5.2 Separation of Maxwell’s equations

The form (22.58) of the Maxwell equations for 𝑗0 and 𝑗3 assumed that 𝑑𝜔𝑥/𝑑𝑥 and 𝑑𝜔𝑦/𝑑𝑦 satisfy the
equations (22.44) obtained by separating Einstein’s equations. However, the Maxwell equations can also be
separated directly, and the conditions (22.66) that result are consistent with the Einstein conditions (22.44).
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If one provisionally supposes that 𝒜𝜑 = 0, then the Maxwell equation for the angular current 𝑗3 is

𝒜𝑡
√︀
Δ𝑦

𝜌3(1− 𝜔𝑥𝜔𝑦)2

{︂
𝑑𝜔𝑥
𝑑𝑥

[︂
(1− 𝜔𝑥𝜔𝑦)

𝑑 ln(𝒜𝑡/𝜔𝑥)
𝑑𝑥

+
𝑑 ln𝜔𝑥
𝑑𝑥

]︂
+
𝑑𝜔𝑦
𝑑𝑦

[︂
(1− 𝜔𝑥𝜔𝑦)

𝑑

𝑑𝑦
ln

(︂
𝑑 ln𝜔𝑦
𝑑𝑦

)︂
+
𝑑 ln𝜔𝑦
𝑑𝑦

]︂}︂
= 4𝜋𝑗3 . (22.62)

Conversely, if one provisionally supposes that 𝒜𝑡 = 0, then the Maxwell equation for the radial current 𝑗0 is

𝒜𝜑
√
Δ𝑥

𝜌3(1− 𝜔𝑥𝜔𝑦)2

{︂
𝑑𝜔𝑦
𝑑𝑦

[︂
(1− 𝜔𝑥𝜔𝑦)

𝑑 ln(𝒜𝜑/𝜔𝑦)
𝑑𝑦

+
𝑑 ln𝜔𝑦
𝑑𝑦

]︂
+
𝑑𝜔𝑥
𝑑𝑥

[︂
(1− 𝜔𝑥𝜔𝑦)

𝑑

𝑑𝑥
ln

(︂
𝑑 ln𝜔𝑥
𝑑𝑥

)︂
+
𝑑 ln𝜔𝑥
𝑑𝑥

]︂}︂
= 4𝜋𝑗0 . (22.63)

The homogeneous solutions of equations (22.62) and (22.63) prove to be the homogeneous solutions of the
full equations without any restriction on 𝒜𝑡 or 𝒜𝜑. Equation (22.62) separates with 4 separation constants
𝑞𝑖 as

(1− 𝜔𝑥𝜔𝑦)
(︂
− 𝑞0 + 𝑞3𝜔𝑥

𝜔𝑥

)︂
+
𝑞0 − 2𝑞1𝜔𝑥 − 𝑞2𝜔2

𝑥

𝜔𝑥
+ (1− 𝜔𝑥𝜔𝑦)

(︂
− 𝑞2 − 𝑞3𝜔𝑦

𝜔𝑦

)︂
+
𝑞2 + 2𝑞1𝜔𝑦 − 𝑞0𝜔2

𝑦

𝜔𝑦
= 0 ,

(22.64)
and equation (22.62) separates in a similar fashion, the vanishing of the second term inside braces in either
of equations (22.62) or (22.63) requiring that

𝑞3 = 𝑞1 . (22.65)

The separated solutions for 𝜔𝑥 and 𝜔𝑦 are

𝑑𝜔𝑥
𝑑𝑥

= 2
√︀
𝑞0 − 2𝑞1𝜔𝑥 − 𝑞2𝜔2

𝑥 , (22.66a)

𝑑𝜔𝑦
𝑑𝑦

= 2
√︁
𝑞2 + 2𝑞1𝜔𝑦 − 𝑞0𝜔2

𝑦 . (22.66b)

These are consistent with the separated solution (22.44) found for Einstein’s equations provided that

𝑞0 = 𝑓0𝑔0 , 2𝑞1 = 𝑓0𝑔1 − 𝑓1𝑔0 , 𝑞2 = 𝑓1𝑔1 . (22.67)

22.6 Λ-Kerr-Newman boundary conditions

The electrovac solutions of physical interest are those that go over to asymptotically flat space far from the
black hole, at least in the absence of a cosmological constant. The condition of being far from the black
hole can be interpreted as meaning where the influence of the mass and charge of the black hole becomes
negligible. Inspection of expression (22.51a) for the radial horizon function Δ𝑥 shows that the effect of mass
and charge becomes negligible where 𝑓0 + 𝑓1𝜔𝑥 → 0. Expression (22.39) for the separable conformal factor
𝜌 shows that the conformal factor diverges where 𝑓0 + 𝑓1𝜔𝑥 → 0, confirming that this location is indeed “at
infinity.”
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The quantity 𝜔𝑥 is the angular velocity at which the tetrad frame (which has been chosen to align with the
principal frame) moves through the coordinates. This follows from the fact that the tetrad-frame 4-velocity
relative to itself is by definition 𝑢𝑚 = {1, 0, 0, 0}, so the coordinate frame velocity of the tetrad frame is
𝑢𝜇 = 𝑒𝑚

𝜇𝑢𝑚 = 𝑒0
𝜇, so the angular velocity of the tetrad frame is 𝑑𝜑/𝑑𝑡 = 𝑒0

𝜑/𝑒0
𝑡 = 𝜔𝑥. If the tetrad

frame is not rotating through the coordinates at infinity, then the angular velocity 𝜔𝑥 vanishes at infinity.
Since infinity is where 𝑓0 + 𝑓1𝜔𝑥 vanishes, a tetrad frame that is corotating with the coordinates at infinity
corresponds to 𝑓0 = 0. Below, equations (22.76), it is shown that the situation where 𝑓0 is non-zero differs
by a coordinate transformation from the case where 𝑓0 is zero. Thus 𝑓0 may be set equal to zero without
loss of generality.
Further conditions follow from requiring that the metric coefficients 𝑔𝑡𝜑 and 𝑔𝜑𝜑, equations (22.4), vanish

at the poles of the rotation axis, 𝜃 = 0 and 𝜋, to avoid singular behaviour at the poles. The vanishing of 𝑔𝑡𝜑
and 𝑔𝜑𝜑 at the poles requires that both 𝜔𝑦 and Δ𝑦 must vanish at the poles.
Connection with familiar polar coordinates {𝑟, 𝜃, 𝜑} may be established by requiring that the metric

coefficients (22.4) go over to their asymptotic expressions in the absence of a cosmological constant or NUT
parameter,

𝑔𝑡𝑡 → −1 , 𝑔𝑡𝜑 → 0 , 𝑔𝜑𝜑 → 𝑟2 sin2𝜃 as 𝑟 →∞ . (22.68)

The expressions (22.51) for the horizon functionsΔ𝑥 andΔ𝑦 then imply that, in the absence of a cosmological
constant or NUT parameter,

Δ𝑦 =
𝜔𝑦
𝑎

= sin2𝜃 , Δ𝑥 →
𝜔𝑥
𝑎
→ 1

𝑟2
as 𝑟 →∞ , (22.69)

where 𝑎 = 1/(𝑓1𝑘0) is some constant, which proves to be the familiar spin parameter, and an overall
normalization has been fixed by scaling the conformal factor to 𝜌 → 𝑟 at infinity, a natural choice. The
normalization of 𝜌 fixes 𝑓1 = 𝑎−1/2.
Integrating the relation (22.44b) between 𝜔𝑦 and 𝑦 with 𝑓0 = 0 establishes that 𝜔𝑦 is quadratic in 𝑦.

Requiring that the polar part of the metric 𝑔𝑦𝑦 𝑑𝑦2 ≡ 𝜌2𝑑𝑦2/Δ𝑦 be non-singular at the poles implies that 𝑦
is proportional to cos 𝜃 plus a constant that can be set to zero without loss of generality. Requiring that the
polar metric go over to its asymptotic expression 𝑔𝑦𝑦 𝑑𝑦2 → 𝑟2𝑑𝜃2 as 𝑟 →∞ fixes the normalization

𝑦 = − cos 𝜃 , (22.70)

where the sign is chosen so that 𝑑𝜔/𝑑𝑦 has the same sign as 𝜌𝑦 (eq. 22.75), in accordance with equa-
tion (22.44b). Expression (22.70) can be imposed also in the presence of a cosmological constant and a NUT
parameter. For Λ-Kerr-Newman with no NUT parameter,

𝜔𝑦 = 𝑎 sin2𝜃 . (22.71)

Equation (22.71) is not true if the NUT parameter is non-vanishing, a case deferred to §22.7. The expres-
sions (22.70) and (22.71) are consistent with the relation (22.44b) between them provided that 𝑔1 = 𝑎𝑔0 and
𝑔0 = 𝑎/𝑓1. The complete set of constants in equations (22.51) is

𝑓0 = 0 , 𝑓1 = 𝑎−1/2 , 𝑔0 = 𝑎3/2 , 𝑔1 = 𝑎5/2 , 𝑘0 = 𝑎−1/2 , 𝑘1 = 0 . (22.72)
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The radial variable 𝑥 analogous to the angular variable 𝑦 of equation (22.70) comes from solving equa-
tion (22.44a), 𝑑𝜔𝑥/𝑑𝑥 = 2

√︀
𝑎𝜔𝑥(1− 𝑎𝜔𝑥), which gives

𝑥 =
1

𝑎
asin
√
𝑎𝜔𝑥 . (22.73)

A pair of radial and angular variables that emerged naturally from the analysis, besides 𝑥 and 𝑦, are
𝜌𝑥 and 𝜌𝑦 defined by equation (22.39b). In terms of 𝜔𝑥, the radial variable is 𝜌𝑥 =

√︀
𝑎(1− 𝑎𝜔𝑥)/𝜔𝑥. It is

conventional to define the radial coordinate 𝑟 to be equal to 𝜌𝑥, which is consistent with the asymptotic
behaviour 𝜌→ 𝑟 as 𝑟 →∞, in which case

𝜔𝑥 =
𝑎

𝑅2
, 𝑅 =

√︀
𝑟2 + 𝑎2 . (22.74)

The radial and angular variables 𝜌𝑥 and 𝜌𝑦 are

𝜌𝑥 = 𝑟 , 𝜌𝑦 = 𝑎 cos 𝜃 . (22.75)

This completes the derivation of the Λ-Kerr-Newman solutions.

22.6.1 There are no separable electrovac solutions that rotate at infinity

The Λ-Kerr-Newman boundary conditions in §22.6 took 𝑓0 = 0, corresponding to the situation where the
tetrad-frame is corotating with the coordinates at infinity, 𝜔𝑥 → 0 as 𝑟 →∞. What happens if 𝑓0 is non-zero?
If 𝑓0 is non-zero, then the tetrad rotates through the coordinates with some constant finite angular velocity
𝜔∞ at infinity. As argued at the beginning of §22.6, infinity is where 𝑓0 + 𝑓1𝜔𝑥 = 0. Thus a finite angular
velocity at infinity corresponds to 𝑓0 = −𝑓1𝜔∞. However, the apparent rotation at infinity can be removed
by transforming the azimuthal coordinate 𝜑 so that it corotates at infinity. The line-element can then be
brought to standard electrovac form with 𝑓0 = 0 by a coordinate transformation of the angular coordinate
𝑦. Specifically, the coordinate transformations

𝜑′ = 𝜑+ 𝜔∞𝑡 , 𝑑𝑦′ = (1− 𝜔∞𝜔𝑦) 𝑑𝑦 , (22.76)

bring the line-element with 𝜔∞ ̸= 0 to the standard separable electrovac form with 𝜔∞ = 0,

𝑑𝑠2 = 𝜌2
[︂
− Δ𝑥

(1− 𝜔′𝑥𝜔′𝑦)2
(︀
𝑑𝑡− 𝜔′𝑦 𝑑𝜑

)︀2
+
𝑑𝑥2

Δ𝑥
+
𝑑𝑦′2

Δ′𝑦
+

Δ′𝑦
(1− 𝜔′𝑥𝜔′𝑦)2

(𝑑𝜑′ − 𝜔′𝑥 𝑑𝑡)
2
]︂
, (22.77)

with primed quantities

𝜔′𝑥 ≡ 𝜔𝑥 − 𝜔∞ , 𝜔′𝑦 ≡
𝜔𝑦

1− 𝜔∞𝜔𝑦
, Δ′𝑦 ≡

Δ𝑦

(1− 𝜔∞𝜔𝑦)2
. (22.78)

Notice that the physical location of north and south poles, at 𝜔𝑦 = Δ𝑦 = 0, is unchanged by the choice of
coordinates.
Thus, among separable electrovac solutions, there are no solutions that physically rotate at infinity.
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22.7 Taub-NUT geometry

Spacetimes with a finite NUT parameter 𝑁∙ were discovered by Taub (1951) and Newman, Tamburino, and
Unti (1963). A nice review of the problematic nature of such spacetimes is given by Kagramanova et al.
(2010).
Black holes with a finite NUT parameter 𝑁∙ have the property that the coefficient 𝜔𝑦, equation (22.83),

does not vanish at one or both poles. As usual for a well-behaved azimuthally symmetric spacetime, when
a geodesic passes infinitesimally close to a pole, the azimuthal angle 𝜑 along the geodesic jumps by ±𝜋, the
sign depending on which side of the pole the geodesic is deemed to pass; but since the angle 𝜑 is periodic in
2𝜋, the ambiguity in sign does not lead to a net ambiguity in the angle 𝜑. The problem for NUT spacetimes,
where 𝜔𝑦 does not vanish, is that when a geodesic passes infinitesimally close to a pole, the time coordinate
𝑡 also jumps by ±𝜔𝑦𝜋. The value of 𝜔𝑦 at a pole, 𝜃 = 0 or 𝜋, is

𝜔±𝑦 = 2𝑁∙(𝑐∙ ∓ 1) , (22.79)

where the ∓ sign on the right hand side is − at the north pole 𝜃 = 0, and + at the south pole 𝜃 = 𝜋. The
jump in the time coordinate is problematic, because it means that a particle passing through a pole leaps
forwards or backwards in time, the choice of forwards or backwards depending on which side of the pole the
geodesic is deemed to pass. Misner (1963) argued that the discontinuity in time could be solved by making
the time coordinate 𝑡 periodic with period 2𝜋/|𝜔±𝑦 |. A periodic time coordinate does not of course describe
the real Universe.
Associated with the discontinuity in the time coordinate 𝑡 around a pole, black holes with a finite NUT

parameter 𝑁∙ have closed timelike curves circulating around one (if 𝑐∙ = ±1) or both (if 𝑐∙ ̸= ±1) polar
axes, so violate causality. NUT black holes are fun, but not physically realistic.
What accounts for the singular behaviour along poles? The answer is that there is a string of torsion along

each pole. As described in §2.19.2 and examined further in §16.17, the Riemann and torsion tensors are
the fields associated with the two gauge groups of general relativity, the Lorentz group and the translation
group. The Riemann and torsion tensors describe how a frame respectively Lorentz-transforms and translates
when parallel-transported around an infinitesimal loop. Torsion is sourced by spin angular-momentum Σ𝑙𝑚𝑛,
§16.11. Although classic general relativity assumes that torsion vanishes, torsion should not be dismissed
summarily, because spinor fields do carry spin angular-momentum that generates torsion, Exercise 16.5.
However, the spinors familiar in the real world, such as electrons, are point-like and massive, whereas NUT
strings are string-like and massless.

22.7.1 Taub-NUT line-element

When the NUT parameter 𝑁∙ is finite, and with the boundary conditions that there are (north and south)
poles at Δ𝑦 = 0, the conditions (22.72) generalize to

𝑓0 = 0 , 𝑓1 = 𝑎−1/2 , 𝑔0 = 𝑎3/2 , 𝑔1 = 𝑎1/2𝑏2 , (22.80)

𝑘0 = 𝑎−1/2
[︀
1− 1

3Λ(𝑎
2 − 2𝑐∙𝑁∙ +𝑁2

∙ )
]︀
, 𝑘1 = −2𝑎−3/2𝑁∙

[︀
𝑁∙ + 𝑎𝑐∙ +

2
3𝑎

2Λ𝑁∙(𝑐
2
∙ − 1)

]︀
,
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Figure 22.1 Geometry of a Kerr-NUT black hole, with NUT parameters 𝑁∙ = 0.75𝑀 and 𝑐∙ = −1, and spin parameter

𝑎 = 1.2𝑀 . The outer sisytube encircles the northern polar axis outside the outer ergosphere, while the inner sisytube

encircles the extension of the northern axis into the Antiverse inside the inner ergosphere. The choice 𝑐∙ = −1

means that there is no sisytube around the southern polar axis. Dashed purple lines mark the boundaries 𝑔𝑡𝑡 = 0 of

ergospheres, while green (between the ergospheres) and cyan (outside the ergospheres) lines mark 𝑔𝜑𝜑 = 0.

where

𝑏 ≡
√︀
𝑎2 + 2𝑎𝑐∙𝑁∙ +𝑁2

∙ . (22.81)

Besides the NUT parameter 𝑁∙, there is an additional constant, the auxiliary NUT parameter 𝑐∙.
The resulting Taub-NUT line-element takes the separable form (22.1), with coefficients as follows. The

radial and angular parts 𝜌𝑥 and 𝜌𝑦 of the conformal factor 𝜌 =
√︁
𝜌2𝑥 + 𝜌2𝑦 are

𝜌𝑥 ≡ 𝑟 = 𝑏 cot(𝑏𝑥) , 𝜌𝑦 ≡ 𝑁∙ + 𝑎 cos 𝜃 = 𝑁∙ − 𝑎𝑦 . (22.82)

If |𝑁∙| ≤ |𝑎|, then there is a ring singularity where the Weyl curvature (22.88) diverges, at 𝜌𝑥 = 𝜌𝑦 = 0,
corresponding to 𝑟 = 0 and cos 𝜃 = −𝑁∙/𝑎. There is no singularity if |𝑁∙| > |𝑎|. The coefficients 𝜔𝑥 and 𝜔𝑦
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Figure 22.2 Similar to Figure 22.1, but with 𝑐∙ = 0 instead of 𝑐∙ = −1. Sisytubes encircle both the north (solid cyan

lines) and south (dashed cyan lines) polar axes.

are

𝜔𝑥 =
𝑎

𝑅2
, 𝑅 ≡

√︀
𝑟2 + 𝑏2 =

𝑏

sin(𝑏𝑥)
, 𝜔𝑦 = 𝑎 sin2𝜃 + 2𝑁∙(𝑐∙ − cos 𝜃) . (22.83)

The radius 𝑅 is everywhere positive, even if 𝑏 is imaginary, so 𝜔𝑥 can also be taken to be everywhere positive
(if 𝑎 is negative, flip the poles, 𝑦 → −𝑦, to make 𝑎 positive). Notice that the NUT parameter 𝑁∙ breaks
spherical symmetry even if the black hole is non-rotating, 𝑎 = 0, because 𝜔𝑦, equation (22.83), cannot vanish
at both poles as long as the NUT parameter 𝑁∙ is non-zero. The combination 1− 𝜔𝑥𝜔𝑦 satisfies

1− 𝜔𝑥𝜔𝑦 =
𝜌2

𝑅2
, (22.84)

which is always positive. The horizon and polar functions Δ𝑥 and Δ𝑦 are

Δ𝑥 =
1

𝑅4

[︁
𝑟2 − 2𝑀∙𝑟 + 𝑎2 +𝑄2

∙ +𝒬2
∙ −𝑁2

∙ − 1
3Λ
(︀
𝑟2 + (𝑎−𝑁∙)2

)︀ (︀
𝑟2 + (𝑎+𝑁∙)

2
)︀]︁
, (22.85a)

Δ𝑦 = sin2𝜃
[︁
1− 1

3𝑎
2Λ sin2𝜃 + 4

3Λ𝑁∙(𝑁∙ + 𝑎 cos 𝜃)
]︁
. (22.85b)
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Poles occur where Δ𝑦 = 0, that is, at 𝜃 = 0 or 𝜋. Horizons occur where Δ𝑥 = 0. For vanishing Λ, there are
outer and inner horizons at

𝑟± =𝑀∙ ±
√︀
𝑀2
∙ +𝑁2

∙ −𝑄2
∙ −𝒬2

∙ − 𝑎2 . (22.86)

The horizon and polar functions Δ𝑥 and Δ𝑦 given by equations (22.85) do not agree with the earlier ex-
pressions (22.9) for non-zero Λ and vanishing 𝑁∙, but this is not a misprint. The difference arises from an
arbitrariness in the choice of homogeneous solution (the choice of 𝑘0) when a cosmological constant Λ is
present, equations (22.51). The tetrad-frame electromagnetic potential 𝐴𝑘 is

𝐴𝑘 =
1

𝜌

{︃
− 𝑄∙𝑟

𝑅2
√
Δ𝑥

, 0 , 0 , −𝒬∙(𝑎 cos 𝜃 +𝑁∙)

𝑎
√︀
Δ𝑦

}︃
. (22.87)

The Weyl tensor has only a spin 0 component, and is, generalizing equation (22.12) for Λ-Kerr-Newman,

𝐶 = − 1

(𝜌𝑥 − 𝐼𝜌𝑦)3

(︂
𝑀∙ + 𝐼𝑁∙ −

𝑄2
∙ +𝒬2

∙
𝜌𝑥 + 𝐼𝜌𝑦

)︂
. (22.88)

22.7.2 Sisytubes in Taub-NUT

Sisytubes, containing closed timelike curves, occur in regions where 𝑔𝜑𝜑 ≤ 0, Exercise 23.4. A sisytube
encircles any pole where 𝜔𝑦 fails to vanish, since along poles, from equations (22.4) with Δ𝑦 = 0,

𝑔𝜑𝜑 = −
𝜌2𝜔2

𝑦Δ𝑥

(1− 𝜔𝑥𝜔𝑦)2
, (22.89)

which is negative outside the horizon, Δ𝑥 > 0, unless 𝜔𝑦 vanishes. If the NUT parameter 𝑁∙ is non-zero,
then generically sisytubes encircle both poles, but for the special cases 𝑐∙ = ±1, a sisytube encircles only one
of the two poles. The conclusion holds even when the black hole spin is zero, 𝑎 = 0. For Λ = 0, the sisytube
tends to a cylinder of constant radius at large distances from the black hole,

|𝑟| sin 𝜃 → |𝜔𝑦| → |2𝑁∙(𝑐∙ ± 1)| as 𝑟 → ±∞ , (22.90)

in which the sign of ±1 is the sign of 𝑦, namely + at the south pole, − at the north pole.
The critical velocity 𝑣𝑐 at which there is a closed timelike curve is calculated in Exercise 23.4, equa-

tion (23.47). The sign of the critical velocity 𝑣𝑐 is minus the sign of 𝜔𝑦 along its polar axes, which is the sign
of −𝑁∙(𝑐∙ ± 1).
Figure 22.1 illustrates the geometry for an uncharged Kerr-NUT black hole with 𝑁∙ = 0.75𝑀∙, 𝑐∙ = −1,

and spin 𝑎 = 1.2𝑀∙. Since 𝑐∙ = −1, a sisytube encircles the north pole but not the south pole. The sign of
𝜔𝑦 is negative along the north pole, so closed timelike curves circulate prograde.
Figure 22.2 is a Kerr-NUT black hole with the same parameters, except that 𝑐∙ = 0 in place of 𝑐∙ = −1.

Here sisytubes enclose both north and south poles. The shapes of the sisytubes differ between north and
south poles despite 𝑐∙ = 0. The north versus south asymmetry comes from the sign of the NUT parameter
𝑁∙, which affects the polar function Δ𝑦, equation (22.85b). Closed timelike curves circulate the north pole
prograde, the south pole retrograde.
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22.7.3 Can the auxiliary NUT parameter 𝑐∙ be adjusted by a coordinate

transformation?

In §22.6.1 it was seen that, in the separable electrovac spacetimes being considered, any apparent rotation (of
the tetrad frame through the coordinates) at infinity can be eliminated by a coordinate transformation (22.76)
of the angular coordinates 𝜑 and 𝑦.
It might seem that a similar coordinate transformation of the 𝑡 and 𝑥 coordinates by

𝑡′ = 𝑡+ 𝜔0𝜑 , 𝑑𝑥′ = (1− 𝜔𝑥𝜔0) 𝑑𝑥 , (22.91)

would bring the line-element to the standard separable electrovac form (22.77) with primed quantities

𝜔′𝑦 ≡ 𝜔𝑦 − 𝜔0 , 𝜔′𝑥 ≡
𝜔𝑥

1− 𝜔𝑥𝜔0
, Δ′𝑥 ≡

Δ𝑥

(1− 𝜔𝑥𝜔0)2
. (22.92)

The coordinate transformation (22.91) would then allow the auxiliary NUT parameter 𝑐∙ to be adjusted
arbitrarily. For example, 𝑐∙ could be set to ±1, or 0, or whatever other value one might prefer.
Ordinarily the choice of 𝑐∙ would be dictated by physical reasons, which in the present cause would mean

the absence of sisytubes. Indeed, a sisytube at the north pole can be eliminated by setting 𝑐∙ = 1; but then
there is a sisytube at the south pole. Likewise, a sisytube at the south pole can be eliminated by setting
𝑐∙ = −1; but then there is a sisytube at the north pole. One might perhaps choose 𝑐∙ = 0 as the most
symmetric choice, but this still leaves the north-south asymmetry coming from the sign of 𝑁∙, as illustrated
in Figure 22.2. Evidently the problems of the Taub-NUT spacetime are fundamentally topological, and
unavoidable.
Actually, the coordinate transformation (22.91) cannot be made freely, since it already encodes topological

information. That is, axisymmetric identification 𝜑 ≡ 𝜑 + 2𝜋 at fixed time 𝑡 differs from axisymmetric
identification at transformed time 𝑡′ = 𝑡+ 𝜔0𝜑. Ordinarily the preferred time coordinate would be dictated
by physical reasons, but again all choices are unphysical.
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a = 0 a = 0.8 a = 0.96 a = 1

Figure 23.1 Silhouettes (black curves) of Kerr black holes with various spin parameters 𝑎, from left to right 𝑎 = 0,

0.8, 0.96, and 1 (units 𝑀 = 1), as observed in the equatorial plane from a far distance. The (red) ellipses show the

horizons of the black holes as an indication of what the black holes would look like without any gravitational lensing.

The silhouette is compressed on the approaching side and expanded on the receding side. See §23.14.

In the previous Chapter 22, the form of the Kerr-Newman line-element and its cousins was derived from the
condition that geodesics are Hamilton-Jacobi separable. In this Chapter, the Hamilton-Jacobi equations are
separated, and the trajectories of neutral and charged particles in the Kerr-Newman geometry are explored.

23.1 Hamilton-Jacobi equation

The Hamilton-Jacobi equation for a particle of mass𝑚 and electric charge 𝑞 in the Λ-Kerr-Newman geometry
can be brought to a simple form (23.8) by writing the covariant tetrad-frame momentum 𝑝𝑘 of a particle in
terms of a set of Hamilton-Jacobi parameters 𝑃𝑘,

𝑝𝑘 ≡
1

𝜌

{︃
𝑃𝑡√
Δ𝑥

,
𝑃𝑥√
Δ𝑥

,
𝑃𝑦√︀
Δ𝑦

,
𝑃𝜑√︀
Δ𝑦

}︃
, (23.1)
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and the covariant tetrad-frame electromagnetic potential 𝐴𝑘 in terms of a set of Hamilton-Jacobi potentials
𝒜𝑘,

𝐴𝑘 ≡
1

𝜌

{︃
𝒜𝑡√
Δ𝑥

,
𝒜𝑥√
Δ𝑥

,
𝒜𝑦√︀
Δ𝑦

,
𝒜𝜑√︀
Δ𝑦

}︃
, (23.2)

given by equation (22.10), which in turn follow from equations (22.55) and (22.61),

𝒜𝑘 =

{︂
−𝑄∙𝑟
𝑅2

, 0, 0,−𝒬∙ cos 𝜃
}︂
, (23.3)

with 𝑄∙ and 𝒬∙ respectively the electric and magnetic charge of the black hole. The contravariant coordinate
momenta 𝑑𝑥𝜅/𝑑𝜆 = 𝑒𝑘

𝜅𝑝𝑘 are related to the Hamilton-Jacobi parameters 𝑃𝑘 by

𝑑𝑥𝜅

𝑑𝜆
=

1

𝜌2

{︂
− 𝑃𝑡

Δ𝑥
+
𝜔𝑦𝑃𝜑
Δ𝑦

, −𝑃𝑥 , 𝑃𝑦 , −
𝜔𝑥𝑃𝑡
Δ𝑥

+
𝑃𝜑
Δ𝑦

}︂
. (23.4)

The tetrad-frame momenta 𝑝𝑘 are related to the generalized momenta 𝜋𝜅 by 𝑝𝑘 = 𝑒𝑘
𝜅𝜋𝜅−𝑞𝐴𝑘, which implies

that the Hamilton-Jacobi parameters 𝑃𝑘 are related to the canonical momenta 𝜋𝜅 by

𝑃𝑡 ≡ 𝜋𝑡 + 𝜋𝜑𝜔𝑥 − 𝑞𝒜𝑡 , (23.5a)

𝑃𝑥 ≡ −Δ𝑥𝜋𝑥 − 𝑞𝒜𝑥 , (23.5b)

𝑃𝑦 ≡ Δ𝑦𝜋𝑦 − 𝑞𝒜𝑦 , (23.5c)

𝑃𝜑 ≡ 𝜋𝜑 + 𝜋𝑡𝜔𝑦 − 𝑞𝒜𝜑 . (23.5d)

Time translation symmetry and axisymmetry imply that 𝜋𝑡 and 𝜋𝜑 are constants of motion, equation (22.21),

𝜋𝑡 = −𝐸 , 𝜋𝜑 = 𝐿 . (23.6)

The separability conditions derived in §22.3 imply that

𝑃𝑡 , 𝑃𝑥 are functions of 𝑥 only ,
𝑃𝑦 , 𝑃𝜑 are functions of 𝑦 only .

(23.7)

In terms of the Hamilton-Jacobi parameters 𝑃𝑘, the Hamilton-Jacobi equation (22.18) is

−𝑃 2
𝑡 + 𝑃 2

𝑥

Δ𝑥
+
𝑃 2
𝑦 + 𝑃 2

𝜑

Δ𝑦
= −𝑚2𝜌2 . (23.8)

Separability for massive particles, 𝑚 ̸= 0, requires that the conformal factor 𝜌 separate as equation (22.2).
The Hamilton-Jacobi equation (23.8) then separates as

−
(︂
−𝑃 2

𝑡 + 𝑃 2
𝑥

Δ𝑥
+𝑚2𝜌2𝑥

)︂
=
𝑃 2
𝑦 + 𝑃 2

𝜑

Δ𝑦
+𝑚2𝜌2𝑦 = 𝒦 , (23.9)



23.2 Particle with magnetic charge 665

with 𝒦 a separation constant, the Carter constant. The separated Hamilton-Jacobi equations (23.9) imply
that

𝑃𝑥 = ±
√︁
𝑃 2
𝑡 − (𝒦 +𝑚2𝜌2𝑥)Δ𝑥 , (23.10a)

𝑃𝑦 = ±
√︁
−𝑃 2

𝜑 +
(︀
𝒦 −𝑚2𝜌2𝑦

)︀
Δ𝑦 . (23.10b)

From the expression (23.4) for the coordinate momenta 𝑑𝑥𝜅/𝑑𝜆, the trajectory of a freely-falling particle
follows from integrating 𝑑𝑦/𝑑𝑥 = −𝑃𝑦/𝑃𝑥, equivalent to the implicit equation

− 𝑑𝑥

𝑃𝑥
=
𝑑𝑦

𝑃𝑦
. (23.11)

Again from expression (23.4), the time and azimuthal coordinates 𝑡 and 𝜑 along the trajectory are then
obtained by quadratures,

𝑑𝑡 =
𝑃𝑡 𝑑𝑥

𝑃𝑥Δ𝑥
+
𝜔𝑦𝑃𝜑 𝑑𝑦

𝑃𝑦Δ𝑦
, 𝑑𝜑 =

𝜔𝑥𝑃𝑡 𝑑𝑥

𝑃𝑥Δ𝑥
+
𝑃𝜑 𝑑𝑦

𝑃𝑦Δ𝑦
. (23.12)

Again from expression (23.4), the affine parameter 𝜆 along the trajectory satisfies 𝑑𝜆/𝜌2 = −𝑑𝑥/𝑃𝑥 = 𝑑𝑦/𝑃𝑦,
so similarly reduces to quadratures,

𝑑𝜆 = − 𝜌2𝑥 𝑑𝑥

𝑃𝑥
+
𝜌2𝑦 𝑑𝑦

𝑃𝑦
. (23.13)

In the limiting case of trajectories at constant latitude 𝑦, where 𝑑𝑦/𝑃𝑦 is zero divided by zero, expressions
for 𝑡, 𝜑, and 𝜆 along the trajectory are obtained by replacing 𝑑𝑦/𝑃𝑦 → −𝑑𝑥/𝑃𝑥 in equations (23.12) and
(23.13). Similarly for circular trajectories, where 𝑑𝑥/𝑃𝑥 is zero divided by zero, expressions for 𝑡, 𝜑, and 𝜆
along the trajectory are obtained by replacing 𝑑𝑥/𝑃𝑥 → −𝑑𝑦/𝑃𝑦.

23.2 Particle with magnetic charge

The above Hamilton-Jacobi equations were for a test particle of mass𝑚 and electric charge 𝑞, but no magnetic
charge. Whereas electric charge is a scalar, magnetic charge is a pseudoscalar. Equations of motion for a
magnetic charge are obtained by taking the Hodge dual of those for an electric charge, effectively swapping
the roles of the electric and magnetic fields. The Hodge dual of the electromagnetic field (22.11), obtained
by multiplying by the pseudoscalar 𝐼, equation (13.24), is the same expression with the electric 𝑄∙ and
magnetic 𝒬∙ charges of the black hole exchanged according to

𝑄∙ → −𝒬∙ , 𝒬∙ → 𝑄∙ . (23.14)

Coupling the pseudoscalar magnetic charge to the dual electromagnetic field gives an extra minus sign,
𝐼2 = −1. Thus the Hamilton-Jacobi equations generalize to a particle with both electric charge 𝑞𝑒 and
magnetic charge 𝑞𝑚 by replacing

𝑞𝑄∙ → 𝑞𝑒𝑄∙ + 𝑞𝑚𝒬∙ , 𝑞𝒬∙ → 𝑞𝑒𝒬∙ − 𝑞𝑚𝑄∙ , (23.15)
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in the expressions (23.5a) and (23.5d) for 𝑃𝑡 and 𝑃𝜑. The particle magnetic charge 𝑞𝑚 is set to zero hereafter;
it can be reincorporated by making the transformation (23.15) of constants.

23.3 Killing vectors and Killing tensor

The Kerr-Newman geometry is stationary and axisymmetric. As such it has two Killing vectors 𝑒𝑡 and 𝑒𝜑,
§7.32. The symmetries imply conservation of energy 𝐸 = −𝜋𝑡 and azimuthal angular momentum 𝐿 = 𝜋𝜑 of
freely-falling particles, equations (22.21).
The separability of the Kerr-Newman geometry means that it also has a Killing tensor𝐾𝑚𝑛. The Hamilton-

Jacobi equation (23.9) can be written in terms of the tetrad-frame momenta 𝑝𝑘, equation (23.1), as

𝐾𝑚𝑛𝑝𝑚𝑝𝑛 = 𝒦 , (23.16)

where 𝐾𝑚𝑛 is

𝐾𝑚𝑛 = diag
(︀
−𝜌2𝑦 , 𝜌2𝑦 , 𝜌2𝑥 , 𝜌2𝑥

)︀
. (23.17)

The Killing tensor 𝐾𝑚𝑛 satisfies Killing’s equation

𝐷(𝑘𝐾𝑚𝑛) = 0 . (23.18)

23.4 Turnaround

The squared Hamilton-Jacobi parameters 𝑃 2
𝑥 and 𝑃 2

𝑦 can be regarded as effective radial and angular poten-
tials. The coordinates 𝑥 and 𝑦 of a freely-falling particle are constrained to move within the regions where
the potentials 𝑃 2

𝑥 and 𝑃 2
𝑦 are positive. The trajectory of a freely-falling particle turns around in 𝑥 where

𝑃𝑥 = 0, and turns around in 𝑦 where 𝑃𝑦 = 0. That trajectories turn around at these points can be seen from
equation (23.11), which with the expressions (23.10) for 𝑃𝑥 and 𝑃𝑦 can be written

𝑑𝜆

𝜌2
= − 𝑑𝑥√︀

𝑃 2
𝑡 − (𝒦 +𝑚2𝜌2𝑥)Δ𝑥

=
𝑑𝑦√︁

−𝑃 2
𝜑 +

(︀
𝒦 −𝑚2𝜌2𝑦

)︀
Δ𝑦

. (23.19)

At points where the polar function vanishes, Δ𝑦 = 0, the Hamilton-Jacobi equation (23.9) implies that

𝑃𝑦 = 𝑃𝜑 = 0 at Δ𝑦 = 0 . (23.20)

Consequently trajectories must turn around in 𝑦 if they hit Δ𝑦 = 0. Since the Weyl curvature is finite at
Δ𝑦 = 0, there is no singularity at Δ𝑦 = 0. Rather, the points where Δ𝑦 vanishes define the (north and south)
poles of the geometry. Trajectories can pass through the poles, but they must turn around in latitude 𝑦 when
they do so.
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Table 23.1: Signs of 𝑃𝑡 and 𝑃𝑥 in various regions of the Kerr-Newman geometry

Region Sign
Universe, Wormhole, Antiverse 𝑃𝑡 < 0

Parallel Universe, Parallel Wormhole, Parallel Antiverse 𝑃𝑡 > 0

Black Hole 𝑃𝑥 < 0

White Hole 𝑃𝑥 > 0

Horizon, Inner Horizon 𝑃𝑡 = 𝑃𝑥 < 0

Parallel Horizon, Parallel Inner Horizon −𝑃𝑡 = 𝑃𝑥 < 0

Antihorizon, Inner Antihorizon −𝑃𝑡 = 𝑃𝑥 > 0

Parallel Antihorizon, Parallel Inner Antihorizon 𝑃𝑡 = 𝑃𝑥 > 0

23.5 Constraints on the Hamilton-Jacobi parameters 𝑃𝑡 and 𝑃𝑥

Horizons divide the spacetime into regions where the Hamilton-Jacobi parameters 𝑃𝑡 and 𝑃𝑥 satisfy certain
conditions. The Hamilton-Jacobi equation (23.8) rearranges to

𝑃 2
𝑡 − 𝑃 2

𝑥 =

(︃
𝑃 2
𝑦 + 𝑃 2

𝜑

Δ𝑦
+𝑚2𝜌2

)︃
Δ𝑥 . (23.21)

This shows that the Hamilton-Jacobi parameters 𝑃𝑡 and 𝑃𝑥 must satisfy

|𝑃𝑡| > |𝑃𝑥| if Δ𝑥 > 0 ,

|𝑃𝑡| = |𝑃𝑥| if Δ𝑥 = 0 ,

|𝑃𝑡| < |𝑃𝑥| if Δ𝑥 < 0 .

(23.22)

The Hamilton-Jacobi parameters must be continuous, including across horizons. Thus 𝑃𝑡 must have the same
sign everywhere throughout any connected region where Δ𝑥 is positive, which in the Kerr-Newman geometry
means either outside the outer horizon or inside the inner horizon. Similarly 𝑃𝑥 must have the same sign
everywhere throughout any connected region where Δ𝑥 is negative, which in the Kerr-Newman geometry
means between the outer and inner horizons.
Outside the outer horizon, in the Universe region of the Kerr-Newman geometry, Figure 9.6, the time

parameter 𝑃𝑡 must be negative, reflecting the fact that the time coordinate 𝑡 must be timelike and increasing
with the proper time of any particle. The radial parameter 𝑃𝑥 can be either positive (outfalling) or negative
(infalling).
Inside the outer horizon, in the Black Hole region of the geometry, the radial parameter 𝑃𝑥 must be

negative, reflecting the fact that the radius is timelike and decreasing with the proper time of any particle.
The time parameter 𝑃𝑡 can be either positive (outgoing) or negative (ingoing).
Particles that cross the outer horizon are necessarily infalling and ingoing at the horizon, with 𝑃𝑡 = 𝑃𝑥

negative. The Hamilton-Jacobi parameters are finite and continuous across the horizon. The expression (23.1)
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shows that the tetrad-frame momenta 𝑝0 and 𝑝1 are proportional to 1/
√
Δ𝑥, and therefore diverge at the

horizon, where Δ𝑥 = 0. The divergence is the origin of the inflationary instability at the inner horizon
discussed in Chapter 24.
Table 23.1 lists the constraints on the Hamilton-Jacobi parameters 𝑃𝑡 and 𝑃𝑥 in each of the regions of the

Penrose diagram of Figure 9.6.

23.6 Principal null congruences

The middle expression of equation (23.9) shows that the Carter constant 𝒦 is necessarily positive. The
vanishing of the Carter constant,

𝒦 = 0 , (23.23)

defines a special set of geodesics, called the principal outgoing and ingoing null congruences. A con-
gruence is a space-filling, non-overlapping set of geodesics. The geodesics on the principal congruences are
null, 𝑚 = 0, and satisfy

𝑃𝑦 = 𝑃𝜑 = 0 . (23.24)

They further satisfy 𝑃 2
𝑡 = 𝑃 2

𝑥 . Outgoing and ingoing geodesics are distinguished by the relative signs of 𝑃𝑡
and 𝑃𝑥,

𝑃𝑡 = −𝑃𝑥 outgoing
𝑃𝑡 = 𝑃𝑥 ingoing .

(23.25)

Photons that hold steady on the horizon are members of the outgoing principal null congruence.
The condition 𝑃𝜑 = 0 implies that the ratio of angular momentum 𝐿 = 𝜋𝜑 to energy 𝐸 = −𝜋𝑡 on the

principal null congruences is

𝐿

𝐸
= 𝜔𝑦 . (23.26)

The affine parameter 𝜆 along a principal null congruence satisfies

𝑑𝜆 ∝ 𝜌2 𝑑𝑥

𝑃𝑡/𝐸
=

𝜌2 𝑑𝑥

1− 𝜔𝑥𝜔𝑦
=

𝑑𝑟√
𝑓0𝑔1 + 𝑓1𝑔0(𝑓1 + 𝑓0𝜔𝑦)

, (23.27)

where 𝑓𝑖 and 𝑔𝑖 are the constants of the general electrovac solution, §22.4. As argued in §22.6.1, a coordinate
transformation allows the constant 𝑓0 to be set to zero without loss of generality. Thus the affine parameter,
which is defined only up to a normalization and a shift, along the principal null congruences can be taken
to be

𝜆 = ±𝑟 . (23.28)

The line-element (22.1) defines a tetrad (the Boyer-Lindquist tetrad) that is aligned with the principal null
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congruences. By definition, an object at rest in the tetrad frame has tetrad-frame 4-velocity 𝑢𝑚 = {1, 0, 0, 0}.
The coordinate 4-velocity 𝑢𝜇 of the tetrad frame through the coordinates is

𝑢𝜇 = 𝑒0
𝜇 =

1

𝜌
√
Δ𝑥

{1, 0, 0, 𝜔𝑥} . (23.29)

Thus the principal tetrad frame is at rest in 𝑥 and 𝑦, but rotates through the coordinates at angular velocity
𝑑𝜑/𝑑𝑡 = 𝜔𝑥 about the black hole.

23.7 Carter integral 𝒬

It is common to replace the Carter constant 𝒦 by the Carter integral 𝒬 defined by

𝒦 = 𝒬+
𝑃 2
𝜑

Δ𝑦

⃒⃒⃒⃒
⃒
𝜌𝑦=0

, (23.30)

which has the property that 𝒬 = 0 for orbits in the equatorial plane, 𝜌𝑦 = 0. For Λ-Kerr-Newman, the
Carter integral is

𝒬 = 𝒦 − (𝐿− 𝑎𝐸)2 . (23.31)

Exercise 23.1. Boundary of the region between the horizons visible to an infaller at the inner

horizon. Between the outer and inner horizons, all trajectories must fall inward. What geodesics have the
largest angular motion between the horizons? Hence determine the boundary of the region between the
horizons visible to an infaller who reaches the inner horizon.
Solution. The boundary between regions visible and invisible to an infaller between the horizons is set by
photons at the border between outgoing and ingoing at the outer horizon, which is set by 𝑃𝑡 = 0 at 𝑟 = 𝑟+,
that is, photons with azimuthal angular momentum

𝐽 =
1

𝜔𝑥

⃒⃒⃒⃒
𝑟=𝑟+

=
𝑟2+ + 𝑎2

𝑎
. (23.32)

Trajectories with the largest angular motion between horizons have infinite Carter constant,

𝒦 =∞ . (23.33)

The Hamilton-Jacobi solution (23.11) then simplifies to

𝑑𝑥√
−Δ𝑥

= ± 𝑑𝑦√︀
Δ𝑦

. (23.34)

For a Kerr-Newman black hole, the integrals in equation (23.34) are

𝑑𝑥√
−Δ𝑥

= 2atan

√︂
𝑟 − 𝑟−
𝑟+ − 𝑟

,
𝑑𝑦√︀
Δ𝑦

= 𝜃 . (23.35)
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Invisible

Visible
Inner horizon

Outer horizon

Figure 23.2 Regions between the outer and inner horizons visible and invisible to an infaller who reaches the inner

horizon of a Kerr black hole. The black hole here has spin parameter 𝑎 = 0.8𝑀∙, and the infaller (blue line) falls with

zero angular momentum 𝐿 = 0 along a trajectory at latitude 𝜃 = 45∘. Compare to Figure 7.1 for a Schwarzchild black

hole.

The boundary of the region visible to an infaller who reaches the inner horizon at latitude 𝜃obs is

𝑟 = 𝑟− + (𝑟+ − 𝑟−) sin2
𝜃 − 𝜃obs

2
, (23.36)

which is illustrated in Figure 23.2.

Exercise 23.2. Near the Kerr-Newman singularity. This exercise reveals that among ideal black holes,
the Schwarzschild geometry is exceptional, not typical, in having a gravitationally attractive singularity.
Explore the behaviour of trajectories of test particles in the vicinity of the Kerr-Newman singularity, where
𝜌→ 0 (that is, where 𝑟 = 0 and 𝑎𝑦 = 0). Under what conditions does a test particle reach the singularity?
1. Argue that for a particle to reach the singularity at 𝑦 = 0, positivity of 𝑃 2

𝑦 requires that

𝒬 ≥ 0 , (23.37)

where 𝒬 is the Carter integral defined by equation (23.31).
2. Argue that for a particle to reach the singularity at 𝑟 = 0, positivity of 𝑃 2

𝑥 requires that

𝑄2
∙(𝐿− 𝑎𝐸)2 + (𝑄2

∙ + 𝑎2)𝒬 ≤ 0 . (23.38)

3. Schwarzschild case: show that if 𝑄∙ = 0 and 𝑎 = 0, then a particle reaches the singularity provided that
the mass of the black hole is positive, 𝑀∙ > 0.

4. Reissner-Nordström case: show that if 𝑄2
∙ > 0 and 𝑎 = 0, then a particle can reach the singularity only

if it has zero angular momentum, 𝒬 = 𝐿 = 0, and if the particle’s charge exceeds its mass,

|𝑞| ≥ |𝑚| . (23.39)
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In particular, a neutral particle reaches the singularity only if it has zero angular momentum and is
massless.

5. Kerr case: show that if 𝑄∙ = 0 but 𝑎2 > 0, then a particle can reach the singularity only if it is moving
in the equatorial plane (𝑦 = 0 and 𝒬 = 0), and provided that the mass of the black hole is positive,
𝑀∙ > 0. [Hint: Show that if the particle is not already in the equatorial plane at 𝑦 = 0, then the equation
of motion for 𝑑𝑦/𝑑𝑥 shows that the particle never reaches 𝑦 = 0.]

6. Kerr-Newman case: show that if 𝑄2
∙ > 0 and 𝑎2 > 0, then a particle can reach the singularity only if

𝐿 = 𝑎𝐸 and it is moving in the equatorial plane, and if the particle’s charge-to-mass is large enough,

|𝑞| ≥ |𝑚|

√︃
𝑄2
∙ + 𝑎2

𝑄2
∙

, (23.40)

which generalizes the Reissner-Nordström condition (23.39).
Solution. Equation (23.37) comes from

𝒦 =
𝑃 2
𝑦 + 𝑃 2

𝜑

Δ𝑦
+𝑚2𝜌2𝑦 ≥

𝑃 2
𝜑

Δ𝑦
, (23.41)

and taking the limit 𝑦 → 0. Equation (23.38) comes from

𝑅4
{︀
−𝑃 2

𝑡 +
[︀
𝒬+ (𝐿− 𝑎𝐸)2 +𝑚2𝜌2𝑥

]︀
Δ𝑥

}︀
= −𝑅4𝑃 2

𝑥 ≤ 0 , (23.42)

and taking the limit 𝑟 → 0.

Exercise 23.3. When must 𝑡 and 𝜑 progress forwards on a geodesic? Under what circumstances
must the time coordinate 𝑡 or azimuthal angle 𝜑 progress forwards along a geodesic?
1. Show that, in regions where Δ𝑥 ≥ 0,

𝑃 2
𝜑

Δ𝑦
≤ 𝒦 ≤ 𝑃 2

𝑡

Δ𝑥
. (23.43)

Hence show that in the Universe, Wormhole, and Antiverse regions outside the horizons, where 𝑃𝑡 < 0,

𝑑𝑡

𝑑𝜆
≥ (1− 𝜔𝑥𝜔𝑦)2

√
𝒦

𝜌4
√︀

Δ𝑥Δ𝑦

(︀
𝜔𝑦
√
Δ𝑥 +

√︀
Δ𝑦

)︀𝑔𝜑𝜑 = −
√︀
𝒦Δ𝑥Δ𝑦

𝜔𝑦
√
Δ𝑥 +

√︀
Δ𝑦

𝑔𝑡𝑡 , (23.44)

and

𝑑𝜑

𝑑𝜆
≥ (1− 𝜔𝑥𝜔𝑦)2

√
𝒦

𝜌4
√︀
Δ𝑥Δ𝑦

(︀√
Δ𝑥 + 𝜔𝑥

√︀
Δ𝑦

)︀𝑔𝑡𝑡 = − √︀
𝒦Δ𝑥Δ𝑦√

Δ𝑥 + 𝜔𝑥
√︀

Δ𝑦

𝑔𝜑𝜑 . (23.45)

Conclude that, in the 𝑃𝑡 < 0 regions outside the outer and inner horizons, the time coordinate 𝑡 must
progress forwards if 𝑔𝜑𝜑 ≥ 0, which is true outside the sisytube, while the azimuthal angle 𝜑 must
progress forwards if 𝑔𝑡𝑡 ≥ 0, which is true between the outer and inner ergospheres.

2. Argue that in the Parallel Universe, Parallel Wormhole, and Parallel Antiverse regions outside the
horizons, where 𝑃𝑡 > 0, the inequalities (23.44) and (23.45) hold with the left hand sides replaced by
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𝑑(−𝑡)/𝑑𝜆 and 𝑑(−𝜑)/𝑑𝜆. Hence conclude that the time coordinate 𝑡 must progress backwards outside
the sisytube, while the azimuthal coordinate 𝜑 must progress backwards between the ergospheres.

Exercise 23.4. Inside the sisytube. The sisytube, §9.10, is the region where 𝑔𝜑𝜑 ≤ 0.
1. Consider a massive particle moving along a circular path at constant radius and latitude (𝑑𝑥 = 𝑑𝑦 = 0),

with tetrad-frame 4-velocity 𝑢𝑘 = 𝛾{1, 0, 0, 𝑣}, where 𝛾 is a Lorentz 𝛾-factor and 𝑣 the corresponding
3-velocity. A closed timelike curve (CTC) occurs when the time coordinate 𝑡 is constant along the curve,
𝑑𝑡/𝑑𝜏 = 0. What is the critical velocity 𝑣𝑐 for a closed timelike curve? Is the closed timelike curve
prograde or retrograde? What is the condition on the velocity 𝑣 of the particle for it to go backwards
in time 𝑡?

2. Can the circular path be a geodesic?
Solution.

1. The coordinate 4-velocity 𝑢𝜆 in terms of the tetrad-frame 4-velocity 𝑢𝑘 = 𝛾{1, 0, 0, 𝑣} is

𝑢𝜆 ≡ 𝑑𝑥𝜆

𝑑𝜏
= 𝑒𝑘

𝜆𝑢𝑘 =
𝛾

𝜌

{︃
1√
Δ𝑥

+
𝑣𝜔𝑦√︀
Δ𝑦

, 0, 0,
𝜔𝑥√
Δ𝑥

+
𝑣√︀
Δ𝑦

}︃
. (23.46)

The particle proceeds forwards or backwards in time 𝑡 according to the sign of 𝑢𝑡. The particle follows
a closed timelike curve if 𝑢𝑡 = 0, which happens when its tetrad-frame velocity 𝑣 takes the critical value

𝑣𝑐 = −
√︀
Δ𝑦

𝜔𝑦
√
Δ𝑥

. (23.47)

The sisytube condition 𝑔𝜑𝜑 ≤ 0 ensures that |𝑣𝑐| ≤ 1. The critical velocity equals the speed of light,
|𝑣𝑐| = 1, at the boundary 𝑔𝜑𝜑 = 0 of the sisytube. The critical velocity 𝑣𝑐, equation (23.47) is negative
(retrograde) if 𝜔𝑦 is positive, and positive (prograde) if 𝜔𝑦 is negative. In Λ-Kerr-Newman 𝜔𝑦 is always
positive, so closed timelike curves in the sisytube are retrograde. The situation with a finite NUT
parameter 𝑁∙ has been commented on in §22.7.2. At the critical velocity (23.47), the particle’s azimuthal
coordinate velocity 𝑢𝜑 is

𝑢𝜑 = −𝛾𝑐(1− 𝜔𝑥𝜔𝑦)
𝜌𝜔𝑦
√
Δ𝑥

=
𝛾𝑐𝑣𝑐(1− 𝜔𝑥𝜔𝑦)

𝜌
√︀
Δ𝑦

, (23.48)

whose sign is the same as that of the critical velocity 𝑣𝑐. The particle goes backwards in time if the
absolute value of its velocity exceeds the critical value (23.47),

|𝑣| > |𝑣𝑐| . (23.49)

2. No.

Exercise 23.5. Gödel’s Universe. Gödel’s Universe has a separable line-element of the form (22.1) with
𝜌 = 1, 𝜔𝑥 = 0, and Δ𝑥 = 1, thus

𝑑𝑠2 = − (𝑑𝑡− 𝜔𝑦 𝑑𝜑)2 + 𝑑𝑥2 +
𝑑𝑦2

Δ𝑦
+Δ𝑦 𝑑𝜑

2 . (23.50)
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Show that the tetrad-frame energy-momentum tensor is diagonal provided that 𝜔𝑦 is linear in 𝑦. Show that
the energy-momentum is constant everywhere provided that Δ𝑦 is quadratic in 𝑦. Show that the energy-
momentum takes perfect fluid form with an ultrahard equation of state, 𝑇𝑚𝑛 = 𝜌{1, 1, 1, 1}, if

𝜔𝑦 = 2
√
𝜌 𝑦 , Δ𝑦 = 2𝑦(1 + 𝜌𝑦) , (23.51)

in which the constant (0) and linear (2𝑦) terms in Δ𝑦 are chosen so that for 𝑦 ≪ 1/𝜌 the angular part of the
metric looks like the Minkowski metric in cylindrical coordinates, with 𝑦 ≈ 1

2𝑟
2,

𝑑𝑠2 ≈ − 𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑟2 + 𝑟2𝑑𝜑2 for 𝑦 ≪ 1/𝜌 . (23.52)

Show that there is a sisytube (𝑔𝑡𝑡 ≤ 0 and 𝑔𝜑𝜑 ≤ 0) for 𝑦 ≥ 1/𝜌. Is Gödel’s Universe self-consistent in the
sense that the rest frame of the fluid is everywhere geodesic? Explore Gödel’s Universe.
Solution. Yes, the solution is self-consistent. The rest frame of the fluid is the same as the rest frame of
the tetrad, since the energy-momentum is diagonal in the tetrad rest frame. The split between 𝜌𝑥 and 𝜌𝑦 in
𝜌2𝑥 + 𝜌2𝑦 = 𝜌2 = 1 can be taken to be 𝜌𝑥 = 1 and 𝜌𝑦 = 0. Rest geodesics satisfy 𝜋𝑡 = −𝑚, 𝜋𝜑 = 𝑚𝜔𝑦, and
𝒦 = 0, yielding 𝑃𝑥 = 𝑃𝑦 = 𝑃𝜑 = 0 and 𝑃𝑡 = −𝑚, whence 𝑝𝑘 = {𝑚, 0, 0, 0}.

23.8 Penrose process

As first pointed out by Penrose, trajectories in the Kerr-Newman geometry can have negative energy 𝐸

outside the horizon. In Newtonian gravity, gravitational energy is negative. If the gravitational binding
energy of a particle more than cancels the kinetic energy of the particle, then the particle is in a bound orbit.
In general relativity, the binding energy of a particle can be so great that in effect it cancels not only the
kinetic energy, but also the rest mass energy of the particle. Such particles have negative energy.
It is possible to reduce the mass 𝑀∙ of the black hole by dropping negative energy particles into the black

hole. This process of extracting mass-energy from the black hole is called the Penrose process.

Exercise 23.6. Negative energy trajectories outside the horizon. Under what conditions can a test
particle have negative energy, 𝐸 < 0, outside the outer horizon of a Kerr-Newman black hole?
1. Argue that the negativity of 𝑃𝑡 outside the outer horizon implies that 𝑎𝐿 + 𝑞𝑄𝑟 must be negative for

the energy 𝐸 to be negative. Show that, more stringently, negative 𝐸 requires that

𝑎𝐿+ 𝑞𝑄𝑟 ≤ −𝑅2

√︃(︂
𝐿2

Δ𝑦
+𝑚2𝜌2

)︂
Δ𝑥 . (23.53)

2. Argue that for an uncharged particle, 𝑞 = 0, negative energy trajectories exist only inside the ergosphere.
3. Do negative energy trajectories exist outside the ergosphere for a charged particle?
4. For the Penrose process to work, the negative energy particle must fall through the outer horizon, where

Δ𝑥 = 0. Can this happen? Must it happen?
Solution. See the end of §23.17.
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23.9 Constant latitude trajectories in the Kerr-Newman geometry

For simplicity, the next several sections, up to and including §23.20, are restricted to Kerr-Newman black
holes with zero magnetic charge, 𝒬∙ = 0, and zero cosmological constant, Λ = 0.
A trajectory is at constant latitude if it is at constant polar angle 𝜃, or equivalently at constant 𝑦 ≡ − cos 𝜃,

𝑦 = constant . (23.54)

Constant latitude orbits occur where the angular potential 𝑃 2
𝑦 , equation (23.10b), not only vanishes, but is

an extremum,

𝑃 2
𝑦 =

𝑑𝑃 2
𝑦

𝑑𝑦
= 0 , (23.55)

the derivative being taken with the constants of motion 𝐸, 𝐿, and 𝒦 of the orbit being held fixed. The
condition 𝑃 2

𝑦 = 0 sets the value of the Carter integral 𝒦. Solving 𝑑𝑃 2
𝑦 /𝑑𝑦 = 0 yields the condition between

energy 𝐸 and angular momentum 𝐿

𝐸 = ±
√︂
𝑚2 +

𝐿2

𝑎2 sin4𝜃
. (23.56)

Solutions at any polar angle 𝜃 and any angular momentum 𝐿 exist, ranging from 𝐸 = ±𝑚 at 𝐿 = 0, to
𝐸 = ±𝐿/(𝑎 sin2𝜃) at 𝐿 → ±∞. The solutions with 𝐿 = 0 are those of the freely-falling observers that
define the Doran coordinate system, §9.18. The solutions with 𝐿→∞ define the principal null congruences
discussed in §23.6.

23.10 Circular orbits in the Kerr-Newman geometry

For simplicity, this section 23.10 is restricted to Kerr-Newman black holes with zero magnetic charge and
cosmological constant,

𝒬∙ = Λ = 0 . (23.57)

For brevity, the black hole subscripts will be dropped from the black hole mass and electric charge 𝑀∙ and
𝑄∙,

𝑀∙ =𝑀 , 𝑄∙ = 𝑄 . (23.58)

23.10.1 Condition for a circular orbit

An orbit can be termed circular if it is at constant radius 𝑟,

𝑟 = constant . (23.59)

It is convenient to call such an orbit circular even if the orbit is at finite inclination (not confined to the
equatorial plane) about a rotating black hole, and therefore follows the surface of a spheroid (in Boyer-
Lindquist coordinates).



23.10 Circular orbits in the Kerr-Newman geometry 675

Orbits turn around in 𝑟, reaching periapsis or apoapsis, where the radial potential 𝑃 2
𝑥 , equation (23.10a),

vanishes. Circular orbits occur where the radial potential 𝑃 2
𝑥 not only vanishes, but is an extremum,

𝑃 2
𝑥 =

𝑑𝑃 2
𝑥

𝑑𝑟
= 0 , (23.60)

the derivative being taken with the constants of motion 𝐸, 𝐿, and 𝒬 of the orbit being held fixed. Circular
orbits may be either stable or unstable. The stability of a circular orbit is determined by the sign of the
second derivative of the potential

𝑑2𝑃 2
𝑥

𝑑𝑟2
, (23.61)

with − for stable, + for unstable circular orbits. Marginally stable orbits occur where 𝑑2𝑃 2
𝑥/𝑑𝑟

2 = 0.
Circular orbits occur not only in the equatorial plane, but at general inclinations. The inclination of an

orbit can be characterized by the maximum latitude 𝑦max, or equivalently the minimum polar angle 𝜃min,
that the orbit reaches. An astronomer would call arcsin(𝑦max) = 𝜋/2−𝜃min the inclination angle of the orbit.
It is convenient to define an inclination parameter 𝛼 by

𝛼 ≡ 𝑦2max = cos2𝜃min , (23.62)

which lies in the interval [0, 1]. Equatorial orbits, at 𝑦 = 0, correspond to 𝛼 = 0, while polar orbits, those
that go over the poles at 𝑦 = ±1, correspond to 𝛼 = 1.
The maximum latitude 𝑦max reached by an orbit occurs at the turnaround point 𝑃𝑦 = 0. Inserting this

condition into equation (23.10b) allows the Carter constant 𝒦, or equivalently the Carter integral 𝒬, equa-
tion (23.31), to be eliminated in favour of the inclination parameter 𝛼, equation (23.62)

𝒬 = 𝒦 − (𝐿− 𝑎𝐸)2 = 𝛼

[︂
𝑎2(𝑚2 − 𝐸2) +

𝐿2

1− 𝛼

]︂
. (23.63)

Equation (23.63) is a quadratic equation in 𝛼, so has two roots for 𝛼 at fixed 𝐸, 𝐿, and 𝒬. The quadratic
is 𝒬(1− 𝛼) + 𝛼(1− 𝛼)𝑎2(𝐸2 −𝑚2)− 𝛼𝐿2, which equals 𝒬 at 𝛼 = 0, and −𝐿2 at 𝛼 = 1. Therefore there is
one root in 𝛼 ∈ [0, 1] if 𝒬 > 0, and two roots if 𝒬 < 0 (given that, for an orbit to exist, at least one root
must lie in 𝛼 ∈ [0, 1]),

𝒬 > 0 1 root in 𝛼 ∈ [0, 1] ,

𝒬 < 0 2 roots in 𝛼 ∈ [0, 1] .
(23.64)

For one root in 𝛼 ∈ [0, 1], the orbit has only a maximum latitude; for two roots, the orbit has a minimum as
well as a maximum latitude. All the equations in what follows hold true for 𝛼 the inclination parameter at
an extremum, whether maximum or minimum.
The energy per unit mass of a particle at infinity must exceed its rest mass, |𝐸/𝑚| ≥ 1 (𝐸 is positive in

the Universe, negative in the Parallel Universe). A particle with energy less than its rest mass, |𝐸/𝑚| < 1,
cannot go to infinity, and is said to be bound. Equation (23.63) implies that the Carter integral 𝒬 is positive
for bound orbits, 𝒬 ≥ 0 (with 𝒬 = 0 for equatorial orbits, 𝛼 = 0). Therefore all bound orbits have only a
maximum latitude; they all pass through the equator.
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Exercise 23.7. Circular geodesics at constant latitude? Are there circular geodesics at constant
latitude?
Solution. Inserting the constant latitude conditions on 𝒦 and 𝐸 from §23.9 into the quadratic equa-
tion (23.63) for the inclination parameter 𝛼 shows that circular geodesics at constant latitude satisfy 𝒬 = 0.
FIX are those in the equatorial plane, 𝛼 = 0.

23.11 General solution for circular orbits

The general solution for circular orbits of a test particle of arbitrary electric charge 𝑞 in the Kerr-Newman
geometry is as follows. For vanishing electric charge, see §23.12.
The rest mass 𝑚 of the test particle can be set equal to unity, 𝑚 = 1, without loss of generality. Circular

orbits of particles with zero rest mass, 𝑚 = 0, discussed in §23.13 below, occur in cases where the circular
orbits for massive particles attain infinite energy and angular momentum.
In the radial potential 𝑃 2

𝑥 , equation (23.10a), eliminate the Carter integral 𝒦 in favour of the inclination
parameter 𝛼 using equation (23.63). Furthermore, eliminate the energy 𝐸 ≡ −𝜋𝑡 in favour of 𝑃𝑡, equa-
tion (23.5a). The radial derivatives 𝑑𝑛𝑃 2

𝑥/𝑑𝑟
𝑛 must be taken before 𝐸 is replaced by 𝑃𝑡, since 𝐸 is a constant

of motion, whereas 𝑃𝑡 varies with 𝑟. For Kerr-Newman, the expression (23.5a) for 𝑃𝑡 is

𝑃𝑡 = −𝐸 +
𝑎𝐿

𝑅2
+
𝑞𝑄𝑟

𝑅2
. (23.65)

In accordance with Table 23.1, solutions with negative 𝑃𝑡 correspond to orbits in the Universe, Wormhole,
or Antiverse parts of the Kerr-Newman geometry in the Penrose diagram of Figure 9.6, while solutions with
positive 𝑃𝑡 correspond to orbits in their Parallel counterparts. If only the Universe region is considered, then
𝑃𝑡 is necessarily negative. By contrast, the energy 𝐸 can be either positive or negative in the same region
of the Kerr-Newman geometry (the energy 𝐸 is negative for orbits of sufficiently large negative angular
momentum 𝐿 inside the ergosphere of the Universe). Circular orbits cannot occur between the outer and
inner horizons (why not?).
The condition 𝑃 2

𝑥 = 0, equation (23.60), is a quadratic equation in the azimuthal angular momentum
𝐿 ≡ 𝜋𝜑, whose solutions are

𝐿√
1− 𝛼

=
𝑅2

𝑟2 + 𝑎2𝛼

⎡⎣𝑎√1− 𝛼(︂−𝑃𝑡 + 𝑞𝑄𝑟

𝑅2

)︂
±

√︃
𝑃 2
𝑡

Δ𝑥
− (𝑟2 + 𝑎2𝛼)

⎤⎦ . (23.66)

Numerically, it is better to characterize an orbit by 𝐿/
√
1− 𝛼 rather than by 𝐿 itself, since the former

remains finite as 𝛼 → 1, whereas 𝐿 and 1 − 𝛼 both tend to zero at 𝛼 → 1. Substituting the two (±)
expressions (23.66) for 𝐿 into 𝑑𝑃 2

𝑥/𝑑𝑟, and setting the product of the resulting two expressions for 𝑑𝑃 2
𝑥/𝑑𝑟

equal to zero, equation (23.60), yields a quartic equation

𝑝0 + 𝑝1𝑃 + 𝑝2𝑃
2 + 𝑝3𝑃

3 + 𝑝4𝑃
4 = 0 , (23.67)
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for the dimensionless quantity 𝑃 (not to be confused with 𝑃𝑡 or 𝑃𝑥) defined by

𝑃 ≡ − 𝑃𝑡
𝑅2Δ𝑥

. (23.68)

The minus sign is introduced so as to make 𝑃 positive in the region of usual interest, which is the Universe
region of the Kerr-Newman geometry, where 𝑃𝑡 is negative (see Table 23.1). The sign of 𝑃 is always opposite
to that of 𝑃𝑡, since circular orbits exist only where Δ𝑥 ≥ 0, outside horizons. The coefficients 𝑝𝑖 of the
quartic (23.67) are

𝑝0 ≡ 𝑟2(𝑟2 + 𝑎2𝛼)2 , (23.69a)

𝑝1 ≡ −2𝑞𝑄𝑟(𝑟2 − 𝑎2𝛼)(𝑟2 + 𝑎2𝛼) , (23.69b)

𝑝2 ≡ − 2𝑟2(𝑟2 + 𝑎2𝛼)(𝑟2 − 3𝑀𝑟 + 2𝑄2 + 𝑎2𝛼+ 𝑎2𝛼𝑀/𝑟) + 𝑞2𝑄2(𝑟2 − 𝑎2𝛼)2 , (23.69c)

𝑝3 ≡ 2𝑞𝑄𝑟(𝑟2 − 𝑎2𝛼)(𝑟2 − 3𝑀𝑟 + 2𝑄2 + 2𝑎2 − 𝑎2𝛼+ 𝑎2𝛼𝑀/𝑟) , (23.69d)

𝑝4 ≡
[︀
𝑟6 − 6𝑀𝑟5 + (9𝑀2+4𝑄2+2𝑎2𝛼)𝑟4 − 4𝑀(3𝑄2+𝑎2)𝑟3

+(4𝑄4−6𝑎2𝛼𝑀+4𝑎2𝑄2+𝑎4𝛼2)𝑟2 + 2𝑎2𝛼(2𝑄2+2𝑎2−𝑎2𝛼)𝑀𝑟 + 𝑎4𝛼2𝑀2
]︀
. (23.69e)

The quartic (23.67) is the condition for an orbit at radius 𝑟 to be circular. Physical solutions 𝑃 must be real.
Barring degenerate cases, the quartic (23.67) has either zero, two, or four real solutions at any one radius 𝑟.
Numerically, it is better to solve the quartic (23.67) for the reciprocal 1/𝑃 rather than 𝑃 , since the vanishing
of 1/𝑃 defines the location of circular orbits of massless particles, §23.13. Roots of the quartic (23.67) as
a function of radius are illustrated in Figure 23.3 for a charged particle in Kerr-Newman black hole, with
illustrative values of black hole and particle parameters.

The azimuthal angular momentum 𝐿/
√
1− 𝛼, energy 𝐸, and stability 𝑑2𝑃 2

𝑥/𝑑𝑟
2 of a circular orbit are, in

terms of a solution 𝑃 of the quartic (23.67),

𝐿√
1− 𝛼

=
1

2𝑎
√
1− 𝛼

[︀
𝑅2𝑃−1 − 𝑞𝑄(𝑟2 − 𝑎2)/𝑟 − (𝑅2 − 3𝑀𝑟 + 2𝑄2 + 𝑎2𝑀/𝑟)𝑃

]︀
= ± 1

𝑟2 + 𝑎2𝛼

√︀
𝑙−1𝑃−1 + 𝑙0 + 𝑙1𝑃 + 𝑙2𝑃 2 , (23.70a)

𝐸 = 1
2

[︀
𝑃−1 + 𝑞𝑄/𝑟 + (1−𝑀/𝑟)𝑃

]︀
= ± 1

𝑟2 + 𝑎2𝛼

√︀
𝑒−1𝑃−1 + 𝑒0 + 𝑒1𝑃 + 𝑒2𝑃 2 , (23.70b)

𝑑2𝑃 2
𝑥

𝑑𝑟2
=

2

(𝑟2 + 𝑎2𝛼)2
(︀
𝑞−1𝑃

−1 + 𝑞0 + 𝑞1𝑃 + 𝑞2𝑃
2
)︀
, (23.70c)
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Figure 23.3 Values of 1/𝑃 , equation (23.68), angular momentum 𝐿, and energy 𝐸, for circular orbits at radius 𝑟 of a

charged particle about a Kerr-Newman black hole. The parameters are illustrative: the black hole has spin parameter

𝑎/𝑀 = 0.5 and charge 𝑄/𝑀 = 0.5, and the particle has charge-to-mass 𝑞/𝑚 = 2.4 (so 𝑞𝑄/(𝑚𝑀) = 1.2) on an orbit

of inclination parameter 𝛼 = 0.5. The values 1/𝑃 are real roots of the quartic (23.67); generically there are either

zero, two, or four real roots at any one radius. Solid (green) lines indicate stable orbits; dashed (brown) lines indicate

unstable orbits. Positive 1/𝑃 orbits occur in Universe, Wormhole, and Antiverse regions; negative 1/𝑃 orbits occur

in their Parallel counterparts; zero 1/𝑃 orbits are null. The fact that the particle is charged breaks the symmetry

between positive and negative 1/𝑃 . If the charge of the particle were flipped, 𝑞/𝑚 = −2.4, then the diagrams would

be reflected about the horizontal axes (the signs of 1/𝑃 , 𝐸, and 𝐿 would flip). Orbits are marked p for prograde, r for

retrograde. In the Universe (𝑟 > 𝑟+), a positive charge 𝑞 is repelled by the positive charge 𝑄 of the black hole; with

𝑞𝑄 ≥ 𝑚𝑀 , as here, the electrical repulsion exceeds the gravitational attraction, and there are no circular orbits at

large 𝑟. Conversely, a negative charge 𝑞 is attracted by the positive charge 𝑄 of the black hole, and there are circular

orbits at large 𝑟. In the Antiverse (𝑟 < 0), the situation is symmetrically equivalent to one in which the radius is

positive and the mass and charge are flipped, transformation (23.77); the positive charge 𝑞 effectively sees a black

hole with negative mass −𝑀 and negative charge −𝑄, and is therefore attracted by the charged black hole. Thus in

the Antiverse, there are circular orbits at large negative 𝑟 for 𝑞𝑄 ≥ 𝑚𝑀 , as here, but not for 𝑞𝑄 < 𝑚𝑀 .
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where the coefficients 𝑙𝑖, 𝑒𝑖, and 𝑞𝑖 are

𝑙−1 ≡ 𝑞𝑄𝑟𝑅2(𝑟2 + 𝑎2𝛼) , (23.71a)

𝑙0 ≡ −𝑅2(𝑟2 + 𝑎2𝛼)(2𝑀𝑟 −𝑄2)− 𝑞2𝑄2(𝑟4 − 𝑎4𝛼) , (23.71b)

𝑙1 ≡ −
𝑞𝑄

𝑟

[︀
2𝑟6 − 5𝑀𝑟5 + 3(𝑄2+𝑎2)𝑟4 − 𝑎2(1+𝛼)𝑀𝑟3 + 𝑎2(𝑄2+𝛼𝑄2+𝑎2−𝑎2𝛼)𝑟2

+3𝑎4𝛼𝑀𝑟 − 𝑎4𝛼(𝑄2+𝑎2)
]︀
, (23.71c)

𝑙2 ≡
[︀
3𝑀𝑟3 − 2𝑄2𝑟2 + 𝑎2(1+𝛼)𝑀𝑟 − 𝑎2(1+𝛼)𝑄2 − 𝑎4𝛼𝑀/𝑟

]︀
𝑅4Δ𝑥 , (23.71d)

𝑒−1 ≡ 𝑞𝑄𝑟(𝑟2 + 𝑎2𝛼) , (23.72a)

𝑒0 ≡ (𝑟2 + 𝑎2𝛼)(𝑟2 − 2𝑀𝑟 +𝑄2 + 𝑎2𝛼) + 𝑞2𝑄2𝑎2𝛼 , (23.72b)

𝑒1 ≡
𝑞𝑄

𝑟

[︀
𝑀𝑟3 − (𝑄2 + 𝑎2 − 2𝑎2𝛼)𝑟2 − 3𝑎2𝛼𝑀𝑟 + 𝑎2𝛼(𝑄2+𝑎2)

]︀
, (23.72c)

𝑒2 ≡ (𝑀𝑟 −𝑄2 − 𝑎2𝛼𝑀/𝑟)𝑅4Δ𝑥 , (23.72d)

and

𝑞−1 ≡ 2𝑞𝑄𝑟(𝑟2 − 𝑎2𝛼)(𝑟2 + 𝑎2𝛼) , (23.73a)

𝑞0 ≡ − 4(𝑟2 + 𝑎2𝛼)(𝑀𝑟3 −𝑄2𝑟2 − 𝑎2𝛼𝑀𝑟)− 𝑞2𝑄2(𝑟2 − 𝑎2𝛼)2 , (23.73b)

𝑞1 ≡ −
𝑞𝑄

𝑟

[︀
𝑟6 − 4𝑀𝑟5 + 3(𝑄2+𝑎2−2𝑎2𝛼)𝑟4 + 12𝑎2𝛼𝑀𝑟3 − 𝑎2𝛼(6𝑄2+6𝑎2−𝑎2𝛼)𝑟2 − 𝑎4𝛼2(𝑄2+𝑎2)

]︀
,

(23.73c)

𝑞2 ≡
(︀
3𝑀𝑟3 − 4𝑄2𝑟2 − 6𝑎2𝛼𝑀𝑟 − 𝑎4𝛼2𝑀/𝑟

)︀
𝑅4Δ𝑥 . (23.73d)

Equations (23.70) determine the values of 𝐿, 𝐸, and 𝑑2𝑃 2
𝑥/𝑑𝑟

2 uniquely for any given root 𝑃 of the quar-
tic (23.67). The expressions on the second lines of equations (23.70a) for 𝐿 and equations (23.70b) for 𝐸 are
equivalent to the expressions on the first lines, the sign of the second expressions being chosen to agree with
those of the first expressions. For 𝐿, the first expression has the virtue of being unambiguous in sign, while
the second expression has the virtue of remaining well-behaved in the limit 𝑎 → 0 or 1 − 𝛼 → 0. The two
expressions (23.70a) for 𝐿 are moreover equivalent to the expression (23.66) with one of the two choices of
sign in the latter.
For non-zero 𝑎, the reality of a solution 𝑃 of the quartic (23.67) is a necessary and sufficient condition for a

corresponding circular orbit to exist. In particular, the argument of the square root in the expression (23.70a)
for 𝐿 is guaranteed to be positive. For zero 𝑎, however, the quartic (23.67), which reduces in this case to
the square of a quadratic, §23.20, admits real solutions that do not correspond to a circular orbit. For these
invalid solutions, the argument of the square root in the second-line expression (23.70a) for 𝐿 is negative.
Thus for zero 𝑎, a necessary and sufficient condition for a circular orbit to exist is that the solutions for both
𝑃 and 𝐿 be real.
Equation (23.70b) shows immediately that circular orbits of neutral (𝑞 = 0) particles necessarily have
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positive energy 𝐸 in the Universe region outside the horizon, where 𝑃 ≥ 0 and 𝑟 ≥𝑀 . It is true, but not so
obvious, that circular orbits of charged particles (𝑞 ̸= 0) must also have positive energy 𝐸 in the Universe
region outside the horizon. As discussed in §23.17, equation (23.100), the circular orbits with the smallest
possible energy are equatorial orbits at the horizon of an extremal uncharged black hole.
Also of interest is the derivative 𝑑𝑃 2

𝑦 /𝑑𝛼 of the angular potential at turnaround, where 𝑃𝑦 = 0. Orbits at
constant latitude occur where 𝑑𝑃 2

𝑦 /𝑑𝛼 vanishes at turnaround. In terms of a solution 𝑃 of the quartic (23.67),
the derivative 𝑑𝑃 2

𝑦 /𝑑𝛼 is

𝑑𝑃 2
𝑦

𝑑𝛼
=

1

𝑟2 + 𝑎2𝛼

(︀
𝑘−1𝑃

−1 + 𝑘0 + 𝑘1𝑃 + 𝑘2𝑃
2
)︀
, (23.74)

where the coefficients 𝑘𝑖 are

𝑘−1 ≡ −𝑞𝑄𝑟(𝑟2 + 𝑎2𝛼) , (23.75a)

𝑘0 ≡ (𝑟2 + 𝑎2𝛼)(2𝑀𝑟 −𝑄2) + 𝑞2𝑄2(𝑟2 − 𝑎2𝛼) , (23.75b)

𝑘1 ≡
𝑞𝑄

𝑟

[︀
(2𝑟4 − 5𝑀𝑟3 + 3(𝑄2 + 𝑎2 − 2𝑎2𝛼)𝑟2 + 𝑎2𝛼(3𝑀𝑟 −𝑄2 − 𝑎2)

]︀
, (23.75c)

𝑘2 ≡ − (3𝑀𝑟 − 2𝑄2 − 𝑎2𝛼𝑀/𝑟)𝑅4Δ𝑥 , (23.75d)

23.11.1 Discrete symmetries of the orbital structure

The orbital structure in the Kerr-Newman geometry has two discrete symmetry transformations, parallel
and radial flips. The parallel flip, which arises from time reversal symmetry 𝑡 ↔ −𝑡 of the Kerr-Newman
geometry, exchanges Universes, Wormholes, and Antiverses with their Parallel counterparts,

𝑃 ↔ −𝑃 , 𝑄↔ −𝑄 , 𝐿↔ −𝐿 , 𝐸 ↔ −𝐸 . (23.76)

The radial flip exchanges Universes and Antiverses,

𝑟 ↔ −𝑟 , 𝑀 ↔ −𝑀 , 𝑄↔ −𝑄 . (23.77)

23.11.2 Prograde and retrograde orbits

At zero spin, 𝑎 = 0, the quartic (23.67) reduces to the square of a quadratic (this is the Reissner-Nordström
case considered in §23.20). Each real root 𝑃 in this case is doubly degenerate. The two roots have opposite
signs of the angular momentum 𝐿/

√
1− 𝛼. As the spin 𝑎 is increased away from zero, the two roots for 𝑃

are rotationally split. The root with the more positive angular momentum 𝐿 (the direction of the axis of the
black hole being taken so that 𝑎 is positive) is called prograde, while the root with the more negative angular
momentum is called retrograde (this is in the Universe, Wormhole, and Antiverse parts of the geometry,
where 𝑃 is positive; in their parallel counterparts, the prograde orbit has more negative 𝐿, consistent with the
symmetry transformation (23.76); in all, the prograde orbit is the one with the more positive 𝑃𝑎𝐿/

√
1− 𝛼).

Every transition between prograde and retrograde occurs at a double root 𝑃 of the quartic; but not every
double root has such a transition. For example, in the charged particle case illustrated in Figure 23.3, in the
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Universe part of the geometry (𝑃 > 0, 𝑟 > 𝑟+), there are two prograde orbits at the same radius at and
just inside the prograde null circular orbit (1/𝑃 → +0); and similarly there are two retrograde orbits at the
same radius at and just inside the retrograde null circular orbit.

23.12 Circular geodesics (orbits for particles with zero electric charge)

Geodesics are trajectories for freely-falling neutral particles, whose motion is influenced only by gravity. For
a particle with zero electric charge, 𝑞 = 0, the odd coefficients 𝑝𝑖 vanish in the quartic condition (23.67) for a
circular orbit vanish, and the quartic reduces to a quadratic in 𝑃 2. Solving the quadratic yields two possible
solutions

1/𝑃 2 =
𝐹±

𝑟2 + 𝑎2𝛼
, (23.78)

where 𝐹± are

𝐹± ≡ 𝑟2 − 3𝑀𝑟 + 2𝑄2 + 𝑎2𝛼(1 +𝑀/𝑟) ± 2𝑎
√︀

(1− 𝛼)(𝑀𝑟 −𝑄2 − 𝑎2𝛼𝑀/𝑟) . (23.79)

with + and − defining respectively prograde and retrograde orbits. By flipping the direction of the rotation
axis, the spin parameter 𝑎 can always be chosen to be positive, 𝑎 ≥ 0. For non-zero spin 𝑎 ̸= 0, the necessary
and sufficient condition for the existence of a circular orbit is that 𝑃 be real, which requires that 𝐹± be real
and positive, that is,

𝑀𝑟 −𝑄2 − 𝑎2𝛼𝑀/𝑟 ≥ 0 and 𝐹± ≥ 0 . (23.80)

The conditions (23.80) remain necessary and sufficient in the limit 𝑎 = 0 of zero spin (where 𝑃 is real even
without the first of the two conditions (23.80)). For zero electric charge 𝑞, the expressions (23.70) for the
angular momentum 𝐿, energy 𝐸, and stability 𝑑2𝑃 2

𝑥/𝑑𝑟
2 of a circular orbit, and the expression (23.74) for

the angular derivative 𝑑𝑃 2
𝑦 /𝑑𝛼 of the angular potential, simplify to

𝐿√
1− 𝛼

=
1

2𝑎
√
1− 𝛼

[︀
𝑅2𝑃−1 − (𝑅2 − 3𝑀𝑟 + 2𝑄2 + 𝑎2𝑀/𝑟)𝑃

]︀
= ± 1

𝑟2 + 𝑎2𝛼

√︀
𝑙0 + 𝑙2𝑃 2 , (23.81a)

𝐸 = 1
2

[︀
𝑃−1 + (1−𝑀/𝑟)𝑃

]︀
= ± 1

𝑟2 + 𝑎2𝛼

√︀
𝑒0 + 𝑒2𝑃 2 , (23.81b)

𝑑2𝑃 2
𝑥

𝑑𝑟2
=

2

(𝑟2 + 𝑎2𝛼)2
(︀
𝑞0 + 𝑞2𝑃

2
)︀
, (23.81c)

𝑑𝑃 2
𝑦

𝑑𝛼
=

1

𝑟2 + 𝑎2𝛼

(︀
𝑘0 + 𝑘2𝑃

2
)︀
. (23.81d)
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Figure 23.4 Location of stable (shaded green) and unstable (shaded amber) circular orbits in a Kerr black hole with

spin (top) slightly sub-extremal (𝑎 = 0.999𝑀), and (bottom) extremal (𝑎 =𝑀). The plotted latitude of each circular

orbit is its inclination, the maximum latitude reached by the orbit. Null (violet), marginally stable (green), and

constant-latitude (grey; inside the Antiverse, at 𝑟 < 0) circular orbits are marked. Regions where circular orbits exist

are bounded by the two conditions (23.80) (brown and violet). Prograde orbits are drawn to the left of the vertical

axis, retrograde orbits to the right. Outer and inner ergospheres (dashed, purple), outer and inner horizons (red),

sisytubes (cyan), and singularities (black) are shown as in Figures 9.1 and 9.3.
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Figure 23.5 As Figure 23.4, but for a Kerr black hole with spin (top) slightly super-extremal (𝑎 = 1.001𝑀), and

(bottom) super-extremal (𝑎 = 1.25𝑀). Ergospheres, sisytubes, and singularities are shown as in Figure 9.4.

The coefficients 𝑙𝑖, 𝑒𝑖, and 𝑞𝑖 from equations (23.71), (23.72), and (23.73) reduce to

𝑙0 ≡ −𝑅2(𝑟2 + 𝑎2𝛼)(2𝑀𝑟 −𝑄2) , (23.82a)

𝑙2 ≡
[︀
3𝑀𝑟3 − 2𝑄2𝑟2 + 𝑎2(1+𝛼)𝑀𝑟 − 𝑎2(1+𝛼)𝑄2 − 𝑎4𝛼𝑀/𝑟

]︀
𝑅4Δ𝑥 , (23.82b)
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𝑒0 ≡ (𝑟2 + 𝑎2𝛼)(𝑟2 − 2𝑀𝑟 +𝑄2 + 𝑎2𝛼) , (23.83a)

𝑒2 ≡ (𝑀𝑟 −𝑄2 − 𝑎2𝛼𝑀/𝑟)𝑅4Δ𝑥 , (23.83b)

and

𝑞0 ≡ − 4(𝑟2 + 𝑎2𝛼)(𝑀𝑟3 −𝑄2𝑟2 − 𝑎2𝛼𝑀𝑟) , (23.84a)

𝑞2 ≡
(︀
3𝑀𝑟3 − 4𝑄2𝑟2 − 6𝑎2𝛼𝑀𝑟 − 𝑎4𝛼2𝑀/𝑟

)︀
𝑅4Δ𝑥 , (23.84b)

while the coefficients 𝑘𝑖 from equations (23.75) reduce to

𝑘0 ≡ (𝑟2 + 𝑎2𝛼)(2𝑀𝑟 −𝑄2) , (23.85a)

𝑘2 ≡ − (3𝑀𝑟 − 2𝑄2 − 𝑎2𝛼𝑀/𝑟)𝑅4Δ𝑥 . (23.85b)

Figures 23.4 and 23.5 illustrate the location of stable and unstable circular orbits in the Kerr geometry
(𝑄 = 0) with sub-extremal and extremal spins (Figure 23.4), and super-extremal spin (Figure 23.5). The
four spins shown, 𝑎/𝑀 = 0.999, 1, 1.001, and 1.25, are chosen to bring out how the orbital structure changes
from sub- to super-extremal.
The locations of circular orbits are bounded by the two conditions (23.80). The boundaries corresponding

to the two conditions (23.80) are marked respectively by solid amber and violet lines in Figures 23.4 and 23.5.
As discussed further in §23.13, the boundary of the second of the two conditions (23.80), 𝐹± = 0, corresponds
to null circular orbits.
All circular orbits at 𝑟 > 0 have positive Carter integral, 𝒬 ≥ 0 (with 𝒬 = 0 for equatorial orbits), and

therefore pass through the equator according to condition (23.64). Conversely, all circular orbits at 𝑟 < 0

have strictly negative Carter integral 𝒬 < 0, and therefore do not pass through the equator: they have both
a maximum and minimum latitude.

23.13 Null circular orbits

Null circular orbits define the photon sphere, marked by solid violet lines in Figures 23.4 and 23.5. Circular
orbits for massless particles, 𝑚 = 0, or null circular orbits, follow from the solutions for massive particles
in the case where the energy and angular momentum on the circular orbit become infinite, which occurs
when 𝑃𝑡 → ±∞. Except at horizons, where Δ𝑥 = 0, this occurs when a solution 𝑃 ≡ −𝑃𝑡/(𝑅2Δ𝑥) of
the quartic (23.67) diverges, which happens when the ratio 𝑝4/𝑝0 of the highest to lowest order coefficients
vanishes. The ratio 𝑝4/𝑝0, equations (23.69), factors as

𝑝4
𝑝0

=
𝐹+𝐹−

(𝑟2 + 𝑎2𝛼)2
, (23.86)

where 𝐹± are defined by equation (23.79). A null circular orbit thus occurs at a radius 𝑟 such that

𝐹+ = 0 or 𝐹− = 0 , (23.87)
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Figure 23.6 Radii of null circular orbits (generalization of the photon sphere) for a Kerr black hole with various

spin parameters 𝑎, including super-extremal spin parameters, |𝑎/𝑀 | > 1. Positive and negative 𝑎/𝑀 signify prograde

(𝐹+ = 0) and retrograde (𝐹− = 0) orbits respectively. Lines are labelled with values of the inclination parameter

𝛼, varying from equatorial orbits (𝛼 = 0) to polar orbits (𝛼 = 1). Solid lines indicate unstable orbits; dashed lines

indicate stable orbits; long dashed lines mark the transition between unstable and stable orbits. The radii 𝑟− and 𝑟+
of the inner and outer horizons are shown for reference.

with + for prograde (𝑎𝐿 > 0) orbits, − for retrograde (𝑎𝐿 < 0) orbits. The location of null circular orbits
are independent of the charge 𝑞 of the particle, since 𝐹± are independent of charge 𝑞.
The condition (23.87) for a photon sphere is a quadratic equation for the inclination parameter 𝛼, yielding√︀
1− 𝛼𝑝 =

1

𝑎(𝑟𝑝 −𝑀)

[︁
± 𝑟𝑝

√︁
𝑅2
𝑝 − 2𝑀𝑟𝑝 +𝑄2 ±

√︁
2𝑀𝑟3𝑝 − (3𝑀2 +𝑄2)𝑟2𝑝 + 2𝑀𝑄2𝑟𝑝 + 𝑎2𝑀2

]︁
. (23.88)

The photon sphere radius 𝑟𝑝 ranges over values such that 𝛼𝑝 ∈ [0, 1]. The azimuthal angular momentum
𝐽𝑝 ≡ 𝐿/𝐸 per unit energy on the photon sphere is, from equation (23.70a) in the limit 𝑃𝑡 → ±∞,

𝐽𝑝 =
𝑅2
𝑝 − 3𝑀𝑟𝑝 + 2𝑄2 + 𝑎2𝑀/𝑟𝑝

𝑎(𝑀/𝑟𝑝 − 1)
. (23.89)

The Carter constant 𝒦𝑝 ≡ 𝒦/𝐸 on the photon sphere is, equation (23.63),

𝒦𝑝 =
4𝑟2𝑝(𝑅

2
𝑝 − 2𝑀𝑟𝑝 +𝑄2)

(𝑟𝑝 −𝑀)2
. (23.90)
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In the limit of an extremal Kerr-Newman black hole, the angular momentum (23.89) and Carter con-
stant (23.90) on the photon sphere reduce to

𝐽𝑝 =
− 𝑟2𝑝 + 2𝑀𝑟𝑝 + 𝑎2

𝑎
, 𝒦𝑝 = 4𝑟2𝑝 . (23.91)

In this case of an extremal Kerr-Newman black hole, there is an additional range of Carter constants 𝒦𝑝 for
the part of the photon sphere that is on the horizon, 𝑟𝑝 =𝑀 ,

𝐽2
𝑝 ≤ 𝒦𝑝 ≤ 4𝑟2𝑝 . (23.92)

See §23.17 for more on orbits at the horizon of an extremal black hole.
Figure 23.6 illustrates the radii of null circular orbits for a Kerr (uncharged) black hole, for various spin

and inclination parameters 𝑎 and 𝛼, including super-extremal (|𝑎/𝑀 | > 1) spins. At zero spin, 𝑎 = 0, a
Schwarzschild black hole, there is just a single null circular orbit, at 𝑟 = 3𝑀 . For a spinning black hole with
given positive 𝑎/𝑀 (a negative 𝑎/𝑀 can be made positive by flipping the direction of the north pole), there
are, barring degenerate cases, 2, 4, or 6 distinct null circular orbits at each inclination. At any inclination
there are always 2 null circular orbits at negative radius, one prograde and one retrograde (in Figure 23.6,
prograde and retrograde orbits are plotted with 𝑎/𝑀 respectively positive and negative). In the usual case
of a sub-extremal (|𝑎/𝑀 | < 1) Kerr black hole, there are generally 2 null circular orbits at positive radius,
one prograde and one retrograde. If the black hole is sufficiently near extremal, then there are a further 2
null circular orbits at positive radius. If the black hole is sub-extremal (|𝑎/𝑀 | < 1), then the additional 2
orbits exist at small inclinations, 𝛼 < −3+2

√
3 ≈ 0.464; the 2 orbits lie between 𝑟 = 0 and the inner horizon

𝑟 = 𝑟−, and are both prograde. If the black hole is super-extremal (|𝑎/𝑀 | > 1), then the additional 2 orbits
exist at large inclinations, 𝛼 > −3 + 2

√
3 ≈ 0.464; one orbit is prograde, the other retrograde.

23.14 The silhouette of a black hole

An isolated (non-accreting) black hole should appear as a black disk silhouetted against the starry back-
ground. The edge of the black disk is defined by null circular orbits, the photon sphere, discussed in the
previous section 23.13. Figure 23.1 illustrates the silhouette of a Kerr black hole for various spin parameters,
as seen by a distant observer in the equatorial plane.

23.15 Marginally stable circular orbits

Figure 23.7 illustrates the radii of marginally stable orbits, those satisfying 𝑑2𝑃 2
𝑥/𝑑𝑟

2 = 0, for a Kerr
(uncharged) black hole for various spin and inclination parameters 𝑎 and 𝛼. Marginally stable circular orbits
are marked by solid green lines in Figures 23.4 and 23.5.
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Figure 23.7 Radii of marginally stable circular orbits for a Kerr black hole with various spin parameters 𝑎, including

super-extremal spin parameters, |𝑎/𝑀 | > 1. As in Figure 23.6, positive and negative 𝑎/𝑀 signify prograde and

retrograde orbits respectively. Lines are labelled with values of the inclination parameter 𝛼, varying from equatorial

orbits (𝛼 = 0) to polar orbits (𝛼 = 1). Long dashed lines, which are the same as in Figure 23.6, mark where marginally

stable orbits become null and terminate, examples of which are illustrated in Figures 23.4 and 23.5. The marginally

stable equatorial circular orbit (thick black line) is commonly called the ISCO (innermost stable circular orbit) when

the black hole is sub-extremal and the orbit is prograde, 0 ≤ 𝑎/𝑀 ≤ 1. The radii 𝑟− and 𝑟+ of the inner and outer

horizons are shown for reference.

23.16 Circular orbits at constant latitude in the Antiverse

In the Antiverse (𝑟 < 0), there are orbits that are not only circular but also at constant latitude, satisfying
𝑑𝑃 2

𝑦 /𝑑𝛼 = 0. These orbits are marked by solid grey lines in Figures 23.4 and 23.5. None of these orbits lies
inside the retrograde sisytube, so all of them progress forwards, not backwards, in Boyer-Lindquist time 𝑡.
As Figures 23.4 and 23.5 show, there are circular orbits that pass through the retrograde sisytube; but

their back-and-forth motion in latitude takes them in and out of the sisytube. These orbits spend a part of
their orbit going backwards, and a part going forwards, in Boyer-Lindquist time 𝑡.
In the more general situation of charged particles in spinning charged black holes, do there exist any

constant-latitude circular orbits that go backwards in Boyer-Lindquist time 𝑡? I have not been able to find
any. Do there exist circular orbits of any kind (not necessarily constant latitude) that go backwards in time
𝑡? I have not been able to find any. Nevertheless, if a particle is allowed to accelerate arbitrarily, there
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are trajectories inside the retrograde sisytube that go backwards in Boyer-Lindquist time 𝑡, and others on
which Boyer-Lindquist time 𝑡 does not change. The latter trajectories, when the azimuthal coordinate 𝜑 has
incremented by −2𝜋, constitute Closed Timelike Curves.

23.17 Circular orbits at the horizon of an extremal black hole

Away from horizons, the vanishing of 𝐹± defines the location of null circular orbits, §23.13. The case where
𝐹+ vanishes at a horizon (𝐹− never vanishes at a horizon) is special. This occurs when the black hole is
extremal, 𝑀2 = 𝑄2 + 𝑎2. A circular orbit on the horizon, always prograde, is non-null: if Δ𝑥 = 0, as is true
on the horizon, then the vanishing of 1/𝑃 ≡ −𝑅2Δ𝑥/𝑃𝑡 no longer implies that 𝑃𝑡 diverges.
A careful analysis shows that the limiting value of 𝑃𝑡/

√
Δ𝑥 is finite for a circular orbit at the horizon of

an extremal black hole, so in fact 𝑃𝑡 = 0 for such an orbit. Specifically, let 𝑃 be the dimensionless quantity

𝑃 ≡ − 𝑃𝑡

𝑀
√
Δ𝑥

. (23.93)

For circular orbits on the horizon of an extremal black hole, where 𝑟 = 𝑀 and 𝑀2 = 𝑄2 + 𝑎2, the quartic
condition (23.67) reduces to a quadratic

𝑝2 + 𝑝3𝑃 + 𝑝4𝑃
2 = 0 , (23.94)

where the coefficients 𝑝𝑖 are

𝑝2 ≡ 4𝑎2(1− 𝛼)(𝑀2 + 𝑎2𝛼) + (𝑞𝑄/𝑀)2(𝑀2 − 𝑎2𝛼)2 , (23.95a)

𝑝3 ≡ −2(𝑞𝑄/𝑀)(𝑀2 − 𝑎2𝛼)(𝑀2 + 𝑎2𝛼) , (23.95b)

𝑝4 ≡ (𝑀2 + 𝑎2)2 − 𝑎2(1− 𝛼)(6𝑀2 + 𝑎2 + 𝑎2𝛼) . (23.95c)

The azimuthal angular momentum 𝐿, energy 𝐸, and stability 𝑑2𝑃 2
𝑥/𝑑𝑟

2 of circular orbits on the horizon are

𝐿√
1− 𝛼

=
1

2𝑎

[︁
(𝑎2 −𝑀2)(𝑞𝑄/𝑀) + (𝑀2 + 𝑎2)𝑃

]︁
= ± 1

𝑀2 + 𝑎2𝛼

√︁
�̃�0 + �̃�1𝑃 + �̃�2𝑃 2 , (23.96a)

𝐸 = 1
2

(︁
𝑃 + 𝑞𝑄/𝑀

)︁
, (23.96b)

𝑑2𝑃 2
𝑥

𝑑𝑟2
= 0 , (23.96c)

where the coefficients �̃�𝑖 are

�̃�0 ≡ − (𝑀2 + 𝑎2)2(𝑀2 + 𝑎2𝛼)− 𝑞2𝑄2(𝑀4 − 𝑎4𝛼) , (23.97a)

�̃�1 ≡ 𝑞𝑄𝑀(𝑀2 + 𝑎2)(𝑀2 + 𝑎2𝛼) , (23.97b)

�̃�2 ≡𝑀2(𝑀2 + 𝑎2)2 . (23.97c)

Circular orbits on the horizon are always marginally stable, equation (23.96c). Any small perturbation to a
marginally stable orbit starts it plunging into the unstable side of the orbit.
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Circular orbits on the horizon occur only for small enough inclinations 𝛼. For neutral particles, 𝑞𝑄 = 0,
the coefficient 𝑝3 vanishes, and 𝑝2 is positive, so the quadratic (23.94) has a real root 𝑃 only as long as 𝑝4
is negative. This imposes the condition that

𝛼 ≤ 𝑀(4𝑎2 −𝑀2)

𝑎2
(︀
3𝑀 + 2

√
2𝑀2 + 𝑎2

)︀ . (23.98)

For a Kerr (uncharged) black hole, where 𝑎 =𝑀 , the inclination must be less than

𝛼 ≤ − 3 + 2
√
3 = 0.464 , (23.99)

as illustrated in the bottom panel of Figure 23.4.
The orbital energy 𝐸 remains finite for a circular orbit at the horizon of an extremal black hole. An

interesting case is the circular orbit in the equatorial plane at the horizon of an uncharged extremal (𝑄 = 0,
𝑎 =𝑀) black hole, since this orbit has the smallest possible energy per unit mass among all circular orbits
in the Universe region (i.e. outside or at the outer horizon) of a Kerr-Newman black hole,

𝐸 =
𝑞𝑄

3𝑀
+

√︃
1

3
+

(︂
𝑞𝑄

3𝑀

)︂2

. (23.100)

Won’t 𝑞𝑄 vanish if 𝑄 = 0? In reality, not necessarily. Real astronomical black holes are almost neutral in part
because of the enormous charge-to-mass ratio of a proton, 𝑒/𝑚𝑝 ≈ 1018 in Planck units. (Concept question:
Why?) But the same large charge-to-mass ratio means that 𝑞𝑄 could be appreciable in spite of the smallness
of the black hole charge 𝑄. The smallest possible energy 𝐸 of a circular orbit occurs as 𝑞𝑄 diverges to −∞,

𝐸 → 0 as 𝑞𝑄→ −∞ . (23.101)

The smallest possible energy for a circular orbit for a neutral particle, 𝑞 = 0, is

𝐸 =
1√
3
. (23.102)

Of course, there are trajectories with negative energy 𝐸 in the outer ergosphere, but these trajectories are
not circular. The absence of circular orbits with negative energies outside or at the outer horizon implies
that all trajectories with negative energy must fall inside the horizon.

Concept question 23.8. Are principal null geodesics circular orbits?Outgoing principal null geodesics
hold steady on the outer horizon, remaining at constant 𝑟 = 𝑟+ as time 𝑡 goes by. Are outgoing principal
null geodesics therefore null circular orbits on the horizon? Answer. No. The resolution of the conundrum is
that whereas no Boyer-Lindquist time 𝑡 passes on a geodesic at the horizon, proper time does pass. An orbit
is circular if it is so for a massive particle; and a circular orbit is null in the limit of a relativistic massive
particle. If a massive particle is put on the outer horizon on a relativistic geodesic, then the massive particle
necessarily falls off the horizon into the black hole in a finite proper time: it is impossible for the geodesic to
hold steady on the horizon. The exception to circular orbits on the horizon is that, as discussed §23.17, an
extremal black hole may have circular orbits at its horizon; but these orbits have 𝑃𝑡 = 0, and are not null.
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Figure 23.8 Values of the Hamilton-Jacobi parameter 𝑃𝑡 for circular orbits at radius 𝑟 in the equatorial plane of a

near-extremal Kerr black hole, with black hole spin parameter 𝑎 = 0.999𝑀 . The diagram illustrates that as the orbital

radius 𝑟 approaches the horizon, 𝑃𝑡 first approaches zero, but then increases sharply to infinity, corresponding to null

circular orbits. In the case of an exactly extremal black hole, 𝑃𝑡 goes as to zero at the horizon, there is no increase

of 𝑃𝑡 to infinity, and no null circular orbit. Solid (green) lines indicate stable orbits; dashed (brown) lines indicate

unstable orbits.

23.18 Equatorial circular orbits in the Kerr geometry

The case of greatest practical interest to astrophysicists is that of circular orbits in the equatorial plane of
an uncharged black hole, the Kerr geometry.
For circular orbits in the equatorial plane, 𝛼 = 0, of an uncharged black hole, 𝑄 = 0, the solution (23.78)

for 𝑃 simplifies to

1/𝑃 2 =
𝐹±
𝑟2

(23.103)

where 𝐹±, equation (23.79), reduce to

𝐹± ≡ 𝑟2 − 3𝑀𝑟 ± 2𝑎
√
𝑀𝑟 , (23.104)

with + for prograde (𝑎𝐿 > 0) orbits, − for retrograde (𝑎𝐿 < 0) orbits.
As discussed in §23.13, null circular orbits occur where 𝐹± = 0, except in the special case that the circular

orbit is at the horizon, which occurs when the black hole is extremal. In the limit where the Kerr black hole
is near but not exactly extremal, 𝑎 → |𝑀 |, null circular orbits occur at 𝑟 → 𝑀 (prograde) and 𝑟 → 4𝑀

(retrograde). For an exactly extremal Kerr black hole, 𝑎 = |𝑀 |, the (prograde) circular orbit at the horizon
is no longer null. The situation of a near-extremal Kerr black hole is illustrated by Figure 23.8.
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Figure 23.9 Energy 𝐸 and azimuthal angular momentum |𝐿/𝑀 | of circular orbits on the ISCO of a Kerr black hole as

a function of the spin parameter 𝑎/𝑀 . The angular momentum 𝐿 is positive for 𝑎 > 0 (prograde), negative for 𝑎 < 0

(retrograde).

23.18.1 Innermost stable circular orbit (ISCO)

Astronomers generally argue that the inner edge of an accretion disk is likely to occur at the innermost stable
equatorial circular orbit, commonly called the ISCO in the literature. An orbit at this point has marginal
stability, 𝑑2𝑃 2

𝑥/𝑑𝑟
2 = 0. Simplifying the stability 𝑑2𝑃 2

𝑥/𝑑𝑟
2 from equation (23.81c) to the case of equatorial

orbits, 𝛼 = 0, and zero black hole charge, 𝑄 = 0, yields the condition of marginal stability

𝑟2 − 6𝑀𝑟 − 3𝑎2 ± 8𝑎
√
𝑀𝑟 = 0 . (23.105)

The + (prograde) orbit has the smaller radius, and so defines the innermost stable circular orbit. For an
extremal Kerr black hole, 𝑎 = |𝑀 |, marginally stable circular equatorial orbits are at 𝑟 =𝑀 (prograde) and
𝑟 = 9𝑀 (retrograde).
The energy 𝐸 and angular momentum 𝐿 of a particle on a marginally stable circular equatorial orbit are

𝐸 =

√︂
1− 2𝑀

3𝑟
, (23.106a)

𝐿 = ± 2𝑀

3
√
3

√︃
12𝑟

𝑀
− 7 + 4

√︂
3𝑟

𝑀
− 2 , (23.106b)

which are illustrated in Figure 23.9.
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Figure 23.10 Efficiency of accretion on to a Kerr black hole, equation (23.107). The efficiency varies from 𝜂 = 0.06 at

𝑎 = 0 to 𝜂 = 0.42 at 𝑎 =𝑀 .

23.19 Thin disk accretion

There is a vast observational and theoretical literature on astrophysical accretion flows on to black holes,
which is beyond the intended scope of this book (see Abramowicz and Fragile (2013) for a review).
The simplest model of accretion on to a spinning astronomical black hole consists of a thin pressureless

disk with particles moving on nearly circular orbits in the equatorial plane (Bardeen, 1970). Viscous forces
cause the particles to spiral slowly inward. Observed accretion rates are orders of magnitude larger than can
be accounted for by particle viscosity. It is considered likely that the required viscosity arises from turbulence
driven by the magneto-rotation instability (Balbus and Hawley, 1998; Balbus, 2003). In the simple model,
upon reaching the ISCO (innermost stable circular orbit), particles fall dynamically on to the black hole
without further dissipation.
To spiral inward from large radius, where its energy equals its rest mass, 𝐸∞ = 1, down to the ISCO,

where 𝐸ISCO =
√︀
1− 2𝑀/(3𝑟), equation (23.106a), a particle must lose fractional energy

𝜂 ≡ 𝐸∞ − 𝐸ISCO

𝐸∞
= 1−

√︂
1− 2𝑀

3𝑟
. (23.107)

In the simple thin-disk model, particles in the disk lose energy by emitting radiation, which astronomers
can detect. The fractional energy 𝜂 represents the efficiency with which rest mass energy is converted to
radiation. The efficiency 𝜂, illustrated in Figure 23.10, varies from 𝜂 = 1−

√︀
8/9 = 0.06 for a non-spinning

black hole (𝑎 = 0) to 𝜂 = 1 −
√︀

1/3 = 0.42 for a maximally spinning black hole (𝑎 = 𝑀). By comparison,
nuclear fusion of hydrogen to helium-4 releases 0.007 of the rest mass, while fusion of hydrogen all the way
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to iron-56, the most tightly bound of all nuclei, releases 0.009 of the rest mass. Thus gravitational accretion
on to a black hole releases energy more efficiently than fusion, by a factor of 10 or more. This explains
why gravitational accretion on to black holes can power some of the most luminous objects observed in the
Universe, such as quasars and gamma-ray bursts.

23.19.1 Thorne limit

Accretion from the ISCO increases the angular momentum 𝑎 of the black hole by the angular-momentum to
energy ratio 𝐿/𝐸 of particles on the ISCO. As seen in Figure 23.9, on the ISCO the angular momentum 𝐿

is always greater than 𝑀 , and the energy 𝐸 is always less than 1, so the angular momentum 𝐿/𝐸 per unit
energy on the ISCO always exceeds 𝑀 . Therefore accretion from the ISCO tends to spin up a sub-extremal
black hole towards extremality (Bardeen, 1970). As Thorne (1974) points out, this is problematic because
an extremal black hole has zero Hawking temperature. Cooling a thermodynamic object to zero temperature
should be difficult if not impossible.
For particles to reach the ISCO from far away, they must lose energy. Thorne (1974) remarked that if

the lost energy is emitted as radiation from a thin equatorial disk, then some of that radiation will be
absorbed by the black hole, and that radiation will tend to spin down the black hole. Thorne calculated
that the maximum spin that a black hole accreting from a thin, radiating disk could achieve is 𝑎 = 0.998𝑀 ,
the precise number depending slightly on the directionality of the radiation emitted from the disk (Thorne
considered isotropic radiation, and electron-scattering dipole radiation).
Most of the processes that one can think of serve to reduce the angular momentum even further below

extremality. For example, the gas that accretes on to a supermassive black hole may originate from various
directions and therefore carry various amounts of azimuthal angular momentum. Although not a rigorous
limit, the limit of 𝑎 = 0.998 is often taken by astronomers as a plausible upper bound to the spin of an
astronomical black hole, the Thorne limit.

Exercise 23.9. Icarus. In Brian Greene’s story “Icarus,” the boy Icarus goes on a space journey, arrives
at a black hole, and goes into orbit around it. When he leaves the black hole, he finds that a large time has
passed in the outside world. Is the story realistic?
Solution. Equation (23.4) with 𝑚 = 1 and 𝑞 = 0 implies that the rate 𝑑𝑡/𝑑𝜏 at which time 𝑡 elapses at
infinity relative to the proper time 𝜏 experienced by Icarus is

𝑑𝑡

𝑑𝜏
=

1

𝜌2

(︂
− 𝑃𝑡

Δ𝑥
+
𝜔𝑦𝑃𝜑
Δ𝑦

)︂
=

1

𝑟2 + 𝑎2 cos2𝜃

[︀
𝑅2𝑃 + 𝑎(𝐿− 𝑎𝐸 sin2𝜃)

]︀
. (23.108)

The first term on the right hand side can become large, with large 𝑃 , for a circular orbit near the horizon
of a near-extremal black hole. For such an orbit, the first term in equation (23.108) dominates. For large 𝑃 ,
equation (23.81b) shows that

𝑃 ≈ 2𝐸

1−𝑀/𝑟
. (23.109)
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A natural strategy is for Icarus to sail in on to the unstable circular orbit with 𝐸 = 1, since he can manoeuver
into this orbit, and then out of it, without using much rocket energy. For 𝐸 = 1,

𝑃 ≈ 2

1−𝑀/𝑟
. (23.110)

Equation (23.110) shows that the closer Icarus can get to 𝑟 =𝑀 , the more rapidly time passes in the outside
world. Any black hole will not do. Icarus must find himself a rotating black hole that is very close to extremal.
For a circular orbit in the equatorial plane (𝛼 = 0, 𝜃 = 𝜋/2) of a Kerr black hole (𝑄 = 0), the time dilation
factor (23.108) simplifies to

𝑑𝑡

𝑑𝜏
=
𝑟 ± 𝑎

√︀
𝑀/𝑟√︀

𝐹±
. (23.111)

For 𝐸 = 1, equation (23.111) becomes

𝑑𝑡

𝑑𝜏
= 1 +

2√︀
1− 𝑎/𝑀(1 +

√︀
1− 𝑎/𝑀)

≈ 2√︀
1− 𝑎/𝑀

. (23.112)

At the Thorne limit 𝑎 = 0.998𝑀 , the time dilation factor is

𝑑𝑡

𝑑𝜏
= 44 . (23.113)

Exercise 23.10. Interstellar. In the Hollywood movie “Interstellar,” for which Kip Thorne was an Exec-
utive Producer, the intrepid band of astronauts lands their spacecraft on planet Miller in orbit around the
black hole Gargantua. For each hour the team spends on planet Miller, seven years pass on the outside.
That’s a time dilation factor of 60,000. Is it plausible?
Solution. The situation differs from that in the “Icarus” story in that whereas Icarus can manoeuver his
rocket into an unstable circular orbit, a planet must be in a stable orbit. The largest time dilation occurs on
the prograde innermost stable circular orbit in the equatorial plane. For a Kerr black hole (𝑄 = 0), the time
dilation factor (23.108) on the prograde equatorial ISCO is, to lowest order in 1− 𝑎/𝑀 ,

𝑑𝑡

𝑑𝜏
≈ 24/3√

3(1− 𝑎/𝑀)1/3
. (23.114)

To achieve the required time dilation factor requires, to lowest order,

1− 𝑎/𝑀 ≈ 16

3
√
3 (𝑑𝑡/𝑑𝜏)3

, (23.115)

which for 𝑑𝑡/𝑑𝜏 ≈ 60,000 is

1− 𝑎/𝑀 ≈ 10−14 , (23.116)

or 𝑎 ≈ 0.99999999999999𝑀 . This is much closer to extremality than the Thorne limit. At the Thorne limit
𝑎 = 0.998𝑀 , the time dilation factor is

𝑑𝑡

𝑑𝜏
= 11 . (23.117)
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23.20 Circular orbits in the Reissner-Nordström geometry

Circular orbits of particles in the Reissner-Nordström geometry follow from those in the Kerr-Newman
geometry in the limit of a non-rotating black hole, 𝑎 = 0. For a non-rotating black hole, an orbit can be
taken without loss of generality to circulate right-handedly in the equatorial plane, 𝜃 = 𝜋/2, so that 𝛼 = 0 and
the azimuthal angular momentum 𝐿 equals the positive total angular momentum 𝐿tot. For non-equatorial
orbits, the relation between azimuthal and total angular momentum is 𝐿 = ±

√
1− 𝛼𝐿tot.

For a non-rotating black hole, 𝑎 = 0, the quartic condition (23.67) for a circular orbit of a particle of rest
mass 𝑚 = 1 and electric charge 𝑞 reduces to the square of a quadratic,

𝑟2 − 𝑞𝑄𝑟𝑃 −
(︀
𝑟2 − 3𝑀𝑟 + 2𝑄2

)︀
𝑃 2 = 0 . (23.118)

Solving the quadratic (23.118) yields two solutions

1/𝑃 =
𝑞𝑄

2𝑟
±
√︂
1− 3𝑀

𝑟
+

2𝑄2

𝑟2
+
𝑞2𝑄2

4𝑟2
. (23.119)

The sign of 𝑃 , equation (23.68), is positive in the Universe, Wormhole, and Antiverse regions of the Reissner-
Nordström geometry in the Penrose diagram of Figure 8.6, negative in their Parallel counterparts. The
angular momentum 𝐿, energy 𝐸, and stability 𝑑2𝑃 2

𝑥/𝑑𝑟
2 of a circular orbit are, in terms of a solution (23.119)

𝑃 of the quadratic,

𝐿 =
√︀
𝑃 2𝑅4Δ𝑥 − 𝑟2 , (23.120a)

𝐸 =
𝑃𝑅4Δ𝑥

𝑟2
+
𝑞𝑄

𝑟
, (23.120b)

𝑑2𝑃 2
𝑥

𝑑𝑟2
= 2

(︀
𝑟2 − 6𝑀𝑟 + 5𝑄2 + 𝑞2𝑄2

)︀
− 2

(︂
1− 6𝑀

𝑟
+

6𝑄2

𝑟2

)︂
𝑃 2𝑅2Δ𝑥 . (23.120c)

For massless particles, circular orbits occur where the solution (23.119) for 1/𝑃 vanishes, which occurs
when

𝑟2 − 3𝑀𝑟 + 2𝑄2 = 0 , (23.121)

independent of the charge 𝑞 of the particle. The condition (23.121) is consistent with the Kerr-Newman
condition for a null circular orbit, the vanishing of 𝐹± given by equation (23.79). However, for Kerr-Newman,
the argument of the square root on the right hand side of equation (23.79) for 𝐹± must be positive, even
in the limit of infinitesimal 𝑎. In the limit of small 𝑎, this requires that 𝑀𝑟 − 𝑄2 ≥ 0. If the charge 𝑄 of
the Reissner-Nordström black hole lies in the standard range 0 ≤ 𝑄2 ≤𝑀2, then one of the solutions of the
quadratic (23.121) lies outside the outer horizon, while the other lies between the outer and inner horizons.
As one might hope, the additional condition 𝑀𝑟 −𝑄2 ≥ 0 eliminates the undesirable solution between the
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horizons, leaving only the solution outside the horizon, which is

𝑟 =
3𝑀

2

(︃
1 +

√︂
1− 8𝑄2

9

)︃
for 0 ≤ 𝑄2 ≤𝑀2 . (23.122)

In (unphysical) cases 𝑄2 < 0 or 𝑀2 < 𝑄2 ≤ (9/8)𝑀2, both solutions of equation (23.121) are valid.

23.21 Hypersurface-orthogonal congruences

The Hamilton-Jacobi separated solution makes it possible to construct congruences (§18.1) of timelike or
null geodesics in the Λ-Kerr-Newman geometry, or more generally in any stationary, axisymmetric, separable
geometry. Of particular interest are hypersurface-orthogonal congruences, which were discussed in the context
of singularity theorems in §§18.6 and 18.7.
It should be remarked from the outset that the principal null congruences of the Λ-Kerr-Newman geometry

are not hypersurface-orthogonal, Exercise 23.11, except in the special case of spherical symmetry.

23.21.1 Hypersurface-orthogonality condition

As discussed in §18.6, a timelike hypersurface-orthogonal congruence is constructed by picking an arbitrary
spacelike 3-dimensional hypersurface on which the action is taken to be constant, and projecting geodesics
along the direction orthogonal to the hypersurface at each point. The timelike congruence is orthogonal to
hypersurfaces of constant action. Similarly, as discussed in §18.7, a null hypersurface-orthogonal congruence is
constructed by foliating an initial 3-dimensional hypersurface into 2-dimensional spatial surfaces of constant
action, and projecting pairs of outgoing and ingoing null geodesics orthogonally from the 2-surfaces.
The starting point for constructing timelike or null congruences of geodesics in the Λ-Kerr-Newman ge-

ometry is the separated expression (22.22) for the action 𝑆 of a single particle, with generalized momenta
𝜋𝑥 and 𝜋𝑦 coming from equations (23.5b) and (23.5c),

𝑆 =

∫︁ (︂
−𝐸 𝑑𝑡+ 𝐿𝑑𝜑− 𝑃𝑥

Δ𝑥
𝑑𝑥+

𝑃𝑦
Δ𝑦

𝑑𝑦

)︂
. (23.123)

Equation (23.123) holds for charged as well as uncharged particles, since for Kerr-Newman the components𝒜𝑥
and 𝒜𝑦 of the electromagnetic potential vanish, equation (23.3). However, for the remainder of this Chapter,
the particle will be taken to be uncharged. The Hamilton-Jacobi parameters 𝑃𝑥 and 𝑃𝑦, equations (23.10),
depend on the particle mass 𝑚 and on the constants of motion 𝐶𝛼 ≡ {𝐸,𝐿,𝒦}. The mass 𝑚 may be either
positive or zero. The integrand on the right hand side of equation (23.123) is manifestly integrable, being a
sum of 4 terms each depending on only one of each of the 4 coordinates 𝑡, 𝜑, 𝑥, 𝑦. The action (23.123), which
is that of a single particle with fixed constants of motion 𝐶𝛼, can be extended to a congruence of geodesics as
long as the integral is understood to be taken along geodesics. The constants of motion 𝐶𝛼 are by definition
constant along each geodesic, but may vary (smoothly) from one geodesic to another. The particle mass 𝑚
can be scaled to a global constant without loss of generality, positive for a timelike congruence, zero for a null
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congruence. Since the integral (23.123) is along geodesics, and the constants of motion are constant along
geodesics, the action integrates to the separated expression

𝑆 − 𝑆i = −𝐸 (𝑡− 𝑡i) + 𝐿 (𝜑− 𝜑i)−
∫︁
𝑥i

𝑃𝑥
Δ𝑥

𝑑𝑥+

∫︁
𝑦i

𝑃𝑦
Δ𝑦

𝑑𝑦 , (23.124)

in which the constants of motion 𝐶𝛼 are held constant in the integrals over 𝑥 and 𝑦 even when those
constants vary across geodesics. The constants 𝑥𝜇i ≡ {𝑡i, 𝑥i, 𝑦i, 𝜑i} are the values of the coordinates 𝑥𝜇 on
some arbitrarily chosen initial 3-dimensional hypersurface from which the geodesics are projected. For a
timelike congruence the value 𝑆i of the action on the initial hypersurface is constant and can be set to zero,
𝑆i = 0, but for a null congruence the initial action 𝑆i must vary over the hypersurface.
Derivatives of the action 𝑆 (23.124) with respect to the constants of motion 𝐶𝛼 yield comoving spatial

coordinates 𝑋𝛼 ≡ {𝑋𝐸 , 𝑋𝒦, 𝑋𝐿} defined by

𝑋𝐸 −𝑋𝐸
i ≡

𝜕𝑆

𝜕𝐸
=

∫︁ (︂
− 𝑑𝑡+ 𝑃𝑡 𝑑𝑥

𝑃𝑥Δ𝑥
+
𝜔𝑦𝑃𝜑 𝑑𝑦

𝑃𝑦Δ𝑦

)︂
= − (𝑡− 𝑡i) +

∫︁
𝑥i

𝑃𝑡 𝑑𝑥

𝑃𝑥Δ𝑥
+

∫︁
𝑦i

𝜔𝑦𝑃𝜑 𝑑𝑦

𝑃𝑦Δ𝑦
, (23.125a)

𝑋𝒦 −𝑋𝒦i ≡
𝜕𝑆

𝜕𝒦
=

∫︁ (︂
𝑑𝑥

2𝑃𝑥
+

𝑑𝑦

2𝑃𝑦

)︂
=

∫︁
𝑥i

𝑑𝑥

2𝑃𝑥
+

∫︁
𝑦i

𝑑𝑦

2𝑃𝑦
, (23.125b)

𝑋𝐿 −𝑋𝐿
i ≡

𝜕𝑆

𝜕𝐿
=

∫︁ (︂
𝑑𝜑− 𝜔𝑥𝑃𝑡 𝑑𝑥

𝑃𝑥Δ𝑥
− 𝑃𝜑 𝑑𝑦

𝑃𝑦Δ𝑦

)︂
= 𝜑− 𝜑i −

∫︁
𝑥i

𝜔𝑥𝑃𝑡 𝑑𝑥

𝑃𝑥Δ𝑥
−
∫︁
𝑦i

𝑃𝜑 𝑑𝑦

𝑃𝑦Δ𝑦
, (23.125c)

where𝑋𝛼
i are the (arbitrary) values of the comoving coordinates on the arbitrarily chosen initial 3-dimensional

hypersurface. As in the action (23.124), the integrals in the definitions (23.125) are to be understood as be-
ing taken along geodesics. And as in the action (23.124), because the constants of motion are constant
along geodesics, the coordinates 𝑋𝛼 integrate to the separated expressions on the rightmost sides of equa-
tions (23.125) with the constants of motion held constant even when those constants vary across geodesics.
As is evident from equations (23.11) and (23.12), the comoving coordinates 𝑋𝛼 are constant along geodesics,

𝑑𝑋𝛼 = 0 , (23.126)

justifying their designation as comoving coordinates. The total derivative of the action (23.124) is

𝑑𝑆 = −𝐸 𝑑𝑡+ 𝐿𝑑𝜑− 𝑃𝑥
Δ𝑥

𝑑𝑥+
𝑃𝑦
Δ𝑦

𝑑𝑦 + 𝑑𝑆i + (𝑋𝛼 −𝑋𝛼
i ) 𝑑𝐶𝛼 , (23.127)

in which the penultimate term 𝑑𝑆i vanishes for a timelike congruence (where 𝑆i is constant), but is non-
vanishing for a null congruence, and the last term (𝑋𝛼 −𝑋𝛼

i ) 𝑑𝐶𝛼 takes into account the possible variation
of the constants of motion 𝐶𝛼 across geodesics.
Timelike geodesics are orthogonal to hypersurfaces of constant action if, equation (18.36),

𝑝𝜇 =
𝜕𝑆

𝜕𝑥𝜇
. (23.128)

Equation (23.128) is equivalent to the condition that the total derivative (23.127) of the action is

𝑑𝑆 = −𝐸 𝑑𝑡+ 𝐿𝑑𝜑− 𝑃𝑥
Δ𝑥

𝑑𝑥+
𝑃𝑦
Δ𝑦

𝑑𝑦 . (23.129)
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Comparing equations (23.127) and (23.129) shows that a timelike congruence is hypersurface-orthogonal if
and only if

(𝑋𝛼 −𝑋𝛼
i ) 𝑑𝐶𝛼 = 0 . (23.130)

The comoving coordinates defined by equations (23.125) are constant along geodesics, 𝑋𝛼 = 𝑋𝛼
i . The

hypersurface-orthogonal condition (23.130) is then satisfied regardless of whether the constants of motion
𝐶𝛼 vary across geodesics.
The condition (23.129) for hypersurface-orthogonality can continue to be imposed in the massless limit,

where the congruence becomes null. However, for a null congruence the condition (23.129) need not be
equivalent to the condition (23.128). As discussed in §18.7, in the massless limit the momentum is not
only orthogonal but also tangent to the limiting null hypersurface, and equation (23.128) need be imposed
only over each 3-dimensional null hypersurface projected from 2-dimensional surfaces of constant action 𝑆i

on the initial 3-dimensional hypersurface, not over the entire 4-dimensional spacetime. By definition, the
initial action 𝑆i is constant for each null hypersurface, so 𝑑𝑆i = 0 over each null hypersurface. Comparing
equations (23.127) and (23.129) shows that a null congruence is hypersurface-orthogonal if and only if once
again the condition (23.130) holds, the same condition as for a timelike congruence.
For a timelike congruence, the action 𝑆 and 3 comoving coordinates 𝑋𝛼 can be used, if desired, as

the 4 coordinates along the congruence. But for a null congruence the action 𝑆 does not progress along
worldlines, and the action degenerates to a linear combination of the comoving coordinates 𝑋𝛼. Thus for a
null congruence 𝑆 and 𝑋𝛼 are not 4 independent coordinates. But the difference between the action and the
linear combination of comoving coordinates, divided by 𝑚2, remains finite in the limit 𝑚→ 0 of zero mass,
and defines the coordinate 𝑋𝑆 ,

𝑋𝑆 ≡ − 1

𝑚2

[︀
𝑆 − 𝑆i − 𝐸(𝑋𝐸 −𝑋𝐸

i )− 2𝒦(𝑋𝒦 −𝑋𝒦i )− 𝐿(𝑋𝐿 −𝑋𝐿
i )
]︀
= −

∫︁
𝑥i

𝜌2𝑥 𝑑𝑥

𝑃𝑥
+

∫︁
𝑦i

𝜌2𝑦 𝑑𝑦

𝑃𝑦
. (23.131)

As in the action (23.124) and comoving coordinates (23.125), the integrals on the rightmost side of equa-
tion (23.131) are to be understood as being taken along geodesics. The variation 𝑑𝑋𝑆 of the coordinate 𝑋𝑆

equals the variation 𝑑𝜆 of the affine parameter along geodesics, equation (23.13),

𝑑𝑋𝑆
⃒⃒
𝑋𝐸 ,𝑋𝒦,𝑋𝐿 = − 𝑑𝑆

𝑚2

⃒⃒⃒⃒
𝑋𝐸 ,𝑋𝒦,𝑋𝐿

= 𝑑𝜆 . (23.132)

If desired, the coordinate 𝑋𝑆 can be used (in place of 𝑆) for timelike as well as null congruences.

23.21.2 Stationary and axisymmetric congruences

In principle the constants of motion 𝐶𝛼 can be chosen arbitrarily across geodesics. But it is natural to consider
congruences that are stationary and axisymmetric, which requires that the constants 𝐶𝛼 be independent of
time 𝑡 and azimuthal angle 𝜑 (but 𝐶𝛼 may depend on the radial and latitude coordinates 𝑥 and 𝑦). A
stationary and axisymmetric congruence can be constructed by starting on an arbitrary 1-dimensional line
in the 𝑥-𝑦 plane, and projecting geodesics orthogonally from that 1-dimensional line. The initial action 𝑆i on
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the 1-dimensional line is constant for a timelike congruence, but varies for a null congruence. The congruence
is extended to a full congruence in 4 dimensions by translating and rotating it symmetrically in time 𝑡 and
azimuth 𝜑.
For a stationary and axisymmetric congruence, the comoving coordinates 𝑋𝐸 and 𝑋𝐿 are Killing coordi-

nates at fixed 𝑥, and 𝑦, as follows from

𝑑𝑋𝐸
⃒⃒
𝑥,𝑦,𝑋𝐿 = − 𝑑𝑡|𝑥,𝑦,𝜑 , 𝑑𝑋𝐿

⃒⃒
𝑥,𝑦,𝑋𝐸 = 𝑑𝜑|𝑡,𝑥,𝑦 . (23.133)

If 𝑋𝐸 and 𝑋𝐿 are to be preserved as Killing coordinates, then in place of 𝑥 and 𝑦 it is possible to choose
any other pair of independent coordinates that depend only on 𝑥 and 𝑦. A possible choice is 𝑋𝒦 and 𝑋𝑆 ,
equations (23.125b) and (23.131).

23.21.3 Hypersurface-orthogonal line-element

One way to construct a hypersurface-orthogonal line-element is to use coordinates consisting of the action 𝑆
and its partial derivatives with respect to the constants of motion, the comoving coordinates 𝑋𝛼 ≡ 𝜕𝑆/𝜕𝐶𝛼,
equations (23.125). The inverse vierbein in terms of these action coordinates {𝑆, 𝜕𝑆/𝜕𝐸, 𝜕𝑆/𝜕𝒦, 𝜕𝑆/𝜕𝐿} is

𝑒𝑚
𝜇 =

1

𝜌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑃𝑡√
Δ𝑥

− 1√
Δ𝑥

0
𝜔𝑥√
Δ𝑥

𝑃𝑥√
Δ𝑥

− 𝑃𝑡

𝑃𝑥
√
Δ𝑥

−
√
Δ𝑥

2𝑃𝑥

𝜔𝑥𝑃𝑡

𝑃𝑥
√
Δ𝑥

𝑃𝑦√︀
Δ𝑦

𝜔𝑦𝑃𝜑

𝑃𝑦
√︀
Δ𝑦

√︀
Δ𝑦

2𝑃𝑦

𝑃𝜑

𝑃𝑦
√︀
Δ𝑦

𝑃𝜑√︀
Δ𝑦

− 𝜔𝑦√︀
Δ𝑦

0
1√︀
Δ𝑦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23.134)

The vierbein is

𝑒𝑚𝜇 =
1

𝑚2𝜌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑃𝑡√
Δ𝑥

𝜋𝑡𝑃𝑡√
Δ𝑥

− 𝑚2𝜌2
√
Δ𝑥

1− 𝜔𝑥𝜔𝑦
−
2(𝒦 −𝑚2𝜌2𝑦)𝑃𝑡√

Δ𝑥

− 𝜋𝜑𝑃𝑡√
Δ𝑥

− 𝑚2𝜌2𝜔𝑦
√
Δ𝑥

1− 𝜔𝑥𝜔𝑦

− 𝑃𝑥√
Δ𝑥

− 𝜋𝑡𝑃𝑥√
Δ𝑥

2(𝒦 −𝑚2𝜌2𝑦)𝑃𝑥√
Δ𝑥

𝜋𝜑𝑃𝑥√
Δ𝑥

− 𝑃𝑦√︀
Δ𝑦

− 𝜋𝑡𝑃𝑦√︀
Δ𝑦

2(𝒦 +𝑚2𝜌2𝑥)𝑃𝑦√︀
Δ𝑦

𝜋𝜑𝑃𝑦√︀
Δ𝑦

− 𝑃𝜑√︀
Δ𝑦

− 𝜋𝑡𝑃𝜑√︀
Δ𝑦

+
𝑚2𝜌2𝜔𝑥

√︀
Δ𝑦

1− 𝜔𝑥𝜔𝑦
2(𝒦 +𝑚2𝜌2𝑥)𝑃𝜑√︀

Δ𝑦

𝜋𝜑𝑃𝜑√︀
Δ𝑦

+
𝑚2𝜌2

√︀
Δ𝑦

1− 𝜔𝑥𝜔𝑦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(23.135)
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23.21.4 Hypersurface-orthogonal timelike outgoing and ingoing congruences

Given the symmetries of the Λ-Kerr-Newman geometry, it is possible to choose timelike or null congruences
in symmetrically related outgoing (+) and ingoing (−) partners, the actions 𝑆± for which provide coordinates
for a line-element (23.141) that describes hypersurface-orthogonal outgoing and ingoing congruences. If the
action (23.124) describes an outgoing congruence, which is true if the Hamilton-Jacobi parameter 𝑃𝑥 is
positive (in the Universe part of the geometry), then a corresponding ingoing congruence can be defined by
flipping the signs of both 𝑃𝑥 and 𝑃𝑦.
Define a time coordinate 𝑇 and a spatial coordinate 𝑍 by

𝑇 ≡ 𝐸 (𝑡− 𝑡i)− 𝐿 (𝜑− 𝜑i) , (23.136a)

𝑍 ≡ −
∫︁
𝑥i

𝑃𝑥
Δ𝑥

𝑑𝑥+

∫︁
𝑦i

𝑃𝑦
Δ𝑦

𝑑𝑦 , (23.136b)

which are constructed so that the actions 𝑆± for the outgoing and ingoing congruences are

𝑆± = −𝑇 ± 𝑍 . (23.137)

The quantities 𝑥𝜇i are the same for both outgoing and ingoing actions. The spatial coordinate 𝑍 increases
outwards if 𝑃𝑥 is positive (recall that the radial coordinate 𝑥 increases inwards).
The flip in the signs of 𝑃𝑥 and 𝑃𝑦 implies that the comoving coordinate 𝑋𝒦 defined by equation (23.125b)

differs by a sign flip along outgoing and ingoing geodesics. Consequently the coordinate 𝑋𝒦 is simultaneously
constant along both outgoing and ingoing congruences, allowing the condition 𝑋𝒦 = 0 to be imposed
simultaneously on both outgoing and ingoing congruences. By contrast, as long as 𝑥𝜇i are the same for both
outgoing and ingoing actions, as required by the definitions (23.136) of the coordinates 𝑇 and 𝑍, neither
𝑋𝐸 nor 𝑋𝐿 can be set simultaneously to zero along both outgoing and ingoing congruences. Therefore the
hypersurface-orthogonality condition (23.130) can be satisfied simultaneously by both outgoing and ingoing
timelike congruences only if 𝐸 and 𝐿 are constant across geodesics.
As long as both outgoing and ingoing congruences are hypersurface-orthogonal, which requires that 𝐸 and

𝐿 be constant, the outgoing and ingoing actions 𝑆±, or equivalently 𝑇 and 𝑍, can be used as coordinates of
a line-element. For hypersurface-orthogonal congruences, the total derivatives of both outgoing and ingoing
actions take the form (23.129), and the total derivatives of 𝑇 and 𝑍 are

𝑑𝑇 ≡ 𝐸 𝑑𝑡− 𝐿𝑑𝜑 , (23.138a)

𝑑𝑍 ≡ − 𝑃𝑥
Δ𝑥

𝑑𝑥+
𝑃𝑦
Δ𝑦

𝑑𝑦 . (23.138b)

The other two coordinates in the line-element of the hypersurface-orthogonal congruences can be taken to
be 𝜑 and either 𝑋𝒦 if 𝒦 is constant, or 𝒦 if 𝒦 varies. Specifically,

𝑑𝑥

2𝑃𝑥
+

𝑑𝑦

2𝑃𝑦
= 𝑑𝑋𝒦 − 𝜕𝑋𝒦

𝜕𝒦
𝑑𝒦 , (23.139)
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where

− 𝜕𝑋𝒦

𝜕𝒦
=

∫︁
𝑥i

Δ𝑥 𝑑𝑥

4𝑃 3
𝑥

+

∫︁
𝑦i

Δ𝑦 𝑑𝑦

4𝑃 3
𝑦

. (23.140)

The right hand side of equation (23.139) reduces to 𝑑𝑋𝒦 if 𝒦 is constant, or to −(𝜕𝑋𝒦/𝜕𝒦)𝑑𝒦 if 𝒦 varies.
The line-element of the hypersurface-orthogonal timelike congruences in terms of coordinates 𝑇,𝑍, 𝜑, and
either 𝑋𝒦 or 𝒦, is

𝑑𝑠2 =
𝜌2

𝑃 2
𝑥Δ𝑦 + 𝑃 2

𝑦Δ𝑥

{︁
Δ𝑥Δ𝑦 (−𝐶2𝑑𝑇 2 + 𝑑𝑍2) + 4𝑃 2

𝑥𝑃
2
𝑦

⎧⎨⎩ 𝑑𝑋𝒦 if 𝒦 constant

−𝜕𝑋
𝒦

𝜕𝒦
𝑑𝒦 if 𝒦 varies

⎫⎬⎭
2

+
𝐶2

𝐸2(1− 𝜔𝑥𝜔𝑦)2
[︀
(𝑃 2
𝑡 Δ𝑦 − 𝑃 2

𝜑Δ𝑥)𝑑𝜑+ (𝜔𝑥𝑃𝑡Δ𝑦 − 𝑃𝜑Δ𝑥)𝑑𝑇
]︀2}︁

, (23.141)

where the coefficient 𝐶 is

𝐶 ≡

(︃
𝑃 2
𝑥Δ𝑦 + 𝑃 2

𝑦Δ𝑥

𝑃 2
𝑡 Δ𝑦 − 𝑃 2

𝜑Δ𝑥

)︃1/2

=

(︃
1− 𝑚2𝜌2Δ𝑥Δ𝑦

𝑃 2
𝑡 Δ𝑦 − 𝑃 2

𝜑Δ𝑥

)︃1/2

=

(︂
1 +

𝑚2𝜌2Δ𝑥Δ𝑦

𝑃 2
𝑥Δ𝑦 + 𝑃 2

𝑦Δ𝑥

)︂−1/2
, (23.142)

which is always positive. For 𝑚 ̸= 0, the coefficient 𝐶 is less than 1 outside the horizon (Δ𝑥 > 0), equal to 1

at the horizon (Δ𝑥 = 0), and greater than 1 inside the horizon (Δ𝑥 < 0).
The line-element (23.141) is in ADM form (17.8). The comoving coordinate 𝑋𝒦, the constant of motion 𝒦,

and the one-form in brackets on the second line of the line-element (23.141) all vanish along both outgoing
and ingoing geodesics. Thus the only part of the line-element (23.141) that varies along geodesics is the part
proportional to −𝐶2𝑑𝑇 2+𝑑𝑍2. The proper times 𝜏 along the timelike geodesics of the outgoing and ingoing
congruences satisfy 𝑚𝜏 = 𝑇 ∓ 𝑍.

23.21.5 Double-null hypersurface-orthogonal congruences

The line-element (23.141) for hypersurface-orthogonal congruences remains well-defined in the limit of zero
particle mass, 𝑚 = 0. In the massless limit, the coefficient 𝐶, equation (23.142), is unity,

𝐶 = 1 . (23.143)

Moreover, for massless particles the energy 𝐸 can be scaled to ±1 without loss of generality,

|𝐸| = 1 . (23.144)

Define outgoing (+) and ingoing (−) null coordinates 𝑉± by

𝑉± ≡ 𝑇 ± 𝑍 = −𝑆∓ , (23.145)

which equal minus the action along the opposing null geodesic direction. The 𝑉± null coordinates transform
into each other under a flip of the signs of the Hamilton-Jacobi parameters 𝑃𝑥 and 𝑃𝑦. If 𝑃𝑥 is positive,
then 𝑉+ is an outgoing null coordinate that increases along the outgoing null congruence, while 𝑉− is an
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Z

TV
−

V
+

Figure 23.11 Null coordinates 𝑉±, equation (23.145), on a spacetime diagram in 𝑇 and 𝑍. The diagonal grid of

outgoing null lines, which increase in the outgoing null 𝑉+ direction and are lines of constant ingoing null coordinate

𝑉−, are lines of constant phase for an outgoing null wave in the geometric optics (high frequency) limit.

ingoing null coordinate that increases along the ingoing null congruence. Since the action vanishes along a
null geodesic, the outgoing null coordinate is constant along the ingoing congruence, while the ingoing null
coordinate is constant along the outgoing congruence, as illustrated in Figure 23.11.
For massless particles, the line-element (23.141) in terms of the coordinates 𝑉+, 𝑉−, 𝜑, and either 𝑋𝒦 or

𝒦, takes the double-null form

𝑑𝑠2 =
𝜌2

𝑃 2
𝑥Δ𝑦 + 𝑃 2

𝑦Δ𝑥

{︂
−Δ𝑥Δ𝑦 𝑑𝑉−𝑑𝑉+ + 4𝑃 2

𝑥𝑃
2
𝑦

⎧⎨⎩ 𝑑𝑋𝒦 if 𝒦 constant

−𝜕𝑋
𝒦

𝜕𝒦
𝑑𝒦 if 𝒦 varies

⎫⎬⎭
2

+
1

(1− 𝜔𝑥𝜔𝑦)2
[︁
(𝑃 2
𝑡 Δ𝑦 − 𝑃 2

𝜑Δ𝑥)𝑑𝜑+ 1
2 (𝑃𝑡Δ𝑦 − 𝑃𝜑Δ𝑥)(𝑑𝑉+ + 𝑑𝑉−)

]︁2}︂
. (23.146)

As in the massive case, 𝑑𝑋𝒦, 𝑑𝒦, and the 1-form in brackets on the second line of the line-element (23.146)
all vanish along both outgoing and ingoing null geodesics. The affine parameter 𝜆± along outgoing (+) or
ingoing (−) geodesics satisfies

𝑑𝜆± =
𝜌2Δ𝑥Δ𝑦

2(𝑃 2
𝑥Δ𝑦 + 𝑃 2

𝑦Δ𝑥)
𝑑𝑉± . (23.147)

Taking the massless limit of the line-element (23.141) does not preserve the condition (23.128) that the
momenta along geodesics are orthogonal to hypersurfaces of constant action throughout the 4-dimensional
spacetime. Rather, the massless limit of the condition (23.128) imposes the weaker condition that the mo-
menta are orthogonal to hypersurfaces of constant action only within those 3-dimensional hypersurface. This
is precisely the definition of hypersurface-orthogonality for null congruences discussed in §18.7.
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23.22 The Doran congruence

Congruences in which geodesics follow lines of constant latitude 𝑦 are of special interest. Constant latitude
geodesics must satisfy the two conditions 𝑃 2

𝑦 = 𝑑𝑃 2
𝑦 /𝑑𝑦 = 0, equations (23.55). These conditions translate

into two relations between the three constants 𝐸, 𝐿, and 𝒦 of motion, which may be expressed for example
as

𝐸 =
𝜕
√︁
(𝒦 −𝑚2𝜌2𝑦)Δ𝑦 /𝜕𝑦

𝜕𝜔𝑦/𝜕𝑦
, 𝐿 = −

𝜕
[︁√︁

(𝒦 −𝑚2𝜌2𝑦)Δ𝑦/𝜔𝑦

]︁
/𝜕𝑦

𝜕(1/𝜔𝑦)/𝜕𝑦
, (23.148)

the partial derivatives being taken with 𝒦 held fixed. For Kerr-Newman without a cosmological constant,
the conditions (23.148) imply the relation (23.56) between 𝐸 and 𝐿. Generically, the two conditions allow
at most one combination of 𝐸, 𝐿, or 𝒦 to be held constant over spacetime.
However, as discussed in §23.21.4, congruences that are hypersurface-orthogonal simultaneously in both

outgoing and ingoing directions can be constructed only if 𝐸 and 𝐿 are both constant. For Kerr-Newman
without a cosmological constant, the relation (23.56) between 𝐸 and 𝐿 for constant latitude geodesics admits
just one solution with both 𝐸 and 𝐿 constant, the Doran conditions

|𝐸| = 𝑚 , 𝐿 = 0 , 𝒦 = 𝑚2𝑎2 . (23.149)

For congruences of constant latitude geodesics, where 𝑃𝑦 vanishes identically, the comoving coordinates
(23.125) can be evaluated by replacing 𝑑𝑦/𝑃𝑦 → −𝑑𝑥/𝑃𝑥 in the expressions for 𝑋𝐸 and 𝑋𝐿,

𝑋𝐸 = − (𝑡− 𝑡i) +
∫︁
𝑥i

(︂
𝑃𝑡
Δ𝑥
− 𝜔𝑦𝑃𝜑

Δ𝑦

)︂
𝑑𝑥

𝑃𝑥
, (23.150a)

𝑋𝒦 =

∫︁
𝑦i

𝑑𝑦

2𝑃𝑦
, (23.150b)

𝑋𝐿 = 𝜑− 𝜑i −
∫︁
𝑥i

(︂
𝜔𝑥𝑃𝑡
Δ𝑥

− 𝑃𝜑
Δ𝑦

)︂
𝑑𝑥

𝑃𝑥
. (23.150c)

With a suitable choice of boundary conditions, the comoving 𝐿 coordinate 𝑋𝐿 with 𝑃𝑥 taken negative
(ingoing congruence) coincides with the angular coordinate 𝜑ff of the usual Doran metric, equation (9.33),
𝑋𝐿 = 𝜑ff . The expression (23.150b) for the comoving coordinate 𝑋𝒦 appears to diverge, but it appears in
the hypersurface-orthogonal line-element (23.141) as 2𝑃𝑦 𝑑𝑋𝒦 → 𝑑𝑦, so the end result is well behaved.
For the Doran congruence, the time and spatial coordinates 𝑇 and 𝑍 defined by equation (23.136) are

𝑇 ≡ 𝑚𝑡 , (23.151a)

𝑍 ≡ −
∫︁
𝑥i

𝑃𝑥
Δ𝑥

𝑑𝑥 . (23.151b)

The outgoing and ingoing actions 𝑆± are

𝑆± = −𝑇 ± 𝑍 = −𝑚
(︂
𝑡±

∫︁
𝛽 𝑑𝑟

1− 𝛽2

)︂
, (23.152)
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where 𝛽 = 𝑃𝑥/𝑚 is given by equation (9.35) (with a + sign). As expected, the actions 𝑆± equal −𝑚 times
the proper times along the outgoing and ingoing congruences.
The line-element (23.141) of the Doran congruences in hypersurface-orthogonal form is

𝑑𝑠2 = 𝜌2

[︃
Δ𝑥

𝑚2𝛽2
(−𝐶2𝑑𝑇 2 + 𝑑𝑍2) +

𝑑𝑦2

Δ𝑦
+

Δ𝑦 − 𝜔2
𝑦Δ𝑥

(1− 𝜔𝑥𝜔𝑦)2

(︂
𝑑𝜑− 𝜔𝑥Δ𝑦 − 𝜔𝑦Δ𝑥

Δ𝑦 − 𝜔2
𝑦Δ𝑥

𝑑𝑇

𝑚

)︂2
]︃
, (23.153)

where the coefficient 𝐶 is

𝐶 ≡
(︂

𝛽2Δ𝑦

Δ𝑦 − 𝜔2
𝑦Δ𝑥

)︂1/2

=

(︂
1− 𝜌2Δ𝑥Δ𝑦

Δ𝑦 − 𝜔2
𝑦Δ𝑥

)︂1/2

=

(︂
1 +

𝜌2Δ𝑥

𝛽2

)︂−1/2
. (23.154)

23.23 Principal null congruences

The principal null congruences are defined by the Carter constant taking its smallest possible value, zero,
𝒦 = 0, which requires the mass 𝑚, and the angular Hamilton-Jacobi parameters 𝑃𝑦 and 𝑃𝜑, all to vanish
identically. For massless particles the energy 𝐸 can be scaled to ±1 without loss of generality. The condition
𝑃𝜑 = 0 requires that 𝐿 = 𝐸𝜔𝑦, so 𝐿 cannot be constant. The hypersurface-orthogonality condition (23.130)
then holds provided that the comoving coordinate 𝑋𝐿 is arranged to vanish everywhere. The coordinate 𝑋𝐿

on the principal null congruences is, equation (23.125c),

𝑋𝐿 = 𝜑− 𝜑i ±
∫︁
𝑥i

𝜔𝑥 𝑑𝑥

Δ𝑥
, (23.155)

where the± sign is+ for the outgoing congruence,− for the ingoing congruence. While𝑋𝐿 can be arranged to
vanish on one or other of the outgoing or ingoing null congruences, it cannot be made to vanish simultaneously
on both. Thus although the principal null congruences are geodesic, they cannot be described by a line-
element that is hypersurface-orthogonal simultaneously on both outgoing and ingoing congruences. According
to the theorem proved in §18.1, this implies that there is no vorticity-free tetrad that aligns with the principal
null congruences. Exercise 23.11 explores the vorticity 𝜛 and other components of the extrinsic curvature
along the principal null congruences of the Λ-Kerr-Newman geometry.

Exercise 23.11. Expansion, vorticity, and shear along the principal null congruences of the

Λ-Kerr-Newman geometry. The separable line-element (22.1) defines a tetrad aligned with the principal
null frame, that is, the tetrad-frame Weyl tensor has only a spin 0 part. The outgoing (𝑣) and ingoing
(𝑢) null directions lie along the basis elements 𝛾𝛾𝑣 and 𝛾𝛾𝑢 of the corresponding Newman-Penrose tetrad,
equations (39.1).
1. Show that the expansion 𝜗, vorticity 𝜛, and shear 𝜎 along the outgoing (upper sign) and ingoing (lower

sign) principal null congruences are

𝜗+ 𝑖𝜛 = 𝑠
𝑅2
√︀
|Δ𝑥|(± 𝜌𝑥 + 𝑖𝜌𝑦)√

2 𝜌3
, 𝜎 = 0 , (23.156)
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where the overall sign 𝑠 is +, except that 𝑠 is − along the outgoing congruence inside the horizon
(Δ𝑥 < 0).

2. Define

𝜆± ≡ (𝜌𝑦 ± 𝑖𝜌𝑥)
√︀

Δ𝑦
𝜕 ln 𝜌2/𝜕𝑦

𝑑𝜔𝑦/𝑑𝑦
, 𝜈 ≡ ln

(︂
𝜌
√
Δ𝑥

1− 𝜔𝑥𝜔𝑦

)︂
, 𝜇 ≡ atan

(︂
𝜌𝑦
𝜌𝑥

)︂
. (23.157)

Show that the following Lorentz transformation of the tetrad⎛⎜⎜⎝
𝛾𝑣
𝛾𝑢
𝛾+
𝛾−

⎞⎟⎟⎠→
⎛⎜⎜⎝

1 0 0 0

𝜆2 1 𝜆− 𝜆+
𝜆+ 0 1 0

𝜆− 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑒−𝜈 0 0 0

0 𝑒𝜈 0 0

0 0 𝑒−𝑖𝜇 0

0 0 0 𝑒𝑖𝜇

⎞⎟⎟⎠
⎛⎜⎜⎝

𝛾𝑣
𝛾𝑢
𝛾+
𝛾−

⎞⎟⎟⎠ (23.158)

brings the tetrad to a form parallel-transported along the outgoing principal null direction 𝛾𝛾𝑣, with
vanishing acceleration and precession

Γ𝑘𝑚𝑣 = 0 for all 𝑘𝑚 , (23.159)

and similarly that the Lorentz transformation⎛⎜⎜⎝
𝛾𝑣
𝛾𝑢
𝛾+
𝛾−

⎞⎟⎟⎠→
⎛⎜⎜⎝

1 𝜆2 −𝜆+ −𝜆−
0 1 0 0

0 −𝜆− 1 0

0 −𝜆+ 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑒𝜈 0 0 0

0 𝑒−𝜈 0 0

0 0 𝑒𝑖𝜇 0

0 0 0 𝑒−𝑖𝜇

⎞⎟⎟⎠
⎛⎜⎜⎝

𝛾𝑣
𝛾𝑢
𝛾+
𝛾−

⎞⎟⎟⎠ (23.160)

brings the tetrad to a form parallel-transported along the ingoing principal null direction 𝛾𝛾𝑢, with
vanishing acceleration and precession

Γ𝑘𝑚𝑢 = 0 for all 𝑘𝑚 . (23.161)

The rightmost of the two Lorentz transformations in equations (23.158) and (23.160) boosts and rotates
about the radial direction, leaving the directions of all the null tetrad axes {𝛾𝛾𝑣,𝛾𝛾𝑢,𝛾𝛾+,𝛾𝛾−} unchanged,
while the leftmost of the two Lorentz transformations boost-rotates in such a fashion as to leave just the
outgoing 𝛾𝛾𝑣 (respectively ingoing 𝛾𝛾𝑢) axis unchanged, transforming the remaining axes. The Lorentz-
transformed frames are no longer principal null. In the outgoing (respectively ingoing) transformed
frame, the non-vanishing components of the Weyl tensor are its spin 0, −1, and −2 (respectively 0, +1,
and +2) components.

23.24 Pretorius-Israel double-null congruence

Generically, congruences cover only part of the spacetime, and geodesics in the congruence cross. The best
congruences are those that cover the maximum amount of spacetime, and nowhere cross. The Doran con-
gruence covers all of spacetime down to the inner horizon and beyond, and crosses nowhere, so provides a
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Figure 23.12 Null geodesics (blue lines) and surfaces of constant outgoing and ingoing action (or phase) (purple

lines) in the Pretorius and Israel (1998) double-null hypersurface-orthogonal congruence, for a Kerr black hole with

𝑎 = 0.96𝑀 . The coordinates are Boyer-Lindquist, and the units are geometric (𝑐 = 𝐺 = 𝑀 = 1). The congruence

covers the entire spacetime at 𝑟 > 0 without crossing. The first geodesic crossing occurs on the polar axis at 𝑟 = 0.

High latitude geodesics cross when they pass through the pole, turning around in latitude; the continuation of these

geodesics through the pole is shown here to illustrate their future progression. Geodesics at low latitude turn around

in radius at 𝑟 < 0. The locus of turnaround points is marked by a thick (green) line, where the geodesics shown here

are terminated (to avoid cluttering the diagram). Mid-latitude geodesics, after passing through the pole, turn around

in latitude for a second time. The locus of turnaround points is marked by a continuation of the thick (green) line,

where the geodesics shown here are terminated (again to avoid cluttering the diagram). Thick (reddish) lines mark

the outer and inner horizons, and filled circles mark the ring singularity.

satisfactory example for massive particles. For massless particles, Pretorius and Israel (1998) pointed out
a double-null hypersurface-orthogonal congruence whose geodesics fill all of Kerr spacetime down to the
Antiverse (𝑟 = 0) without crossing.
As found in §23.22, there is no double-null hypersurface-orthogonal congruence with 𝑃𝑦 = 0. As discussed in

§23.21.4, the hypersurface-orthogonality condition (23.130) can be accomplished simultaneously for outgoing
and ingoing congruences only if the angular momentum 𝐿 is constant across geodesics, while the Carter
constant 𝒦 may vary across geodesics. For massless particles, the energy 𝐸 can be scaled without loss of
generality to ±1, with 𝐸 = +1 in the Universe part of the geometry.
In the Λ-Kerr-Newman geometry, motion in latitude extends to the south and north poles only if

𝐿 = 0 . (23.162)

In addition, in order to avoid the geodesics turning around in latitude and therefore crossing, the Carter
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constant must satisfy

𝒦 ≥
𝜔2
𝑦

Δ𝑦
(23.163)

at all latitudes 𝑦 on a geodesic. To fill all of the polar region of spacetime, a geodesic that starts at a pole
must remain on the pole, so it must be that 𝒦 = 0 at the poles (where 𝜔𝑦 = 0). Therefore 𝒦 must vary
across geodesics in order to satisfy the condition (23.163). Requiring that radial geodesics fall through the
outer horizon, and consequently also the inner horizon, places an upper limit on 𝒦. The deepest penetration
inside the black hole is attained when 𝒦 is as small as possible. This leads to the Pretorius and Israel (1998)
proposal to set 𝒦 to the smallest value consistent with the condition (23.163). This is achieved by choosing
𝒦 such that 𝑃𝑦 vanishes at infinite radius, which imposes

𝒦 =
𝜔2
𝑦

Δ𝑦

⃒⃒⃒⃒
⃒
∞

. (23.164)

For Kerr-Newman without a cosmological constant, this is

𝒦 = 𝑎2 sin2𝜃∞ , (23.165)

where 𝜃∞ is the polar angle of the geodesic at infinite radius. Null geodesics with 𝐿 = 0 and 𝒦 given by
equation (23.164) vary in latitude from a minimum latitude that exhausts the condition (23.163) at infinite
radius. The Pretorius-Israel double null line-element is equation (23.146) with 𝐿 = 0 and non-constant 𝒦
given by equation (23.164). For 𝐸 = 1 and 𝐿 = 0, the time and azimuth Hamilton-Jacobi parameters are
𝑃𝑡 = −1 and 𝑃𝜑 = −𝜔𝑦.
Figure 23.12 illustrates the Pretorius-Israel congruence in a Kerr black hole of spin parameter 𝑎 = 0.96𝑀 .

The outgoing and ingoing congruences lie in, and are orthogonal to, 3-dimensional null hypersurfaces of
constant action 𝑆± = −𝑇 ± 𝑍, where the coordinates 𝑇 and 𝑍 are given by equations (23.136). The initial
3-dimensional hypersurface from which the null hypersurfaces project is a spheroid of constant radius 𝑟 at
infinity for the ingoing congruence, and a spheroid of constant radius 𝑟 at the outer horizon for the outgoing
congruence. As discussed at the end of §23.21.1, the parameters 𝑥i, 𝑦i, and 𝜑i are their values on the initial
3-dimensional hypersurface, and the time parameter 𝑡i is zero. For 𝐸 = 1 and 𝐿 = 0, the time coordinate
𝑇 is just the Boyer-Lindquist time coordinate, 𝑇 = 𝑡, and the action on the initial hypersurface is 𝑆i = −𝑡.
The hypersurfaces of constant action, or phase, shown in Figure 23.12 are lines of constant 𝑍 at fixed 𝑡.

23.24.1 Application of the null singularity theorem to a Λ-Kerr-Newman black hole

Penrose’s (1965) original singularity theorem considered hypersurface-orthogonal null congruences. The Pre-
torius and Israel (1998) double-null congruence provides an example of such a congruence in the Λ-Kerr-
Newman geometry.
The surfaces of constant action in Figure 23.12 mark the positions of 2-surfaces from which outgoing and

ingoing geodesics project orthogonally. These 2-surfaces are trapped inside the outer horizon, with negative
expansion 𝜗 along both outgoing and ingoing congruences. If the dog-leg proposition (§18.9.1) held, then
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the future would terminate at the caustic surface of first crossing marked in Figure 23.12 by the upper thick
(green) line inside the Antiverse (𝑟 < 0). However, as discussed in Concept question 18.3, the Kerr-Newman
geometry does not satisfy the dog-leg proposition (the same holds if Λ ̸= 0), so the future extends past the
caustic crossing.
The failure of the dog-leg proposition in the Λ-Kerr-Newman geometry is associated with the fact that

geodesics can emerge without causal precedent from the ring singularity, leading to a breakdown of pre-
dictability inside the inner horizon. One should not be surprised that the inner horizon of a real astronomical
black hole is subject to an instability, the Poisson and Israel (1990) inflationary instability, that inevitably
and profoundly changes the geometry from just above the inner horizon inward.



24

The interiors of rotating black holes

THIS CHAPTER IS SCARCELY BEGUN

When a black hole first forms by stellar collapse, or when two black holes merge, the resulting object wob-
bles about, radiating gravitational waves, settling asymptotically to the Kerr geometry, which cannot radiate
gravitational waves. After several black hole crossing times, the black hole is already well-approximated by
the Kerr geometry.

This picture holds outside the outer horizon, and down to the inner horizon, but it fails dramatically at
(just above) the inner horizon of the black hole. The inner horizon is subject to the inflationary instability
discovered by Poisson and Israel (1990). Extended to rotating black holes Barrabès, Israel, and Poisson
(1990)

There are also spacetimes in which geodesics of massless particles, but not massive particles, are Hamilton-
Jacobi separable. Such line-elements are called conformally separable.

24.1 Nonlinear evolution

Choose tetrad frame such that the null directions are the geodesic continuations of the outgoing and ingoing
principal null geodesics, that the blueshift and the rotation of the outgoing and ingoing principal null geodesics
appears the same in the tetrad frame,

𝐾+𝑣𝑣 = 𝐾−𝑣𝑣 = 𝐾+𝑢𝑢 = 𝐾−𝑢𝑢 = Γ𝑢𝑣𝑥 = Γ+−𝑥 = 0 . (24.1)

709
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24.2 Focussing along principal null directions

24.3 Conformally separable geometries

24.3.1 Conformally separable line-element

As remarked in §rotbh-chap, the Kerr-Newman line-element has the remarkable mathematical property that
the equations of motion of test particles in it, massive or massless, neutral or charged, are Hamilton-Jacobi
separable. A weaker condition on the spacetime is that the equations of motion of massless particles are
Hamilton-Jacobi separable.
Among the remarkable mathematical properties of is the fact that, as first shown by Carter (1968), the

equations of motion of test particles, massive or massless, neutral or charged, are Hamilton-Jacobi separable.
The Kerr geometry is stationary, axisymmetric, and separable.
Choose coordinates 𝑥𝜇 ≡ {𝑡, 𝑥, 𝑦, 𝜑} in which 𝑡 is the time with respect to which the spacetime is stationary,

𝜑 is the azimuthal angle with respect to which the spacetime is axisymmetric, and 𝑥 and 𝑦 are radial and
angular coordinates. In §22.3 it is shown that the line-element may be taken to be

𝑑𝑠2 = 𝜌2
[︂
− Δ𝑥

(1− 𝜔𝑥𝜔𝑦)2
(𝑑𝑡− 𝜔𝑦 𝑑𝜑)2 +

𝑑𝑥2

Δ𝑥
+
𝑑𝑦2

Δ𝑦
+

Δ𝑦

(1− 𝜔𝑥𝜔𝑦)2
(𝑑𝜑− 𝜔𝑥 𝑑𝑡)2

]︂
, (24.2)

24.4 Conditions from conformal Hamilton-Jacobi separability

24.5 Tetrad-frame connections

Extrinsic curvatures Γ𝑎𝑧𝑏 along the radial directions 𝑧 = 𝑡 and 𝑥, and Γ𝑦𝑎𝑧 along the angular directions 𝑎 = 𝑦

and 𝜑. Expansions

Γ202 = Γ303 = 𝜗0 = 0 , (24.3a)

Γ212 = Γ313 = 𝜗1 = 𝜕1 ln 𝜌 , (24.3b)

−Γ020 = Γ121 = 𝜗2 = 𝜕2 ln 𝜌 , (24.3c)

−Γ030 = Γ131 = 𝜗3 = 0 , (24.3d)

Twists

Γ320 = −Γ203 = Γ302 = 𝜛0 =

√
Δ𝑥

2𝜌(1− 𝜔𝑥𝜔𝑦)
𝑑𝜔𝑦
𝑑𝑦

, (24.4a)

Γ321 = −Γ213 = Γ312 = 𝜛𝑥 = 0 , (24.4b)

Γ012 = −Γ120 = Γ021 = 𝜛2 = 0 , (24.4c)

Γ𝑡𝑥𝜑 = −Γ𝑥𝜑𝑡 = Γ𝑡𝜑𝑥 = 𝜛𝜑 =

√
Δ𝑦

2𝜌(1− 𝜔𝑥𝜔𝑦)
𝑑𝜔𝑥
𝑑𝑥

. (24.4d)
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Shear vanishes

Γ202 = Γ303 = Γ212 = Γ313 = 0 , (24.5a)

Γ020 = Γ121 = Γ030 = Γ131 = 0 . (24.5b)

Γ𝑎𝑧𝑧 = 0 , (24.6a)

Γ𝑧𝑎𝑎 = 0 , (24.6b)

Γ100 = 𝜕0 ln 𝜈 , (24.6c)

Γ𝑡𝑟𝑟 = 𝜕1 ln 𝜈 , (24.6d)

Γ100 = 𝜕1 ln 𝜈 , (24.6e)

Γ𝑡𝑟𝑟 = 𝜕0 ln 𝜈 , (24.6f)

𝜈 ≡ ln

(︂
1− 𝜔𝑥𝜔𝑦

𝜌

)︂
, 𝜇 ≡ ln

(︂
1− 𝜔𝑥𝜔𝑦

𝜌

)︂
(24.7)

24.6 Inevitability of mass inflation

Mass inflation requires the simultaneous presence of both outgoing and ingoing streams near the inner
horizon. Will that happen in real black holes? Any real black hole will of course accrete matter from its
surroundings, so certainly there will be a stream of one kind or another (outgoing or ingoing) inside the
black hole. But is it guaranteed that there will also be a stream of the other kind? The answer is probably.
One of the remarkable features of the mass inflation instability is that, as long as outgoing and ingoing

streams are both present, the smaller the perturbation the more violent the instability. That is, if say the
outgoing stream is reduced to a tiny trickle compared to the ingoing stream (or vice versa), then the length
scale (and time scale) over which mass inflation occurs gets shorter. During mass inflation, as the counter-
streaming streams drop through an interval Δ𝑟 of circumferential radius, the interior mass 𝑀(𝑟) increases
exponentially with length scale 𝑙

𝑀(𝑟) ∝ 𝑒Δ𝑟/𝑙 . (24.8)

It turns out that the inflationary length scale 𝑙 is proportional to the accretion rate

𝑙 ∝ �̇� , (24.9)

so that smaller accretion rates produce more violent inflation. Physically, the smaller accretion rate, the
closer the streams must approach the inner horizon before the pressure of their counter-streaming begins to
dominate the gravitational force. The distance between the inner horizon and where mass inflation begins
effectively sets the length scale 𝑙 of inflation.
Given this feature of mass inflation, that the tinier the perturbation the more rapid the growth, it seems
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almost inevitable that mass inflation must occur inside real black holes. Even the tiniest piece of stuff going
the wrong way is apparently enough to trigger the mass inflation instability.
One way to avoid mass inflation inside a real black hole is to have a large level of dissipation inside the

black hole, sufficient to reduce the charge (or spin) to zero near the singularity. In that case the central
singularity reverts to being spacelike, like the Schwarzschild singularity. While the electrical conductivity of
a realistic plasma is more than adequate to neutralize a charged black hole, angular momentum transport
is intrinsically a much weaker process, and it is not clear whether the dissipation of angular momentum
might be large enough to eliminate the spin near the singularity of a rotating black hole. There has been no
research on the latter subject.

24.7 The black hole collider

A good way to think conceptually about mass inflation is that it acts like a particle accelerator. The counter-
streaming pressure accelerates outgoing and ingoing streams through each other at an exponential rate, so
that a Lagrangian gas element spends equal amounts of proper time accelerating through equal decades of
counter-streaming velocity. The centre of mass energy easily exceeds the Planck energy.
Mass inflation is expected to occur just above the inner horizon of a black hole. In a realistic rotating

astronomical black hole, the inner horizon is likely to be at a considerable fraction of the radius of the
outer horizon. Thus the black hole accelerator operates not near a central singularity, but rather at a
macroscopically huge scale. This machine is truly monstrous.
Undoubtedly much fascinating physics occurs in the black hole collider. The situation is far more extreme

than anywhere else in our Universe today. Who knows what Nature does there? To my knowledge, there has
been no research on the subject.

Concept question 24.1. Which Einstein equations are redundant? RE-ASK THIS IN CONTEXT
OF SPHERICAL MODEL. If 4 of the 10 Einstein equations are redundant (after consistent initial conditions
are imposed) because of energy-momentum conservation, can any 4 be dropped, or just the 4 with one
component the time component?

Exercise 24.2. Can accretion fuel outgoing and ingoing streams at the inner horizon? The
inflationary instability is driven by outgoing and ingoing streams at the inner horizon.
1. What are the conditions for collisionless particles accreting from outside the outer horizon to be outgoing

or ingoing at the inner horizon of a Kerr black hole?
2. Of particular relevance in astrophysics are collisionless particles that start at effectively infinite radius 𝑟,

whether massless (Cosmic Microwave Background photons) or massive (non-baryonic cold dark matter
particles). Calculate the maximum latitude to which particles falling from infinite radius can reach and
be either outgoing or ingoing at the inner horizon.
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Figure 24.1 Massless (solid) or massive (dashed) collisionless particles that fall from infinite radius can reach the

inner horizon and be either outgoing or ingoing only up to a certain maximum latitude on the inner horizon, shown

here. At higher latitudes on the inner horizon, particles that free fall from infinity are necessarily ingoing at the inner

horizon. The maximum accessible latitude depends on the spin of the black hole. The maximum latitude varies from

90∘ (all latitudes are accessible) for a Schwarzschild (non-spinning) black hole, to asin
√︀

− 3 + 2
√
3 = 42.∘9 (𝑚 = 0)

or asin
√︀

1/3 = 35.∘3 (𝑚 = 𝐸), arrowed, for an extremal Kerr black hole.

3. What happens at the poles on the inner horizon?
Solution.

1. Particles between the outer and inner horizons are outgoing or ingoing as the Hamilton-Jacobi time
parameter 𝑃𝑡, equation (23.5a), is positive or negative, §23.5. Particles that fall through the outer
horizon are necessarily ingoing at the outer horizon, requiring 𝑃𝑡 < 0 at the outer horizon. However,
particles with sufficiently positive angular momentum 𝐿 can turn around and become outgoing at the
inner horizon. The division between outgoing and ingoing at the inner horizon 𝑟 = 𝑟− occurs when 𝑃𝑡 is
zero at the inner horizon. For a Kerr black hole, where 𝑃𝑡 = −𝐸+𝐿𝜔𝑥, particles accreted from outside
the outer horizon are outgoing or ingoing at the inner horizon as (note that 𝜔−𝑥 > 𝜔+

𝑥 > 0)

{︃
𝐿𝜔−𝑥 > 𝐸 > 𝐿𝜔+

𝑥 outgoing ,

𝐸 > max (𝐿𝜔+
𝑥 , 𝐿𝜔

−
𝑥 ) ingoing .

(24.10)

2. To reach a given latitude 𝜃 at the inner horizon, 𝑃𝑦 must be positive, which imposes a lower limit on
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the Carter constant 𝒦,

𝒦 ≥
𝑃 2
𝜑

Δ𝑦
+𝑚2𝜌2𝑦 . (24.11)

Particles cannot turn around in radius between the outer and inner horizons. Outside the outer horizon,
a particle can reach a radius 𝑟 as long as 𝑃𝑥 is positive, which imposes an upper limit on the Carter
constant 𝒦,

𝒦 ≤ 𝑃 2
𝑡

Δ𝑥
−𝑚2𝜌2𝑥 . (24.12)

A necessary condition for a trajectory to extend to infinite radius is that the particle energy exceed its
rest mass, 𝐸 ≥ 𝑚. Given that condition, the right hand side of equation (24.12) tends to ∞ at 𝑟 → 𝑟+
and at 𝑟 →∞, and is a minimum at some radius in between. The condition that a trajectory can start
at infinite radius and reach a given latitude inside the outer horizon is

min

(︂
𝑃 2
𝑡

Δ𝑥
−𝑚2𝜌2𝑥

)︂
≥
𝑃 2
𝜑

Δ𝑦
+𝑚2𝜌2𝑦 , (24.13)

where the minimum on the left hand side is over radius 𝑟 from 𝑟+ to ∞. The condition (24.13) along
with the condition that 𝑃𝑡 = 0 at the inner horizon translates into a condition on the maximum latitude
at any given spin parameter 𝑎, illustrated in Figure 24.1.

3. Poles occur where Δ𝑦 = 0. A particle can reach a pole only if 𝑃𝑦 = 𝑃𝜑 = 0 there, equation (23.20). This
requires that 𝐿 = 0 and

𝒦 ≥ 𝑚2𝜌2𝑦 . (24.14)

Since 𝐿 = 0, the time Hamilton-Jacobi parameter 𝑃𝑡 defined by equation (23.5a) is a constant, 𝑃𝑡 =
𝜋𝑡 = −𝐸. Since the sign of 𝑃𝑡 between the horizons determines whether the particle is outgoing (𝑃𝑡 > 0)
or ingoing (𝑃𝑡 < 0), and since a particle falling through the outer horizon is necessarily ingoing, it
follows that a particle that falls from outside the outer horizon to a pole on the inner horizon must
remain ingoing. The limiting case is for a massless particle, 𝑚 = 0, falling along the principal ingoing
null direction along the polar axis. This polar null geodesic has 𝒦 = 𝑃𝑡 = 𝐸 = 𝐿 = 0. However,
𝐿/𝐸 = 𝜔𝑦 → 0 on the polar ingoing null geodesic, equation (23.26), which is on the ingoing side of the
outgoing/ingoing divide (24.10). Thus there are no geodesics that fall from outside the outer horizon
and are outgoing when they reach a pole on the inner horizon. On the other hand it is possible for
ingoing photons to scatter off gas or dust inside the outer horizon and thereby become outgoing when
they reach the inner horizon, at any latitude.

Exercise 24.3. Inflationary Kasner solution. The inflationary and collapse stages of inflation can be
approximated by a Kasner line-element (17.133) with two scale factors equal, 𝑎2 = 𝑎3,

𝑑𝑠2 = − 𝑑𝑡2 + 𝑎21𝑑𝑥
2
1 + 𝑎22(𝑑𝑥

2
2 + 𝑑𝑥23) . (24.15)

All scale factors are functions 𝑎𝛼(𝑡) only of time 𝑡. The tetrad-frame inflationary energy-momentum is
diagonal with 𝑇00 = 𝑇11 and 𝑇22 = 𝑇33 = 0. The goal is to find scale factors 𝑎1 and 𝑎2 that yield such.



24.7 The black hole collider 715

1. Show that the tetrad-frame Einstein tensor that follows from the Kasner line-element (24.15) is diagonal
with 𝐺22 = 𝐺33.

2. Define the time 𝑇 (𝑡) (not to be confused with energy-momenta 𝑇𝑚𝑛) by

𝑑𝑡 = −𝑎3𝑑 ln |𝑇 | . (24.16)

In the inflationary context, 𝑇 is negative, varying from −∞ in the distant past to −0 at the singularity.
The minus sign in equation (24.16) ensures that 𝑡 increases as 𝑇 increases. Show that the condition
𝐺00 = 𝐺11 requires that 𝑎2 be proportional to some power of |𝑇 |,

𝑎2 ∝ |𝑇 |𝑏 , (24.17)

with 𝑏 some arbitrary constant.
3. Show that the condition 𝐺22 = 0 implies that

𝑎1 ∝
𝑒𝑐𝑎

2
2

√
𝑎2

, (24.18)

with 𝑐 some arbitrary constant.
4. Without loss of generality scale the time 𝑇 so that 𝑏 = 1

2 and 𝑐 = 1. With a convenient scaling of the
coordinates 𝑥𝛼, the scale factors 𝑎𝛼 are

𝑎1 =
𝑒|𝑇 |

|𝑇 |1/4
, 𝑎2 = |𝑇 |1/2 , 𝑎3 ≡ 𝑎1𝑎22 = |𝑇 |3/4𝑒|𝑇 | . (24.19)

There is a BKL bounce where 𝑎1 goes through its minimum value at 𝑇 = − 1
4 . Show that

𝐺00 = 𝐺11 =
1

𝑎21𝑎
2
2

=
𝑒−2|𝑇 |

|𝑇 |1/2
. (24.20)

Show that the only non-vanishing component of the tetrad-frame Weyl tensor is its spin 0 part,

𝐶 = − 1

8𝑎6
= − 𝑒−2|𝑇 |

8|𝑇 |3/2
. (24.21)

5. Define the Kasner coefficients 𝑞𝛼 by

𝑞𝛼 ≡
𝑑 ln 𝑎𝛼
𝑑 ln 𝑎

, (24.22)

which is defined so that
∑︀
𝛼 𝑞𝛼 = 1. Show that

𝑞1 =
|𝑇 | − 1

4

|𝑇 |+ 3
4

, 𝑞2 = 𝑞3 =
1
2

|𝑇 |+ 3
4

, (24.23)

with asymptotic behaviour

{𝑞1, 𝑞2} →
{︂
{1, 0} 𝑇 → −∞ ,

{− 1
3 ,

2
3} 𝑇 → −0 . (24.24)
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Conclude that ∑︁
𝛼

𝑞2𝛼 = 1− 2|𝑇 |
(|𝑇 |+ 3

4 )
2
. (24.25)

6. Geodesics follow from the 3 integrals of motion 𝑝𝛼 associated with spatial homogeneity, and 1 integral of
motion 𝑝𝜇𝑝𝜇 = −𝑚2 associated with conservation of rest mass 𝑚. Show that the tetrad-frame Einstein
tensor can be realised by the sum of energy-momenta of two collisionless streams of massless particles,
one outgoing (+) and the other ingoing (−)

𝐺𝑚𝑛 = 8𝜋(𝑇+
𝑚𝑛 + 𝑇−𝑚𝑛) , 𝑇±𝑚𝑛 = 𝑁𝑝±𝑚𝑝

±
𝑛 , (24.26)

with tetrad-frame momenta

𝑝𝑚± =
1

𝑎1
{1,±1, 0, 0} , (24.27)

and tetrad-frame number densities 𝑛𝑚± = 𝑁𝑝𝑚± where 𝑁 is the scalar density

𝑁 =
1

16𝜋𝑎22
. (24.28)

The momenta satisfy the geodesic equation 𝑝𝑚±𝐷𝑚𝑝
𝑛
± = 0, and the number densities satisfy number

conservation 𝐷𝑚𝑛
𝑚
± = 0.

7. The tetrad-frame 4-momentum along a geodesic of a particle of mass 𝑚 is

𝑝𝑚 = {𝑝0, 𝑝𝑎} =

{︃√︃∑︁
𝛼

𝑝2𝛼
𝑎2𝛼

+𝑚2 ,
𝑝𝛼
𝑎𝛼

}︃
. (24.29)

With respect to coordinates 𝑥𝜇 ≡ {𝑇, 𝑥𝛼}, the coordinate 4-momentum along a geodesic is

𝑑𝑥𝜇

𝑑𝜆
≡
{︂
𝑑𝑇

𝑑𝜆
,
𝑑𝑥𝛼
𝑑𝜆

}︂
≡ 𝑝𝜇 = 𝑒𝑚

𝜇𝑝𝑚 =

{︃
|𝑇 |
𝑎3

√︃∑︁
𝛼

𝑝2𝛼
𝑎2𝛼

+𝑚2 ,
𝑝𝛼
𝑎2𝛼

}︃
. (24.30)

Draw null geodesics to see what the scene looks like to an observer at rest in the tetrad frame.
8. Show that the ratio of emitted to observed tetrad-frame frequencies 𝜔 ≡ 𝑝0 for an observer at rest at

time 𝑇 watching a distant emitter at rest at time 𝑇 = 𝑇∞ → −∞ in a direction angled 𝜃 away from the
1-axis (𝑥-axis) is

𝜔em

𝜔obs
=
𝜔(𝑇∞)

𝜔(𝑇 )
→
√︀
𝑇/𝑇∞ sin 𝜃 . (24.31)

The proper time experienced by the rest observer is 𝜏 = 𝑡. Conclude that the acceleration of the distant
emitter perceived by the rest observer is

𝜅 ≡ 𝑑 ln(𝜔em/𝜔obs)

𝑑𝜏
= − 1

2𝑎3
= − 1

2 |𝑇 |
−3/4𝑒−|𝑇 | . (24.32)

Conclude that the acceleration diverges at the singularity as

𝜅 ∝ −|𝑇 |−3/4 ∝ −|𝜏 |−1 as 𝜏 → −0 . (24.33)



25

Black hole thermodynamics

For an ideal Λ-Kerr-Newman black hole, variations of the black hole’s mass 𝑀 , electric charge 𝑄, angular
momentum 𝐽 ≡ 𝑎𝑀 , and of the cosmological constant Λ ≡ 8𝜋𝐺𝜌𝜆 are related to variations of the area
𝐴 = 4𝜋𝑅2 = 4𝜋(𝑟2 + 𝑎2) of the horizon by

𝑑𝑀 =
𝜅

8𝜋
𝑑𝐴+Φ 𝑑𝑄+ 𝜔 𝑑𝐽 − 𝑉 𝑑𝜌Λ , (25.1)

where 𝜅 is the acceleration, Φ the electric potential, 𝜔 the angular velocity, and 𝑉 the enclosed volume at
the horizon,

𝜅 =
𝑟 −𝑀
𝑅2

− 2Λ𝑟

3
, (25.2a)

Φ =
𝑄𝑟

𝑅2
, (25.2b)

𝜔 =
𝑎

𝑅2
, (25.2c)

𝑉 =
4

3
𝜋𝑟𝑅2 . (25.2d)

Equations (25.1) and (25.2) hold at any horizon, wherever the horizon function Δ𝑥 vanishes, including at a
cosmological horizon, which exists if the vacuum energy 𝜌Λ is positive. The acceleration 𝜅 satisfies

𝜅 = −1

2

𝑑Δ𝑥

𝑑𝑥
. (25.3)

The acceleration 𝜅 vanishes when the horizon is extremal, that is, where two horizons merge into one, which
happens when the horizon function Δ𝑥 is not only zero but also an extremum.
Equation (25.1) can be recast as

𝑑(𝑀 + 𝜌Λ𝑉 ) =
1

8𝜋𝜅
𝑑𝐴+Φ 𝑑𝑄+ 𝜔 𝑑𝐽 − 𝑝Λ 𝑑𝑉 , (25.4)

in which the energy within the horizon is taken to be the energy 𝑀 + 𝜌Λ𝑉 including the contribution from
vacuum energy.
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718 Black hole thermodynamics

Exercise 25.1. Entropy in Hawking radiation. Compare the entropy emitted in Hawking radiation to
the Bekenstein-Hawking entropy lost by a black hole when it emits a certain energy 𝑑𝐸 in Hawking radiation.
Assume for simplicity that the emitted radiation carries no charge or angular momentum.
Solution. The entropy 𝑆 of an ideal gas in thermodynamic equilibrium with zero chemical potential is
related to its energy 𝐸 by, equation (30.18),

𝑇 𝑑𝑆

𝑑𝐸
= (1 + 𝑝/𝜌) . (25.5)

For relativistic radiation, 𝑝/𝜌 = 1
3 , equation (25.6) becomes

𝑇 𝑑𝑆

𝑑𝐸
=

4

3
. (25.6)

If it is assumed that the Hawking radiation carries no charge or angular momentum, then the Bekenstein-
Hawking entropy lost by the black hole is

𝑇 𝑑𝑆

𝑑𝐸
= 1 . (25.7)

Thus the entropy emitted in Hawking radiation exceeds the Bekenstein-Hawking entropy lost by the black
hole by factor 4

3 . A more careful treatment gives a slightly different result (Zurek, 1982; Page, 1983).

Exercise 25.2. Area of the horizon. What is the area of the horizon of a stationary black hole?
Solution. The 2-dimensional angular line-element of the separable line-element (22.1) is

𝑑𝑙2 = 𝜌2

[︃
𝑑𝑦2

Δ𝑦
+

(Δ𝑦 − 𝜔2
𝑦Δ𝑥)𝑑𝜑

2

(1− 𝜔𝑥𝜔𝑦)2

]︃
. (25.8)

The angular line-element is diagonal, with proper distances in the two orthogonal 𝑦 and 𝜑 directions

𝜌 𝑑𝑦√︀
Δ𝑦

,
𝜌
√︁

Δ𝑦 − 𝜔2
𝑦Δ𝑥 𝑑𝜑

1− 𝜔𝑥𝜔𝑦
. (25.9)

The area of the angular 𝑦–𝜑 surface at fixed radius 𝑥 and time 𝑡 is obtained by integrating the product of
the proper distances over the surface,

𝐴 =

∫︁ 𝜌2
√︁

(1− 𝜔2
𝑦Δ𝑥/Δ𝑦)

1− 𝜔𝑥𝜔𝑦
𝑑𝑦𝑑𝜑 . (25.10)
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Horizons occur where the horizon function vanishes, Δ𝑥 = 0, in which case the area simplifies to

𝐴 =

∫︁
𝜌2

1− 𝜔𝑥𝜔𝑦
𝑑𝑦𝑑𝜑

= 2𝜋

∫︁
1

(𝑓0 + 𝑓1𝜔𝑥)(𝑓1 + 𝑓0𝜔𝑦)
𝑑𝑦

=
2𝜋

𝑓0 + 𝑓1𝜔𝑥

∫︁
𝑑𝜔𝑦

2
√︀

(𝑓1 + 𝑓0𝜔𝑦)3(𝑔1 − 𝑔0𝜔𝑦)

=
2𝜋

(𝑓0𝑔1 + 𝑓1𝑔0)(𝑓0 + 𝑓1𝜔𝑥)

[︃√︃
𝑔1 − 𝑔0𝜔𝑦
𝑓1 + 𝑓0𝜔𝑦

]︃
. (25.11)

The second line of equations invokes equation (22.39a), while the third line uses equation (22.44b) to trans-
form the integral over 𝑦 to an integral over 𝜔𝑦. The constants are given by equation (22.72) for Λ-Kerr-
Newman, or equation (22.80) for Taub-NUT. The integration over 𝑦 is from −1 to 1, north to south pole. For
Λ-Kerr-Newman, 𝜔𝑦 = 0 at both poles, but for Taub-NUT, 𝜔𝑦 = 2𝑁∙(𝑐∙± 1) at the poles, equation (22.83).
In either case, for both Λ-Kerr-Newman and Taub-NUT, the area of the horizon is

𝐴 = 4𝜋𝑅2 , (25.12)

where 𝑅 is given by equation (22.7) for Λ-Kerr-Newman, and equations (22.83) for Taub-NUT.



Concept Questions

1. Why do general relativistic perturbation theory using the tetrad formalism as opposed to the coordinate
approach?

2. Why is the tetrad metric 𝛾𝑚𝑛 assumed fixed in the presence of perturbations?
3. Are the tetrad axes 𝛾𝛾𝑚 fixed under a perturbation?
4. Is it true that the tetrad components 𝜙𝑚𝑛 of a perturbation are (anti-)symmetric in 𝑚↔ 𝑛 if and only

if its coordinate components 𝜙𝜇𝜈 are (anti-)symmetric in 𝜇↔ 𝜈?
5. Does an unperturbed quantity, such as the unperturbed metric 0

𝑔𝜇𝜈 , change under an infinitesimal
coordinate gauge transformation?

6. How can the vierbein perturbation 𝜙𝑚𝑛 be considered a tetrad tensor field if it changes under an
infinitesimal coordinate gauge transformation?

7. What properties of the unperturbed spacetime allow decomposition of perturbations into independently
evolving Fourier modes?

8. What properties of the unperturbed spacetime allow decomposition of perturbations into independently
evolving scalar, vector, and tensor modes?

9. In what sense do scalar, vector, and tensor modes have spin 0, 1, and 2 respectively?
10. Tensor modes represent gravitational waves that, in vacuo, propagate at the speed of light. Do scalar

and vector modes also propagate at the speed of light in vacuo? If so, do scalar and vector modes also
constitute gravitational waves?

11. If scalar, vector, and tensor modes evolve independently, does that mean that scalar modes can exist
and evolve in the complete absence of tensor modes? If so, does it mean that scalar modes can propagate
causally, in vacuo at the speed of light, without any tensor modes being present?

12. Equation (27.77) defines the mass 𝑀 of a body as what a distant observer would measure from its
gravitational potential. Similarly equation (27.85) defines the angular momentum 𝐿 of a body as what a
distant observer would measure from the dragging of inertial frames. In what sense are these definitions
legitimate?

13. Can an observer far from a body detect the difference between the scalar potentials Ψ and Φ produced
by the body?
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14. If a gravitational wave is a wave of spacetime itself, distorting the very rulers and clocks that measure
spacetime, how is it possible to measure gravitational waves at all?

15. If gravitational waves carry energy-momentum, then can gravitational waves be present in a region of
spacetime with vanishing energy-momentum tensor, 𝑇𝑚𝑛 = 0?

16. Have gravitational waves been detected?



What’s important?

1. Getting your brain around coordinate and tetrad gauge transformations.
2. A central aim of general relativistic perturbation theory is to identify the coordinate and tetrad gauge-

invariant perturbations, since only these have physical meaning.
3. A second central aim is to classify perturbations into independently evolving modes, to the extent that

this is possible.
4. In background spacetimes with spatial translation and rotation symmetry, which includes Minkowski

space and the Friedmann-Lemaître-Robertson-Walker metric of cosmology, modes decompose into inde-
pendently evolving scalar (spin 0), vector (spin 1), and tensor (spin 2) modes. In background spacetimes
without spatial translation and rotation symmetry, such as black holes, scalar, vector, and tensor modes
scatter off the curvature of space, and therefore mix with each other.

5. In background spacetimes with spatial translation and rotation symmetry, there are 6 algebraic com-
binations of metric coefficients that are coordinate and tetrad gauge-invariant, and therefore represent
physical perturbations. There are 2 scalar modes, 2 vector modes, and 2 tensor modes. A spin 𝑚 mode
varies as 𝑒−𝑖𝑚𝜒 where 𝜒 is the rotational angle about the spatial wavevector 𝑘 of the mode.

6. In background spacetimes without spatial translation and rotation symmetry, the coordinate and tetrad
gauge-invariant perturbations are not algebraic combinations of the metric coefficients, but rather com-
binations that involve first and second derivatives of the metric coefficients. Gravitational waves are
described by the Weyl tensor, which can be decomposed into 5 complex components, with spin 0, ±1,
and ±2. The spin ±2 components describe propagating gravitational waves, while the spin 0 and spin ±1
components describe the non-propagating gravitational field near a source.

7. The preeminent application of general relativistic perturbation theory is to cosmology. Coupled with
physics that is either well understood (such as photon-electron scattering) or straightforward to model
even without a deep understanding (such as the dynamical behaviour of non-baryonic dark matter and
dark energy), the theory has yielded predictions that are in spectacular agreement with observations
of fluctuations in the CMB and in the large scale distribution of galaxies and other tracers of the
distribution of matter in the Universe.
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26

Perturbations and gauge transformations

This Chapter sets up the basic equations that define perturbations to an arbitrary spacetime in the tetrad
formalism of general relativity, and it examines the effect of tetrad and coordinate gauge transformations
on those perturbations. The perturbations are supposed to be small, in the sense that quantities quadratic
in the perturbations can be neglected. The formalism set up in this Chapter provides a foundation used in
subsequent Chapters.

26.1 Notation for perturbations

A 0 (zero) overscript signifies an unperturbed quantity, while a 1 (one) overscript signifies a perturbation.
No overscript means the full quantity, including both unperturbed and perturbed parts. An overscript is
attached only where necessary. Thus if the unperturbed part of a quantity is zero, then no overscript is
needed, and none is attached.
The vierbein of the unperturbed background is 0

𝑒𝑛𝜇. In this and the next several sections up to and
including §26.7, the unperturbed vierbein 0

𝑒𝑛𝜇 is an arbitrary differentiable function of arbitrary coordinates
𝑥𝜇.

26.2 Vierbein perturbation

Let the vierbein perturbation 𝜙𝑚𝑛 be defined so that the perturbed inverse vierbein is

𝑒𝑚
𝜇 = (𝛿𝑛𝑚 + 𝜙𝑚

𝑛)
0
𝑒𝑛
𝜇 , (26.1)

with corresponding perturbed vierbein

𝑒𝑚𝜇 = (𝛿𝑚𝑛 − 𝜙𝑛𝑚)
0
𝑒𝑛𝜇 . (26.2)

Since the perturbation 𝜙𝑚𝑛 is already of linear order, to linear order its indices can be raised and lowered
with the unperturbed metric, and transformed between tetrad and coordinate frames with the unperturbed
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724 Perturbations and gauge transformations

vierbein. In practice it proves convenient to work with the covariant tetrad-frame components 𝜙𝑚𝑛 of the
vierbein perturbation

𝜙𝑚𝑛 = 𝛾𝑛𝑙𝜙𝑚
𝑙 . (26.3)

In terms of the covariant perturbation 𝜙𝑚𝑛, the perturbed inverse vierbein (26.1) is

𝑒𝑚
𝜇 = (𝛾𝑚𝑛 + 𝜙𝑚𝑛)

0
𝑒𝑛𝜇 , (26.4)

The perturbation 𝜙𝑚𝑛 can be regarded as a tetrad tensor field defined on the unperturbed background.

26.3 Gauge transformations

The vierbein perturbation 𝜙𝑚𝑛 has 16 degrees of freedom, but only 6 of these degrees of freedom correspond
to real physical perturbations, since 6 degrees of freedom are associated with arbitrary infinitesimal changes
in the choice of tetrad, which is to say arbitrary infinitesimal Lorentz transformations, and a further 4 degrees
of freedom are associated with arbitrary infinitesimal changes in the coordinates.
In the context of perturbation theory, these infinitesimal tetrad and coordinate transformations are called

gauge transformations. Real physical perturbations are perturbations that are gauge-invariant under
both tetrad and coordinate gauge transformations.

26.4 Tetrad metric assumed constant

In the tetrad formalism, tetrad axes 𝛾𝛾𝑚 are introduced as locally inertial (or other physically motivated)
axes attached to an observer. The axes enable quantities to be projected into the frame of the observer.
In a spacetime buffeted by perturbations, it is natural for an observer to cling to the rock provided by the
locally inertial (or other) axes, as opposed to allowing the axes to bend with the wind. For example, when
a gravitational wave goes by, the tidal compression and rarefaction causes the proper distance between two
freely falling test masses to oscillate, Fig. 27.1. It is natural to choose the tetrad so that it continues to
measure proper times and distances in the perturbed spacetime.
In the treatment of general relativistic perturbation theory in this book, the tetrad metric is taken to be

constant everywhere, and unchanged by a perturbation

𝛾𝑚𝑛 =
0
𝛾𝑚𝑛 = constant . (26.5)

For example, if the tetrad is orthonormal, then the tetrad metric is constant, the Minkowski metric 𝜂𝑚𝑛.
However, the tetrad could also be some other tetrad for which the tetrad metric is constant, such as a spin
tetrad (§38.1), or a Newman-Penrose tetrad (§39.1.1).
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26.5 Perturbed coordinate metric

The perturbed coordinate metric is

𝑔𝜇𝜈 = 𝛾𝑚𝑛 𝑒
𝑚
𝜇𝑒
𝑛
𝜈

= 𝛾𝑘𝑙(𝛿
𝑘
𝑚 − 𝜙𝑚𝑘)

0
𝑒𝑚𝜇(𝛿

𝑙
𝑛 − 𝜙𝑛𝑙)

0
𝑒𝑛𝜈

=
0
𝑔𝜇𝜈 − (𝜙𝜇𝜈 + 𝜙𝜈𝜇) . (26.6)

Thus the perturbation of the coordinate metric depends only on the symmetric part of the vierbein pertur-
bation 𝜙𝑚𝑛, not the antisymmetric part

1
𝑔𝜇𝜈 = − (𝜙𝜇𝜈 + 𝜙𝜈𝜇) . (26.7)

26.6 Tetrad gauge transformations

Under an infinitesimal tetrad (Lorentz) transformation, the covariant vierbein perturbations 𝜙𝑚𝑛 transform
as

𝜙𝑚𝑛 → 𝜙𝑚𝑛 + 𝜖𝑚𝑛 , (26.8)

where 𝜖𝑚𝑛 is the generator of a Lorentz transformation, which is to say an arbitrary antisymmetric tensor
(Exercise 11.2). Thus the antisymmetric part 𝜙𝑚𝑛 − 𝜙𝑛𝑚 of the covariant perturbation 𝜙𝑚𝑛 is arbitrarily
adjustable through an infinitesimal tetrad transformation, while the symmetric part 𝜙𝑚𝑛 + 𝜙𝑛𝑚 is tetrad
gauge-invariant.
It is easy to see when a quantity is tetrad gauge-invariant: it is tetrad gauge-invariant if and only if it

depends only on the symmetric part of the vierbein perturbation, not on the antisymmetric part. Evidently
the perturbation (26.7) to the coordinate metric 𝑔𝜇𝜈 is tetrad gauge-invariant. This is as it should be, since
the coordinate metric 𝑔𝜇𝜈 is a coordinate-frame quantity, independent of the choice of tetrad frame.
If only tetrad gauge-invariant perturbations are physical, why not just discard tetrad perturbations (the

antisymmetric part of 𝜙𝑚𝑛) altogether, and work only with the tetrad gauge-invariant part (the symmetric
part of 𝜙𝑚𝑛)? The answer is that tetrad-frame quantities such as the tetrad-frame Einstein tensor do change
under tetrad gauge transformations (infinitesimal Lorentz transformations of the tetrad). It is true that
the only physical perturbations of the Einstein tensor are those combinations of it that are tetrad gauge-
invariant. But in order to identify these tetrad gauge-invariant combinations, it is necessary to carry through
the dependence on the non-tetrad-gauge-invariant part, the antisymmetric part of 𝜙𝑚𝑛.
Much of the professional literature on general relativistic perturbation theory works with the traditional

coordinate formalism, as opposed to the tetrad formalism. The term “gauge-invariant” then means coordinate
gauge-invariant, as opposed to both coordinate and tetrad gauge-invariant. This is fine as far as it goes: the
coordinate approach is perfectly able to identify physical perturbations versus gauge perturbations. However,
there still remains the problem of projecting the perturbations into the frame of an observer, so ultimately
the issue of perturbations of the observer’s frame, tetrad perturbations, must be faced.
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Concept question 26.1. Non-infinitesimal tetrad transformations in perturbation theory? In
perturbation theory, can tetrad gauge transformations be non-infinitesimal?

26.7 Coordinate gauge transformations

A coordinate gauge transformation is a transformation of the coordinates 𝑥𝜇 by an infinitesimal shift 𝜖𝜇

𝑥𝜇 → 𝑥′𝜇 = 𝑥𝜇 + 𝜖𝜇 . (26.9)

You should not think of this as shifting the underlying spacetime around; rather, it is just a change of the
coordinate system, which leaves the underlying spacetime unchanged. Because the shift 𝜖𝜇 is, like the vierbein
perturbations 𝜙𝑚𝑛, already of linear order, its indices can be raised and lowered with the unperturbed metric,
and transformed between coordinate and tetrad frames with the unperturbed vierbein. Thus the shift 𝜖𝜇 can
be regarded as a vector field defined on the unperturbed background. The tetrad components 𝜖𝑚 of the shift
𝜖𝜇 are

𝜖𝑚 =
0
𝑒𝑚𝜇 𝜖

𝜇 . (26.10)

Physically, the tetrad-frame shift 𝜖𝑚 is the shift measured in locally inertial coordinates 𝜉𝑚,

𝜉𝑚 → 𝜉′𝑚 = 𝜉𝑚 + 𝜖𝑚 . (26.11)

26.7.1 The change in any tensor under a coordinate transformation is minus its Lie

derivative

As discussed in §7.34, the change in any coordinate tensor 𝐴𝜅𝜆...𝜇𝜈...(𝑥) under a coordinate gauge transforma-
tion (26.9) is minus its Lie derivative ℒ𝜖 with respect to the infinitesimal shift 𝜖,

𝐴𝜅𝜆...𝜇𝜈...(𝑥)→ 𝐴′𝜅𝜆...𝜇𝜈...(𝑥) = 𝐴𝜅𝜆...𝜇𝜈...(𝑥)− ℒ𝜖𝐴𝜅𝜆...𝜇𝜈... . (26.12)

The Lie derivative ℒ𝜖𝐴𝜅𝜆...𝜇𝜈... is given by formula (7.151). Under a coordinate gauge transformation (26.9), the
coordinate of a fixed physical position transforms from 𝑥 to 𝑥′. But in perturbation theory, quantities are
considered to be functions of coordinate position 𝑥, which does not remain at a fixed physical position under
a coordinate transformation. As discussed in §7.34, the Lie derivative is defined such that the transformed
tensor 𝐴′𝜅𝜆...𝜇𝜈...(𝑥) is evaluated at fixed coordinate position 𝑥, not at fixed physical position.

26.7.2 Coordinate gauge transformation of a tetrad tensor

A tetrad-frame 4-vector 𝐴𝑚 is a coordinate-invariant quantity, and therefore acts like a coordinate scalar
under a coordinate gauge transformation (26.9). Thus a tetrad frame 4-vector 𝐴𝑚 must be treated as a
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coordinate scalar when its Lie derivative is taken. Under a coordinate gauge transformation (26.9), a tetrad-
frame 4-vector 𝐴𝑚 transforms as

𝐴𝑚(𝑥)→ 𝐴′𝑚(𝑥) = 𝐴𝑚(𝑥)− ℒ𝜖𝐴𝑚 , (26.13)

where the Lie derivative is, equation (7.133),

ℒ𝜖𝐴𝑚 = 𝜖𝜅
𝜕𝐴𝑚

𝜕𝑥𝜅
not a tetrad tensor . (26.14)

The change 𝜖𝜅𝜕𝜅𝐴𝑚 is a coordinate tensor (specifically, a coordinate scalar), but not a tetrad tensor.
More generally, a tetrad-frame tensor 𝐴𝑘𝑙...𝑚𝑛... transforms under a coordinate gauge transformation (26.9)

as

𝐴𝑘𝑙...𝑚𝑛...(𝑥)→ 𝐴′𝑘𝑙...𝑚𝑛...(𝑥) = 𝐴𝑘𝑙...𝑚𝑛...(𝑥)− ℒ𝜖𝐴𝑘𝑙...𝑚𝑛... , (26.15)

where the Lie derivative is

ℒ𝜖𝐴𝑘𝑙...𝑚𝑛... = 𝜖𝜋𝜕𝜋𝐴
𝑘𝑙...
𝑚𝑛... not a tensor . (26.16)

Again, the change −𝜖𝜋𝜕𝜋𝐴𝑘𝑙...𝑚𝑛... is a coordinate tensor (a coordinate scalar), but not a tetrad tensor.

Concept question 26.2. Should not the Lie derivative of a tetrad tensor be a tetrad tensor?

The Lie derivative of a tetrad tensor, as defined in this book, is a coordinate tensor but not a tetrad tensor.
Would it not be better to define the Lie derivative so it is a tetrad tensor as well as a coordinate tensor?
Answer. In this book, the Lie derivative of any quantity is defined to be minus the variation of the quantity
under a coordinate transformation. This definition is unambiguous; and it implies that the Lie derivative of
a tetrad tensor is not a tetrad tensor.

26.7.3 Coordinate gauge transformation of the vierbein

The inverse vierbein 𝑒𝑚𝜇 is a coordinate vector and a tetrad vector. It transforms under a coordinate gauge
transformation (26.9) as

𝑒𝑚
𝜇(𝑥)→ 𝑒′𝑚

𝜇(𝑥)− ℒ𝜖𝑒𝑚𝜇 , (26.17)

where the Lie derivative of the inverse vierbein is, equation (7.137),

ℒ𝜖𝑒𝑚𝜇 = − 𝑒𝑚𝜅
𝜕𝜖𝜇

𝜕𝑥𝜅
+ 𝜖𝜅

𝜕𝑒𝑚
𝜇

𝜕𝑥𝜅

= − 𝜕𝑚(𝑒𝑛𝜇𝜖𝑛) + 𝜖𝑘𝜕𝑘𝑒𝑚
𝜇

= −𝑒𝑛𝜇
(︀
𝜕𝑚𝜖𝑛 − 𝜖𝑘𝑑𝑛𝑘𝑚 + 𝜖𝑘𝑑𝑛𝑚𝑘

)︀
= −𝑒𝑛𝜇

[︁
𝜕𝑚𝜖𝑛 + 𝜖𝑘

(︀
Γ̊𝑛𝑘𝑚 − Γ̊𝑛𝑚𝑘

)︀]︁
. (26.18)

On the third line the vierbein derivatives have been replaced by 𝑑𝑛𝑘𝑚 defined by equation (11.33), while on
the fourth line Γ̊𝑛𝑘𝑚 is the torsion-free tetrad-frame connection, defined in terms of the vierbein derivatives
by equation (11.54).
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26.7.4 Coordinate transformation of the vierbein perturbation

According to equation (26.1), the perturbation 1
𝑒𝑚

𝜇 of the inverse vierbein may be expressed in terms of a
covariant vierbein perturbation field 𝜙𝑚𝑛,

1
𝑒𝑚

𝜇 = 𝜙𝑚𝑛
0
𝑒𝑛𝜇 . (26.19)

The perturbation induced by a coordinate gauge transformation (26.9) equals the Lie derivative given by
equation (26.18), 1

𝑒𝑚
𝜇 = ℒ𝜖𝑒𝑚𝜇. Consequently the vierbein perturbation 𝜙𝑚𝑛 transforms under a coordinate

gauge transformation (26.9) as

𝜙𝑚𝑛 → 𝜙′𝑚𝑛 = 𝜙𝑚𝑛 + 𝜕𝑚𝜖𝑛 +
(︀
Γ̊𝑛𝑘𝑚 − Γ̊𝑛𝑚𝑘

)︀
𝜖𝑘 , (26.20)

with Γ̊𝑛𝑘𝑚 the torsion-free tetrad-frame connection. This is the fundamental formula that gives the effect of
coordinate transformations on the vierbein perturbations in any background spacetime.

Concept question 26.3. Variation of unperturbed quantities under coordinate gauge transfor-

mations? How does an unperturbed quantity, such as the unperturbed coordinate metric 0
𝑔𝜇𝜈 , vary under

an infinitesimal coordinate gauge transformation? Answer. It doesn’t. The variation is considered to be
part of the perturbation.

26.8 Scalar, vector, tensor decomposition of perturbations

In the particular case that the unperturbed spacetime is spatially homogeneous and isotropic, which includes
not only Minkowski space but also the important case of the cosmological Friedmann-Lemaître-Robertson-
Walker metric, perturbations decompose into independently evolving scalar (spin 0), vector (spin 1), and
tensor (spin 2) modes.
Similarly to Fourier decomposition, decomposition into scalar, vector, and tensor modes is non-local, in

principle requiring knowledge of perturbation amplitudes simultaneously throughout all of space. In practical
problems however, an adequate decomposition is possible as long as the scales probed are sufficiently larger
than the wavelengths of the modes probed. Ultimately, the fact that an adequate decomposition is possible
is a consequence of the fact that gravitational fluctuations in the real Universe appear to converge at the
cosmological horizon, so that what happens locally is largely independent of what is happening far away.

26.8.1 Decomposition of a vector in flat 3D space

Theorem: In flat 3-dimensional space, a 3-vector field 𝑤(𝑥) can be decomposed uniquely (subject to the
boundary condition that 𝑤 vanishes sufficiently rapidly at infinity) into a sum of scalar and vector parts

𝑤 = ∇𝑤‖
scalar

+ 𝑤⊥
vector

. (26.21)
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In this context, the term vector signifies a 3-vector 𝑤⊥ that is transverse, that is to say, it has vanishing
divergence,

∇ ·𝑤⊥ = 0 . (26.22)

Here ∇ ≡ 𝜕/𝜕𝑥 ≡ ∇𝑎 ≡ 𝜕/𝜕𝑥𝑎 is the gradient in flat 3D space. The scalar and vector parts are also known
as spin 0 and spin 1, or gradient and curl, or longitudinal and transverse. The scalar part ∇𝑤‖ contains 1
degree of freedom, while the vector part 𝑤⊥ contains 2 degrees of freedom. Together they account for the 3
degrees of freedom of the vector 𝑤.
Proof: Take the divergence of equation (26.21)

∇ ·𝑤 = ∇2𝑤‖ . (26.23)

The operator ∇2 on the right hand side of equation (26.23) is the 3D Laplacian. The solution of equa-
tion (26.23) is

𝑤‖(𝑥) = −
∫︁ ∇′ ·𝑤(𝑥′)

|𝑥′ − 𝑥|
𝑑3𝑥′

4𝜋
. (26.24)

The solution (26.24) is valid subject to boundary conditions that the vector 𝑤 vanish sufficiently rapidly
at infinity. In cosmology, the required boundary conditions, which are set at the Big Bang, are apparently
satisfied because fluctuations at the Big Bang were small. Equation (26.21) then immediately implies that
the vector part is 𝑤⊥ = 𝑤 −∇𝑤‖.
It is sometimes convenient to abbreviate ∇𝑤‖ = 𝑤‖ (distinguished by bold face 𝑤‖ instead of normal face

𝑤‖), so that the decomposition (26.21) is

𝑤 = 𝑤‖
scalar

+ 𝑤⊥
vector

. (26.25)

26.8.2 Fourier version of the decomposition of a vector in flat 3D space

When the background has some symmetry, it is natural to expand perturbations in eigenmodes of the
symmetry. If the background space is flat, then it is translation symmetric. Eigenmodes of the translation
operator ∇ are Fourier modes.
A function 𝑎(𝑥) in flat 3D space and its Fourier transform 𝑎(𝑘) are related by (the signs and disposition

of factors of 2𝜋 in the following definition follows the convention most commonly adopted by cosmologists;
beware that, with the −+++ signature adopted in this book, the convention is opposite to the quantum
mechanics convention 𝑝 = ~𝑘 = −𝑖~∇ for spatial momentum)

𝑎(𝑘) =

∫︁
𝑎(𝑥)𝑒𝑖𝑘·𝑥 𝑑3𝑥 , 𝑎(𝑥) =

∫︁
𝑎(𝑘)𝑒−𝑖𝑘·𝑥

𝑑3𝑘

(2𝜋)3
. (26.26)

You may not be familiar with the practice of using the same symbol 𝑎 in both real and Fourier space; but
𝑎 is the same vector in Hilbert space, with components 𝑎𝑥 = 𝑎(𝑥) in real space, and 𝑎𝑘 = 𝑎(𝑘) in Fourier
space.
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Taking the gradient ∇ in real space is equivalent to multiplying by −𝑖𝑘 in Fourier space

∇→ −𝑖𝑘 . (26.27)

Thus the decomposition (26.21) of the 3D vector 𝑤 translates into Fourier space as

𝑤 = −𝑖𝑘𝑤‖
scalar

+ 𝑤⊥
vector

, (26.28)

where the vector part 𝑤⊥ satisfies

𝑘 ·𝑤⊥ = 0 . (26.29)

In other words, in Fourier space the scalar part ∇𝑤‖ of the vector 𝑤 is the part parallel (longitudinal) to
the wavevector 𝑘, while the vector part 𝑤⊥ is the part perpendicular (transverse) to the wavevector 𝑘.

26.8.3 Decomposition of a tensor in flat 3D space

Similarly, the 9 components of a 3× 3 spatial matrix ℎ𝑎𝑏 can be decomposed into 3 scalars, 2 vectors, and 1
tensor:

ℎ𝑎𝑏 = 𝛿𝑎𝑏 𝜑
scalar

+∇𝑎∇𝑏ℎ
scalar

+ 𝜀𝑎𝑏𝑐∇𝑐ℎ̃
scalar

+∇𝑎ℎ𝑏
vector

+∇𝑏ℎ̃𝑎
vector

+ ℎ𝑇𝑎𝑏
tensor

. (26.30)

In this context, the term tensor signifies a 3× 3 matrix ℎ𝑇𝑎𝑏 that is traceless, symmetric, and transverse:

ℎ𝑇 𝑎𝑎 = 0 , ℎ𝑇𝑎𝑏 = ℎ𝑇𝑏𝑎 , ∇𝑎ℎ𝑇𝑎𝑏 = 0 . (26.31)

The transverse-traceless-symmetric matrix ℎ𝑇𝑎𝑏 has two degrees of freedom. The vector components ℎ𝑎 and
ℎ̃𝑎 are by definition transverse,

∇𝑎ℎ𝑎 = ∇𝑎ℎ̃𝑎 = 0 . (26.32)

The tildes on ℎ̃ and ℎ̃𝑎 simply distinguish those symbols (from ℎ and ℎ𝑎); the tildes have no other significance.
The trace of the 3× 3 matrix ℎ𝑎𝑏 is

ℎ𝑎𝑎 = 3𝜑+∇2ℎ . (26.33)



27

Perturbations in a flat space background

General relativistic perturbation theory is simplest in the case that the unperturbed background space is
Minkowski space. In Cartesian coordinates 𝑥𝜇 ≡ {𝑥0, 𝑥1, 𝑥2, 𝑥3} ≡ {𝑡, 𝑥, 𝑦, 𝑧}, the unperturbed coordinate
metric is the Minkowski metric

0
𝑔𝜇𝜈 = 𝜂𝜇𝜈 . (27.1)

In this Chapter the tetrad 𝛾𝛾𝑚 is taken to be orthonormal, and aligned with the unperturbed coordinate axes
0
𝑒𝜇, so that the unperturbed inverse vierbein is the unit matrix

0
𝑒𝑚

𝜇 = 𝛿𝜇𝑚 . (27.2)

Let overdot denote partial differentiation with respect to time 𝑡,

overdot ≡ 𝜕

𝜕𝑡
, (27.3)

and let ∇ denote the spatial gradient

∇ ≡ 𝜕

𝜕𝑥
≡ ∇𝑎 ≡

𝜕

𝜕𝑥𝑎
. (27.4)

Sometimes it will also be convenient to use ∇𝑚 to denote the 4-dimensional spacetime derivative

∇𝑚 ≡
{︁ 𝜕
𝜕𝑡
,∇
}︁
. (27.5)

27.1 Classification of vierbein perturbations

The aims of this section are two-fold. First, decompose perturbations into scalar, vector, and tensor parts.
Second, identify the coordinate and tetrad gauge-invariant perturbations. It will be found, equations (27.13),
that there are 6 coordinate and tetrad gauge-invariant perturbations, comprising 2 scalars Ψ and Φ, 1 vector
𝑊𝑎 containing 2 degrees of freedom, and 1 tensor ℎ𝑎𝑏 containing 2 degrees of freedom.
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The vierbein perturbations 𝜙𝑚𝑛 defined by equation (26.1) decompose, §26.8, into 6 scalars, 4 vectors,
and 1 tensor, a total of 6 + 4× 2 + 1× 2 = 16 degrees of freedom,

𝜙00 = 𝜓
scalar

, (27.6a)

𝜙0𝑎 = ∇𝑎𝑤
scalar

+ 𝑤𝑎
vector

, (27.6b)

𝜙𝑎0 = ∇𝑎�̃�
scalar

+ �̃�𝑎
vector

, (27.6c)

𝜙𝑎𝑏 = 𝛿𝑎𝑏 Φ
scalar

+∇𝑎∇𝑏ℎ
scalar

+ 𝜀𝑎𝑏𝑐∇𝑐ℎ̃
scalar

+∇𝑎ℎ𝑏
vector

+∇𝑏ℎ̃𝑎
vector

+ ℎ𝑎𝑏
tensor

. (27.6d)

The tildes on �̃� and ℎ̃ simply distinguish those symbols (from 𝑤 and ℎ); the tildes have no other significance.
The vector components are by definition transverse (have vanishing divergence), while the tensor component
ℎ𝑎𝑏 is by definition traceless, symmetric, and transverse. For a single Fourier mode whose wavevector 𝑘 is
taken without loss of generality to lie in the 𝑧-direction, so that ∇𝑥 = ∇𝑦 = 0, equations (27.6) are

𝜙𝑚𝑛 =

⎛⎜⎜⎝
𝜓 𝑤𝑥 𝑤𝑦 ∇𝑧𝑤
�̃�𝑥 Φ+ ℎ𝑥𝑥 ℎ𝑥𝑦 +∇𝑧ℎ̃ ∇𝑧ℎ̃𝑥
�̃�𝑦 ℎ𝑥𝑦 −∇𝑧ℎ̃ Φ− ℎ𝑥𝑥 ∇𝑧ℎ̃𝑦
∇𝑧�̃� ∇𝑧ℎ𝑥 ∇𝑧ℎ𝑦 Φ+∇2

𝑧ℎ

⎞⎟⎟⎠ . (27.7)

To identify coordinate gauge-invariant quantities, it is necessary to consider infinitesimal coordinate gauge
transformations (26.9). The 4 tetrad-frame components 𝜖𝑚 of the coordinate shift of the coordinate gauge
transformation decompose into 2 scalars and 1 vector

𝜖𝑚 = { 𝜖0
scalar

, ∇𝑎𝜖
scalar

+ 𝜖𝑎
vector

} . (27.8)

In the flat space background space being considered, the coordinate gauge transformation (26.20) of the
vierbein perturbation simplifies to

𝜙𝑚𝑛 → 𝜙′𝑚𝑛 = 𝜙𝑚𝑛 +∇𝑚𝜖𝑛 . (27.9)

In terms of the scalar, vector, and tensor potentials introduced in equations (27.6), the gauge transforma-
tions (27.9) are

𝜙00 → 𝜓 + �̇�0
scalar

, (27.10a)

𝜙0𝑎 → ∇𝑎(𝑤 + �̇�)
scalar

+ (𝑤𝑎 + �̇�𝑎)
vector

, (27.10b)

𝜙𝑎0 → ∇𝑎(�̃� + 𝜖0)
scalar

+ �̃�𝑎
vector

, (27.10c)

𝜙𝑎𝑏 → 𝛿𝑎𝑏Φ
scalar

+∇𝑎∇𝑏(ℎ+ 𝜖)
scalar

+ 𝜀𝑎𝑏𝑐∇𝑐ℎ̃
scalar

+∇𝑎(ℎ𝑏 + 𝜖𝑏)
vector

+∇𝑏ℎ̃𝑎
vector

+ ℎ𝑎𝑏
tensor

. (27.10d)

Equations (27.10a) imply that under an infinitesimal coordinate gauge transformation the potentials trans-
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form as

𝜓 → 𝜓 + �̇�0 , (27.11a)

𝑤 → 𝑤 + �̇� , 𝑤𝑎 → 𝑤𝑎 + �̇�𝑎 , (27.11b)

�̃� → �̃� + 𝜖0 , �̃�𝑎 → �̃�𝑎 , (27.11c)

Φ→ Φ , ℎ→ ℎ+ 𝜖 , ℎ̃→ ℎ̃ , ℎ𝑎 → ℎ𝑎 + 𝜖𝑎 , ℎ̃𝑎 → ℎ̃𝑎 , ℎ𝑎𝑏 → ℎ𝑎𝑏 . (27.11d)

Eliminating the coordinate shift 𝜖𝑚 from the transformations (27.11) yields 12 coordinate gauge-invariant
combinations of the potentials

𝜓 − ˙̃𝑤
scalar

, 𝑤 − ℎ̇
scalar

, 𝑤𝑎 − ℎ̇𝑎
vector

, �̃�𝑎
vector

, Φ
scalar

, ℎ̃
scalar

, ℎ̃𝑎
vector

, ℎ𝑎𝑏
tensor

. (27.12)

Physical perturbations are not only coordinate but also tetrad gauge-invariant. A quantity is tetrad gauge-
invariant if and only if it depends only on the symmetric part of the vierbein perturbations, not on the
antisymmetric part, §26.6. There are 6 combinations of the coordinate gauge-invariant perturbations (27.12)
that are symmetric, and therefore not only coordinate but also tetrad gauge-invariant. These 6 coordinate
and tetrad gauge-invariant perturbations comprise 2 scalars, 1 vector, and 1 tensor

Ψ
scalar

≡ 𝜓 − �̇� − ˙̃𝑤 + ℎ̈ , (27.13a)

Φ
scalar

, (27.13b)

𝑊𝑎
vector

≡ 𝑤𝑎 + �̃�𝑎 − ℎ̇𝑎 − ˙̃
ℎ𝑎 , (27.13c)

ℎ𝑎𝑏
tensor

. (27.13d)

Since only the 6 tetrad and coordinate gauge-invariant potentials Ψ, Φ, 𝑊𝑎, and ℎ𝑎𝑏 have physical signifi-
cance, it is legitimate to choose a particular gauge, a set of conditions on the non-gauge-invariant potentials,
arranged to simplify the equations, or to bring out some physical aspect. Three gauges considered later are
harmonic gauge (§27.7), Newtonian gauge (§27.8), and synchronous gauge (§27.9). However, for the next
several sections, no gauge will be chosen: the exposition will continue to be completely general.

Exercise 27.1. Classification of perturbations in arbitrary dimensions. Classify and enumerate
general relativistic perturbations in 𝑁 spacetime dimensions.
Solution. In 𝑁 spacetime dimensions, there are 𝑁−2 transverse directions. In 𝑁 spacetime dimensions, the
vierbein perturbations 𝜙𝑚𝑛, equations (27.6), decompose into: 5 scalars 𝜓, 𝑤, �̃�, Φ, ℎ; 4 vectors 𝑤𝑎, �̃�𝑎, ℎ𝑏,
ℎ̃𝑎; 1 transverse antisymmetric tensor ℎ̃𝑎𝑏 (which for 𝑁 = 4 reduces to a scalar 𝜀𝑎𝑏𝑐∇𝑐ℎ̃); and 1 transverse
traceless symmetric tensor ℎ𝑎𝑏; for a total of 5 + 4(𝑁−2) + 1

2 (𝑁−2)(𝑁−3) +
1
2𝑁(𝑁−3) = 𝑁2 degrees of

freedom. Coordinate transformations, equation (27.8), decompose into 2 scalars 𝜖0, 𝜖, and 1 vector 𝜖𝑎, a total
of 2+ (𝑁−2) = 𝑁 degrees of freedom, leaving 3 scalars, 3 vectors, 1 antisymmetric tensor, and 1 symmetric
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tensor. Tetrad (Lorentz) transformations remove a further 1 scalar, 2 vectors, and 1 transverse antisymmetric
tensor, a total of 1 + 2(𝑁−2) + 1

2 (𝑁−2)(𝑁−3) = 1
2 (𝑁−1)(𝑁−2) degrees of freedom, leaving as physical

degrees of freedom 2 scalars Ψ and Φ, 1 vector 𝑊𝑎, and 1 transverse traceless symmetric tensor ℎ𝑎𝑏, a total
of 2 + (𝑁−2) + 1

2𝑁(𝑁−3) = 1
2 (𝑁−1)(𝑁−2) degrees of freedom. The transverse traceless symmetric tensor

ℎ𝑎𝑏 carries propagating gravitational waves, §27.13. Gravitational waves have 1
2𝑁(𝑁−3) degrees of freedom,

and exist only in spacetime dimensions 𝑁 ≥ 4.

27.2 Metric, tetrad connections, and Einstein and Weyl tensors

This section gives expressions in a completely general gauge for perturbed quantities in flat background
Minkowski space.

27.2.1 Metric

The unperturbed metric 0
𝑔𝜇𝜈 is the Minkowski metric, equation (27.1). The perturbation 1

𝑔𝜇𝜈 of the coordinate
metric is, from equation (26.6),

1
𝑔𝑡𝑡 = − 2𝜓

scalar

, (27.14a)

1
𝑔𝑡𝑎 = −∇𝑎(𝑤 + �̃�)

scalar

− (𝑤𝑎 + �̃�𝑎)
vector

, (27.14b)

1
𝑔𝑎𝑏 = − 𝛿𝑎𝑏 2Φ

scalar

− 2∇𝑎∇𝑏ℎ
scalar

−∇𝑎(ℎ𝑏 + ℎ̃𝑏)
vector

−∇𝑏(ℎ𝑎 + ℎ̃𝑎)
vector

− 2ℎ𝑎𝑏
tensor

. (27.14c)

The coordinate metric is tetrad gauge-invariant, but not coordinate gauge-invariant.

27.2.2 Tetrad-frame connections

The tetrad-frame connections Γ𝑘𝑚𝑛 can be calculated from the usual formula (11.54). The unperturbed
tetrad connections

0

Γ𝑘𝑚𝑛 all vanish in the flat background. The perturbations
1

Γ𝑘𝑚𝑛 of the tetrad connections
are

1

Γ0𝑎0 = −∇𝑎(𝜓 − ˙̃𝑤)
scalar

+ ˙̃𝑤𝑎
vector

, (27.15a)

1

Γ0𝑎𝑏 = 𝛿𝑎𝑏 Φ̇
scalar

−∇𝑎∇𝑏(𝑤 − ℎ̇)
scalar

− 1
2 (∇𝑎𝑊𝑏 +∇𝑏𝑊𝑎)

vector

+∇𝑏�̃�𝑎
vector

+ ℎ̇𝑎𝑏
tensor

, (27.15b)

1

Γ𝑎𝑏0 = 1
2 (∇𝑎𝑊𝑏 −∇𝑏𝑊𝑎)

vector

− 𝜕

𝜕𝑡
(𝜀𝑎𝑏𝑑∇𝑑ℎ̃

scalar

−∇𝑎ℎ̃𝑏 +∇𝑏ℎ̃𝑎
vector

) , (27.15c)

1

Γ𝑎𝑏𝑐 = (𝛿𝑏𝑐∇𝑎 − 𝛿𝑎𝑐∇𝑏)Φ
scalar

−∇𝑘(𝜀𝑎𝑏𝑑∇𝑑ℎ̃
scalar

−∇𝑎ℎ̃𝑏 +∇𝑏ℎ̃𝑎
vector

) +∇𝑎ℎ𝑏𝑐 −∇𝑏ℎ𝑎𝑐
tensor

. (27.15d)

The perturbations of the tetrad connections are all coordinate gauge-invariant, as is evident from the fact that
they depend only on, and on all 12 of, the coordinate gauge-invariant combinations (27.12). The coordinate
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gauge-invariance of the tetrad connections follows more fundamentally from the fact that any quantity that
vanishes in the unperturbed background is coordinate gauge-invariant. According to the rule established in
§26.7, the change in a quantity under an infinitesimal coordinate gauge transformation equals its Lie deriva-
tive ℒ𝜖 with respect to the infinitesimal coordinate shift 𝜖. Any quantity that vanishes in the unperturbed
background has, to linear order, vanishing Lie derivative, therefore is coordinate gauge-invariant.
However, the perturbations

1

Γ𝑘𝑚𝑛 of the tetrad connections are not tetrad gauge-invariant, as is evident
from the fact that they (all) depend on antisymmetric parts of the vierbein perturbations 𝜙𝑚𝑛.

27.2.3 Tetrad-frame Einstein tensor

The tetrad-frame Einstein tensor 𝐺𝑚𝑛 in perturbed Minkowski space follows from the usual formulae (11.61),
(11.78), and (11.80). The unperturbed Einstein tensor

0

𝐺𝑚𝑛 vanishes identically. The perturbations
1

𝐺𝑚𝑛 of
the tetrad-frame Einstein tensor are

1

𝐺00 = 2∇2Φ
scalar

, (27.16a)

1

𝐺0𝑎 = 2∇𝑎Φ̇
scalar

+ 1
2 ∇

2𝑊𝑎
vector

, (27.16b)

1

𝐺𝑎𝑏 = 2 𝛿𝑎𝑏 Φ̈
scalar

− (∇𝑎∇𝑏 − 𝛿𝑎𝑏∇2)(Ψ− Φ)
scalar

+ 1
2 (∇𝑎�̇�𝑏 +∇𝑏�̇�𝑎)

vector

+�ℎ𝑎𝑏
tensor

, (27.16c)

where � is the d’Alembertian, the 4-dimensional wave operator

� ≡ ∇𝑚∇𝑚 = − 𝜕2

𝜕𝑡2
+∇2 . (27.17)

All the perturbations
1

𝐺𝑚𝑛 of the Einstein tensor are both coordinate and tetrad gauge-invariant, as follows
from the fact that the expressions (27.16) depend only on the coordinate and tetrad gauge-invariant potentials
Ψ, Φ, 𝑊𝑎, and ℎ𝑎𝑏. The property that the perturbations of the Einstein tensor are coordinate and tetrad
gauge-invariant is a feature of flat (Minkowski) background spacetime, and does not persist to more general
spacetimes, such as the Friedmann-Lemaître-Robertson-Walker spacetime.
In a frame with the wavevector 𝑘 taken along the 𝑧-axis, so that ∇𝑥 = ∇𝑦 = 0, the perturbations of the

Einstein tensor are

1

𝐺𝑚𝑛 =

⎛⎜⎜⎜⎜⎜⎝
2∇2

𝑧Φ
1
2 ∇

2
𝑧𝑊𝑥

1
2 ∇

2
𝑧𝑊𝑦 2∇𝑧Φ̇

1
2 ∇

2
𝑧𝑊𝑥 2 Φ̈ +∇2

𝑧(Ψ− Φ) +�ℎ+ �ℎ× 1
2 ∇𝑧�̇�𝑥

1
2 ∇

2
𝑧𝑊𝑦 �ℎ× 2 Φ̈ +∇2

𝑧(Ψ− Φ)−�ℎ+ 1
2 ∇𝑧�̇�𝑦

2∇𝑧Φ̇ 1
2 ∇𝑧�̇�𝑥

1
2 ∇𝑧�̇�𝑦 2 Φ̈

⎞⎟⎟⎟⎟⎟⎠ , (27.18)

where ℎ+ and ℎ× are the two linear polarizations of gravitational waves, discussed further in §27.13,

ℎ+ ≡ ℎ𝑥𝑥 = −ℎ𝑦𝑦 , ℎ× ≡ ℎ𝑥𝑦 = ℎ𝑦𝑥 . (27.19)
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The tetrad-frame complexified Weyl tensor is

𝐶0𝑎0𝑏 =
1
4 (∇𝑎∇𝑏 −

1
3 𝛿𝑎𝑏∇

2)(Ψ + Φ)
scalar

+ 1
8

[︀
− (∇𝑎�̇�𝑏 +∇𝑏�̇�𝑎) + 𝑖(𝜀𝑎𝑐𝑑∇𝑏 + 𝜀𝑏𝑐𝑑∇𝑎)∇𝑐𝑊𝑑

]︀
vector

+ 1
4

[︀
ℎ̈𝑎𝑏 − 𝜀𝑎𝑐𝑑𝜀𝑏𝑒𝑓∇𝑐∇𝑒ℎ𝑑𝑓 − 𝑖(𝜀𝑎𝑐𝑑∇𝑐ℎ̇𝑏𝑑 + 𝜀𝑏𝑐𝑑∇𝑐ℎ̇𝑎𝑑)

]︀
tensor

. (27.20)

Like the tetrad-frame Einstein tensor, the tetrad-frame Weyl tensor is both coordinate and tetrad gauge-
invariant, depending only on the coordinate and tetrad gauge-invariant potentials Ψ, Φ, 𝑊𝑎, and ℎ𝑎𝑏.

27.3 Spin components of the Einstein tensor

Scalar, vector, and tensor perturbations correspond respectively to perturbations of spin 0, 1, and 2. An object
has spin 𝑠 if it is unchanged by a rotation of 2𝜋/𝑠 about a prescribed direction. In perturbed Minkowski
space, the prescribed direction is the direction of the wavevector 𝑘 in the Fourier decomposition of the modes.
The spin components may be projected out by working in a spin tetrad, §38.1.
In a frame where the wavevector 𝑘 is taken along the 𝑧-axis, the spin components of the perturbations

1

𝐺𝑚𝑛 of the Einstein tensor (27.16) are

1

𝐺00 = 2∇2
𝑧Φ

spin-0

,
1

𝐺0𝑧 = 2∇𝑧Φ̇
spin-0

,
1

𝐺𝑧𝑧 = 2 Φ̈
spin-0

, (27.21a)

1

𝐺+− −
1

𝐺𝑧𝑧 = ∇2
𝑧(Ψ− Φ)
spin-0

, (27.21b)

1

𝐺0± = 1
2 ∇

2
𝑧𝑊±

spin-±1
,

1

𝐺𝑧± = 1
2 ∇𝑧�̇�±
spin-±1

, (27.21c)

1

𝐺±± = �ℎ±±
spin-±2

, (27.21d)

where 𝑊± are the spin ±1 components of the vector perturbation 𝑊𝑎,

𝑊± = 1√
2
(𝑊𝑥 ± 𝑖𝑊𝑦) , (27.22)

and ℎ±± are the spin ±2 components of the tensor perturbation ℎ𝑎𝑏,

ℎ±± = ℎ𝑥𝑥 ± 𝑖 ℎ𝑥𝑦 = ℎ+ ± 𝑖 ℎ× . (27.23)

The spin +2 and −2 components ℎ++ and ℎ−− of the tensor perturbation are called the right- and left-
handed circular polarizations. The spin +2 and −2 circular polarizations ℎ++ and ℎ−− transform as 𝑒−𝑖2𝜒

and 𝑒𝑖2𝜒 under a right-handed rotation by angle 𝜒 about the 𝑧-axis, while the linear polarizations ℎ+ and
ℎ× transform as cos 2𝜒 and − sin 2𝜒.
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27.4 Too many Einstein equations?

The Einstein equations are as usual (units 𝑐 = 𝐺 = 1; in the remainder of this Chapter, perturbation
overscripts 1 on the Einstein and energy-momentum tensors are dropped for brevity, which is fine because
the unperturbed tensors vanish identically in the Minkowski background)

𝐺𝑚𝑛 = 8𝜋𝑇𝑚𝑛 . (27.24)

There are 10 Einstein equations, but the Einstein tensor (27.16) depends on only 6 independent potentials: the
two scalarsΨ and Φ, the vector𝑊𝑎, and the tensor ℎ𝑎𝑏. The system of Einstein equations is thus overcomplete.
Why? The answer is that 4 of the Einstein equations enforce conservation of energy-momentum, and can
therefore be considered as governing the evolution of the energy-momentum as opposed to being equations
for the gravitational potentials. For example, the form of equations (27.16a) and (27.16b) for 𝐺00 and 𝐺0𝑎

enforces conservation of energy

𝐷𝑚𝐺𝑚0 = 0 , (27.25)

while the form of equations (27.16b) and (27.16c) for 𝐺0𝑎 and 𝐺𝑎𝑏 enforces conservation of momentum

𝐷𝑚𝐺𝑚𝑎 = 0 . (27.26)

Normally, the equations governing the evolution of the energy-momentum 𝑇𝑚𝑛𝑋 of each species 𝑋 of mass-
energy would be set up so as to ensure overall conservation of energy-momentum. If this is done, then
the conservation equations (27.25) and (27.26) can be regarded as redundant. Since equations (27.25) and
(27.26) are equations for the time evolution of 𝐺00 and 𝐺0𝑎, one might think that the Einstein equations
for 𝐺00 and 𝐺0𝑎 would become redundant, but this is not quite true. In fact the Einstein equations for
𝐺00 and 𝐺0𝑎 impose constraints that must be satisfied on the initial spatial hypersurface. Conservation
of energy-momentum guarantees that those constraints will continue to be satisfied on subsequent spatial
hypersurfaces, but still the initial conditions must be arranged to satisfy the constraints. Because the Einstein
equations for 𝐺00 and 𝐺0𝑎 must be satisfied as constraints on the initial conditions, but thereafter can be
ignored, the equations are called constraint equations. The Einstein equation for 𝐺00 is called the energy
constraint, or Hamiltonian constraint. The Einstein equations for 𝐺0𝑎 are called the momentum constraints.

27.5 Action at a distance?

The tensor component of the Einstein equations shows that, in a vacuum 𝑇𝑚𝑛 = 0, the tensor perturbations
ℎ𝑎𝑏 propagate at the speed of light, satisfying the wave equation

�ℎ𝑎𝑏 = 0 . (27.27)

The tensor perturbations represent propagating gravitational waves.
It is to be expected that scalar and vector perturbations would also propagate at the speed of light, yet

this is not obvious from the form of the Einstein tensor (27.16). Specifically, there are 4 components of the
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Einstein tensor (27.16) that apparently depend only on spatial derivatives, not on time derivatives. The 4
corresponding Einstein equations are

∇2Φ = 4𝜋𝑇00
scalar

, (27.28a)

∇2𝑊𝑎 = 16𝜋𝑇0𝑎
vector

, (27.28b)

∇2(Ψ− Φ) = − 8𝜋𝑄𝑎𝑏𝑇𝑎𝑏
scalar

, (27.28c)

where 𝑄𝑎𝑏 in equation (27.28c) is the quadrupole operator defined below, equation (27.102). These conditions
must be satisfied everywhere at every instant of time, giving the impression that signals are travelling
instantaneously from place to place.

27.6 Comparison to electromagnetism

The previous two sections §27.4 and §27.5 brought up two issues:
1. There are 10 Einstein equations, but only 6 independent gauge-invariant potentials Ψ, Φ, 𝑊𝑎, and ℎ𝑎𝑏.

The additional 4 Einstein equations serve to enforce conservation of energy-momentum.
2. Only 2 of the gauge-invariant potentials, the tensor potentials ℎ𝑎𝑏, satisfy causal wave equations. The

remaining 4 gauge-invariant potentials Ψ, Φ, and 𝑊𝑎 satisfy equations (27.28) that depend on the
instantaneous distribution of energy-momentum throughout space, on the face of it violating causality.

These facts may seem surprising, but in fact the equations of electromagnetism have a similar structure, as
will now be shown. In this section, the spacetime is assumed for simplicity to be flat Minkowski space. The
discussion in this section is based in part on the exposition by Bertschinger (1993).
In accordance with the usual procedure, the electromagnetic field may be defined in terms of an elec-

tromagnetic 4-potential 𝐴𝑚, whose time and spatial parts constitute the scalar potential 𝜑 and the vector
potential 𝐴:

𝐴𝑚 ≡ {𝜑,𝐴} . (27.29)

In flat (Minkowski) space, the electric and magnetic fields 𝐸 and 𝐵 are defined in terms of the potentials 𝜑
and 𝐴 by

𝐸 ≡ −∇𝜑− 𝜕𝐴

𝜕𝑡
, (27.30a)

𝐵 ≡∇×𝐴 . (27.30b)

Given their definition (27.30), the electric and magnetic fields automatically satisfy the two source-free
Maxwell’s equations

∇ ·𝐵 = 0 , (27.31a)

∇×𝐸 +
𝜕𝐵

𝜕𝑡
= 0 . (27.31b)
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The remaining two Maxwell’s equations, the sourced ones, are

∇ ·𝐸 = 4𝜋𝑞 , (27.32a)

∇×𝐵 − 𝜕𝐸

𝜕𝑡
= 4𝜋𝑗 , (27.32b)

where 𝑞 and 𝑗 are the electric charge and current density, the time and space components of the electric
4-current density 𝑗𝑚

𝑗𝑚 ≡ {𝑞, 𝑗} . (27.33)

The electromagnetic potentials 𝜑 and 𝐴 are not unique, but rather are defined only up to a gauge transfor-
mation by some arbitrary gauge field 𝜃

𝜑→ 𝜑− 𝜕𝜃

𝜕𝑡
, 𝐴→ 𝐴+∇𝜃 . (27.34)

The gauge transformation (27.34) evidently leaves the electric and magnetic fields𝐸 and𝐵, equations (27.30),
invariant.
Following the path of previous sections, §27.1 and thereafter, decompose the vector potential 𝐴 into its

scalar and vector parts

𝐴 = ∇𝐴‖
scalar

+ 𝐴⊥
vector

, (27.35)

in which the vector part by definition satisfies the transversality condition ∇ · 𝐴⊥ = 0. Under a gauge
transformation (27.34), the potentials transform as

𝜑→ 𝜑− 𝜕𝜃

𝜕𝑡
, (27.36a)

𝐴‖ → 𝐴‖ + 𝜃 , (27.36b)

𝐴⊥ → 𝐴⊥ . (27.36c)

Eliminating the gauge field 𝜃 yields 3 gauge-invariant potentials, comprising 1 scalar Φ, and 1 vector 𝐴⊥
containing 2 degrees of freedom:

Φ
scalar

≡ 𝜑+
𝜕𝐴‖

𝜕𝑡
, (27.37a)

𝐴⊥
vector

. (27.37b)

This shows that the electromagnetic field contains 3 independent degrees of freedom, consisting of 1 scalar
and 1 vector.

Concept question 27.2. Are gauge-invariant potentials Lorentz-invariant? The potentials Φ and
𝐴⊥, equations (27.37), are by construction gauge-invariant, but is this construction Lorentz-invariant? Do
Φ and 𝐴⊥ constitute the components of a 4-vector? Answer. No.



740 Perturbations in a flat space background

In terms of the gauge-invariant potentials Φ and 𝐴⊥, equations (27.37), the electric and magnetic fields
are

𝐸 = −∇Φ− 𝜕𝐴⊥
𝜕𝑡

, (27.38a)

𝐵 = ∇×𝐴⊥ . (27.38b)

The sourced Maxwell’s equations (27.32) thus become, in terms of Φ and 𝐴⊥,

−∇2Φ
scalar

= 4𝜋𝑞
scalar

, (27.39a)

∇Φ̇
scalar

−�𝐴⊥
vector

= 4𝜋∇𝑗‖
scalar

+ 4𝜋𝑗⊥
vector

, (27.39b)

where ∇𝑗‖ and 𝑗⊥ are the scalar and vector parts of the current density 𝑗. Equations (27.39) bear a striking
similarity to the Einstein equations (27.16). Only the vector part 𝐴⊥ satisfies a wave equation,

�𝐴⊥ = −4𝜋𝑗⊥ , (27.40)

while the scalar part Φ satisfies an instantaneous equation (27.39a), ∇Φ̇ = 4𝜋∇𝑗‖, that seemingly vio-
lates causality. And just as Einstein’s equations (27.16) enforce conservation of energy-momentum, so also
Maxwell’s equations (27.39) enforce conservation of electric charge,

𝜕𝑞

𝜕𝑡
+∇ · 𝑗 = 0 , (27.41)

or in 4-dimensional form

∇𝑚𝑗𝑚 = 0 . (27.42)

The fact that only the vector part 𝐴⊥ satisfies a wave equation (27.40) reflects physically the fact that
electromagnetic waves are transverse, and they contain only two propagating degrees of freedom, the vector,
or spin ±1, components.
Why do Maxwell’s equations (27.39) have this structure? Although equation (27.40) appears to be a local

wave equation for the vector part 𝐴⊥ of the potential sourced by the vector part 𝑗⊥ of the current, in fact the
wave equation is non-local because the decomposition of the potential and current into scalar and vector parts
is non-local (it involves the solution of a Laplacian equation, eq. (26.23)). It is only the sum 𝑗 = ∇𝑗‖+ 𝑗⊥ of
the scalar and vector parts of the current density that is local. Therefore, the Maxwell’s equation (27.39b)
must have a scalar part to go along with the vector part, such that the source on the right hand side, the
current density 𝑗, is local. Given this Maxwell equation (27.39b), the Maxwell equation (27.39a) then serves
precisely to enforce conservation of electric charge, equation (27.41).
Just as it is possible to regard the Einstein equations (27.16a) and (27.16b) as constraint equations

whose continued satisfaction is guaranteed by conservation of energy-momentum, so also the Maxwell equa-
tion (27.39a) for Φ can be regarded as a constraint equation whose continued satisfaction is guaranteed
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by conservation of electric charge. For charge conservation (27.41) coupled with the spatial Maxwell equa-
tion (27.39b) ensures that

𝜕

𝜕𝑡

(︀
4𝜋𝑞 +∇2Φ

)︀
= 0 , (27.43)

the solution of which, subject to the condition that 4𝜋𝑞 +∇2Φ = 0 initially, is 4𝜋𝑞 +∇2Φ = 0 at all times,
which is precisely the Maxwell equation (27.39a).
In a system of charges and electromagnetic fields, equations of motion for the charges in the electro-

magnetic field must be adjoined to the (Maxwell) equations of motion for the electromagnetic field. If the
equations of motion for the charges are arranged to conserve charge, as they should, then the scalar Maxwell
equation (27.39a) determines the scalar potential Φ on the initial hypersurface of constant time, but can be
discarded thereafter as redundant.

Concept question 27.3. What parts of Maxwell’s equations can be discarded? Is it possible to
discard the scalar part of the spatial Maxwell equation (27.39b), rather than the scalar equation (27.39a) for
Φ? Project out the scalar part of equation (27.39b) by taking its divergence,

∇2
(︁
4𝜋𝑗‖ − Φ̇

)︁
= 0 . (27.44)

Argue that the Maxwell equation (27.39a), coupled with charge conservation (27.41), ensures that equa-
tion (27.44) is true, subject to boundary condition that the current 𝑗 vanish sufficiently rapidly at spatial
infinity, in accordance with the decomposition theorem of §26.8.1.

Since only gauge-invariant quantities have physical significance, it is legitimate to impose any condition
on the gauge field 𝜃. A gauge in which the potentials 𝜑 and 𝐴 individually satisfy wave equations is Lorenz
(not Lorentz!) gauge, which consists of the Lorentz-invariant condition

∇𝑚𝐴𝑚 = 0 . (27.45)

Under a gauge transformation (27.34), the left hand side of equation (27.45) transforms as

∇𝑚𝐴𝑚 → ∇𝑚𝐴𝑚 +�𝜃 , (27.46)

and the Lorenz gauge condition (27.45) can be accomplished as a particular solution of the wave equation
for the gauge field 𝜃. In terms of the potentials 𝜑 and 𝐴‖, the Lorenz gauge condition (27.45) is

𝜕𝜑

𝜕𝑡
+∇2𝐴‖ = 0 . (27.47)

In Lorenz gauge, Maxwell’s equations (27.39) become

�𝜑 = −4𝜋𝑞 , (27.48a)

�𝐴 = −4𝜋𝑗 , (27.48b)

which are manifestly wave equations for the potentials 𝜑 and 𝐴.
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Does the fact that the potentials 𝜑 and 𝐴 in one particular gauge, Lorenz gauge, satisfy wave equations
necessarily guarantee that the electric and magnetic fields 𝐸 and 𝐵 satisfy wave equations? Yes, because it
follows from the definitions (27.30) of 𝐸 and 𝐵 that if the potentials 𝜑 and 𝐴 satisfy wave equations, then
so also must the fields 𝐸 and 𝐵 themselves; but the fields 𝐸 and 𝐵 are gauge-invariant, so if they satisfy
wave equations in one gauge, then they must satisfy the same wave equations in any gauge.
In electromagnetism, the most physical choice of gauge is one in which the potentials 𝜑 and 𝐴 coincide

with the gauge-invariant potentials Φ and 𝐴⊥, equations (27.37). This gauge, known as Coulomb gauge,
is accomplished by setting

𝐴‖ = 0 , (27.49)

or equivalently

∇ ·𝐴 = 0 . (27.50)

The gravitational analogue of this gauge is the Newtonian gauge discussed in the next section but one, §27.8.
Does the fact that in Lorenz gauge the potentials 𝜑 and 𝐴 propagate at the speed of light (in the absence

of sources, 𝑗𝑚 = 0) imply that the gauge-invariant potentials Φ and 𝐴⊥ propagate at the speed of light?
No. The gauge-invariant potentials Φ and 𝐴⊥, equations (27.37), are related to the Lorenz gauge potentials
𝜑 and 𝐴 by a non-local decomposition.

27.7 Harmonic gauge

The fact that all locally measurable gravitational perturbations do propagate causally, at the speed of light
in the absence of sources, can be demonstrated by choosing a particular gauge, harmonic gauge, equa-
tion (27.51), which can be considered an analogue of the Lorenz gauge of electromagnetism, equation (27.45).
In harmonic gauge, all 10 of the tetrad gauge-variant (i.e. symmetric) combinations 𝜙𝑚𝑛+𝜙𝑛𝑚 of the vierbein
perturbations satisfy wave equations (27.56), and therefore propagate causally. This does not imply that the
scalar, vector, and tensor components of the vierbein perturbations individually propagate causally, because
the decomposition into scalar, vector, and tensor modes is non-local. In particular, of the coordinate and
tetrad-gauge invariant potentials Ψ, Φ, 𝑊𝑎, and ℎ𝑎𝑏 defined by equations (27.13), only the tensor poten-
tial ℎ𝑎𝑏 propagates causally. The situation is entirely analogous to that of electromagnetism, §27.6, where
in Lorenz gauge the potentials 𝜑 and 𝐴 propagate causally, equations (27.48), yet of the gauge-invariant
potentials Φ and 𝐴⊥ defined by equations (27.37), only the vector potential 𝐴⊥ propagates causally.
Harmonic gauge is the set of 4 coordinate conditions

∇𝑚(𝜙𝑚𝑛 + 𝜙𝑛𝑚)−∇𝑛𝜙𝑚𝑚 = 0 , (27.51)

equivalent to the vanishing of Fock’s (1957) harmonic function (17.185). The conditions (27.51) are arranged
in a form that is tetrad gauge-invariant (the conditions depend only on the symmetric part of 𝜙𝑚𝑛). The
quantities on the left hand side of equations (27.51) transform under a coordinate gauge transformation, in
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accordance with (27.9), as

∇𝑚(𝜙𝑚𝑛 + 𝜙𝑛𝑚)−∇𝑛𝜙𝑚𝑚 → ∇𝑚(𝜙𝑚𝑛 + 𝜙𝑛𝑚)−∇𝑛𝜙𝑚𝑚 −�𝜖𝑛 . (27.52)

The change �𝜖𝑛 resulting from the coordinate gauge transformation is the 4-dimensional wave operator �
acting on the coordinate shift 𝜖𝑛. Indeed, the harmonic gauge conditions (27.51) follow uniquely from the
requirements (a) that the change produced by a coordinate gauge transformation be �𝜖𝑛, as suggested by
the analogous electromagnetic transformation (27.46), and (b) that the conditions be tetrad gauge-invariant.
The harmonic gauge conditions (27.51) can be accomplished as a particular solution of the wave equation for
the coordinate shift 𝜖𝑛. In terms of the potentials defined by equations (27.6) and (27.13), the 4 harmonic
gauge conditions (27.51) are

Ψ̇ + 3Φ̇−�(𝑤 + �̃� − ℎ̇) = 0 , (27.53a)

�̇�𝑎 −�(ℎ𝑎 + ℎ̃𝑎) = 0 , (27.53b)

−Ψ+Φ−�ℎ = 0 , (27.53c)

or equivalently

�(𝑤 + �̃�) = 4 Φ̇ , (27.54a)

�(ℎ𝑎 + ℎ̃𝑎) = �̇�𝑎 , (27.54b)

�ℎ = −Ψ+Φ . (27.54c)

Substituting equations (27.54) into the Einstein tensor 𝐺𝑚𝑛, equation (27.16), leads, after some calculation,
to the result that in harmonic gauge,

1
2 � (𝜙𝑚𝑛 + 𝜙𝑛𝑚 − 𝜂𝑚𝑛𝜙) = 𝐺𝑚𝑛 , (27.55)

or equivalently

1
2 � (𝜙𝑚𝑛 + 𝜙𝑛𝑚) = 𝑅𝑚𝑛 , (27.56)

where 𝑅𝑚𝑛 is the Ricci tensor. Equation (27.56) shows that in harmonic gauge, all tetrad gauge-invariant
(i.e. symmetric) combinations 𝜙𝑚𝑛+𝜙𝑛𝑚 of the vierbein potentials propagate causally, at the speed of light
in vacuo, 𝑅𝑚𝑛 = 0. Although the result (27.56) is true only in a particular gauge, harmonic gauge, it follows
that all quantities that are (coordinate and tetrad) gauge-invariant, and that can be constructed from the
vierbein potentials 𝜙𝑚𝑛 and their derivatives (and are therefore local), must also propagate at the speed of
light.
The 4 coordinate gauge conditions (27.51) still leave 6 tetrad gauge conditions to be chosen at will. A

natural choice, in the sense that it leads to the greatest simplification of the tetrad connections Γ𝑘𝑚𝑛,
equations (27.15), is the 6 tetrad gauge conditions

�̃� = �̃�𝑎 = ℎ̃ = ℎ̃𝑎 = 0 . (27.57)
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Exercise 27.4. Einstein tensor in harmonic gauge. Confirm equation (27.56).

27.8 Newtonian (Copernican) gauge

If the unperturbed background is Minkowski space, then the most physical gauge is one in which the 6
perturbations retained coincide with the 6 coordinate and tetrad gauge-invariant perturbations (27.13). This
gauge is called Newtonian gauge. Because in Newtonian gauge the perturbations are precisely the physical
perturbations, if the perturbations are physically weak (small), then the perturbations in Newtonian gauge
will necessarily be small.
I think Newtonian gauge should be called Copernican gauge. Even though the solar system is a highly

non-linear system, from the perspective of general relativity it is a weakly perturbed gravitating system.
Applied to the solar system, Newtonian gauge effectively keeps the coordinates aligned with the classical
Sun-centred Copernican coordinate frame. By contrast, the coordinates of synchronous gauge (§27.9), which
are chosen to follow freely-falling bodies, would quickly collapse or get wound up by orbital motions if applied
to the solar system, and would cease to provide a useful description.
Newtonian (Copernican) gauge sets

𝑤 = �̃� = �̃�𝑎 = ℎ = ℎ̃ = ℎ𝑎 = ℎ̃𝑎 = 0 , (27.58)

so that the retained perturbations are the 6 coordinate and tetrad gauge-invariant perturbations (27.13)

Ψ
scalar

= 𝜓 , (27.59a)

Φ
scalar

, (27.59b)

𝑊𝑎
vector

= 𝑤𝑎 , (27.59c)

ℎ𝑎𝑏
tensor

. (27.59d)

In matrix form, the vierbein perturbation in Newtonian gauge, in a frame where the wavevector 𝑘 is along
the 𝑧-direction, are, from equation (27.7),

𝜙𝑚𝑛 =

⎛⎜⎜⎝
Ψ 𝑊𝑥 𝑊𝑦 0

0 Φ + ℎ𝑥𝑥 ℎ𝑥𝑦 0

0 ℎ𝑥𝑦 Φ− ℎ𝑥𝑥 0

0 0 0 Φ

⎞⎟⎟⎠ . (27.60)

The Newtonian line-element is, in a form that keeps the Newtonian tetrad manifest,

𝑑𝑠2 = −
[︀
(1 + Ψ) 𝑑𝑡

]︀2
+ 𝛿𝑎𝑏

[︀
(1− Φ)𝑑𝑥𝑎 − ℎ𝑎𝑐𝑑𝑥𝑐 −𝑊 𝑎𝑑𝑡

]︀[︀
(1− Φ)𝑑𝑥𝑏 − ℎ𝑏𝑑𝑑𝑥𝑑 −𝑊 𝑏𝑑𝑡

]︀
, (27.61)
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which reduces to the Newtonian metric

𝑑𝑠2 = − (1 + 2Ψ) 𝑑𝑡2 − 2𝑊𝑎 𝑑𝑡 𝑑𝑥
𝑎 +

[︀
𝛿𝑎𝑏(1− 2Φ)− 2ℎ𝑎𝑏

]︀
𝑑𝑥𝑎𝑑𝑥𝑏 . (27.62)

Since scalar, vector, and tensor perturbations evolve independently, it is legitimate to consider each in
isolation. For example, if one is interested only in scalar perturbations, then it is fine to keep only the
scalar potentials Ψ and Φ non-zero. Furthermore, as discussed in §27.12, since the difference Ψ − Φ in
scalar potentials is sourced by anisotropic relativistic pressure, which is typically small, it is often a good
approximation to set Ψ = Φ.
The tetrad-frame 4-velocity of a person at rest in the tetrad frame is by definition 𝑢𝑚 ≡ 𝑑𝑥𝑚/𝑑𝜏 =

{1, 0, 0, 0}, and the corresponding coordinate 4-velocity 𝑢𝜇 is, in Newtonian gauge,

𝑢𝜇 = 𝑒0
𝜇 = {1−Ψ,𝑊𝑎} . (27.63)

This shows that 𝑊𝑎 can be interpreted as a 3-velocity at which the tetrad frame is moving through the
coordinates. This is the “dragging of inertial frames” discussed in §27.11. The proper acceleration experienced
by a person at rest in the tetrad frame, with tetrad 4-velocity 𝑢𝑚 = {1, 0, 0, 0}, is

𝐷𝑢𝑎

𝐷𝜏
= 𝑢0𝐷0𝑢

𝑎 = 𝑢0
(︀
𝜕0𝑢

𝑎 + Γ𝑎00𝑢
0
)︀
= Γ𝑎00 = ∇𝑎Ψ . (27.64)

This shows that the “gravity,” or minus the proper acceleration, experienced by a person at rest in the tetrad
frame is minus the gradient of the potential Ψ.

Concept question 27.5. Independent evolution of scalar, vector, and tensor modes. If the decom-
position into scalar, vector, and tensor modes is non-local, how can it be legitimate to consider the evolution
of the modes in isolation from each other?

27.9 Synchronous gauge

One of the earliest gauges used in general relativistic perturbation theory, and still (in its conformal version)
widely used in cosmology, is synchronous gauge. As will be seen below, equations (27.71) and (27.72),
synchronous gauge effectively chooses a coordinate system and tetrad that is attached to the locally inertial
frames of freely falling observers. This is fine as long as the observers move only slightly from their initial
positions, but the coordinate system will fail when the system evolves too far, even if, as in the solar system,
the gravitational perturbations remain weak and therefore treatable in principle with perturbation theory.
Synchronous gauge sets the time components 𝜙𝑚𝑛 with 𝑚 = 0 or 𝑛 = 0 of the vierbein perturbations to

zero

𝜓 = 𝑤 = �̃� = 𝑤𝑎 = �̃�𝑎 = 0 , (27.65)

and makes the additional tetrad gauge choices

ℎ̃ = ℎ̃𝑎 = 0 , (27.66)
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with the result that the retained perturbations are the spatial perturbations

Φ
scalar

, ℎ
scalar

, ℎ𝑎
vector

, ℎ𝑎𝑏
tensor

. (27.67)

In terms of these spatial perturbations, the gauge-invariant perturbations (27.13) are

Ψ
scalar

= ℎ̈ , (27.68a)

Φ
scalar

, (27.68b)

𝑊𝑎
vector

= − ℎ̇𝑎 , (27.68c)

ℎ𝑎𝑏
tensor

. (27.68d)

The synchronous line-element is, in a form that keeps the synchronous tetrad manifest,

𝑑𝑠2 = − 𝑑𝑡2+ 𝛿𝑎𝑏
[︀
(1−Φ)𝑑𝑥𝑎− (∇𝑐∇𝑎ℎ+∇𝑐ℎ𝑎+ℎ𝑎𝑐 )𝑑𝑥𝑐

]︀[︀
(1−Φ)𝑑𝑥𝑏− (∇𝑑∇𝑏ℎ+∇𝑑ℎ𝑏+ℎ𝑏𝑑)𝑑𝑥𝑑

]︀
, (27.69)

which reduces to the synchronous metric

𝑑𝑠2 = − 𝑑𝑡2 + [(1− 2Φ)𝛿𝑎𝑏 − 2∇𝑎∇𝑏ℎ−∇𝑎ℎ𝑏 −∇𝑏ℎ𝑎 − 2ℎ𝑎𝑏] 𝑑𝑥
𝑎𝑑𝑥𝑏 . (27.70)

In synchronous gauge, a person at rest in the tetrad frame has coordinate 4-velocity

𝑢𝜇 = 𝑒0
𝜇 = {1, 0, 0, 0} , (27.71)

so that the tetrad rest frame coincides with the coordinate rest frame, and proper time in the rest frame
coincides with coordinate time, 𝜏 = 𝑡. Moreover a person at rest in the tetrad frame is freely falling, which
follows from the fact that the acceleration experienced by a person at rest in the tetrad frame is zero,

𝐷𝑢𝑎

𝐷𝜏
= 𝑢0

(︀
𝜕0𝑢

𝑎 + Γ𝑎00𝑢
0
)︀
= Γ𝑎00 = 0 , (27.72)

in which 𝜕0𝑢
𝑎 = 0 because the 4-velocity at rest in the tetrad frame is constant, 𝑢𝑎 = {1, 0, 0, 0}, and

Γ𝑎00 = 0 from equations (27.15a) with the synchronous gauge choices (27.65) and (27.66). However, the
freely falling person’s locally inertial frame is rotated relative to the tetrad frame. The cumulative rotation
is described by a rotor 𝑅 = 𝑒−𝜃/2 generated by a bivector 𝜃 ≡ 1

2𝜃𝑎𝑏𝛾𝛾
𝑎 ∧𝛾𝛾𝑏 (the factor of 1

2 would disappear
if the sum were over distinct pairs 𝑎𝑏 of antisymmetric indices) that is the integral of the tetrad connection
Γ0 ≡ 1

2Γ𝑎𝑏0𝛾𝛾
𝑎 ∧𝛾𝛾𝑏 over time, as follows from 𝜕0𝑎 = − 1

2 [Γ0,𝑎] for any multivector 𝑎, equation (15.15). From
equations (27.15c) and (27.68c) for Γ𝑎𝑏0, the bivector 𝜃𝑎𝑏 is

𝜃𝑎𝑏 =

∫︁
Γ𝑎𝑏0 𝑑𝜏 = 1

2 (∇𝑎ℎ𝑏 −∇𝑏ℎ𝑎) , (27.73)

which is the curl of the vector potential ℎ𝑎.
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27.10 Newtonian potential

The next few sections examine the physical meaning of each of the gauge-invariant potentials Ψ, Φ, 𝑊𝑎, and
ℎ𝑎𝑏 by looking at the potentials at large distances produced by a finite body containing energy-momentum,
such as the Sun.
Einstein’s equations 𝐺𝑚𝑛 = 8𝜋𝑇𝑚𝑛 applied to the time-time component 𝐺00 of the Einstein tensor,

equation (27.16a), imply Poisson’s equation

∇2Φ = 4𝜋𝜌 , (27.74)

where 𝜌 is the mass-energy density

𝜌 ≡ 𝑇00 . (27.75)

The solution of Poisson’s equation (27.74) is

Φ(𝑥) = −
∫︁
𝜌(𝑥′) 𝑑3𝑥′

|𝑥′ − 𝑥|
. (27.76)

Consider a finite body, for example the Sun, whose energy-momentum is confined within a certain region.
Define the mass 𝑀 of the body to be the integral of the mass-energy density 𝜌,

𝑀 ≡
∫︁
𝜌(𝑥′) 𝑑3𝑥′ . (27.77)

Equation (27.77) agrees with what the definition of the mass 𝑀 would be in the non-relativistic limit, and
as seen below, equation (27.80), it is what a distant observer would infer the mass of the body to be based
on its gravitational potential Φ far away. Thus equation (27.77) can be taken as the definition of the mass
of the body even when the energy-momentum is relativistic. Choose the origin of the coordinates to be at
the centre of mass, meaning that ∫︁

𝑥′ 𝜌(𝑥′) 𝑑3𝑥′ = 0 . (27.78)

Consider the potential Φ at a point 𝑥 far outside the body. Expand the denominator of the integral on the
right hand side of equation (27.76) as a Taylor series in 1/𝑥 where 𝑥 ≡ |𝑥|

1

|𝑥′ − 𝑥|
=

1

𝑥

∞∑︁
ℓ=0

(︂
𝑥′

𝑥

)︂ℓ
𝑃ℓ(�̂� · �̂�′) =

1

𝑥
+

�̂� · 𝑥′

𝑥2
+ ... (27.79)

where 𝑃ℓ(𝜇) are Legendre polynomials. Then

Φ(𝑥) = − 1

𝑥

∫︁
𝜌(𝑥′) 𝑑3𝑥′ − 1

𝑥2
�̂� ·
∫︁

𝑥′ 𝜌(𝑥′) 𝑑3𝑥′ −𝑂(𝑥−3)

= −𝑀

𝑥
−𝑂(𝑥−3) . (27.80)

Equation (27.80) shows that the potential far from a body goes as Φ = −𝑀/𝑥, reproducing the usual
Newtonian formula.
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27.11 Dragging of inertial frames

In Newtonian gauge, the vector potential 𝑊 ≡𝑊𝑎 is the velocity at which the locally inertial tetrad frame
moves through the coordinates, equation (27.63). This is called the dragging of inertial frames. As shown
below, a body of angular momentum 𝐿 drags frames around it with an angular velocity that goes to 2𝐿/𝑥3

at large distances 𝑥.
Einstein’s equations applied to the vector part of the time-space component 𝐺0𝑎 of the Einstein tensor,

equation (27.16b), imply

∇2𝑊 = − 16𝜋𝑓 , (27.81)

where 𝑊 ≡𝑊𝑎 is the gauge-invariant vector potential, and 𝑓 is the vector part of the energy flux 𝑇 0𝑎

𝑓 ≡ 𝑓𝑎 = 𝑓𝑎 ≡ 𝑇 0𝑎

vector
= −𝑇0𝑎

vector
. (27.82)

The solution of equation (27.81) is

𝑊 (𝑥) = 4

∫︁
𝑓(𝑥′) 𝑑3𝑥′

|𝑥′ − 𝑥|
. (27.83)

As in the previous section, §27.10, consider a finite body, such as the Sun, whose energy-momentum is
confined within a certain region. Work in the rest frame of the body, defined to be the frame where the
energy flux 𝑓 integrated over the body is zero,∫︁

𝑓(𝑥′) 𝑑3𝑥′ = 0 . (27.84)

Define the angular momentum 𝐿 of the body to be

𝐿 ≡
∫︁

𝑥′ × 𝑓(𝑥′) 𝑑3𝑥′ . (27.85)

Equation (27.85) agrees with what the definition of angular momentum would be in the non-relativistic limit,
where the mass-energy flux of a mass density 𝜌 moving at velocity 𝑣 is 𝑓 = 𝜌𝑣. As will be seen below, the
angular momentum (27.85) is what a distant observer would infer the angular momentum of the body to be
based on the potential 𝑊 far away, and equation (27.85) can be taken to be the definition of the angular
momentum of the body even when the energy-momentum is relativistic. As will be proven momentarily,
equation (27.86), the integral

∫︀
𝑥′𝑎𝑓𝑏(𝑥

′) 𝑑3𝑥′ is antisymmetric in 𝑎𝑏. To show this, write 𝑓𝑏 = 𝜀𝑏𝑐𝑑∇𝑐𝜑𝑑 for
some potential 𝜑𝑑, which is valid because 𝑓𝑏 is the vector (curl) part of the energy flux. Then∫︁

𝑥′𝑎𝑓𝑏(𝑥
′) 𝑑3𝑥′ =

∫︁
𝑥′𝑎𝜀𝑏𝑐𝑑∇′𝑐𝜑𝑑(𝑥′) 𝑑3𝑥′ = −

∫︁
𝜀𝑏𝑐𝑑𝜑𝑑(𝑥

′)∇′𝑐𝑥′𝑎 𝑑3𝑥′ =
∫︁
𝜀𝑎𝑏𝑑𝜑𝑑(𝑥

′) 𝑑3𝑥′ , (27.86)

where the third expression follows from the second by integration by parts, the surface term vanishing
because of the assumption that the energy-momentum of the body is confined within a certain region.
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Taylor expanding equation (27.83) using equation (27.79) gives

𝑊 (𝑥) =
4

𝑥

∫︁
𝑓(𝑥′) 𝑑3𝑥′ +

4

𝑥2

∫︁
(�̂� · 𝑥′)𝑓(𝑥′) 𝑑3𝑥+𝑂(𝑥−3)

=
2

𝑥2

∫︁
[(�̂� · 𝑥′)𝑓(𝑥′)− (�̂� · 𝑓(𝑥′))𝑥′] 𝑑3𝑥+𝑂(𝑥−3)

=
2

𝑥2
𝐿× �̂�+𝑂(𝑥−3) , (27.87)

where the first integral on the right hand side of the first line of equation (27.87) vanishes because the frame
is the rest frame of the body, equation (27.84), and the second integral on the right hand side of the first line
equals the first integral on the second line thanks to the antisymmetry of

∫︀
𝑥′𝑓(𝑥′) 𝑑3𝑥, equation (27.86).

The vector potential 𝑊 ≡ 𝑊𝑎 points in the direction of rotation, right-handedly about the axis of angular
momentum 𝐿. Equation (27.87) says that a body of angular momentum 𝐿 drags frames around it at angular
velocity Ω at large distances 𝑥

𝑊 = Ω× 𝑥 , Ω =
2𝐿

𝑥3
. (27.88)

Exercise 27.6. Gravity Probe B and the geodetic and frame-dragging precession of gyroscopes.

The purpose of Gravity Probe B was to measure the predicted general relativistic precession of a gyroscope
in the gravitational field of the Earth. Consider a gyroscope that is in free fall in a spacecraft in orbit around
the Earth. In the gyro rest frame, the spin 4-vector 𝜎𝑚 of the gyro has only spatial components

𝜎𝑚 = {0, 𝜎𝑎} . (27.89)

If the gyroscope is moving at 4-velocity 𝑢𝑚 relative to the tetrad (Earth) frame, then the components 𝑠𝑚 of
the spin vector in the tetrad frame are related to those 𝜎𝑚 in the gyro frame by a Lorentz boost at 4-velocity
−𝑢𝑚 (early alphabet indices 𝑎, 𝑏, ... signify spatial components):

{𝑠0, 𝑠𝑎} =
{︂
𝜎𝑏𝑢

𝑏, 𝜎𝑎 +
𝜎𝑏𝑢

𝑏𝑢𝑎

1 + 𝑢0

}︂
. (27.90)

Conversely, the components 𝜎𝑚 of the spin vector in the gyro frame are related to those 𝑠𝑚 in the tetrad
frame by

𝜎𝑎 = 𝑠𝑎 − 𝑠0𝑢𝑎

1 + 𝑢0
. (27.91)

The gyro is in free-fall in orbit about the earth, so its 4-velocity 𝑢𝑚 and 4-spin 𝑠𝑚 satisfy the geodesic
equations of motion

𝑑𝑢𝑘

𝑑𝜏
+ Γ𝑘𝑚𝑛𝑢

𝑚𝑢𝑛 = 0 ,
𝑑𝑠𝑘

𝑑𝜏
+ Γ𝑘𝑚𝑛𝑠

𝑚𝑢𝑛 = 0 . (27.92)
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1. Spin equation. Show that

𝑑𝜎𝑎

𝑑𝜏
= 𝜎𝑏

[︂
−Γ𝑎𝑏𝑐𝑢

𝑐 − Γ𝑎𝑏0𝑢
0 +

𝑢𝑐

1 + 𝑢0
(︀
Γ0𝑎𝑐𝑢

𝑏 − Γ0𝑏𝑐𝑢
𝑎
)︀
+

𝑢0

1 + 𝑢0
(︀
Γ0𝑎0𝑢

𝑏 − Γ0𝑏0𝑢
𝑎
)︀]︂

. (27.93)

[Hint: The first step is to convert 𝜎𝑎 to 𝑠𝑘 and 𝑢𝑘, using equation (27.91). Then apply the geodesic
equations (27.92). Then convert 𝑠𝑘 back to 𝜎𝑎 using equation (27.90).]

2. Spin precession. Gravitational fields in the solar system are weak, so perturbation theory in Minkowski
space is valid. The tetrad connections Γ𝑘𝑚𝑛 in Newtonian gauge are, from equations (27.15),

Γ0𝑎0 = −∇𝑎Ψ , (27.94a)

Γ0𝑎𝑏 = 𝛿𝑎𝑏Φ̇− 1
2 (∇𝑎𝑊𝑏 +∇𝑏𝑊𝑎) , (27.94b)

Γ𝑎𝑏0 = 1
2 (∇𝑎𝑊𝑏 −∇𝑏𝑊𝑎) , (27.94c)

Γ𝑎𝑏𝑐 = (𝛿𝑏𝑐∇𝑎 − 𝛿𝑎𝑐∇𝑏) Φ +∇𝑎ℎ𝑏𝑐 −∇𝑏ℎ𝑎𝑐 . (27.94d)

Show from equation (27.93) that the spin 𝜎 ≡ 𝜎𝑎 of a freely-falling gyroscope moving at 3-velocity
𝑣 ≡ 𝑢/𝑢0 in a weak gravitational field evolves as (the proper time derivative 𝑑/𝑑𝜏 in equation (27.93)
can be converted to the coordinate time derivative 𝑑/𝑑𝑡 by dividing by 𝑢0 = 𝑑𝑡/𝑑𝜏)

𝑑𝜎

𝑑𝑡
= 𝜎×

[︁
𝑣×∇Φ+

𝑢0

1 + 𝑢0
𝑣×∇Ψ− 1

2
∇×𝑊 +

𝑣𝑐

2(1 + 𝑢0)
(∇𝑊𝑐 +∇𝑐𝑊 )− 𝑣𝑐∇×ℎ𝑐

]︁
. (27.95)

where the vector of vectors ℎ𝑐 is shorthand for the tensor potential, ℎ𝑐 ≡ ℎ𝑎𝑐. Conclude that at non-
relativistic velocities, |𝑢| ≪ 𝑢0 ≈ 1, and for Ψ = Φ and ℎ𝑎𝑏 = 0, equation (27.95) reduces to

𝑑𝜎

𝑑𝑡
= 𝜎 ×

(︂
3

2
𝑣 ×∇Φ− 1

2
∇×𝑊

)︂
. (27.96)

By comparing your equation (27.96) to the equation of motion of a 3-vector rotating at angular velocity
𝜔,

𝑑𝜎

𝑑𝑡
= 𝜔 × 𝜎 , (27.97)

deduce the angular velocity 𝜔 with which the spin 𝑠 precesses. The term depending on Φ is the geodetic,
or de Sitter (de Sitter, 1916), precession, while the term depending on 𝑊 is the frame-dragging, or
Lense-Thirring (Thirring, 1918; Lense and Thirring, 1918), precession. [Hint: Recall the 3-vector formula
𝑎× (𝑏× 𝑐) = (𝑎 · 𝑐)𝑏− (𝑎 · 𝑏)𝑐. If the object is non-relativistic, then |𝑢| ≪ 𝑢0 ≈ 1.]

3. Angular velocities. A body of mass 𝑀 and angular momentum 𝐿 produces scalar and vector pertur-
bations Φ and 𝑊 at spatial position 𝑥 of, equations (27.80) and (27.87),

Φ(𝑥) = −𝑀
𝑥
, 𝑊 (𝑥) =

2

𝑥2
𝐿× �̂� . (27.98)

Show that for a circular orbit right-handed about direction 𝑛, so that 𝑣 = 𝑣(𝑛 × �̂�), the geodetic/de
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Sitter precession is, with units restored,

𝜔dS =
3(𝐺𝑀)3/2

2𝑐2𝑥5/2
𝑛 , (27.99)

while the frame-dragging/Lense-Thirring precession is

𝜔LT =
𝐺

𝑐2𝑥3
[−𝐿+ 3�̂�(�̂� ·𝐿)] . (27.100)

[Hint: You will need to use the relation between velocity 𝑣 and potential Φ in a circular orbit.]
4. Orbit. What is the orbit-averaged angular velocity for frame-dragging precession in the cases of (i) an

equatorial circular orbit, (ii) a polar circular orbit? Compare the directions of the geodetic and frame-
dragging precessions in the two cases. Gravity Probe B occupied a polar orbit. Why was that a good
strategy?

5. Gravity Probe B. Estimate the angular velocity of the geodetic and frame-dragging precessions for
Gravity Probe B. Express your answer in arcseconds per year. [Hint: The GPB fact sheet at https://
einstein.stanford.edu/content/fact_sheet/GPB_FactSheet-0405.pdf gives the semi-major axis of GPB’s
orbit as 7027.4 km. The IAU 2009 system of astronomical constants (Luzum et al., 2009) gives 𝐺𝑀 =

3.9860044 × 1014 m3 s−2 for the Earth. The Earth fact sheet at https://nssdc.gsfc.nasa.gov/planetary/
factsheet/earthfact.html gives needed information about the Earth, including its moment of inertia.]

6. Quadrupole precession. There is also a purely Newtonian precession that is produced by plain old
Newtonian gravity on an object with a quadrupole moment. If you wanted to test the geodetic and frame-
dragging effects with a gyroscope in orbit around the Earth, what would you do to avoid contamination
by Newtonian quadrupole precession?

27.12 Quadrupole pressure

Einstein’s equations applied to the part of the Einstein tensor (27.16c) involving Ψ− Φ imply

∇2(Ψ− Φ) = − 8𝜋𝑄𝑎𝑏𝑇𝑎𝑏 , (27.101)

where 𝑄𝑎𝑏 is the quadrupole operator (an integro-differential operator) defined by

𝑄𝑎𝑏 ≡ 3
2 ∇𝑎∇𝑏∇

−2 − 1
2 𝛿𝑎𝑏 , (27.102)

with ∇−2 the inverse spatial Laplacian operator. In Fourier space, the quadrupole operator is

𝑄𝑎𝑏 =
3
2 𝑘𝑎𝑘𝑏 −

1
2 𝛿𝑎𝑏 . (27.103)

The quadrupole operator 𝑄𝑎𝑏 yields zero when acting on 𝛿𝑎𝑏 (that is, 𝑄𝑎𝑏 is traceless), and the Laplacian
operator ∇2 when acting on ∇𝑎∇𝑏

𝑄𝑎𝑏𝛿𝑎𝑏 = 0 , 𝑄𝑎𝑏∇𝑎∇𝑏 = ∇2 . (27.104)

https://einstein.stanford.edu/content/fact_sheet/GPB_FactSheet-0405.pdf
https://einstein.stanford.edu/content/fact_sheet/GPB_FactSheet-0405.pdf
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
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The solution of equation (27.101) is

Ψ− Φ = −
∫︁ [︂

3

2

(𝑥𝑎 − 𝑥′𝑎)(𝑥𝑏 − 𝑥′𝑏)
|𝑥− 𝑥′|2

− 1

2
𝛿𝑎𝑏

]︂
𝑇𝑎𝑏(𝑥

′) 𝑑3𝑥′

|𝑥− 𝑥′|
. (27.105)

Taylor expanding equation (27.105) using equation (27.79) yields Ψ−Φ at large distance in the 𝑥-direction
from a finite body,

Ψ− Φ = − 1

𝑥

∫︁ [︀
𝑇𝑥𝑥 − 1

2 (𝑇𝑦𝑦 + 𝑇𝑧𝑧)
]︀
𝑑3𝑥′ +𝑂(𝑥−2) . (27.106)

Equation (27.101) shows that the source of the difference Ψ− Φ between the two scalar potentials is the
quadrupole pressure. Since the quadrupole pressure is small if either there are no relativistic sources, or any
relativistic sources are isotropic, it is often a good approximation to set Ψ = Φ. An exception is where there
is a significant anisotropic relativistic component. For example, the energy-momentum tensor of a static
electric field is relativistic and anisotropic.
One situation where the difference between Ψ and Φ is appreciable is the case of freely-streaming photons

(and neutrinos) at around the time of recombination in cosmology. The 2008 analysis of the CMB by the
WMAP team claims to detect a non-zero value of Ψ− Φ from a slight shift in the third acoustic peak.

Exercise 27.7. Scalar potentials outside a spherical body. Argue that the traceless part of the spatial
energy-momentum tensor of a spherically symmetric distribution must take the form

𝑇𝑎𝑏(𝑟) =
(︀
𝑟𝑎𝑟𝑏 − 1

3 𝛿𝑎𝑏
)︀(︀
𝑝(𝑟)− 𝑝⊥(𝑟)

)︀
, (27.107)

where 𝑝(𝑟) and 𝑝⊥(𝑟) are the radial and transverse pressures at radius 𝑟. From equation (27.105), show that
Ψ− Φ at radial distance 𝑥 from the centre of a spherically symmetric distribution is

Ψ(𝑥)− Φ(𝑥) = −
∫︁ ∞
𝑥

(𝑟2 − 𝑥2)
(︀
𝑝(𝑟)− 𝑝⊥(𝑟)

)︀ 4𝜋𝑑𝑟
𝑟

. (27.108)

Notice that the integral is over 𝑟 > 𝑥, that is, only energy-momentum outside radius 𝑥 produces non-vanishing
Ψ−Φ. Show that if the only source of energy-momentum outside the body is an electric charge 𝑄, for which
−𝑝 = 𝑝⊥ = 𝑄2/𝑟4, then

Ψ(𝑥)− Φ(𝑥) =
2𝜋𝑄2

𝑥2
. (27.109)

27.13 Gravitational waves

The tensor perturbations ℎ𝑎𝑏 describe propagating gravitational waves. The two independent components of
the tensor perturbations describe two polarizations. The two components are commonly designated ℎ+ and
ℎ×, equations (27.19). Gravitational waves induce a quadrupole tidal oscillation transverse to the direction
of propagation, and the subscripts + and × represent the shape of the quadrupole oscillation, as illustrated
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Figure 27.1 The two polarizations of gravitational waves. The (top) polarization ℎ+ varies as cos 2𝜒 under a right-

handed rotation by angle 𝜒 about the direction of propagation (into the paper), while the (bottom) polarization ℎ×
varies as − sin 2𝜒. A gravitational wave causes a system of freely falling test masses to oscillate relative to a grid of

points a fixed proper distance apart.

by Figure 27.1. The ℎ+ polarization varies as cos 2𝜒 under a right-handed rotation by angle 𝜒 about the
direction of propagation (the 𝑧-direction), while the ℎ× polarization varies as − sin 2𝜒.
Einstein’s equations applied to the tensor component of the spatial Einstein tensor (27.16c) imply that

gravitational waves are sourced by the tensor component of the energy-momentum

�ℎ𝑎𝑏 = 8𝜋 𝑇𝑎𝑏
tensor

. (27.110)

The solution of the wave equation (27.110) can be obtained from the Green’s function of the d’Alembertian
wave operator � defined by equation (27.17). The Green’s function is by definition the solution of the wave
equation with a delta-function source. There are retarded solutions, which propagate into the future along
the future light cone, and advanced solutions, which propagate into the past along the past light cone.
In the present case, the solutions of interest are the retarded solutions, since these represent gravitational
waves emitted by a source. Because of the time and space translation symmetry of the d’Alembertian in flat
(Minkowski) space, the delta-function source of the Green’s function can without loss of generality be taken
at the origin 𝑡 = 𝑥 = 0. Thus the Green’s function 𝐹 is the solution of

�𝐹 = 𝛿4(𝑥) , (27.111)
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where 𝛿4(𝑥) ≡ 𝛿(𝑡)𝛿3(𝑥) is the 4-dimensional Dirac delta-function. The solution of equation (27.111) subject
to retarded boundary conditions is (a standard exercise in mathematics) the retarded Green’s function

𝐹 =
𝛿(𝑡− |𝑥|)Θ(𝑡)

4𝜋|𝑥|
, (27.112)

where and Θ(𝑡) is the Heaviside function, Θ(𝑡) = 0 for 𝑡 < 0 and Θ(𝑡) = 1 for 𝑡 ≥ 0. The solution of the
sourced gravitational wave equation (27.110) is thus

ℎ𝑎𝑏(𝑡,𝑥) = − 2

∫︁ 𝑇𝑎𝑏(𝑡
′,𝑥′)

tensor

𝑑3𝑥′

|𝑥′ − 𝑥|
, (27.113)

where 𝑡′ is the retarded time

𝑡′ ≡ 𝑡− |𝑥′ − 𝑥| , (27.114)

which lies on the past light cone of the observer, and is the time at which the source emitted the signal. The
solution (27.113) resembles the solution of Poisson’s equation, except that the source is evaluated along the
past light cone of the observer.
As in §§27.10 and 27.11, consider a finite body, whose energy-momentum is confined within a certain

region, and which is a source of gravitational waves. The Hulse-Taylor binary pulsar, Exercise 27.9, is a fine
example. Far from the body, the leading order contribution to the tensor potential ℎ𝑎𝑏 is, from the multipole
expansion (27.79),

ℎ𝑎𝑏(𝑡,𝑥) = −
2

𝑥

∫︁
𝑇𝑎𝑏(𝑡

′,𝑥′)
tensor

𝑑3𝑥′ . (27.115)

The integral (27.115) is hard to solve in general, but there is a simple solution for gravitational waves
whose wavelengths are large compared to the size of the body. To obtain this solution, first consider that
conservation of energy-momentum implies that

𝜕2𝑇 00

𝜕𝑡2
−∇𝑎∇𝑏𝑇 𝑏𝑎 =

𝜕

𝜕𝑡

(︂
𝜕𝑇 00

𝜕𝑡
+∇𝑎𝑇 0𝑎

)︂
−∇𝑎

(︂
𝜕𝑇 0𝑎

𝜕𝑡
+∇𝑏𝑇 𝑏𝑎

)︂
= 0 . (27.116)

Multiply by 𝑥𝑎𝑥𝑏 and integrate∫︁
𝑥𝑎𝑥𝑏

𝜕2𝑇 00

𝜕𝑡2
𝑑3𝑥 =

∫︁
𝑥𝑎𝑥𝑏∇𝑐∇𝑑𝑇 𝑐𝑑 𝑑3𝑥 =

∫︁
𝑇 𝑐𝑑∇𝑐∇𝑑(𝑥𝑎𝑥𝑏) 𝑑3𝑥 = 2

∫︁
𝑇 𝑎𝑏 𝑑3𝑥 , (27.117)

where the third expression follows from the second by a double integration by parts. For wavelengths that
are long compared to the size of the body, the first expression of equations (27.117) is∫︁

𝑥𝑎𝑥𝑏
𝜕2𝑇 00

𝜕𝑡2
𝑑3𝑥 ≈ 𝜕2

𝜕𝑡2

∫︁
𝑥𝑎𝑥𝑏 𝑇

00 𝑑3𝑥 =
𝜕2𝐼𝑎𝑏
𝜕𝑡2

, (27.118)

where 𝐼𝑎𝑏 is the second moment of the mass

𝐼𝑎𝑏 ≡
∫︁
𝑥𝑎𝑥𝑏 𝑇

00 𝑑3𝑥 . (27.119)
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The tensor (spin 2) part of the energy-momentum is trace-free. The trace-free part –𝐼𝑎𝑏 of the second moment
𝐼𝑎𝑏 is the quadrupole moment of the mass distribution (this definition is conventional, but differs by a factor
of 2/3 from what is called the quadrupole moment in spherical harmonics)

–𝐼𝑎𝑏 ≡ 𝐼𝑎𝑏 − 1
3 𝛿𝑎𝑏 𝐼

𝑐
𝑐 =

∫︁
(𝑥𝑎𝑥𝑏 − 1

3 𝛿𝑎𝑏 𝑥
2)𝑇 00 𝑑3𝑥 . (27.120)

Substituting the last expression of equations (27.117) into equation (27.115) gives the quadrupole formula
for gravitational radiation at wavelengths long compared to the size of the emitting body

ℎ𝑎𝑏(𝑡,𝑥) = −
1

𝑥
–̈𝐼𝑎𝑏(𝑡− 𝑥)

tensor

. (27.121)

Equation (27.121) is valid for long wavelength modes observed at distances 𝑥 far from the source of grav-
itational radiation. The right hand side is evaluated at retarded time 𝑡 − 𝑥: the observer is looking at the
source as it used to be at time 𝑡− 𝑥.
If the gravitational wave is moving in the 𝑧-direction, then the tensor components of the quadrupole

moment –𝐼𝑎𝑏 are

–𝐼+ = 1
2 (𝐼𝑥𝑥 − 𝐼𝑦𝑦) , –𝐼× = 1

2 (𝐼𝑥𝑦 + 𝐼𝑦𝑥) . (27.122)

Concept question 27.8. Units of the gravitational quadrupole radiation formula. Restore units
to the quadrupole formula (27.121) for gravitational radiation. Answer:

ℎ𝑎𝑏(𝑡,𝑥) = −
𝐺

𝑐4𝑥
–̈𝐼𝑎𝑏(𝑡− 𝑥)

tensor

. (27.123)

27.14 Energy-momentum carried by gravitational waves

The gravitational wave equation (27.27) in empty space appears to describe gravitational waves propagat-
ing in a region where the energy-momentum tensor 𝑇𝑚𝑛 is zero. However, gravitational waves do carry
energy-momentum, just as do other kinds of waves, such as electromagnetic waves. The energy-momentum
is quadratic in the tensor perturbation ℎ𝑎𝑏, and so vanishes to linear order.
To determine the energy-momentum in gravitational waves, calculate the Einstein tensor 𝐺𝑚𝑛 to second

order, imposing the vacuum conditions that the unperturbed and linear parts of the Einstein tensor vanish

0

𝐺𝑚𝑛 =
1

𝐺𝑚𝑛 = 0 . (27.124)

The parts of the second-order perturbation that depend on the tensor perturbation ℎ𝑎𝑏 are, in a frame where
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the wavevector 𝑘 is along the 𝑧-axis,

2

𝐺00 = − (ℎ̇𝑎𝑏)(ℎ̇
𝑎𝑏) +

1

4

(︁ 𝜕2
𝜕𝑡2

+∇2
𝑧

)︁
ℎ2 , (27.125a)

2

𝐺0𝑧 = − (ℎ̇𝑎𝑏)(∇𝑧ℎ𝑎𝑏) +
1

2

𝜕

𝜕𝑡
∇𝑧ℎ2 , (27.125b)

2

𝐺𝑧𝑧 = − (∇𝑧ℎ𝑎𝑏)(∇𝑧ℎ𝑎𝑏) +
1

4

(︁ 𝜕2
𝜕𝑡2

+∇2
𝑧

)︁
ℎ2 , (27.125c)

where

ℎ2 ≡ ℎ𝑎𝑏ℎ𝑎𝑏 = 2(ℎ2+ + ℎ2×) = 2ℎ++ℎ−− . (27.126)

Since the Einstein tensor vanishes to linear order, equations (27.124), the Lie derivative of the linear order
Einstein tensor is zero, and consequently the quadratic order expressions (27.125) are coordinate gauge-
invariant. They are also tetrad gauge-invariant since they depend only on the (coordinate and) tetrad gauge-
invariant perturbation ℎ𝑎𝑏. The rightmost set of terms on the right hand side of each of equations (27.125) are
total derivatives (with respect to either time 𝑡 or space 𝑧). These terms yield surface terms when integrated
over a region, and tend to average to zero when integrated over a region much larger than a wavelength. On
the other hand, the leftmost set of terms on the right hand side of each of equations (27.125) do not average
to zero; for example, the terms for 𝐺00 and 𝐺𝑧𝑧 are negative everywhere, being minus a sum of squares. A
negative energy density? The interpretation is that these terms are to be taken over to the right hand side
of the Einstein equations, and re-interpreted as the energy-momentum 𝑇 gw

𝑚𝑛 in gravitational waves

𝑇 gw
00 ≡

1

8𝜋

[︂
(ℎ̇𝑎𝑏)(ℎ̇

𝑎𝑏)− 1

4

(︁ 𝜕2
𝜕𝑡2

+∇2
𝑧

)︁
ℎ2
]︂
, (27.127a)

𝑇 gw
0𝑧 ≡

1

8𝜋

[︂
(ℎ̇𝑎𝑏)(∇𝑧ℎ𝑎𝑏)−

1

2

𝜕

𝜕𝑡
∇𝑧ℎ2

]︂
, (27.127b)

𝑇 gw
𝑧𝑧 ≡

1

8𝜋

[︂
(∇𝑧ℎ𝑎𝑏)(∇𝑧ℎ𝑎𝑏)−

1

4

(︁ 𝜕2
𝜕𝑡2

+∇2
𝑧

)︁
ℎ2
]︂
. (27.127c)

The terms involving total derivatives, although they vanish when averaged over a region larger than many
wavelengths, ensure that the energy-momentum 𝑇 gw

𝑚𝑛 in gravitational waves satisfies conservation of energy-
momentum in the flat background space

∇𝑚𝑇 gw
𝑚𝑛 = 0 . (27.128)

Averaged over a region larger than many wavelengths, the energy-momentum in gravitational waves is

⟨𝑇 gw
𝑚𝑛⟩ =

1

8𝜋
(∇𝑚ℎ𝑎𝑏)(∇𝑛ℎ𝑎𝑏) . (27.129)
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Equation (27.129) may also be written explicitly as a sum over the two linear or circular polarizations

⟨𝑇 gw
𝑚𝑛⟩ =

1

4𝜋

[︀
(∇𝑚ℎ+)(∇𝑛ℎ+) + (∇𝑚ℎ×)(∇𝑛ℎ×)

]︀
=

1

8𝜋

[︀
(∇𝑚ℎ++)(∇𝑛ℎ−−) + (∇𝑛ℎ++)(∇𝑚ℎ−−)

]︀
. (27.130)

Exercise 27.9. Hulse-Taylor binary.

1. Quadrupole moment. Consider a pair of masses𝑀1 and𝑀2 in circular orbit, with position vectors 𝑟1
and 𝑟2 relative to their center of mass. Argue that the quadrupole moment –𝐼𝑎𝑏 of the mass distribution
defined by

–𝐼𝑎𝑏 ≡
∑︁

masses 𝑋

𝑀𝑋(𝑟𝑋,𝑎 𝑟𝑋,𝑏 − 1
3 𝛿𝑎𝑏 𝑟

2
𝑋) (27.131)

is

–𝐼𝑎𝑏 = 𝑚𝑟2(𝑟𝑎𝑟𝑏 − 1
3𝛿𝑎𝑏) , (27.132)

where 𝑟 ≡ 𝑟�̂� ≡ 𝑟2 − 𝑟1 is the orbital separation, and 𝑚 is the reduced mass

𝑚 ≡ 𝑀1𝑀2

𝑀
, 𝑀 ≡𝑀1 +𝑀2 . (27.133)

[Hint: Assume for simplicity that the orbit is described by classical Newtonian mechanics.]

2. Tensor components. Suppose that the orbital plane is inclined at inclination angle 𝜄 to the line-of-
sight. Choose the observer’s locally inertial frame so that the 𝑧-axis 𝑧 is the line-of-sight direction from
the center of mass of the binary to the observer, and the 𝑥-axis �̂� points in the plane of the orbit. Argue
that the orbital separation 𝑟 is

𝑟 = 𝑟
[︀
(𝑧 cos 𝜄− 𝑦 sin 𝜄) cos𝜔𝑡+ �̂� sin𝜔𝑡

]︀
(27.134)

where 𝜔 is the orbital frequency. Deduce that the tensor components of the quadrupole moment are

–𝐼+ ≡ 1
2 (–𝐼𝑥𝑥 − –𝐼𝑦𝑦) = 1

4𝑚𝑟
2
[︀
cos2𝜄− (1 + sin2𝜄) cos 2𝜔𝑡

]︀
, (27.135a)

–𝐼× ≡ –𝐼𝑥𝑦 = − 1
2𝑚𝑟

2 sin 𝜄 sin 2𝜔𝑡 . (27.135b)

[Hint: Recall the trigonometric formulae cos2𝜑 = 1
2 (1 + cos 2𝜑) and sin2𝜑 = 1

2 (1− cos 2𝜑).]

3. Tensor perturbation. Deduce the tensor perturbations ℎ+ and ℎ× at large distance 𝑧 from the orbiting
masses from the quadrupole formula

ℎ𝑎𝑏 = −
1

𝑧
–̈𝐼𝑎𝑏(𝑡− 𝑧) . (27.136)

Notice that 𝑡−𝑧 is the retarded time: an observer at distance 𝑧 is looking at the orbiting masses as they
used to be at time 𝑡− 𝑧.
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4. Energy momentum in gravitational waves. The energy-momentum 𝑇 gw
𝑚𝑛 in gravitational waves is

given by the quadrupole formula

4𝜋 𝑇 gw
𝑚𝑛 = (∇𝑚ℎ+)(∇𝑛ℎ+) + (∇𝑚ℎ×)(∇𝑛ℎ×) , (27.137)

where ∇𝑚 = {𝜕/𝜕𝑡, 𝜕/𝜕𝑥𝑎}. Show that the non-vanishing components of the gravitational wave energy-
momentum tensor are

𝑇 gw
00 = −𝑇 gw

0𝑧 = 𝑇 gw
𝑧𝑧 =

𝑚2𝑟4𝜔6

2𝜋𝑧2
(︀
1 + 6 sin2𝜄+ sin4𝜄− cos4𝜄 cos 4𝜔(𝑡− 𝑧)

)︀
. (27.138)

[Hint: The quadrupole formula is valid for large 𝑧, so you need keep only the leading term in powers of
𝑧.]

5. Energy flux in gravitational waves The energy loss �̇� by gravitational waves is given by the integral
of the energy flux over all directions (note that energy flux is 𝑇 0𝑧 with raised indices, and there is a
minus sign from 𝑇 0𝑧 = −𝑇0𝑧),

�̇� = −
∫︁ 𝜋/2

−𝜋/2
𝑇 gw
0𝑧 2𝜋𝑧2 cos 𝜄 𝑑𝜄 . (27.139)

Show that (with units of 𝑐 and 𝐺 restored)

�̇� =
32𝐺𝑚2𝑟4𝜔6

5𝑐5
. (27.140)

6. Rate of change of orbital frequency. If the orbit of the binary is described adequately by a Keplerian
orbit, then the orbital energy 𝐸 is

𝐸 = −𝐺𝑚𝑀
2𝑟

, (27.141)

and the radius 𝑟 and angular frequency 𝜔 are related by Kepler’s third law

𝑟3 =
𝐺𝑀

𝜔2
. (27.142)

The orbital period 𝑃 is related to the angular frequency 𝜔 by

𝑃 ≡ 2𝜋

𝜔
. (27.143)

Conclude that
�̇�

𝑃
= − �̇�

𝜔
=

3

2

�̇�

𝐸
= −96(𝐺𝑚)(𝐺𝑀)2/3𝜔8/3

5𝑐5
, (27.144)

the minus sign in the third expression coming from the fact that the orbit is losing energy.
7. Hulse-Taylor binary. The so-called binary pulsar PSR B1913+16 discovered by Hulse and Taylor

(1975) consists of two neutron stars, one a pulsar, in orbit. The masses of the pulsar and its companion
are measured from the orbital motion to be (Weisberg and Taylor, 2005)

𝑀1 = 1.4414M⊙ , 𝑀2 = 1.3867M⊙ . (27.145)
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The orbital period is

𝑃 = 0.322997448930 day . (27.146)

What is the predicted general relativistic rate of change �̇� of the period, in dimensionless units (or
s/ s, if you prefer)? [Hint: The heliocentric gravitational constant is 𝐺M⊙ = 1.3271244 × 1020 m3 s−2

according to the IAU 2009 system of astronomical constants at https://link.springer.com/article/10.
1007%2Fs10569-011-9352-4.]

8. Eccentricity correction. Actually PSR B1913+16 has a substantial eccentricity,

𝑒 = 0.6171338 . (27.147)

The correct general relativistic formula including the effects of eccentricity is equation (27.144) multiplied
by a function 𝑓(𝑒) of the eccentricity

�̇�

𝑃
= −96(𝐺𝑚)(𝐺𝑀)2/3𝜔8/3

5𝑐5
𝑓(𝑒) , (27.148)

with

𝑓(𝑒) =

(︂
1 +

73

24
𝑒2 +

37

96
𝑒4
)︂
(1− 𝑒2)−7/2 . (27.149)

Compare the eccentricity-corrected predicted numerical result for �̇� with the measured value

�̇� = −2.4184× 10−12 . (27.150)

Exercise 27.10. Will you be torn apart when two black holes merge? The book “Death from the
Skies!” by Phil Plait (the Bad Astronomer) contains a Chapter “Seven ways a black hole can kill you.” One
of the ways, says Phil, is to stand near a pair of merging black holes, and be torn apart by the tidal forces
from the gravitational waves. Is it true?
1. Tidal forces. For a gravitational wave propagating in the 𝑧-direction in empty space, the non-zero

components of the Riemann tensor of the perturbed Minkowski space are

𝑅0𝑥0𝑥 = −𝑅0𝑦0𝑦 = −𝑅0𝑥𝑧𝑥 = 𝑅0𝑦𝑧𝑦 = 𝑅𝑧𝑥𝑧𝑥 = −𝑅𝑧𝑦𝑧𝑦 = ℎ̈+ , (27.151a)

𝑅0𝑥0𝑦 = −𝑅0𝑥𝑧𝑦 = −𝑅0𝑦𝑧𝑥 = 𝑅𝑧𝑥𝑧𝑦 = ℎ̈× . (27.151b)

From the expression (27.136) for ℎ𝑎𝑏 that you derived in Exercise 27.9, and from the equation of geodesic
deviation

𝐷2𝛿𝜉𝑚
𝐷𝜏2

+𝑅𝑘𝑙𝑚𝑛𝛿𝜉
𝑘𝑢𝑙𝑢𝑛 = 0 (27.152)

deduce the tidal forces on a person moving non-relativistically. [Hint: If a person is moving non-
relativistically, it is legitimate to take the person’s 4-velocity to be 𝑢𝑚 = {1, 0, 0, 0}. Why?]

2. Comment. What is your advice to Phil Plait? [Hint: What you need here is rough estimates. Consider
both supermassive and stellar-sized black holes. To make things sensible, you should require that you,
the observer, be (a) outside the horizon, and (b) outside the point at which the static tidal force of the

https://link.springer.com/article/10.1007%2Fs10569-011-9352-4
https://link.springer.com/article/10.1007%2Fs10569-011-9352-4
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black hole would tear you apart even without gravitational waves. You may find it convenient to define
the mass 𝑀𝑔 of a black hole whose tidal force at the horizon is 1 gee per metre

𝑔 =
1

𝑀2
𝑔

(27.153)

which you figured out in Exercise 11.10.]



Concept Questions

1. Why do the wavelengths of perturbations in cosmology expand with the Universe, whereas perturbations
in Minkowski space do not expand?

2. What does power spectrum mean?
3. Why is the power spectrum a good way to characterize the amplitude of fluctuations?
4. Why is the power spectrum of fluctuations of the Cosmic Microwave Background (CMB) plotted as a

function of harmonic number?
5. What causes the acoustic peaks in the power spectrum of fluctuations of the CMB?
6. Are there acoustic peaks in the power spectrum of matter (galaxies) today?
7. What sets the scale of the first peak in the power spectrum of the CMB? [What sets the physical scale?

Then what sets the angular scale?]
8. The odd peaks (including the first peak) in the CMB power spectrum are compression peaks, while the

even peaks are rarefaction peaks. Why does a rarefaction produce a peak, not a trough?
9. Why is the first peak the most prominent? Why do higher peaks generally get progressively weaker?
10. The third peak is about as strong as the second peak? Why?
11. The matter power spectrum reaches a maximum at a scale that is slightly larger than the scale of the

first baryonic acoustic peak. Why?
12. The physical density of species 𝑥 at the time of recombination is proportional to Ω𝑥ℎ

2 where Ω𝑥 is the
ratio of the actual to critical density of species 𝑥 at the present time, and ℎ ≡ 𝐻0/100 km s−1 Mpc−1 is
the present-day Hubble constant. Explain.

13. How does changing the baryon density Ωbℎ
2 affect the CMB power spectrum?

14. How does changing the non-baryonic cold dark matter density Ωcℎ
2, without changing the baryon

density Ωbℎ
2, affect the CMB power spectrum?

15. What effects do neutrinos have on perturbations?
16. How does changing the curvature Ω𝑘 affect the CMB power spectrum?
17. How does changing the dark energy ΩΛ affect the CMB power spectrum?
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An overview of cosmological perturbations

Undoubtedly the preeminent application of general relativistic perturbation theory is to cosmology. Fluctu-
ations in the temperature and polarization of the Cosmic Microwave Background (CMB) provide an obser-
vational window on the Universe at 400,000 years old that, coupled with other astronomical observations,
has yielded impressively precise measurements of cosmological parameters.
The theory of cosmological perturbations is based principally on general relativistic perturbation theory

coupled to the physics of 5 species of energy-momentum: photons, baryons, non-baryonic cold dark matter,
neutrinos, and dark energy.
Dark energy was not important at the time of recombination, where the CMB that we see comes from,

but it is important today. If dark energy has a vacuum equation of state, 𝑝 = −𝜌, then dark energy does
not cluster (vacuum energy density is a constant), but it affects the evolution of the cosmic scale factor,
and thereby does affect the clustering of baryons and dark matter today. Moreover the evolution of the
gravitational potential along the line of sight to the CMB does affect the observed power spectrum of the
CMB, the so-called integrated Sachs-Wolfe effect.
1. Inflationary initial conditions. The theory of inflation has been remarkably successful in accounting

for many aspects of observational cosmology, even though a fundamental understanding of the inflaton
scalar field that supposedly drove inflation is missing. The current paradigm holds that primordial fluc-
tuations were generated by vacuum quantum fluctuations in the inflaton field at the time of inflation.
The theory makes the generic predictions that the gravitational potentials generated by vacuum fluctu-
ations were (a) Gaussian, (b) adiabatic (meaning that all species of mass-energy fluctuated together,
as opposed to in opposition to each other), and (c) scale-free, or rather almost scale-free (the fact that
inflation came to an end modifies slightly the scale-free character). The three predictions fit the observed
power spectrum of the CMB astonishingly well.

2. Comoving Fourier modes. The spatial homogeneity of the Friedmann-Lemaître-Robertson-Walker
background spacetime means that its perturbations are characterized by Fourier modes of constant co-
moving wavevector. Each Fourier mode generated by inflation evolved independently, and its wavelength
expanded with the Universe.

3. Scalar, vector, tensor modes. Spatial isotropy on top of spatial homogeneity means that the pertur-
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bations comprised independently evolving scalar, vector, and tensor modes. Scalar modes dominate the
fluctuations of the CMB, and caused the clustering of matter today. Vector modes are usually assumed
to vanish, because there is no mechanism to generate the rotation that sources vector modes, and the ex-
pansion of the Universe tends to redshift away any vector modes that might have been present. Inflation
generates gravitational waves, which then propagate essentially freely to the present time. Gravitational
waves leave an observational imprint in the “𝐵” (magnetic (−)ℓ+1 parity) mode of polarization of the
CMB, whereas scalar modes produce only an “𝐸” (electric (−)ℓ parity) mode of polarization.

4. Power spectrum. The primary quantity measurable from observations is the power spectrum, which
is the variance of fluctuations of the CMB or of matter (as traced by galaxies, galaxy clusters, the
Lyman alpha forest, peculiar velocities, weak lensing, or 21 centimetre observations at high redshift).
The statistics of a Gaussian field are completely characterized by its mean and variance. The mean
characterizes the unperturbed background, while the variance characterizes the fluctuations. For a 3-
dimensional statistically homogeneous and isotropic field, the variance of Fourier modes 𝛿𝑘 defines the
power spectrum 𝑃 (𝑘),

⟨𝛿𝑘𝛿𝑘′⟩ = 1𝑘𝑘′𝑃 (𝑘) , (28.1)

where 1𝑘𝑘′ is the unit matrix in the Hilbert space of Fourier modes,

1𝑘𝑘′ ≡ (2𝜋)3𝛿3𝐷(𝑘 + 𝑘′) . (28.2)

The “momentum-conserving” Dirac delta-function in equation (28.2) is a consequence of statistical spa-
tial translation symmetry. Isotropy implies that the power spectrum 𝑃 (𝑘) is a function only of the
magnitude 𝑘 ≡ |𝑘| of the wavevector. For a statistically rotation-invariant field projected on the sky,
such as the CMB, the variance of spherical harmonic modes Θℓ𝑚 ≡ 𝛿𝑇ℓ𝑚/𝑇 defines the power spectrum
𝐶ℓ,

⟨Θℓ𝑚Θℓ′𝑚′⟩ = 1ℓ𝑚,ℓ′𝑚′𝐶ℓ (28.3)

where 1ℓ𝑚,ℓ′𝑚′ is the unit matrix in the Hilbert space of spherical harmonics (distinguish the three
usages of 𝛿 in this paragraph: 𝛿 meaning fluctuation, 𝛿𝐷 meaning Dirac delta-function, and 𝛿 meaning
Kronecker delta, as in the following equation),

1ℓ𝑚,ℓ′𝑚′ ≡ 𝛿ℓℓ′𝛿𝑚,−𝑚′ . (28.4)

Again, the “angular momentum-preserving” condition (28.4) that ℓ = ℓ′ and 𝑚+𝑚′ = 0 is a consequence
of rotational symmetry. The same rotational symmetry implies that the power spectrum 𝐶ℓ is a function
only of the harmonic number ℓ, not of the directional harmonic number 𝑚.

5. Reheating. Early Universe inflation evidently came to an end. It is presumed that the vacuum energy
released by the decay of the inflaton field, an event called reheating, somehow efficiently produced the
matter and radiation fields that we see today. After reheating, the Universe was dominated by relativistic
fields, collectively called “radiation.” Reheating changed the evolution of the cosmic scale factor from
acceleration to deceleration, but is presumed not to have generated additional fluctuations.
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6. Photon-baryon fluid and the sound horizon. Photon-electron (Thomson) scattering kept photons
and baryons tightly coupled to each other, so that they behaved like a relativistic fluid. As long as the
radiation density exceeded the baryon density, which remained true up to near the time of recombi-

nation, the speed of sound in the photon-baryon fluid was
√︀
𝑝/𝜌 ≈

√︁
1
3 of the speed of light, §30.6.

Fluctuations with wavelengths outside the sound horizon grew by gravity. As time went by, the sound
horizon expanded in comoving radius, and fluctuations thereby came inside the sound horizon. Once
inside the sound horizon, sound waves could propagate, which tended to decrease the gravitational po-
tential. However, each individual sound wave itself continued to oscillate, its oscillation amplitude 𝛿𝑇/𝑇
relative to the background temperature 𝑇 remaining approximately constant, Fig. 30.7, at least well
before recombination, when damping is unimportant (point 11 below). The suppression of the potential
at small scales is responsible for the turnover in the observed power spectrum of matter fluctuations
today from large to small scales, Fig. 30.15.

7. Acoustic peaks in the power spectrum. The oscillations of the photon-baryon fluid produced the
characteristic pattern of peaks and troughs in the CMB power spectrum observed today. The same
peaks and troughs occur in the matter power spectrum, but are much less prominent, at a level of about
10% as opposed to the order unity oscillations observed in the CMB power spectrum. For adiabatic
fluctuations, the amplitude of the temperature fluctuations follows a pattern ∼ − cos(𝑘𝜂𝑠) where 𝜂𝑠
is the comoving sound horizon, Fig. 30.7. The 𝑛’th peak occurs at a wavenumber 𝑘 where 𝑘𝜂𝑠 ≈ 𝑛𝜋.
In the observed CMB power spectrum, the relevant value of the sound horizon 𝜂𝑠 is its value 𝜂𝑠,rec at
recombination. Thus the wavenumber 𝑘 of the first peak of the observed CMB power spectrum occurs
where 𝑘𝜂𝑠,rec ≈ 𝜋. Two competing forces cause a mode to evolve: a gravitational force that amplifies
compression, and a restoring pressure force that counteracts compression, §32.10. When a mode enters
the sound horizon for the first time, the compressing gravitational force beats the restoring pressure
force, so the first thing that happens is that the mode compresses further. Consequently the first peak
is a compression peak. This sets the subsequent pattern: odd peaks are compression peaks, while even
peaks are rarefaction peaks. The observed temperature fluctuations of the CMB are produced by a
combination of intrinsic temperature fluctuations, Doppler shifts, and gravitational redshifting out of
potential wells. The Doppler shift produced by the velocity of a perturbation is 90∘ out of phase with the
temperature fluctuation, and so tends to fill in the troughs in the power spectrum of the temperature
fluctuation. This is the main reason that the observed CMB power spectrum remains above zero at all
scales.

8. Logarithmic growth of matter fluctuations. Non-baryonic cold dark matter interacts weakly except
by gravity, and is needed to explain the observed clustering of matter in the Universe today in spite of the
small amplitude of temperature fluctuations in the CMB. The adjective “cold” refers to the requirement
that the dark matter became non-relativistic (𝑝 = 0) at some early time. If the dark matter is both
non-baryonic and cold, then it did not participate in the oscillations of the photon-baryon fluid. During
the radiation-dominated phase prior to matter-radiation equality, dark matter matter fluctuations inside
the sound horizon grow logarithmically, Fig 30.10. The logarithmic growth translates into a logarithmic
increase in the amplitude of matter fluctuations at small scales, and is a characteristic signature of non-
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baryonic cold dark matter. Unfortunately this signature is not readily discernible in the power spectrum
of matter today, because of nonlinear clustering.

9. Epoch of matter-radiation equality. The density of non-relativistic matter decreases more slowly
than the density of relativistic radiation. There came a point where the matter density equaled the
radiation density, an epoch called matter-radiation equality, after which the matter density exceeded
the radiation density. The observed ratio of the density of matter and radiation (CMB) today require
that matter-radiation equality occurred at a redshift of 𝑧eq ≈ 3400, a factor of 3 higher in redshift
than recombination at 𝑧rec ≈ 1100. After matter-radiation equality, dark matter perturbations grew
more rapidly, linearly instead of just logarithmically with cosmic scale factor. A larger dark matter
density causes matter-radiation equality to occur earlier. The sound horizon at matter-radiation equality
corresponds to a scale roughly around the 2.5’th peak in the CMB power spectrum. For adiabatic
fluctuations, the way that the temperature and gravitational perturbations interact when a mode first
enters the sound horizon means that the temperature oscillation is 5 times larger for modes that enter the
horizon well into the radiation-dominated epoch versus well into the matter-dominated epoch, Fig. 32.3.
The effect enhances the amplitude of observed CMB peaks higher than 2.5 relative to those lower
than 2.5. The observed relative strengths of the 3rd versus the 2nd peak of the CMB power spectrum
provides a measurement of the redshift of matter-radiation equality, and direct evidence for the presence
of non-baryonic cold dark matter.

10. Sound speed. The density of baryons decreased more slowly than the density of radiation, so that at
around recombination the baryon density was becoming comparable to the radiation density. The sound
speed

√︀
𝑝/𝜌 depends on the ratio of pressure 𝑝, which was essentially entirely that of the photons, to the

density 𝜌, which was produced by both photons and baryons. The sound speed consequently decreased

below
√︁

1
3 , §32.4. Increasing the baryon-to-photon ratio at recombination has several observational

effects on the acoustic peaks of the CMB power spectrum, making it a prime measurable parameter from
the CMB. First, an increased baryon fraction increases the gravitational forcing (baryon loading), which
enhances the compression (odd) peaks while reducing the rarefaction (even) peaks. Second, increasing
the baryon fraction reduces the sound speed, which: (a) decreases the amplitude of the radiation velocity
relative to the radiation density, so increasing the prominence of the peaks; and (b) reduces the oscillation
frequency of the photon-baryon fluid, which shifts the peaks to larger scales. The reduced sound speed
also causes an adiabatic reduction of the amplitudes of all modes by the square root of the sound speed,
but this effect is degenerate with an overall reduction in the initial amplitudes of modes produced by
inflation.

11. Electron-photon scattering.

Prior to recombination, photons are coupled to the baryonic plasma mainly by nonrelativistic electron-
photon (Thomson) scattering. The finite mean free path to scattering damps oscillations of the photon-
baryon fluid. As recombination approaches, the mean free path grows longer, and the damping becomes
greater, Fig. 32.3. Damping by Thomson scattering is responsible for the decline in the CMB power
spectrum at smaller scales.
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12. Recombination. As the temperature cooled below about 3,000K, electrons combined with hydrogen
and helium nuclei into neutral atoms, Fig. 31.4. This drastically reduced the amount of photon-electron
scattering, releasing the CMB to propagate almost freely. At the same time, the baryons were released
from the photons. Without radiation pressure to support them, fluctuations in the baryons began to
grow like the dark matter fluctuations.

13. Neutrinos. Probably all three species of neutrino have mass less than 0.2 eV and were therefore rel-
ativistic up to and at the time of recombination, equation (10.111). Each of the 3 species of neutrino
had an abundance comparable to that of photons, and therefore made an important contribution to the
relativistic background and its fluctuations. Unlike photons, neutrinos streamed freely, without scatter-
ing, Fig. 33.2. The relativistic free-streaming of neutrinos provided the main source of the quadrupole
pressure that produces a non-vanishing difference Ψ− Φ between the scalar potentials, Fig. 33.4. How-
ever, the neutrino quadrupole pressure was still only ∼ 10% of the neutrino monopole pressure. To the
extent that the neutrino quadrupole pressure can be approximated as negligible, the neutrinos and their
fluctuations can be treated the same as photons.

14. CMB fluctuations. The CMB fluctuations seen on the sky today represent a projection of fluctuations
on a thin but finite shell at a redshift of about 1100, Fig. 34.1, corresponding to an age of the Universe of
about 400,000 yr. The temperature, and the degrees of polarization in two different directions, provide
3 independent observables at each point on the sky. The isotropy of the unperturbed radiation means
that it is most natural to measure the fluctuations in spherical harmonics, which are the eigenmodes of
the rotation operator. Similarly, it is natural to measure the CMB polarization in spin harmonics.

15. Matter fluctuations. After recombination, perturbations in the non-baryonic and baryonic matter
grew by gravity, essentially unaffected any longer by photon pressure, Fig. 32.3. If one or more of the
neutrino types had a mass small enough to be relativistic but large enough to contribute appreciable
density, then its relativistic streaming could have suppressed power in matter fluctuations at small scales,
but observations show no evidence of such suppression, which places an upper limit of about an eV on
the mass of the most massive neutrino. The matter power spectrum measured from the clustering of
galaxies contains acoustic oscillations like the CMB power spectrum, but because the non-baryonic dark
matter dominates the baryons, the oscillations are much smaller.

16. Integrated Sachs-Wolfe effect. Variations in the gravitational potential along the line of sight to
the CMB affect the CMB power spectrum at large scales. This is called the integrated Sachs-Wolfe

(ISW) effect, §34.2.2. If matter dominates the background, then the gravitational potential Φ has the
property that it remains constant in time for linear fluctuations, and there is no ISW effect. In practice,
ISW effects are produced by at least three distinct causes. First, an early-time ISW effect is produced
by the fact that the Universe at recombination still has an appreciable component of radiation, and is
not yet wholly matter-dominated. Second, a late-time ISW effect is produced either by curvature or
by a cosmological constant. Third, a non-linear ISW effect is produced by non-linear evolution of the
potential.
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Cosmological perturbations in a flat FLRW
background

For simplicity, this book considers only a flat (not closed or open) Friedmann-Lemaître-Robertson-Walker
(FLRW) background. The comoving Hubble distance at recombination was much smaller than today, and
consequently the cosmological density Ω was much closer to 1 at recombination than it is today. Since
observations indicate that the Universe today is within 1% of being spatially flat (Aghanim et al., 2018), it
is an excellent approximation to treat the Universe at the time of recombination as being spatially flat.
With some modifications arising from cosmological expansion, perturbation theory on a flat FLRW back-

ground is quite similar to perturbation theory in flat (Minkowski) space, Chapter 27.
The strategy is to start in a completely general gauge, and to discover how the conformal Newtonian

(Copernican) gauge, which is used in subsequent Chapters, emerges naturally as that gauge in which the
perturbations are precisely the physical perturbations.

29.1 Unperturbed line-element

It is convenient to choose the coordinate system 𝑥𝜇 ≡ {𝑥0, 𝑥1, 𝑥2, 𝑥3} ≡ {𝜂, 𝑥, 𝑦, 𝑧} to consist of conformal
time 𝜂 together with comoving Cartesian coordinates 𝑥 ≡ 𝑥𝛼 ≡ {𝑥, 𝑦, 𝑧}. The coordinate metric of the
unperturbed background flat FLRW geometry is then

𝑑𝑠2 = 𝑎(𝜂)2
(︀
− 𝑑𝜂2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

)︀
, (29.1)

where 𝑎(𝜂) is the cosmic scale factor. The unperturbed coordinate metric is thus the conformal Minkowski
metric

0
𝑔𝜇𝜈 = 𝑎(𝜂)2𝜂𝜇𝜈 . (29.2)

The tetrad is taken to be orthonormal, with the unperturbed tetrad axes 𝛾𝛾𝑚 ≡ {𝛾𝛾0,𝛾𝛾1,𝛾𝛾2,𝛾𝛾3} being aligned
with the unperturbed coordinate axes 0

𝑒𝜇 ≡ {
0
𝑒0,

0
𝑒1,

0
𝑒2,

0
𝑒3} so that the unperturbed vierbein and inverse

vierbein are respectively 𝑎 and 1/𝑎 times the unit matrix,

0
𝑒𝑚𝜇 = 𝑎 𝛿𝑚𝜇 ,

0
𝑒𝑚

𝜇 =
1

𝑎
𝛿𝜇𝑚 . (29.3)
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Let ∇𝑎 denote spatial derivatives with respect to comoving spatial coordinates,

∇𝑎 ≡ 𝛿𝛼𝑎
𝜕

𝜕𝑥𝛼
=

𝜕

𝜕𝑥𝑎
, (29.4)

which should be distinguished from the directed derivatives 𝜕𝑎 ≡ 𝑒𝑎
𝜇 𝜕/𝜕𝑥𝜇 ≈ (1/𝑎) 𝜕/𝜕𝑥𝑎. Because the

background FLRW geometry is spatially homogeneous, comoving spatial gradients ∇𝑎 are of first order,
and can be treated as spatial vectors whose tetrad-frame components can be raised and lowered with the
Euclidean metric. Further, let overdot denote partial differentiation with respect to conformal time 𝜂,

overdot ≡ 𝜕

𝜕𝜂
, (29.5)

so that for example �̇� ≡ 𝑑𝑎/𝑑𝜂. The Hubble parameter 𝐻 in the unperturbed background is

𝐻 ≡ �̇�

𝑎2
. (29.6)

29.2 Comoving Fourier modes

Since the unperturbed Friedmann-Lemaître-Robertson-Walker spacetime is spatially homogeneous and iso-
tropic, it is natural to work in comoving Fourier modes. Comoving Fourier modes have the key property that
they evolve independently of each other, as long as perturbations remain linear. Equations in Fourier space
are obtained by replacing the comoving spatial gradient ∇𝑎 by −𝑖 times the comoving wavevector 𝑘𝑎 (the
choice of sign is the standard convention in cosmology)

∇𝑎 → −𝑖𝑘𝑎 . (29.7)

By this means, the spatial derivatives become algebraic, so that the partial differential equations governing
the evolution of perturbations become ordinary differential equations.
In what follows, the comoving spatial gradient ∇𝑎 will be used interchangeably with −𝑖𝑘𝑎, whichever is

most convenient.

29.3 Classification of vierbein perturbations

The definition (26.1) of the vierbein perturbations 𝜙𝑚𝑛 implies that the perturbed inverse vierbein in the
perturbed FLRW spacetime is

𝑒𝑚
𝜇 =

1

𝑎
(𝛿𝑛𝑚 + 𝜙𝑚

𝑛)𝛿𝜇𝑛 = (𝜂𝑚𝑛 + 𝜙𝑚𝑛)
0
𝑒𝑛𝜇 , (29.8)

while the perturbed vierbein is

𝑒𝑚𝜇 = 𝑎(𝛿𝑚𝑛 − 𝜙𝑛𝑚)𝛿𝑛𝜇 = (𝜂𝑚𝑛 − 𝜙𝑛𝑚)
0
𝑒𝑛𝜇 . (29.9)
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The covariant tetrad-frame components 𝜙𝑚𝑛 of the vierbein perturbation of the FLRW geometry decom-
pose in much the same way as in flat Minkowski case into 6 scalars, 4 vectors, and 1 tensor, a total of
6 + 4 × 2 + 1 × 2 = 16 degrees of freedom (the following equations are essentially the same as those (27.6)
for the flat Minkowski background),

𝜙00 = 𝜓
scalar

, (29.10a)

𝜙0𝑎 = ∇𝑎𝑤
scalar

+ 𝑤𝑎
vector

, (29.10b)

𝜙𝑎0 = ∇𝑎�̃�
scalar

+ �̃�𝑎
vector

, (29.10c)

𝜙𝑎𝑏 = 𝛿𝑎𝑏 𝜑
scalar

+∇𝑎∇𝑏ℎ
scalar

+ 𝜀𝑎𝑏𝑐∇cℎ̃
scalar

+∇𝑎ℎ𝑏
vector

+∇𝑏ℎ̃𝑎
vector

+ ℎ𝑎𝑏
tensor

. (29.10d)

The 4 covariant tetrad-frame components 𝜖𝑚 of the coordinate shift of the coordinate gauge transforma-
tion (26.9) similarly decompose into 2 scalars and 1 vector (2 degrees of freedom) (the following equation is
essentially the same as that (27.8) for the flat Minkowski background),

𝜖𝑚 = { 𝜖0
scalar

, ∇𝑎𝜖
scalar

+ 𝜖𝑎
vector

} . (29.11)

The vierbein perturbations 𝜙𝑚𝑛 transform under a coordinate gauge transformation (26.9) as, equa-
tion (26.20),

𝜙𝑚𝑛 → 𝜙′𝑚𝑛 = 𝜙𝑚𝑛 + 𝜕𝑚𝜖𝑛 = 𝜙𝑚𝑛 +
1

𝑎
∇𝑚𝜖𝑛 , (29.12)

with vanishing contribution from the unperturbed tetrad-frame connection, equation (29.23), since the lat-
ter is symmetric whereas equation (26.20) depends on an antisymmetric combination of connections. The
individual components of the vierbein perturbations transform under a coordinate gauge transformation as

𝜙00 → 𝜓 +
1

𝑎

𝜕𝜖0
𝜕𝜂

scalar

, (29.13a)

𝜙0𝑎 → ∇𝑎
(︂
𝑤 +

1

𝑎

(︁ 𝜕
𝜕𝜂
− �̇�

𝑎

)︁
𝜖

)︂
scalar

+

(︂
𝑤𝑎 +

1

𝑎

(︁ 𝜕
𝜕𝜂
− �̇�

𝑎

)︁
𝜖𝑎

)︂
vector

, (29.13b)

𝜙𝑎0 → ∇𝑎
(︂
�̃� +

1

𝑎
𝜖0

)︂
scalar

+ �̃�𝑎
vector

, (29.13c)

𝜙𝑎𝑏 → 𝛿𝑎𝑏

(︂
𝜑− �̇�

𝑎2
𝜖0

)︂
scalar

+∇𝑎∇𝑏
(︂
ℎ+

1

𝑎
𝜖

)︂
scalar

+ 𝜀𝑎𝑏𝑐∇cℎ̃
scalar

+∇𝑎
(︂
ℎ𝑏 +

1

𝑎
𝜖𝑏

)︂
vector

+∇𝑏ℎ̃𝑎
vector

+ ℎ𝑎𝑏
tensor

, (29.13d)



770 Cosmological perturbations in a flat FLRW background

or equivalently

𝜓 → 𝜓 +
1

𝑎

𝜕𝜖0
𝜕𝜂

, (29.14a)

𝑤 → 𝑤 +
1

𝑎

(︁ 𝜕
𝜕𝜂
− �̇�

𝑎

)︁
𝜖 , 𝑤𝑎 → 𝑤𝑎 +

1

𝑎

(︁ 𝜕
𝜕𝜂
− �̇�

𝑎

)︁
𝜖𝑎 , (29.14b)

�̃� → �̃� +
1

𝑎
𝜖0 , �̃�𝑎 → �̃�𝑎 , (29.14c)

𝜑→ 𝜑− �̇�

𝑎2
𝜖0 , ℎ→ ℎ+

1

𝑎
𝜖 , ℎ̃→ ℎ̃ , ℎ𝑎 → ℎ𝑎 +

1

𝑎
𝜖𝑎 , ℎ̃𝑎 → ℎ̃𝑎 , ℎ𝑎𝑏 → ℎ𝑎𝑏 . (29.14d)

Eliminating the coordinate shift 𝜖𝑚 from the transformations (29.14) yields 12 coordinate gauge-invariant
combinations of the perturbations,

𝜓 −
(︁ 𝜕
𝜕𝜂

+
�̇�

𝑎

)︁
�̃�

scalar

, 𝑤 − ℎ̇
scalar

, 𝑤𝑎 − ℎ̇𝑎
vector

, �̃�𝑎
vector

, 𝜑+
�̇�

𝑎
�̃�

scalar

, ℎ̃
scalar

, ℎ̃𝑎
vector

, ℎ𝑎𝑏
tensor

. (29.15)

Six combinations of these coordinate gauge-invariant perturbations depend only on the symmetric part
𝜙𝑚𝑛 + 𝜙𝑛𝑚 of the vierbein perturbations, and are therefore tetrad gauge-invariant as well as coordinate
gauge-invariant. These 6 coordinate and tetrad gauge-invariant perturbations comprise 2 scalars, 1 vector,
and 1 tensor

Ψ
scalar

≡ 𝜓 −
(︁ 𝜕
𝜕𝜂

+
�̇�

𝑎

)︁
(𝑤 + �̃� − ℎ̇) , (29.16a)

Φ
scalar

≡ 𝜑+
�̇�

𝑎
(𝑤 + �̃� − ℎ̇) , (29.16b)

𝑊𝑎
vector

≡ 𝑤𝑎 + �̃�𝑎 − ℎ̇𝑎 − ˙̃
ℎ𝑎 , (29.16c)

ℎ𝑎𝑏
tensor

. (29.16d)

The coordinate and tetrad gauge-invariant perturbations (29.16) reduce to those (27.13) in Minkowski space
when the cosmic scale factor does not change, �̇� = 0.

29.4 Residual global gauge freedoms

There are residual global gauge freedoms associated with (a) uncertainty in the cosmic scale factor 𝑎(𝜂) in
the background FLRW geometry, and (b) addition of spatially uniform but time-dependent contributions
to vierbein components that are spatial gradients in equations (29.13), namely 𝑤, �̃�, ℎ, ℎ̃, ℎ𝑎, and ℎ̃𝑎.
The freedoms are global in the sense that they are spatially uniform functions of time 𝜂. The global gauge
freedoms mean that the scalar and vector perturbations Ψ, Φ, and 𝑊𝑎 are gauge-invariant only up to the
addition of spatially uniform functions of time. The tensor perturbation ℎ𝑎𝑏 remains fully gauge-invariant.
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To illustrate the global gauge freedoms, consider the line-element

𝑑𝑠2 = 𝑎(𝜂)2
{︁
− [1 + Ψ(𝜂)]

2
𝑑𝜂2 + [1− Φ(𝜂)]

2
𝛿𝑎𝑏 𝑑𝑥

𝑎𝑑𝑥𝑏
}︁
, (29.17)

in which Ψ(𝜂) and Φ(𝜂) are functions only of conformal time 𝜂. A rescaling of the cosmic scale factor 𝑎,
together with a coordinate transformation of conformal time 𝜂,

𝑎→ 𝑎′ = 𝑎(1− Φ) , (29.18a)

𝑑𝜂 → 𝑑𝜂′ =

(︂
1 + Ψ

1− Φ

)︂
𝑑𝜂 , (29.18b)

brings the line-element (29.17) to FLRW form,

𝑑𝑠2 = 𝑎′(𝜂′)2
(︀
− 𝑑𝜂′2 + 𝛿𝑎𝑏 𝑑𝑥

𝑎𝑑𝑥𝑏
)︀
. (29.19)

The rescaling (29.18a) of the cosmic scale factor 𝑎 is distinct from any coordinate transformation, and consti-
tutes an additional global gauge freedom over and above the coordinate and tetrad gauge freedoms discussed
in §29.3. The transformation (29.18b) of the time coordinate is allowed because Ψ and Φ are functions only
of time. The argument in §29.3 that Ψ and Φ are gauge-invariant is spoiled because in the particular case
that the time coordinate shift 𝜖0 is a function only of time 𝜂, the change in the perturbation �̃� is decoupled
from the change in 𝜖0, because �̃� and 𝜖0 appear only inside a spatial gradient in the transformation (29.13c).
The freedom to adjust �̃� by an amount depending only on time propagates into a freedom to adjust Ψ and
Φ, equations (29.16a) and (29.16b). More generally, the combination 𝑤 + �̃� − ℎ̇ upon which both Ψ and Φ

depend can be adjusted by adjusting any of 𝑤, �̃�, or ℎ by an amount depending only on time, since all these
perturbations appear inside spatial gradients in equations (29.13). Similarly, the vector perturbation 𝑊𝑎,
equation (29.16c), can be adjusted by an amount depending only on time by adjusting either of ℎ𝑎 or ℎ̃𝑎.
Physically, the residual global gauge freedom in the scalar perturbations Ψ and Φ reflects the impossibility

of distinguishing a perturbation of the mean from the mean. Any perturbation of the mean can be absorbed
into an adjustment of the parameters of the unperturbed background.
To what does the residual global gauge freedom in the vector perturbation 𝑊𝑎 correspond? Physically,

𝑊𝑎 represents the velocity of dragging of the tetrad frame through the coordinates. A spatially uniform 𝑊𝑎

corresponds to a uniform velocity of the entire Universe, which is observationally undetectable.
Modes whose wavelengths are larger than the horizon size of an observer look spatially uniform to the

observer. The observer cannot distinguish such modes from a change in the parameters of the background
FLRW geometry. Thus an observer cannot measure the amplitudes Ψ, Φ, 𝑊𝑎, or ℎ𝑎𝑏 of modes outside their
horizon.
Of course, an observer can measure modes that were outside the horizon of an earlier observer. For example,

astronomers on Earth today can and do measure in both the CMB and in galaxy clustering “superhorizon”
modes that were outside the horizon of an observer at the time of recombination.
The residual global gauge freedoms mean that the intrinsic monopole mode of the observed CMB is un-

measurable, being indistinguishable from a rescaling of the temperature of the FLRW background. Moreover
the intrinsic CMB dipole is unmeasurable, being indistinguishable from an adjustment of the rest frame of
the FLRW background.
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In the remainder of this book, the perturbations Ψ, Φ, 𝑊𝑎, and ℎ𝑎𝑏 will be referred to as gauge-invariant
on the understanding that this refers to modes that are measurable by (within the horizon of) the observer.

Concept question 29.1. Global curvature as a perturbation? The usual FLRW metric contains a
curvature constant 𝜅 in addition to a cosmic scale factor 𝑎. Can curvature 𝜅, if small, be treated as a
perturbation to a flat FLRW geometry, and if so, how? Does the curvature perturbation represent a residual
global gauge freedom? Answer. Yes, 𝜅, if small, can be treated as a perturbation. The isotropic (Poincaré)
form of the FLRW line-element, equation (10.26), takes the form

𝑑𝑠2 = 𝑎(𝜂)2
(︂
− 𝑑𝜂2 + 1

1 + 1
4𝜅𝑥

2
𝛿𝑎𝑏 𝑑𝑥

𝑎𝑑𝑥𝑏
)︂
, (29.20)

where 𝑥2 ≡
∑︀
𝑎 𝑥

2
𝑎 is the square of the comoving radial distance from the origin. If the curvature scale is much

smaller that the horizon distance, 1
2

√︀
|𝜅| 𝜂 ≪ 1, then the curvature looks like a perturbation proportional to

the square of the comoving distance,

Φ(𝑥) = 1
8𝜅𝑥

2 . (29.21)

Is this a residual global gauge freedom? Equation (29.21) states that only the sum 1
8𝜅𝑥

2 − Φ is gauge-
invariant, so yes there is a residual global gauge freedom associated with the ambiguity between 𝜅 and Φ.
In pre-1998 days when astronomers were measuring Ωm ≈ 0.3 and only the reckless contemplated non-zero
ΩΛ, it was necessary to consider that Nature might have chosen a substantial curvature Ω𝑘 ≈ 0.7, in which
case 𝜅 was decidedly non-zero (and negative), certainly not a perturbation. Post dark-energy, observations
are stubbornly consistent with zero curvature. Occam’s razor would then prefer the simpler of two models
that fit the data, a flat background geometry 𝜅 = 0.

Concept question 29.2. Can the Universe at large rotate? Is it possible for a Universe to rotate
globally? What would be the observable signature, if any? Answer. Yes, the Universe could rotate globally.
Gauge-invariant rotational modes are described by the gauge-invariant vector gravitational potential 𝑊±.
A non-vanishing vector gravitational potential would drive non-vanishing unpolarized and polarized vector
photon fluctuations Θℓ,±1 with ℓ ≥ 1 and 2Θℓ,±1 with ℓ ≥ 2. Unfortunately there is no clean observational
signal of such modes, because the observed CMB on the sky mixes scalar, vector, and tensor modes with
the same ℓ (this is the sum over 𝑚 in equation (36.31)). Vector modes are expected to be overwhelmed by
scalar modes in the unpolarized and 𝐸-mode polarized CMB, and by tensor modes in the 𝐵-mode polarized
CMB. The reason for the dominance of scalar and tensor over vector modes is that whereas scalar and
tensor gravitational potentials remain approximately constant for modes outside the horizon, the vector
gravitational potentials 𝑊± tend to redshift to zero as the Universe expands, equation (29.51). Thus vector
perturbations are usually negligible in standard cosmological models, §35.11.
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29.5 Metric, tetrad connections, and Einstein tensor

This section gives expressions in a completely general gauge for perturbed quantities in the flat Friedmann-
Lemaître-Robertson-Walker background geometry.

29.5.1 Metric

The unperturbed metric is the FLRW metric (29.2). The perturbation 1
𝑔𝜇𝜈 to the coordinate metric is,

equation (26.6),
1
𝑔𝜂𝜂 = −𝑎2 2𝜓

scalar

, (29.22a)

1
𝑔𝜂𝑎 = −𝑎2

[︀
∇𝑎(𝑤 + �̃�)

scalar

+ (𝑤𝑎 + �̃�𝑎)
vector

]︀
, (29.22b)

1
𝑔𝑎𝑏 = −𝑎2

[︀
2𝜑 𝛿𝑎𝑏
scalar

+ 2∇𝑎∇𝑏ℎ
scalar

+∇𝑎(ℎ𝑏 + ℎ̃𝑏)
vector

+∇𝑏(ℎ𝑎 + ℎ̃𝑎)
vector

+ 2ℎ𝑎𝑏
tensor

]︀
. (29.22c)

The coordinate metric is tetrad gauge-invariant, but not coordinate gauge-invariant.

29.5.2 Tetrad-frame connections

The tetrad-frame connections Γ𝑘𝑚𝑛 are obtained from the usual formula (11.54). The non-vanishing unper-
turbed tetrad-frame connections are

0

Γ0𝑎𝑏 = −
�̇�

𝑎2
𝛿𝑎𝑏 . (29.23)

The perturbations
1

Γ𝑘𝑚𝑛 to the tetrad-frame connections are

1

Γ0𝑎0 =
1

𝑎

[︃
−∇𝑎

(︂
𝜓 −

(︁ 𝜕
𝜕𝜂

+
�̇�

𝑎

)︁
�̃�

)︂
scalar

+
(︁ 𝜕
𝜕𝜂

+
�̇�

𝑎

)︁
�̃�𝑎

vector

]︃
, (29.24a)

1

Γ0𝑎𝑏 =
1

𝑎

[︃
𝐹 𝛿𝑎𝑏
scalar

−∇𝑎∇𝑏(𝑤 − ℎ̇)
scalar

− 1
2 (∇𝑎𝑊𝑏 +∇𝑏𝑊𝑎)

vector

+∇𝑏�̃�𝑎
vector

+ ℎ̇𝑎𝑏
tensor

]︃
, (29.24b)

1

Γ𝑎𝑏0 =
1

𝑎

[︃
1
2 (∇𝑎𝑊𝑏 −∇𝑏𝑊𝑎)

vector

− 𝜕

𝜕𝜂
(𝜀𝑎𝑏𝑑∇𝑑ℎ̃

scalar

−∇𝑎ℎ̃𝑏 +∇𝑏ℎ̃𝑎
vector

)

]︃
, (29.24c)

1

Γ𝑎𝑏𝑐 =
1

𝑎

[︃
(𝛿𝑏𝑐∇𝑎 − 𝛿𝑎𝑐∇𝑏)

(︁
𝜑+

�̇�

𝑎
�̃�
)︁

scalar

− �̇�

𝑎
(𝛿𝑎𝑐𝛿𝑏𝑑 − 𝛿𝑏𝑐𝛿𝑎𝑑)�̃�𝑑

vector

− ∇c(𝜀𝑎𝑏𝑑∇𝑑ℎ̃
scalar

−∇𝑎ℎ̃𝑏 +∇𝑏ℎ̃𝑎
vector

) +∇𝑎ℎ𝑏𝑐 −∇𝑏ℎ𝑎𝑐
tensor

]︃
, (29.24d)

where 𝐹 is defined by

𝐹 ≡ �̇�

𝑎
𝜓 + �̇� . (29.25)
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Equations (29.24) show that the perturbations
1

Γ𝑘𝑙𝑚 of the tetrad-frame connections depend on all 12 of the
coordinate gauge-invariant potentials (29.15). The only non-coordinate-gauge-invariant dependence of the
tetrad-frame connections is on 𝐹 defined by equation (29.25). The quantity 𝐹 transforms under a coordinate
gauge transformation (26.9) as, from equations (29.14),

𝐹 → 𝐹 − 𝜖0
𝑑

𝑑𝜂

�̇�

𝑎2
. (29.26)

Thus perturbations
1

Γ0𝑎0,
1

Γ0𝑎𝑏 with 𝑎 ̸= 𝑏,
1

Γ𝑎𝑏0, and
1

Γ𝑎𝑏𝑐 are coordinate gauge-invariant, while the transfor-
mation (29.26) of 𝐹 implies that Γ0𝑎𝑏 with 𝑎 = 𝑏 transforms under an infinitesimal coordinate transforma-
tion (26.9) as

1

Γ0𝑎𝑏 →
1

Γ0𝑎𝑏 −
𝜖0
𝑎

𝑑

𝑑𝜂

�̇�

𝑎2
𝛿𝑎𝑏 . (29.27)

The transformation of the tetrad-frame connections under coordinate transformations can be checked
another way. According to the rule established in §26.7, the change in a quantity under an infinitesimal
coordinate gauge transformation equals minus its Lie derivative ℒ𝜖 with respect to the infinitesimal coor-
dinate shift 𝜖. Any quantity that vanishes in the unperturbed background has, to linear order, vanishing
Lie derivative, so is coordinate gauge-invariant. Thus the perturbations

1

Γ0𝑎0,
1

Γ𝑎𝑏0, and
1

Γ𝑎𝑏𝑐 are coordinate
gauge-invariant, confirming the previous conclusion. The only tetrad-frame connections that are finite in the
unperturbed background, and are therefore not coordinate gauge-invariant, are Γ0𝑎𝑏. Although tetrad-frame
connections are generically not tetrad-frame tensors, the unperturbed connection

0

Γ0𝑎𝑏 ≡ − (�̇�/𝑎2)𝛿𝑎𝑏, equa-
tion (29.23), is a tetrad-frame tensor, because the spatial unit matrix 𝛿𝑎𝑏 can be expressed as the tensor
𝑢𝑚𝑢𝑛+𝜂𝑚𝑛, where 𝑢𝑚 is the tetrad-frame 4-velocity of the Lorentz-transformed tetrad frame relative to the
rest tetrad frame. The tetrad-frame connections Γ0𝑎𝑏 transform as

1

Γ0𝑎𝑏 →
1

Γ0𝑎𝑏 − ℒ𝜖Γ0𝑎𝑏 , ℒ𝜖Γ0𝑎𝑏 = 𝜖𝑘𝜕𝑘Γ0𝑎𝑏 =
𝜖0
𝑎

𝑑

𝑑𝜂

�̇�

𝑎2
𝛿𝑎𝑏 , (29.28)

in agreement with the transformation (29.27).

29.5.3 Tetrad-frame Einstein tensor

The tetrad-frame Einstein tensor 𝐺𝑚𝑛 follows from the usual formulae (11.61), (11.78), and (11.80). The
unperturbed tetrad-frame Einstein tensor

0

𝐺𝑚𝑛 is (equations (29.29) differ from equations (10.29) because
the time coordinate here is the conformal time 𝜂, not the cosmic time 𝑡)

0

𝐺00 = 3
�̇�2

𝑎4
, (29.29a)

0

𝐺0𝑎 = 0 , (29.29b)

0

𝐺𝑎𝑏 =

(︂
− 2

�̈�

𝑎3
+
�̇�2

𝑎4

)︂
𝛿𝑎𝑏 . (29.29c)
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The perturbation
1

𝐺𝑚𝑛 of the tetrad-frame Einstein tensor is

1

𝐺00 =
1

𝑎2

[︃
− 6

�̇�

𝑎
𝐹 + 2∇2Φ

scalar

]︃
, (29.30a)

1

𝐺0𝑎 =
1

𝑎2

[︃
2∇𝑎

(︁
𝐹 +

(︁ �̈�
𝑎
− 2

�̇�2

𝑎2

)︁
�̃�
)︁

scalar

+
1

2
∇2𝑊𝑎 + 2

(︁ �̈�
𝑎
− 2

�̇�2

𝑎2

)︁
�̃�𝑎

vector

]︃
, (29.30b)

1

𝐺𝑎𝑏 =
1

𝑎2

[︃(︁
2
(︁ 𝜕
𝜕𝜂

+ 2
�̇�

𝑎

)︁
𝐹 + 2

(︁ �̈�
𝑎
− 2

�̇�2

𝑎2

)︁
𝜓
)︁
𝛿𝑎𝑏

scalar

− (∇𝑎∇𝑏 − 𝛿𝑎𝑏∇2)(Ψ− Φ)
scalar

+
1

2

(︁ 𝜕
𝜕𝜂

+ 2
�̇�

𝑎

)︁
(∇𝑎𝑊𝑏 +∇𝑏𝑊𝑎)

vector

−
(︁ 𝜕2
𝜕𝜂2

+ 2
�̇�

𝑎

𝜕

𝜕𝜂
−∇2

)︁
ℎ𝑎𝑏

tensor

]︃
. (29.30c)

According to the rule established in §26.7, the variation of the Einstein tensor under a coordinate transfor-
mation equals minus its Lie derivative,

1

𝐺𝑚𝑛 →
1

𝐺𝑚𝑛 − ℒ𝜖𝐺𝑚𝑛 . (29.31)

Consequently, as with the tetrad-frame connections, the tetrad-frame Einstein components that vanish in
the background, namely the off-diagonal components 𝐺𝑚𝑛 with 𝑚 ̸= 𝑛, are coordinate gauge-invariant, while
the components that are finite in the background, namely the diagonal components 𝐺𝑚𝑛 with 𝑚 = 𝑛, are
not coordinate gauge-invariant. The variations of the non-coordinate-gauge-invariant Einstein components
under an infinitesimal coordinate transformation (26.9) are

ℒ𝜖𝐺00 = 𝜖𝑘𝜕𝑘𝐺00 = −𝜖0
𝑎

𝑑

𝑑𝜂

3�̇�2

𝑎4
, (29.32a)

ℒ𝜖𝐺𝑎𝑏 = 𝜖𝑘𝜕𝑘𝐺𝑎𝑏 =
𝜖0
𝑎

𝑑

𝑑𝜂

(︂
2�̈�

𝑎3
− �̇�2

𝑎4

)︂
𝛿𝑎𝑏 . (29.32b)

It can be checked that the same transformations of the tetrad-frame Einstein components under a coordinate
transformation follow from the expressions (29.30) for the perturbed Einstein components and the coordinate
transformations (29.14) of the potentials.
The time-time and space-space perturbations

1

𝐺00 and
1

𝐺𝑎𝑏 are tetrad gauge-invariant, as follows from the
fact that these components depend only on symmetric combinations of the vierbein potentials. However, the
time-space perturbations

1

𝐺0𝑎 are not tetrad gauge-invariant, as is evident from the fact that equation (29.30b)
involves the non-tetrad-gauge-invariant perturbations �̃� and �̃�𝑎. Physically, under a tetrad boost by a velocity
𝑣 of linear order, the time-space components 𝐺0𝑎 change by first order 𝑣, but 𝐺00 and 𝐺𝑎𝑏 change only to
second order 𝑣2. Thus to linear order, only 𝐺0𝑎 changes under a tetrad boost. Note that 𝐺0𝑎 changes under
a tetrad boost (�̃� and �̃�𝑎), but not under a tetrad rotation (ℎ̃ and ℎ̃𝑎).
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29.6 Gauge choices

Since only the 6 tetrad and coordinate gauge-invariant potentialsΨ, Φ,𝑊𝑎, and ℎ𝑎𝑏 have physical significance,
it is legitimate to choose a particular gauge, a set of conditions on the non-gauge-invariant potentials,
arranged to simplify the equations, or to bring out some physical aspect.
This book for the most part uses the conformal Newtonian gauge, §29.8, which is constructed so as to

retain only physical perturbations.

29.7 ADM gauge choices

The ADM (3+1) formalism, Chapter 17, chooses the tetrad time axis 𝛾𝛾0 to be orthogonal to hypersurfaces
of constant time, 𝜂 = constant, equivalent to requiring that the tetrad time axis be orthogonal to each of
the spatial coordinate axes, 𝛾𝛾0 · 𝑒𝑎 = 0, equation (17.2). The ADM choice is equivalent to setting

�̃� = �̃�𝑎 = 0 . (29.33)

The ADM choice simplifies the tetrad-frame connections (29.24) and the time-space component 𝐺0𝑎 of the
tetrad-frame frame Einstein tensor, equation (29.30b). The ADM lapse 𝛼 and shift 𝛽𝛼 are

𝛼 = 𝑎(1 + 𝜓) , 𝛽𝛼 = ∇𝛼𝑤 + 𝑤𝛼 . (29.34)

Another gauge choice that significantly simplifies the tetrad connections (29.24), though does not affect
the Einstein tensor (29.30), is

ℎ̃ = ℎ̃𝑎 = 0 . (29.35)

If the wavevector 𝑘 is taken along the coordinate 𝑧-direction, then the gauge choice ℎ̃𝑎 = 0 is equivalent to
choosing the tetrad 3-axis (𝑧-axis) 𝛾𝛾3 to be orthogonal to the coordinate 𝑥 and 𝑦-axes, 𝛾𝛾3·𝑒𝑥 = 𝛾𝛾3·𝑒𝑦 = 0. The
gauge choice ℎ̃ = 0 is equivalent to rotating the tetrad axes about the 3-axis (𝑧-axis) so that 𝛾𝛾1 ·𝑒𝑦 = 𝛾𝛾2 ·𝑒𝑥.

29.8 Conformal Newtonian (Copernican) gauge

The most physical gauge is one in which the 6 perturbations retained coincide with the 6 coordinate and tetrad
gauge-invariant perturbations (29.16). This gauge is called conformal Newtonian gauge, analogously to
the Newtonian gauge of Minkowski space, §27.8. Because in conformal Newtonian gauge the perturbations are
precisely the physical perturbations, if the perturbations are physically weak (small), then the perturbations
in conformal Newtonian gauge will necessarily be small.
I think conformal Newtonian gauge should be called conformal Copernican gauge, for the same reason

that Newtonian gauge should be called Copernican gauge, §27.8. Dynamically, collapsed systems such as
galaxies or solar systems are highly nonlinear systems, but gravitationally they are weakly perturbed sys-
tems. Conformal Newtonian (Copernican) gauge keeps the coordinates aligned with the unperturbed FLRW
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comoving coordinates even in highly nonlinear systems. Conformal Newtonian gauge breaks down only in
gravitationally nonlinear systems such as black holes.
Conformal Newtonian (Copernican) gauge in an FLRW background makes the same gauge choices as

Newtonian gauge in a Minkowski background, equation (27.58),

𝑤 = �̃� = �̃�𝑎 = ℎ = ℎ̃ = ℎ𝑎 = ℎ̃𝑎 = 0 , (29.36)

so that the retained perturbations are the 6 coordinate and tetrad gauge-invariant perturbations (29.16),

Ψ
scalar

= 𝜓 , (29.37a)

Φ
scalar

= 𝜑 , (29.37b)

𝑊𝑎
vector

= 𝑤𝑎 , (29.37c)

ℎ𝑎𝑏
tensor

. (29.37d)

In conformal Newtonian gauge, the quantity 𝐹 defined by equation (29.25) becomes the coordinate and
tetrad gauge-invariant quantity

𝐹 ≡ �̇�

𝑎
Ψ+ Φ̇ . (29.38)

The conformal Newtonian metric is

𝑑𝑠2 = 𝑎2
{︀
− (1 + 2Ψ) 𝑑𝜂2 − 2𝑊𝑎 𝑑𝜂 𝑑𝑥

𝑎 +
[︀
𝛿𝑎𝑏(1− 2Φ)− 2ℎ𝑎𝑏

]︀
𝑑𝑥𝑎𝑑𝑥𝑏

}︀
. (29.39)

Various tetrad-frame connections Γ𝑘𝑚𝑛, equations (29.24), define the accelation acceleration 𝐾𝑎 ≡ Γ𝑎00
and extrinsic curvature 𝐾𝑎𝑏 ≡ Γ𝑎0𝑏 = −Γ0𝑎𝑏. The trace, antisymmetric, and traceless symmetric parts of the
extrinsic curvature define the expansion, vorticity, and shear, equations (18.16), which play a key role in the
Raychaudhuri equations, §18.2. Also relevant is the precession Γ𝑎𝑏0 = −Γ𝑏𝑎0 (not to be confused with the
vorticity). In conformal Newtonian gauge, the acceleration, expansion, vorticity, shear, and precession are

acceleration 𝜅𝑎 ≡ Γ𝑎00 =
1

𝑎
∇𝑎Ψ
scalar

, (29.40a)

expansion 𝜗 ≡ −Γ𝑎0𝑎 =
1

𝑎

(︁ �̇�
𝑎
− 𝐹

scalar

)︁
, (29.40b)

vorticity 𝜛𝑎𝑏 ≡ −Γ0[𝑎𝑏] = 0 , (29.40c)

shear 𝜎𝑎𝑏 ≡ −Γ0(𝑎𝑏) =
1

2𝑎

(︀
∇𝑎𝑊𝑏 +∇𝑏𝑊𝑎

vector

)︀
, (29.40d)

precession ≡ Γ𝑎𝑏0 =
1

2𝑎

(︀
∇𝑎𝑊𝑏 −∇𝑏𝑊𝑎

vector

)︀
. (29.40e)
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29.8.1 Conformal Newtonian gauge: energy-momentum conservation

The unperturbed components
0

𝑇𝑚𝑛 of the tetrad-frame energy-momentum comprise the energy density 𝜌(𝜂)
and isotropic pressure 𝑝(𝜂) of the FLRW background,

0

𝑇 00 ≡ 𝜌 , (29.41a)
0

𝑇 0𝑎 ≡ 0 , (29.41b)
0

𝑇 𝑎𝑏 ≡ 𝑝 𝛿𝑎𝑏 . (29.41c)

The perturbed components 𝑇𝑚𝑛 of the tetrad-frame energy-momentum are the energy density 𝜌, the energy
flux 𝑓𝑎, and the pressure 𝑝𝑎𝑏,

𝑇 00 ≡ 𝜌 = 𝜌+ 𝛿𝜌 , (29.42a)

𝑇 0𝑎 ≡ 𝑓𝑎 , (29.42b)

𝑇 𝑎𝑏 ≡ 𝑝𝑎𝑏 = 𝑝 𝛿𝑎𝑏 + 𝛿𝑝𝑎𝑏 . (29.42c)

In perturbation theory, the perturbations 𝛿𝜌, 𝑓𝑎, and 𝛿𝑝𝑎𝑏 are treated as of linear order. The trace of the
spatial energy-momentum defines the isotropic pressure 𝑝,

1
3𝑇

𝑎
𝑎 = 𝑝 = 𝑝+ 𝛿𝑝 . (29.43)

In conformal Newtonian gauge, the equations of conservation of energy and momentum are to linear order

𝐷𝑚𝑇
𝑚0 =

1−Ψ

𝑎

[︂
𝜕𝜌

𝜕𝜂
+∇𝑎𝑓𝑎 + 3(𝜌+ 𝑝)

(︁ �̇�
𝑎
− Φ̇

)︁]︂
= 0 , (29.44a)

𝐷𝑚𝑇
𝑚𝑎 =

1

𝑎

[︂
𝜕𝑓𝑎
𝜕𝜂

+ 4
�̇�

𝑎
𝑓𝑎 +∇𝑏𝑝𝑎𝑏 + (𝜌+ 𝑝)∇𝑎Ψ

]︂
= 0 . (29.44b)

Notice that the energy-momentum conservation equations (29.44) involve only the scalar potentials Ψ and
Φ, not the vector or tensor potentials 𝑊𝑎 or ℎ𝑎𝑏. The energy equation (29.44a) has only a scalar component,
while the momentum equation (29.44b) has both scalar and vector components, Exercise 29.3. The energy
conservation equation (29.44a) has an unperturbed part,

𝐷𝑚

0

𝑇𝑚0 =
1

𝑎

[︂
𝜕𝜌

𝜕𝜂
+ 3(𝜌+ 𝑝)

�̇�

𝑎

]︂
= 0 . (29.45)

Any fluid component that conserves energy-momentum satisfies equations similar to (29.44). For a fluid
component with equation of state 𝑝/𝜌 = 𝑤 = constant, the unperturbed energy conservation equation (29.45)
recovers the usual result that 𝜌 ∝ 𝑎−3(1+𝑤).

Concept question 29.3. Scalar, vector, tensor components of energy-momentum conservation.

What are the scalar, vector, and tensor components of the energy-momentum conservation equations (29.44)?
Answer. The energy conservation equation (29.44a) contains only scalar components. The momentum con-
servation equation (29.44b) contains scalar and vector components, but no tensor component. The scalar
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component of the pressure is the sum of an isotropic part 𝑝 𝛿𝑎𝑏, and a traceless quadrupole part which is
discussed in §32.6. The vector component of the pressure takes the form

𝑝𝑎𝑏
vector

= ∇𝑎𝑝⊥,𝑏 +∇𝑏𝑝⊥,𝑎 , (29.46)

where 𝑝⊥,𝑎 is transverse, ∇𝑎𝑝⊥,𝑎 = 0. The vector part of the momentum conservation equation (29.44b) is

𝐷𝑚𝑇
𝑚𝑎

vector
=

1

𝑎

(︂
𝜕𝑓⊥,𝑎
𝜕𝜂

+ 4
�̇�

𝑎
𝑓⊥,𝑎 +∇2𝑝⊥,𝑎

)︂
= 0 . (29.47)

If the vector pressure is negligible, 𝑝⊥,𝑎 = 0, then the vector momentum conservation equation (29.47) implies
that

𝑓⊥,𝑎 ∝ 𝑎−4 . (29.48)

The tensor component 𝑝𝑇𝑎𝑏 of the pressure is traceless and transverse. Being traceless, 𝑝𝑇𝑎𝑏 makes no contri-
bution to the isotropic pressure 𝑝, and being transverse, it satisfies ∇𝑏𝑝𝑇𝑎𝑏 = 0. Consequently the energy-
momentum conservation equations (29.44) contain no tensor component.

29.8.2 Conformal Newtonian gauge: scalar Einstein equations

In conformal Newtonian gauge, the scalar perturbations of the Einstein equations are, from the expres-
sions (29.30) for the Einstein tensor, the energy density, energy flux, monopole pressure, and quadrupole
pressure equations,

− 3
�̇�

𝑎
𝐹 − 𝑘2Φ = 4𝜋𝐺𝑎2

1

𝑇 00 , (29.49a)

𝑖𝑘𝐹 = 4𝜋𝐺𝑎2 𝑘𝑎 𝑇
0𝑎 , (29.49b)

�̇� + 2
�̇�

𝑎
𝐹 +

(︁ �̈�
𝑎
− 2

�̇�2

𝑎2

)︁
Ψ− 𝑘2

3
(Ψ− Φ) =

4

3
𝐺𝜋𝑎2 𝛿𝑎𝑏

1

𝑇 𝑎𝑏 , (29.49c)

𝑘2(Ψ− Φ) = 8𝜋𝐺𝑎2
(︁

3
2 𝑘𝑎𝑘𝑏 −

1
2 𝛿𝑎𝑏

)︁
𝑇 𝑎𝑏 . (29.49d)

The perturbation overscript 1 has been omitted from the right hand sides of equations (29.49b) and (29.49d)
since the unperturbed energy-momentum vanishes for these components. All 4 of the scalar Einstein equa-
tions (29.49) are expressed in terms of gauge-invariant variables, and are therefore fully gauge-invariant.
If the energy-momentum tensors of the various matter components are arranged so as to conserve overall

energy-momentum, as they should, then 2 of the 4 equations (29.49a)–(29.49d) are redundant, since they
serve simply to enforce conservation of energy and scalar momentum. Usually the 1st equation, the energy
equation (29.49a), and the 4th equation, the quadrupole pressure equation (29.49d), are most convenient
to retain. But sometimes the 2nd equation, the scalar momentum equation (29.49b), is more convenient in
place of the energy equation (29.49a).
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29.8.3 Conformal Newtonian gauge: vector Einstein equations

The vector (spin-1) Einstein equations in conformal Newtonian gauge are, from the expressions (29.30) for
the Einstein tensor,

∇2𝑊𝑎 = −16𝜋𝐺𝑎2 𝑇 0𝑎

vector
, (29.50a)(︁ 𝜕

𝜕𝜂
+ 2

�̇�

𝑎

)︁
(∇𝑎𝑊𝑏 +∇𝑏𝑊𝑎) = 16𝜋𝐺𝑎2 𝑇 𝑎𝑏

vector
. (29.50b)

If the overall matter energy-momentum is conserved, as it must be, then either equation (29.50a) or equa-
tion (29.50b) can be discarded as redundant, since the two equations together serve to enforce conservation
of (the vector components of) overall energy-momentum.
In the absence of a vector source of pressure, 𝑇𝑎𝑏

vector
= 𝑝𝑎𝑏

vector

= 0, the Einstein equation (29.50b) ensures

that the vector perturbation redshifts as 𝑎−2,

𝑊𝑎 ∝ 𝑎−2 if 𝑇 𝑎𝑏
vector

= 0 . (29.51)

The same conclusion follows from the other vector Einstein equation (29.50a). If the vector pressure vanishes,
then the vector momentum conservation equation (29.47) ensures that the vector energy flux 𝑇 0𝑎

vector
= 𝑓⊥,𝑎

redshifts as 𝑓⊥,𝑎 ∝ 𝑎−4, which when plugged into the Einstein equation (29.50a) implies 𝑊𝑎 ∝ 𝑎−2.
In practice, collisions in the early post-inflation Universe tend to isotropize particle distributions, driving

not only the pressure but also the bulk velocity to zero, as discussed in more detail in §35.11. If the bulk
velocity vanishes, so 𝑓𝑎 = 0, then the Einstein equation (29.50a) forces the vector potential to vanish,𝑊𝑎 = 0.
The tendency of vector perturbations to redshift away has the consequence that vector perturbations are

usually negligible in standard cosmological models.

29.8.4 Conformal Newtonian gauge: tensor Einstein equations

The tensor (spin-2) Einstein equations in conformal Newtonian gauge are, from the expressions (29.30) for
the Einstein tensor, (︁ 𝜕2

𝜕𝜂2
+ 2

�̇�

𝑎

𝜕

𝜕𝜂
−∇2

)︁
ℎ𝑎𝑏 = −8𝜋𝐺𝑎2 𝑇 𝑎𝑏

tensor
. (29.52)

Whereas vector perturbations necessarily redshift as 𝑊𝑎 ∝ 𝑎−2 in the absence of a source, tensor pertur-
bations ℎ𝑎𝑏 at superhorizon wavelengths 𝑘𝜂 ≪ 1 have a solution where they are constant,

ℎ𝑎𝑏 = constant for 𝑘𝜂 ≪ 1 if 𝑇 𝑎𝑏
tensor

= 0 . (29.53)

Inflation generates tensor modes, which describe gravitational waves. In contrast to vector modes, long
wavelength gravitational waves generated during inflation can survive to the present time. Gravitational
waves leave an observable imprint in the 𝐵-mode polarization of the cosmic microwave background. A
detection of 𝐵-mode polarization was claimed by by the BICEP2 collaboration (Ade et al., 2014), but the
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signal may have been from aligned galactic dust rather primordial (Ade et al., 2015). The cosmic gravitational
wave background could potentially be observed directly in the future.

Exercise 29.4. Evolution of tensor perturbations (gravitational waves) in FLRW spacetimes.

Show that equation (29.52) can be rewritten in Fourier space(︁ 𝜕2
𝜕𝜂2
− �̈�

𝑎
+ 𝑘2

)︁
(𝑎 ℎ𝑎𝑏) = −8𝜋𝐺𝑎3 𝑇 𝑎𝑏

tensor
. (29.54)

What is the solution of equation (29.54) if there is no tensor source, 𝑇 𝑎𝑏
tensor

= 0, and the background energy-

momentum is dominated by a species with equation of state 𝑝/𝜌 = 𝑤 = constant? Plot the solution in the
radiation-dominated regime, subject to the condition that ℎ𝑎𝑏 is initially finite.
Solution. From equation (10.83) it follows that, for background energy-momentum dominated by a single
species with 𝑝/𝜌 = 𝑤 = constant,

�̇�

𝑎
=

2

(1 + 3𝑤)𝜂
,

�̈�

𝑎
=

2(1− 3𝑤)

(1 + 3𝑤)2𝜂2
. (29.55)

The tensor evolution equation (29.54) in the absence of sources becomes[︂
𝜕2

𝜕𝜂2
− 2(1− 3𝑤)

(1 + 3𝑤)2𝜂2
+ 𝑘2

]︂
(𝑎 ℎ𝑎𝑏) = 0 . (29.56)

The solution of equation (29.56) is a linear combination of Bessel functions 𝐽±𝑛 (for 𝑤 < −1/3, replace 𝜂
with its magnitude |𝜂|),

ℎ𝑎𝑏 = (𝑘𝜂)−𝑛 [𝐴+𝐽𝑛(𝑘𝜂) +𝐴−𝐽−𝑛(𝑘𝜂)] (29.57)

of argument

𝑛 =
3(1− 𝑤)
2(1 + 3𝑤)

. (29.58)

Special cases are

𝑛 =

⎧⎪⎨⎪⎩
1
2 𝑤 = 1

3 ,
3
2 𝑤 = 0 ,

− 3
2 𝑤 = −1 ,

(29.59)

in which case the solution reduces to spherical Bessel functions. The solution that is finite at 𝜂 → 0 is, for
𝑛 > 0, the 𝐴+ component. Normalized to 1 at 𝜂 = 0, the finite solution is

ℎ𝑎𝑏 = Γ(1 + 𝑛)

(︂
𝑘𝜂

2

)︂−𝑛
𝐽𝑛(𝑘𝜂)→

⎧⎪⎨⎪⎩
1 𝑘𝜂 ≪ 1 ,

Γ(1 + 𝑛)√
𝜋

(︂
𝑘𝜂

2

)︂−(𝑛+1/2)

cos
[︀
𝑘𝜂 − (𝑛+ 1

2 )𝜋/2
]︀

𝑘𝜂 ≫ 1 .
(29.60)

Since

𝜂𝑛+1/2 ∝ 𝑎 , (29.61)
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Figure 29.1 Evolution of the tensor potential ℎ𝑎𝑏 in the radiation-dominated regime, where 𝑤 = 1/3, 𝑛 = 1/2, and

ℎ𝑎𝑏 ∝ sin(𝑘𝜂)/(𝑘𝜂).

the solution goes as ℎ𝑎𝑏 ∼ 𝑎−1 cos(𝑘𝜂 + constant) at large 𝑘𝜂. Physically, the gravitational wave amplitude
ℎ𝑎𝑏 is constant well outside the horizon, 𝑘𝜂 ≪ 1, while it redshifts as 1/𝑎 well inside the horizon, 𝑘𝜂 ≫ 1.
Figure 29.1 illustrates the evolution of the tensor potential ℎ𝑎𝑏 in the radiation-dominated regime.

29.9 Conformal synchronous gauge

One gauge that remains in common use in cosmology, but is not used here, is conformal synchronous gauge,
discussed in the case of Minkowski background space in §27.9. The cosmological synchronous gauge choices
are the same as for the Minkowski background, equations (27.65) and (27.66):

𝜓 = 𝑤 = �̃� = 𝑤𝑎 = �̃�𝑎 = ℎ̃ = ℎ̃𝑎 = 0 . (29.62)

The gauge-invariant perturbations (29.16) in synchronous gauge are

Ψ
scalar

=
(︁ 𝜕
𝜕𝜂

+
�̇�

𝑎

)︁
ℎ̇ , (29.63a)

Φ
scalar

= 𝜑− �̇�

𝑎
ℎ̇ , (29.63b)

𝑊𝑎
vector

= −ℎ̇𝑎 , (29.63c)

ℎ𝑎𝑏
tensor

. (29.63d)

Like synchronous gauge, §27.9, conformal synchronous gauge chooses a coordinate system and tetrad that
is attached to the locally inertial frames of freely falling observers. Thus synchronous gauge follows the
frame of cold collisionless matter (“dust”). To the extent that non-baryonic cold dark matter has always been
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cold and collisionless (not quite true, but an excellent approximation), synchronous frame is the frame of
non-baryonic cold dark matter.
Conformal synchronous gauge fails at non-linear scales where collisionless matter has turned around and

collapsed into galaxies and galaxy clusters. This contrasts with conformal Newtonian gauge, which holds as
long as gravitational perturbations remain weak, including in highly non-linear collapsed systems such as
galaxies and solar systems.

Concept question 29.5. What frame does the CMB define? Answer. The CMB frame is the frame
where the CMB temperature is constant, and CMB photons have zero bulk velocity. That statement de-
pends on the scale (in Fourier space, the wavenumber 𝑘) over which the CMB temperature or velocity is
averaged. For adiabatic fluctuations at superhorizon scales, all particle species start with essentially the same
overdensity and velocity. The initial frame that comoves with particles is, by construction, the synchronous
frame. Once a scale comes inside the horizon, different components that are not kept coupled by collisions
(non-baryonic dark matter, photons, neutrinos) evolve differently, as illustrated for example by Figure 33.1.
At scales well inside the horizon, the bulk velocity of free-streaming relativistic particles in conformal New-
tonian gauge tends to zero in oscillatory fashion, again as illustrated by Figure 33.1. Thus at subhorizon
scales conformal Newtonian gauge provides a good approximation to the frame of CMB photons.

Concept question 29.6. Are congruences of comoving observers in cosmology hypersurface-

orthogonal? Comoving observers are defined to be those at rest in the tetrad frame, 𝑢𝑚 = {1, 0, 0, 0}.
The worldlines of comoving observers define a timelike congruence. Are congruences of comoving observers
hypersurface-orthogonal, §18.6? Answer. Common cosmological gauges, including conformal Newtonian or
conformal synchronous, impose the ADM gauge condition that the time axis 𝛾𝛾0 is orthogonal to hypersurfaces
of constant time 𝑡, §29.7. This ADM condition (coupled with the general relativistic assumption of vanishing
torsion) implies that vorticity vanishes, which is one of the two conditions for a timelike congruence to be
hypersurface-orthogonal, §18.6. The other condition for a timelike congruence to be hypersurface-orthogonal
is that the congruence be geodesic; this is true in the specific case of conformal synchronous gauge, but not
for other gauges, such as conformal Newtonian gauge.



30

Cosmological perturbations: a simplest set
of assumptions

The purpose of this Chapter is to set forward the simplest approximate model of the development of pertur-
bations to matter and radiation in our Universe.

The model consists of two non-interacting perfect fluids, non-baryonic cold dark matter with a pressureless
equation of state 𝑝/𝜌 = 0, and radiation with a relativistic equation of state 𝑝/𝜌 = 1/3. The model neglects
baryons, since their energy density is sub-dominant, being Ωb/Ωc ≈ 1/5 of the dark matter density. The
model lumps neutrinos with photons, neutrinos being relativistic with energy density about two thirds that

of photons, 𝜌𝜈/𝜌𝛾 = 6 7
8

(︀
4
11

)︀4/3
/2 ≈ 0.68. It would be wrong to lump baryonic perturbations with those of

non-baryonic dark matter, since prior to recombination electron-photon scattering keeps the baryonic fluid
tightly coupled to photons, preventing the baryons from clustering gravitationally like the non-baryonic cold
dark matter. In the simple approximation, recombination occurs abruptly at a redshift 1+𝑧rec ≈ 1100. After
recombination, baryons can cluster gravitationally, forming galaxies, stars, and eventually people.

Well after recombination, a third energy component, dark energy, becomes important. It too can be treated
as a perfect fluid, with equation of state 𝑝/𝜌 = −1.

The perfect fluid approximation keeps only the lowest momentum moments of the particle distributions,
the energy density and the bulk velocity, along with an isotropic pressure 𝑝 that is a given function of density 𝜌
in the rest frame of the fluid. The evolution of a perfect fluid is determined entirely by the energy-momentum
conservation equations that the fluid satisfies.

The model includes only scalar modes. The quadrupole pressure vanishes for perfect fluids, so the two
scalar potentials are equal, Ψ = Φ, equation (29.49d). However, the two scalar potentials will often be kept
separate in this Chapter, to facilitate later reference. Tensor modes (gravitational waves) are neglected, since
their energy-momentum is sub-dominant. Tensor modes leave a distinctive imprint on the polarization of the
CMB, which is addressed in Chapter 36.
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30.1 Perturbed FLRW line-element

The perturbed FLRW line-element in conformal Newtonian gauge, equation (29.39), including only scalar
perturbations, is

𝑑𝑠2 = 𝑎2
[︀
−(1 + 2Ψ)𝑑𝜂2 + 𝛿𝑎𝑏(1− 2Φ)𝑑𝑥𝑎𝑑𝑥𝑏

]︀
, (30.1)

where 𝑎(𝜂) is the cosmic scale factor, a function only of conformal time 𝜂.

30.2 Energy-momenta of perfect fluids

In the simplest approximation, each component of the cosmological energy-momentum, including matter,
radiation, and dark energy, can be treated as a perfect fluid, that is, a fluid whose pressure is isotropic in
the rest frame of the fluid. The tetrad-frame energy-momentum tensor of a perfect fluid with proper density
𝜌 and isotropic pressure 𝑝 in its own rest frame, moving with bulk 4-velocity 𝑢𝑚 ≡ 𝑑𝑥𝑚/𝑑𝜏 relative to the
conformal Newtonian tetrad frame, is

𝑇𝑚𝑛 = (𝜌+ 𝑝)𝑢𝑚𝑢𝑛 + 𝑝 𝜂𝑚𝑛 . (30.2)

It is a good approximation to assume further that the equation of state of the fluid is such that its proper
pressure 𝑝 is some prescribed function of its proper density 𝜌 (such a fluid is called barotropic),

𝑝 = 𝑝(𝜌) . (30.3)

Define 𝑤 to be the derivative

𝑤 ≡ 𝑑𝑝

𝑑𝜌
, (30.4)

which proves to be (at least for 𝑤 ≥ 0) the square of the sound speed of the fluid in units of the speed of
light. In the simple model considered in this Chapter, each of the fluids considered, matter, radiation, and
dark energy, has constant 𝑤, with 𝑤 = 0, 1

3 , and −1 respectively. Chapter 32 considers the more realistic
situation of a photon-baryon fluid with non-constant 𝑤.
Each fluid moves with non-relativistic bulk velocity, including radiation, which is almost isotropic, and

therefore has a small bulk velocity even though individual particles of radiation move at the speed of light.
The bulk tetrad-frame 4-velocity 𝑢𝑚 of the fluid is thus, to linear order

𝑢𝑚 = {1, v𝑎} , (30.5)

where v𝑎 is its non-relativistic spatial bulk 3-velocity (the spatial tetrad metric is Euclidean, so v
𝑎 = v𝑎).

The bulk velocity v𝑎 is to be considered as of linear order, so its square vanishes to linear order.
The proper fluid density 𝜌 can be written as a sum of an unperturbed density 𝜌 and a linear order

fluctuation 𝛿𝜌,

𝜌 = 𝜌+ 𝛿𝜌 . (30.6)
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It proves advantageous, because it simplifies the resulting perturbation equations (30.13), to characterize the
density fluctuation 𝛿𝜌 in terms of a fluctuation 𝛿

𝛿𝜌 = (𝜌+ 𝑝)𝛿 , (30.7)

where 𝑝 = 𝑝(𝜌) in the unperturbed pressure. As you will discover in Exercise 30.1, the fluctuation 𝛿 can be
interpreted physically as the entropy fluctuation,

𝛿 ≡ 𝛿𝜌

𝜌+ 𝑝
=
𝛿𝑠

𝑠
. (30.8)

For matter, where 𝑝 = 0, the entropy fluctuation coincides with the density fluctuation, 𝛿 = 𝛿𝜌/𝜌. For
dark energy, where 𝑝 = −𝜌, the density fluctuation is necessarily zero, 𝛿𝜌 = 0, reflecting the fact that
vacuum energy cannot cluster. To linear order in the bulk velocity v𝑎, the tetrad-frame energy-momentum
tensor (30.2) of the perfect fluid is then

𝑇 00 ≡ 𝜌 = 𝜌+ 𝛿𝜌 , (30.9a)

𝑇 0𝑎 ≡ 𝑓𝑎 = (𝜌+ 𝑝)v𝑎 , (30.9b)

𝑇 𝑎𝑏 ≡ 𝑝 𝛿𝑎𝑏 = (𝑝+ 𝛿𝑝) 𝛿𝑎𝑏 , (30.9c)

where the pressure fluctuation 𝛿𝑝 is, from equation (30.4),

𝛿𝑝 = 𝑤 𝛿𝜌 . (30.10)

If a species does not exchange energy or momentum with other species, then it satisfies the energy-
momentum conservation equations (29.44) in conformal Newtonian gauge. Subtracting appropriate amounts
of the unperturbed energy conservation equation (29.45) from the perturbed energy-momentum conservation
equations (29.44) yields equations for the entropy fluctuation 𝛿 and bulk velocity v𝑎 of the fluid (recall that
overdot denotes partial differentiation with respect to conformal time 𝜂, equation (29.5), so for example
�̇� = 𝜕𝛿/𝜕𝜂),

�̇� +∇𝑎v𝑎 = 3Φ̇ , (30.11a)

v̇𝑎 + (1− 3𝑤)
�̇�

𝑎
v𝑎 + 𝑤∇𝑎𝛿 = −∇𝑎Ψ . (30.11b)

Physically, equation (30.11a) represents conservation of entropy, while equation (30.11b) represents conser-
vation of momentum.
Now decompose the bulk 3-velocity v𝑎 into its scalar v and vector v⊥,𝑎 parts. Up to this point, the scalar

part of a vector has been taken to be the gradient of a potential. But here it is advantageous to absorb a
factor of 𝑘 into the definition of the scalar part v of the velocity, so that instead of v𝑎 = −𝑖𝑘𝑎v + v⊥,𝑎 in
Fourier space, the velocity is given in Fourier space by

v𝑎 = −𝑖𝑘𝑎v+ v⊥,𝑎 . (30.12)

The advantage of this choice is that v is dimensionless, as are 𝛿 and Ψ and Φ. Note that the comoving
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wavenumber 𝑘 (a constant for any given mode) has units of 𝜂−1. The scalar parts of the perturbation
equations (30.11) are then

�̇� − 𝑘v = 3Φ̇ , (30.13a)

v̇+ (1− 3𝑤)
�̇�

𝑎
v+ 𝑤𝑘𝛿 = −𝑘Ψ . (30.13b)

The vector part of equations (30.11) is considered in Exercise 30.3.
Combining the two equations (30.13) for the scalar fluctuation 𝛿 and scalar bulk velocity v yields a second-

order differential equation for 𝛿 − 3Φ,[︂
𝑑2

𝑑𝜂2
+ (1− 3𝑤)

�̇�

𝑎

𝑑

𝑑𝜂
+ 𝑤𝑘2

]︂
(𝛿 − 3Φ) = −𝑘2(Ψ + 3𝑤Φ) . (30.14)

Equation (30.14) holds for any perfect fluid that conserves energy-momentum and that has equation of
state (30.4), with 𝑤 not necessarily constant. For positive 𝑤, equation (30.14) is a wave equation for a
damped, forced oscillator with sound speed

√
𝑤. The resulting generic behaviour for the particular cases of

matter (𝑤 = 0) and radiation (𝑤 = 1
3 ) is considered in §30.5 and §30.6 below.

A more careful treatment, deferred to Chapter 33, accounts for the complete momentum distribution of
radiation by expanding the temperature perturbation Θ ≡ 𝛿𝑇/𝑇 in multipole moments, equation (33.47).
The radiation fluctuation 𝛿r and scalar bulk velocity vr are related to the first two multipole moments of the
temperature perturbation, the monopole Θ0 and the dipole Θ1, by

𝛿r = 3Θ0 , (30.15a)

vr = 3Θ1 . (30.15b)

The factor of 3 arises because the unperturbed radiation distribution is in thermodynamic equilibrium, for
which the entropy density is 𝑠 ∝ 𝑇 3, so 𝛿r = 3 𝛿𝑇/𝑇 .

Exercise 30.1. Entropy perturbation. The purpose of this exercise is to discover that the fluctuation
𝛿 defined by equation (30.6) can be interpreted as the entropy fluctuation. According to the first law of
thermodynamics, the entropy density 𝑠 of a fluid of energy density 𝜌, pressure 𝑝, and temperature 𝑇 in a
volume 𝑉 satisfies

𝑑(𝜌𝑉 ) + 𝑝𝑑𝑉 = 𝑇𝑑(𝑠𝑉 ) . (30.16)

If the fluid is ideal, so that 𝜌, 𝑝, 𝑇 , and 𝑠 are independent of volume 𝑉 , then integrating the first law (30.16)
implies that

𝜌𝑉 + 𝑝𝑉 = 𝑇𝑠𝑉 . (30.17)

This implies that the entropy density 𝑠 is related to the other variables by

𝑠 =
𝜌+ 𝑝

𝑇
. (30.18)
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Show that, for a perfect, barotropic fluid (one in which pressure is a prescribed function 𝑝(𝜌) of density 𝜌),
small variations of the density and entropy are related by

𝛿𝜌

𝜌+ 𝑝
=
𝛿𝑠

𝑠
, (30.19)

confirming equation (30.8). [Hint: Do not confuse what is being asked here with adiabatic expansion. The
result (30.19) is a property of the fluid, independent of whether the fluid is changing adiabatically. For
adiabatic expansion, the fluid satisfies the additional condition 𝑠𝑉 = constant.]
Solution. Use equation (30.18) to eliminate the temperature 𝑇 from the first law (30.16), obtaining

𝑑𝜌

𝜌+ 𝑝
=
𝑑𝑠

𝑠
. (30.20)

In the situation being considered, where pressure is a prescribed function 𝑝(𝜌) of density, equation (30.20)
implies equation (30.19).

Concept question 30.2. Entropy perturbation when number is conserved. The derivation of the
entropy perturbation (30.19) in Exercise 30.1 was based on the first law of thermodynamics (30.16) without
any term 𝜇𝑑𝑁 representing number conservation. Should not such a term be included? Answer. This
question was addressed in Exercise 10.14. Each chemical potential 𝜇 is associated with a conserved species.
Terms associated with number conservation can be dropped provided that the fluid contains all particles
belonging to a conserved species. For example, electrons and positrons can annihilate with each other, so
the numbers 𝑁𝑒 and 𝑁𝑒 of electrons 𝑒 and positrons 𝑒 in a comoving volume are not conserved, but their
sum 𝑁𝑒 +𝑁𝑒 is conserved. Electrons and positrons in thermodynamic equilibrium satisfy 𝜇𝑒 = −𝜇𝑒, so the
terms representing number conservation in the combined electron-positron fluid vanish,

𝜇𝑒 𝑑𝑁𝑒 + 𝜇𝑒 𝑑𝑁𝑒 = 𝜇𝑒 𝑑(𝑁𝑒 −𝑁𝑒) = 0 . (30.21)

Thus the entropy perturbation equation (30.19) does not hold individually for electrons and positrons, but
it does hold for the combined electron-positron fluid.

Exercise 30.3. Vector fluctuation. What is the vector part of the perturbation equations (30.11)? Solve
it.
Solution. The vector part of equations (30.11) is

v̇⊥,𝑎 + (1− 3𝑤)
�̇�

𝑎
v⊥,𝑎 = 0 . (30.22)

If 𝑤 is constant, the solution is

v⊥,𝑎 ∝ 𝑎−(1−3𝑤) . (30.23)

Together with 𝜌 ∝ 𝑎−3(1+𝑤), equation (30.23) implies

𝑓⊥,𝑎 ≡ (𝜌+ 𝑝)v⊥,𝑎 ∝ 𝑎−4 , (30.24)
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which agrees with the vector component of the momentum conservation equation (29.44b) for any combina-
tion of perfect fluids (which have vanishing vector component 𝑝⊥,𝑎𝑏 of pressure).

30.3 Entropy conservation at superhorizon scales

At superhorizon scales, where 𝑘𝜂 ≪ 1, the bulk velocity term in equation (30.13a) for the entropy fluctuation
𝛿 is negligible, and the equation reduces to

�̇� = 3Φ̇ . (30.25)

It is conventional to define a quantity 𝜁 by

𝜁 ≡ 1
3𝛿 − Φ , (30.26)

which has the property that it is constant at large scales in any fluid component that does not exchange
energy with other components,

𝜁 = constant if 𝑘𝜂 ≪ 1 . (30.27)

Since both 𝛿 and Φ are gauge-invariant (all quantities in Newtonian gauge being gauge-invariant), so also
is 𝜁.
Physically, the constancy of 𝜁 at superhorizon scales is associated with a conservation law that has the

appearance of a law of conservation of entropy. Recall that in a FLRW universe, the Einstein equations
enforce a conservation law (10.33) that looks like the first law of thermodynamics with conserved entropy.
The constancy of 𝜁 is a generalization of this law to superhorizon perturbations of a FLRW universe. An
observer cannot distinguish a superhorizon perturbation from a strictly FLRW universe (such perturbations
can be measured only by later observers after the superhorizon perturbation has entered their horizon).
Specifically, an observer inside a horizon patch can perform a global transformation (29.18) of the cosmic
scale factor 𝑎 (and time coordinate 𝜂) so as to set the large-scale Φ (and Ψ) to zero in their patch. Then
equation (30.25) becomes �̇� = 0, expressing the first law of thermodynamics (10.33) in the FLRW background
of the patch.
The −3Φ part of the conserved fluctuation 𝛿−3Φ is associated with the transformation between comoving

and proper volumes, and the fact that the proper spatial volume element is 𝑎3(1−3Φ)𝑑3𝑥123 (which remains
true when not only scalar but also vector and tensor fluctuations are included).

Exercise 30.4. Relation between entropy and 𝜁. Assume that the proper pressure 𝑝(𝜌) is a definite
function of proper density 𝜌. Define entropy 𝑠 per unit volume by (see Exercise 30.1)

ln 𝑠 ≡
∫︁

𝑑𝜌

𝜌+ 𝑝
. (30.28)

Confirm that, if the bulk peculiar velocity can be neglected so that the energy flux is zero, 𝑓𝑎 = 0, as is true
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at superhorizon scales, then the energy conservation equation (29.44) in Newtonian gauge reduces to

𝑑 ln 𝑠+ 3 𝑑 ln
[︀
𝑎(1− Φ)

]︀
= 0 , (30.29)

whose unperturbed part is

𝑑 ln 𝑠+ 3 𝑑 ln 𝑎 = 0 . (30.30)

Conclude that energy conservation implies the conservation of 𝜁 defined by

𝜁 = 1
3 ln(𝑠/𝑠)− Φ . (30.31)

Concept question 30.5. If the Friedmann equations enforce conservation of entropy, where

does the entropy of the Universe come from? Friedmann’s equations enforce conservation of entropy,
equation (10.33). The constancy of 𝜁 is a generalization of this law to evolution at superhorizon scales,
Exercise 30.4. But the entropy of the vacuum as a mode exits the horizon is tiny, and the entropy of the
matter-radiation fluid when a mode re-enters the horizon is large, yet no entropy has been created because 𝜁
is constant. How can these viewpoints be reconciled? Answer. The first law (10.33) can be construed as an
equation representing conservation of entropy only if the system is evolving through states of thermodynamic
equilibrium. The expanding Universe is not a system in thermodynamic equilibrium, even when its geometry
is precisely FLRW. For systems not in thermodynamic equilibrium, the first law of thermodynamics (10.33)
enforced by the Friedmann equations simply represents conservation of energy in a general relativistic context.
The proof in Exercise 30.4 that 𝜁 represents a fluctuation in entropy depended on the proposition that the
proper pressure 𝑝(𝜌) is a definite function of proper density 𝜌. But in a system that is not in thermodynamic
equilibrium and that evolves irreversibly from one state to another, the pressure is not a definite function
of density. Reheating, the transition between vacuum and particle energy that marks the end of inflation,
represents an irreversible (explosive!) increase in entropy. If the expansion of the Universe were reversed,
the collapsing Universe would not revert from particle energy to vacuum energy, since that would require
a reduction of entropy, in violation of the second law of thermodynamics. Reheating is analogous to the
situation of a fluid that passes through a shock front. The shock converts kinetic into heat energy, increasing
the entropy of the fluid, while conserving its energy.

30.3.1 Primordial curvature fluctuation

It was remarked above, §30.3, that an observer inside a horizon patch can perform a global gauge transfor-
mation (29.18) so as to set the large-scale Φ to zero in their patch. Alternatively, the observer has the gauge
freedom to set the large scale fluctuation 𝛿 in their patch to zero, in which case 𝜁 = −Φ. For this reason, the
total conserved fluctuation 𝜁 is commonly called the primordial curvature fluctuation.
The constancy of the primordial curvature fluctuation 𝜁 at superhorizon scales makes it useful for charac-

terizing fluctuations during inflation. At the end of inflation, the “vacuum” energy-momentum of the inflaton
field converts to the energy-momentum of matter and radiation. The details of this event, called reheating,
are not well understood. However, since 𝜁 is constant, its value when a fluctuation first exits the horizon
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during inflation equals its value when the fluctuation reenters the horizon some time later. The constancy of
𝜁 makes the details of reheating largely inconsequential to the evolution of perturbations.

30.3.2 Adiabatic and isocurvature initial conditions

The conserved fluctuation in any particular species 𝑥 that does not exchange energy with other species is
denoted 𝜁𝑥 with a subscript 𝑥. The conserved fluctuation over all species is denoted 𝜁 with no subscript. A
generic prediction of inflation is that the conserved fluctuation 𝜁𝑥 is the same for all species 𝑥,

𝜁𝑥 = 𝜁 . (30.32)

Fluctuations in which the fluctuation is the same for all species are said to be adiabatic.
There are also isocurvature fluctuations, in which the entropy fluctuations 𝛿𝑥 of different species oppose

each other so as to make zero contribution to the curvature potential Φ. Among 𝑁 species, there are 1
adiabatic and 𝑁 − 1 isocurvature modes subject to the condition that the initial fluctuations are finite.

30.4 Unperturbed background

The evolution of the cosmic scale factor 𝑎 as a function of conformal time 𝜂 depends on the energy-momentum
content of the unperturbed background FLRW geometry. Much of this Chapter is concerned with an epoch
starting somewhat after electron-positron annihilation at a redshift 1 + 𝑧 ∼ 109, and ending somewhat after
recombination at 1 + 𝑧rec ≈ 1100. During this time the Universe was dominated by matter (𝑤 = 0) and
radiation (𝑤 = 1/3), transitioning from radiation- to matter-dominated at a redshift of 1 + 𝑧eq ≈ 3400.
In the unperturbed background, the unperturbed dark matter density 𝜌c and radiation density 𝜌r evolve

with cosmic scale factor as

𝜌c ∝ 𝑎−3 , 𝜌r ∝ 𝑎−4 . (30.33)

The Hubble parameter 𝐻 is defined in the usual way to be

𝐻 ≡ 1

𝑎

𝑑𝑎

𝑑𝑡
=

�̇�

𝑎2
, (30.34)

in which overdot represents differentiation with respect to conformal time, �̇� ≡ 𝑑𝑎/𝑑𝜂. The Friedmann
equations for the background imply that the Hubble parameter for a universe dominated by dark matter
and radiation is

𝐻2 =
8𝜋𝐺

3
(𝜌c + 𝜌r) =

𝐻2
eq

2

(︃
𝑎3eq
𝑎3

+
𝑎4eq
𝑎4

)︃
, (30.35)

where 𝑎eq and 𝐻eq are the cosmic scale factor and the Hubble parameter at the time of matter-radiation
equality, 𝜌c = 𝜌r.
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The comoving horizon distance 𝜂 is defined to be the comoving distance that light travels starting from
zero expansion. This is

𝜂 =

∫︁ 𝑎

0

𝑑𝑎

𝑎2𝐻
=

2
√
2

𝑎eq𝐻eq

(︂√︂
1 +

𝑎

𝑎eq
− 1

)︂
=

2
√
2

𝑎eq𝐻eq

(︃
𝑎/𝑎eq

1 +
√︀
1 + 𝑎/𝑎eq

)︃
. (30.36)

The horizon distance 𝜂eq at matter-radiation equality 𝑎 = 𝑎eq is

𝜂eq =
2
√
2

(1 +
√
2)𝑎eq𝐻eq

. (30.37)

Equation (30.36) inverts to give the cosmic factor 𝑎 as a function of the horizon distance 𝜂,

𝑎

𝑎eq
=

𝜂

8𝜂eq

(︂
𝜂

𝜂eq
+ 4
√
2

)︂
. (30.38)

In the radiation- and matter-dominated epochs respectively, the comoving horizon distance 𝜂 is

𝜂 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
2

𝑎eq𝐻eq

(︂
𝑎

𝑎eq

)︂
=

(1 +
√
2)𝜂eq

2

(︂
𝑎

𝑎eq

)︂
∝ 𝑎 radiation-dominated ,

2
√
2

𝑎eq𝐻eq

(︂
𝑎

𝑎eq

)︂1/2

= (1 +
√
2)𝜂eq

(︂
𝑎

𝑎eq

)︂1/2

∝ 𝑎1/2 matter-dominated .

(30.39)

The ratio of the comoving horizon distance 𝜂 to the comoving Hubble distance 1/(𝑎𝐻) is

𝜂𝑎𝐻 =
2
√︀

1 + 𝑎/𝑎eq

1 +
√︀
1 + 𝑎/𝑎eq

, (30.40)

which is evidently a number of order unity, varying between 1 in the radiation-dominated epoch 𝑎 ≪ 𝑎eq,
and 2 in the matter-dominated epoch 𝑎≫ 𝑎eq.

Concept question 30.6. What is meant by the horizon in cosmology? See §10.21.

Exercise 30.7. Redshift of matter-radiation equality.

1. Argue that the redshift 𝑧eq of matter-radiation equality is given by

1 + 𝑧eq =
𝑎0
𝑎eq

= ? Ωmℎ
2 , (30.41)

where Ωm is the matter density today relative to critical. What is the factor, and what is its nu-
merical value? The factor depends on the energy-weighted effective number of relativistic species 𝑔𝜌,
equation (10.152b). Should this 𝑔𝜌 be that now, or that at matter-radiation equality?

2. Show that the ratio 𝐻eq/𝐻0 of the Hubble parameter at matter-radiation equality to that today is

𝐻eq

𝐻0
=
√︀
2Ωm (1 + 𝑧eq)

3/2 . (30.42)
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Solution. The redshift 𝑧eq of matter-radiation equality is given by

1 + 𝑧eq =
Ωm

Ωr
=

45𝑐5~3Ωm𝐻
2
0

4𝜋3𝐺𝑔𝜌(𝑘𝑇0)4
= 8.093× 104

Ωmℎ
2

𝑔𝜌
= 3400

(︁ 𝑔𝜌
3.36

)︁−1(︂Ωmℎ
2

0.143

)︂
, (30.43)

where 𝑇0 = 2.725K is the present-day CMB temperature, and 𝑔𝜌 = 2 + 6 7
8

(︀
4
11

)︀4/3
= 3.36 is the energy-

weighted effective number of relativistic species at matter-radiation equality, equation (10.152b). The value
Ωmℎ

2 = 0.143± 0.001 is from Aghanim et al. (2018).

30.5 Generic behaviour of non-baryonic cold dark matter

Non-baryonic cold dark matter is pressureless, 𝑤 = 0, and it conserves energy-momentum because it does
not scatter off radiation or baryons. Equation (30.14), which expresses energy-momentum conservation of a
fluid, reduces for 𝑤 = 0 to (︂

𝑑2

𝑑𝜂2
+
�̇�

𝑎

𝑑

𝑑𝜂

)︂
(𝛿c − 3Φ) = −𝑘2Ψ . (30.44)

If Ψ = Φ, then the source on the right hand side is −𝑘2Φ.
In the absence of a driving potential, Ψ = 0, the dark matter velocity would redshift as vc ∝ 1/𝑎,

equation (30.13b), and the dark matter density would then evolve as �̇�c = 𝑘vc ∝ 𝑎−1, equation (30.13a).
In the radiation-dominated epoch, where 𝜂 ∝ 𝑎, this leads to a logarithmic growth in the overdensity 𝛿c,
even though there is no driving potential, and the velocity is redshifting to a halt. In the matter-dominated
epoch, where 𝜂 ∝ 𝑎1/2, the dark matter overdensity 𝛿c would freeze out at a constant value, in the absence
of a driving potential.
More generally, equation (30.44) is a linear differential equation for 𝛿c − 3Φ driven by a potential Ψ. You

will find the solution to this equation for a prescribed potential Ψ in Exercise 30.8.

Exercise 30.8. Generic behaviour of dark matter. Find the homogeneous solutions of equation (30.44)
for 𝛿c−3Φ with horizon distance 𝜂 related to cosmic scale factor 𝑎 by equation (30.36). Hence find the retarded
Green’s function of the equation. Write down the general solution of equation (30.44) as an integral over the
Green’s function. Solve for the case of constant potential Ψ.
Solution. The general solution of equation (30.44) is, in units 𝑎eq = 1,

𝛿c(𝑎)− 3Φ(𝑎) = 𝐴0 +𝐴1 ln𝑥+ 2𝑘2
∫︁ 𝑥

0

Ψ(𝑎′) ln

(︂
𝑥′

𝑥

)︂
𝑎′2

𝑑𝑥′

𝑥′
, (30.45)

where 𝐴0 and 𝐴1 are constants, and

𝑥 ≡ exp

(︂
1√
2

∫︁
𝑑𝜂

𝑎

)︂
=

𝑎

(1 +
√
1 + 𝑎)2

=
𝜂

𝜂 + 4
√
2
, (30.46)
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which simplifies to 𝑥 → 𝑎/4 as 𝑎 → 0 and 𝑥 → 1 − 2/
√
𝑎 as 𝑎 → ∞. In the radiation-dominated and

matter-dominated regimes, equation (30.45) reduces to

𝛿c(𝑎)− 3Φ(𝑎)→

⎧⎪⎪⎨⎪⎪⎩
𝐴0 +𝐴1 ln(𝑎/4) + 2𝑘2

∫︁ 𝑎

0

Ψ(𝑎′) ln

(︂
𝑎′

𝑎

)︂
𝑎′ 𝑑𝑎′ (𝑎≪ 1) ,

𝐵0 − 2𝐵1𝑎
−1/2 + 4𝑘2

∫︁ 𝑎

0

Ψ(𝑎′)

(︂
1−

√︂
𝑎′

𝑎

)︂
𝑑𝑎′ (𝑎≫ 1) ,

(30.47)

where the constants 𝐵0 and 𝐵1 in the 𝑎 ≫ 1 expression will usually differ from 𝐴0 and 𝐴1 thanks to
contributions to the integral at 𝑎′. 1 that are not given correctly by the 𝑎′ ≫ 1 approximation.

30.6 Generic behaviour of radiation

Before recombination, photons are tightly coupled to baryons through non-relativistic electron-photon (Thom-
son) scattering. The photon-baryon fluid thus behaves as a single energy-momentum conserving fluid. In the
simple limit of negligible baryon density, the photon-baryon fluid can be treated as a relativistic fluid with
𝑤 = 1/3. Equation (30.14) then reduces to(︂

3
𝑑2

𝑑𝜂2
+ 𝑘2

)︂
(Θ0 − Φ) = − 𝑘2 (Ψ + Φ) . (30.48)

If Ψ = Φ, then the source on the right hand side is just −2𝑘2Φ.
In the absence of a driving potential, Ψ + Φ = 0, the radiation oscillates as Θ0 ∝ 𝑒±𝑖𝜔𝜂 with frequency

𝜔 = 𝑘/
√
3. In other words, the solutions are sound waves, moving at the sound speed

𝑐𝑠 =
𝜔

𝑘
=

√︂
1

3
. (30.49)

Define the sound horizon distance 𝜂𝑠 by

𝜂𝑠 ≡ 𝑐𝑠𝜂 =
𝜂√
3
. (30.50)

In terms of the sound horizon distance 𝜂𝑠, the differential equation (30.48) becomes(︂
𝑑2

𝑑𝜂2𝑠
+ 𝑘2

)︂
(Θ0 − Φ) = − 𝑘2(Ψ + Φ) . (30.51)

Equation (30.51) is a linear differential equation for Θ0 − Φ driven by a potential Ψ + Φ. You will find the
solution to this equation for a prescribed potential Ψ+Φ in Exercise 30.9.
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Exercise 30.9. Generic behaviour of radiation. Find the homogeneous solutions of equation (30.51).
Hence find the retarded Green’s function of the equation. Write down the general solution of equation (30.51)
as an integral over the Green’s function. Convince yourself that Θ0 − Φ oscillates about −(Ψ + Φ).
Solution. The general solution of equation (30.51) is, with 𝑦 ≡ 𝑘𝜂𝑠,

Θ0(𝑦)− Φ(𝑦) = 𝐴0 cos 𝑦 +𝐴1 sin 𝑦 −
∫︁ 𝑦

0

[︀
Ψ(𝑦′+Φ(𝑦′)

]︀
sin(𝑦 − 𝑦′) 𝑑𝑦′ , (30.52)

where 𝐴0 and 𝐴1 are constants.

Concept question 30.10. Can neutrinos be treated as a fluid? Since neutrinos stream collisionlessly,
how can it be legitimate to treat neutrinos as a fluid? Answer. The complete momentum distribution of
neutrinos is characterized by a full set of multipole moments, which can be solved using the hierarchy (33.91)
of Boltzmann equations. A fluid approximation amounts to keeping the first three momentum moments, the
energy, bulk velocity, and pressure, in the multipole expansion of the momentum distribution. The Einstein
equations depend only on these moments. If an adequate approximation to the pressure can be made, then
the Boltzmann hierarchy can be truncated. The perfect fluid approximation amounts to approximating
the pressure as isotropic, and given as a prescribed function of energy. The perfect fluid approximation
is adequate for photons, which are isotropized by collisions, but is poor for neutrinos. As a result of free
streaming, neutrinos develop a quadrupole (anisotropic pressure), as well as higher multipoles. You will
discover in Exercise 32.7 that, in contrast to photons which behave as a fluid with sound speed

√︀
1/3 times

the speed of light, neutrinos more closely approximate a fluid with sound speed equal to the speed of light.
Thus the simple approximation of the present Chapter is not really adequate for neutrinos.

30.7 Equations for the simplest set of assumptions

The equations for two perfect fluids consisting of matter (𝑤 = 0) and radiation (𝑤 = 1/3) in a perturbed
FLRW universe comprise 5 equations as follows. The first two equations express conservation of energy and
momentum for non-baryonic cold dark matter (subscript c):

�̇�c − 𝑘 vc = 3 Φ̇ , (30.53a)

v̇c +
�̇�

𝑎
vc = − 𝑘Ψ . (30.53b)

The next two equations express conservation of energy and momentum for radiation (subscript r), which
includes both photons and neutrinos:

Θ̇0 − 𝑘Θ1 = Φ̇ , (30.54a)

Θ̇1 +
𝑘

3
Θ0 = − 𝑘

3
Ψ . (30.54b)
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The final equation is the Einstein energy equation (29.49a):

− 3
�̇�

𝑎
𝐹 − 𝑘2Φ = 4𝜋𝐺𝑎2(𝜌c𝛿c + 4𝜌rΘ0) , (30.55)

where 𝐹 , equation (29.38), is

𝐹 ≡ �̇�

𝑎
Ψ+ Φ̇ . (30.56)

In place of one of the equations (30.53)–(30.55) it is sometimes convenient to use the Einstein momentum
equation (29.49b)

− 𝑘𝐹 = 4𝜋𝐺𝑎2(𝜌cvc + 4𝜌rΘ1) , (30.57)

which, because the matter and radiation equations (30.53) and (30.54) already satisfy covariant energy-
momentum conservation, is not an independent equation. In the simple approximation of perfect fluids con-
sidered here, the radiation quadrupole vanishes, and then the Einstein quadrupole pressure equation (29.49d)
implies that the scalar potentials Ψ and Φ are equal,

Ψ = Φ . (30.58)

Exercise 30.11. Program the equations for the simplest set of cosmological assumptions. Write
computer code that integrates numerically the evolution equations (30.53)–(30.55). In Exercise 32.2 you will
generalize this code to include more components and more processes, so you should write the code in a
well-structured fashion that allows you to update it easily. It is theoretically and numerically advantageous
to treat 𝛿𝑐 − 3Φ and Θ0 − Φ as dependent variables, rather than 𝛿𝑐 and Θ0. I found it convenient to use
ln 𝑎 as the integration variable, and to work in units 𝑎eq = 𝐻eq = 1. Assume adiabatic initial conditions,
𝜁c = 𝜁r (see §30.10), and without loss of generality normalize to unit initial amplitudes, 𝜁c = 𝜁r = 1. Do the
computation for a selection of wavenumbers 𝑘. Plot Θ0−Φ and −2Φ together to bring out the fact that the
former oscillates about the latter, as expected from Exercise 30.9. A numerical issue you may encounter is
that your integration routine may get stuck trying to integrate the oscillating radiation monopole and dipole
once the mode is well inside the horizon, 𝑘𝜂 ≫ 1. One strategy is to stop following the photon moments
after a certain time. Another convenient strategy is to introduce an artificial damping term, by changing the
radiation dipole equation (30.54b) to

Θ̇1 +
𝑘

3
(Θ0 +Ψ) = −2𝑘 𝜅Θ1 , (30.59)

where 𝜅 is a dimensionless damping coefficient that becomes large when the fluctuation is well inside the
horizon, 𝑘𝜂 ≫ 1,

𝜅 = 𝜖𝑘𝜂 , (30.60)

with 𝜖 some suitably small number (I chose 𝜖 = 10−3). To see why the damping term works as claimed,
combine the radiation monopole and dipole equations into a second order differential equation, and read
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Figure 30.1 (Top) dark matter overdensity 𝛿𝑐 − 3Φ, (bottom left) radiation monopole Θ0 − Φ, and (bottom right)

radiation monopole Θ0 − Φ with artificial damping, as a function of cosmic scale factor 𝑎 in units 𝑎0 = 1, in the

simple approximation, for several wavenumbers 𝑘. The cosmological model is a flat ΛCDM model with concordance

parameters ΩΛ = 0.69 and Ωm = 0.31, and adiabatic initial conditions (see §32.3). The radiation monopole Θ0 − Φ

(blue) is plotted along with minus twice the gravitational potential, −2Φ (black), to bring out the fact that the former

oscillates about the latter, as expected from equation (30.48). Curves are labelled with the comoving wavenumber

𝑘/(𝑎eq𝐻eq) in units of the Hubble distance at matter-radiation equality. For the larger wavenumbers, 𝑘/(𝑎eq𝐻eq) = 10

and 102, the radiation monopole without damping is truncated (bottom left, dotted lines) to avoid confusing the plot.

The radiation monopole shown here in the simple approximation may be compared to results in the hydrodynamic

approximation, Figure 32.3, and using a Boltzmann computation, Figure 33.3.
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Figure 30.2 (Left) Overdensities 𝛿 − 3Φ, and (right) bulk velocities v in the simple approximation with artificial

damping, as a function of cosmic scale factor 𝑎/𝑎eq, at wavenumber 𝑘/(𝑎eq𝐻eq) = 10, for non-baryonic dark matter

(c) and radiation (𝛾). The radiation overdensity and bulk velocity are related to their monopole and dipole moments by

𝛿𝛾 −3Φ = 3(Θ0−Φ) and v𝛾 = 3Θ1, equations (30.15). The results may be compared to those from the hydrodynamic

approximation, Figure 32.1, and a Boltzmann computation, Figure 33.1.

§32.5. The introduction of damping anticipates, but is not an adequate substitute for, the physical processes
of damping addressed in Chapter 32.
Solution. Figure 30.1 shows the dark matter overdensity, radiation monopole, and potential for a flat
ΛCDM model with ΩΛ = 0.69 and Ω𝑐 = 0.31, consistent with Planck parameters (Aghanim et al., 2018).
and adiabatic initial conditions. The radiation monopole is shown both without (bottom left panel) and with
(bottom right panel) artificial damping. Figure 30.2 illustrates the overdensity and bulk velocity of each of
matter and radiation for the same model at an illustrative wavenumber 𝑘/(𝑎eq𝐻eq) = 10.

30.8 On the numerical computation of cosmological power spectra

See Seljak and Zaldarriaga (1996) for a discussion of the numerical computation of the CMB power spectrum.
Modern codes that compute cosmological power spectra from linear perturbation theory, such as CAMB
(google it), are impressively fast. With default settings, CAMB takes a few cpu seconds to compute a
complete CMB power spectrum. CAMB is written in parallelized fortran 90.
To accomplish its task, CAMB:
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1. reads cosmological parameters from an input file edited by the user;
2. calls RecFast (or other code) to compute recombination (Chapter 31);
3. uses a Boltzmann code (Chapter 33) to calculate the evolution of non-baryonic cold dark matter, baryonic

matter, photons, and neutrinos at each of ∼ 200 wavenumbers 𝑘;
4. pre-calculates tables of spherical Bessel functions 𝑗ℓ;
5. computes CMB transfer functions 𝑇ℓ(𝜂0, 𝑘), equation (34.20), by integrating source functions over Bessel

functions at each of ∼ 2000 wavenumbers 𝑘 and ∼ 100 harmonics ℓ (Chapter 34);
6. computes the CMB power spectrum 𝐶ℓ(𝜂0) today by integrating the squared transfer functions over an

almost scale-free primordial curvature spectrum, equation (34.35).
That is a lot of computation. The two most time-consuming steps are step 3, the Boltzmann computation,
and step 5, the computation of CMB transfer functions. For step 3, CAMB uses the open-source ordinary
differential equation solver dverk (Hull, Enright & Jackson 1976). Step 5 involves integration over highly
oscillatory integrands. One could contemplate using some clever mathematical approach to integrate the
highly oscillatory integrands, but CAMB simply uses a brute-force sum, interpolating pre-computed source
functions in 𝑘-space, and splining over pre-computed spherical Bessel functions.
Most of the calculations of cosmological perturbations and power spectra reported in this book used Math-

ematica, a program that I use and value a lot. Sadly, high speed numerical calculations are not Mathematica’s
forte. One elementary issue is that Mathematica’s inbuilt spherical Bessel functions 𝑗ℓ are inexplicably slow
for large ℓ, which is unacceptable given that many thousands of Bessel functions must be evaluated (on
my 2015 laptop, a single evaluation of 𝑗ℓ(ℓ) takes approximately (ℓ/20,000)2 cpu seconds). Mathematica’s
biggest challenge is integrating the highly oscillatory functions in step 5. Mathematica’s numerical integra-
tion routine NDSolve (or worse, NIntegrate, which treats each integrand in a list separately) evaluates its
integrands far too often to be efficient. If you choose to program in Mathematica, good luck; but be warned
that Mathematica assumes control over many details that basic languages like c and fortran leave up to you.
Working with Mathematica is like trying to persuade a recalcitrant child to perform what seems to be a
simple task; there is no guarantee who will win the contest of wills.

30.9 Analytic solutions in various regimes

Much of the remainder of this Chapter is concerned with obtaining approximate analytic solutions that
describe the evolution of perturbations of the matter and radiation in various regimes. The aim is to gain
some intuitive understanding of the solutions to the system of equations (30.53)–(30.58).
Figure 30.3 illustrates key features in the evolution of perturbations. Evolution is punctuated by the transi-

tion from radiation- to matter-dominated at 1+𝑧eq ≈ 3400, and by the transition from opaque to transparent
at recombination, at 1 + 𝑧rec ≈ 1100. Meanwhile the comoving horizon distance 𝜂 increases monotonically.
Small wavelength perturbations enter the horizon early, during the radiation-dominated regime, while long
wavelength perturbations enter the horizon late, during the matter-dominated regime.
One regime not covered by the analytic approximations is perturbations that enter the horizon near the

epoch of matter-radiation equality. The regime is important because the first few peaks, the most prominent
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peaks, in the CMB entered the horizon around or shortly after matter-radiation equality. Covering this
regime satisfactorily requires solving numerically the full set of equations (30.53)–(30.55).
The regimes covered below are:
1. Superhorizon scales, §30.10.

2. Radiation-dominated:

a. adiabatic initial conditions, §30.11;

b. isocurvature initial conditions, §30.12.
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Figure 30.3 Various regimes in the evolution of fluctuations. The line increasing diagonally from bottom left to top

right is the comoving horizon distance 𝜂. Above this line are superhorizon fluctuations, whose comoving wavelengths

exceed the horizon distance, while below the line are subhorizon fluctuations, whose comoving wavelengths are less

than the horizon distance. The dashed vertical line at cosmic scale factor 𝑎eq ≈ 𝑎0/3400 marks the moment of matter-

radiation equality. Before matter-radiation equality (to the left), the background mass-energy was dominated by

radiation, while after matter-radiation equality (to the right), the background mass-energy was dominated by matter.

Once a fluctuation enters the horizon, the non-baryonic matter fluctuation tends to grow, whereas the radiation

fluctuation tend to decay, so there is an epoch prior to matter-radiation equality where gravitational perturbations

are dominated by matter rather than radiation fluctuations, even though radiation dominates the background energy

density. The dashed vertical line at 𝑎rec ≈ 𝑎0/1100 marks recombination, where the temperature cooled to the point

that baryons changed from being mostly ionized to mostly neutral, and the Universe changed from being opaque to

transparent. The observed CMB comes from the time of recombination.
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3. Subhorizon scales, §30.13.
4. Fluctuations that enter the horizon in the matter-dominated epoch, §30.14.
5. Matter-dominated regime, §30.15.
6. Baryons post-recombination, §30.16.
7. Matter with dark energy, §30.17.
8. Matter with dark energy and curvature, §30.18.

30.10 Superhorizon scales

superhorizon

radiation

ra
d
ia

ti
o
n

b
ac

k
g
ro

u
n
d

m
at

te
r

fl
u
ct

u
at

io
n matter

horiz
on

aeq arec

log(cosmic scale factor a) →

lo
g

(c
o

m
o

v
in

g
sc

a
le

1
/k

)


→

Figure 30.4 Superhorizon scales.

At sufficiently early times, any mode is outside the horizon, 𝑘𝜂 < 1. In the superhorizon limit 𝑘𝜂 ≪ 1, the
evolution equations (30.53)–(30.55) reduce to

�̇�c = 3Φ̇ , (30.61a)

Θ̇0 = Φ̇ , (30.61b)

− 3
�̇�

𝑎
𝐹 = 4𝜋𝐺𝑎2(𝜌c𝛿c + 4𝜌rΘ0) , (30.61c)

with 𝐹 defined by equation (30.56 In effect, the dark matter velocity vc and radiation dipole Θ1 can be
treated as negligibly small at superhorizon scales,

vc = Θ1 = 0 . (30.62)

The first two of equations (30.61) imply that the dark matter overdensity 𝛿c and radiation monopole Θ0 are
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related to the potential Φ by

1
3𝛿c − Φ = 𝜁c , (30.63a)

Θ0 − Φ = 𝜁r , (30.63b)

where 𝜁c and 𝜁r are constants set by initial conditions. Plugging the solutions (30.63) into the Einstein energy
equation (30.61c), and replacing derivatives with respect to horizon distance 𝜂 with derivatives with respect
to cosmic scale factor 𝑎,

𝜕

𝜕𝜂
= �̇�

𝜕

𝜕𝑎
= 𝑎2𝐻

𝜕

𝜕𝑎
, (30.64)

with the Hubble parameter 𝐻 from equation (30.35) gives the first order differential equation, in units
𝑎eq = 1,

2𝑎(1 + 𝑎)Φ′+ (6 + 5𝑎)Φ + 4𝜁r + 3𝜁c𝑎 = 0 , (30.65)

where prime ′ denotes differentiation with respect to cosmic scale factor, 𝑑/𝑑𝑎. The solution to equa-
tion (30.65) that is finite at 𝑎 = 0 is

Φ = − 2
3𝜁r + ( 23𝜁r −

3
5𝜁c)𝑓 , (30.66)

where 𝑓(𝑎) is the function

𝑓 ≡ 1− 2

𝑎
+

8

𝑎2
+

16

𝑎3
− 16

√
1 + 𝑎

𝑎3
=
𝑎
(︀
6 + 𝑎+ 4

√
1 + 𝑎

)︀(︀
1 +
√
1 + 𝑎

)︀4 , (30.67)

in which the rightmost expression is written in a form that is numerically well-behaved for all 𝑎. The function
𝑓 varies from 0 at 𝑎 = 0 to 1 at 𝑎→∞. The initial and final values of the potential Φ(𝑎) are

Φ(0) = − 2
3𝜁r , Φ(late) = − 3

5𝜁c . (30.68)

The potential Φ(late) is designated “late” because it holds in the matter-dominated regime well after recom-
bination, but fails when dark energy (or possibly curvature) become important.
There are adiabatic and isocurvature initial conditions. Inflation generically produces adiabatic fluctua-

tions, in which matter and radiation fluctuate together,

𝜁c = 𝜁r adiabiatic , (30.69)

so that

𝛿c(0) = 3Θ0(0) = − 3
2Φ(0) = 𝜁c adiabiatic . (30.70)

Notice that a positive energy fluctuation corresponds to a negative potential, consistent with Newtonian
intuition. Isocurvature initial conditions are defined by the vanishing of the initial potential, Φ(0) = 0,
requiring

𝜁r = 0 isocurvature . (30.71)
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Figure 30.5 Evolution of the scalar potential Φ at superhorizon scales, equations (30.72), from radiation-dominated

to matter-dominated. The scale for the potential is normalized to its value Φ(late) at late times 𝑎≫ 𝑎eq.

The adiabatic and isocurvature solutions for the superhorizon potential Φ, equation (30.66), are

Φad = 𝜁c
(︀
− 2

3 + 1
15𝑓
)︀
, (30.72a)

Φiso = − 3
5𝜁c𝑓 , (30.72b)

with 𝑓 given by equation (30.67). Figure 30.5 shows the evolution of the potential Φ from equations (30.72),
normalized to the value Φ(late) at late times 𝑎 ≫ 𝑎eq. For adiabatic fluctuations, the potential changes by
a factor of 9/10 from initial to final value.

30.11 Radiation-dominated, adiabatic initial conditions

For adiabatic initial conditions, fluctuations that enter the horizon before matter-radiation equality, 𝑘𝜂eq ≫ 1,
are dominated by radiation. In the regime where radiation dominates both the unperturbed energy and its
fluctuations, the relevant equations are, from equations (30.54), (30.55), and (30.57),

Θ̇0 − 𝑘Θ1 = Φ̇ , (30.73a)

− 3
�̇�

𝑎
𝐹 − 𝑘2Φ = 16𝜋𝐺𝑎2𝜌rΘ0 , (30.73b)

−𝑘𝐹 = 16𝜋𝐺𝑎2𝜌rΘ1 , (30.73c)

in which, because it simplifies the mathematics, the Einstein momentum equation is used as a substitute
for the radiation dipole equation. In the radiation-dominated epoch, the horizon distance is proportional
to the cosmic scale factor, 𝜂 ∝ 𝑎, equation (30.39). Inserting Θ0 and Θ1 from the Einstein energy and
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Figure 30.6 Radiation-dominated regime.

momentum equations (30.73b) and (30.73c) into the radiation monopole equation (30.73a) gives a second
order differential equation for the potential Φ,

Φ̈ +
4

𝜂
Φ̇ +

𝑘2

3
Φ = 0 . (30.74)

Equation (30.74) describes damped sound waves moving at sound speed 1/
√
3 times the speed of light. The

sound horizon, the comoving distance that sound can travel, is 𝜂𝑠 = 𝜂/
√
3, the horizon distance 𝜂 multiplied

by the sound speed. The growing and decaying solutions to equation (30.74) are

Φgrow =
3𝑗1(𝑦)

𝑦
=

3(sin 𝑦 − 𝑦 cos 𝑦)
𝑦3

, (30.75a)

Φdecay = − 𝑗−2(𝑦)

𝑦
=

cos 𝑦 + 𝑦 sin 𝑦

𝑦3
, (30.75b)

where the dimensionless parameter 𝑦 is the wavenumber 𝑘 multiplied by the sound horizon distance 𝜂𝑠,

𝑦 ≡ 𝑘𝜂𝑠 =
𝑘𝜂√
3
=

√︂
2

3

𝑘

𝑎eq𝐻eq

𝑎

𝑎eq
, (30.76)

and 𝑗ℓ(𝑦) ≡
√︀
𝜋/(2𝑦)𝐽ℓ+ 1

2
(𝑦) are spherical Bessel functions. The physically relevant solution that satisfies

adiabatic initial conditions, remaining finite as 𝑦 → 0, is the growing solution

Φ = Φ(0)Φgrow . (30.77)

The growing solution (30.75a) shows that, after a mode enters the sound horizon the scalar potential Φ
oscillates with an envelope that decays as 𝑦−2. Physically, relativistically propagating sound waves tend to
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Figure 30.7 The potential Φ and radiation monopole Θ0 for modes that enter the sound horizon 𝑘𝜂𝑠 = 1 during

the radiation-dominated regime well before matter-radiation equality, for (top) adiabatic initial conditions, equa-

tions (30.77) and (30.78), and (bottom) isocurvature initial conditions, equations (30.84) and (30.85). The quantities

shown are (blue) Θ0 − Φ and (black) −2Φ, to illustrate that the former oscillates about the latter as expected from

equation (30.48). The difference, (Θ0−Φ)− (−2Φ) = Θ0+Φ, which is the temperature Θ0 redshifted by the potential

Φ, is (for Ψ = Φ) the monopole contribution to the temperature fluctuation of the CMB, equation (34.17). The units

of Φ and Θ0 are such that 𝜁r = 1 for adiabatic fluctuations, and 𝜁c = 1 for isocurvature fluctuations.

suppress the gravitational potential Φ. The suppression of the potential is responsible for the turnover in the
observed power spectrum of matter fluctuations today from large to small scales evident in Figure 30.15.
The radiation monopole Θ0 can be inferred either from the Einstein equation (30.73b) with the solu-

tions (30.75) for the potential Φ, or from the Green’s function solution (30.52) in the radiation-dominated
regime. Either way, the difference Θ0 − Φ between the radiation monopole and the potential corresponding
to the growing mode potential (30.77) is

Θ0 − Φ = 𝜁r
(2 sin 𝑦 − 𝑦 cos 𝑦)

𝑦
. (30.78)
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Figure 30.8 Evolution of the dark matter overdensity 𝛿c−3Φ for a mode that enters the horizon during the radiation-

dominated regime, for adiabatic initial conditions. Like the radiation fluctuation Θ0 illustrated in the top panel of

Figure 30.7, the matter fluctuation 𝛿c is constant outside the sound horizon, 𝑘𝜂𝑠 ≪ 1, and gets a boost as the

fluctuation enters the sound horizon. But whereas the radiation fluctuation subsequently oscillates, the dark matter

fluctuation grows monotonically, with logarithmic growth well inside the sound horizon, 𝑘𝜂𝑠 ≫ 1. The units are such

that 𝜁r = 1.

The top panel of Figure 30.7 shows the growing mode potential Φ, equation (30.77), and the radiation
monopole Θ0, equation (30.78). The Figure plots these two quantities in the form −2Φ and Θ0 −Φ in order
to bring out the fact that Θ0 − Φ oscillates about −2Φ, in accordance with equation (30.48). After a mode
is well inside the sound horizon, 𝑦 ≫ 1, the radiation monopole oscillates with constant amplitude,

Θ0 = −𝜁r cos 𝑦 for 𝑦 ≫ 1 . (30.79)

Fluctuations in the dark matter are driven by the gravitational potential of the radiation. The radiation-
dominated Green’s function solution (30.47) for the dark matter fluctuation 𝛿c driven by the growing mode
potential (30.77) and satisfying adiabatic initial conditions (30.70) is

𝛿c − 3Φ = 6𝜁r

(︂
sin 𝑦

𝑦
− 1

2
+ Cin 𝑦

)︂
, (30.80)

where Cin 𝑦 ≡
∫︀ 𝑦
0
(1 − cos𝑥) 𝑑𝑥/𝑥 is the cosine integral. Figure 30.8 shows the density fluctuation (30.80).

Once the mode is well inside the sound horizon, 𝑦 ≫ 1, the dark matter density 𝛿c, equation (30.80), evolves
as, from the asymptotic behaviour Cin 𝑦 ∼ ln 𝑦 + 𝛾 with 𝛾 ≡ 0.5772... Euler’s constant,

𝛿c − 3Φ = 6𝜁r

(︂
ln 𝑦 + 𝛾 − 1

2

)︂
for 𝑦 ≫ 1 , (30.81)

which grows logarithmically. This logarithmic growth translates into a logarithmic increase in the amplitude
of matter fluctuations at small scales, and is a characteristic signature of non-baryonic cold dark matter.
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Exercise 30.12. Radiation-dominated fluctuations.

1. Confirm equation (30.74). You might like to start by seeking a solution using the monopole and dipole
radiation equations (30.54) along with the Einstein energy equation (30.55) including only radiation,
namely equation (30.73b). Then try the solution advocated in the text, namely use the Einstein mo-
mentum equation (30.73c) in place of the radiation dipole equation. This is an example of a situation
where, even though two sets of equations are equivalent, it is easier to find solutions from one set than
the other.

2. Confirm that the homogeneous solutions of equation (30.74) are as given in the text, equations (30.75).
3. The initial condition for the temperature monopole is determined by equation (30.63b), Θ0(0)−Φ(0) =

𝜁r, where 𝜁r is some constant, the initial radiation entropy fluctuation set up during inflation. Find the
initial conditions for the scalar potentials Ψ and Φ from the Einstein energy and quadrupole pressure
equations at 𝜂 → 0 (in the present simple model, the Einstein quadrupole pressure equation simply sets
Ψ = Φ).

4. Confirm that the Green’s function solution (30.52) forΘ0−Φ satisfying the requisite boundary conditions
is equation (30.78). Plot the solution for Θ0−Φ, along with −2Φ. Confirm that Θ0−Φ oscillates around
−2Φ.

5. Comment on the behaviour. How do the gravitational potential and temperature monopole evolve once
a mode is inside the horizon? Can you come up with a physical explanation of what is going on?

30.12 Radiation-dominated, isocurvature initial conditions

For isocurvature initial conditions, the matter fluctuation contributes from the outset, |𝜌c𝛿c| > |4𝜌rΘ0| even
while radiation dominates the background density, 𝜌c ≪ 𝜌r.
To develop an approximation adequate for isocurvature fluctuations entering the horizon well before

matter-radiation equality, 𝑘𝜂eq ≫ 1, regard the Einstein energy equation (30.55) as giving the radiation
monopole Θ0, and the Einstein momentum equation (30.57) as giving the radiation dipole Θ1. Insert these
into the radiation monopole equation (30.54a), and eliminate the �̇�c terms using the dark matter density
equation (30.53a). The result is, in units 𝑎eq = 1,

2𝑎(1 + 𝑎)Φ′′ + (8 + 9𝑎)Φ′ + 2
(︁
1 +

2𝑘2𝑎

3

)︁
Φ+ 𝛿c = 0 , (30.82)

where prime ′ denotes differentiation with respect to cosmic scale factor 𝑎. Equation (30.82) is valid in all
regimes, for any combination of matter and radiation.
For isocurvature initial conditions, the radiation monopole and potential vanish initially, Θ0(0) = Φ(0) = 0,

whereas the dark matter overdensity is finite, 𝛿c(0) = 3𝜁c ̸= 0. For small scales that enter the horizon well
before matter-radiation equality, 𝑘𝜂eq ≫ 1, the potential Φ is small compared to 𝛿c, while 𝛿c has some
approximately constant non-zero value up to and through the time when the mode enters the sound horizon,
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𝑘𝜂𝑠 =
√︀
2/3 𝑘𝑎 ≈ 1. In the radiation-dominated epoch, 𝑎 ≪ 1, but 𝑘 large and 𝑘𝑎 ∼ 1 so 𝑘2𝑎 ≫ 1,

equation (30.82) simplifies to

2𝑎Φ′′ + 8Φ′ +
4𝑘2𝑎

3
Φ + 𝛿c = 0 . (30.83)

For constant 𝛿c = 𝛿c(0) = 3𝜁c, the solution of equation (30.83) vanishing at 𝑎 = 0 is, with 𝑦 given by
equation (30.76),

Φ = − 3
√
3 𝜁c√
2 𝑘

1− cos 𝑦 − 𝑦 sin 𝑦 + 1
2𝑦

2

𝑦3
. (30.84)

With units restored, 𝑘 is 𝑘/(𝑎eq𝐻eq). The Green’s function solution (30.52) for the difference Θ0−Φ between
the radiation monopole and potential driven by the potential (30.84) is

Θ0 − Φ =
3
√
3 𝜁c√
2 𝑘

(1− cos 𝑦 − 1
2𝑦 sin 𝑦)

𝑦
. (30.85)

Equations (30.84) and (30.85) are the solution for small scale modes with isocurvature initial conditions that
enter the horizon well before matter-radiation equality. After a mode is well inside the sound horizon, 𝑦 ≫ 1,
the radiation monopole (30.85) oscillates with constant amplitude,

Θ0 = − 3
√
3 𝜁c

2
√
2 𝑘

sin 𝑦 𝑦 ≫ 1 . (30.86)

The lower panel of Figure 30.7 shows the potential Φ, equation (30.84), and the radiation monopole Θ0

from equation (30.85), again plotted as Θ0 − Φ and −2Φ to bring out the fact that Θ0 − Φ oscillates about
−2Φ. Whereas for adiabatic initial conditions the radiation monopole oscillated as cos 𝑦 well inside the sound
horizon, equation (30.79), for isocurvature initial conditions it oscillates as sin 𝑦 well inside the sound horizon,
equation (30.86).
The solution (30.84) for the potential Φ was derived from equation (30.83) on the assumption of constant

𝛿c. The accuracy of the approximation may be checked by calculating the radiation-dominated Green’s
function solution (30.47) for 𝛿c driven by this potential, which is

𝛿c − 3Φ = 3𝜁c

(︂
1 + 𝑎

3− 3 cos 𝑦 − 3𝑦 Si 𝑦 + 3
2𝑦

2

𝑦2

)︂
, (30.87)

where Si 𝑦 ≡
∫︀ 𝑦
0
sin𝑥 𝑑𝑥/𝑥 is the sine integral. Equation (30.87) shows that 𝛿c − 3Φ is approximately equal

to 𝛿c(0) ≡ 3𝜁c in the radiation-dominated regime 𝑎 ≪ 1 for all 𝑦. The dark matter overdensity 𝛿c itself is
not constant, because Φ varies. However, Φ from equation (30.84) is of order 𝑎𝛿c(0) for any 𝑦, and the small
order 𝑎 correction to 𝛿c leads to corrections of next order 𝑎2 to Φ, Θ0−Φ, and 𝛿c−3Φ, and can be neglected.

30.13 Subhorizon scales

After a mode enters the horizon, the radiation fluctuation Θ0 oscillates, but the non-baryonic cold dark
matter fluctuation 𝛿c grows monotonically. In due course, the dark matter density fluctuation 𝜌c𝛿c dominates
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Figure 30.9 Subhorizon scales.

the radiation density fluctuation 𝜌rΘ0, and this necessarily occurs before matter-radiation equality; that is,
|𝜌c𝛿c| > |4𝜌rΘ0| even though 𝜌c < 𝜌r. This is true for both adiabatic and isocurvature initial conditions; as
noted in §30.12, for isocurvature initial conditions, the dark matter density fluctuation dominates from the
outset. Even before the dark matter density fluctuation dominates, the cumulative contribution of the dark
matter to the potential Φ begins to be more important than that of the radiation, because the potential
sourced by the radiation oscillates, with an effect that tends to cancel when averaged over an oscillation.
Regard the Einstein energy equation (30.55) as giving the dark matter overdensity 𝛿c, and the Einstein

momentum equation (30.57) as giving the dark matter velocity vc. Insert these into the dark matter density
equation (30.53a) and eliminate the Θ̇0 terms using the radiation monopole equation (30.54a). The result is,
in units 𝑎eq = 1,

2𝑎2(1 + 𝑎)Φ′′ + 𝑎(6 + 7𝑎)Φ′ − 2Φ− 4Θ0 = 0 , (30.88)

where prime ′ denotes differentiation with respect to cosmic scale factor 𝑎. Equation (30.88) is valid in all
regimes, for any combination of matter and radiation.
Once the mode is well inside the horizon, 𝑘𝜂 ≫ 1, the radiation monopole Θ0 oscillates about an average

value of −Φ (since Θ0 − Φ oscillates about −2Φ, as noted in §30.6):

⟨Θ0⟩ = −Φ . (30.89)

Inserting this cycle-averaged value of Θ0 into equation (30.88) gives the Meszaros differential equation

2(1 + 𝑎)𝑎2Φ′′ + (6 + 7𝑎)𝑎Φ′ + 2Φ = 0 . (30.90)

The solutions of Meszaros’ differential equation (30.90) are a linear combination of growing and decaying
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solutions

Φgrow = − 3

4𝑘2𝑎

(︂
1 +

3𝑎

2

)︂
, (30.91a)

Φdecay = − 3

4𝑘2𝑎

{︂(︂
1 +

3𝑎

2

)︂
ln

[︂
(
√
1 + 𝑎+ 1)2

𝑎

]︂
− 3
√
1 + 𝑎

}︂
. (30.91b)

A constant factor of −3/(4𝑘2) has been included in the potential, arbitrarily, to simplify the overall factor
in the resulting solution for the dark matter overdensity 𝛿c, equations (30.93). The solutions for 𝛿c driven by
the growing and decaying potentials (30.91) are, from the Green’s function solution (30.45), in units 𝑎eq = 1,

𝛿c − 3Φ = −4𝑘2𝑎

3
Φ , (30.92)

which holds for both growing and decaying modes. The solutions (30.92) omit possible additional contribu-
tions from the homogeneous solutions in equation (30.45), but the regime of interest is modes well inside the
horizon, 𝑘𝑎 ≫ 1, and the omitted contributions become dominated by the solutions (30.92) as the cosmic
scale factor 𝑎 increases. Explicitly, the growing and decaying modes for 𝛿c − 3Φ are

(𝛿c − 3Φ)grow = 1 +
3

2
𝑎 , (30.93a)

(𝛿c − 3Φ)decay =

(︂
1 +

3

2
𝑎

)︂
ln

[︂
(
√
1 + 𝑎+ 1)2

𝑎

]︂
− 3
√
1 + 𝑎 . (30.93b)

The desired solution for the dark matter overdensity 𝛿c is a linear combination of growing and decaying
modes,

𝛿c − 3Φ = 𝐶grow(𝛿c − 3Φ)grow + 𝐶decay(𝛿c − 3Φ)decay . (30.94)

The coefficients 𝐶grow and 𝐶decay follow from matching to the earlier solutions for 𝛿c − 3Φ obtained in the
radiation-dominated regime. For modes that enter the horizon well before matter-radiation equality, 𝑎≪ 1,
the growing and decaying modes (30.93) simplify to

(𝛿c − 3Φ)grow = 1 , (𝛿c − 3Φ)decay = − ln(𝑎/4)− 3 for 𝑎≪ 1 . (30.95)

It was found in §30.11 that the potential Φ in the radiation-dominated regime oscillated with an envelope
that decayed as ∼ 𝑎−2, equation (30.75a), driving a dark matter overdensity that grew as a combination of
linear and logarithmic parts, equation (30.81). The result (30.95) demonstrates that a potential that is a
sum of parts proportional to 1/𝑎 and ln 𝑎/𝑎, albeit reduced in amplitude by a factor of 1/𝑘2, leads to the
same behaviour of the dark matter overdensity.
For adiabatic initial conditions, the solution for the dark matter overdensity 𝛿c is the one that matches

smoothly on to the logarithmically growing solution given by equation (30.81). Matching to the adiabatic
solution (30.81) for 𝛿c − 3Φ well inside the horizon determines the constants

𝐶grow = 6𝜁r

[︂
𝛾 − 7

2 + ln

(︂
4
√︁

2
3 𝑘

)︂]︂
, 𝐶decay = −6𝜁r adiabatic . (30.96)
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Figure 30.10 After an initial boost on entering the sound horizon, the dark matter overdensity 𝛿c grows logarithmically

with cosmic scale factor 𝑎 during the radiation-dominated regime, but then linearly with 𝑎 after matter-radiation

equality 𝑎 = 𝑎eq. The curves are labelled with the comoving wavenumber 𝑘/(𝑎eq𝐻eq) in units of the Hubble distance

at matter-radiation equality. The evolution is approximated by the radiation-dominated solution (30.80) at small 𝑎,

and by the Meszaros solution (30.94) at larger 𝑎, with crosses marking the transition between the two approximations,

at the geometric mean of the horizon distance at horizon crossing and matter-radiation equality 𝜂 ≈ √
𝜂hor𝜂eq.

For isocurvature initial conditions, 𝛿c − 3Φ is sensibly constant in the radiation-dominated regime 𝑎 ≪ 1,
equation (30.87), and only the growing mode is present,

𝐶grow = 3𝜁c , 𝐶decay = 0 isocurvature . (30.97)

At late times well into the matter-dominated epoch, 𝑎 ≫ 1, the growing mode of the Meszaros solution
dominates,

(𝛿c − 3Φ)grow = 3
2𝑎 , (𝛿c − 3Φ)decay = 4

15𝑎
−3/2 for 𝑎≫ 1 , (30.98)

so that the dark matter overdensity 𝛿c at late times is

𝛿c − 3Φ = 3
2 𝐶grow 𝑎 for 𝑎≫ 1 . (30.99)

The potential Φ, equation (30.91a), at late times is constant,

Φ = − 9

8𝑘2
𝐶grow for 𝑎≫ 1 . (30.100)
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The constancy of the potential Φ, and the linear growth of the dark matter density 𝛿c, is characteristic of
the matter-dominated regime.
Figure 30.10 shows the dark matter overdensity 𝛿c calculated for adiabatic conditions from the radiation-

dominated solution (30.80) at small 𝑎, and the Meszaros solution (30.94) at larger 𝑎. The overdensity 𝛿c is
constant before horizon crossing, receives a boost of growth during horizon-crossing, grows logarithmically
with cosmic scale factor 𝑎 during before matter-radiation equality, then grows linearly with 𝑎 after matter-
radiation equality.
For modes that enter the horizon well before matter-radiation equality, the radiation monopole Θ0 at late

times 𝑎≫ 1 is, with 𝑦 ≡ 𝑘𝜂/
√
3,

Θ0 = −Φ− 𝜁r cos 𝑦 adiabatic , (30.101a)

Θ0 = −Φ− 3
√
3 𝜁c

2
√
2 𝑘

sin 𝑦 isocurvature . (30.101b)

30.14 Fluctuations that enter the horizon during the matter-dominated epoch
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Figure 30.11 Fluctuations that enter the horizon in the matter-dominated regime.

For fluctuations that enter the horizon well after matter-radiation equality, 𝑘𝜂eq ≪ 1, the potential Φ before
entering the horizon is given by the superhorizon solution (30.66), while after entering the horizon the
evolution of the potential is dominated by the dark matter density fluctuation. A satisfactory solution for
the potential Φ valid both before and after entering the horizon is obtained by setting the radiation monopole
equal to its superhorizon solution, Θ0 = Φ+𝜁r, equation (30.63b), and inserting this value into the differential
equation (30.88). This solution remains an adequate approximation inside the horizon because after horizon
crossing the radiation fluctuation Θ0 makes a subdominant contribution to the Einstein energy equation, so
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its behaviour ceases to influence the evolution of the potential. Mathematically, once 𝑎≫ 𝑎eq, the derivative
terms Φ′′ and Φ′ dominate the Φ and Θ0 terms in equation (30.88).
Inserting the superhorizon solution Θ0 = Φ + 𝜁r into the differential equation (30.88) recovers the super-

horizon solution (30.66) for Φ, which therefore remains a satisfactory approximation not only outside but
also inside the horizon. But inside the horizon, the dark matter overdensity 𝛿c and radiation monopole Θ0

driven by this potential are no longer their superhorizon solutions (30.63). Rather, the solution for the dark
matter overdensity 𝛿c driven by the superhorizon potential, subject to the initial condition 1

3𝛿𝑐 − Φ = 𝜁c is,
from the Green’s function solution (30.45),

𝛿c − 3Φ = 3𝜁c + 𝑘2
{︂
−2𝑎2( 35𝜁c +Φ) + ( 83𝜁r −

16
5 𝜁c)

[︂
4 ln

(︂
1 +
√
1 + 𝑎

2

)︂
− 𝑎
]︂}︂

. (30.102)

Well after matter-radiation equality, 𝑎≫ 1, the dark matter overdensity (30.102) is (note that for large scale
modes 𝑘2𝑎 can be small even when 𝑎≫ 1)

𝛿c − 3Φ = 3𝜁c
(︀
1 + 4

15𝑘
2𝑎
)︀
= 3𝜁c

(︀
1 + 1

30 (𝑘𝜂)
2
)︀

for 𝑎≫ 1 . (30.103)

Since Φsuper(late) = − 3
5𝜁𝑐 for both adiabatic and isocurvature modes, equation (30.68), the overdensity 𝛿c

from equation (30.103) is

𝛿c =
6
5𝜁c
(︀
1 + 2

3𝑘
2𝑎
)︀
= 6

5𝜁c
(︀
1 + 1

12 (𝑘𝜂)
2
)︀

for 𝑎≫ 1 . (30.104)

The solution for Θ0 −Φ driven by the superhorizon potential is, from the Green’s function solution (30.52),

Θ0 − Φ = 1
3𝜁r(4− cos 𝑦) + ( 13𝜁r −

3
10𝜁c)

{︁
− 4 + (4− 𝑦2𝑘) cos 𝑦 + 3𝑦𝑘 sin 𝑦 + 𝑦2𝑘

[︁ 𝑦𝑘
𝑦 + 𝑦𝑘

− 𝑦𝑘𝑓(𝑦𝑘+𝑦) + 2𝑔(𝑦𝑘+𝑦) + (𝑦𝑘 cos 𝑦 − 2 sin 𝑦)𝑓(𝑦𝑘)− (2 cos 𝑦 + 𝑦𝑘 sin 𝑦)𝑔(𝑦𝑘)
]︁}︁

, (30.105)

where 𝑦 ≡ 𝑘𝜂𝑠 is the wavenumber times the sound horizon distance, 𝑦𝑘 ≡ 4
√︀
2/3 𝑘 is a constant proportional

to the wavenumber 𝑘, and 𝑓(𝑦) and 𝑔(𝑦) are the auxiliary sin/cosine integrals, related to the sin and cosine
integrals Si 𝑦 ≡

∫︀ 𝑦
0
sin𝑥 𝑑𝑥/𝑥 and Ci 𝑦 ≡

∫︀ 𝑦
∞ cos𝑥 𝑑𝑥/𝑥 by

𝑓(𝑦) ≡ (𝜋/2− Si 𝑦) cos 𝑦 +Ci 𝑦 sin 𝑦 , (30.106a)

𝑔(𝑦) ≡ (𝜋/2− Si 𝑦) sin 𝑦 − Ci 𝑦 cos 𝑦 . (30.106b)

The mode enters the horizon 𝑦 = 1 at a cosmic scale factor of 𝑎/𝑎eq = 4(1 + 𝑦𝑘)/𝑦
2
𝑘. Figure 30.13 shows

Θ0 − Φ and −2Φ from equations (30.105) and (30.66), for a mode with 𝑘 =
√︀
3/8 = 0.61, corresponding to

𝑦𝑘 = 2. This mode enters the horizon at 𝑎/𝑎eq = 3, at approximately the epoch of recombination.

Concept question 30.13. Does the radiation monopole oscillate after recombination? Before
recombination, photons and baryons are tightly coupled by electron scattering, and behave as a single fluid.
After recombination, photons stream freely. Does the radiation monopole Θ0 − Φ keep oscillating after
recombination, as in Figure 30.13, or does it stop oscillating, or does it do something else? Answer. The
radiation monopole keeps oscillating, but differently. Two key differences in the free-streaming regime are,
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firstly, that the effective sound speed increases to the speed of light, and secondly, that the oscillations
damp adiabatically. See Exercise 32.7 for an approximate treatment of a relativistic fluid — neutrinos — in
the free-streaming regime. A full treatment of radiation in the free-streaming regime requires the radiative
transfer equation, §34.1.

30.15 Matter-dominated regime
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Figure 30.12 Matter-dominated regime.

After matter-radiation equality, but before curvature or dark energy become important, non-relativistic
matter dominates the mass-energy density of the Universe.
In the matter-dominated epoch, the relevant equations are, from equations (30.53), (30.55), and (30.57),

�̇�c − 𝑘 vc = 3 Φ̇ , (30.107a)

− 3
�̇�

𝑎
𝐹 − 𝑘2Φ = 4𝜋𝐺𝑎2𝜌c𝛿c , (30.107b)

−𝑘𝐹 = 4𝜋𝐺𝑎2𝜌cvc , (30.107c)

in which, because it simplifies the mathematics, the Einstein momentum equation is used as a substitute
for the matter velocity equation. In the matter-dominated epoch, the horizon is proportional to the square
root of the cosmic scale factor, 𝜂 ∝ 𝑎1/2, equation (30.39). Inserting 𝛿c and vc from the Einstein energy and
momentum equations (30.107b) and (30.107c) into the matter density equation (30.107a) yields a second
order differential equation for the potential Φ

Φ̈ +
6

𝜂
Φ̇ = 0 . (30.108)
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Figure 30.13 Similar to Figure 30.7, but for a mode that enters the sound horizon 𝑘𝜂𝑠 = 1 during the matter-dominated

regime, for adiabatic initial conditions. The mode shown has 𝑘 =
√︀

3/8 = 0.61, which enters the horizon at 𝑎 = 3,

approximately the time of recombination, marked by a star.

The general solution of equation (30.108) is a linear combination

Φ = 𝐶grow Φgrow + 𝐶decay Φdecay (30.109)

of growing and decaying solutions

Φgrow = 1 , Φdecay = 𝑦−5 , (30.110)

where the dimensionless parameter 𝑦 is, as previously, the wavenumber 𝑘 multiplied by the sound horizon
distance 𝜂/

√
3. In the matter-dominated regime 𝑦 is, in units 𝑎eq = 𝐻eq = 1,

𝑦 ≡ 𝑘𝜂√
3
= 2
√︁

2
3 𝑘𝑎

1/2 . (30.111)

The constants 𝐶grow and 𝐶decay in the solution (30.109) depend on conditions established before the matter-
dominated epoch. The corresponding growing and decaying modes for the dark matter overdensity 𝛿c are,
from the Einstein energy equation (30.107b),

(𝛿c − 3Φ)grow = −
(︀
5 + 1

2𝑦
2
)︀
Φgrow = −

(︀
5 + 4

3𝑘
2𝑎
)︀
Φgrow , (30.112a)

(𝛿c − 3Φ)decay = − 1
2𝑦

2 Φdecay = − 4
3𝑘

2𝑎Φdecay . (30.112b)

The behaviour of the growing and decaying modes (30.112) agrees with both the subhorizon Meszaros
solution (30.98) and the superhorizon solution (30.103) well after matter-radiation equality 𝑎 ≫ 1, as they
should. Any admixture of the decaying solution tends quickly to decay away, leaving the growing solution.
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30.16 Baryons post-recombination

Recombination frees baryons and photons from each other’s grasp. Starting at recombination, the freed
baryons behaved as pressureless matter, like non-baryonic dark matter. In Exercise 30.14 you will figure out
the behaviour of baryons and non-baryonic cold matter in the approximation that the Universe is matter-
dominated.

Exercise 30.14. Growth of baryon fluctuations after recombination.

1. Growing and decaying modes. Assume that the Universe was matter-dominated at and after re-
combination. What are the growing and decaying solutions for the matter fluctuations 𝛿m?

2. Green’s function for matter fluctuations. Find the Green’s function for any matter component
subject to the initial conditions that the overdensity and its derivative with respect to cosmic scale
factor 𝑎 are 𝛿𝑚(rec) and 𝛿′𝑚(rec) at recombination.

3. Initial conditions for dark matter and baryon fluctuations at recombination. What are ap-
propriate initial conditions at recombination for fluctuations in each of the two matter components,
non-baryonic dark matter and baryons? Consider separately small-scale modes that entered the hori-
zon well before matter-radiation equality, and large-scale modes that entered the horizon well after
matter-radiation equality,

4. Growth of dark matter and baryon fluctuations. The matter density fluctuation is a sum of
non-baryonic dark matter and baryonic contributions,

𝛿m = 𝑓c𝛿c + 𝑓b𝛿b , (30.113)

where the constants 𝑓c and 𝑓b are the dark matter and baryon fractions

𝑓c ≡
𝜌c
𝜌m

= 1− 𝑓b , 𝑓b ≡
𝜌b
𝜌m

. (30.114)

Use the Green’s function with the chosen initial conditions to derive solutions for the dark matter and
baryon overdensities 𝛿c and 𝛿b after recombination. Sketch the solutions for the matter, dark matter,
and baryon overdensities through recombination.

5. Comment. A common statement is “Following recombination, baryons fall into the dark matter poten-
tial wells.” Comment, in the light of your solutions.

30.17 Matter with dark energy

Some time after recombination, dark energy becomes important. Observational evidence suggests that the
dominant energy-momentum component of the Universe today is dark energy, with an equation of state
consistent with that of a cosmological constant, 𝑝Λ = −𝜌Λ. In what follows, dark energy is taken to have
constant density, and therefore to be synonymous with a cosmological constant. Since dark energy has a
constant energy density whereas matter density declines as 𝑎−3, dark energy becomes important only well
after recombination.
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Dark energy does not cluster gravitationally, so the Einstein equations for the perturbed energy-momentum
depend only on the matter fluctuation. However, dark energy does affect the evolution of the cosmic scale
factor 𝑎. In fact, if matter is taken to be the only source of perturbation, then covariant energy-momentum
conservation, as enforced by the Einstein equations, implies that the only addition that can be made to the un-
perturbed background is dark energy, with constant energy density. To see this, consider the equations (30.53)
governing the matter overdensity 𝛿m and scalar velocity vm (now subscripted m, since post-recombination
matter includes baryons as well as non-baryonic cold dark matter), together with the Einstein energy and
momentum equations (30.55) and (30.57) sourced only by matter,

�̇�m − 𝑘 vm = 3 Φ̇ , (30.115a)

v̇m +
�̇�

𝑎
vm = −𝑘Φ , (30.115b)

− 3
�̇�

𝑎
𝐹 − 𝑘2Φ = 4𝜋𝐺𝑎2𝜌m𝛿m , (30.115c)

−𝑘𝐹 = 4𝜋𝐺𝑎2𝜌mvm . (30.115d)

The factor 4𝜋𝐺𝑎2𝜌m on the right hand side of the two Einstein equations can be written

4𝜋𝐺𝑎2𝜌m =
3𝑎30𝐻

2
0Ωm

2𝑎
, (30.116)

where 𝑎0 and 𝐻0 are the present-day cosmic scale factor and Hubble parameter, and Ωm is the present-
day matter density (a constant). Allow the Hubble parameter 𝐻(𝑎) ≡ �̇�/𝑎2 to be an arbitrary function
of cosmic scale factor 𝑎. Inserting 𝛿m and velocity vm from the Einstein energy and momentum equa-
tions (30.115c) and (30.115d) into the matter equations (30.115a) and (30.115b), and taking the overdensity
equation (30.115a) minus 3�̇�/𝑎 times the velocity equation (30.115b), yields the condition

𝑎4
𝑑𝐻2

𝑑𝑎
+ 3𝑎30𝐻

2
0Ωm = 0 , (30.117)

whose solution is

𝐻2

𝐻2
0

=
Ωm

(𝑎/𝑎0)3
+ΩΛ (30.118)

for some constant ΩΛ. This shows that, as claimed, if only matter perturbations are present, then the unper-
turbed background can contain, besides matter, only dark energy with constant density 𝜌Λ = 𝐻2

0ΩΛ/(
8
3𝜋𝐺).

The result is a consequence of the fact that the Einstein equations enforce covariant conservation of energy-
momentum.
With the Hubble parameter given by equation (30.118), the matter and Einstein equations (30.115) yield

a second order differential equation for the potential Φ, in units 𝑎0 = 1:

2𝑎(Ωm + 𝑎3ΩΛ)Φ
′′ + (7Ωm + 10𝑎3ΩΛ)Φ

′ + 6𝑎2ΩΛΦ = 0 . (30.119)
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The growing and decaying solutions to equation (30.119) are, in units 𝑎0 = 1,

Φgrow =
5Ωm𝐻

2
0

2

𝐻(𝑎)

𝑎

∫︁ 𝑎

0

𝑑𝑎′

𝑎′3𝐻(𝑎′)3
, (30.120a)

Φdecay =
𝐻

𝑎
. (30.120b)

The factor 5
2Ωm𝐻

2
0 in the growing solution is chosen so that Φgrow → 1 as 𝑎→ 0. The growing solution Φgrow

can be expressed as an elliptic integral. The corresponding growing and decaying solutions for the matter
overdensity 𝛿m are, again in units 𝑎0 = 1,

(𝛿m − 3Φ)grow = − 2𝑘2𝑎

3Ωm𝐻2
0

Φgrow − 5 , (𝛿m − 3Φ)decay = − 2𝑘2𝑎

3Ωm𝐻2
0

Φdecay . (30.121)

For modes well inside the horizon, 𝑘𝜂 ∼ 𝑘𝑎1/2/𝐻0 ≫ 1, the relation (30.121) agrees with that (30.127) below.

30.18 Matter with dark energy and curvature

Curvature may also play a role after recombination. Since 2000, when the angular scale of the first peak in
the CMB was resolved by the Boomerang balloon-based experiment (Bernardis et al., 2000), observational
evidence has been stubbornly consistent with the Universe having zero curvature. But it is possible that
there may be some small curvature. If the curvature is significantly non-zero today (larger than treatable in
perturbation theory), then by definition the curvature scale is less than the horizon size today. Scales larger
than the curvature scale should strictly be treated using an unperturbed FLRW metric with curvature.
However, a flat background FLRW metric remains a good approximation for modes whose scales are small
compared to the curvature.

Concept question 30.15. Curvature scale.What is meant by the curvature scale? Is the curvature scale
constant in comoving coordinates?

For modes much smaller than the horizon distance today, the time derivative of the potential can be
neglected compared to its spatial gradient, |Φ̇| ≪ |𝑘Φ|. If only matter, curvature, and dark energy are
present, then only matter fluctuations contribute to the energy-momentum. At scales much less than the
curvature scale, equations (30.115) then go over to the Newtonian limit,

�̇�m − 𝑘 vm = 0 , (30.122a)

v̇m +
�̇�

𝑎
vm = −𝑘Φ , (30.122b)

− 𝑘2Φ = 4𝜋𝐺𝑎2𝜌m𝛿m . (30.122c)

The factor 4𝜋𝐺𝑎2𝜌m in the Einstein equation can be written as equation (30.116). The matter and Einstein
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Figure 30.14 Contour plot of the growth factor 𝑔(𝑎) in a universe containing matter, curvature, and a cosmological

constant. If the Universe is flat, Ω𝑘 = 0, then the Universe evolves from matter-dominated (Ωm = 1, ΩΛ = 0) to

Λ-dominated (Ωm = 0, ΩΛ = 1) along the (blue) dashed line.

equations (30.122) yield a second order equation for the matter overdensity 𝛿m, in units 𝑎0 = 1:

𝛿m +
�̇�

𝑎
�̇�m −

3Ωm𝐻
2
0

2

𝛿m
𝑎

= 0 . (30.123)

Equation (30.123) can be recast as a differential equation with respect to cosmic scale factor 𝑎:

𝛿′′m +

(︂
𝐻 ′

𝐻
+

3

𝑎

)︂
𝛿′m −

3Ωm𝐻
2
0

2

𝛿m
𝑎5𝐻2

= 0 , (30.124)

where 𝐻 ≡ �̇�/𝑎2 is the Hubble parameter, and prime ′ denotes differentiation with respect to 𝑎. In the case
of matter plus curvature plus dark energy, the Hubble parameter 𝐻 satisfies, again in units 𝑎0 = 1,

𝐻2

𝐻2
0

= Ωm𝑎
−3 +Ω𝑘𝑎

−2 +ΩΛ , (30.125)

where Ωm, Ω𝑘, and ΩΛ are the (constant) present-day values of the matter, curvature, and dark energy
densities. The growing and decaying solutions to equation (30.124) are

𝛿m,grow ≡ 𝑎 𝑔(𝑎) =
5Ωm𝐻

2
0

2
𝐻(𝑎)

∫︁ 𝑎

0

𝑑𝑎′

𝑎′3𝐻(𝑎′)3
, 𝛿m,decay =

𝐻

𝐻0
. (30.126)
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The potential Φ is related to the matter overdensity 𝛿m by, again in units 𝑎0 = 1, equation (30.122c),

Φ = −3Ωm𝐻
2
0

2𝑘2
𝛿m
𝑎
. (30.127)

The observationally relevant solution is the growing mode. The growing mode is conventionally given a
special notation, the growth factor 𝑔(𝑎), because of its importance to relating the amplitude of clustering at
various times, from recombination up to the present. For the growing mode,

𝛿 ∝ 𝑎 𝑔(𝑎) , Φ ∝ 𝑔(𝑎) . (30.128)

The normalization factor 5
2Ωm𝐻

2
0 in equation (30.126) is chosen so that in the matter-dominated phase after

recombination but before dark energy or curvature become important, the growth factor 𝑔(𝑎) is unity,

𝑔(𝑎) = 1 (𝑎rec ≪ 𝑎≪ 1) . (30.129)

Thus as long as the Universe remains matter-dominated, the potential Φ remains constant. Curvature or
dark energy causes the potential Φ to decrease. Figure 30.14 illustrates the growth factor 𝑔(𝑎) as a function
of Ωm and ΩΛ.
It should be emphasized that the growing and decaying solutions (30.126) are valid only for the case of

matter plus curvature plus constant density dark energy, where the Hubble parameter takes the form (30.125).
If another kind of mass-energy is considered, such as dark energy with non-constant density, then equations
governing perturbations of the other kind must be adjoined, and the Einstein equations modified accordingly.
The growth factor 𝑔(𝑎) may expressed analytically as an elliptic function. A good analytic approximation

is (Carroll, Press, and Turner, 1992)

𝑔 ≈ 5Ωm

2
[︁
Ω

4/7
m − ΩΛ +

(︀
1 + 1

2Ωm

)︀ (︀
1 + 1

70ΩΛ

)︀]︁ , (30.130)

where Ω𝑥 are densities at the epoch being considered (such as the present, 𝑎 = 𝑎0).

30.19 Primordial power spectrum

Initial conditions from inflation are conveniently characterized in terms of the gauge-invariant fluctuation
𝜁 defined by equation (30.26), which has the property that it remains constant during evolution at super-
horizon scales. The fluctuation 𝜁 is commonly called the primordial curvature fluctuation. According to the
inflationary paradigm, fluctuations in 𝜁 are generated by quantum fluctuations in the inflaton field that drives
inflation. The amplitude 𝜁 of a mode freezes as the mode exits the horizon during inflation, and remains
constant until the mode subsequently re-enters the horizon after inflation has ended.
Generically, inflation predicts that primordial curvature fluctuations 𝜁 generated by vacuum fluctuations

during inflation have a spectrum that is (1) Gaussian, and (2) scale-free. Inflation also predicts generically
that the fluctuations are adiabatic, meaning that the curvature fluctuation is the same for all species, 𝜁𝑥 = 𝜁

for all species 𝑥.
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Gaussian distributions, §30.22.6, are ubiquitous in statistics as a consequence of the Central Limit Theorem
(CLT), §30.22.5. The CLT states that the distribution of a random variable that is a sum of independent
random increments is asymptotically Gaussian in the limit of a large number of increments. A Gaussian
distribution is characterized entirely by its mean and variance, all higher irreducible moments vanishing.
A scale-free spectrum of fluctuations is one in which the spatial variance 𝜉𝜁 of the dimensionless fluctuation

𝜁 is the same on all scales,

⟨𝜁(𝑥′)𝜁(𝑥)⟩ ≡ 𝜉𝜁(|𝑥′− 𝑥|) = constant , (30.131)

independent of spatial separation |𝑥′− 𝑥|. A scale-free primordial spectrum of fluctuations was originally
proposed as a natural initial condition by Harrison (1970) and Zeldovich (1972) before the idea of inflation
was conceived. Inflation predicts a scale-free spectrum because the vacuum energy that drives inflation is
constant in time, and quantum fluctuations in the vacuum remain statistically the same as time goes by.
Thus the characteristic amplitude of fluctuations 𝜁 flying over the horizon remains the same as time goes by.
The power spectrum 𝑃𝜁(𝑘) of fluctuations in 𝜁 is defined by

⟨𝜁(𝑘′)𝜁(𝑘)⟩ ≡ (2𝜋)3𝛿𝐷(𝑘
′+ 𝑘)𝑃𝜁(𝑘) . (30.132)

The “momentum-conserving” Dirac delta-function (2𝜋)3𝛿𝐷(𝑘
′+ 𝑘) in equation (30.132) is a consequence of

the assumed statistical spatial translation symmetry of fluctuations in the spatially homogeneous FLRW
background. The power spectrum 𝑃𝜁(𝑘) is related to the correlation function 𝜉𝜁(𝑥) by (with the standard
convention in cosmology for the choice of signs and factors of 2𝜋)

𝑃𝜁(𝑘) =

∫︁
𝑒𝑖𝑘·𝑥𝜉𝜁(𝑥) 𝑑

3𝑥 , 𝜉𝜁(𝑥) =

∫︁
𝑒−𝑖𝑘·𝑥𝑃𝜁(𝑘)

𝑑3𝑘

(2𝜋)3
. (30.133)

Whereas the correlation function 𝜉𝜁(𝑥) is dimensionless, the power spectrum 𝑃 (𝑘) has units of comoving
length cubed. The scale-free character means that the dimensionless power spectrum Δ2

𝜁(𝑘) defined by

Δ2
𝜁(𝑘) ≡ 𝑃𝜁(𝑘)

4𝜋𝑘3

(2𝜋)3
(30.134)

is constant.
Actually, the power spectrum generated by inflation is not precisely scale-free, because inflation comes to

an end, which breaks scale-invariance. The departure from scale-invariance is conventionally characterized
by a scalar spectral index, the tilt 𝑛, such that

Δ2
𝜁(𝑘) ∝ 𝑘𝑛−1 . (30.135)

Thus a scale-invariant power spectrum has

𝑛 = 1 (scale-invariant) . (30.136)

Different inflationary models predict different tilts, mostly close to but slightly less than 1.
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A common practice is to report the value of the dimensionless primordial power spectrum Δ2
𝜁(𝑘) at some

pivot scale 𝑘p,

Δ2
𝜁(𝑘) = Δ2

𝜁(𝑘p)

(︂
𝑘

𝑘p

)︂𝑛−1
. (30.137)

The Planck collaboration (Aghanim et al., 2018) report

Δ2
𝜁(𝑘p = 0.05Mpc−1) = (2.14± 0.05)× 10−9 , 𝑛 = 0.965± 0.004 . (30.138)

The pivot scale 𝑘p was chosen in this case so that the error in the amplitude Δ2
𝜁(𝑘p) was uncorrelated with

the error in the tilt 𝑛.

30.20 Matter power spectrum

The matter power spectrum 𝑃m(𝜂, 𝑘) at time 𝜂 is defined by

⟨𝛿m(𝜂,𝑘′)𝛿m(𝜂,𝑘)⟩ ≡ (2𝜋)3𝛿𝐷(𝑘
′+ 𝑘)𝑃m(𝜂, 𝑘) , (30.139)

the Dirac delta-function being as before a consequence of the assumption of statistical spatial homogeneity.
The assumption of statistical isotropy implies that the power spectrum 𝑃m(𝜂, 𝑘) is a function only of the
magnitude 𝑘 of the wavevector 𝑘. The matter power spectrum 𝑃m(𝜂, 𝑘) is related to the primordial power
spectrum 𝑃𝜁(𝑘) by

𝑃m(𝜂, 𝑘) = 𝑇m(𝜂, 𝑘)
2 𝑃𝜁(𝑘) = 𝑇m(𝜂, 𝑘)

2 (2𝜋)3

4𝜋𝑘3
Δ2
𝜁(𝑘) , (30.140)

where 𝑇m(𝜂, 𝑘) is the matter transfer function defined by

𝑇m(𝜂, 𝑘) ≡
𝛿m(𝜂,𝑘)

𝜁(𝑘)
. (30.141)

The transfer function 𝑇m(𝜂, 𝑘) for any given cosmological model may be calculated by the methods expounded
in the bulk of this Chapter, Exercise 30.16.
The predictions of cosmological models of the matter power spectrum may be compared to measurements of

the power spectrum of objects, such as galaxies, that may trace the matter distribution. Galaxy surveys probe
the matter distribution well after recombination, and at scales much less than the horizon distance today.
Under those circumstances, the matter transfer function 𝑇m(𝜂, 𝑘) factors into a product of three factors: (1)
a factor relating the matter overdensity 𝛿𝑚 to the potential Φ, which in the Newtonian regime at subhorizon
scales well after recombination is given in units 𝑎0 = 1 by equation (30.127); (2) a growth factor 𝑔(𝑎),
equation (30.126), relating the potential Φ(𝜂) at recent times 𝜂 to the post-recombination matter-dominated
potential Φ(late); (3) a transfer function 𝑇Φ(late)(𝑘) relating the matter-dominated potential Φ(late) to the
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primordial fluctuation 𝜁:

𝑇m(𝜂, 𝑘) =
𝛿m(𝜂,𝑘)

Φ(𝜂,𝑘)
× Φ(𝜂,𝑘)

Φ(late,𝑘)
× Φ(late,𝑘)

𝜁(𝑘)

= −
(︂

2𝑎𝑘2

3Ω𝑚𝐻2
0

)︂
× 𝑔(𝑎)× 𝑇Φ(late)(𝑘) , (30.142)

where

𝑇Φ(late)(𝑘) ≡
Φ(late,𝑘)

𝜁(𝑘)
. (30.143)

The potential transfer function 𝑇Φ(late)(𝑘) is independent of time 𝜂 because the potential Φ(late) is con-
stant in the matter-dominated regime before dark energy (or curvature) becomes important. The factoriza-
tion (30.142) of the matter transfer function 𝑇m(𝜂, 𝑘) separates the dependence on time 𝜂 (or equivalently
cosmic scale factor 𝑎) and wavenumber 𝑘. The first factor 𝛿m/Φ is proportional to 𝑎𝑘2; the second is a
function 𝑔(𝑎) only of cosmic scale factor 𝑎; and the third is a function 𝑇Φ(late)(𝑘) only of wavenumber 𝑘.
The factorization (30.142) of the matter transfer function 𝑇m(𝜂, 𝑘) implies that the matter power spectrum

𝑃m(𝜂, 𝑘), equation (30.140), is related to the primordial power spectrum 𝑃𝜁(𝜂, 𝑘) by

𝑃m(𝜂, 𝑘) =

(︂
2𝑎𝑔(𝑎)

3Ωm𝐻2
0

)︂2

𝑘4 𝑇Φ(late)(𝑘)
2 𝑃𝜁(𝑘) =

(︂
2𝑎𝑔(𝑎)

3Ωm𝐻2
0

)︂2

𝑘 𝑇Φ(late)(𝑘)
2 (2𝜋)3

4𝜋
Δ2
𝜁(𝑘) . (30.144)

For a power-law primordial spectrum (30.135), the matter power spectrum at the largest scales, where the
potential transfer function 𝑇Φ(late)(𝑘) is a constant independent of 𝑘, goes as

𝑃m(𝜂, 𝑘) ∝ 𝑘𝑛 . (30.145)

The proportionality (30.145) explains the origin of the scalar index 𝑛.

Exercise 30.16. Power spectrum of matter fluctuations: simple approximation. Use the code you
wrote in Exercise 30.11 to compute the matter transfer function 𝑇m(𝜂, 𝑘), equation (30.141). Deduce the
matter power spectrum 𝑃m(𝜂0, 𝑘), equation (30.140), at the present time, 𝜂 = 𝜂0. Use the normalization
and tilt of primordial power measured from Planck, equation (30.138). Compute power spectra for a con-
cordance ΛCDM model, Ωm = 0.3, ΩΛ = 0.7, and a flat matter-dominated Universe, Ωm = 1. Compare
your matter power spectrum to data from Gil-Marín et al. (2020), downloadable from https://svn.sdss.org/
public/data/eboss/DR16cosmo/tags/v1_0_1/dataveccov/lrg_elg_qso/LRG_Pk/. The best data sets are
the “post-reconstruction” sets. The “reconstruction” involves undoing at least some of the effects of nonlinear
evolution by moving galaxies around. Note the units of the data: wavenumber 𝑘 in ℎMpc−1 and power 𝑃 (𝑘)
in (ℎ−1 Mpc)3, with ℎ ≡ 𝐻0/(100 km s−1 Mpc−1).
As in Exercise 30.11, you may find that your integration routine gets stuck trying to integrate the oscillating

radiation monopole and dipole once the mode is well inside the horizon, 𝑘𝜂 ≫ 1. The strategy suggested
in Exercise 30.11 was to modify the radiation dipole equation (30.54b) by introducing an artificial damping
term, equation (30.59), that damps radiation once it is well inside the horizon. Since the radiation fluctuation

https://svn.sdss.org/public/data/eboss/DR16cosmo/tags/v1_0_1/dataveccov/lrg_elg_qso/LRG_Pk/
https://svn.sdss.org/public/data/eboss/DR16cosmo/tags/v1_0_1/dataveccov/lrg_elg_qso/LRG_Pk/
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ceases to influence the gravitational potential or the matter fluctuation once the radiation has oscillated many
times, the artificial damping has little effect on the model power spectrum.
A second problem you will encounter is that of power at superhorizon scales. Astronomers on Earth cannot

measure power at scales larger than our horizon because they cannot distinguish a superhorizon fluctuation
from a change in the mean density of the background FLRW geometry. To eliminate the unmeasurable
superhorizon power, calculate power from the overdensity 𝛿𝑘 − 𝛿0 with a large-scale constant 𝛿0 subtracted.
A third problem is that galaxies do not necessarily trace the distribution of matter. A simple model is to

suppose a linear relation between galaxy overdensity 𝛿g and matter overdensity 𝛿m (in Fourier space),

𝛿g = 𝑏𝛿m , (30.146)

where 𝑏 is the bias parameter. Linear bias was introduced by Kaiser (1984), who showed that regions of a
Gaussian field (§30.22.3) above a high threshold density are linearly biassed.
Solution. See Figure 30.15. One of the trickier issues is getting the units right. The SDSS IV data are given
in units where the length scale is such that the comoving Hubble distance at the present time is

𝑐

𝑎0𝐻0
=

299,792.458 km s−1

100ℎ km s−1 Mpc
= 2,997.92458ℎ−1 Mpc−1 . (30.147)

My code worked in units where 𝑐 = 𝑎eq = 𝐻eq = 1. With Ω𝑥 representing values at the present time, the
Hubble parameter now 𝐻0 and at matter-radiation equality 𝐻eq are related by

𝐻eq

𝐻0
=
√︁
Ωr(𝑎eq/𝑎0)−4 +Ωm(𝑎eq/𝑎0)−3 +Ω𝑘(𝑎eq/𝑎0)−2 +ΩΛ . (30.148)

I chose 𝑎0/𝑎eq = 3400, and present-day densities of Ωm = 0.29, Ωr = Ωm/3400, Ω𝑘 = 0, ΩΛ = 1−Ωr−Ωm−Ω𝑘.
The code gave 𝐻0/𝐻eq = 6.4× 10−6, and so

𝑐

𝑎0𝐻0
=

1

3400× (6.4× 10−6)
= 46.0 program units . (30.149)

The conversion factor between ℎ−1 Mpc and program length units was therefore

1 program length unit =
2,997.92458ℎ−1 Mpc

46.0
= 65.1ℎ−1 Mpc . (30.150)

For the wavenumber, this meant that the conversion between ℎMpc−1 and program units was

𝑘ℎMpc−1 =
𝑘prog

65.1ℎ−1 Mpc
. (30.151)

The model power spectrum in Figure 30.15 has been multiplied, arbitrarily, by a squared bias factor of
𝑏2 = 1.052, to give a better fit to the observed power spectrum. The residual difference between observed and
model power shows wiggles. These are baryon acoustic oscillations (BAO), the presence of which is predicted
when baryons are included, Figure 32.4.
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Figure 30.15 Model matter power spectra computed in the simple approximation, compared to observations from the

North (N) and South (S) Galactic Caps of the the Sloan Digital Sky Survey IV (Gil-Marín et al., 2020). The data

comprise 377,458 luminous red galaxies covering approximately 18% of the sky over redshifts 𝑧 = 0.6–1. Two models

are shown, a flat ΛCDM model with concordance parameters ΩΛ = 0.69 and Ωm = 0.31, and a flat matter-only

CDM model, Ωm = 1. The dashed lines on the models show power calculated from |𝛿2𝑘|, which includes unmeasurable

superhorizon power; the solid lines are calculated from |(𝛿𝑘 − 𝛿0)2|, which excludes the unmeasurable superhorizon

power by subtracting a constant 𝛿0 from the overdensity. The ΛCDM model is normalized to the amplitude (30.138)

measured by Planck (Aghanim et al., 2018), multiplied by a bias squared factor of 𝑏2 = 1.052. The ΛCDM power

spectrum calculated here in the simple approximation may be compared to the corresponding power spectra in the

hydrodynamic approximation, Figure 32.4, and from a Boltzmann computation, Figure 33.5.

30.21 Nonlinear evolution of the matter power spectrum

This Chapter has assumed throughout that linear perturbation theory holds, which requires that fluctuations
be small, 𝛿 ≪ 1. This assumption fails for matter fluctuations at small scales, which in due course collapse into
galaxies, with matter densities much greater than the mean, 𝛿m ≫ 1. Evolution in this regime is nonlinear,
and must usually be followed with large computer simulations.
Since gravity remains weak, Φ ≪ 1 and matter moves non-relativistically even in the nonlinear regime,

gravity remains well described by the Newtonian limit, equation (30.122c). The equations of conservation
of mass and momentum still hold for the matter, but these equations are no longer linear. To the extent
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that the matter streams collisionlessly, as is the case for nonbaryonic dark matter, its nonlinear evolution is
straightforward, if computationally intensive, to follow. However, the collisional dynamics of baryons leads
to interesting and complicated phenomena, including stars, planets, and black holes, and people to worry
about them.

30.22 Statistics of random fields

30.22.1 Random field

A basic proposition of modern cosmology, so far well-supported by observational evidence, is that fluctuations
in the Universe originated from some random process that operated in the same fashion from place to place.
In the inflationary paradigm, fluctuations originated as quantum fluctuations in the inflaton field that drove
inflation. According to this proposition, the fluctuating density 𝜌(𝑥) of any measurable quantity (such as
matter density, or radiation temperature) in our Universe constitutes a random field. The density 𝜌(𝑥) at
a randomly chosen position 𝑥 constitutes a random variable with some probability distribution 𝑃 (𝜌) of
finding the density to lie in an interval 𝑑𝜌. By definition, the probability distribution 𝑃 (𝜌) is positive, and
normalized to unit total probability, ∫︁

𝑃 (𝜌) 𝑑𝜌 = 1 . (30.152)

In a random field, the densities 𝜌(𝑥1) and 𝜌(𝑥2) at two different points are in general not independent,
so the 1-point probability (30.152) is not sufficient to determine completely the statistical properties of the
field. For example, since gravity causes matter to cluster, the densities at two nearby points are correlated,
not independent. For brevity, denote the density at spatial position 𝑥𝑖 by 𝜌𝑖,

𝜌𝑖 ≡ 𝜌(𝑥𝑖) . (30.153)

The properties of the random field 𝜌(𝑥) are determined by an infinite set of 𝑁-point probability distribu-
tions 𝑃 (𝜌1, ..., 𝜌𝑁 ) of finding the densities 𝜌𝑖 at 𝑁 positions 𝑥𝑖 to lie in an interval 𝑑𝜌1...𝑑𝜌𝑁 . By definition,
the joint 𝑁 -point probability distribution is positive, and normalized to unit total probability,∫︁

𝑃 (𝜌1, ..., 𝜌𝑁 ) 𝑑𝜌1...𝑑𝜌𝑁 = 1 . (30.154)

By homogeneity, the 𝑁 -point probability is a function only of the relative spatial positions 𝑥𝑖, not of their
absolute positions.
The limitations of observational accessibility and accuracy mean that the true 𝑁 -point probability distri-

butions 𝑃 (𝜌1, ..., 𝜌𝑁 ) are not known exactly. It is then necessary to make hypotheses about the form of the
probability, and to test those hypotheses against the available sampling of data.
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30.22.2 Random fields in Fourier space

Any linear combination 𝜌𝑖 of random fields 𝜌𝑗 is a random field,

𝜌𝑖 =
∑︁
𝑗

𝑎𝑖𝑗𝜌𝑗 , (30.155)

where 𝑎𝑖𝑗 are constants, and the sum over 𝑗 could represent an integral over a continuum. In particular, the
Fourier transform 𝜌(𝑘) of a random field 𝜌(𝑥),

𝜌(𝑘) ≡
∫︁
𝜌(𝑥)𝑒𝑖𝑘·𝑥 𝑑3𝑥 , 𝜌(𝑥) ≡

∫︁
𝜌(𝑘)𝑒−𝑖𝑘·𝑥

𝑑3𝑘

(2𝜋)3
, (30.156)

is a random field.
The Fourier modes 𝜌(𝑘) of a random field are of special importance when the field is statistically homo-

geneous, because Fourier modes are eigenmodes of the translation operator ∇, and the statistical properties
of a statistically homogeneous random field commute with the translation operator.

30.22.3 Gaussian random fields

A generic prediction of inflation is that the primordial distribution of fluctuations was Gaussian, as a result
of their origin as quantum fluctuations. Whenever the values 𝜌(𝑥) at each point 𝑥 of a random field are
generated as a sum of a large number of independent random increments, then the resulting field will be
Gaussian, as a consequence of the Central Limit Theorem. The CLT is proved for the simple case of a single
random variable 𝜌 in §30.22.5.
A Gaussian random field 𝜌(𝑥) is defined by the vanishing of all irreducible moments other than the first

two, the mean 𝜌, and the variance 𝐶𝑖𝑗 ,

𝐶𝑖𝑗 ≡ ⟨Δ𝜌𝑖Δ𝜌𝑗⟩ , (30.157)

where Δ𝜌𝑖 ≡ 𝜌𝑖 − 𝜌 is the deviation of 𝜌𝑖 from the mean. The mean 𝜌 is a single number. The assumption
of statistical homogeneity and isotropy implies that the variance is a function 𝐶𝑖𝑗 = 𝐶(𝑥𝑖𝑗) only of the
separation 𝑥𝑖𝑗 ≡ |𝑥𝑖 − 𝑥𝑗 | of the points. The covariance 𝐶𝑖𝑗 defined by equation (30.157) has dimensions of
𝜌2. Commonly, a dimensionless version 𝜉𝑖𝑗 of the covariance is defined by dividing by 𝜌2.
The 𝑁 -point probability distribution of a Gaussian random field is, generalizing the 1-point probabil-

ity (30.176) derived below,

𝑃 (𝜌1, ..., 𝜌𝑁 ) 𝑑𝜌1...𝑑𝜌𝑁 =
1√︀

(2𝜋)𝑁 |𝐶𝑖𝑗 |
exp

(︀
− 1

2𝐶
−1
𝑖𝑗 Δ𝜌𝑖Δ𝜌𝑗

)︀
𝑑𝜌1...𝑑𝜌𝑁 , (30.158)

where |𝐶𝑖𝑗 | is the determinant of the covariance matrix.
Any linear combination

∑︀
𝑗 𝑎𝑖𝑗𝜌𝑗 of Gaussian random fields 𝜌𝑗 is also a Gaussian random field. In partic-

ular, the Fourier transform 𝜌(𝑘) of a Gaussian random field 𝜌(𝑥) is a Gaussian random field.
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30.22.4 Moment-generating functions

The proof of the Central Limit Theorem, §30.22.5, goes via moment-generating functions. For simplicity,
moment-generating functions are defined in this section for a single random variable 𝜌, but the results
generalize straightforwardly to a random field 𝜌(𝑥). The validity of the steps below requires that various
integrals over the probability distribution 𝑃 (𝜌) converge; any required convergence properties are tacitly
assumed.
The random variable 𝜌 has a positive probability distribution 𝑃 (𝜌) normalized to unit total probability.

The moment-generating function of the probability distribution 𝑃 (𝜌) is defined to be

𝑀(𝜇) ≡
∫︁
𝑒𝜇𝜌𝑃 (𝜌) 𝑑𝜌 . (30.159)

Expanding the exponential in the integrand as a power series in 𝜇 implies that the moment-generating
function is

𝑀(𝜇) = 1 + ⟨𝜌⟩𝜇+ ⟨𝜌2⟩𝜇
2

2
+ ⟨𝜌3⟩𝜇

3

3!
+ ... , (30.160)

where ⟨𝜌𝑛⟩ is the 𝑛’th moment of the probability distribution,

⟨𝜌𝑛⟩ ≡
∫︁
𝜌𝑛𝑃 (𝜌) 𝑑𝜌 . (30.161)

Equation (30.160) accounts for the name moment-generating function.
Suppose that the measurement of 𝜌 is repeated𝑁 times, and suppose that each measurement is independent

of the others, meaning that the probability of measuring successive values 𝜌(1), ..., 𝜌(𝑁) is the product of
probabilities (the subscripts are parenthesized to distinguish the 𝑖’th observation 𝜌(𝑖) from the 𝑖’th position
𝜌𝑖)

𝑃 (𝜌(1), ..., 𝜌(𝑁)) = 𝑃 (𝜌(1))...𝑃 (𝜌(𝑁)) . (30.162)

The moment-generating function 𝑀𝑁 (𝜇) of the sum
∑︀𝑁
𝑖=1 𝜌(𝑖) of 𝑁 independent measurements 𝜌(𝑖) is then

the 𝑁 ’th power of the moment-generating function 𝑀(𝜇),

𝑀𝑁 (𝜇) ≡
∫︁
𝑒𝜇(𝜌(1)+...+𝜌(𝑁))𝑃 (𝜌(1), ..., 𝜌(𝑁)) 𝑑𝜌(1)...𝑑𝜌(𝑁)

=

∫︁
𝑒𝜇𝜌(1)𝑃 (𝜌(1)) 𝑑𝜌(1)...

∫︁
𝑒𝜇𝜌(𝑁)𝑃 (𝜌(𝑁)) 𝑑𝜌(𝑁)

=𝑀(𝜇)𝑁 . (30.163)

Thus the moment-generating function of a sum of independent measurements is multiplicative. The irreducible-
moment-generating function 𝑍(𝜇) is defined to be the logarithm of the moment-generating function,

𝑍(𝜇) ≡ ln [𝑀(𝜇)] . (30.164)

In statistical mechanics, the irreducible-moment-generating function 𝑍(𝜇) is called the partition function.
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Since the moment-generating function is multiplicative, the irreducible-moment-generating function 𝑍𝑁 (𝜇)

of a sum
∑︀𝑁
𝑖=1 𝜌(𝑖) of 𝑁 independent measurements 𝜌(𝑖) is additive,

𝑍𝑁 (𝜇) = 𝑁𝑍(𝜇) . (30.165)

The coefficients of the series expansion of 𝑍(𝜇) in 𝜇 define the irreducible moments 𝜅𝑛,

𝑍(𝜇) = 𝜇𝜅1 +
𝜇2

2!
𝜅2 +

𝜇3

3!
𝜅3 + ... . (30.166)

Unlike the moments ⟨𝜌𝑛⟩, the irreducible moments 𝜅𝑛 have the important property of being additive over
sums

∑︀𝑁
𝑖=1 𝜌(𝑖) of independent variables. The defining relation (30.164) between the irreducible 𝑍(𝜇) and

standard 𝑀(𝜇) moment-generating functions yields the relation between the irreducible moments 𝜅𝑛 and
moments ⟨𝜌𝑛⟩. The relations for the first few moments are, with Δ𝜌 ≡ 𝜌− 𝜌,

𝜅1 = 𝜌 , (30.167a)

𝜅2 = ⟨Δ𝜌2⟩ , (30.167b)

𝜅3 = ⟨Δ𝜌3⟩ , (30.167c)

𝜅4 = ⟨Δ𝜌4⟩ − 3⟨Δ𝜌2⟩2 . (30.167d)

The low order irreducible moments have names: the first, second, third, and fourth irreducible moments are
called respectively the mean, variance, skewness, and kurtosis. Some works define skewness and kurtosis as
the dimensionless combinations 𝜅3/𝜅

3/2
2 and 𝜅4/𝜅22.

More generally, the irreducible-moment-generating function 𝑍(𝜇𝑖) of a random field 𝜌(𝑥) is

𝑍(𝜇𝑖) = 𝜇1𝜅1 +
𝜇1𝜇2

2!
𝜅12 +

𝜇1𝜇2𝜇3

3!
𝜅123 + ... , (30.168)

where 𝜅1...𝑛 ≡ 𝜅(𝑥1, ...,𝑥𝑛) is the 𝑛-point irreducible moment, also called the 𝑛-point correlation function.
The first few correlation functions 𝜅1...𝑛 are related to the moments ⟨Δ𝜌1...Δ𝜌𝑛⟩ of the distribution by

𝜅1 = 𝜌 , (30.169a)

𝜅12 = ⟨Δ𝜌1 Δ𝜌2⟩ , (30.169b)

𝜅123 = ⟨Δ𝜌1 Δ𝜌2 Δ𝜌3⟩ , (30.169c)

𝜅1234 = ⟨Δ𝜌1 Δ𝜌2 Δ𝜌3 Δ𝜌4⟩ − ⟨Δ𝜌1 Δ𝜌2⟩⟨Δ𝜌3 Δ𝜌4⟩ − ⟨Δ𝜌1 Δ𝜌3⟩⟨Δ𝜌2 Δ𝜌4⟩ − ⟨Δ𝜌1 Δ𝜌4⟩⟨Δ𝜌2 Δ𝜌3⟩ .
(30.169d)

30.22.5 Central Limit Theorem

The Central Limit Theorem (CLT) states that the distribution of averages of 𝑁 independent measurements
of a random variable is Gaussian in the limit of large 𝑁 . The CLT generalizes to a random field, but for
simplicity this section confines itself to the case of a single random variable 𝜌.
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As shown in §30.22.4, irreducible moments are additive over sums of independent random variables. Thus
the irreducible moment 𝜅𝑛 of a sum

∑︀𝑁
𝑖=1 𝜌(𝑖) of 𝑁 independent variables 𝜌(𝑖) goes as

𝜅𝑛 ∝ 𝑁 . (30.170)

The 𝑛’th irreducible moment 𝜅𝑛 has units of 𝜌𝑛. The shape of the probability distribution 𝑃 (𝜌) can be
characterized by dimensionless combinations of the irreducible moments. For example, the standard deviation
𝜎, defined to be the square root of the variance, 𝜎 ≡ √𝜅2 =

√︀
⟨Δ𝜌2⟩, has the dimension of 𝜌. The standard

deviation increases with the number 𝑁 of independent measurements as
√
𝑁 , but the dimensionless ratio

𝜎/𝜌 of the standard deviation to the mean decreases as 1/
√
𝑁 ,

𝜎 ≡
√
𝜅2 ∝

√
𝑁 ,

𝜎

𝜌
≡
√
𝜅2
𝜅1
∝ 1√

𝑁
. (30.171)

This recovers the familiar result that the difference between the average 𝑁−1
∑︀
𝑖 𝜌(𝑖) of a set of independent

measurements and the true mean 𝜌 decreases as 1/
√
𝑁 as the number 𝑁 of measurements increases.

The shape of the probability distribution beyond its first and second irreducible moments can be char-
acterized by the dimensionless ratio 𝜅1/𝑛𝑛 /𝜅

1/2
2 of the 𝑛’th to 2nd irreducible moments. This ratio becomes

small as the number 𝑁 of independent measurements increases,

𝜅
1/𝑛
𝑛

𝜅
1/2
2

∝ 𝑁1/𝑛−1/2 → 0 as 𝑁 →∞ for 𝑛 ≥ 3 . (30.172)

The asymptotic behaviour (30.172) is the CLT: it says that higher order irreducible moments become negli-
gible in the limit of large 𝑁 .

30.22.6 Gaussian distribution

A Gaussian distribution is defined by the property that its only non-vanishing irreducible moments are the
first two, the mean 𝜅1 and variance 𝜅2. The third and higher irreducible moments of a Gaussian distribution
vanish,

𝜅𝑛 = 0 (𝑛 ≥ 3) Gaussian distribution . (30.173)

The irreducible-moment-generating function 𝑍(𝜇) of a Gaussian distribution is, from equation (30.166),

𝑍(𝜇) = 𝜇𝜌+
𝜇2

2
⟨Δ𝜌2⟩ . (30.174)

Accordingly, the moment-generating function 𝑀(𝜇) of a Gaussian is

𝑀(𝜇) = exp

(︂
𝜇𝜌+

𝜇2

2
⟨Δ𝜌2⟩

)︂
. (30.175)
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The probability distribution 𝑃 (𝜌) that, when integrated in accordance with the definition (30.159), yields
the Gaussian moment-generating function (30.175), is

𝑃 (𝜌) 𝑑𝜌 =
1√︀

2𝜋⟨Δ𝜌2⟩
exp

[︂
− (𝜌− 𝜌)2

2⟨Δ𝜌2⟩

]︂
𝑑𝜌 . (30.176)

The 1-point Gaussian probability distribution (30.176) generalizes to the 𝑁 -point Gaussian probability dis-
tribution (30.158).



31

Non-equilibrium processes in the FLRW
background

The subject of cosmological perturbations will be resumed in the next Chapter 32. The present Chapter is
concerned principally with an essential ingredient in the calculation of the power spectrum of CMB fluctua-
tions, namely recombination in the unperturbed FLRW background. Recombination presents an opportunity
to introduce the collisional Boltzmann equation, §31.5, which allows to follow the evolution of number den-
sities of species out of thermodynamic equilibrium, and which will be invoked again in Chapter 33 to follow
the evolution of the photon distribution of the CMB.
In the early Universe, density and temperature were high enough that collisional processes were fast

enough to drive particles into mutual thermodynamic equilibrium. But as the Universe expanded, density and
temperature decreased to the point that some processes fell out of equilibrium and froze out. Recombination,
and its inverse photoionization, constitute one example of such a process. At times well before the epoch
of recombination, the two-body process of recombination and its inverse process photoionization drove the
ionization state of the gas into thermodynamic equilibrium. But as recombination approached, recombination
rates could no longer keep up, slightly delaying the epoch of recombination, and leaving a residual level of
ionization. The residual ionization later catalyzed the formation of molecular hydrogen, leading to the first
generation of stars.
Besides recombination, there are some other processes of freeze-out in the expanding Universe that are

associated with well-understood physics. (1) The weak interactions froze out after electron-positron anni-
hilation, so that protons and neutrons could no longer interconvert, causing the neutron-to-proton ratio to
freeze out. The frozen neutron-to-proton ratio subsequently determined the primordial abundance of helium
to hydrogen. (2) Nuclear reactions froze out, causing primordial nucleosynthesis to cease at the light elements
H, D (≡ 2H), 3He, 4He, and Li, rather than proceeding all the way to the most tightly bound nucleus, iron.
This is well and good, since if nucleosynthesis had proceeded to completion, there would be no stars, and no
people.
Yet other processes of freeze-out probably occurred, but their physics is poorly understood, so only guesses

and estimates can be made. (1) Our Universe shows an excess of matter (protons, neutrons, electrons) over
antimatter (antiprotons, antineutrons, positrons). For this asymmetry to occur, there must have been some
𝑇 -violating process that preferred the creation of matter over antimatter, and that process must have frozen
out. (2) A leading candidate for the non-baryonic cold dark matter is a weakly-interacting massive particle
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(WIMP). In order that the mass density of WIMPs be as observed today, their number density must be
much less than that of relativistic particles (photons). If WIMPs were initially in thermodynamic equilibrium
at some relativistic temperature, then the WIMPs must have annihilated with their antiparticles as they
became non-relativistic; moreover that annihilation must have frozen-out so as to leave the remnant density
observed today. To achieve this outcome, the WIMP annihilation cross-section must be comparable to a
weak-interaction cross-section, which explains the popularity of the WIMP proposal. As of writing (2015),
laboratory attempts to detect WIMPs experimentally have led only to upper limits.

31.1 Conditions around the epoch of recombination

Two key quantities around the time of recombination were the photon temperature 𝑇 and the baryon number
density 𝑛b. Because the baryon-to-photon ratio 𝑛b/𝑛𝛾 ∼ 10−9, equation (10.103), was so small, the photon
distribution was essentially unaffected by the baryons. Photons remained in thermodynamic equilibrium at
a temperature 𝑇 that evolved with cosmic scale factor 𝑎 (normalized to 𝑎0 = 1) as

𝑇 =
𝑇0
𝑎
, (31.1)

where 𝑇0 = 2.725K is the CMB temperature today. Equation (31.1) held from after electron-positron anni-
hilation at 𝑇 ∼ 1MeV down to the present time. The baryon number density 𝑛b was (again normalized to
𝑎0 = 1)

𝑛b =
3Ω𝑏𝐻

2
0

8𝜋𝐺𝑚b𝑎3
, (31.2)

where 𝑚b = 939MeV was the approximate mean mass per baryon.
The electron fraction 𝑋𝑒 may be defined to be the ratio of the electron density 𝑛𝑒 to the nuclear proton

density 𝑛+, including all protons in all nuclei,

𝑋𝑒 ≡
𝑛𝑒
𝑛+

. (31.3)

The definition (31.3) is chosen so that 𝑋𝑒 = 1 when the plasma is fully ionized. The nuclear proton density
𝑛+ is

𝑛+ = 𝑓+𝑛b , (31.4)

where 𝑓+ ≡ 𝑛+/𝑛b is the proton fraction. To a good approximation, baryons comprised H and 4He nuclei,
and 𝑓+ = 0.875, Exercise 31.1.

Exercise 31.1. Proton and neutron fractions. Define the proton and neutron fractions 𝑓+ and 𝑓𝑛 by
the proton- and neutron-to-baryon ratios

𝑓+ ≡
𝑛+
𝑛b

= 1− 𝑓𝑛 , 𝑓𝑛 ≡
𝑛𝑛
𝑛b

. (31.5)
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Here 𝑛+ and 𝑛𝑛 are the number densities of protons and neutrons in all nuclei. The baryon number density
is their sum 𝑛b = 𝑛+ + 𝑛𝑛. For a H plus 4He composition, the nuclear proton and neutron number densities
are

𝑛+ = 𝑛H + 2𝑛4He , 𝑛𝑛 = 2𝑛4He . (31.6)

Show that the primordial 4He mass fraction defined by 𝑌4He ≡ 𝜌4He/(𝜌H + 𝜌4He) satisfies

𝑌4He = 2𝑓𝑛 . (31.7)

The observed primordial 4He abundance is 𝑌4He = 0.245± 0.004 (Cyburt et al., 2016), implying

𝑓𝑛 = 0.1225 , 𝑓+ = 1− 𝑓𝑛 = 0.8775 . (31.8)

31.2 Overview of recombination

The classic paper on cosmological recombination is Peebles (1968).
The ionization state of the Universe around the time of recombination was determined largely by hy-

drogen, the most abundant element. Recombination of hydrogen is a two-body process whose inverse is
photoionization,

𝑝+ 𝑒
recombination
−−−−−→←−−−−−

photoionization

H+ 𝛾 . (31.9)

Helium, the next most abundant element, was largely neutral by the time of recombination; its effect on
recombination was quite small.
At times well before recombination, the ionization state of the baryonic gas was close to thermodynamic

equilibrium. At the temperatures of relevance, electrons and nuclei were non-relativistic, and their occupa-
tion numbers 𝑓 , given in thermodynamic equilibrium by equations (10.124), were much less than 1. The
occupation numbers were small in part because the asymmetry between matter (protons, neutrons, elec-
trons) and antimatter (antiprotons, antineutrons, positrons) is quite small, about 10−9 baryons per CMB
photon, equation (10.103). Early in the Universe when the temperature exceeded their rest-mass energy,
particles and antiparticles in thermodynamic equilibrium had number densities comparable to photons (with
a factor of 3

4 in the number density of fermions relative to bosons, equation (10.140)). Because of the small
matter-antimatter asymmetry, the number density of particles and antiparticles were almost equal, so their
chemical potentials were almost zero, Exercise 10.17. Relativistic fermions in thermodynamic equilibrium
had occupation numbers of order unity for energies less than of order the temperature, 𝑓 = 1/(𝑒𝐸/𝑇 +1) ∼ 1

for 𝐸 . 𝑇 . As matter particles annihilated with their antiparticles, their occupation number fell to ∼ 10−9,
Figure 10.16. As the Universe continued to expand, the occupation number of the now non-relativistic parti-
cles, still in thermodynamic equilibrium with photons, fell further as 𝑓 ∼ 𝑛𝑇−3/2 ∝ 𝑇 3/2, equation (31.15).
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Thus the occupation numbers of non-relativistic electrons and nuclei was

𝑓 ∼ 10−9
(︂
𝑇

𝑚

)︂3/2

≪ 1 (31.10)

for particle kinetic energies 𝑝2/(2𝑚) less than of order the temperature 𝑇 .
Because of the low occupation number, hydrogen remained ionized down to a much lower temperature,

𝑇 ∼ 0.3 eV ∼ 3,000K, than the ionization energy 13.6 eV of hydrogen.
The temperature 𝑇 ∼ 0.3 eV of recombination was much lower than the difference 𝐸1 − 𝐸2 ∼ 10.2 eV

between the ground 𝑛 = 1 and first excited 𝑛 = 2 energy levels of hydrogen. Consequently the Boltzmann
factor strongly favoured the ground state, so that near recombination almost all the hydrogen atoms were
in their ground states, equation (31.20). The recombination temperature 𝑇 ∼ 0.3 eV was also significantly
lower than the difference 𝐸2 − 𝐸3 ∼ 1.9 eV between first 𝑛 = 2 and second 𝑛 = 3 excited energy levels of
hydrogen, so the population of 𝑛 = 2 substantially outnumbered higher excited states, equation (31.20). To
a good approximation, recombination involved only the first two energy levels 𝑛 = 1 and 2 of hydrogen.
As the density and temperature decreased because of adiabatic expansion, recombination could no longer

keep up. The large density of hydrogen atoms in the ground state meant that Lyman transitions, transi-
tions between the ground state and other states, were optically thick. Any radiative decay to the ground
state produced a Lyman line or continuum photon that was quickly absorbed by a nearby hydrogen atom.
Recombination to the ground state was inhibited. The bottleneck caused the 𝑛 = 2 energy level to become
overpopulated relative to the ground state, compared to thermodynamic equilibrium.
Recombination nevertheless proceeded via two slow processes, one from the 2𝑝 level, the other from the 2𝑠

level of hydrogen. The first process is that, as the Universe expands, the Lyman𝛼 2𝑝−1𝑠 transition redshifts,
and there is a finite probability for the photon to redshift out of the line without being absorbed. The second
process is that the 2𝑠 level can decay by a forbidden 2-photon transition. A possible third process, collisional
deexcitation of excited levels to the ground state, was slower than either of the first two.

31.3 Energy levels and ionization state in thermodynamic equilibrium

Electrons and nuclei near recombination were non-relativistic, and their occupation numbers were small, and
therefore well described by Boltzmann statistics, with occupation number 𝑓 given by equation (10.125).

31.3.1 Number density of non-relativistic Boltzmann species in thermodynamic

equilibrium

The energy 𝐸 of a non-relativistic particle of mass 𝑚 is related to its momentum 𝑝 by 𝐸 = 𝑚 + 𝑝2/(2𝑚).
For a hydrogen atom in energy level 𝑛, the rest mass 𝑚 is less than the rest mass 𝑚𝑝 of a proton by the
binding energy 𝐸𝑛 of the atom, 𝑚 = 𝑚𝑝 − 𝐸𝑛. In thermodynamic equilibrium, the number density 𝑛 of a
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non-relativistic Boltzmann species is

𝑛 =

∫︁
𝑓
𝑔 4𝜋𝑝2𝑑𝑝

(2𝜋~)3
= 𝑒(𝜇−𝑚)/𝑇

∫︁
𝑒−𝑝

2/(2𝑚𝑇 ) 𝑔 4𝜋𝑝
2𝑑𝑝

(2𝜋~)3
. (31.11)

The integral on the right hand side of equation (31.11) is∫︁
𝑒−𝑝

2/(2𝑚𝑇 ) 𝑔 4𝜋𝑝
2𝑑𝑝

(2𝜋~)3
= 𝑔

(︂
𝑚𝑇

2𝜋~2

)︂3/2

, (31.12)

so the number density in thermodynamic equilibrium is

𝑛 = 𝑔

(︂
𝑚𝑇

2𝜋~2

)︂3/2

𝑒(𝜇−𝑚)/𝑇 . (31.13)

The factor
(︀
𝑚𝑇/(2𝜋~2)

)︀3/2
defines a length scale 𝜆𝑇 which is a characteristic thermal Compton wavelength

of the particles,

𝜆𝑇 ≡
(︂
𝑚𝑇

2𝜋~2

)︂−1/2
. (31.14)

In terms of their number density 𝑛, the occupation number 𝑓 = 𝑒(𝜇−𝐸)/𝑇 of a Boltzmann species is

𝑓 =
𝑛

𝑔

(︂
𝑚𝑇

2𝜋~2

)︂−3/2
𝑒−𝑝

2/(2𝑚𝑇 ) =
𝑛𝜆3𝑇
𝑔
𝑒−𝑝

2/(2𝑚𝑇 ) . (31.15)

The condition for the validity of the Boltzmann approximation of small occupation numbers is that there be
few particles per Compton volume, 𝑛𝜆3𝑇 ≪ 1.

31.3.2 Level populations of hydrogen in thermodynamic equilibrium

Bound eigenstates of hydrogen are characterized by quantum numbers 𝑛, 𝑙, and 𝑚 associated with their
energy, total angular momentum, and projection of the angular momentum along an arbitrary direction.
Ignoring the small corrections to energy levels arising from relativistic and spin effects, the energies of the
bound eigenstates of hydrogen are

− 𝐸𝑛 = −13.6 eV/𝑛2 , (31.16)

with 𝑛 = 1, ...,∞ an integer running from the ground state 1 to the continuum ∞. Within each energy level
𝑛, the total angular momentum 𝑙 runs over 𝑛 integers 𝑙 = 0, ..., 𝑛− 1. Within each angular momentum level
𝑙 the “magnetic” quantum number 𝑚 runs over 2𝑙 + 1 integers 𝑚 = −𝑙, ..., 𝑙. Altogether, each hydrogenic
energy level 𝑛 contains 4𝑛2 individual states, comprising 2 spin states of the nuclear proton, 2 spin states of
the electron, and

∑︀𝑛−1
𝑙=0 (2𝑙 + 1) = 𝑛2 states of orbital angular momentum.

In thermodynamic equilibrium, the number density 𝑛𝑛𝑙 in level 𝑛𝑙 of hydrogen relative to the number
density 𝑛1𝑠 in the ground level 1𝑠 is, from equation (31.13),

𝑛𝑛𝑙
𝑛1𝑠

= (2𝑙 + 1)𝑒(𝐸𝑛−𝐸1)/𝑇 . (31.17)
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Figure 31.1 Hydrogen and helium ion fractions in thermodynamic equilibrium as a function of cosmic scale factor 𝑎

scaled to 𝑎0 = 1. The total hydrogen and helium fractions are 𝑋H = 1 − 𝑓𝑛/𝑓+ = 0.86 and 𝑋4He = 1
2
𝑓𝑛/𝑓+ = 0.07

where 𝑓𝑝 ≡ 1 − 𝑓𝑛 = 0.875 and 𝑓𝑛 ≡ 𝑛𝑛/𝑛b = 0.125 are the neutron- and proton-to-baryon ratios, Exercise 31.1.

The dashed vertical line indicates where recombination actually occurs (where the Thomson scattering optical depth

is unity), somewhat later than predicted by equilibrium.

31.3.3 Ionization state in thermodynamic equilibrium

In thermodynamic equilibrium, the chemical potentials of protons, electrons, and neutral hydrogen atoms
are related by 𝜇𝑝 + 𝜇𝑒 = 𝜇H, equation (10.127). Inserting this equilibrium condition into equation (31.13),
valid for non-relativistic Boltzmann species, implies the relation between the number densities 𝑛𝑝, 𝑛𝑒, and
𝑛𝑛𝑙 of protons, electrons, and hydrogen atoms in level 𝑛𝑙,

𝑛𝑝𝑛𝑒
𝑛𝑛𝑙

=
𝑔𝑝𝑔𝑒
𝑔𝑛𝑙

(︂
𝑚𝑒𝑇

2𝜋~2

)︂3/2

𝑒−𝐸𝑛/𝑇 . (31.18)

Equation (31.18) is the Saha equation for hydrogen. The 𝑚𝑒 on the right hand side of equation (31.18)
is strictly 𝑚𝑝𝑚𝑒/𝑚𝑛𝑙 where 𝑚𝑛𝑙 is the mass of the hydrogen atom in level 𝑛𝑙, but 𝑚𝑝 ≈ 𝑚𝑛𝑙 to a good
approximation.
More generally, the Saha equation relating the number densities of an ion X to the next-ionized ion X+ is

𝑛X+𝑛𝑒
𝑛X

=
𝑔X+𝑔𝑒
𝑔X

(︂
𝑚𝑒𝑇

2𝜋~2

)︂3/2

𝑒−𝐸X/𝑇 . (31.19)

Figure 31.1 illustrates the ionization fractions of H and 4He in thermodynamic equilibrium at the photon
temperature 𝑇 and baryon density 𝑛b given by equations (31.1) and (31.2).
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Exercise 31.2. Level populations of hydrogen near recombination. Use the approximation of ther-
modynamic equilibrium to estimate the relative number densities of states of hydrogen near recombination,
where 𝑇 ∼ 0.3 eV.
Solution. From equation (31.17), the ratio of excited 𝑛 = 2 to ground 𝑛 = 1 levels in thermodynamic
equilibrium is

𝑛2𝑝 = 3𝑛2𝑠 ∼ 3 𝑒

(︁
1
4−1

)︁
13.6 eV/0.3 eV

𝑛1𝑠 ∼ 10−14 𝑛1𝑠 , (31.20)

which is tiny. The equilibrium ratio depends steeply on the temperature, which is one reason why recombi-
nation cannot keep up as the temperature falls. Similarly, the ratio of the population of the second 𝑛 = 3 to
first 𝑛 = 2 excited states is

𝑛3 ∼ 9
4 𝑒

(︁
1
9−

1
4

)︁
13.6 eV/0.3 eV

𝑛2 ∼ 4× 10−3 𝑛2 , (31.21)

which is also small. Thus the ground state 𝑛 = 1 dominates the level population, followed by the first excited
states 𝑛 = 2,

𝑛1 ≫ 𝑛2 ≫ 𝑛𝑛≥3 . (31.22)

Exercise 31.3. Ionization state of hydrogen near recombination. Use the approximation of thermo-
dynamic equilibrium to estimate the temperature at which hydrogen recombines.
Solution. Almost all the hydrogen atoms are in their ground states. In the approximation that all hydrogen
atoms are in their ground state 1𝑠, the Saha equation (31.18) implies

𝑛𝑝𝑛𝑒
𝑛1𝑠

=

(︂
𝑚𝑒𝑇

2𝜋~2

)︂3/2

𝑒−𝐸1/𝑇 , (31.23)

the statistical weight factor cancelling, 𝑔1𝑠 = 𝑔𝑝𝑔𝑒 = 4. In the approximation of a pure hydrogen gas, in
which case the nuclear proton density equals the baryon density, 𝑛+ = 𝑛b, the Saha equation (31.23) is

𝑋2
𝑒

1−𝑋𝑒
=

1

𝑛+

(︂
𝑚𝑒𝑇

2𝜋~2

)︂3/2

𝑒−𝐸1/𝑇 =
23/2𝐺𝑚b𝑇

3
0

3𝜋1/2Ωb𝐻2
0

(︁𝑚𝑒

𝑇

)︁3/2
𝑒−𝐸1/𝑇 , (31.24)

where 𝑋𝑒 is the electron fraction, equation (31.3), and 𝑛b the baryon density, equation (31.2). Recombination
occurs at 𝑋𝑒 ≈ 1

2 . Equation (31.24) is then an implicit equation for the temperature 𝑇 . It can be solved
iteratively by guessing an initial 𝑇 , and calculating an improved value from

𝐸1

𝑇
= ln

[︂
23/2𝐺𝑚b𝑇

3
0

3𝜋1/2Ωb𝐻2
0

(︁𝑚𝑒

𝑇

)︁3/2]︂
. (31.25)

Guessing 𝑇 = 104 K yields
𝐸1

𝑇
≈ 40 , (31.26)

which gives the estimated recombination temperature of 𝑇 ≈ 4,000K. Iterating a second time gives

𝑇 ≈ 3,800K . (31.27)
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Concept question 31.4. Atomic structure notation. An eigenstate with 𝑙 = 0 is denoted 𝑠, while one
with 𝑙 = 1 is denoted 𝑝. Why? Answer. For historical reasons. In atomic spectroscopy, angular momen-
tum levels 𝑙 = 0, 1, 2, 3, 4, ... are conventionally denoted 𝑠, 𝑝, 𝑑, 𝑓, 𝑔, ..., the first 4 letters standing for sharp,
principal, diffuse, and fundamental. After fundamental 𝑓 , the labelling is alphabetical.

31.4 Occupation numbers

Occupation number was discussed previously in §10.26.
Each species of energy-momentum is described by a dimensionless occupation number, or phase-space

probability distribution, a function 𝑓(𝑡,𝑥,𝑝) of time 𝑡, comoving position 𝑥, and tetrad-frame momentum
𝑝, which describes the number 𝑑𝑁 of particles in a tetrad-frame element 𝑑3𝑟 𝑑3𝑝/(2𝜋~)3 of phase-space,

𝑑𝑁(𝑡,𝑥,𝑝) = 𝑓(𝑡,𝑥,𝑝)
𝑔 𝑑3𝑟 𝑑3𝑝

(2𝜋~)3
, (31.28)

with 𝑔 being the number of spin states of the particle. The tetrad-frame phase-space element 𝑑3𝑟 𝑑3𝑝/(2𝜋~)3
is dimensionless and Lorentz-invariant, and the occupation number 𝑓 is likewise dimensionless and Lorentz-
invariant. The tetrad-frame energy-momentum 4-vector 𝑝𝑚 of a particle is

𝑝𝑚 ≡ 𝑒𝑚𝜇
𝑑𝑥𝜇

𝑑𝜆
= {𝐸,𝑝} = {𝐸, 𝑝𝑎} , (31.29)

where 𝜆 is the affine parameter, related to proper time 𝜏 along the worldline of the particle by 𝑑𝜆 ≡
𝑑𝜏/𝑚, which remains well-defined in the limit of massless particles, 𝑚 = 0. The tetrad-frame energy 𝐸 and
momentum 𝑝 ≡ |𝑝| for a particle of rest mass 𝑚 are related by

𝐸2 − 𝑝2 = 𝑚2 . (31.30)

31.5 Boltzmann equation

The detailed evolution of the abundance of any species can be followed using the Boltzmann equation.
The Boltzmann equation splits the evolution of the occupation number 𝑓 of a species into a collisionless part
in which each particle evolves as a test particle in the background geometry, and a collisional part in which
particles are destroyed or created as a result of collisions with other particles.
Collisionless evolution is described by the single-particle distribution function, the occupation number 𝑓 .

Because phase-space volume is conserved as the system evolves, §4.22.1, conservation of particle number
along the paths of particles, 𝑑𝑁/𝑑𝜆 = 0, is equivalent to conservation of the occupation number 𝑓 defined
by equation (31.28),

𝑑𝑓

𝑑𝜆
= 0 . (31.31)

Equation (31.31) is the collisionless Boltzmann equation. The derivative with respect to affine parameter
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𝜆 on the left hand side of the Boltzmann equation (31.31) is a Lagrangian derivative along the (timelike or
lightlike) worldline of a particle in the fluid.
The collisionless Boltzmann equation holds without modification for particles that do not collide, such as

neutrinos or non-baryonic dark matter particles, but it fails for particles whose trajectories are substantially
modified by collisions with other particles, such as photons or baryons. Collisions are both a sink and a source
of particles, destroying particles of momentum 𝑝 and creating others of momentum 𝑝′ in the single-particle
distribution 𝑓 . The effect of collisions is modelled by introducing a collision term, schematically written
𝐶[𝑓 ], containing both sinks and sources,

𝑑𝑓

𝑑𝜆
= 𝐶[𝑓 ] . (31.32)

Equation (31.32) is the collisional Boltzmann equation. Since 𝑓 is dimensionless while the affine param-
eter 𝑑𝜆 ≡ 𝑑𝜏/𝑚 has units of time/mass, the units of the collision term 𝐶[𝑓 ] are mass/time.

31.5.1 Boltzmann equation in the FLRW geometry

In the FLRW geometry, homogeneity and isotropy imply that the occupation number is a function 𝑓(𝑡, 𝑝) only
of cosmic time 𝑡 and of the magnitude 𝑝 of the proper momentum. The collisional Boltzmann equation (31.32)
is then

𝑑𝑓

𝑑𝜆
=
𝑑𝑡

𝑑𝜆

𝜕𝑓

𝜕𝑡
+
𝑑𝑝

𝑑𝜆

𝜕𝑓

𝜕𝑝
= 𝐶[𝑓 ] . (31.33)

To follow lots of particles simultaneously, switch the integration variable from the affine parameter 𝜆, which
is particle-dependent, to cosmic time 𝑡, which is the same for all. With cosmic time 𝑡 as the integration
variable, the only non-vanishing vierbein coefficient that depends on 𝑡 in the background FLRW geometry
is 𝑒0𝑡 = 1. The relation between cosmic time 𝑡 and affine parameter 𝜆 is

𝑑𝑡

𝑑𝜆
= 𝑝𝑡 = 𝑒0

𝑡𝑝0 = 𝐸 , (31.34)

where 𝐸 = 𝑝0 is the proper energy of the particle in the tetrad rest-frame. It would be equally possible to
use conformal time 𝜂 as the integration variable, as will be done later in §33.2, in which case 𝑒0𝜂 = 1/𝑎

and 𝑑𝜂/𝑑𝜆 = 𝐸/𝑎; for the present purpose however, cosmic time 𝑡 is slightly more convenient. As found in
Exercise 10.5, the proper momentum of a particle, massless or massive, redshifts as 𝑝 ∝ 1/𝑎, so 𝑑 ln 𝑝/𝑑𝑡 =
−𝑑 ln 𝑎/𝑑𝑡. Thus the Boltzmann equation (31.33) is

𝑑𝑓

𝑑𝑡
=
𝜕𝑓

𝜕𝑡
− 𝑑 ln 𝑎

𝑑𝑡

𝜕𝑓

𝜕 ln 𝑝
=

1

𝐸
𝐶[𝑓 ] . (31.35)



31.6 Collisions 841

The proper number density 𝑛 is an integral (10.120) of the occupation number 𝑓 over momenta. Integrating
the left hand side of the Boltzmann equation (31.35) gives∫︁

𝑑𝑓

𝑑𝑡

𝑔 4𝜋𝑝2𝑑𝑝

(2𝜋~)3
=

∫︁
𝜕𝑓

𝜕𝑡

𝑔 4𝜋𝑝2𝑑𝑝

(2𝜋~)3
− 𝑑 ln 𝑎

𝑑𝑡

∫︁
𝜕𝑓

𝜕 ln 𝑝

𝑔 4𝜋𝑝2𝑑𝑝

(2𝜋~)3

=
𝜕

𝜕𝑡

∫︁
𝑓
𝑔 4𝜋𝑝2𝑑𝑝

(2𝜋~)3
− 𝑑 ln 𝑎

𝑑𝑡

{︂[︂
𝑓
𝑔 4𝜋𝑝3

(2𝜋~)3

]︂
−
∫︁

3𝑓
𝑔 4𝜋𝑝2𝑑𝑝

(2𝜋~)3

}︂
=
𝑑𝑛

𝑑𝑡
+ 3

𝑑 ln 𝑎

𝑑𝑡
𝑛 =

1

𝑎3
𝑑𝑛𝑎3

𝑑𝑡
. (31.36)

Integrated over momenta, the collisional Boltzmann equation (31.35) is thus

1

𝑎3
𝑑𝑛𝑎3

𝑑𝑡
=

∫︁
𝐶[𝑓 ]

𝑔 4𝜋𝑝2𝑑𝑝

𝐸(2𝜋~)3
. (31.37)

Equation (31.37) holds for both massive and massless particles. In the absence of collisions, 𝐶[𝑓 ] = 0, the
integrated Boltzmann equation (31.37) shows that proper number density 𝑛 decreases as 𝑎−3,

𝑛 ∝ 𝑎−3 . (31.38)

Equation (31.38) says that the number 𝑛𝑎3 of particles in a comoving volume remains constant in the absence
of collisions that destroy or create particles.

31.6 Collisions

For a 2-body collision of the form

1 + 2 ↔ 3 + 4 , (31.39)

the rate per unit time and volume at which particles of type 1 leave and enter an interval 𝑑3𝑝1 of momentum
space is, in units 𝑐 = ~ = 1,

𝐶[𝑓1]
𝑔1 𝑑

3𝑝1
𝐸1(2𝜋)3

=

∫︁
⟨|ℳ|2⟩

[︀
− 𝑓1𝑓2(1∓ 𝑓3)(1∓ 𝑓4) + 𝑓3𝑓4(1∓ 𝑓1)(1∓ 𝑓2)

]︀
(2𝜋)4𝛿4𝐷(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)

𝑔1 𝑑
3𝑝1

2𝐸1(2𝜋)3
𝑔2 𝑑

3𝑝2
2𝐸2(2𝜋)3

𝑑3𝑝3
2𝐸3(2𝜋)3

𝑑3𝑝4
2𝐸4(2𝜋)3

. (31.40)

All factors in equation (31.40) are Lorentz scalars. On the left hand side, the collision term 𝐶[𝑓1] and the
momentum 3-volume element 𝑑3𝑝1/𝐸1 are both Lorentz scalars. On the right hand side, the mean amplitude
squared ⟨|ℳ|2⟩, the various occupation numbers 𝑓𝑖, the energy-momentum conserving 4-dimensional Dirac
delta-function 𝛿4𝐷(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4), and each of the four momentum 3-volume elements 𝑑3𝑝𝑖/(2𝐸𝑖), are
all Lorentz scalars. The factor of 1/2 in each momentum element 𝑑3𝑝𝑖/(2𝐸𝑖) has its roots in quantum field
theory, where it serves to normalize propagators of quanta correctly, equation (??).
The first ingredient in the integrand on the right hand side of the expression (31.40) is the Lorentz-invariant
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mean scattering amplitude squared ⟨|ℳ|2⟩, calculated using quantum field theory, §??. By convention (see
for example equation (??) in §??), the mean amplitude squared ⟨|ℳ|2⟩ represents a rate averaged over initial
spin states and summed over final spin states,

⟨|ℳ|2⟩ ≡ 1

𝑔1𝑔2

∑︁
spins 𝑖

|ℳ|2𝑖 , (31.41)

so that the mean amplitude squared represents a rate per incoming spin state. To convert the mean amplitude
squared to a net rate per unit time and volume, it is necessary to sum over particles in the initial states,
which explains why equation (31.40) includes spin factors 𝑔1 and 𝑔2 in the integral over initial momenta. The
average-over-incoming spins factor 1/(𝑔1𝑔2) in the mean amplitude squared cancels the sum-over-incoming
spins factor 𝑔1𝑔2 in the integral (31.40). The convention to average over initial states when in the end they
must be summed over may seem strange, but then so are many conventions. For a process involving 4
particles such as (31.39), the mean amplitude squared ⟨|ℳ|2⟩ is dimensionless (in units 𝑐 = ~ = 1), but it is
not dimensionless in general, equation (??).
The second ingredient in the integrand on the right hand side of expression (31.40) is the combination of

rate factors

rate(1 + 2 → 3 + 4) ∝ 𝑓1𝑓2(1∓ 𝑓3)(1∓ 𝑓4) , (31.42a)

rate(1 + 2 ← 3 + 4) ∝ 𝑓3𝑓4(1∓ 𝑓1)(1∓ 𝑓1) , (31.42b)

where the 1 ∓ 𝑓 factors are blocking or stimulation factors, the choice of ∓ sign depending on whether the
species in question is fermionic or bosonic:

1− 𝑓 = Fermi-Dirac blocking factor , (31.43a)

1 + 𝑓 = Bose-Einstein stimulation factor . (31.43b)

The first rate factor (31.42a) expresses the fact that the rate to lose particles from 1 + 2 → 3 + 4 collisions
is proportional to the occupancy 𝑓1𝑓2 of the initial states, modulated by the blocking/stimulation factors
(1 ∓ 𝑓3)(1 ∓ 𝑓4) of the final states. Likewise the second rate factor (31.42b) expresses the fact that the
rate to gain particles from 1 + 2 ← 3 + 4 collisions is proportional to the occupancy 𝑓3𝑓4 of the initial
states, modulated by the blocking/stimulation factors (1∓ 𝑓1)(1∓ 𝑓2) of the final states. In thermodynamic
equilibrium, the rates (31.42) balance, Exercise 31.5, a property that is called detailed balance, or microscopic
reversibility. Microscopic reversibility is a consequence of time reversal symmetry.
The final ingredient in the integrand on the right hand side of expression (31.40) is the 4-dimensional

Dirac delta-function, which imposes energy-momentum conservation on the process 1 + 2 ↔ 3 + 4. The
4-dimensional delta-function is a product of a 1-dimensional delta-function expressing energy conservation,
and a 3-dimensional delta-function expressing momentum conservation:

(2𝜋)4𝛿4𝐷(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4) = 2𝜋 𝛿𝐷(𝐸1 + 𝐸2 − 𝐸3 − 𝐸4) (2𝜋)
3𝛿3𝐷(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4) . (31.44)
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Exercise 31.5. Detailed balance.

1. Show that the rates balance in thermodynamic equilibrium,

𝑓1𝑓2(1∓ 𝑓3)(1∓ 𝑓4) = 𝑓3𝑓4(1∓ 𝑓1)(1∓ 𝑓2) . (31.45)

2. Conclude that, if each particle type 𝑖 has a thermodynamic distribution with its own temperature 𝑇𝑖
and chemical potential 𝜇𝑖, then

− 𝑓1𝑓2(1∓ 𝑓3)(1∓ 𝑓4) + 𝑓3𝑓4(1∓ 𝑓1)(1∓ 𝑓2)

= 𝑓1𝑓2(1∓ 𝑓3)(1∓ 𝑓4)
[︂
− 1 + exp

(︂
𝐸1 − 𝜇1

𝑇1
+
𝐸2 − 𝜇2

𝑇2
+
−𝐸3 + 𝜇3

𝑇3
+
−𝐸4 + 𝜇4

𝑇4

)︂]︂
. (31.46)

Solution.

1. Equation (31.45) is true if and only if

𝑓1
1∓ 𝑓1

𝑓2
1∓ 𝑓2

=
𝑓3

1∓ 𝑓3
𝑓4

1∓ 𝑓4
. (31.47)

But
𝑓

1∓ 𝑓
= 𝑒(−𝐸+𝜇)/𝑇 , (31.48)

so (31.47) is true if and only if

−𝐸1 + 𝜇1

𝑇
+
−𝐸2 + 𝜇2

𝑇
=
−𝐸3 + 𝜇3

𝑇
+
−𝐸4 + 𝜇4

𝑇
, (31.49)

which is true in thermodynamic equilibrium because

𝐸1 + 𝐸2 = 𝐸3 + 𝐸4 , 𝜇1 + 𝜇2 = 𝜇3 + 𝜇4 . (31.50)

31.7 Non-equilibrium recombination

At times well before recombination, the ionization state of the baryonic gas was well described by ther-
modynamic equilibrium. However, as recombination approached, the recombination rate could not keep up
with the adiabatic decrease in density and temperature. Consequently recombination was delayed slightly
compared to what would be expected in thermodynamic equilibrium. To model the CMB precisely, it is
necessary to worry about the details of non-equilibrium recombination.
Although the ionization state was out of equilibrium, elastic collisions between electrons, ions, and neutrals

kept the velocity distributions of electrons and baryons in mutual thermodynamic equilibrium at a common
kinetic temperature 𝑇𝑒 = 𝑇b.
Recombination to and photoionization out of bound state 𝑖 of hydrogen destroys and creates a free electron.

The electron collision integral 𝐶𝑖[𝑓𝑒] corresponding to this process is given by, from equation (31.40) with
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stimulated processes from protons, electrons, and hydrogen atoms neglected because of their small occupation
numbers,

𝐶𝑖[𝑓𝑒]
𝑔𝑝 𝑑

3𝑝𝑝
𝑚𝑝(2𝜋)3

=

∫︁
⟨|ℳ|2⟩𝑖

[︀
− 𝑓𝑝𝑓𝑒(1 + 𝑓𝛾) + 𝑓𝑖𝑓𝛾

]︀
(2𝜋)4𝛿4𝐷(𝑝𝑝 + 𝑝𝑒 − 𝑝𝑖 − 𝑝𝛾)

𝑔𝑝 𝑑
3𝑝𝑝

2𝑚𝑝(2𝜋)3
𝑔𝑒 𝑑

3𝑝𝑒
2𝑚𝑒(2𝜋)3

𝑑3𝑝𝑖
2𝑚𝑝(2𝜋)3

𝑑3𝑝𝛾
2𝑝𝛾(2𝜋)3

. (31.51)

The −𝑓𝑝𝑓𝑒 term in the integrand corresponds to direct recombination, the −𝑓𝑝𝑓𝑒𝑓𝛾 term to stimulated
recombination, and the 𝑓𝑖𝑓𝛾 term to photoionization. Because the proton and hydrogen atom are so massive,
they remain essentially at rest during a recombination or photoionization, so the mean squared amplitude
⟨|ℳ|2⟩𝑖 for photoionization out of and recombination into bound state 𝑖 is essentially independent of the
proton and hydrogen momenta. Integrating the collision integral (31.51) over the proton and hydrogen
momenta yields

𝐶𝑖[𝑓𝑒] =
1

8𝑚2
𝑝

∫︁
⟨|ℳ|2⟩𝑖 2𝜋𝛿𝐷(𝐸𝑝 + 𝐸𝑒 − 𝐸𝑖 − 𝐸𝛾)

[︀
−𝑛𝑝𝑓𝑒(1 + 𝑓𝛾) + 𝑛𝑖(𝑔𝑝/𝑔𝑖)𝑓𝛾

]︀ 𝑑3𝑝𝛾
2𝑝𝛾(2𝜋)3

, (31.52)

one of the integrations over momenta being swallowed by the momentum-conserving Dirac delta-function
(2𝜋)3𝛿3𝐷(𝑝𝑝+𝑝𝑒−𝑝𝑖−𝑝𝛾). Again because the proton and hydrogen atom are so massive, the photon is emitted
and absorbed isotropically. Integrating over directions 𝑝𝛾 of the photon momentum yields 4𝜋. Integrating
over the photon energy 𝑝𝛾 swallows the energy-conserving delta-function, yielding

𝐶𝑖[𝑓𝑒] =
𝑝𝛾

16𝜋𝑚2
𝑝

⟨|ℳ|2⟩𝑖
[︀
−𝑛𝑝𝑓𝑒(1 + 𝑓𝛾) + 𝑛𝑖(𝑔𝑝/𝑔𝑖)𝑓𝛾

]︀
. (31.53)

If the hydrogenic state 𝑖 is in energy level 𝑛, then energy conservation requires that the energy 𝐸𝛾 ≡ 𝑝𝛾 of
the photon be the sum of the electron kinetic energy and the binding energy (ionization energy) of the level,

𝑝2𝑒
2𝑚𝑒

+ 𝐸𝑛 = 𝑝𝛾 . (31.54)

In the situation of cosmological recombination under consideration, the photons, whose numbers overwhelm
those of electrons, have a thermal (Planckian) momentum distribution at temperature 𝑇𝛾 . Elastic collisions
between electrons keep their distribution close to thermal (Maxwellian). Since electron energies redshift
faster than photon energies, 𝑝2𝑒/(2𝑚) ∝ 𝑎−2 versus 𝑝𝛾 ∝ 𝑎−1, the electron temperature is slightly below
that of photons. However, electron-photon collisions keep the electron temperature closely equal to the
photon temperature, 𝑇𝑒 = 𝑇𝛾 , up to and through recombination. After recombination, electron-photon
collisions become rare enough that the electron kinetic temperature drops below the photon temperature
(Scott and Moss, 2009). For completeness, the treatment in this section allows different electron and photon
temperatures, although the two temperatures will be set equal in subsequent sections.
Substituting the Boltzmann distribution (31.15) at temperature 𝑇𝑒 for the electron occupation number 𝑓𝑒,

and the Planckian distribution (10.129) at temperature 𝑇𝛾 for the photon occupation number 𝑓𝛾 , brings the
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electron collision integral (31.53) to

𝐶𝑖[𝑓𝑒] =
𝑝𝛾

16𝜋𝑚2
𝑝

⟨|ℳ|2⟩𝑖

[︃
−𝑛𝑝𝑛𝑒(1/𝑔𝑒)(𝑚𝑒𝑇𝑒/2𝜋)

−3/2𝑒−𝑝
2
𝑒/(2𝑚𝑒𝑇𝑒) + 𝑛𝑖(𝑔𝑝/𝑔𝑖)𝑒

−𝑝𝛾/𝑇𝛾

1− 𝑒−𝑝𝛾/𝑇𝛾

]︃
. (31.55)

Finally, integrating the collision integral (31.55) over electron momenta gives∫︁
𝐶𝑖[𝑓𝑒]

𝑔𝑒 𝑑
3𝑝𝑒

𝑚𝑝(2𝜋)3
= −𝑛𝑝𝑛𝑒

[︀
𝛼𝑖(𝑇𝑒) + 𝛼stim

𝑖 (𝑇𝑒, 𝑇𝛾)
]︀
+ 𝑛𝑖𝛽𝑖(𝑇𝛾) , (31.56)

where 𝛼𝑖(𝑇𝑒) and 𝛼stim
𝑖 (𝑇𝑒, 𝑇𝛾) are thermally averaged direct and stimulated recombination rate coefficients

to state 𝑖, and 𝛽𝑖(𝑇𝛾) is the photoionization rate coefficient out of bound state 𝑖. The direct recombination rate
𝛼𝑖(𝑇𝑒) depends only on the electron temperature 𝑇𝑒, while the photoionization rate 𝛽𝑖(𝑇𝛾) depends only on
the photon temperature 𝑇𝛾 . The stimulated recombination rate 𝛼stim

𝑖 (𝑇𝑒, 𝑇𝛾) depends on both temperatures.
In cosmological recombination, stimulated recombination is a small correction of order 𝑒−𝐸𝑛/𝑇 , which can
be neglected. If stimulated recombination is neglected, then detailed balance imposes

𝛽𝑖(𝑇 ) = 𝛼𝑖(𝑇 )

(︂
𝑛𝑝𝑛𝑒
𝑛𝑖

)︂
TE

= 𝛼𝑖(𝑇 )
𝑔𝑝𝑔𝑒
𝑔𝑖

(︂
𝑚𝑒𝑇

2𝜋~2

)︂3/2

𝑒−𝐸𝑛/𝑇 . (31.57)

The Boltzmann equation for electrons, equation (31.37), is a sum over recombinations to and photoion-
izations out of bound states 𝑖,

1

𝑎3
𝑑𝑛𝑒𝑎

3

𝑑𝑡
= −𝑛𝑝𝑛𝑒

∑︁
𝑖

[︀
𝛼𝑖(𝑇𝑒) + 𝛼stim

𝑖 (𝑇𝑒, 𝑇𝛾)
]︀
+
∑︁
𝑖

𝑛𝑖𝛽𝑖(𝑇𝛾) . (31.58)

Let 𝑋𝑖 denote the ratio of the number density of species 𝑖 to the nuclear proton density 𝑛+,

𝑋𝑖 ≡
𝑛𝑖
𝑛+

. (31.59)

The ratio is defined so that the electron fraction is unity, 𝑋𝑒 = 1, when the plasma is fully ionized. Since
𝑛+𝑎

3 is constant as the Universe expands, the Boltzmann equation (31.58) can be written as an equation
for the evolution of the electron fraction,

𝑑𝑋𝑒

𝑑𝑡
= −𝑋𝑝𝑋𝑒𝑛+

∑︁
𝑖

[︀
𝛼𝑖(𝑇𝑒) + 𝛼stim

𝑖 (𝑇𝑒, 𝑇𝛾)
]︀
+
∑︁
𝑖

𝑋𝑖𝛽𝑖(𝑇𝛾) . (31.60)

Equation (31.60) gives the rate of change of the electron fraction for a pure hydrogen gas. If other elements
are included, notably helium, additional processes of recombination to and ionization out of bound states of
those elements should be adjoined.

31.8 Recombination: Peebles approximation

Recombination is dominated by hydrogen, the dominant chemical element. The second most abundant ele-
ment is helium, which is largely neutral by the time of recombination. Peebles (1968) argued that the overall
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hydrogen density and the predominance of hydrogen atoms in the ground state, equation (31.22), would have
the consequence that the gas would be optically thick to Lyman transitions, that is, to transitions to the
ground state, but optically thin in transitions to excited states. Consequently any continuum or line Lyman
photon emitted as a result of a recombination or transition to the ground state would be quickly absorbed.
On the other hand radiative transitions between excited levels 𝑛 ≥ 2 would proceed rapidly without hin-
drance, leading to a thermal distribution among the excited levels. Since the dominant excited level would
be 𝑛 = 2, equation (31.22), Peebles (1968) argued that recombination could be approximated by a 3-level
system consisting of protons and of 𝑛 = 2 and 𝑛 = 1 levels of hydrogen.
Since transitions from the continuum to 𝑛 = 1 were ineffective, the rate of change of the proton fraction

𝑋𝑝 ≡ 𝑛𝑝/𝑛+ was dominated by recombinations to and photoionizations out of the 𝑛 = 2 level,

𝑑𝑋𝑝

𝑑𝑡
= −𝑋𝑝𝑋𝑒𝑛+𝛼2 +𝑋2𝛽2 . (31.61)

Equation (31.61) ignores stimulated recombination, which is a 𝑒−𝐸2/𝑇 ≪ 1 correction to the rate.
Peebles (1968) argued that successful recombination to the 𝑛 = 1 ground state would be dominated by

slow leakage out of the 𝑛 = 2 level, which occurred by two processes. The first process is 2-photon decay out
of the 2𝑠 state, which occurs at a rate 𝐴2𝑠 = 8.22458 s−1. The second process is that, although most decays
out of the 2𝑝 state produced a Lyman𝛼 photon that was immediately absorbed by a nearby hydrogen atom,
the expansion of the Universe redshifted the emitted photon, and a small fraction 𝑃S of the emitted Lyman𝛼
photons succeeded in redshifting out of the line without being reabsorbed. The fraction 𝑃S of emitted photons
that escape in an expanding medium can be approximated using the Sobolev formalism, §31.10. Thus the
rate of change of the fraction 𝑋1 ≡ 𝑛1/𝑛+ of hydrogen atoms in the ground 𝑛 = 1 level is

𝑑𝑋1

𝑑𝑡
= 𝑋2𝐴21 −𝑋1𝐵12 , (31.62)

where the effective spontaneous decay rate 𝐴21 from the 𝑛 = 2 levels to the ground 𝑛 = 1 level is

𝐴21 =
𝑔2𝑠
𝑔2
𝐴2𝑠−1𝑠 +

𝑔2𝑝
𝑔2
𝐴2𝑝−1𝑠𝑃S , (31.63)

with 𝑃S the Sobolev escape probability given by equation (31.101). Equation (31.63) assumes that 2𝑠 and
2𝑝 are populated in the ratio (𝑔2𝑠/𝑔2) : (𝑔2𝑝/𝑔2) =

1
4 : 3

4 of their statistical weights. The value of the spon-
taneous decay coefficient 𝐴2𝑝−1𝑠 itself is not actually needed since it cancels in the Sobolev approximation,
equation (31.102),

𝑔2𝑝
𝑔2
𝐴2𝑝−1𝑠𝑃S =

1

𝑋1𝑛+

𝑔1
𝑔2

8𝜋𝐻

𝜆32𝑝−1𝑠
, (31.64)

where 𝐻 is the Hubble parameter. The statistical weight factor is 𝑔1/𝑔2 = 1
4 .

Detailed balance requires that 𝑑𝑋𝑝/𝑑𝑡, equation (31.61), must vanish in thermodynamic equilibrium (TE),
so the ratio of photoionization to recombination rate coefficients must be

𝛽2
𝛼2

=

(︂
𝑛𝑝𝑛𝑒
𝑛2

)︂
TE

=
𝑔𝑝𝑔𝑒
𝑔2

(︂
𝑚𝑒𝑇

2𝜋~2

)︂3/2

𝑒−𝐸2/𝑇 , (31.65)
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the statistical weight factor being 𝑔𝑝𝑔𝑒/𝑔2 = 1
4 . Hence equation (31.61) may be written

𝑑𝑋𝑝

𝑑𝑡
= 𝑋𝑝𝑋𝑒𝑛+𝛼2

(︂
− 1 +

1

𝑏𝑝2

)︂
, (31.66)

where the departure coefficient 𝑏𝑝2 is the value of 𝑛𝑝𝑛𝑒/𝑛2 relative to its value in thermodynamic equilibrium,

𝑏𝑝2 ≡
𝑛𝑝𝑛𝑒
𝑛2

⧸︂(︂
𝑛𝑝𝑛𝑒
𝑛2

)︂
TE

=
𝑋𝑝𝑋𝑒𝑛+
𝑋2

𝑔2
𝑔𝑝𝑔𝑒

(︂
𝑚𝑒𝑇

2𝜋~2

)︂−3/2
𝑒𝐸2/𝑇 . (31.67)

Similarly, detailed balance requires that 𝑑𝑋1/𝑑𝑡, equation (31.62), must vanish in thermodynamic equilib-
rium, so the ratio of radiative excitation to decay rate coefficients must be

𝐵12

𝐴21
=

(︂
𝑋2

𝑋1

)︂
TE

=
𝑔2
𝑔1
𝑒−𝐸12/𝑇 , (31.68)

with 𝐸12 ≡ 𝐸1 − 𝐸2 and 𝑔2/𝑔1 = 4. Thus equation (31.62) may be written

𝑑𝑋1

𝑑𝑡
= 𝑋1𝐵12(𝑏21 − 1) , (31.69)

where the departure coefficient 𝑏21 is the value of 𝑛2/𝑛1 relative to its value in thermodynamic equilibrium,

𝑏21 ≡
𝑛2
𝑛1

⧸︂(︂
𝑛2
𝑛1

)︂
TE

=
𝑋2

𝑋1

𝑔1
𝑔2
𝑒𝐸12/𝑇 . (31.70)

Since the population of the 𝑛 = 2 level was so much smaller than the populations either of protons or of
the ground 𝑛 = 1 level of hydrogen, Peebles (1968) argued that the rate of change of 𝑋2 must be negligible
relative to the rates of change of 𝑋𝑝 and 𝑋1,

𝑑𝑋2

𝑑𝑡
= − 𝑑𝑋𝑝

𝑑𝑡
− 𝑑𝑋1

𝑑𝑡
= 𝑋𝑝𝑋𝑒𝑛+𝛼2 −𝑋2𝛽2 −𝑋2𝐴21 +𝑋1𝐵12 ≈ 0 . (31.71)

The approximation (31.71) of vanishing 𝑑𝑋2/𝑑𝑡 allows 𝑋2 to be eliminated in favour of 𝑋1,

𝑋2

𝑋1
=

(𝑋𝑝𝑋𝑒/𝑋1)𝑛+𝛼2 +𝐵12

𝛽2 +𝐴21
. (31.72)

Given the detailed balance relations (31.65) between 𝛽2 and 𝛼2, and (31.68) between 𝐵12 and 𝐴21, the
relation (31.72) may also be written as an expression for the departure coefficient 𝑏21,

𝑏21 =
𝑏𝑝1𝛽2 +𝐴21

𝛽2 +𝐴21
, (31.73)

in terms of the departure coefficient 𝑏𝑝1, the value of 𝑛𝑝𝑛𝑒/𝑛1 relative to its value in thermodynamic equi-
librium,

𝑏𝑝1 ≡
𝑛𝑝𝑛𝑒
𝑛1

⧸︂(︂
𝑛𝑝𝑛𝑒
𝑛1

)︂
TE

=
𝑋𝑝𝑋𝑒𝑛+
𝑋1

𝑔1
𝑔𝑝𝑔𝑒

(︂
𝑚𝑒𝑇

2𝜋~2

)︂−3/2
𝑒𝐸1/𝑇 . (31.74)
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Figure 31.2 Non-equilibrium hydrogen ion fractions as a function of cosmic scale factor 𝑎 scaled to 𝑎0 = 1. The total

hydrogen fraction, 𝑋H = 𝑓H = 0.86, is the fraction of nuclear protons that are hydrogen nuclei, equation (31.83).

The statistical weight factor is 𝑔1/(𝑔𝑝𝑔𝑒) = 1. Equation (31.73) allows the departure coefficients 𝑏21 and
𝑏𝑝2 ≡ 𝑏𝑝1/𝑏21 in the recombination equations (31.66) and (31.69) to be eliminated in favour of 𝑏𝑝1, yielding

𝑑 ln𝑋𝑝

𝑑𝑡
= 𝑋𝑒𝑛+𝛼2

𝐴21

𝛽2 +𝐴21

(︂
1

𝑏𝑝1
− 1

)︂
, (31.75a)

𝑑 ln𝑋1

𝑑𝑡
= 𝐵12

𝛽2
𝛽2 +𝐴21

(𝑏𝑝1 − 1) . (31.75b)

Equations (31.75a) and (31.75b) combine to give 𝑑(𝑋𝑝+𝑋1)/𝑑𝑡 = 0 in accordance with the condition (31.71),
but each of equations (31.75) is written in a form that remains finite as respectively 𝑋𝑝 → 0 and 𝑋1 → 0.
Equations (31.75) combine to give the rate of change of the logarithmic departure coefficient ln 𝑏𝑝1,

𝑑 ln 𝑏𝑝1
𝑑𝑡

=
𝑑 ln𝑋𝑝

𝑑𝑡
+
𝑑 ln𝑋𝑒

𝑑𝑡
− 𝑑 ln𝑋1

𝑑𝑡
+
𝑑

𝑑𝑡
ln
(︁
𝑛+𝑇

−3/2𝑒𝐸1/𝑇
)︁
. (31.76)

Given that helium is largely neutral by the time of recombination, charge conservation in the pure hydrogen
gas implies that

𝑋𝑒 = 𝑋𝑝 , (31.77)

so the time derivative of ln𝑋𝑒 in equation (31.76) is the same as that for ln𝑋𝑝. The time derivatives of the
temperature and density follow from 𝑇 ∝ 𝑎−1 and 𝑛+ ∝ 𝑎−3, equations (31.1) and (31.4). The differential
equation (31.76) is stiff. Near thermodynamic equilibrium, the logarithmic departure coefficient ln 𝑏𝑝1 is near
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Figure 31.3 Logarithmic ionized-to-bound level departure coefficients ln 𝑏𝑝1 and ln 𝑏𝑝2, equations (31.74) and (31.67).

Logarithmic departure coefficients are zero in thermodynamic equilibrium (the departure coefficients themselves are

unity). The increasingly positive values of ln 𝑏𝑝1 and ln 𝑏𝑝2 mean that protons become over-abundant compared to

thermodynamic equilibrium, that is, recombination is not keeping pace with the cosmological decrease in tempera-

ture. The 𝑛 = 1 ground level is further from thermodynamic equilibrium with protons than the 𝑛 = 2 and other

excited levels. When first coming out of thermodynamic equilibrium, the logarithmic departure coefficient ln 𝑏𝑝1 is

approximated by its steady state value 𝜆/𝜅, equation (31.81), indicated by the dotted line.

zero, and then the factors involving 𝑏𝑝1 on the right hand sides of equations (31.75) become small,

1

𝑏𝑝1
− 1 = 𝑒− ln 𝑏𝑝1 − 1 ≈ − ln 𝑏𝑝1 , 𝑏𝑝1 − 1 = 𝑒ln 𝑏𝑝1 − 1 ≈ ln 𝑏𝑝1 . (31.78)

The 𝑑 ln𝑋𝑖/𝑑𝑡 derivatives in equation (31.76) are then proportional to ln 𝑏𝑝1 with a negative coefficient −𝜅,

𝑑 ln𝑋𝑝

𝑑𝑡
+
𝑑 ln𝑋𝑒

𝑑𝑡
− 𝑑 ln𝑋1

𝑑𝑡
≈ −𝜅 ln 𝑏𝑝1 . (31.79)

Thus the differential equation (31.76) takes the form

𝑑 ln 𝑏𝑝1
𝑑𝑡

≈ −𝜅 ln 𝑏𝑝1 + 𝜆 , (31.80)

where the forcing term 𝜆 is the remaining, last, term on the right hand side of the differential equation (31.76).
The 𝜅 term tends to drive ln 𝑏𝑝1 exponentially to zero, that is, into thermodynamic equilibrium, while the
forcing term 𝜆 drives ln 𝑏𝑝1 away from zero. The differential equation (31.80) is stiff when 𝜅 is much larger
than the absolute value of 𝜆.
A solution to the stiffness problem is to evaluate the thermodynamic equilibrium value of 𝜅/|𝜆|, and if it
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exceeds some threshold (say 102), then set ln 𝑏𝑝1 to the steady state solution of equation (31.80), which is

ln 𝑏𝑝1 ≈
𝜆

𝜅
. (31.81)

A differential equation solver that can cope with stiff equations will in effect impose the solution (31.81).
Given the logarithmic departure coefficient ln 𝑏𝑝1, the neutral 𝑋1 and ionized 𝑋𝑝 hydrogen fractions follow,
in a form that remains numerically well-behaved even when 𝑋1 or 𝑋𝑝 is tiny, as

𝑋1 =
4𝑓2H𝑒

𝑞(︀
1 +
√
1 + 4𝑓H𝑒𝑞

)︀2 , 𝑋𝑝 =
2𝑓H

1 +
√
1 + 4𝑓H𝑒𝑞

, (31.82)

where 𝑓H,

𝑓H ≡ 𝑛H/𝑛+ = 1− 𝑓𝑛/𝑓+ , (31.83)

is the fraction of nuclear protons that are hydrogen nuclei, and 𝑞 is

𝑞 ≡ ln

(︂
𝑋1

𝑋𝑝𝑋𝑒

)︂
= ln

[︃
𝑛+

𝑔1
𝑔𝑝𝑔𝑒

(︂
𝑚𝑒𝑇

2𝜋~2

)︂−3/2]︃
+
𝜒H

𝑇
− ln 𝑏𝑝1 . (31.84)

The statistical weight factor is 𝑔1/(𝑔𝑝𝑔𝑒) = 1.
Only when 𝜅/|𝜆| falls below the threshold is it necessary to start solving the differential equation numeri-

cally. It is better to solve directly for the proton fraction 𝑋𝑝 rather than the departure coefficient 𝑏𝑝1, since
as recombination freezes out, 𝑋𝑝 changes slowly, whereas 𝑏𝑝1 continues to evolve, and solving for 𝑋𝑝 from
𝑏𝑝1 becomes numerically unstable. The differential equation governing 𝑋𝑝 is, from equation (31.75a),

𝑑𝑋𝑝

𝑑𝑡
=

(︂
𝑋1

𝑔2
𝑔1
𝛽2𝑒

(𝐸2−𝐸1)/𝑇 −𝑋𝑒𝑋𝑝𝑛+𝛼2

)︂
𝐴21

𝛽2 +𝐴21
. (31.85)

The statistical weight factor is 𝑔2/𝑔1 = 4. Figure 31.2 shows the resulting non-equilibrium H ion fractions,
and Figure 31.3 shows the logarithmic departure coefficients ln 𝑏𝑝1 and ln 𝑏𝑝2. Exercise 31.6 asks you to write
code to solve equation (31.85).

Exercise 31.6. Recombination. Write code that implements the recombination of hydrogen.
1. Well before recombination, the ionization state is near ionization equilibrium. As suggested in the text,

calculate the coefficients 𝜅 and 𝜆 that go into equation (31.80) in thermodynamic equilibrium. If 𝜅/|𝜆|
exceeds some threshold, then set the logarithmic departure coefficient to ln 𝑏𝑝1 = 𝜆/𝜅, equation (31.81).
Thence deduce the ionization fractions 𝑋1 and 𝑋𝑝, equation (31.82).

2. Once 𝜅/|𝜆| falls below the threshold, solve the evolution equation (31.85) for the proton fraction 𝑋𝑝

numerically.
Solution. See Figures 31.2 and 31.3.
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31.9 Recombination: Seager et al. approximation

Seager, Sasselov, and Scott (1999) provide an improved approximation for recombination based on the Peebles
(1968) approximation, but with the inclusion of helium, and with the 𝑛 = 2 recombination coefficients
adjusted to fit the results of a detailed calculation of recombination by Seager, Sasselov, and Scott (2000)
that includes explicit treatment of up to 300 levels of H, 200 levels of He, and 100 levels of He+, plus one
each of 𝑒, 𝑝, H−, and He++, plus the ground levels of molecular hydrogen species H2 and H+

2 .
Seager et al.’s approximation has been refined by Wong, Moss, and Scott (2008) to include the semi-

forbidden decay He 2𝑝 3𝑃1 → 1𝑠 1𝑆0 from the triplet 2𝑝 state of helium, and the scattering of He 2𝑝 → 1𝑠

photons by neutral hydrogen. Chluba and Thomas (2011) have developed an even more comprehensive
approach to recombination. The various refinements affect the electron fraction 𝑋𝑒 at the percent level. The
present section follows the simpler work of Seager, Sasselov, and Scott (1999).
Seager, Sasselov, and Scott (1999) adjoin to the hydrogenic recombination equation (31.85) an equivalent

equation for helium, protons 𝑝 being replaced by singly-ionized helium He+ in its ground state. The effective
spontaneous decay 𝐴He21 from the singlet 𝑛 = 2 levels to the ground 𝑛 = 1 level of neutral He is, analogous
to the hydrogenic equation (31.63),

𝐴He21 =
𝑔He2𝑠

𝑔He2
𝐴He2𝑠−1𝑠 +

𝑔He2𝑝

𝑔He2
𝐴He2𝑝−1𝑠𝑃S 𝑒

(𝐸He2𝑠−𝐸He2𝑝)/𝑇 . (31.86)

The extra factor of 𝑒(𝐸He2𝑠−𝐸He2𝑝)/𝑇 takes into account that the 2𝑝 state lies slightly but appreciably above the
2𝑠 state in energy, so its population in thermodynamic equilibrium is reduced by a corresponding Boltzmann
factor. The statistical weight factors are 𝑔He2𝑠/𝑔He2 = 1

4 and 𝑔He2𝑝/𝑔He2 = 3
4 . As in the hydrogenic case,

equation (31.64), the value of 𝐴He2𝑝−1𝑠 cancels against the Sobolev probability 𝑃S, equation (31.102),

𝑔He2𝑝

𝑔He2
𝐴He2𝑝−1𝑠𝑃S =

1

𝑋He1𝑛+

𝑔He1

𝑔He2

8𝜋𝐻

𝜆3He2𝑝−1𝑠
, (31.87)

the statistical weight factor being 𝑔He1/𝑔He2 = 1
4 .

In thermodynamic equilibrium, He++ combines to He+ at a redshift of 𝑧 ∼ 6,000, a factor of 6 higher
than recombination, Figure 31.1. By the time recombination approaches, little He++ remains. He++ is well-
approximated throughout as being in thermodynamic equilibrium with He+.
Charge conservation implies that the electron fraction density 𝑋𝑒 is

𝑋𝑒 = 𝑋𝑝 +𝑋He+ + 2𝑋He++ . (31.88)

The relevant atomic physics is as follows. The wavelengths of the 2→ 1 transitions of hydrogen and helium
are

𝜆H2𝑝−1𝑠 = 121.5682 nm , 𝜆He2𝑝−1𝑠 = 58.4334 nm , 𝜆He2𝑠−1𝑠 = 60.1404 nm . (31.89)

Ionization energies of hydrogen and helium, commonly quoted in units of cm−1, are

𝜒H = 10,967,877.17 cm−1 , 𝜒He = 19,831,066.9 cm−1 , 𝜒He+ = 43,890,887.89 cm−1 . (31.90)
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Figure 31.4 Non-equilibrium hydrogen and helium ion fractions as a function of cosmic scale factor 𝑎 scaled to

𝑎0 = 1. Dotted lines show 𝑋𝑝 and 𝑋He+ in thermodynamic equilibrium. The total hydrogen and helium fractions are

𝑋H = 1− 𝑓𝑛/𝑓+ = 0.86 and 𝑋4He = 1
2
𝑓𝑛/𝑓+ = 0.07.

The spontaneous 2-photon 2𝑠→ 1𝑠 transition rates of hydrogen and neutral helium are

𝐴H2𝑠−1𝑠 = 8.22458 s−1 , 𝐴He2𝑠−1𝑠 = 51.3 s−1 . (31.91)

The effective recombination rates to 𝑛 = 2 levels of hydrogen and neutral helium are

𝛼H2(𝑇 ) = 1.14× 10−19
4.309 (𝑇/104 K)−0.6166

1 + 0.6703 (𝑇/104 K)0.5300
m3 s−1 , (31.92a)

𝛼He2(𝑇 ) = 10−16.744
[︂√︀

𝑇/3K
(︁
1 +

√︀
𝑇/3K

)︁1−𝑝 (︁
1 +

√︀
𝑇/105.114 K

)︁1+𝑝]︂−1
m3 s−1 , (31.92b)

with 𝑝 = 0.711. The factor of 1.14 in the hydrogenic recombination rate (31.92a) is a fudge factor introduced
by Seager, Sasselov, and Scott (1999) that adjusts the Hummer’s (1994) calculated rate coefficient to achieve
agreement with the multi-level numerical computation of Seager, Sasselov, and Scott (2000). The helium
recombination rate (31.92b) is from Hummer and Storey (1998). The statistical weight factor that goes
into the ratio 𝛽He2/𝛼He2 of photoionization to recombination rates for He, analogous to the hydrogenic
ratio (31.65), is 𝑔He+𝑔𝑒/𝑔He2 = 2×2/4 = 1.
Figure 31.4 shows the recombination of hydrogen and helium in the Seager, Sasselov, and Scott (1999)

approximation. The Figure shows that the recombination of singly-ionized helium is, like the recombination
of protons, delayed compared to thermodynamic equilibrium. Even so, helium is almost entirely neutral by
the time of recombination, so in practice helium has little effect on recombination.
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31.10 Sobolev escape probability

The Sobolev escape probability formalism applies to a uniformly expanding medium such as a FLRW uni-
verse. Suppose that a photon is emitted in a transition 2 → 1 between two atomic levels 2 and 1. The
line is narrow, but not infinitely narrow. As a result of natural and Doppler broadening (the specifics are
unimportant here), the line is emitted with some line profile 𝜑𝜆, which can be taken to be normalized to∫︁ ∞

𝜆=0

𝜑𝜆 𝑑 ln𝜆 = 1 . (31.93)

The emitted photon travels through the medium, and has some probability of being absorbed by other atoms
in level 1 before the photon is redshifted out of the line. Since the line is narrow, the photon is either absorbed
nearby, or else it escapes the line completely. In the approximation that the properties of the medium change
little over the small distance between emission and absorption, detailed balance implies that the line profile
for absorption is the same as that for emission. The cross-section 𝜎𝜆 for absorption at wavelength 𝜆 is

𝜎𝜆 = 𝜎𝜑𝜆 , (31.94)

where 𝜎 ≡
∫︀∞
0
𝜎𝜆 𝑑 ln𝜆 is the cross-section integrated over the line profile. By detailed balance, the integrated

cross-section is related to the Einstein coefficient 𝐴21 for spontaneous emission by

𝜎 =
1

8𝜋𝑐

𝑔2
𝑔1
𝜆321𝐴21 . (31.95)

The optical depth 𝑑𝜏𝜆, the differential probability for the photon to be absorbed, as the photon passes
through a distance 𝑑𝑙 = 𝑐 𝑑𝑡 is

𝑑𝜏𝜆 = 𝑛1𝜎𝜆 𝑑𝑙 = 𝑛1𝑐𝜎 𝜑𝜆 𝑑𝑡 . (31.96)

The medium is expanding with Hubble parameter 𝐻, and the photon wavelength 𝜆 redshifts by 𝑑 ln𝜆 = 𝐻𝑑𝑡

in time 𝑑𝑡. Therefore the optical depth to absorption as the photon redshifts through an interval 𝑑 ln𝜆 of
wavelength is

𝑑𝜏𝜆 = 𝜏S 𝜑𝜆 𝑑 ln𝜆 , (31.97)

where 𝜏S is the Sobolev optical depth

𝜏S ≡
𝑛1𝑐𝜎

𝐻
= 𝑛1

𝑔2
𝑔1

𝜆321𝐴21

8𝜋𝐻
. (31.98)

The optical depth 𝜏𝜆 for the photon to redshift from an emitted wavelength 𝜆 to infinite wavelength is

𝜏𝜆 ≡ 𝜏S
∫︁ ∞
𝜆

𝜑𝜆′ 𝑑 ln𝜆′ . (31.99)

The probability for a photon emitted at wavelength 𝜆 to escape from the line without being reabsorbed is the
exponential 𝑒−𝜏𝜆 of the optical depth. The escape probability averaged over the emitted line profile defines
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the Sobolev escape probability 𝑃S,

𝑃S ≡
∫︁ ∞
0

𝑒−𝜏𝜆𝜑𝜆 𝑑 ln𝜆 =

∫︁ ∞
0

exp

(︂
−𝜏S

∫︁ ∞
𝜆

𝜑𝜆′ 𝑑 ln𝜆′
)︂
𝜑𝜆 𝑑 ln𝜆

=
1− 𝑒−𝜏S

𝜏S
, (31.100)

which is evidently independent of the shape of the line profile (just so long as the line is narrow). The Sobolev
escape probability 𝑃S varies from 0 as 𝜏S →∞ to 1 as 𝜏S → 0.
For large Sobolev optical depth 𝜏S, the Sobolev escape probability approximates the reciprocal of the

Sobolev optical depth (31.98),

𝑃S =
1

𝜏S
(𝜏S ≫ 1) . (31.101)

The rate per unit time and volume at which photons are emitted and escape is then

𝑛2𝐴21𝑃S =
𝑛2
𝑛1

𝑔1
𝑔2

8𝜋𝐻

𝜆321
. (31.102)



32

Cosmological perturbations: the
hydrodynamic approximation

The simple model in Chapter 30 of the evolution of cosmological perturbations misses some processes that
affect in observationally distinctive ways the power spectra of fluctuations both of the CMB and of the
distribution of matter.
The most important missing element is baryons, which were neglected in Chapter 30 on the grounds

that baryons are gravitationally sub-dominant, having a density Ωb/Ωc ≈ 1/5 of the non-baryonic dark
matter density. Photons and baryons are coupled by electron-photon scattering, which causes the photons
and baryons to behave effectively as a single photon-baryon fluid prior to recombination. Baryons add mass
density but no pressure to the photon-baryon fluid, reducing the sound speed of the photon-baryon fluid
below its relativistic limit of

√︀
1/3, §32.4. The reduction in sound speed becomes greater as the ratio of

matter to radiation density increases after matter-radiation equality. The baryon mass loading enhances
compression (odd) peaks and weakens rarefaction (even) peaks in the power spectrum of the CMB, §32.10.
The change in sound speed modifies the relation between the sound horizon and physical distance, resulting
in observationally distinctive shifts in the locations of peaks as a function of harmonic number in the power
spectrum of the CMB, Figure 34.7. After recombination, baryons decouple from the photons and behave
like matter. Oscillations in the photon-baryon fluid at recombination produce an imprint, called baryon

acoustic oscillations, in the matter power spectrum, Figure 32.4, analogous to the acoustic oscillations in
the CMB power spectrum.
A second important effect missing from the simple model of Chapter 30 is dissipation that results from the

finite mean free path of electron-photon scattering, which causes photons and baryons not to be perfectly
coupled, §32.7. Dissipation damps oscillations of the baryon-photon fluid at smaller scales, reducing power
in higher order peaks in the CMB.
A third modification is to treat neutrinos separately from photons, §32.11. Like photons, neutrinos are

relativistic, but unlike photons, neutrinos stream freely.
A varying sound speed, dissipation, and freely-streaming neutrinos, can all be modelled in a hydrodynamic

approximation that treats the photon-baryon fluid, and the neutrinos, as imperfect fluids. An imperfect
fluid is characterized by the first three moments of its momentum distribution, the monopole, dipole, and
quadrupole, or equivalently the density, bulk velocity, and pressure, but unlike a perfect fluid the pressure is
allowed to be anisotropic. Equations governing the anisotropy can be derived by appealing to a Boltzmann

855
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Figure 32.1 (Left) Overdensities 𝛿−3Φ, and (right) bulk velocities v in the hydrodynamic approximation as a function

of cosmic scale factor 𝑎/𝑎eq, at wavenumber 𝑘/(𝑎eq𝐻eq) = 10, for non-baryonic dark matter (c), baryons (b), photons

(𝛾), and neutrinos (𝜈). The cosmological model is the standard model adopted in this book, a flat ΛCDM model

with concordance parameters ΩΛ = 0.69 and Ωm = 0.31, and adiabiatic initial conditions, §32.3. The overdensities

and velocities of relativistic species are related to their monopole and dipole moments by 𝛿𝛾 − 3Φ = 3(Θ0 − Φ),

𝛿𝜈 − 3Φ = 3(𝒩0 − Φ), v𝛾 = 3Θ1, v𝜈 = 3𝒩1. The results may be compared to those in the simple approximation,

Figure 30.2, and from a Boltzmann computation, Figure 33.1.

treatment, Chapter 33. Given the anisotropy, the evolution of the density and bulk velocity of an imperfect
fluid is governed by the equations of conservation of its energy and momentum.

The approximate anisotropic pressure in the hydrodynamic approximation is not sufficiently accurate to
provide a reliable source for the difference Ψ−Φ in scalar gravitational potentials. Thus in the hydrodynamic
approximation, as in the simple approximation, the two scalar potentials are set equal, Ψ = Φ.

Figure 32.1 shows the overdensity and bulk velocity of the 4 species, non-baryonic dark matter, baryons,
photons, and neutrinos, calculated in the hydrodynamic treatment of this Chapter, as a function of cosmic
scale factor, in a flat ΛCDM cosmological model at an illustrative wavenumber 𝑘/(𝑎eq𝐻eq) = 10. Figure 32.2
shows photon and neutrino multipoles up to the quadrupole ℓ = 2, the largest multipole computed in the
hydrodynamic approximation. The hydrodynamic approach yields a fair approximation to more accurate
calculations that follow higher order multipole moments of the photon and neutrino distributions using the
Boltzmann equation, Chapter 33.

This Chapter starts, §32.2, with a summary of the equations in the hydrodynamic approximation. The
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Figure 32.2 (Left) Photon and (right) neutrino multipoles in the hydrodynamic approximation as a function of cosmic

scale factor 𝑎/𝑎eq, at wavenumber 𝑘/(𝑎eq𝐻eq) = 10. The cosmological model is the same as in Figures 32.1–33.1,

§32.3. The multipoles may be compared to those from a Boltzmann computation, Figure 33.2.

remainder of the Chapter is concerned with finding approximations to the hydrodynamic system of equa-
tions (32.6)–(32.13), so as to gain a physical understanding of their solutions.
Section 32.4 presents the tight-coupling approximation, which effectively treats photons and baryons as a

single fluid with a common bulk velocity. The tight-coupling approximation, valid well before recombination,
treats the photon-baryon fluid as a perfect fluid, as in the simple approximation of Chapter 30, but the mass
density contributed by baryons reduces the sound speed of the fluid.
Sections 32.6–32.10 examine the consequences of allowing quadrupole anisotropy in the photon distribution

(shear viscosity), and a small velocity difference between photons and baryons (heat conduction), both of
which lead to dissipation.
Section 32.11 considers neutrinos, which stream freely. After recombination, photons also stream freely, as

do baryons.

32.1 Electron-photon (Thomson) scattering

For some time before and after recombination, photons and baryons were coupled principally by nonrelativis-
tic electron-photon (Thomson) scattering. The inverse comoving mean free path 𝑙−1T to Thomson scattering
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is

𝑙−1T ≡ �̄�𝑒𝜎T𝑎 , (32.1)

where 𝜎T is the Thomson cross-section. The Thomson cross-section is proportional to the square of the
classical electron radius 𝑟𝑒,

𝜎T =
8𝜋

3
𝑟2𝑒 , 𝑟𝑒 =

𝑒2

𝑚𝑒𝑐2
. (32.2)

The inverse comoving mean free path 𝑙−1T is evaluated in Exercise 32.1. In calculating fluctuations in the
CMB, Chapter 34, it is convenient to introduce the (dimensionless) Thomson scattering optical depth 𝜏 ,
which starts from zero, 𝜏0 = 0, at the present time, and increases going backwards in time 𝜂 to higher
redshift,

𝜏 ≡
∫︁ 𝜂0

𝜂

�̄�𝑒𝜎T𝑎 𝑑𝜂 . (32.3)

The conformal time derivative of the Thomson optical depth 𝜏 equals minus the inverse comoving mean free
path,

𝜏 ≡ 𝑑𝜏

𝑑𝜂
≡ −�̄�𝑒𝜎T𝑎 . (32.4)

Exercise 32.1. Thomson scattering rate. Let 𝑓+ be the proton fraction (31.5), and 𝑋𝑒 be the ionization
fraction (31.3). Show that the (dimensionless) ratio of the inverse comoving electron-photon (Thomson) mean
free path 𝑙−1T = �̄�𝑒𝜎T𝑎 to the inverse comoving Hubble distance 𝑎eq𝐻eq/𝑐 at matter-radiation equality is

𝑐�̄�𝑒𝜎T𝑎

𝑎eq𝐻eq
=

3𝑐𝜎T𝑓+𝑋𝑒𝐻eq

16𝜋𝐺𝑚b

Ωb

Ωm

(︂
𝑎

𝑎eq

)︂−2
= 0.033ℎ 𝑓+𝑋𝑒

𝐻eq

𝐻0

Ωb

Ωm

(︂
𝑎

𝑎eq

)︂−2
= 500𝑋𝑒

(︂
𝑎

𝑎eq

)︂−2
, (32.5)

the Hubble parameter 𝐻eq at matter-radiation equality being related to the present-day Hubble parameter
𝐻0 by equation (30.42).

32.2 Summary of equations in the hydrodynamic approximation

The hydrodynamic approximation is derived by suitably truncating the full set of Boltzmann equations,
§33.1, at the quadrupole moment. The equations governing the evolution of scalar fluctuations in non-
baryonic cold dark matter, baryons, photons, and neutrinos at comoving wavenumber 𝑘 in the hydrodynamic
approximation are as follows (compare to the equations in the simple approximation, §30.7, and in a full
Boltzmann treatment, §33.1). The equations for non-baryonic cold dark matter (c) follow from conservation



32.2 Summary of equations in the hydrodynamic approximation 859

of energy-momentum, and are the same as those (30.53) in the simple approximation (recall that overdot
signifies the derivative 𝑑/𝑑𝜂 with respect to conformal time),

�̇�c − 𝑘 vc − 3 Φ̇ = 0 , (32.6a)

v̇c +
�̇�

𝑎
vc + 𝑘Ψ = 0 . (32.6b)

Equations for baryons (b) are similar to those (32.6) for the non-baryonic dark matter, except that photon-
electron scattering causes a transfer of momentum between photons and baryons when their bulk velocities
are not equal,

�̇�b − 𝑘 vb − 3 Φ̇ = 0 , (32.7a)

v̇b +
�̇�

𝑎
vb + 𝑘Ψ = − |𝜏 |

𝑅
(vb − 3Θ1) , (32.7b)

were 𝑅 is 3
4 the baryon-to-photon density ratio, equation (32.46). The equations of conservation of energy

and momentum of photons (𝛾) are

Θ̇0 − 𝑘Θ1 − Φ̇ = 0 , (32.8a)

Θ̇1 +
𝑘

3
(Θ0 − 2Θ2) +

𝑘

3
Ψ =

1

3
|𝜏 | (vb − 3Θ1) . (32.8b)

The photon quadrupole moment Θ2 can be approximated by an expression that interpolates between the
tight-coupling limit |𝜏 | ≫ 𝑘𝑠, equation (33.83), and the free-streaming limit |𝜏 | ≪ 𝑘𝑠, equation (33.84),
where 𝑘𝑠 is an interpolation constant, which numerical comparison to full Boltzmann computations indicates
is adequately approximated by twice the inverse Hubble distance at recombination, 𝑘𝑠 ≈ 2𝑎rec𝐻rec (or
𝑘𝑠 ≈ 𝑎eq𝐻eq, for standard ΛCDM cosmological parameters),

Θ2 =
1

1 + (|𝜏 |/𝑘𝑠)2

(︂
|𝜏 |2

𝑘2𝑠
Θtight

2 +Θfree
2

)︂
, (32.9a)

Θtight
2 = − 8𝑘

15|𝜏 |
Θ1 , Θfree

2 = − (Θ0 +Ψ)− 3

𝑘𝜂
Θ1 . (32.9b)

As commented after equation (32.67), the factor 8
15 in equation (32.9b) includes the effect of polarization;

without polarization, the factor is 4
9 . Energy-momentum conservation of neutrinos (𝜈) implies

�̇�0 − 𝑘𝒩1 − Φ̇ = 0 , (32.10a)

�̇�1 +
𝑘

3
(𝒩0 − 2𝒩2) +

𝑘

3
Ψ = 0 . (32.10b)

The neutrino quadrupole 𝒩2 may approximated by, equation (34.50),

𝒩2 = − (𝒩0 +Ψ)− 3

𝑘𝜂
𝒩1 . (32.11)
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The Einstein energy equation is

− 𝑘2Φ− 3
�̇�

𝑎
𝐹 = 4𝜋𝐺𝑎2(𝜌c𝛿c + 𝜌b𝛿b + 4𝜌𝛾Θ0 + 4𝜌𝜈𝒩0) , (32.12)

where 𝐹 is defined by equation (30.56). The non-vanishing photon and neutrino quadrupoles Θ2 and 𝒩2

are a source for the difference Ψ − Φ in scalar gravitational potentials, equation (29.49d). However, the
hydrodynamic approximations (32.9) and (32.11) are not sufficiently accurate to serve as a reliable source
for Ψ− Φ. Therefore in the hydrodynamic approximation the two potentials are set equal, as in the simple
approximation (30.58),

Ψ = Φ . (32.13)

Exercise 32.2. Program the equations in the hydrodynamic approximation. Upgrade the code you
wrote in Exercise 30.11 to implement the hydrodynamic approximation, equations (32.6)–(32.13). Explore
the evolution of the gravitational potential Φ, and of the 4 species of mass-energy, non-baryonic dark matter,
baryons, photons, and neutrinos. You will upgrade this code to a Boltzmann code in Exercise 33.1.
Solution. See Figures 32.1, 32.2, and 32.3.
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Figure 32.3 (Left) Overdensities 𝛿c−3Φ and 𝛿b−3Φ of non-baryonic dark matter (brown) and baryonic matter (green),

and (right) radiation monopole Θ0 − 3Φ (blue), and minus twice the scalar potential, −2Ψ (black), as a function

of cosmic scale factor 𝑎 in the hydrodynamic approximation. Curves are labelled with the comoving wavenumber

𝑘/(𝑎eq𝐻eq) in units of the Hubble distance at matter-radiation equality. The results may be compared to those in the

simple approximation, Figure 30.1, and using a Boltzmann computation, Figure 33.3.
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Figure 32.4 Model matter power spectrum computed in the hydrodynamic approximation, compared to observations

from the North (N) and South (S) Galactic Caps of the the Sloan Digital Sky Survey IV (Gil-Marín et al., 2020). The

predicted power spectrum has been multiplied, arbitrarily, by a bias factor of 𝑏2 = 1.322. The model power spectrum

may be compared to those computed in the simple approximation, Figure 30.15, and from a Boltzmann computation,

Figure 33.5.

Exercise 32.3. Power spectrum of matter fluctuations: hydrodynamic approximation. Upgrade
the code you wrote in Exercise 30.16 to compute the power spectrum of matter fluctuations in the hydrody-
namic approximation. Comment on how the power spectrum differs from that in the simple approximation.

Solution. See Figure 32.4. The cosmological model is the standard flat ΛCDM model described in §32.3.
The model power spectrum differs from that in the simple approximation, Figure 30.15, firstly in that power
is slightly reduced at smaller scales (larger wavenumbers 𝑘), and secondly in that the power spectrum shows
wiggles, commonly called baryon acoustic oscillations, or BAO. Both effects arise from the finite contribution
of baryons to the matter power spectrum.

The possibility of scale-dependent bias between galaxies and matter, coupled with the effects of nonlinear
growth of power, complicates the relation between the observed galaxy power spectrum and the linear matter
power spectrum. BAO persist in the presence of scale-dependent bias, providing a cosmic ruler that links the
comoving scale of distance in galaxy clustering to that in the CMB. Gil-Marín et al. (2020) were interested
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primarily in the scale of the BAO. In Figure 10.4 they allowed for possible scale-dependent bias and incipient
non-linearity by applying a more or less arbitrary polynomial correction to the model power spectrum.

Exercise 32.4. Effect of massive neutrinos on the matter power spectrum.

1. Incorporate 1 or more species of massive neutrino into the Friedmann equations describing the evolution
of the background FLRW geometry.

2. Compute the effect of 1 or more species of massive neutrino on the matter power spectrum. For simplicity,
assume an abrupt transition of the neutrino evolution equations from relativistic to non-relativistic.

Solution

1. Neutrinos decouple while relativistic, at around 𝑒𝑒-annihilation, and inherit a relativistic thermodynamic
distribution from that time. Since decoupling, neutrinos free-streamed, with particle momenta 𝑝 and
temperature 𝑇 redshifting as 𝑝 ∝ 𝑇 ∝ 𝑎−1. The energy density 𝜌(𝑚,𝑇 ) of a single species of neutrino
of mass 𝑚 at temperature 𝑇 is (units 𝑐 = 1)

𝜌(𝑚,𝑇 ) =

∫︁ ∞
0

√︀
𝑝2 +𝑚2

1

𝑒𝑝/𝑇 + 1

4𝜋𝑝2𝑑𝑝

(2𝜋~)3
=

7𝜋2𝑇 4

240 ~3
𝑅(𝑚/𝑇 ) , (32.14)

where 𝑅(𝜇) is the integral

𝑅(𝜇) ≡ 120

7𝜋4

∫︁ ∞
0

√︀
𝑥2 + 𝜇2

𝑒𝑥 + 1
𝑥2𝑑𝑥 →

{︂
1 𝜇→ 0 ,

𝛼𝜇 𝜇→∞ ,
(32.15)

with

𝛼 =
180 𝜁(3)

7𝜋4
= 0.3173 . (32.16)

The neutrino pressure 𝑝(𝑚,𝑇 ) (not to be confused with neutrino particle momentum 𝑝) is

𝑝(𝑚,𝑇 ) =
1

3

∫︁ ∞
0

𝑝2√︀
𝑝2 +𝑚2

1

𝑒𝑝/𝑇 + 1

4𝜋𝑝2𝑑𝑝

(2𝜋~)3
, (32.17)

which can be expressed in terms of the neutrino density 𝜌(𝑚,𝑇 ) as

𝑝(𝑚,𝑇 ) =
1

3

[︂
𝜌(𝑚,𝑇 )− 𝜕𝜌(𝑚,𝑇 )

𝜕 ln𝑚

]︂
. (32.18)

An approximation good to 1% for the density 𝜌(𝑚,𝑇 ), and which yields an approximation good to 4%
for the pressure 𝑝(𝑚,𝑇 ) given in terms of 𝜌(𝑚,𝑇 ) by formula (32.18), is

𝑅(𝜇) ≈

√︃
1 + 𝛽𝜇2 + 𝛾𝛼2𝜇4

1 + 𝛾𝜇2
, (32.19)

where the constants 𝛼 (equation (32.16)), 𝛽, 𝛾 are chosen such that both density 𝜌 and pressure 𝑝 have
the correct asymptotic behaviour at both 𝜇→ 0 and 𝜇→∞,

𝛽 =
10

7𝜋2
+ 𝛾 = 0.2902 , 𝛾 =

10
[︀
− 7𝜋2 + 3240 𝜁(3)2

]︀
49𝜋8 − 486000 𝜁(3)𝜁(5)

= 0.1454 . (32.20)
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A simple approximation that reproduces the correct asymptotic behaviour of the density 𝜌(𝑚,𝑇 ) at large
and small temperature is to adopt an abrupt change from relativistic to non-relativistic at 𝑇 = 𝛼𝑚,

𝜌(𝑚,𝑇 ) ≈ 7𝜋2𝑇 3

240 ~3

{︂
𝑇 𝑇 ≥ 𝛼𝑚 ,

𝛼𝑚 𝑇 ≤ 𝛼𝑚 .
(32.21)

2. The approximation (32.21) for the neutrino density suggests adopting an abrupt transition of the neu-
trino evolution equations from relativistic, equations (32.10) and (32.11), to non-relativistic at 𝑇 = 𝛼𝑚,
with 𝛼 from equation (32.16). The non-relativistic equations are as for non-baryonic cold dark matter,
equations (32.6). Conservation of energy and momentum at the transition requires that the neutrino
overdensity 𝛿𝜈 and bulk velocity v𝜈 are

𝛿𝜈 = 3𝒩0 , (32.22a)

v𝜈 = 3𝒩1 . (32.22b)

32.3 Standard cosmological parameters

Unless otherwise stated, all computations of cosmological perturbations carried out in this book are for
a standard flat ΛCDM cosmological model with parameters consistent with those reported by the Planck
collaboration (Aghanim et al., 2018). This section gives the standard parameters adopted in this book.
The CMB power spectrum constrains the physical density Ωℎ2 of dark matter and baryonic components

more precisely than the density Ω relative to the critical density. The physical matter densities Ωcℎ
2 of

non-baryonic cold dark matter and Ωbℎ
2 of baryonic matter today are taken to be, in the standard model,

Ωcℎ
2 = 0.12 , Ωbℎ

2 = 0.022 . (32.23)

The conversion factor between Ωℎ2 and mass density 𝜌 today is

𝜌 =
3Ω𝐻2

8𝜋𝐺𝑐2
= 6.44932× 10−26 Ωℎ2 kgm−3 . (32.24)

The matter density Ωm in non-baryonic cold dark matter and baryonic components today is taken to be, in
the standard model,

Ωm = 0.31 . (32.25)

The individual non-baryonic cold dark matter and baryonic densities are then

Ωc = 0.262 , Ωb = 0.048 . (32.26)

Together, equations (32.23) and (32.25) yield a Hubble parameter 𝐻0 today of

𝐻0 ≡ 100ℎ km s−1 Mpc−1 = 67.7 km s−1 Mpc−1 . (32.27)



864 Cosmological perturbations: the hydrodynamic approximation

The CMB temperature 𝑇0 today is (Fixsen, 2009)

𝑇0 = 2.7255K , (32.28)

implying a physical photon density of, Exercise 10.2,

Ω𝛾ℎ
2 = 2.4728× 10−5 . (32.29)

The standard model adopted here assumes 𝑁eff = 3 species of massless neutrino that decouple just be-
fore electron-positron annihilation, implying that the neutrino temperature after 𝑒𝑒-annihilation is 𝑇𝜈/𝑇𝛾 =

(4/11)1/3, Exercise 10.20. The energy-weighted effective number of relativistic particle species at recombina-
tion is then, equation (10.152b),

𝑔𝜌 = 2

[︃
1 +

(︂
4

11

)︂4/3
7

8
𝑁eff

]︃
= 3.36 . (32.30)

In reality, neutrinos are not quite decoupled by 𝑒𝑒-annihilation. In a more accurate treatment, the neutrino
temperature after 𝑒𝑒-annihilation is slightly larger than 𝑇𝜈/𝑇𝛾 = (4/11)1/3, and the effective number 𝑔𝜌 of
relativistic species at recombination is correspondingly slightly larger. It is conventional to quote the increase
in 𝑔𝜌 as if it were an increase in the effective number of neutrino types in equation (32.30), 𝑁eff = 3.04

(Mangano et al., 2002). In the approximation of 𝑁eff = 3 massless neutrinos adopted here, the physical
density of neutrinos today is

Ω𝜈ℎ
2 = 1.68× 10−5 . (32.31)

The ratio of the physical matter density from equations (32.23) to the physical radiation density implied by
equations (32.29) and (32.31) implies a redshift of matter-radiation equality of

1 + 𝑧eq = 3415 . (32.32)

If neutrinos have masses as indicated by neutrino oscillation data, §42.4.15, then at least 2 of the 3 neutrino
species are non-relativistic today, even though they were relativistic at recombination. If the third species is
taken to be massless, then the neutrino masses are

𝑚𝜈1 = 0 eV , 𝑚𝜈2 = 0.01 eV , 𝑚𝜈3 = 0.05 eV . (32.33)

The corresponding physical neutrino mass density today is, in place of equation (32.31),

Ω𝜈ℎ
2 = 1.3× 10−3 . (32.34)

The assumption of spatial flatness implies vanishing spatial curvature,

Ω𝑘 = 0 . (32.35)

In the standard ΛCDM model, the remaining density is taken to be vacuum energy, equivalent to a cosmo-
logical constant, with density

ΩΛ = 1− Ω𝑘 − Ωm − Ωr = 0.69 . (32.36)
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Recombination is affected by the helium mass fraction 𝑌4He ≡ 𝜌4He/(𝜌H+𝜌4He), taken to be (Cyburt et al.,
2016)

𝑌4He = 0.25 . (32.37)

Given the helium fraction (32.37) and the Peebles approximation to recombination, §31.8, along with the
standard parameters adopted here, the redshift of recombination, where the Thomson optical depth is unity,
is

1 + 𝑧rec = 1092 . (32.38)

In integrating the simple or hydrodynamic or Boltzmann equations, §30.7 or §32.2 or §33.1, I find it
convenient to work in units where the scale factor and Hubble parameter are one at matter-radiation equality,
𝑎eq = 𝐻eq = 1. With the standard parameters adopted here, the scale factor and Hubble parameter today
are related to those at matter-radiation equality by

𝑎0
𝑎eq

= 3415 ,
𝐻0

𝐻eq
= 6.363× 10−6 . (32.39)

The scale factor and Hubble parameter at recombination, where the Thomson optical depth 𝜏 is one, are
related to those at matter-radiation equality by

𝑎rec
𝑎eq

= 3.13 ,
𝐻rec

𝐻eq
= 0.147 . (32.40)

The Hubble distance today relative to those at matter-radiation equality and at recombination are

𝑐

𝑎0𝐻0
= 46.0

𝑐

𝑎eq𝐻eq
= 21.1

𝑐

𝑎rec𝐻rec
. (32.41)

In cosmology, distances are commonly reported in units of ℎ−1 Mpc, or, if the Hubble parameter ℎ today
is considered to be known, in Mpc. The Hubble distance today is

𝑐

𝑎0𝐻0
= 2997.92458ℎ−1 Mpc = 4.43Gpc . (32.42)

The horizon distance today is

𝜂0 = 147
𝑐

𝑎eq𝐻eq
= 3.20

𝑐

𝑎0𝐻0
= 9600ℎ−1 Mpc = 14.2Gpc . (32.43)

The age of the Universe today is, equation (10.15),

𝑡0 = 0.955𝐻−10 = 13.8Gyr . (32.44)

32.4 The photon-baryon fluid in the tight-coupling approximation

Prior to recombination, non-relativistic electron-photon (Thomson) scattering kept photons tightly coupled
to electrons, and Coulomb scattering kept electrons tightly coupled to baryons (nuclei, mostly protons and
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helium ions). Thus photons and baryons/electrons behaved as a single tightly-coupled fluid. The baryonic
fluid contributed negligible pressure to the combined baryon-photon fluid, but it contributed a finite energy
density that became increasingly important as recombination approached. The density loading decreased
the sound speed of the photon-baryon fluid, equation (32.50), to the point that at recombination the sound
speed was about 80% of the negligible-baryon sound speed of

√︀
1/3.

Electron-photon scattering transfers momentum between the baryonic fluid and photons, but it does
not transfer energy, since the baryons and electrons, being non-relativistic, have negligible pressure, so their
energy is just that of their rest mass. Consequently the energy conservation equation (30.13a) holds separately
for each of the photon and baryon fluids. However, the exchange of momentum means that the momentum
equation (30.13b) does not hold separately for each fluid. Rather, electron-photon scattering couples the
fluids so that their bulk velocities are the same to a good approximation,

vb = v𝛾 , (32.45)

the photon bulk velocity being related to the photon dipole by v𝛾 = 3Θ1, equation (30.15). The approxima-
tion (32.45) is called the tight-coupling approximation. The right panel of Figure 32.1 illustrates that the
equality (32.45) of baryon and photon bulk velocities holds up to recombination, but then breaks down as
the scattering mean free path becomes large, and baryons and photons are released from each other’s grasp.
Define 𝑅 to be 3

4 the baryon-to-photon density ratio,

𝑅 ≡ 3𝜌b
4𝜌𝛾

= 𝑅𝑎
𝑎

𝑎eq
, 𝑅𝑎 =

3𝑔𝜌Ωb

8Ωm
≈ 0.2 , (32.46)

with 𝑔𝜌 = 3.36 being the energy-weighted effective number of relativistic particle species at around the
time of recombination, equation (10.152b). The energy flux of the combined photon-baryon fluid is, from
equation (30.9b),

𝑓𝛾 + 𝑓b = (𝜌𝛾 + 𝑝𝛾)v𝛾 + 𝜌bvb = 4
3𝜌𝛾v(1 +𝑅) , (32.47)

where v is the common bulk velocity of the photon-baryon fluid. The equation of momentum conservation of
the combined baryon-photon fluid is then a sum of the photon-velocity equation (30.13b) with 𝑤 = 1/3, and
𝑅 times the baryon-velocity equation (30.13b) with 𝑤 = 0. The resulting momentum conservation equation
is

(1 +𝑅)v̇+𝑅
�̇�

𝑎
v+

𝑘

3
𝛿𝛾 = −𝑘(1 +𝑅)Ψ . (32.48)

Combining the photon energy conservation equation (30.13a) with the momentum conservation equation (32.48),
and substituting 𝛿𝛾 = 3Θ0, equation (30.15), yields[︂

𝑑2

𝑑𝜂2
+

𝑅

1 +𝑅

�̇�

𝑎

𝑑

𝑑𝜂
+

𝑘2

3(1 +𝑅)

]︂
(Θ0 − Φ) = − 𝑘2

3(1 +𝑅)
[(1 +𝑅)Ψ + Φ] , (32.49)

which coincides with equation (30.14) for 𝑤 = 1/[3(1 + 𝑅)], and which goes over to the earlier radiation
equation (30.48) in the limit 𝑅→ 0 of negligible baryons. The term proportional to the first derivative 𝑑/𝑑𝜂
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on the left hand side of equation (32.49) is an adiabatic damping term. In the absence of this term, and in
the absence of a driving potential, equation (32.49) would reduce to a wave equation with sound speed

𝑐𝑠 =

√︃
1

3(1 +𝑅)
. (32.50)

The coefficient of the adiabatic damping term in equation (32.49) is, given that 𝑅 ∝ 𝑎, equation (32.46),

𝑅

1 +𝑅

�̇�

𝑎
= −2 �̇�𝑠

𝑐𝑠
. (32.51)

The sound horizon distance 𝜂𝑠 is defined to be the distance travelled by a sound wave since the initial
time 𝜂 = 0,

𝜂𝑠 ≡
∫︁
0

𝑐𝑠 𝑑𝜂 . (32.52)

Recast in terms of the sound horizon distance 𝜂𝑠, the differential equation (32.49) is(︂
𝑑2

𝑑𝜂2𝑠
− 𝑐′𝑠
𝑐𝑠

𝑑

𝑑𝜂𝑠
+ 𝑘2

)︂
(Θ0 − Φ) = −𝑘2 [(1 +𝑅)Ψ + Φ] , (32.53)

where prime ′ denotes derivatives with respect to the sound horizon distance, 𝑐′𝑠 = 𝑑𝑐𝑠/𝑑𝜂𝑠.

32.5 WKB approximation

Equation (32.53) is an equation for a forced, damped harmonic oscillator. The forcing terms are those on
the right hand side of the equation, while the damping term is the first derivative term on the left hand
side. There is a general method, called the WKB approximation (Wentzel, 1926; Kramers, 1926; Brillouin,
1926), to obtain the homogeneous solutions for a damped harmonic oscillator when the damping rate is small
compared to the frequency.
Denote the coefficient of the damping term by 2𝜅. The homogeneous version of equation (32.53) is then(︂

𝑑2

𝑑𝜂2𝑠
+ 2𝜅

𝑑

𝑑𝜂𝑠
+ 𝑘2

)︂
(Θ0 − Φ) = 0 . (32.54)

In case being considered, the damping rate 𝜅 is the adiabatic rate

𝜅 = −1

2

𝑐′𝑠
𝑐𝑠

, (32.55)

but the WKB method works for more general 𝜅, provided that 𝜅 is small compared to the wavenumber of the
sound wave, 𝜅≪ 𝑘. The homogeneous wave equation (32.54) can be solved approximately by introducing a
frequency 𝜔 defined by

Θ0 − Φ ∝ 𝑒
∫︀
𝜔 𝑑𝜂𝑠 . (32.56)
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The homogeneous wave equation (32.54) is then equivalent to

𝜔′ + 𝜔2 + 2𝜅𝜔 + 𝑘2 = 0 . (32.57)

To the extent that the damping parameter is much smaller than the frequency, 𝜅≪ 𝑘 ∼ 𝜔, the frequency 𝜔
is approximately constant, so that 𝜔′ can be neglected in equation (32.57). With 𝜔′ neglected, the solution
of equation (32.57) is

𝜔 = −𝜅 ± 𝑖
√︀
𝑘2 − 𝜅2 ≈ −𝜅 ± 𝑖𝑘 , (32.58)

where the last approximation holds because 𝜅≪ 𝑘. Equation (32.58) is called the WKB approximation.
Thus the homogeneous solutions of the wave equation (32.54) are approximately

Θ0 − Φ ∝ 𝑒−
∫︀
𝜅 𝑑𝜂𝑠± 𝑖𝑘𝜂𝑠 . (32.59)

32.5.1 Radiation in the tight-coupling approximation

In the tight-coupling approximation, the damping rate 𝜅 in the differential equation (32.54) is the adiabatic
damping rate (32.55). The integral of the adiabatic damping term is

∫︀
𝜅𝑎 𝑑𝜂𝑠 = − 1

2 ln 𝑐𝑠, whose exponential
is

𝑒−
∫︀
𝜅𝑎 𝑑𝜂𝑠 =

√
𝑐𝑠 . (32.60)

In the WKB approximation, the homogeneous solutions to the wave equation (32.54) are

Θ0 − Φ ∝
√
𝑐𝑠 𝑒
±𝑖𝑘𝜂𝑠 . (32.61)

This shows that, as the sound speed decreased thanks to the increasing baryon-to-photon density in the
expanding Universe, the amplitude of a sound wave decreased as the square root of the sound speed.

32.6 Including quadrupole pressure in the momentum conservation equation

The tight-coupling approximation treats the photon-baryon fluid as a perfect fluid, that is, the pressure is
taken to be isotropic in the fluid frame. A better approximation is to allow the photons a small quadrupole
anisotropy, which allows diffusive dissipation, §32.7.
The scalar part of the momentum conservation equation (29.44b) in general depends not only on the

isotropic pressure 𝑝, but also on a traceless quadrupole pressure. Let the dimensionless scalar quadrupole 𝑞
be defined by its relation to the trace-free quadrupole component of the energy-momentum tensor,

𝑇 𝑎𝑏
quad

= (𝜌+ 𝑝)𝑞
(︁

3
2 𝑘𝑎𝑘𝑏 −

1
2 𝛿𝑎𝑏

)︁
, (𝜌+ 𝑝)𝑞 ≡

(︁
𝑘𝑎𝑘𝑏 − 1

3 𝛿𝑎𝑏

)︁
𝑇 𝑎𝑏 . (32.62)

For relativistic species such as photons, the dimensionless quadrupole 𝑞 is related to the quadrupole moment
Θ2 by, equation (33.53d),

𝑞 = − 2Θ2 . (32.63)



32.7 Photon diffusion (Silk damping) 869

In the presence of a quadrupole pressure, the momentum conservation equation (29.44b) includes a term

𝐷𝑚𝑇
𝑚𝑎

quad

=
1

𝑎
(𝜌+ 𝑝)∇𝑎𝑞 . (32.64)

The net effect is to modify all momentum conservation equations by replacing Ψ→ Ψ+ 𝑞. The scalar bulk
velocity equation (30.13b) is thus modified to

v̇+ (1− 3𝑤)
�̇�

𝑎
v+ 𝑤𝑘𝛿 = −𝑘(Ψ + 𝑞) . (32.65)

32.7 Photon diffusion (Silk damping)

The tight coupling between photons and baryons is not perfect, because the mean free path for electron-
photon scattering is finite, not zero. The imperfect coupling causes sound waves to damp at scales comparable
to and below the mean free path. The damping is greater at smaller scales, leading to a systematic reduction in
CMB power at smaller scales by an approximately Gaussian factor, equation (32.84). The damping reduces
power, but it does not smooth out the acoustic oscillation structure of the CMB power spectrum, which
remains intact.
For photon multipoles ℓ ≥ 2, the electron-photon scattering term on the right hand side of the photon

Boltzmann hierarchy (33.81) acts as a damping term that tends to drive the multipoles exponentially into
equilibrium (the solution to the homogeneous equation Θ̇ℓ + |𝜏 |Θℓ = 0 is a decaying exponential). As seen
in §32.4, in the tight-coupling approximation the monopole and dipole oscillate with a natural frequency of
𝜔 = 𝑐𝑠𝑘, where 𝑐𝑠 is the sound speed. These oscillations provide a source that propagates upward to higher
harmonic numbers ℓ. For scales much larger than a mean free path, 𝑘/|𝜏 | ≪ 1, the time derivative is small
compared to the scattering term, |Θ̇| ∼ 𝑐𝑠𝑘|Θ| ≪ |𝜏Θ|, reflecting the near-equilibrium response of the higher
harmonics. For multipoles ℓ ≥ 2, the dominant term on the left hand side of the Boltzmann hierarchy (33.81)
is the lowest order multipole, which acts as a driver. Solution of the Boltzmann equations (33.81) then requires
that

Θℓ+1 ∼
𝑘

|𝜏 |
Θℓ for ℓ ≥ 2 . (32.66)

The relation (32.66) implies that higher order photon multipoles are successively smaller than lower orders,
|Θℓ+1| ≪ |Θℓ|, for scales much larger than a mean free path, 𝑘/|𝜏 | ≪ 1. This accords with the physical
expectation that electron-photon scattering tends to drive the photon distribution to near isotropy.
To lowest order, dissipation can be taken into account by including the photon quadrupole Θ2 in the

Boltzmann hierarchy (33.81) of photon multipole equations, but still neglecting the higher multipoles, Θℓ = 0

for ℓ ≥ 3. According to the estimate (32.66), this approximation is valid for scales much larger than a
mean free path, 𝑘/|𝜏 | ≪ 1. The approximation of truncating at the quadrupole is equivalent to a diffusion
approximation. In the diffusion approximation, the photon quadrupole equation (33.81c) reduces to

Θ2 = − 4𝑘

9|𝜏 |
Θ1 . (32.67)



870 Cosmological perturbations: the hydrodynamic approximation

Substituted into the photon momentum equation (32.8b), the photon quadrupole Θ2 (32.67) acts as a source
of friction on the photon dipole Θ1. In hydrodynamics of near-equilibrium fluids, such a quadrupole moment
is called shear viscosity. When polarization is included, which modifies the factor on the right hand side
of the photon quadrupole equation (33.81c), the factor 4

9 in equation (32.67) is increased by a factor of 6
5 to

8
15 , equation (35.72), as already adopted in equations (32.9).
The diffusive damping resulting from a small photon quadrupole Θ2 conserves the energy and momentum

of the photon fluid (by itself, irrespective of baryons), so that covariant momentum conservation 𝐷𝑚𝑇
𝑚𝑛 = 0

continues to hold true within the photon fluid. The contribution of a quadrupole pressure to the momentum
conservation equation was discussed in §32.6.

32.8 Viscous baryon drag damping

A second source of damping of sound waves, distinct from the photon diffusion of §32.7, arises from the
viscous drag on photons that results from a small difference vb − 3Θ1 between the baryon and photon bulk
velocities. In contrast to photon diffusion, viscous baryon drag transfers momentum between photons and
baryons. In hydrodynamics of near-equilibrium fluids, this effect is called heat conduction.
An expression for the bulk velocity difference vb− 3Θ1 follows from either of the momentum conservation

equations (32.8b) or (32.7b) for photons or baryons,

vb − 3Θ1 =
3

|𝜏 |

(︂
Θ̇1 +

𝑘

3
Θ0 +

𝑘

3
Ψ

)︂
= − 𝑅

|𝜏 |

(︂
v̇b +

�̇�

𝑎
vb + 𝑘Ψ

)︂
≈ −3𝑅

|𝜏 |

(︂
Θ̇1 +

�̇�

𝑎
Θ1 +

𝑘

3
Ψ

)︂
. (32.68)

The bulk velocity difference vb−3Θ1 is small because the scattering factor |𝜏 | is large. The final approximation
of equations (32.68) follows from replacing vb with 3Θ1 to lowest order, which is valid because the expression is
already of linear order. Taking a linear combination of the second and fourth expressions in equations (32.68)
so as to eliminate Θ̇1 gives

vb − 3Θ1 ≈
3𝑅

(1 +𝑅)|𝜏 |

(︂
𝑘

3
Θ0 −

�̇�

𝑎
Θ1

)︂
. (32.69)

On the right hand side of equation (32.69), the wavenumber 𝑘 is large compared to �̇�/𝑎 at the subhorizon
scales where dissipation is important, so the bulk velocity difference reduces to

vb − 3Θ1 ≈
𝑅𝑘

(1 +𝑅)|𝜏 |
Θ0 . (32.70)

It is tempting to insert the approximation (32.70) directly into the right hand sides of the photon and
baryon momentum conservation equations (32.8b) and (32.7b), but the result is not of the desired precision,
since the right hand sides of the momentum equations are multiplied by the large factor |𝜏 |, amplifying
imprecision in the approximation (32.70). A precise approach is to start with the equation of conservation of
total momentum of the photon-baryon fluid, which is a sum of the momentum conservation equations (32.8b)
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and (32.7b) for photons and baryons,

Θ̇1 +
𝑘

3
(Θ0 − 2Θ2) +

𝑘

3
Ψ +

𝑅

3

(︂
v̇b +

�̇�

𝑎
vb + 𝑘Ψ

)︂
= 0 . (32.71)

Rewriting the baryon velocity as the photon velocity plus a small difference, vb = 3Θ1 + (vb − 3Θ1), brings
the momentum conservation equation (32.71) to

Θ̇1 +
𝑘

3
(Θ0 − 2Θ2) +

𝑘

3
Ψ +𝑅

(︂
Θ̇1 +

�̇�

𝑎
Θ1 +

𝑘

3
Ψ

)︂
+
𝑅

3

(︂
𝑑

𝑑𝜂
+
�̇�

𝑎

)︂
(vb − 3Θ1) = 0 . (32.72)

The term in equation (32.72) involving the velocity difference vb − 3Θ1 is proportional to(︂
𝑑

𝑑𝜂
+
�̇�

𝑎

)︂
(vb − 3Θ1) =

(︂
𝑑

𝑑𝜂
+
�̇�

𝑎

)︂
𝑅𝑘

(1 +𝑅)|𝜏 |
Θ0 ≈

𝑅𝑘

(1 +𝑅)|𝜏 |
Θ̇0 ≈

𝑅𝑘2

(1 +𝑅)|𝜏 |
Θ1 , (32.73)

the second step of which invokes the approximation (32.70), and the last two steps of which retain only the
dominant term at the subhorizon scales 𝑘𝜂 ≫ 1 where dissipation is important.
Substituting the approximation (32.73), and the diffusive approximation (32.67) for the radiation quad-

rupole Θ2, brings the photon-baryon momentum conservation equation (32.72) to

(1 +𝑅)Θ̇1 +𝑅
�̇�

𝑎
Θ1 +

𝑘

3
[Θ0 + (1 +𝑅)Ψ] +

𝑘2

3|𝜏 |

(︂
8

9
+

𝑅2

1 +𝑅

)︂
Θ1 = 0 . (32.74)

The final terms proportional to the comoving Thomson mean free path 1/|𝜏 | on the left hand side of equa-
tion (32.74) are the dissipative terms. The 8/9 term is from photon diffusion, while the 𝑅2/(1 +𝑅) term is
from baryon drag.

32.9 Photon-baryon wave equation with dissipation

Eliminating the dipole Θ1 in equation (32.74) in favour of the monopole Θ0 using the photon monopole
equation (32.8) yields a second order differential equation for Θ0 − Φ,{︂

𝑑2

𝑑𝜂2
+

[︂
𝑅

(1+𝑅)

�̇�

𝑎
+

𝑘2

3(1+𝑅)|𝜏 |

(︂
8

9
+

𝑅2

1+𝑅

)︂]︂
𝑑

𝑑𝜂
+

𝑘2

3(1+𝑅)

}︂
(Θ0 − Φ) = − 𝑘2

3(1+𝑅)
[(1+𝑅)Ψ + Φ] .

(32.75)
Recast in terms of the sound horizon distance 𝜂𝑠 defined by equation (32.52), the wave equation (32.75)
becomes {︂

𝑑2

𝑑𝜂2𝑠
+

[︂
− 𝑐′𝑠
𝑐𝑠

+
𝑘2𝑐𝑠
|𝜏 |

(︂
8

9
+

𝑅2

1 +𝑅

)︂]︂
𝑑

𝑑𝜂𝑠
+ 𝑘2

}︂
(Θ0 − Φ) = − 𝑘2 [(1 +𝑅)Ψ + Φ] , (32.76)

where prime ′ denotes derivative with respect to sound horizon distance, 𝑐′𝑠 = 𝑑𝑐𝑠/𝑑𝜂𝑠. Equations (32.75)
and (32.76) differ from the earlier dissipation-free equations (32.49) and (32.53) by the inclusion of dissipation
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terms proportional to the Thomson scattering mean free path 𝑙T = 1/|𝜏 |. WKB solution of equations such
as (32.76) was discussed in §32.5.
In Exercise 35.7 it is found that polarization increases the photon diffusion contribution in equation (32.76)

by a factor of 6
5 from 8

9 to 16
15 ,

8

9
→ 16

15
. (32.77)

The terms proportional to the linear derivative 𝑑/𝑑𝜂𝑠 in equation (32.76) are damping terms, which may
be collected into an overall damping coefficient 𝜅,(︂

𝑑2

𝑑𝜂2𝑠
+ 2𝜅

𝑑

𝑑𝜂𝑠
+ 𝑘2

)︂
(Θ0 − Φ) = − 𝑘2

[︀
(1 +𝑅)Ψ + Φ

]︀
. (32.78)

The damping coefficient 𝜅 is a sum of adiabatic 𝜅a and dissipative 𝜅d parts,

𝜅 ≡ 𝜅a + 𝜅d , 𝜅a = −1

2

𝑑 ln 𝑐𝑠
𝑑𝜂𝑠

, 𝜅d =
𝑘2𝑐𝑠
2|𝜏 |

(︂
16

15
+

𝑅2

1 +𝑅

)︂
. (32.79)

In the dissipative damping coefficient 𝜅d, the 16/15 term arises from photon diffusion, while the 𝑅2/(1+𝑅)

term arises from baryon drag. At recombination, where 𝑅 ≈ 0.6, dissipation by photon diffusion and baryon
drag are in the ratio (16/15)/[𝑅2(1 +𝑅)] ≈ 5. Thus photon diffusion dominates the dissipation, but baryon
drag contributes non-negligibly.
In the WKB approximation, §32.5, the homogeneous solutions of equation (32.78) are

Θ0 − Φ ∝
√
𝑐𝑠 𝑒
−

∫︀
𝜅d 𝑑𝜂𝑠𝑒±𝑖𝑘𝜂𝑠 . (32.80)

The dissipative factor 𝑒−
∫︀
𝜅d 𝑑𝜂𝑠 involves an integral of the dissipative damping coefficient over the sound

horizon distance, which may be written ∫︁
𝜅𝑑 𝑑𝜂𝑠 =

𝑘2

𝑘2𝑑
, (32.81)

where 𝑘−1𝑑 is the damping scale defined by, from equation (32.79) along with the definition (32.52) of 𝜂𝑠 and
the relation (32.50) between 𝑐𝑠 and 𝑅,

1

𝑘2𝑑
≡
∫︁

𝑐𝑠
2|𝜏 |

(︂
16

15
+

𝑅2

1 +𝑅

)︂
𝑑𝜂𝑠 =

∫︁
1

6|𝜏 |(1 +𝑅)

(︂
16

15
+

𝑅2

1 +𝑅

)︂
𝑑𝜂 . (32.82)

The damping scale 𝑘−1𝑑 is roughly the geometric mean of the scattering mean free path 𝑙T and the horizon
distance 𝜂, as might be expected for a random walk by increments 𝑙T over a time 𝜂,

𝑘−1𝑑 ∼
√︀
𝑙T𝜂 . (32.83)

The resulting dissipative damping factor is

𝑒−
∫︀
𝜅𝑑 𝑑𝜂𝑠 = 𝑒−𝑘

2/𝑘2𝑑 . (32.84)

Thus the effect of dissipation is to damp temperature fluctuations exponentially at scales smaller than the
diffusion scale 𝑘𝑑. The diffusion scale 𝑘𝑑 is evaluated in Exercise 32.6.
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32.10 Baryon loading

The driving potential on the right hand side of the wave equation (32.78) causes Θ0 − Φ to oscillate not
around zero, but rather around the offset −

[︀
(1+𝑅)Ψ+Φ

]︀
. At scales well inside the sound horizon, 𝑘𝜂𝑠 ≫ 1,

this driving potential also varies slowly compared to the wave frequency. To the extent that the driving
potential is slowly varying, the complete solution of the inhomogeneous wave equation (32.78) well inside
the horizon is

Θ0 + (1 +𝑅)Ψ ∝
√
𝑐𝑠 𝑒
−𝑘2/𝑘2𝑑 𝑒±𝑖𝑘𝜂𝑠 . (32.85)

As will be seen in Chapter 34, equation (34.17), the monopole contribution to CMB fluctuations is not the
photon monopole Θ0 by itself, but rather Θ0+Ψ, which is the monopole redshifted by the potential Ψ. This
redshifted monopole is

Θ0 +Ψ = −𝑅Ψ+𝐴
√
𝑐𝑠 𝑒
−𝑘2/𝑘2𝑑 𝑒±𝑖𝑘𝜂𝑠 , (32.86)

with some constant amplitude 𝐴. Thus the redshifted monopole Θ0 + Ψ oscillates about the offset −𝑅Ψ.
Physically, the gravity of baryons enhances sound wave compressions while weakening rarefactions. The offset
of the redshifted temperature monopole translates into an amplification of compression (odd) peaks in the
CMB, and a weakening of rarefaction (even) peaks in the CMB, as is observed in the CMB.

Exercise 32.5. Behaviour of radiation in the presence of damping. Confirm that, for 𝜅 ≪ 𝑘, the
homogeneous solutions of equation (32.78) are approximately Θ0 − Φ ∝ 𝑒−

∫︀
𝜅 𝑑𝜂𝑠± 𝑖𝑘𝜂𝑠 . Hence find the

retarded Green’s function, and write down the general solution to equation (32.78). Convince yourself that
Θ0 − Φ is a decaying wave that oscillates around −

[︀
(1 +𝑅)Ψ + Φ

]︀
.

Solution. The general solution of equation (32.78) is, with 𝑦 ≡ 𝑘𝜂𝑠 and 𝛽 ≡
∫︀
𝜅 𝑑𝜂𝑠,

Θ0(𝑦)− Φ(𝑦) = 𝑒−𝛽 (𝐴0 cos 𝑦 +𝐴1 sin 𝑦)−
∫︁ 𝑦

0

{︀
[1 +𝑅(𝑦′)] Ψ(𝑦′) + Φ(𝑦′)

}︀
𝑒−(𝛽−𝛽

′) sin(𝑦 − 𝑦′) 𝑑𝑦′ , (32.87)

where 𝐴0 and 𝐴1 are constants.

Exercise 32.6. Diffusion scale. Show that the dimensionless ratio of the damping scale 𝑘𝑑 defined
by (32.82) to the comoving Hubble distance 𝑐/(𝑎eq𝐻eq) at matter-radiation equality is given by

𝑎2eq𝐻
2
eq

𝑐2𝑘2𝑑
=

8
√
2𝜋𝐺𝑚b

9𝑐𝜎T𝑓+𝐻eq

Ωm

Ωb

∫︁ 𝑎/𝑎eq

0

(𝑎/𝑎eq)
2

𝑋𝑒

√︀
1 + (𝑎/𝑎eq)(1 +𝑅)

(︂
16

15
+

𝑅2

1 +𝑅

)︂
𝑑(𝑎/𝑎eq) . (32.88)

If hydrogen is taken to be fully ionized and helium neutral, which is a reasonable approximation in the run-up
to recombination, then 𝑋𝑒 = 𝑓H. For constant 𝑋𝑒, the integral on the right hand side of equation (32.88)
can be done analytically. With 𝑎 normalized to 𝑎eq = 1,

𝑓(𝑎) ≡
∫︁ 𝑎

0

𝑎2√
1 + 𝑎

16
15 (1 +𝑅) +𝑅2

(1 +𝑅)2
𝑑𝑎 ≈

∫︁ 𝑎

0

𝑎2 𝑑𝑎√
1 + 𝑎

. (32.89)
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The last approximation is correct to order unity for any 𝑎. Conclude that, neglecting the effect of recombi-
nation on the electron fraction 𝑋𝑒,

𝑎2eq𝐻
2
eq

𝑐2𝑘2𝑑
=

6.83ℎ−1

𝑓+𝑓H

𝐻0

𝐻eq

Ωm

Ωb
𝑓(𝑎/𝑎eq) = 6× 10−4𝑓(𝑎/𝑎eq) ≈ 0.0035 , (32.90)

the final value being the approximate value at recombination.

32.11 Neutrinos

Before electron-positron annihilation at temperature 𝑇 ≈ 1MeV, weak interactions were fast enough that
scattering between neutrinos, antineutrinos, electrons, and positrons kept neutrinos and antineutrinos in
thermodynamic equilibrium with baryons. After 𝑒𝑒 annihilation, neutrinos and antineutrinos decoupled,
rather like photons decoupled at recombination. After decoupling, neutrinos streamed freely. In Exercise 32.7
you will show that, in an approximation developed in §34.6.2, the effective sound speed in neutrinos was
about the speed of light, in contrast to photons where collisional isotropization leads to a sound speed about
1/
√
3 the speed of light.

Exercise 32.7. Generic behaviour of neutrinos. Insert the approximate value (34.50) of the neutrino
quadrupole 𝒩2 into the neutrino energy and momentum conservation equations (32.10) to obtain the differ-
ential equation (︂

𝑑2

𝑑𝜂2
+

2

𝜂

𝑑

𝑑𝜂
+ 𝑘2

)︂
(𝒩0 − Φ) = −𝑘2(Ψ + Φ) . (32.91)

What kind of equation is this? What are the its solutions? Find the Green’s function solution driven by a
prescribed potential Ψ+Φ, subject to the initial condition that 𝒩0−Φ = 𝜁𝜈 . Convince yourself that 𝒩0−Φ

is a decaying wave that oscillates around −(Ψ + Φ). Exercise 35.8 generalizes this exercise to the case of
vector and tensor fluctuations.
Solution. The Green’s function solution of equation (32.91) is with 𝑦 ≡ 𝑘𝜂,

𝒩0 − Φ = 𝜁𝜈
sin 𝑦

𝑦
−
∫︁ 𝑦

0

[Ψ(𝑦′) + Φ(𝑦′)] sin(𝑦 − 𝑦′)𝑦
′

𝑦
𝑑𝑦′ . (32.92)



33

Cosmological perturbations: Boltzmann
treatment

Chapters 30 and 32 treated cosmological perturbations in the approximations that matter and radiation
behaved as respectively perfect and imperfect fluids. The fluid approximation truncates the momentum dis-
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Figure 33.1 (Left) Overdensities 𝛿 − 3Φ, and (right) bulk velocities v in a Boltzmann treatment as a function of

cosmic scale factor 𝑎/𝑎eq, at wavenumber 𝑘/(𝑎eq𝐻eq) = 10, for non-baryonic dark matter (c), baryons (b), photons

(𝛾), and neutrinos (𝜈). The cosmological model is the standard model adopted in this book, a flat ΛCDM model

with concordance parameters ΩΛ = 0.69 and Ωm = 0.31 and adiabiatic initial conditions, §32.3. The overdensities

and velocities of relativistic species are related to their monopole and dipole moments by 𝛿𝛾 − 3Φ = 3(Θ0 − Φ),

𝛿𝜈 − 3Φ = 3(𝒩0 − Φ), v𝛾 = 3Θ1, v𝜈 = 3𝒩1. The computation shown here includes photon and neutrino multipoles

up to ℓmax = 32. Compare these results to the simple and hydrodynamic computations, Figures 30.2 and 32.1.
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Figure 33.2 (Left) Photon multipoles up to ℓ = 6, and (right) neutrino multipoles up to ℓ = 32, as a function of cosmic

scale factor 𝑎/𝑎eq, at wavenumber 𝑘/(𝑎eq𝐻eq) = 10. The cosmological model is the same as in Figure 33.1, §32.3. The

thick (black) line shows −Ψ−Φ, about which the photon and neutrino monopoles Θ0−Φ and 𝒩0−Φ mostly oscillate

(except near recombination, where the photon monopole Θ0 −Φ oscillates about − (1 +𝑅)Ψ−Φ). The computation

includes photon and neutrino multipoles up to ℓmax = 32. The unphysical jitter in the modes for 𝑎/𝑎eq& 10 is a

symptom of the computation ceasing to be reliable once multipoles higher than those computed become significant.

The multipoles may be compared to those in the hydrodynamic approximation, Figure 32.2.

tribution at the quadrupole momentum moment. However, higher order multipole moments of the photon
distribution become important near recombination, and a fully satisfactory treatment of the CMB requires
following these moments. The evolution of the complete set of multipole moments is governed by the colli-
sional Boltzmann equation.

A Boltzmann treatment is needed in any case to determine how the Boltzmann equations should best be
truncated to give the hydrodynamic treatment of Chapter 32. The purpose of the present Chapter is to give
an account of the Boltzmann equation as it applies to cosmological perturbation theory.

Figure 33.1 shows the overdensity and bulk velocity of the 4 species, non-baryonic dark matter, baryons,
photons, and neutrinos, calculated in the Boltzmann treatment of this Chapter, as a function of cosmic scale
factor, at an illustrative wavenumber 𝑘/(𝑎eq𝐻eq) = 10. Figure 33.2 shows photon multipoles up to ℓ = 6 and
neutrino multipoles up to ℓ = 32 in a Boltzmann computation that include multipoles up to ℓmax = 32 for
both photons and neutrinos.
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33.1 Summary of equations in the Boltzmann treatment

The Boltzmann treatment uses the Boltzmann hierarchy of equations to follow the evolution of multipole
moments of relativistic species, photons and neutrinos, up to some maximum harmonic ℓmax−1. The hierarchy
is truncated by invoking a suitable approximation for the ℓmax’th harmonic. The Boltzmann treatment yields
the hydrodynamic approximation, §32.2, when ℓmax = 2.
In the Boltzmann treatment, the equations for non-baryonic cold dark matter (c) and baryons (b) are the

same as those in the hydrodynamic approximation, equations (32.6) and (32.7),

�̇�c − 𝑘 vc − 3 Φ̇ = 0 , (33.1a)

v̇c +
�̇�

𝑎
vc + 𝑘Ψ = 0 , (33.1b)

and

�̇�b − 𝑘 vb − 3 Φ̇ = 0 , (33.2a)

v̇b +
�̇�

𝑎
vb + 𝑘Ψ = − |𝜏 |

𝑅
(vb − 3Θ1) . (33.2b)

The equations for photons (𝛾) are given by the Boltzmann hierarchy (33.81),

Θ̇0 − 𝑘Θ1 − Φ̇ = 0 , (33.3a)

Θ̇1 +
𝑘

3
(Θ0 − 2Θ2) +

𝑘

3
Ψ =

1

3
|𝜏 | (vb − 3Θ1) , (33.3b)

Θ̇2 +
𝑘

5
(2Θ1 − 3Θ3) = −

3

4
|𝜏 |Θ2 , (33.3c)

Θ̇ℓ +
𝑘

2ℓ+ 1
[ℓΘℓ−1 − (ℓ+ 1)Θℓ+1] = −|𝜏 |Θℓ (ℓ ≥ 3) . (33.3d)

As commented after equations (33.81), the factor 3
4 in equation (33.3c) includes the effect of polarization;

without polarization, the factor is 9
10 . The ℓmax’th harmonic Θℓmax

may be approximated by an expression
that interpolates between the tight-coupling limit |𝜏 | ≫ 𝑘𝑠, equation (33.83), and the free-streaming limit
|𝜏 | ≪ 𝑘𝑠, equation (33.84),

Θℓmax =
1

1 + (|𝜏 |/𝑘𝑠)2

(︂
|𝜏 |2

𝑘2𝑠
Θtight
ℓmax

+Θfree
ℓmax

)︂
, (33.4a)

Θtight
ℓmax

= −
(︀
1 + 1

3𝛿ℓmax2

)︀
ℓmax𝑘

(2ℓmax + 1)|𝜏 |
Θℓmax−1 , Θfree

ℓmax
= − (Θℓmax−2 + 𝛿ℓmax2Ψ)− 2ℓmax − 1

𝑘𝜂
Θℓmax−1 . (33.4b)

Equations (33.4) reduces to the hydrodynamic approximation (32.9) when ℓmax = 2. As in the hydrodynamic
case, numerical experiment indicates that the interpolation constant 𝑘𝑠 is adequately approximated by 𝑘𝑠 ≈
2𝑎rec𝐻rec (or 𝑘𝑠 ≈ 𝑎eq𝐻eq, for standard ΛCDM cosmological parameters). The equations for neutrinos (𝜈)
are given by a Boltzmann hierarchy (33.91) which looks like that for photons, but without the scattering
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terms,

�̇�0 − 𝑘𝒩1 − Φ̇ = 0 , (33.5a)

�̇�1 +
𝑘

3
(𝒩0 − 2𝒩2) +

𝑘

3
Ψ = 0 , (33.5b)

�̇�ℓ +
𝑘

2ℓ+ 1
[ℓ𝒩ℓ−1 − (ℓ+ 1)𝒩ℓ+1] = 0 (ℓ ≥ 2) . (33.5c)

The ℓmax’th harmonic 𝒩ℓmax
may be approximated by, equation (33.92),

𝒩ℓmax
= − (𝒩ℓmax−2 + 𝛿ℓmax2Ψ)− 2ℓmax − 1

𝑘𝜂
𝒩ℓmax−1 . (33.6)

The Einstein energy and quadrupole pressure equations are

− 𝑘2Φ− 3
�̇�

𝑎
𝐹 = 4𝜋𝐺𝑎2(𝜌c𝛿c + 𝜌b𝛿b + 4𝜌𝛾Θ0 + 4𝜌𝜈𝒩0) , (33.7a)

𝑘2(Ψ− Φ) = − 32𝜋𝐺𝑎2(𝜌𝛾Θ2 + 𝜌𝜈𝒩2) , (33.7b)

where 𝐹 is defined by equation (30.56).
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Figure 33.3 (Left) Overdensities 𝛿c − 3Φ and 𝛿b − 3Φ of non-baryonic dark matter (brown) and baryonic matter

(green), and (right) radiation monopole Θ0−3Φ (blue), and minus the sum of the scalar potentials, −(Ψ+Φ) (black),

as a function of cosmic scale factor 𝑎. Curves are labelled with the comoving wavenumber 𝑘/(𝑎eq𝐻eq) in units of the

Hubble distance at matter-radiation equality. The cosmological model is as in §32.3. Compare these results to the

simple and hydrodynamic computations, Figures 30.1 and 32.3.
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Exercise 33.1. Program the Boltzmann equations. Upgrade the code you wrote in Exercise 32.2 to
implement the system of Boltzmann equations (32.6)–(32.13). Initial conditions for neutrinos, and for the
two scalar potentials Ψ and Φ, are derived in Exercise 33.5. Explore the evolution of the 2 scalar potentials
and of the 4 species of mass-energy, non-baryonic dark matter, baryons, photons, and neutrinos.

Solution. See Figures 33.1, 33.2, 33.3 and 33.4. The computations here included photon and neutrino
multipoles up to ℓmax = 32.
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Figure 33.4 Difference Ψ−Φ in scalar potentials as a function of cosmic scale factor 𝑎. The cosmological model is the

same as in Figure 33.1, §32.3. Curves are labelled with the wavenumber 𝑘/(𝑎eq𝐻eq) in units of the Hubble distance at

matter-radiation equality. The difference Ψ−Φ is sourced principally by neutrino anisotropy before recombination, and

by photon and neutrino anisotropy after recombination. The computation includes photon and neutrino multipoles

up to ℓmax = 32.

Exercise 33.2. Power spectrum of matter fluctuations: Boltzmann treatment. Upgrade the code
you wrote in Exercise 32.3 to compute the power spectrum of matter fluctuations in a Boltzmann computa-
tion.

Solution. See Figure 33.5.
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Figure 33.5 Model matter power spectrum computed from a Boltzmann computation, compared to observations from

the North (N) and South (S) Galactic Caps of the the Sloan Digital Sky Survey IV (Gil-Marín et al., 2020). The

cosmological model is the same as in Figure 33.1, §32.3. The model power spectrum may be compared to those

computed in the simple and hydrodynamic approximations, Figure 30.15 and Figure 32.4. The thin (pink) line is the

model power spectrum in the hydrodynamic approximation.

33.2 Boltzmann equation in a perturbed FLRW geometry

The Boltzmann equation was introduced in §31.5. The left hand side of the Boltzmann equation (31.32) is,
for either massless or massive particles,

𝑑𝑓

𝑑𝜆
= 𝑝𝑚𝜕𝑚𝑓 +

𝑑𝑝𝑎

𝑑𝜆

𝜕𝑓

𝜕𝑝𝑎
= 𝐸𝜕0𝑓 + 𝑝𝑎𝜕𝑎𝑓 +

𝑑𝑝

𝑑𝜆
· 𝜕𝑓
𝜕𝑝

+
𝑑𝑝

𝑑𝜆

𝜕𝑓

𝜕𝑝
. (33.8)

Here 𝜆 is an affine parameter along the worldline of a particle, and 𝑝𝑚 ≡ {𝐸,𝑝} is the tetrad-frame momentum
of the particle. Both 𝑑𝑝/𝑑𝜆 and 𝜕𝑓/𝜕𝑝 vanish in the unperturbed background, so 𝑑𝑝/𝑑𝜆 ·𝜕𝑓/𝜕𝑝 is of second
order, and can be neglected to linear order, so that

𝑑𝑓

𝑑𝜆
= 𝐸𝜕0𝑓 + 𝑝𝑎𝜕𝑎𝑓 +

𝑑𝑝

𝑑𝜆

𝜕𝑓

𝜕𝑝
. (33.9)
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The expression (33.9) for the left hand side 𝑑𝑓/𝑑𝜆 of the Boltzmann equation involves 𝑑𝑝/𝑑𝜆, which in
free-fall is determined by the usual geodesic equation

𝑑𝑝𝑘

𝑑𝜆
+ Γ𝑘𝑚𝑛 𝑝

𝑚𝑝𝑛 = 0 . (33.10)

Since 𝐸2−𝑝2 = 𝑚2, it follows that the equation of motion for the magnitude 𝑝 of the tetrad-frame momentum
is related to the equation of motion for the tetrad-frame energy 𝐸 by

𝑝
𝑑𝑝

𝑑𝜆
= 𝐸

𝑑𝐸

𝑑𝜆
. (33.11)

The equation of motion for the tetrad-frame energy 𝐸 ≡ 𝑝0 is

𝑑𝐸

𝑑𝜆
= −Γ0

𝑚𝑛 𝑝
𝑚𝑝𝑛 = Γ0𝑎0 𝑝

𝑎𝐸 + Γ0𝑎𝑏 𝑝
𝑎𝑝𝑏 . (33.12)

From this it follows that

𝑑 ln 𝑝

𝑑𝜆
=
𝐸

𝑝2
𝑑𝐸

𝑑𝜆
= 𝐸

(︂
𝐸𝑝𝑎

𝑝
Γ0𝑎0 + 𝑝𝑎𝑝𝑏Γ0𝑎𝑏

)︂
= 𝐸

(︂
− �̇�

𝑎2
+
𝐸𝑝𝑎

𝑝
Γ0𝑎0 + 𝑝𝑎𝑝𝑏

1

Γ0𝑎𝑏

)︂
, (33.13)

where in the last expression the tetrad connection Γ0𝑎𝑏, equation (29.24b), has been separated into its
unperturbed and perturbed parts −(�̇�/𝑎2)𝛿𝑎𝑏 and

1

Γ0𝑎𝑏.
In practice, the integration variable used to evolve equations is the conformal time 𝜂, not the affine

parameter 𝜆. The relation between conformal time 𝜂 and affine parameter 𝜆 is

𝑑𝜂

𝑑𝜆
= 𝑝𝜂 = 𝑒𝑚

𝜂𝑝𝑚 = (𝛿𝑛𝑚 + 𝜙𝑚
𝑛)

0
𝑒𝑛
𝜂𝑝𝑚 =

1

𝑎
[𝐸(1− 𝜙00)− 𝑝𝑎𝜙𝑎0] , (33.14)

whose reciprocal is to linear order

𝑑𝜆

𝑑𝜂
=

𝑎

𝐸

(︂
1 + 𝜙00 +

𝑝𝑎

𝐸
𝜙𝑎0

)︂
. (33.15)

With conformal time 𝜂 as the integration variable, the equation of motion (33.13) for the magnitude 𝑝 of
the tetrad-frame momentum becomes, to linear order,

𝑑 ln 𝑝

𝑑𝜂
= − �̇�

𝑎

(︂
1 + 𝜙00 +

𝑝𝑎

𝐸
𝜙𝑎0

)︂
+
𝐸𝑝𝑎

𝑝
𝑎Γ0𝑎0 + 𝑝𝑎𝑝𝑏𝑎

1

Γ0𝑎𝑏 . (33.16)

With the collision term restored, the Boltzmann equation (31.32) expressed with respect to conformal
time 𝜂 is

𝑑𝑓

𝑑𝜂
=
𝜕𝑓

𝜕𝜂
+ 𝑣𝑎∇𝑎𝑓 +

𝑑 ln 𝑝

𝑑𝜂

𝜕𝑓

𝜕 ln 𝑝
=
𝑑𝜆

𝑑𝜂
𝐶[𝑓 ] , (33.17)

where 𝑣𝑎 ≡ 𝑝𝑎/𝐸 is the tetrad-frame particle velocity, and 𝑑𝜆/𝑑𝜂 and 𝑑 ln 𝑝/𝑑𝜂 are given by equations (33.15)
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and (33.16). Expressions for 𝑑𝜆/𝑑𝜂 and 𝑑 ln 𝑝/𝑑𝜂 in terms of the vierbein perturbations in a general gauge
are left as Exercise 33.3. In conformal Newtonian gauge, the factor 𝑑𝜆/𝑑𝜂, equation (33.15), is

𝑑𝜆

𝑑𝜂
=

𝑎

𝐸
(1 + Ψ) . (33.18)

In conformal Newtonian gauge, and including only scalar fluctuations, the factor 𝑑 ln 𝑝/𝑑𝜂, equation (33.16),
is

𝑑 ln 𝑝

𝑑𝜂
= − �̇�

𝑎
+ Φ̇− 𝐸𝑝𝑎

𝑝
∇𝑎Ψ . (33.19)

To unperturbed order, the Boltzmann equation (33.17) is

𝑑
0

𝑓

𝑑𝜂
=
𝜕

0

𝑓

𝜕𝜂
− �̇�

𝑎

𝜕
0

𝑓

𝜕 ln 𝑝
=

𝑎

𝐸
𝐶[

0

𝑓 ] , (33.20)

where 𝐶[
0

𝑓 ] is the unperturbed collision term, the factor 𝑎/𝐸 coming from 𝑑𝜆/𝑑𝜂 = 𝑎/𝐸 to unperturbed
order, equation (33.15). The second term in the middle expression of equation (33.20) reflects the fact that
the tetrad-frame momentum 𝑝 redshifts as 𝑝 ∝ 1/𝑎 as the Universe expands, a statement that is true for
both massive and massless particles, equation (10.68).
Subtracting off the unperturbed part (33.20) of the Boltzmann equation (33.17) gives the perturbation of

the Boltzmann equation

𝑑
1

𝑓

𝑑𝜂
=
𝜕

1

𝑓

𝜕𝜂
+ 𝑣𝑎∇𝑎

1

𝑓 − �̇�

𝑎

𝜕
1

𝑓

𝜕 ln 𝑝
+𝐺

𝜕
0

𝑓

𝜕 ln 𝑝
=

𝑎

𝐸
𝐶[

1

𝑓 ] +

1

𝑑𝜆

𝑑𝜂
𝐶[

0

𝑓 ] , (33.21)

where 𝑑 ln 𝑝/𝑑𝜂 multiplying 𝜕
1

𝑓/𝜕 ln 𝑝 has been replaced by −�̇�/𝑎 to linear order, equation (33.16), and 𝐺
(not to be confused with the Einstein tensor) defined by

𝐺 ≡ 𝑑 ln(𝑎𝑝)

𝑑𝜂
(33.22)

expresses the peculiar gravitational redshifting of particles. In conformal Newtonian gauge, and including
only scalar fluctuations, the gravitational redshift term 𝐺 is

𝐺 = Φ̇− 𝐸𝑝𝑎

𝑝
∇𝑎Ψ . (33.23)

In conformal Newtonian gauge, the perturbed part of 𝑑𝜆/𝑑𝜂 which appears on the right hand side of the
Boltzmann equation (33.21) is

1

𝑑𝜆

𝑑𝜂
=

𝑎

𝐸
Ψ . (33.24)
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Exercise 33.3. Boltzmann equation factors in a general gauge. Show that in a general gauge, and
including not just scalar but also vector and tensor fluctuations, equation (33.15) is

𝑑𝜆

𝑑𝜂
=

𝑎

𝐸

[︂
1 + 𝜓 +

𝑝𝑎

𝐸
(∇𝑎�̃� + �̃�𝑎)

]︂
, (33.25)

while equation (33.16) yields the gravitational redshift term

𝐺 ≡ 𝑑 ln(𝑎𝑝)

𝑑𝜂
= �̇�+

𝐸𝑝𝑎

𝑝

[︂
−∇𝑎𝜓 +

(︂
𝜕

𝜕𝜂
+
�̇�

𝑎

𝑚2

𝐸2

)︂
(∇𝑎�̃� + �̃�𝑎)

]︂
+ 𝑝𝑎𝑝𝑏

[︁
−∇𝑎∇𝑏(𝑤 − ℎ̇)− 1

2 (∇𝑎𝑊𝑏 +∇𝑏𝑊𝑎) +∇𝑏�̃�𝑎 + ℎ̇𝑎𝑏

]︁
. (33.26)

33.3 Non-baryonic cold dark matter

Non-baryonic cold dark matter is by assumption non-relativistic and collisionless. The unperturbed mean
density is 𝜌c, which evolves with cosmic scale factor 𝑎 as

𝜌c ∝ 𝑎−3 . (33.27)

Since dark matter particles are non-relativistic, the energy of a dark matter particle is its rest-mass energy,
𝐸c = 𝑚c, and its momentum is the non-relativistic momentum 𝑝𝑎c = 𝑚c𝑣

𝑎
c .

The energy-momentum tensor 𝑇𝑚𝑛c of the dark matter is obtained from integrals over the dark matter
phase-space distribution 𝑓c, equation (10.121). The energy and momentum moments of the distribution
define the dark matter overdensity 𝛿c and bulk velocity vvvc, while the pressure is of order v

2
c , and can be

neglected to linear order (note the different fonts for particle velocity 𝑣 and bulk velocity v),

𝑇 00
c ≡

∫︁
𝑓c𝑚c

𝑔c 𝑑
3𝑝c

(2𝜋~)3
≡ 𝜌c(1 + 𝛿c) , (33.28a)

𝑇 0𝑎
c ≡

∫︁
𝑓c𝑚c 𝑣

𝑎
c

𝑔c 𝑑
3𝑝c

(2𝜋~)3
≡ 𝜌cv𝑎c , (33.28b)

𝑇 𝑎𝑏c ≡
∫︁
𝑓c𝑚c 𝑣

𝑎
c 𝑣

𝑏
c

𝑔c 𝑑
3𝑝c

(2𝜋~)3
= 0 . (33.28c)

Non-baryonic cold dark matter is collisionless, so the collision term in the Boltzmann equation is zero,
𝐶[𝑓c] = 0, and the dark matter satisfies the collisionless Boltzmann equation

𝑑𝑓c
𝑑𝜂

= 0 . (33.29)

The energy and momentum moments of the Boltzmann equation (33.17) yield equations for the overdensity
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𝛿c and bulk velocity vc, which in the conformal Newtonian gauge are

0 =

∫︁
𝑑𝑓c
𝑑𝜂
𝑚c

𝑔c 𝑑
3𝑝c

(2𝜋~)3
=

𝜕

𝜕𝜂

∫︁
𝑓c𝑚c

𝑔c 𝑑
3𝑝c

(2𝜋~)3
+∇𝑎

∫︁
𝑓c𝑚c𝑣

𝑎
c

𝑔c 𝑑
3𝑝c

(2𝜋~)3
−
∫︁ (︂

�̇�

𝑎
− Φ̇

)︂
𝜕𝑓

𝜕 ln 𝑝
𝑚c

𝑔c 𝑑
3𝑝c

(2𝜋~)3

=
𝜕𝜌c(1 + 𝛿c)

𝜕𝜂
+∇𝑎(𝜌cv𝑎c ) + 3

(︂
�̇�

𝑎
− Φ̇

)︂
𝜌c , (33.30a)

0 =

∫︁
𝑑𝑓c
𝑑𝜂
𝑚c𝑣

𝑎
c

𝑔c 𝑑
3𝑝c

(2𝜋~)3
=

𝜕

𝜕𝜂

∫︁
𝑓c𝑚c𝑣

𝑎
c

𝑔c 𝑑
3𝑝c

(2𝜋~)3
+∇𝑏

∫︁
𝑓c𝑚c𝑣

𝑎
c 𝑣
𝑏
c

𝑔c 𝑑
3𝑝c

(2𝜋~)3

−
∫︁ (︂

�̇�

𝑎
− Φ̇ +

𝐸𝑝𝑏

𝑝
∇𝑏Ψ

)︂
𝜕𝑓

𝜕 ln 𝑝
𝑚c𝑣

𝑎 𝑔c 𝑑
3𝑝c

(2𝜋~)3

=
𝜕𝜌cv

𝑎
c

𝜕𝜂
+ 4

(︂
�̇�

𝑎
− Φ̇

)︂
𝜌cv

𝑎
c + 𝜌c∇𝑎Ψ . (33.30b)

The Φ̇𝜌cv
𝑎
c term on the last line of equation (33.30b) can be dropped, since the potential Φ and the bulk

velocity v
𝑎
c are both of first order, so their product is of second order. Subtracting the unperturbed part

from equations (33.30a) and (33.30b) gives equations for the dark matter overdensity 𝛿c and bulk velocity
vvvc,

�̇�c +∇ · vvvc − 3Φ̇ = 0 , (33.31a)

v̇vvc +
�̇�

𝑎
vvvc +∇Ψ = 0 . (33.31b)

Transformed into Fourier space, and decomposed into scalar vc and vector vvvc,⊥ parts, the velocity 3-vector
vvvc is

vvvc = −𝑖�̂�vc + vvvc,⊥ . (33.32)

For the scalar modes under consideration, only the scalar part of the dark matter equations (33.31) is relevant:

�̇�c − 𝑘vc − 3Φ̇ = 0 , (33.33a)

v̇c +
�̇�

𝑎
vc + 𝑘Ψ = 0 . (33.33b)

Equations (33.33) reproduce the equations (30.53) derived previously from conservation of energy and mo-
mentum.

Exercise 33.4. Moments of the non-baryonic cold dark matter Boltzmann equation. Confirm
equations (33.30).
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33.4 Boltzmann equation for the temperature fluctuation

The full hierarchy of Boltzmann equations is needed only to describe relativistic species (photons and neu-
trinos); non-relativistic species (non-baryonic dark matter and baryons) are described adequately by the
equations of conservation of energy and momentum. Cosmological fluctuations in relativistic species are
commonly characterized in terms of a temperature fluctuation Θ,

Θ(𝜂,𝑥,𝑝) ≡ 𝛿𝑇 (𝜂,𝑥,𝑝)

𝑇 (𝜂)
. (33.34)

In most of this book Θ refers to photons, but in this section the temperature fluctuation Θ refers to any
species, bosonic or fermionic, massless or massive (neutrinos have small masses, §42.4.15). At early times,
collisions drove the occupation number 𝑓 into thermodynamic equilibrium at each comoving position 𝑥, so
that initially the temperature fluctuation was a function Θ(𝜂,𝑥) only of time and position, not of particle
momentum 𝑝. This explains why the preferred fluctuation variable is the temperature fluctuation Θ, and not
the perturbation

1

𝑓 of the occupation number; the latter depends on momentum 𝑝 even in thermodynamic
equilibrium. As collisions peter out, around recombination in the case of photons, and around 𝑒𝑒-annihilation
in the case of neutrinos, free-streaming allows the temperature fluctuation Θ to become anisotropic.
For a relativistic species, the unperturbed occupation number in thermodynamic equilibrium is

0

𝑓 =
1

𝑒𝑝/𝑇 ∓ 1
, (33.35)

where the sign is − for bosons (photons) and + for fermions (neutrinos). The unperturbed Boltzmann
equation (33.20) can be recast as an equation for the background temperature 𝑇 (𝜂),

𝑑 ln(𝑎𝑇 )

𝑑𝜂
=

𝑎

𝐸
𝐶[

0

𝑓 ]
⧸︁ 𝜕

0

𝑓

𝜕 ln𝑇
, (33.36)

where it follows from equation (33.35) that (the partial derivative with respect to temperature 𝜕/𝜕 ln𝑇 is
at constant momentum 𝑝)

𝜕
0

𝑓

𝜕 ln𝑇
=

0

𝑓(1±
0

𝑓)
𝑝

𝑇
, (33.37)

with + and − for bosons and fermions respectively. Equation (33.36) shows that if the collision term 𝐶[
0

𝑓 ]

vanishes, then the background temperature redshifts as 𝑇 ∝ 𝑎−1. In practice, the collision term 𝐶[
0

𝑓 ] was
negligible for both photons and neutrinos since the end of 𝑒𝑒-annihilation. Photons continued to exchange
energy with electrons and baryons, but the effect on the photons was negligible because they overwhelmingly
outnumbered electrons and baryons, equation (10.103). Although the heating term 𝑑 ln(𝑎𝑇 )/𝑑𝜂 is negligible
in the situation at hand, it is retained temporarily for completeness in the next paragraph.
The definition (33.34) of the temperature fluctuation Θ is to be interpreted as meaning that the pertur-

bation to the occupation number is

1

𝑓 =
𝜕

0

𝑓

𝜕 ln𝑇
𝛿 ln𝑇 =

𝜕
0

𝑓

𝜕 ln𝑇
Θ . (33.38)
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Two of the terms on the left hand side of the perturbed Boltzmann equation (33.21) rearrange to

𝜕
1

𝑓

𝜕𝜂
+
𝑑 ln 𝑝

𝑑𝜂

𝜕
1

𝑓

𝜕 ln 𝑝
=

𝜕
0

𝑓

𝜕 ln𝑇
Θ̇ +

[︂(︂
𝑑 ln𝑇

𝑑𝜂

𝜕

𝜕 ln𝑇
− �̇�

𝑎

𝜕

𝜕 ln 𝑝

)︂
𝜕

0

𝑓

𝜕 ln𝑇

]︂
Θ

=
𝜕

0

𝑓

𝜕 ln𝑇

[︂
Θ̇ +

𝑑 ln(𝑎𝑇 )

𝑑𝜂

𝜕 ln(𝜕
0

𝑓/𝜕 ln𝑇 )

𝜕 ln𝑇
Θ

]︂
. (33.39)

The collision terms on the right hand side of the perturbed Boltzmann equation (33.21) are

𝑎

𝐸
𝐶[

1

𝑓 ] +

1

𝑑𝜆

𝑑𝜂
𝐶[

0

𝑓 ] =
𝜕

0

𝑓

𝜕 ln𝑇

[︂
𝐶[Θ] +

𝑑 ln(𝑎𝑇 )

𝑑𝜂

𝐸

𝑎

1

𝑑𝜆

𝑑𝜂

]︂
, (33.40)

where 𝐶[
0

𝑓 ] has been eliminated in favour of 𝑑 ln(𝑎𝑇 )/𝑑𝜂 using equation (33.36), and 𝐶[Θ] is the scaled
collision term defined by

𝐶[Θ] ≡ 𝑎

𝐸
𝐶[

1

𝑓 ]
⧸︁ 𝜕

0

𝑓

𝜕 ln𝑇
. (33.41)

The perturbed Boltzmann equation (33.21) thus becomes

𝑑Θ

𝑑𝜂
=
𝜕Θ

𝜕𝜂
+ 𝑣𝑎∇𝑎Θ−𝐺+

𝑑 ln(𝑎𝑇 )

𝑑𝜂

𝜕 ln(𝜕
0

𝑓/𝜕 ln𝑇 )

𝜕 ln𝑇
Θ = 𝐶[Θ] +

𝑑 ln(𝑎𝑇 )

𝑑𝜂

𝐸

𝑎

1

𝑑𝜆

𝑑𝜂
, (33.42)

where the gravitational redshift term 𝐺 gets a minus sign from 𝜕
0

𝑓/𝜕 ln 𝑝 = −𝜕
0

𝑓/𝜕 ln𝑇 .
In practice the heating terms proportional to 𝑑 ln(𝑎𝑇 )/𝑑𝜂, though important during for example electron-

positron annihilation, are negligible for both photons and neutrinos during the time before and through
recombination when anisotropies in the CMB are developing. The Boltzmann equation (33.42) then reduces
to

𝑑Θ

𝑑𝜂
=
𝜕Θ

𝜕𝜂
+ 𝑣𝑎∇𝑎Θ−𝐺 = 𝐶[Θ] . (33.43)

As long as the particles are relativistic, the particle velocity is one, 𝑣 = 1; but equation (33.43) allows for a
general non-unit velocity 𝑣 to accommodate neutrinos, which have small masses.
Fourier transforming the Boltzmann equation (33.43) over spatial position 𝑥 yields the Boltzmann equation

for the Fourier components Θ(𝜂,𝑘,𝑝) of the temperature fluctuation,

𝑑Θ

𝑑𝜂
=
𝜕Θ

𝜕𝜂
− 𝑖𝑣𝑘𝜇Θ−𝐺 = 𝐶[Θ] , (33.44)

where 𝜇 is the cosine of the angle between the wavevector 𝑘 and the photon momentum 𝑝,

𝜇 ≡ �̂� · 𝑝 . (33.45)

In Fourier space, the gravitational redshift term 𝐺, in conformal Newtonian gauge and including only scalar
fluctuations, is, equation (33.23),

𝐺 = Φ̇ +
𝑖𝑘𝜇

𝑣
Ψ . (33.46)
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33.5 Spherical harmonics of the temperature fluctuation

It is natural to expand the (photon or neutrino) temperature fluctuation Θ in spherical harmonics. The
various components of the energy-momentum tensor 𝑇𝑚𝑛 are determined by the monopole, dipole, and
quadrupole harmonics of the particle distribution. Scalar fluctuations are those that are rotationally sym-
metric about the wavevector direction �̂�, which correspond to spherical harmonics with zero azimuthal
quantum number, 𝑚 = 0. Expanded in spherical harmonics 𝑌ℓ𝑚(𝑝), and with only scalar terms retained, the
temperature fluctuation Θ can be written

Θ(𝜂,𝑘,𝑝) =

∞∑︁
ℓ=0

(−𝑖)ℓ
√︀

4𝜋(2ℓ+ 1)Θℓ(𝜂,𝑘, 𝑝)𝑌ℓ0(𝑝)

=

∞∑︁
ℓ=0

(−𝑖)ℓ(2ℓ+ 1)Θℓ(𝜂,𝑘, 𝑝)𝑃ℓ(�̂� · 𝑝) , (33.47)

where 𝑃ℓ are Legendre polynomials, §33.14. The choice of normalization of the scalar harmonics Θℓ is not
the same as the traditional normalization Θ =

∑︀∞
ℓ=0 Θℓ0𝑌ℓ0, but is conventional in studies of the CMB. The

factor of (−𝑖)ℓ makes Θℓ real, and the normalization factor removes square root factors in the Boltzmann
hierarchy. The harmonics in the traditional and CMB conventions are related by Θℓ0 = (−𝑖)ℓ

√︀
4𝜋(2ℓ+ 1)Θℓ.

The scalar harmonics Θℓ are angular integrals of the temperature fluctuation Θ over momentum directions
𝑝,

Θℓ(𝜂,𝑘, 𝑝) = 𝑖ℓ
∫︁

Θ(𝜂,𝑘,𝑝)𝑃ℓ(�̂� · 𝑝)
𝑑𝑜𝑝
4𝜋

. (33.48)

Expanded into the scalar harmonics Θℓ(𝜂,𝑘, 𝑝), equation (33.47), the left hand side of the Boltzmann
equation (33.44) in conformal Newtonian gauge is

𝑑Θ0

𝑑𝜂
= Θ̇0 − 𝑣𝑘Θ1 − Φ̇ , (33.49a)

𝑑Θ1

𝑑𝜂
= Θ̇1 +

𝑣𝑘

3
(Θ0 − 2Θ2) +

𝑘

3𝑣
Ψ , (33.49b)

𝑑Θℓ
𝑑𝜂

= Θ̇ℓ +
𝑣𝑘

2ℓ+ 1
[ℓΘℓ−1 − (ℓ+ 1)Θℓ+1] (ℓ ≥ 2) . (33.49c)

33.6 The Boltzmann equation for massless particles

The Boltzmann equation (33.44) and its harmonic expansion (33.49) are valid for massive as well as massless
particles, to allow for neutrino masses. The case of massive neutrinos will be resumed in §33.13; but for the
next several sections, particles (photons and neutrinos) will be taken to be massless.
Photons are massless, and neutrinos (probably) have small enough masses that they can be treated as

massless through recombination. The velocities of massless particles are always one, 𝑣 = 1. For massless
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particles, the Boltzmann equation for the temperature fluctuation Θ is equation (33.43) with 𝑣 = 1. The left
hand side of the Boltzmann equation expands in scalar harmonics Θℓ as equations (33.49) again with 𝑣 = 1.
As remarked at the beginning of §33.4, at early times photons and neutrinos have distributions in ther-

modynamic equilibrium, as a result of which their initial temperature fluctuations Θ are independent of
particle momentum 𝑝. For massless particles (𝑣 = 1) the left hand side of the Boltzmann equation (33.43)
is independent of the magnitude 𝑝 of the particle momentum. As will be seen in §33.8, equation (33.68),
Thomson scattering leaves the magnitude 𝑝𝛾 of the photon momentum essentially unchanged. Consequently
the temperature fluctuations Θ(𝜂,𝑘,𝑝) of photons, and of neutrinos as long as they are relativistic, depend
on the direction 𝑝 but not magnitude 𝑝 of the particle momentum,

Θ(𝜂,𝑘,𝑝) = Θ(𝜂,𝑘,𝑝) for photons and relativistic neutrinos . (33.50)

33.7 Energy-momentum tensor for massless particles

Perturbations
1

𝑇 𝑘𝑙 to the energy-momentum tensor of particles involve integrals (10.121) over the perturbed
occupation number

1

𝑓 . For massless particles, these integrals take the form, where 𝐹 (𝑝) is some arbitrary
function of the momentum direction 𝑝,∫︁

1

𝑓 𝑝2 𝐹 (𝑝)
𝑔 𝑑3𝑝

𝑝(2𝜋~)3
=

∫︁
𝜕

0

𝑓

𝜕 ln𝑇
𝑝2
𝑔 4𝜋𝑝2𝑑𝑝

𝑝(2𝜋~)3

∫︁
Θ𝐹 (𝑝)

𝑑𝑜𝑝
4𝜋

= 4𝜌

∫︁
Θ𝐹 (𝑝)

𝑑𝑜𝑝
4𝜋

, (33.51)

in which the last expression is true because∫︁
𝜕

0

𝑓

𝜕 ln𝑇
𝑝2
𝑔 4𝜋𝑝2𝑑𝑝

𝑝(2𝜋~)3
= 4

∫︁
0

𝑓 𝑝
𝑔 4𝜋𝑝2𝑑𝑝

(2𝜋~)3
= 4𝜌 , (33.52)

which follows from 𝜕
0

𝑓/𝜕 ln𝑇 = − 𝜕
0

𝑓/𝜕 ln 𝑝 and an integration by parts. The perturbation of the energy
density, energy flux, monopole pressure, and quadrupole pressure of massless particles are then, with integrals
over Θ converted to harmonics Θℓ using equations (33.48),

1

𝑇 00 = 4 𝜌Θ0 , (33.53a)

𝑘𝑎 𝑇
0𝑎 = − 𝑖 4 𝜌Θ1 , (33.53b)

1
3 𝛿𝑎𝑏

1

𝑇 𝑎𝑏 = 4
3 𝜌Θ0 , (33.53c)(︁

3
2 𝑘𝑎𝑘𝑏 −

1
2 𝛿𝑎𝑏

)︁
𝑇 𝑎𝑏 = − 4 𝜌Θ2 . (33.53d)

33.8 Nonrelativistic electron-photon (Thomson) scattering

The dominant process that couples photons and baryons is electron-photon scattering

𝑒+ 𝛾 ↔ 𝑒′+ 𝛾′ . (33.54)
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The Lorentz-invariant mean amplitude squared for unpolarized non-relativistic electron-photon (Thomson)
scattering from initial photon momentum 𝑝𝛾 to final momentum 𝑝𝛾′ of the same magnitude, 𝑝𝛾′ = 𝑝𝛾 , is, in
units 𝑐 = ~ = 1, equation (??),

⟨|ℳ|2⟩ = (8𝜋𝛼)2
1 + (𝑝𝛾 · 𝑝𝛾′)2

2
, (33.55)

where 𝛼 ≡ 𝑒2/(~𝑐) is the fine-structure constant. The unpolarized mean amplitude squared (33.55) is the
polarized amplitude squared (35.54) averaged over polarization states of the incoming photon (that’s what the
adjective mean refers to here), and summed over polarization states of the scattered photon. The differential
cross-section 𝑑𝜎T/𝑑𝑜′ for unpolarized Thomson scattering into an interval 𝑑𝑜′ of solid angle about scattered
photon direction 𝑝′ is related to the squared amplitude ⟨|ℳ|2⟩ by, equation (??),

𝑑𝜎T
𝑑𝑜′

=
⟨|ℳ|2⟩
(8𝜋𝑚𝑒)2

=
𝛼2

𝑚2
𝑒

1 + (𝑝𝛾 · 𝑝𝛾′)2

2
. (33.56)

The coefficient of the differential cross-section is, with units 𝑐 and ~ restored,(︂
𝛼~
𝑚𝑒𝑐

)︂2

= 𝑟2𝑒 =

(︂
𝑒2

𝑚𝑒𝑐2

)︂2

, (33.57)

where 𝑟𝑒 ≡ 𝑒2/𝑚𝑒𝑐
2 is the classical electron radius. The total Thomson cross-section 𝜎T is

𝜎T ≡
∫︁
𝑑𝜎T
𝑑𝑜′

𝑑𝑜′ =
8𝜋

3
𝑟2𝑒 . (33.58)

33.9 The photon collision term for electron-photon scattering

Electron-photon scattering keeps electrons and photons close to mutual thermodynamic equilibrium, and
their unperturbed distributions can be taken to be in thermodynamic equilibrium. The unperturbed photon
collision term for electron-photon scattering therefore vanishes, because of detailed balance, Exercise 31.5,

𝐶[
0

𝑓𝛾 ] = 0 . (33.59)

Thanks to detailed balance, the combination of rates in the collision integral (31.40) almost cancels, so can
be treated as being of linear order in perturbation theory. This allows other factors in the collision integral
to be approximated by their unperturbed values.
The photon collision term for electron-photon scattering follows from the general expression (31.40). To

unperturbed order, the energies of the electrons, which are non-relativistic, may be set equal to their rest
masses, 𝐸𝑒 = 𝑚𝑒. Since photons are massless, their energies are just equal to their momenta, 𝐸𝛾 = 𝑝𝛾 . The
electron occupation number is small, 𝑓𝑒 ≪ 1, so the Fermi blocking factors for electrons may be neglected,
1− 𝑓𝑒 = 1. These considerations bring the photon collision term for electron-photon scattering to, from the
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general expression (31.40),

𝐶[
1

𝑓𝛾 ] =
1

16

∫︁
⟨|ℳ|2⟩

[︀
− 𝑓𝑒𝑓𝛾(1+𝑓𝛾′)+𝑓𝑒′𝑓𝛾′(1+𝑓𝛾)

]︀
(2𝜋)4𝛿4𝐷(𝑝𝑒+𝑝𝛾−𝑝𝑒′−𝑝𝛾′)

2 𝑑3𝑝𝑒
𝑚𝑒(2𝜋)3

𝑑3𝑝𝑒′

𝑚𝑒(2𝜋)3
𝑑3𝑝𝛾′

𝑝𝛾′(2𝜋)3
.

(33.60)
The various integrations over momenta are most conveniently carried out as follows. The energy-conserving

integral is best done over the energy of the scattered photon 𝛾′, which is scattered into an interval 𝑑𝑜𝛾′ of
solid angle: ∫︁

2𝜋 𝛿𝐷(𝐸𝑒 + 𝐸𝛾 − 𝐸𝑒′ − 𝐸𝛾′)
𝑑3𝑝𝛾′

𝐸𝛾′(2𝜋)3
= 𝑝𝛾′

𝑑𝑜𝛾′

(2𝜋)2
≈ 𝑝𝛾

𝑑𝑜𝛾′

(2𝜋)2
. (33.61)

The approximation in the last step of equation (33.61), replacing the energy 𝑝𝛾′ of the scattered photon by
the energy 𝑝𝛾 of the incoming photon, is valid because, thanks to the smallness of the combination of rates
in the collision integral (33.60), it suffices to treat the photon energy to unperturbed order. As seen below,
equation (33.66), the energy difference 𝑝𝛾−𝑝𝛾′ between the incoming and scattered photons is of linear order
in electron velocities.
The momentum-conserving integral is best done over the momentum of the scattered electron, which is 𝑒′

for outgoing scatterings 𝑒 + 𝛾 → 𝑒′+ 𝛾′, and 𝑒 for incoming scatterings 𝑒 + 𝛾 ← 𝑒′+ 𝛾′. In the former case
(𝑒+ 𝛾 → 𝑒′+ 𝛾′), ∫︁

(2𝜋)3𝛿3𝐷(𝑝𝑒 + 𝑝𝛾 − 𝑝𝑒′ − 𝑝𝛾′)
𝑑3𝑝𝑒′

𝑚𝑒(2𝜋)3
=

1

𝑚𝑒
, (33.62)

and the result is the same, 1/𝑚𝑒, in the latter case (𝑒+𝛾 ← 𝑒′+𝛾′). The energy- and momentum-conserving
integrals having been done, the electron 𝑒′ in the latter case may be relabelled 𝑒. So relabelled, the combi-
nation of rate factors in the collision integral (33.60) becomes

− 𝑓𝑒𝑓𝛾(1 + 𝑓𝛾′) + 𝑓𝑒𝑓𝛾′(1 + 𝑓𝛾) = 𝑓𝑒(− 𝑓𝛾 + 𝑓𝛾′) . (33.63)

Notice that the stimulated (𝑓𝑒𝑓𝛾𝑓𝛾′) terms cancel. The energy- and momentum-conserving integrations (33.61)
and (33.62) bring the photon collision term (33.60) to

𝐶[
1

𝑓𝛾 ] =
𝑝𝛾

16𝜋𝑚2
𝑒

∫︁
⟨|ℳ|2⟩𝑓𝑒(− 𝑓𝛾 + 𝑓𝛾′)

2 𝑑3𝑝𝑒
(2𝜋)3

𝑑𝑜𝛾′

4𝜋
. (33.64)

The collision integral (33.64) involves the difference − 𝑓𝛾 + 𝑓𝛾′ between the occupancy of the initial and
final photon states. To linear order, the difference is

− 𝑓𝛾 + 𝑓𝛾′ = −
0

𝑓(𝑝𝛾) +
0

𝑓(𝑝𝛾′)−
1

𝑓(𝑝𝛾) +
1

𝑓(𝑝𝛾′) =
𝜕

0

𝑓𝛾
𝜕 ln𝑇

[︂
𝑝𝛾 − 𝑝𝛾′

𝑝𝛾
−Θ(𝑝𝛾) + Θ(𝑝𝛾′)

]︂
. (33.65)

The first term (𝑝𝛾 − 𝑝𝛾′)/𝑝𝛾 arises because the incoming and scattered photon energies differ slightly. The
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difference in photon energies is given by energy conservation:

𝑝𝛾 − 𝑝𝛾′ = 𝐸𝑒′ − 𝐸𝑒

=

(︂
𝑚𝑒 +

𝑝′2𝑒
2𝑚𝑒

)︂
−
(︂
𝑚𝑒 +

𝑝2𝑒
2𝑚𝑒

)︂
=

(𝑝𝑒 + 𝑝𝛾 − 𝑝𝛾′)2 − 𝑝2𝑒
2𝑚𝑒

=
(𝑝𝛾 − 𝑝𝛾′) · (2𝑝𝑒 + 𝑝𝛾 − 𝑝𝛾′)

2𝑚𝑒

≈ (𝑝𝛾 − 𝑝𝛾′) · 𝑝𝑒
𝑚𝑒

, (33.66)

the last line of which follows because the photon momentum is small compared to the electron momentum,

𝑝𝛾 ∼ 𝑇 ∼
𝑝2𝑒
𝑚𝑒
≪ 𝑝𝑒 . (33.67)

Because the photon energy difference is of first order, and the temperature fluctuation is already of first
order, it suffices to regard the temperature fluctuation Θ as being a function only of the direction 𝑝𝛾 of the
photon momentum, not of its energy:

Θ(𝑝𝛾) ≈ Θ(𝑝𝛾) . (33.68)

The linear approximations (33.66) and (33.68) bring the difference (33.65) between the initial and final
photon occupancies to

− 𝑓𝛾 + 𝑓𝛾′ =
𝜕

0

𝑓𝛾
𝜕 ln𝑇

[︂
(𝑝𝛾 − 𝑝𝛾′) ·

𝑝𝑒
𝑚𝑒
−Θ(𝑝𝛾) + Θ(𝑝𝛾′)

]︂
. (33.69)

Inserting this difference in occupancies into the collision integral (33.64) yields

𝐶[
1

𝑓𝛾 ] =
𝑝𝛾

16𝜋𝑚2
𝑒

𝜕
0

𝑓𝛾
𝜕 ln𝑇

∫︁
⟨|ℳ|2⟩𝑓𝑒

[︂
(𝑝𝛾 − 𝑝𝛾′) ·

𝑝𝑒
𝑚𝑒
−Θ(𝑝𝛾) + Θ(𝑝𝛾′)

]︂
2 𝑑3𝑝𝑒
(2𝜋)3

𝑑𝑜𝛾′

4𝜋
, (33.70)

or, switching to 𝐶[Θ] defined by equation (33.41),

𝐶[Θ] =
𝑎

16𝜋𝑚2
𝑒

∫︁
⟨|ℳ|2⟩𝑓𝑒

[︂
(𝑝𝛾 − 𝑝𝛾′) ·

𝑝𝑒
𝑚𝑒
−Θ(𝑝𝛾) + Θ(𝑝𝛾′)

]︂
2 𝑑3𝑝𝑒
(2𝜋)3

𝑑𝑜𝛾′

4𝜋
. (33.71)

The amplitude squared ⟨|ℳ|2⟩, equation (33.55), is independent of electron momenta, so the integration
over electron momentum in the collision integral (33.71) is straightforward. The unperturbed electron density
�̄�𝑒 and the electron bulk velocity vvv𝑒 are defined by

�̄�𝑒 ≡
∫︁

0

𝑓𝑒
2 𝑑3𝑝𝑒
(2𝜋)3

, �̄�𝑒vvv𝑒 ≡
∫︁

0

𝑓𝑒
𝑝𝑒
𝑚𝑒

2 𝑑3𝑝𝑒
(2𝜋)3

. (33.72)

Coulomb scattering keeps electrons and ions tightly coupled, so the electron bulk velocity vvv𝑒 equals the
baryon bulk velocity vvvb,

vvv𝑒 = vvvb . (33.73)
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Integration over the electron momentum brings the collision integral (33.71) to

𝐶[Θ] =
�̄�𝑒𝑎

16𝜋𝑚2
𝑒

∫︁
⟨|ℳ|2⟩

[︀
(𝑝𝛾 − 𝑝𝛾′) · vvvb −Θ(𝑝𝛾) + Θ(𝑝𝛾′)

]︀ 𝑑𝑜𝛾′

4𝜋
. (33.74)

Finally, the collision integral (33.74) must be integrated over the direction 𝑝𝛾′ of the scattered photon. The
integration is facilitated if the angular dependence of the amplitude squared ⟨|ℳ|2⟩ given by equation (33.55)
is expanded in Legendre polynomials, 1

2 (1 + 𝜇2) = 2
3

[︀
1 + 1

2𝑃2(𝜇)
]︀
. Inserting the amplitude squared ⟨|ℳ|2⟩

into the collision integral (33.74) brings it to

𝐶[Θ] = |𝜏 |
∫︁ [︀

1 + 1
2𝑃2(𝑝𝛾 · 𝑝𝛾′)

]︀ [︀
(𝑝𝛾 − 𝑝𝛾′) · vvvb −Θ(𝑝𝛾) + Θ(𝑝𝛾′)

]︀ 𝑑𝑜𝛾′

4𝜋
, (33.75)

where 𝜏 ≡ −�̄�𝑒𝜎T𝑎 is the scattering rate (32.4). Equation (33.75) (unlike equation (33.74)) remains dimen-
sionally correct even when units of 𝑐 and ~ are restored (both sides have units 1/𝜂). The 𝑝𝛾′ · vvvb term in the
integrand of (33.75) is odd, and vanishes on angular integration:∫︁ [︀

1 + 1
2𝑃2(𝑝𝛾 · 𝑝𝛾′)

]︀
𝑝𝛾′

𝑑𝑜𝛾′

4𝜋
= 0 . (33.76)

Similarly, the angular integral over the quadrupole of quantities independent of 𝑝𝛾′ vanishes:∫︁
𝑃2(𝑝𝛾 · 𝑝𝛾′)

[︀
𝑝𝛾 · vvvb −Θ(𝑝𝛾)

]︀ 𝑑𝑜𝛾′

4𝜋
= 0 . (33.77)

The collision integral (33.75) thus reduces to

𝐶[Θ(𝑥,𝑝𝛾)] = |𝜏 |
{︂
𝑝𝛾 · vvvb(𝑥)−Θ(𝑥,𝑝𝛾) +

∫︁ [︀
1 + 1

2𝑃2(𝑝𝛾 · 𝑝𝛾′)
]︀
Θ(𝑥,𝑝𝛾′)

𝑑𝑜𝛾′

4𝜋

}︂
, (33.78)

where the dependence of various quantities on comoving position 𝑥 has been made explicit. Now transform
to Fourier space (in effect, replace comoving position 𝑥 by comoving wavevector 𝑘). Replace the baryon bulk
velocity by its scalar part, vvvb = 𝑖�̂�vb. To perform the remaining angular integral over the photon direction
𝑝𝛾′ , expand the Legendre polynomial 𝑃2(𝑝𝛾 ·𝑝𝛾′) in the integrand in spherical harmonics using the addition
theorem (33.103), expand the temperature fluctuation Θ(𝑘,𝑝𝛾′) in scalar multipole moments according to

equation (33.47), and invoke orthogonality of the spherical harmonics. With 𝜇 ≡ �̂� ·𝑝𝛾 , these manipulations
bring the photon collision integral (33.78) at last to

𝐶[Θ(𝑘,𝑝𝛾)] = |𝜏 |
[︀
− 𝑖𝜇vb(𝑘)−Θ(𝑘, 𝜇) + Θ0(𝑘)− 1

2Θ2(𝑘)𝑃2(𝜇)
]︀
. (33.79)

33.10 Boltzmann equation for photons

Inserting the collision term (33.79) into equation (33.44) with unit velocity, 𝑣 = 1, yields the Boltzmann
equation for the photon temperature fluctuation Θ(𝜂,𝑘,𝑝𝛾), for scalar fluctuations in conformal Newtonian



33.10 Boltzmann equation for photons 893

gauge,

𝑑Θ

𝑑𝜂
=
𝜕Θ

𝜕𝜂
− 𝑖𝑘𝜇Θ− Φ̇− 𝑖𝑘𝜇Ψ = |𝜏 |

[︀
− 𝑖𝜇vb −Θ+Θ0 − 1

2Θ2𝑃2(𝜇)
]︀
. (33.80)

Expanded into the scalar harmonics Θℓ(𝜂,𝑘), the photon Boltzmann equation (33.80) yields the hierarchy
of photon multipole equations

Θ̇0 − 𝑘Θ1 − Φ̇ = 0 , (33.81a)

Θ̇1 +
𝑘

3
(Θ0 − 2Θ2) +

𝑘

3
Ψ =

1

3
|𝜏 | (vb − 3Θ1) , (33.81b)

Θ̇2 +
𝑘

5
(2Θ1 − 3Θ3) = −

9

10
|𝜏 |Θ2 , (33.81c)

Θ̇ℓ +
𝑘

2ℓ+ 1

[︀
ℓΘℓ−1 − (ℓ+ 1)Θℓ+1

]︀
= −|𝜏 |Θℓ (ℓ ≥ 3) . (33.81d)

When polarization is included, the factor 9
10 on the right hand side of equation (33.81c) is decreased by a

factor 5
6 to 3

4 , Exercise 35.7,

9

10
→ 3

4
. (33.82)

The Boltzmann hierarchy (33.81) shows that all the photon multipoles except the photon monopole Θ0 are
affected by electron-photon scattering, but only the photon dipole Θ1 depends directly on one of the baryon
variables, the baryon bulk velocity vb. The dependence on the baryon velocity vb reflects the fact that, to
linear order, there is a transfer of momentum between photons and baryons, but no transfer of number or
of energy.

33.10.1 Truncating the photon Boltzmann hierarchy

Photons are tightly coupled to baryons by scattering well before recombination, and stream freely well after
recombination. The two regimes are sufficiently different to require different truncations of the Boltzmann
hierarchy.
As argued in §32.7, prior to recombination, when |𝜏 | is large, scattering keeps successive multipoles smaller

by factors of 𝑘/|𝜏 |, equation (32.66). Keeping only the dominant Θℓ−1 term on the left hand side of the
Boltzmann hierarchy (33.81) for ℓ ≥ 2 implies

Θℓ ≈ −
(1 + 1

9𝛿ℓ2)ℓ𝑘

(2ℓ+ 1)|𝜏 |
Θℓ−1 for ℓ ≥ 2 . (33.83)

When polarization is included, the factor 1 + 1
9𝛿ℓ2 = 10

9 for ℓ = 2 on the right hand side of equation (33.83)
is changed to 1 + 1

3𝛿ℓ2 = 4
3 for ℓ = 2, Exercise 35.7.

After recombination, photons stream freely, allowing the photon distribution to develop higher order



894 Cosmological perturbations: Boltzmann treatment

multipoles comparable to lower orders. A better approximation in the free-streaming regime is the same as
that for neutrinos, equation (33.92),

Θℓ ≈ − (Θℓ−2 + 𝛿ℓ2Ψ)− 2ℓ− 1

𝑘𝜂
Θℓ−1 for ℓ ≥ 2 . (33.84)

The truncation of the photon Boltzmann hierarchy adopted in equations (33.4) is an interpolation between
the scattering and free-streaming regimes (33.83) and (33.84).

33.11 Baryons

The equations governing baryonic matter are similar to those governing non-baryonic cold dark matter,
§33.3, except that baryons are collisional. Coulomb scattering between electrons and ions keep baryons
tightly coupled to each other. Electron-photon scattering then couples baryons to photons.
Since the unperturbed distribution of baryons is in thermodynamic equilibrium, the unperturbed collision

term vanishes for each species of baryonic matter, as it did for photons, equation (33.59),

𝐶[
0

𝑓b] = 0 . (33.85)

For the perturbed baryon distribution, only the first and second moments of the phase-space distribution
are important, since these govern the baryon overdensity 𝛿b and bulk velocity vvvb. The relevant collision term
is the electron collision term associated with electron-photon scattering. Since electron-photon scattering
neither creates nor destroys electrons, the zeroth moment of the electron collision term vanishes,∫︁

𝐶[
1

𝑓𝑒]
2𝑑3𝑝𝑒

𝑚𝑒(2𝜋)3
= 0 . (33.86)

The first moment of the electron collision term is most easily determined from the fact that electron-photon
collisions must conserve the total momentum of electron and photons:∫︁

𝐶[
1

𝑓𝑒]𝑚𝑒vvv𝑒
2 𝑑3𝑝𝑒
𝑚𝑒(2𝜋)3

+

∫︁
𝐶[

1

𝑓𝛾 ]𝑝𝛾
2 𝑑3𝑝𝛾
𝑝𝛾(2𝜋)3

= 0 . (33.87)

Substituting the expression (33.78) for the photon collision integral into equation (33.87), separating out
factors depending on the magnitude 𝑝𝛾 and direction 𝑝𝛾 of the photon momentum, and taking into consider-
ation that the integral terms in equation (33.78), when multiplied by 𝑝𝛾 , are odd in 𝑝𝛾 , and therefore vanish
on integration over directions 𝑝𝛾 , gives∫︁

𝐶[
1

𝑓𝑒]𝑚𝑒vvv𝑒
2 𝑑3𝑝𝑒
𝑚𝑒(2𝜋)3

= �̄�𝑒𝜎T𝑎

∫︁
𝜕

0

𝑓𝛾
𝜕 ln𝑇

𝑝2𝛾
2 4𝜋𝑝2𝛾𝑑𝑝𝛾

𝑝𝛾(2𝜋)3

∫︁ [︀
−𝑝𝛾 · vvvb +Θ(𝑝𝛾)

]︀
𝑝𝛾

𝑑𝑜𝛾
4𝜋

. (33.88)

The integral over the magnitude 𝑝𝛾 of the photon momentum in equation (33.88) yields 4𝜌, in accordance
with equation (33.52). Transformed into Fourier space, and with only scalar terms retained, the collision
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integral (33.88) becomes, with 𝜇 ≡ �̂� · 𝑝𝛾 ,

�̂� ·
∫︁
𝐶[

1

𝑓𝑒]𝑚𝑒vvv𝑒
2 𝑑3𝑝𝑒
𝑚𝑒(2𝜋)3

= 4𝜌𝛾 �̄�𝑒𝜎T𝑎

∫︁
[𝑖𝜇vb +Θ] 𝜇

𝑑𝑜𝛾
4𝜋

=
4

3
𝑖𝜌𝛾 �̄�𝑒𝜎T𝑎 (vb − 3Θ1) . (33.89)

The result is that the equations governing the baryon overdensity 𝛿b and scalar bulk velocity vb look like
those (33.33) governing non-baryonic cold dark matter, except that the velocity equation has an additional
source (33.89) arising from momentum transfer with photons through electron-photon scattering:

�̇�b − 𝑘vb − 3Φ̇ = 0 , (33.90a)

v̇b +
�̇�

𝑎
vb + 𝑘Ψ = − |𝜏 |

𝑅
(vb − 3Θ1) , (33.90b)

where 𝑅 ≡ 3
4𝜌b/𝜌𝛾 is 3

4 the baryon-to-photon density ratio, equation (32.46).

33.12 Boltzmann equation for relativistic neutrinos

Neutrinos oscillations indicate that at least two of the three neutrino types have mass, §42.4.15; but the
masses are (probably) small enough that all three neutrinos types were relativistic until some time after
recombination, equation (10.111). As long as neutrinos are relativistic, the hierarchy of Boltzmann equations
is the same as that for photons, equations (33.81), but without the scattering terms,

�̇�0 − 𝑘𝒩1 − Φ̇ = 0 , (33.91a)

�̇�1 +
𝑘

3
(𝒩0 − 2𝒩2) +

𝑘

3
Ψ = 0 , (33.91b)

�̇�ℓ +
𝑘

2ℓ+ 1
[ℓ𝒩ℓ−1 − (ℓ+ 1)𝒩ℓ+1] = 0 (ℓ ≥ 2) . (33.91c)

The radiative transfer equation for neutrinos can be solved explicitly, equation (34.46). That solution,
which involves an integral over the line of sight, provides one way to calculate the multipoles needed in
the Einstein equations. However, computer codes that model the CMB commonly calculate the neutrino
multipoles 𝒩ℓ from the Boltzmann hierarchy (33.91) suitably truncated at some high harmonic ℓmax. Since
free streaming allows high neutrino multipoles to become comparable to the monopole and dipole well
inside the horizon, it is not a good approximation simply to set neutrino multipoles to zero above some
maximum harmonic. A better approximation, which emerges from the radiative transfer solution (34.46), is
the approximation (34.49),

𝒩ℓmax
≈ − (𝒩ℓmax−2 + 𝛿ℓmax2Ψ)− 2ℓmax − 1

𝑘𝜂
𝒩ℓmax−1 , (33.92)

At superhorizon scales, the neutrino distribution was isotropic like any other species. But free-streaming
allowed neutrinos to develop significant anisotropy once the scale entered the horizon. Prior to recombination,



896 Cosmological perturbations: Boltzmann treatment

neutrinos provided the principal quadrupole pressure that sourced the difference Ψ−Φ of scalar potentials,
Figure 33.4. In Exercise 33.5 you will find that, surprisingly, neutrino anisotropy sourced a finite difference
Ψ− Φ even in the initial superhorizon conditions where the neutrino monopole dominated.

Exercise 33.5. Initial conditions in the presence of neutrinos. Prior to recombination, the neutrino
quadrupole pressure is the dominant source for the difference Ψ − Φ in scalar potentials, Figure 33.4. In
this problem you will find that the neutrino quadrupole leads to a finite difference Ψ − Φ even in the
initial conditions at superhorizon scales. Exercise 35.10 considers initial conditions for tensor fluctuations of
neutrinos.
1. Initially, only the neutrino monopole 𝒩0 is finite. In the Boltzmann hierarchy (33.91) of equations, the

lower order multipoles drive the higher multipoles, so that the equations reduce to the form �̇�ℓ ∝ 𝒩ℓ−1.
Specifically, the Boltzmann hierarchy (33.91) reduces to, with 𝑦 ≡ 𝑘𝜂,

𝑑(𝒩0 − Φ)

𝑑𝑦
= 0 , (33.93a)

𝑑𝒩1

𝑑𝑦
= −1

3
(𝒩0 +Ψ) , (33.93b)

𝑑𝒩ℓ
𝑑𝑦

= − ℓ

2ℓ+ 1
𝒩ℓ−1 (ℓ ≥ 2) . (33.93c)

Show that the initial (𝑦 ≪ 1) behaviour of the neutrino multipoles is

𝒩ℓ =
(−𝑦)ℓ

(2ℓ+ 1)!!
(𝒩0 +Ψ) (ℓ ≥ 1) . (33.94)

2. Let 𝑓𝛾 and 𝑓𝜈 be the photon and neutrino fraction of the total radiation density,

𝑓𝛾 ≡
𝜌𝛾

𝜌𝛾 + 𝜌𝜈
= 1− 𝑓𝜈 , 𝑓𝜈 ≡

𝜌𝜈
𝜌𝛾 + 𝜌𝜈

=
6 7

8

(︀
4
11

)︀4/3
2 + 6 7

8

(︀
4
11

)︀4/3 ≈ 0.405 . (33.95)

Show that the Einstein energy equation (33.7a) implies, initially,

−Ψ = 2(Φ + 𝜁r) , (33.96)

where 𝜁r ≡ 𝑓𝛾𝜁𝛾+𝑓𝜈𝜁𝜈 . Assume that the photon quadrupole is negligible (why?). Show that the Einstein
quadrupole pressure equation (33.7b) implies, initially,

Ψ− Φ = − 4
5𝑓𝜈(Ψ + Φ + 𝜁𝜈) . (33.97)

3. Conclude that, for adiabatic initial conditions 𝜁𝜈 = 𝜁𝛾 ,

Ψ = − 10𝜁𝜈
15 + 4𝑓𝜈

, Φ = (1 + 2
5𝑓𝜈)Ψ . (33.98)
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33.13 Massive neutrinos

Once neutrinos become non-relativistic, they start to behave like matter, clustering gravitationally like non-
baryonic cold dark matter and baryons. Each massive neutrino type defines a free-streaming scale, equal to
the characteristic comoving distance that the neutrinos can travel before redshifting to a halt. This free-
streaming scale equals approximately the comoving horizon size at the redshift when the neutrino type
became non-relativistic, equation (10.111). Massive neutrinos tend to depress the matter power spectrum at
scales smaller than the neutrino free-streaming scale.
The suppression of matter power below the free-streaming scale is substantial (exponential) if massive

neutrinos are a dominant component of matter, a scenario termed hot dark matter, or HDM. White, Frenk,
and Davis (1983) used the absence of such suppression in the observed galaxy power spectrum to rule out
HDM models 30 years ago.

33.13.1 Simplified treatment of massive neutrinos

A full treatment of massive neutrinos, §33.13.2, requires integrating a Boltzmann hierarchy of multipole
equations for each of a spectrum of neutrino momenta 𝑝𝜈 . This is more complicated than the massless case,
where the fact that massless neutrinos follow the same null worldline regardless of the magnitude of their
momentum implies that a single Boltzmann hierarchy covers all momenta.
A simple approximate solution to the additional complexity introduced by mass is to assume an abrupt

transition from relativistic to non-relativistic neutrinos at some time. This was the strategy suggested in
Exercise 32.4.
Another possible simplified strategy is to follow the Boltzmann hierarchy (33.100) for just a single repre-

sentative neutrino momentum 𝑝𝜈 near the peak of the distribution, 𝑝𝜈/𝑇𝜈 = 1.

33.13.2 Full treatment of massive neutrinos

The Boltzmann equation for collisionless neutrinos with mass is equation (33.43) with zero collision term. For
massive neutrinos, the neutrino velocity 𝑣𝜈 depends on momentum, so the neutrino temperature fluctuation
𝒩 ≡ 𝛿𝑇𝜈(𝜂,𝑘,𝑝𝜈)/𝑇𝜈(𝜂) depends not only on the direction 𝑝𝜈 of the neutrino momentum, as in the massless
case, but also on its magnitude 𝑝𝜈 . Since the temperature fluctuation 𝒩 is already of first order, it suffices
to treat the particle velocity 𝑣𝜈 in the Boltzmann equation (33.43) to unperturbed order. To unperturbed
order, the momentum of a freely streaming neutrino redshifts as 𝑝𝜈 ∝ 𝑎−1, and the temperature of the
unperturbed distribution redshifts in the same way, 𝑇𝜈 ∝ 𝑎−1. Thus it is convenient to characterize the
neutrino temperature fluctuation as a function of the time-independent ratio 𝑝𝜈/𝑇𝜈 ,

𝒩 (𝜂,𝑘,𝑝𝜈) = 𝒩 (𝜂,𝑘, 𝑝𝜈/𝑇𝜈 ,𝑝𝜈) . (33.99)

The harmonics 𝒩ℓ(𝜂,𝑘, 𝑝𝜈/𝑇𝜈) of the temperature fluctuation are functions of the ratio 𝑝𝜈/𝑇𝜈 .
At the risk of being repetitious, the Boltzmann hierarchy of equations for a species of massive neutrino is,
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equations (33.49),

�̇�0 − 𝑣𝜈𝑘𝒩1 − Φ̇ = 0 , (33.100a)

�̇�1 +
𝑣𝜈𝑘

3
(𝒩0 − 2𝒩2) +

𝑘

3𝑣𝜈
Ψ = 0 , (33.100b)

�̇�ℓ +
𝑣𝜈𝑘

2ℓ+ 1
[ℓ𝒩ℓ−1 − (ℓ+ 1)𝒩ℓ+1] = 0 (ℓ ≥ 2) , (33.100c)

which differs from the massless neutrino hierarchy (33.91) in that it depends on the velocity 𝑣𝜈 ≡ 𝑝𝜈/𝐸𝜈 of
the neutrino. As long as neutrinos are relativistic, it suffices to follow a single hierarchy with 𝑣𝜈 = 1. But
as neutrinos become non-relativistic, a full treatment requires following neutrino with different momenta
𝑝𝜈 separately. In due course the neutrinos become non-relativistic, and the equations re-simplify to the
non-relativistic limit.
Because the massive neutrino multipoles 𝒩ℓ(𝑝𝜈/𝑇𝜈) depend on neutrino momentum 𝑝𝜈 , the perturbed

neutrino energy-momentum tensor
1

𝑇 𝑘𝑙𝜈 is more complicated than the massless case, equations (33.53). The
perturbed energy density, energy flux, monopole pressure, and quadrupole pressure of massive neutrinos are

1

𝑇 00
𝜈 =

∫︁
𝜕

0

𝑓𝜈
𝜕 ln𝑇𝜈

𝒩0(𝑝𝜈/𝑇𝜈)𝐸𝜈
4𝜋𝑝2𝜈𝑑𝑝𝜈
(2𝜋~)3

, (33.101a)

𝑘𝑎 𝑇
0𝑎
𝜈 = − 𝑖

∫︁
𝜕

0

𝑓𝜈
𝜕 ln𝑇𝜈

𝒩1(𝑝𝜈/𝑇𝜈) 𝑝
𝑎
𝜈

4𝜋𝑝2𝜈𝑑𝑝𝜈
(2𝜋~)3

, (33.101b)

1
3 𝛿𝑎𝑏

1

𝑇 𝑎𝑏𝜈 = 1
3

∫︁
𝜕

0

𝑓𝜈
𝜕 ln𝑇𝜈

𝒩0(𝑝𝜈/𝑇𝜈)
𝑝2𝜈
𝐸𝜈

4𝜋𝑝2𝜈𝑑𝑝𝜈
(2𝜋~)3

, (33.101c)(︁
3
2 𝑘𝑎𝑘𝑏 −

1
2 𝛿𝑎𝑏

)︁
𝑇 𝑎𝑏𝜈 = −

∫︁
𝜕

0

𝑓𝜈
𝜕 ln𝑇𝜈

𝒩2(𝑝𝜈/𝑇𝜈)
𝑝2𝜈
𝐸𝜈

4𝜋𝑝2𝜈𝑑𝑝𝜈
(2𝜋~)3

. (33.101d)

33.14 Appendix: Legendre polynomials

The Legendre polynomials 𝑃ℓ(𝜇) satisfy the orthogonality relations∫︁ 1

−1
𝑃ℓ(𝜇)𝑃ℓ′(𝜇) 𝑑𝜇 =

2

2ℓ+ 1
𝛿ℓℓ′ , (33.102)

the addition theorem
ℓ∑︁

𝑚=−ℓ

𝑌 *ℓ𝑚(�̂�)𝑌ℓ𝑚(�̂�) =
2ℓ+ 1

4𝜋
𝑃ℓ(�̂� · �̂�) , (33.103)

the recurrence relation

𝜇𝑃ℓ(𝜇) =
1

2ℓ+ 1
[ℓ𝑃ℓ−1(𝜇) + (ℓ+ 1)𝑃ℓ+1(𝜇)] , (33.104)
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and the derivative relation
𝑑𝑃ℓ(𝜇)

𝑑𝜇
=

ℓ+ 1

1− 𝜇2
[𝜇𝑃ℓ−1(𝜇)− 𝑃ℓ+1(𝜇)] . (33.105)

The first few Legendre polynomials are

𝑃0(𝜇) = 1 , 𝑃1(𝜇) = 𝜇 , 𝑃2(𝜇) = − 1
2 + 3

2𝜇
2 . (33.106)



34

Fluctuations in the Cosmic Microwave
Background

Since the first definitive observation of the amplitude of the first peak of the power spectrum of temperature
fluctuations in the CMB by the Boomerang balloon-based experiment (Bernardis et al., 2000), the observed
power spectrum of the CMB has allowed cosmological parameters to be measured with ever-increasing
precision, and has provided the primary basis for the Standard Model of Cosmology. It should be emphasized
that the CMB power spectrum is by no means the only evidence supporting the Standard Model. What
gives confidence in the Standard Model is the fact that a broad range of other astronomical observations
are consistent with it, including the Hubble diagram of Type I supernovae, the clustering of matter and of
galaxies, Big Bang nucleosynthesis, and the age of the oldest stars.
The power spectrum of the CMB depends on the harmonics Θℓ(𝜂0,𝑘) of the CMB photon distribution at

the present time. A fast and elegant approach to calculating these harmonics was pointed out by Seljak and
Zaldarriaga (1996).

34.1 Radiative transfer of CMB photons

To determine the harmonics Θℓ(𝜂0,𝑘) of the CMB photon distribution today, return to the Boltzmann
equation (33.80) for the temperature fluctuation Θ(𝜂,𝑘, 𝜇), where 𝜇 ≡ �̂� · 𝑝𝛾 is the cosine of the angle
between the wavevector 𝑘 and the photon direction 𝑝𝛾 . It proves advantageous to rearrange the photon
Boltzmann equation as (︂

𝜕

𝜕𝜂
− 𝑖𝑘𝜇+ |𝜏 |

)︂
(Θ + Ψ) = 𝐼 + |𝜏 |𝑆 , (34.1)

which in this context is called the radiative transfer equation. The terms on the right hand side are
source terms. The term 𝐼 on the right hand side of the radiative transfer equation (34.1) is a monopole term,
the Integrated Sachs-Wolfe (ISW) term,

𝐼(𝜂,𝑘) ≡ Ψ̇(𝜂,𝑘) + Φ̇(𝜂,𝑘) , (34.2)

so-called because, as will be seen in equation (34.17), it contributes a temperature fluctuation that is an
integral along the line of sight to the CMB. The term 𝑆 on the right hand side of equation (34.1) embodies

900
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source terms arising from Thomson scattering, Figure 35.1, a sum of monopole, dipole, and quadrupole
harmonics,

𝑆(𝜂,𝑘, 𝜇) ≡ Θ0(𝜂,𝑘) + Ψ(𝜂,𝑘)− 𝑖𝜇vb(𝜂,𝑘)− 1
2Θ2(𝜂,𝑘)𝑃2(𝜇)

=

2∑︁
𝑛=0

(−𝑖)𝑛𝑆𝑛(𝜂,𝑘)𝑃𝑛(𝜇) , (34.3)

with harmonic coefficients 𝑆𝑛(𝜂,𝑘),

𝑆0 ≡ Θ0 +Ψ , (34.4a)

𝑆1 ≡ vb , (34.4b)

𝑆2 ≡ 1
2Θ2 . (34.4c)

The relatively simple structure of the Thomson scattering source functions (34.4), containing only monopole,
dipole, and quadrupole contributions, stems from the simple structure (33.55) of the quantum mechanical
amplitude squared ⟨|ℳ|2⟩ for non-relativistic electron-photon scattering, which contains only monopole and
quadrupole contributions. The dipole source 𝑆1 is a Doppler term from the motion of the photon-baryon
fluid at velocity vb.
The electron-photon (Thomson) scattering optical depth 𝜏 is defined by equation (32.3), the integral along

the line sight of the scattering rate 𝜏 , equation (32.4). The optical depth is zero, 𝜏0 = 0, at zero redshift, and
increases going backwards in time 𝜂 to higher redshift. The radiative transfer equation (34.1) can be written
(note that 𝜏 is negative)

𝑒𝑖𝑘𝜇𝜂+𝜏
𝑑

𝑑𝜂

[︀
𝑒−𝑖𝑘𝜇𝜂−𝜏 (Θ + Ψ)

]︀
= 𝐼 − 𝜏𝑆 . (34.5)

The solution for the photon distribution Θ(𝜂0,𝑘, 𝜇) today is obtained by integrating the radiative transfer
equation (34.5) over the line of sight from the Big Bang (𝜂 = 0) to the present time (𝜂 = 𝜂0),

Θ(𝜂0,𝑘, 𝜇) + Ψ(𝜂0,𝑘) =

∫︁ 𝜂0

0

[𝐼(𝜂,𝑘)− 𝜏𝑆(𝜂,𝑘, 𝜇)] 𝑒−𝑖𝑘𝜇(𝜂−𝜂0)−𝜏 𝑑𝜂 . (34.6)

Notice that the left hand side of the solution (34.6) of the radiative transfer equation is not the temper-
ature fluctuation Θ(𝜂0,𝑘, 𝜇) by itself, but rather the temperature fluctuation redshifted by the potential,
Θ(𝜂0,𝑘, 𝜇) +Ψ(𝜂0,𝑘). The potential Ψ(𝜂0,𝑘) is independent of the photon direction 𝑝𝛾 , so contributes only
to the monopole moment of the photon distribution.

34.1.1 Visibility function

Introduce the visibility function 𝑔(𝜂) defined by

𝑔(𝜂) ≡ −𝜏𝑒−𝜏 . (34.7)
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Figure 34.1 Visibility function 𝑔(𝜂) as a function of conformal time 𝜂 in units of the conformal time today, 𝜂0 = 1.

The visibility function here is calculated from the Peebles approximation to recombination, Exercise 31.6. The dashed

vertical line marks the time 𝜂rec of recombination, where the optical depth is one. The width 𝜎rec of recombination is

the standard deviation of a Gaussian fit to the core of the visibility function.

The visibility function 𝑔(𝜂), illustrated in Figure 34.1, acts like a smoothing window over recombination.
The visibility function is fairly narrowly peaked around recombination at 𝜂 = 𝜂rec, and its integral is one,∫︁ 𝜂0

0

𝑔(𝜂) 𝑑𝜂 =

∫︁ 0

∞
−𝑒−𝜏 𝑑𝜏 =

[︀
𝑒−𝜏

]︀0
∞ = 1 . (34.8)

The visibility function 𝑔(𝜂) has an approximately Gaussian core, and a long tail extending past recombination.
The long tail arises because recombination leaves a finite residual electron density.
The solution (34.6) of the radiative transfer equation can be written in terms of the visibility function

𝑔(𝜂) as

Θ(𝜂0,𝑘, 𝜇) + Ψ(𝜂0,𝑘) =

∫︁ 𝜂0

0

[︀
𝑒−𝜏𝐼(𝜂,𝑘) + 𝑔(𝜂)𝑆(𝜂,𝑘, 𝜇)

]︀
𝑒−𝑖𝑘𝜇(𝜂−𝜂0) 𝑑𝜂 . (34.9)

34.2 Harmonics of the CMB photon distribution

If the temperature fluctuations on the CMB sky are statistically isotropic, then the statistical properties of
the CMB commute with the rotation operator (the angular momentum operator), which implies that the
power spectrum of CMB fluctuations is diagonal in a basis of eigenfunctions of the rotation operator. The
eigenfunctions are spherical harmonics. Thus it is natural to expand the temperature fluctuation Θ(𝜂0,𝑘, 𝜇)+

Ψ(𝜂0,𝑘) in harmonics, equation (33.47).
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The 𝑒−𝑖𝑘𝜇(𝜂−𝜂0) factor in the integrand on the right hand side of equation (34.9) can be expanded in
harmonics through the general formula

𝑒−𝑖𝑦𝜇 =

∞∑︁
ℓ=0

(−𝑖)ℓ(2ℓ+ 1)𝑃ℓ(𝜇)𝑗ℓ(𝑦) , (34.10)

where 𝑗ℓ(𝑦) ≡
√︀
𝜋/(2𝑦)𝐽ℓ+1/2(𝑦) are spherical Bessel functions, and here 𝑦 ≡ 𝑘(𝜂 − 𝜂0). The source func-

tion 𝑆 that premultiplies the factor 𝑒−𝑖𝑘𝜇(𝜂−𝜂0) in the integrand of equation (34.9) is a sum of harmonics,
equation (34.3). It is useful to introduce modified spherical Bessel functions 𝑗ℓ𝑛(𝑦) defined by an expansion
analogous to (34.10),

(−𝑖)𝑛𝑃𝑛(𝜇)𝑒−𝑖𝑦𝜇 =

∞∑︁
ℓ=0

(−𝑖)ℓ(2ℓ+ 1)𝑃ℓ(𝜇)𝑗ℓ𝑛(𝑦) . (34.11)

The orthogonality relations of the Legendre polynomials, equation (33.102), imply that

𝑗ℓ𝑛(𝑦) = 𝑖ℓ−𝑛
∫︁ 1

−1
𝑒−𝑖𝑦𝜇𝑃ℓ(𝜇)𝑃𝑛(𝜇)

𝑑𝜇

2
, (34.12)

which implies that 𝑗ℓ𝑛 is symmetric or antisymmetric in its indices ℓ𝑛 as their difference ℓ−𝑛 is even or odd,

𝑗ℓ𝑛(𝑦) = (−)ℓ−𝑛𝑗𝑛ℓ(𝑦) . (34.13)

The Legendre functions 𝑃𝑛(𝜇) are polynomials in 𝜇, §33.14. Acting on 𝑒−𝑖𝑦𝜇, these polynomials can be
replaced by derivatives with respect to 𝑦 through

𝜇𝑛 𝑒−𝑖𝑦𝜇 =

(︂
𝑖
𝜕

𝜕𝑦

)︂𝑛
𝑒−𝑖𝑦𝜇 . (34.14)

The resulting modified spherical Bessel functions 𝑗ℓ𝑛(𝑦) with 𝑛 = 0, 1, 2 relevant here are

𝑗ℓ0 = 𝑗ℓ , 𝑗ℓ1 = 𝑗′ℓ , 𝑗ℓ2 = 1
2𝑗ℓ +

3
2𝑗
′′
ℓ , (34.15)

where ′ denotes the total derivative, 𝑗′ℓ ≡ 𝑑𝑗ℓ(𝑦)/𝑑𝑦. The modified spherical Bessel functions are even or odd
as 𝑗ℓ𝑛(−𝑦) = (−)𝑙+𝑛𝑗ℓ𝑛(𝑦). The harmonic expansion of equation (34.9) is thus

Θℓ(𝜂0,𝑘) + 𝛿ℓ0Ψ(𝜂0,𝑘) =

∫︁ 𝜂0

0

{︃
𝑒−𝜏𝐼(𝜂,𝑘)𝑗ℓ [𝑘(𝜂0 − 𝜂)] + 𝑔(𝜂)

2∑︁
𝑛=0

𝑆𝑛(𝜂,𝑘)𝑗ℓ𝑛 [𝑘(𝜂 − 𝜂0)]

}︃
𝑑𝜂 , (34.16)

where 𝑔(𝜂) is the visibility function defined by equation (34.7). With the ISW and scattering source terms 𝐼
and 𝑆𝑛 written out explicitly, equation (34.16) is an integral from the Big Bang (𝜂 = 0) to the present time
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Figure 34.2 Illustrative example of the factors that go into the (left) monopole (𝑛 = 0) and (right) dipole (𝑛 = 1)

contributions to the integrand of the solution (34.17) of the radiative transfer equation, as a function of conformal time

𝜂, in units 𝜂0 = 1. The example is for a representative wavenumber 𝑘/(𝑎eq𝐻eq) = 2, and harmonic number ℓ = 200.

The factors are the visibility function 𝑔(𝜂), equation (34.7), scattering source terms 𝑆𝑛(𝜂,𝑘), equations (34.4), and

modified spherical Bessel functions 𝑗ℓ𝑛 [𝑘(𝜂0 − 𝜂)], equations (34.15). The visibility function 𝑔(𝜂) has been scaled to

1 at its peak, and the monopole and dipole spherical Bessel functions 𝑗ℓ and 𝑗
′
ℓ have been scaled so 𝑗ℓ equals 1 at its

(first) peak. The cosmological model is as given in §32.3. The dashed vertical line marks the time 𝜂rec of recombination,

where the Thomson optical depth is one.

(𝜂 = 𝜂0),

Θℓ(𝜂0,𝑘) + 𝛿ℓ0Ψ(𝜂0,𝑘) =

∫︁ 𝜂0

0

{︂
𝑒−𝜏

[︀
Ψ̇(𝜂,𝑘) + Φ̇(𝜂,𝑘)

]︀
𝑗ℓ [𝑘(𝜂 − 𝜂0)] ISW

+ 𝑔(𝜂)
{︁[︀

Θ0(𝜂,𝑘) + Ψ(𝜂,𝑘)
]︀
𝑗ℓ [𝑘(𝜂 − 𝜂0)] monopole

+ vb(𝜂,𝑘)𝑗ℓ1 [𝑘(𝜂 − 𝜂0)] dipole

+ 1
2Θ2(𝜂,𝑘)𝑗ℓ2 [𝑘(𝜂 − 𝜂0)]

}︁}︂
𝑑𝜂 quadrupole .

(34.17)

The term in the first line on the right hand side of equation (34.17) is an integral of the time derivative of
the gravitational potential Ψ + Φ over the line of sight, and is called the Integrated Sachs-Wolfe (ISW)
effect. The remaining terms are linear combinations of the monopole, dipole, and quadrupole scattering
source terms 𝑆𝑛, equations (34.4). Note that the monopole term (on both sides of equation (34.17)) is not
the temperature fluctuation Θ0 by itself, but rather Θ0 +Ψ, which is the temperature fluctuation redshifted
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by the potential Ψ. In the tight-coupling approximation, the baryon velocity on the third line approximates
the photon velocity, vb ≈ 3Θ1.
Figure 34.2 shows an illustrative example of the factors that go into the monopole and dipole contributions

to the integrand of the solution (34.17) of the radiative transfer equation.

34.2.1 Harmonics of the CMB with respect to observed photon directions

A final consideration is that the observed direction �̂� of a photon from the CMB is opposite to the photon’s
direction of motion, �̂� = −𝑝𝛾 . Photon multipolesΘobs

ℓ expanded with respect to the direction �̂� of observation
are obtained from Θℓ by flipping the sign of the photon direction, Θobs(𝜂,𝑘, 𝜇) = Θ(𝜂,𝑘,−𝜇). Flipping the
sign of 𝑝𝛾 is equivalent to flipping the sign of odd parity fluctuations,

Θobs
ℓ (𝜂0,𝑘) ≡ (−)ℓΘℓ(𝜂0,𝑘) . (34.18)

Another way to achieve the sign flip is to flip the sign of the argument 𝑘(𝜂− 𝜂0)→ 𝑘(𝜂0− 𝜂) of the modified
Bessel functions 𝑗ℓ𝑛 in equation (34.17) and simultaneously to flip the sign of the odd source functions 𝑆ℓ,
namely 𝑆1 = vb → −vb. The CMB power spectrum involves products of pairs of Θobs

ℓ with the same ℓ, and
is unaffected by the sign flip �̂� = −𝑝𝛾 in the solution (34.17) of the radiative transfer equation.

34.2.2 Integrated Sachs-Wolfe (ISW) effect

The first line of the solution (34.17) of the radiative transfer equation is an integral of the time derivative
of the potential Ψ + Φ along the line of sight to recombination. The contribution is called the Integrated
Sachs-Wolfe (ISW) effect. If matter dominates the background, then the potential Ψ+Φ is constant in time
for linear fluctuations, and there is no ISW effect. In practice, there are “early” and “late” ISW effects that
arise respectively from the contributions of radiation to the background density shortly after recombination,
and of dark energy (and possibly curvature) near the present time. The late time scalar potentials Ψ and
Φ (which are equal at late times) evolve in proportion to the growth factor 𝑔(𝑎), equation (30.128) (not
to be confused with the visibility function 𝑔(𝜂)). The ISW integrand splits accordingly into early and late
contributions,

𝑒−𝜏
𝑑(Ψ + Φ)

𝑑𝜂
ISW

= 𝑒−𝜏𝑔
𝑑

𝑑𝜂

(︂
Ψ+Φ

𝑔

)︂
early ISW

+ 𝑒−𝜏
(︂
Ψ+Φ

𝑔

)︂
𝑑𝑔

𝑑𝜂
late ISW

. (34.19)

The early and late time contributions to the ISW term are illustrated in Figure 34.3.
In addition to the early and late ISW effects, there is a “nonlinear” ISW effect. Nonlinear gravitational

clustering causes the potential Φ to change in time, becoming deeper (more negative) in more highly clustered
regions. Photons that travel through a cluster see a slightly deeper potential when they exit the cluster than
when they entered it, causing the photon to be slightly redshifted. Figure 34.3 does not include the nonlinear
ISW effect.
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Figure 34.3 ISW integrand 𝑒−𝜏 (Ψ̇ + Φ̇) in equation (34.17) as a function of conformal time 𝜂, in units 𝜂0 = 1, for

the standard flat ΛCDM model of §32.3. Curves are labelled with the wavenumber 𝑘/(𝑎eq𝐻eq) in units of the Hubble

distance at matter-radiation equality. In a matter-dominated cosmology, the gravitational potentials are constant, and

the curves would all be zero. The high early values following recombination result from the contribution of radiation to

the mean mass-energy density; this is the “early” ISW effect. The turn-up at later times results from the contribution

of a cosmological constant to the mean mass-energy density; this is the “late” ISW effect, indicated by the dashed lines.

The late time ISW contribution causes a slight turn-up in the CMB power spectrum at the largest scales, Figure 34.8,

a characteristic signature of a cosmological constant.

34.2.3 CMB transfer function in Fourier space

As seen in Chapters 30–33, during linear evolution, scalar modes of given comoving wavevector 𝑘 evolve
with amplitude proportional to the initial curvature fluctuation 𝜁(𝑘). The evolution of the amplitude may
be encapsulated in a CMB transfer function 𝑇ℓ(𝜂, 𝑘) defined by

𝑇ℓ(𝜂, 𝑘) ≡
Θℓ(𝜂,𝑘) + 𝛿ℓ0Ψ(𝜂,𝑘)

𝜁(𝑘)
, (34.20)

with Θℓ(𝜂,𝑘)+ 𝛿ℓ0Ψ(𝜂,𝑘) computed from equation (34.17). By isotropy, the CMB transfer function 𝑇ℓ(𝜂, 𝑘)
is a function only of the magnitude 𝑘 of the wavevector 𝑘.
The square of the transfer function transforms the primordial power spectrum 𝑃𝜁(𝑘) defined by equa-

tion (30.132) into the CMB power spectrum 𝐶ℓ(𝜂, 𝑘) in Fourier space, equation (34.27), which is in turn
related to the observed CMB power spectrum 𝐶ℓ(𝜂0) in real space today by equation (34.34).



34.2 Harmonics of the CMB photon distribution 907

0 10 20 30 40 50 60 70 80
−.08

−.06

−.04

−.02

.00

.02

.04

.06

.08

wavenumber kη0

c
o
n
tr
ib
u
ti
o
n
s
to

T l
(η

0
,k
)

l = 2

0 500 1000 1500 2000 2500 3000 3500 4000
10−7

10−6

10−5

10−4

10−3

10−2

10−1

wavenumber kη0

c
o
n
tr
ib
u
ti
o
n
s
to

T l
(η

0
,k
)

late

early

2

10
0+1+2+ early

l = 2

0 50 100 150
−.015

−.010

−.005

.000

.005

.010

.015

wavenumber kη0

c
o
n
tr
ib
u
ti
o
n
s
to

T l
(η

0
,k
)

l = 20

0 500 1000 1500 2000 2500 3000 3500 4000
10−7

10−6

10−5

10−4

10−3

10−2

10−1

wavenumber kη0

c
o
n
tr
ib
u
ti
o
n
s
to

T l
(η

0
,k
)

late

early

2

10
0+1+2+ early

l = 20

Figure 34.4 (Continued on the next page.) CMB transfer functions 𝑇ℓ(𝜂0, 𝑘) for a selection of harmonics ℓ, plotted

(left) linearly, showing the oscillating functions and their envelopes, and (right) logarithmically over a broader range

of wavenumber 𝑘, showing only the envelopes of the underlying oscillating functions. The total (black) is a sum of

the various contributions in equation (34.17): monopole (dark blue), dipole (light blue), quadrupole (cyan), early ISW

(purple), and late ISW (red). The total envelope (black) omits the late ISW contribution, since the late ISW is non-

oscillatory where it is important (at small ℓ and small 𝑘). The cosmological model is the flat ΛCDM concordance model

of §32.3. The computation is a Boltzmann computation including photon and neutrino multipoles up to ℓmax = 16.
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Figure 34.4 continued.

Figure 34.4 shows CMB transfer functions 𝑇ℓ(𝜂0, 𝑘) at the present time, 𝜂 = 𝜂0, for a selection of harmonics,
ℓ = 2, 20, 200, and 2000. The CMB transfer functions are calculated by integrating numerically, for each of
many wavenumbers 𝑘, the solution (34.17) of the radiative transfer equation. The CMB transfer functions
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shown in Figure 34.4 are from a Boltzmann computation including photon and neutrino multipoles up to
ℓmax = 16.
Spherical Bessel functions 𝑗ℓ(𝑦) are small for 𝑦 ≪ ℓ, rise to their first peak at 𝑦 ≈ ℓ + ℓ1/3, and are then

oscillating and declining at 𝑦 ≫ ℓ. This behaviour translates into a similar behaviour in the CMB transfer
functions 𝑇ℓ(𝜂0,𝑘), Figure 34.4. The transfer functions are small for 𝑘(𝜂0 − 𝜂rec)≪ ℓ, peak at

𝑘(𝜂0 − 𝜂rec) ∼ ℓ+ ℓ1/3 , (34.21)

and then oscillate at 𝑘(𝜂0 − 𝜂rec) ≫ ℓ with an exponentially declining envelope, as illustrated in the right
panels of Figure 34.4,

𝑇ℓ(𝜂0,𝑘)|envelope ∝∼ exp (−𝑘𝜂0/600) . (34.22)

The exponential decline is caused in part by dissipative processes around the time of recombination, §32.7
and §32.8, and in part by the finite width of recombination, which tends to smooth over oscillating source
functions 𝑆ℓ at large wavenumber 𝑘, §34.2.4.
Besides the total, Figure 34.4 shows the monopole, dipole, quadrupole, and early and late ISW contribu-

tions to the CMB transfer functions. The contributions are, excepting late ISW, highly oscillatory, thanks
to the Bessel factors 𝑗ℓ𝑛 [𝑘(𝜂 − 𝜂0)] in the integrand of equation (34.17). The Figure therefore shows also the
envelope of the oscillatory contributions. The envelope is computed as an integral in which the Bessel factor
𝑗ℓ𝑛(𝑦) in the integrand is replaced by the non-oscillatory absolute value of the complex Hankel factor ℎℓ𝑛(𝑦),

ℎℓ𝑛(𝑦) ≡ 𝑗ℓ𝑛(𝑦) +

{︃
0 |𝑦| < ℓ+ 1

2 + (ℓ+ 1
2 )

1/3

𝑖 𝑦ℓ𝑛(𝑦) |𝑦| ≥ ℓ+ 1
2 + (ℓ+ 1

2 )
1/3

, (34.23)

with 𝑦ℓ𝑛(𝑦) the modified spherical Bessel function of the second kind (whereas 𝑗ℓ𝑛(𝑦) is the modified spherical
Bessel function of the first kind). The cut at 𝑦 = ℓ + 1

2 + (ℓ + 1
2 )

1/3, which is roughly the location of the
first zero of 𝑦ℓ𝑛(𝑦), is introduced to prevent the diverging behaviour of 𝑦ℓ𝑛(𝑦) as 𝑦 → 0 from dominating the
integral.

34.2.4 Instantaneous and rapid recombination approximations

At wavelengths much larger than the width of recombination, 𝑘𝜎rec ≪ 1, recombination can be approximated
as instantaneous. In the instantaneous recombination approximation, the visibility function 𝑔(𝜂) is a
delta-function at 𝜂 = 𝜂rec, and, without the ISW term, the multipolesΘℓ(𝜂0,𝑘) of the temperature fluctuation
today are

Θℓ(𝜂0,𝑘) + 𝛿ℓ0Ψ(𝜂0,𝑘) ≈
2∑︁

𝑛=0

𝑆𝑛(𝜂rec,𝑘)𝑗ℓ𝑛 [𝑘(𝜂rec − 𝜂0)] . (34.24)

A better approximation that works also at larger 𝑘 is the rapid recombination approximation, which
replaces the source functions 𝑆 by their averages 𝑆 over recombination. In the rapid approximation, the
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Figure 34.5 Rapid and instantaneous approximations to the Thomson scattering and early ISW source functions at

recombination, equations (34.25), as a function of wavenumber 𝑘/(𝑎eq𝐻eq). The solid (bluish) lines are the values 𝑆𝑛(𝑘)

averaged over the visibility function 𝑔(𝜂), while the dashed (greenish) lines are the instantaneous values 𝑆𝑛(𝜂rec,𝑘)

at recombination, where the Thomson optical depth is one. The purple line is the averaged early ISW source function

𝑆early(𝑘). The source functions are normalized to unit primordial curvature, 𝜁(𝑘) = 1 (in other words, the plotted

source functions are transfer functions). The computation is the hydrodynamic approximation (Boltzmann with ℓmax =

2), since this turns out to yield a better rapid recombination approximation to the CMB power spectrum than a full

Boltzmann treatment, Figure 34.7. The dipole source term is taken to be 3Θ1 (the tight-coupling limit), not vb, since

this yields a better rapid recombination approximation. The cosmological model is the standard flat ΛCDM model

described in §32.3.

temperature multipoles Θℓ(𝜂0,𝑘) today are, including the early ISW, monopole, dipole, and quadrupole
contributions,

Θℓ(𝜂0,𝑘) + 𝛿ℓ0Ψ(𝜂0,𝑘) ≈ 𝑆early(𝑘)𝑗ℓ [𝑘(𝜂early − 𝜂0)] +
2∑︁

𝑛=0

𝑆𝑛(𝑘)𝑗ℓ𝑛 [𝑘(𝜂rec − 𝜂0)] , (34.25a)

𝑆early(𝑘) ≡
∫︁ 𝜂0

0

𝑒−𝜏𝑔
𝑑

𝑑𝜂

(︂
Ψ(𝜂,𝑘) + Φ(𝜂,𝑘)

𝑔

)︂
𝑑𝜂 , 𝑆𝑛(𝑘) ≡

∫︁ 𝜂0

0

𝑔(𝜂)𝑆𝑛(𝜂,𝑘) 𝑑𝜂 , (34.25b)

where in the early ISW term 𝑔 denotes the growth factor (30.128) rather than the visibility function 𝑔(𝜂).
The early ISW effect peaks at a redshift 𝑧early ≈ 900 slightly after the redshift 𝑧rec ≈ 1100 of recombination,
Figure 34.3, but because the conformal time 𝜂0 today is so much larger than 𝜂rec, the difference between
𝜂early − 𝜂0 and 𝜂rec − 𝜂0 is slight enough that it is fair to approximate 𝜂early ≈ 𝜂rec.
Figure 34.5 shows the early ISW, monopole, dipole, and quadrupole source terms that go into the instan-
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Figure 34.6 CMB transfer functions computed from a Boltzmann treatment (solid lines) including photon and neutrino

multipoles up to ℓmax = 16, compared to their values in the rapid recombination approximation (dotted lines) with

the source functions taken from the hydrodynamic approximation, for a selection of harmonics ℓ, as marked. All lines

are the envelopes of the underlying rapidly oscillating transfer functions. The left and right panels are the same,

but with wavenumber 𝑘 plotted linearly on the left, logarithmically on the right. The transfer functions plotted here

include monopole, dipole, quadrupole, and early ISW contributions, but exclude the late ISW contribution. The dipole

contribution to the rapid recombination approximation is computed from the photon velocity 3Θ1 (the tight-coupling

limit), not the baryon velocity vb. The cosmological model is the standard flat ΛCDM model described in §32.3.

taneous approximation (dashed lines) and the rapid recombination approximation (solid lines). The instan-
taneous and rapid approximations 𝑆𝑛(𝜂rec,𝑘) and 𝑆𝑛(𝑘) to the Thomson scattering source functions agree
at small wavenumbers 𝑘, where the source terms are slowly varying over the visibility function. The rapid
approximation works also at larger wavenumbers, where the source functions 𝑆𝑛(𝜂,𝑘) change significantly
over the course of recombination. Averaging over recombination tends to reduce the Thomson scattering
source functions compared to their instantaneous values at recombination.
The baryon velocity decouples from the photon velocity during recombination, and grows large as baryons

fall into the dark matter potential wells, as illustrated in Figures 32.1 or 33.1. As a result, the rapid ap-
proximation tends to overestimate the true dipole contribution if the baryon bulk velocity vb is used for the
dipole source term 𝑆1. A simple empirical fix is to use the bulk photon velocity v𝛾 ≡ 3Θ1 in place of the
baryon velocity to compute 𝑆1. This fix is adopted in Figures 34.5 and 34.6.
Figure 34.6 compares (envelopes of the rapidly oscillating) CMB transfer functions 𝑇ℓ(𝜂, 𝑘) computed

from a Boltzmann treatment to their values in the rapid recombination approximation, equation (34.25),
with source functions computed in the hydrodynamic approximation, for a selection of harmonics ℓ. Whereas
the envelopes computed in the Boltzmann treatment are rather smooth at large wavenumber 𝑘 (and exponen-
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tially declining, equation (34.22)), the envelopes computed in the rapid recombination approximation remain
somewhat oscillatory at large wavenumber 𝑘. However, what is important is that the approximation yields
approximately the correct overall amplitude of the transfer functions; the CMB power spectrum (34.35)
involves integrating over transfer functions, which washes out the residual oscillatory structure. The hy-
drodynamic approximation (rather than a Boltzmann treatment) is used for the source functions because
it (hydro + rapid) turns out to give a yield better approximation (than Boltzmann + rapid) to the CMB
power spectrum, as illustrated in the right panel of Figure 34.7.

34.2.5 CMB power spectrum in Fourier space

The power spectrum 𝐶ℓ(𝜂, 𝑘) in Fourier space is defined to be the expectation value of the variance of
temperature multipoles Θℓ(𝜂,𝑘),

𝛿ℓ′ℓ
4𝜋

(2𝜋)3𝛿𝐷(𝑘
′+ 𝑘)𝐶ℓ(𝜂, 𝑘) ≡

⟨︀
[Θℓ′(𝜂,𝑘

′) + 𝛿ℓ0Ψ(𝜂,𝑘′)] [Θℓ(𝜂,𝑘) + 𝛿ℓ0Ψ(𝜂,𝑘)]
⟩︀
. (34.26)

The power spectrum 𝐶ℓ(𝜂, 𝑘) is real-valued. The momentum conserving delta-function (2𝜋)3𝛿𝐷(𝑘
′+ 𝑘) is a

consequence of the assumed statistical homogeneity of space, while the angular-momentum conserving delta-
function 𝛿ℓ′ℓ is a consequence of the assumed statistical isotropy of space. By isotropy, the power spectrum
𝐶ℓ(𝜂, 𝑘) is a function only of the magnitude 𝑘 of the wavevector 𝑘. The monopole power 𝐶0(𝜂, 𝑘) is defined
to be the variance of the redshifted monopole Θ0 + Ψ because that is what appears in the solution (34.17)
of the radiative transfer equation.
In terms of the CMB transfer function (34.20) and the primordial power spectrum 𝑃𝜁(𝑘) defined by

equation (30.132), the CMB power spectrum 𝐶ℓ(𝜂, 𝑘) is

𝐶ℓ(𝜂, 𝑘) = 4𝜋 |𝑇ℓ(𝜂, 𝑘)|2 𝑃𝜁(𝑘) . (34.27)

34.3 CMB in real space

34.3.1 CMB harmonics in real space

The solution (34.17) of the radiative transfer equation is in terms of photon multipoles Θℓ(𝜂,𝑘) in Fourier
space, but astronomers observe the CMB in real space. The real-space temperature fluctuation Θ(𝜂,𝑥, �̂�) at
time 𝜂 and comoving position 𝑥 in observed direction �̂� on the sky is related to the Fourier-space temperature
fluctuation by

Θ(𝜂,𝑥, �̂�) =

∫︁
𝑒−𝑖𝑘·𝑥Θ(𝜂,𝑘, �̂�)

𝑑3𝑘

(2𝜋)3
. (34.28)

Astronomers observe the temperature fluctuation Θ(𝜂0,𝑥0, �̂�) now, at time 𝜂0, and here, at position 𝑥0.
Without loss of generality, our position can be taken to be at the origin, 𝑥0 = 0, in which case the phase
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factor is unity, 𝑒−𝑖𝑘·𝑥0 = 1, and can be omitted,

Θ(𝜂0,𝑥0, �̂�) =

∫︁
Θ(𝜂0,𝑘, �̂�)

𝑑3𝑘

(2𝜋)3
. (34.29)

The spherical harmonic expansion of the observed real-space temperature fluctuation today is, with a
conventional choice of normalization of harmonics Θℓ𝑚,

Θ(𝜂0,𝑥0, �̂�) =

∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

Θℓ𝑚(𝜂0,𝑥0)𝑌
*
ℓ𝑚(�̂�) . (34.30)

The sum includes the monopole ℓ = 0 harmonic because the mean temperature of the observable Universe
may differ from the “true” mean temperature of the Universe. From the perspective of statistics, such a
difference between the observed and true mean temperature can exist even though it is unobservable to an
astronomer confined to position 𝑥0. An astronomer in a cosmologically distant future when the horizon is
much larger than today would be able to measure the difference. The spherical harmonic expansion (33.47) of
the Fourier-space temperature fluctuation may be written, in view of the relation (33.103) between Legendre
polynomials and spherical harmonics

Θ(𝜂0,𝑘, �̂�) =

∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

(−𝑖)ℓ4𝜋Θℓ(𝜂,𝑘)𝑌ℓ𝑚(�̂�)𝑌 *ℓ𝑚(�̂�) . (34.31)

From equations (34.29)–(34.31) it follows that the real-space photon harmonics are

Θℓ𝑚(𝜂0,𝑥0) = 4𝜋(−𝑖)ℓ
∫︁

Θℓ(𝜂0,𝑘)𝑌ℓ𝑚(�̂�)
𝑑3𝑘

(2𝜋)3
. (34.32)

34.3.2 CMB power spectrum in real space

The CMB power spectrum 𝐶ℓ(𝜂0) on the sky today is defined to be the expectation value of the variance of
temperature multipoles Θℓ𝑚(𝜂0,𝑥0),

𝛿ℓ′ℓ𝛿𝑚′𝑚𝐶ℓ(𝜂0) ≡
⟨︀
[Θ*ℓ′𝑚′(𝜂0,𝑥0) + 𝛿ℓ0Ψ(𝜂0,𝑥0)] [Θℓ𝑚(𝜂0,𝑥0) + 𝛿ℓ0Ψ(𝜂0,𝑥0)]

⟩︀
. (34.33)

The power spectrum 𝐶ℓ(𝜂0) is real-valued. By homogeneity, the power spectrum 𝐶ℓ(𝜂0) is independent of
observer position 𝑥0. The real-space monopole harmonic Θ00(𝜂0,𝑥0) + Ψ(𝜂0,𝑥0) is the temperature fluctu-
ation gravitationally redshifted by the potential Ψ(𝜂0,𝑥0) at our position today. From the perspective of an
observer at fixed position 𝑥0, the redshifted monopole is observationally indistinguishable from a rescaling
of the mean temperature.
From the expression (34.32) for the real-space harmonics in terms of Fourier-space harmonics, together

with the power spectrum (34.26) of the Fourier-space harmonics, it follows that the power spectrum 𝐶ℓ(𝜂0)

of real-space harmonics of the CMB today is

𝐶ℓ(𝜂0) =

∫︁
𝐶ℓ(𝜂0, 𝑘)

4𝜋𝑘2𝑑𝑘

(2𝜋)3
. (34.34)
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In terms of the CMB transfer function 𝑇ℓ and primordial curvature power spectrum 𝑃𝜁 or its dimensionless
equivalent Δ2

𝜁 , equation (30.134), the power spectrum 𝐶ℓ(𝜂0) is, from equation (34.27),

𝐶ℓ(𝜂0) = 4𝜋

∫︁
|𝑇ℓ(𝜂0, 𝑘)|2 𝑃𝜁(𝑘)

4𝜋𝑘2𝑑𝑘

(2𝜋)3
= 4𝜋

∫︁
|𝑇ℓ(𝜂0, 𝑘)|2 Δ2

𝜁(𝑘)
𝑑𝑘

𝑘
. (34.35)

If the primordial power spectrum Δ2
𝜁 is a power-law with tilt 𝑛, equation (30.137), then the CMB power

spectrum today is

𝐶ℓ(𝜂0) = 4𝜋Δ2
𝜁(𝑘p)

∫︁ ∞
0

|𝑇ℓ(𝜂0, 𝑘)|2
(︂
𝑘

𝑘p

)︂𝑛−1
𝑑𝑘

𝑘
. (34.36)

As discussed in §34.2.3, the CMB transfer functions 𝑇ℓ(𝜂0, 𝑘) are small for 𝑘(𝜂0 − 𝜂rec) ≪ ℓ, peak near
𝑘(𝜂0 − 𝜂rec) ∼ ℓ (or more precisely, at harmonics slightly larger than ℓ, equation (34.21)), and then oscillate
with an exponentially declining envelope, equation (34.22). Thus the power spectrum 𝐶ℓ(𝜂0) (34.35) at
harmonic ℓ principally probes comoving scales 1/𝑘 that are 1/ℓ times the comoving distance 𝜂0 − 𝜂rec to
recombination today,

1

𝑘
∼ 𝜂0 − 𝜂rec

ℓ
. (34.37)

Physically, harmonic number ℓ probes angular scale 𝜃 ∼ 𝜋/ℓ on the sky, and the power spectrum at harmonic
number ℓ probes comoving scale 𝜋/𝑘 ∼ (𝜂0 − 𝜂rec)𝜃 on the CMB sky.

34.3.3 Rapid recombination approximation to the CMB power spectrum

Modern, publicly available codes such as CAMB compute an entire model CMB power spectrum 𝐶ℓ(𝜂0) in
just a few seconds, which is amazingly fast. CAMB is tuned for speed, doing only enough calculations as are
needed to achieve a desired accuracy. CAMB is written in a fast language, parallelized fortran 90. If you’d
like to write a code that competes with CAMB in speed, expect to invest a substantial time developing it.
It’s more than just an exercise.
Meanwhile, the rapid recombination approximation, §34.2.4, offers a short-cut to computing the CMB

power spectrum that at least captures qualitative features. The rapid recombination approximation effectively
sidesteps step 5 of the numerical computation outlined in §30.8.

Exercise 34.1. CMB power spectrum in the instantaneous and rapid recombination approxi-

mations. Compute the CMB power spectrum 𝐶ℓ(𝜂0) today in your choice of the instantaneous and rapid
recombination approximations, equations (34.24) or (34.25), with source functions calculated in your choice
of level of detail, simple, §30.7, hydrodynamic, §32.2, or full Boltzmann, §33.1). Discuss.
Solution. See Figures 34.7 and 34.8. I used the standard flat ΛCDM cosmological parameters given in §32.3,
and the normalization of the power spectrum measured from Planck, equation (30.138). I used Mathemat-
ica to solve the evolutionary equations in the simple, hydrodynamic, Boltzmann approaches. But for the
integral (34.35), I abandoned fighting Mathematica, and resorted to a publicly available implementation of
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Figure 34.7 Model CMB power spectra computed in the rapid recombination approximation, equation (34.25), with

source functions computed in: (left) the simple approximation, §30.7, without (short dashed line) and with (long dashed

line) artificial damping, equations (30.59) and (30.60) with 𝜖 = 10−3; and (right) the hydrodynamic approximation

(§32.2, short dashed line), and in a full Boltzmann treatment (§33.1, long dashed line) including photon and neutrino

multipoles up to ℓmax = 16. The solid (black) lines are a reference model power spectrum computed with CAMB.

The CAMB spectrum is similar to that shown in Figure 10.3, but without refinements from reionization and lensing.

Bessel functions (Amos, 1986), and a cubic spline integration implemented in fortran. In Figure 34.8 (but
not Figure 34.7) I added the late ISW contribution. The late ISW transfer function is not oscillatory, so its
computation from integration of the derivative of the growth function over the line of sight, equations (34.17)
and (34.19), is numerically straightforward. Comments:
1. The hydrodynamic and Boltzmann computations get the phasing of peaks more or less right. The

phasing of peaks depends on the sound speed in the photon-baryon fluid, which depends on the baryon-
to-photon density ratio. The agreement with the hydrodynamic and Boltzmann computations supports
the standard model, where the baryonic density begins to become comparable to the photon density near
recombination, equation (32.46). The simple approximation gets the phasing slightly wrong because it
neglects baryons.

2. The overall angular location of the peaks is correctly reproduced. The overall angular location of peaks
depends on geometry, that is, on the apparent angular size of comoving distances at recombination
observed by astronomers on Earth today. The geometry depends on various cosmological parameters,
notably the curvature Ω𝑘 and the Hubble parameter 𝐻0 today.

3. The power spectrum is roughly constant and dominated by the monopole at the largest scales, ℓ . 40.
This is the Sachs-Wolfe plateau, §34.5, a signature of a near-scale-invariant primordial power spectrum.
The weak minimum at ℓ ≈ 20 results mainly from a cancellation between the monopole Θ0 + Ψ and
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Figure 34.8 Monopole + early ISW (0), dipole (1), quadrupole (2), and late ISW contributions to the CMB power

spectrum in the rapid recombination approximation with source functions computed in the hydrodynamic approxi-

mation (top model in the right panel of Figure 34.7). The monopole and early ISW are combined into a single curve,

labelled 0, since they are highly correlated. To a good approximation, the total power spectrum is an incoherent sum

of the monopole and dipole power spectra, the quadrupole contribution being quite small. There are sub-dominant

cross-correlations between the various contributions, which are not plotted separately here, but which are included in

the total (black line). The late ISW contribution is computed from integration of the derivative of the growth function

over the line of sight, equations (34.17) and (34.19).

early ISW contributions, as might be expected from Figure 34.5. The late ISW effect contributes a small
enhancement in power in the first several harmonics.

4. The even peaks are stronger than the odd peaks in the hydrodynamic and Boltzmann computations.
The difference in strengths between even and odd peaks is caused by baryon loading, §32.10, in which the
extra gravity generated by baryons in the oscillating photon-baryon fluid enhances even (compression)
peaks and weakens odd (rarefaction) peaks. The simple approximation does not show the even-odd
variation because it treats baryons as having negligible density.

5. The power spectrum 𝐶ℓ(𝜂0) declines approximately exponentially with harmonic number ℓ. The decline
arises partly from dissipative processes around the time of recombination, §32.7 and §32.8, and in part
from the finite width of recombination, §34.2.4.

Exercise 34.2. CMB power spectra from CAMB. Compute model CMB power spectra from a pub-
licly available code such as CAMB (google it). Vary the cosmological parameters. Compare to published
measurements from Planck or other sources (google it). Formulate a question, and attempt to answer it. For
example, what does the observed power spectrum say about:
1. non-baryonic cold dark matter;
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2. baryons;
3. photons;
4. neutrinos;
5. dark energy;
6. curvature;
7. the origin of fluctuations?

34.4 Observing CMB power

The power spectrum 𝐶ℓ(𝜂0), equation (34.34), gives an expectation value for the variance (34.33) of CMB tem-
perature fluctuations on the sky, which can be compared to observation. Isotropy predicts that Θℓ𝑚(𝜂0,𝑥0)

with different ℓ or 𝑚 should be uncorrelated, a prediction that can be tested by observation.
Inflation, which predicts that fluctuations are generated by quantum fluctuations of the scalar inflaton field

that supposedly drove inflation, generically predicts a Gaussian distribution of fluctuations in the primordial
curvature 𝜁. This in turn implies a Gaussian distribution of temperature fluctuations Θ as long as the
fluctuations remain in the linear regime. The Gaussian distribution of temperature fluctuations Θ ≡ 𝛿𝑇/𝑇

is characterized entirely by its variance, the power spectrum 𝐶ℓ.
For each harmonic number ℓ, there are 2ℓ + 1 harmonics Θℓ𝑚 with the same ℓ but different 𝑚. Isotropy

predicts that the expected variance is the same, 𝐶ℓ, for each 𝑚. Thus one way to estimate the variance 𝐶ℓ
is to take

𝐶ℓ(est) =
1

2ℓ+ 1

ℓ∑︁
𝑚=−ℓ

|Θℓ𝑚|2 . (34.38)

The finite number 2ℓ+ 1 of modes at each ℓ places a fundamental fractional uncertainty of ≈ 1/
√
2ℓ+ 1 on

the accuracy with which 𝐶ℓ can be determined observationally. This fundamental limit, which arises from
the finite size of the observable Universe, is called cosmic variance.
In practice there are numerous issues that complicate the measurement of the CMB power spectrum 𝐶ℓ,

including incomplete sky coverage, contamination by Earth glow, microwave foregrounds arising from galactic
and extragalactic synchrotron radiation, dust, and free-free emission, and observational and detector noise
and systematics of one sort or another.

34.5 Large-scale CMB fluctuations (Sachs-Wolfe effect)

The behaviour of the CMB power spectrum at the largest angular scales was first predicted by Sachs and
Wolfe (1967), and is therefore called the Sachs-Wolfe effect, though why it should be called an effect is
mysterious. The Sachs-Wolfe (SW) effect is distinct from the Integrated Sachs-Wolfe (ISW) effect. The ISW
effect, ignored in this section, was considered in §34.2.2.
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At scales much larger than the sound horizon at recombination, 𝑘𝜂𝑠,rec ≪ 1, the redshifted monopole
fluctuation Θ0(𝜂rec,𝑘)+Ψ(𝜂rec,𝑘) at recombination is much larger than the dipole Θ1(𝜂rec,𝑘) or quadrupole
Θ2(𝜂rec,𝑘), so only the monopole contributes materially to the temperature multipoles Θℓ(𝜂0,𝑘) today. The
redshifted monopole contribution to the temperature multipoles Θℓ(𝜂0,𝑘) today is, from equation (34.17),

Θℓ(𝜂0,𝑘) + 𝛿ℓ0Ψ(𝜂0,𝑘) =
[︀
Θ0(𝜂rec,𝑘) + Ψ(𝜂rec,𝑘)

]︀
𝑗ℓ [𝑘(𝜂0 − 𝜂rec)] . (34.39)

At superhorizon scales 𝑘𝜂rec ≪ 1, the radiation monopole at the time 𝜂rec of recombination is given by the
superhorizon solution Θ0 − Φ = 𝜁𝛾 , equation (30.63b), so

Θ0(𝜂rec,𝑘) + Ψ(𝜂rec,𝑘) = Ψsuper(𝜂rec,𝑘) + Φsuper(𝜂rec,𝑘) + 𝜁𝛾(𝑘) . (34.40)

The CMB transfer function 𝑇ℓ(𝜂, 𝑘) is conventionally normalized to the primordial curvature fluctuation 𝜁(𝑘),
equation (34.20). For adiabatic fluctuations 𝜁 is the same for all species; more generally, 𝜁 could be different for
different species. For definiteness, take the simple two-component matter plus radiation model of Chapter 30,
where the superhorizon potential in the late matter-dominated regime is Φ(late) = − 3

5𝜁c, equation (30.68),
for both adiabatic and isocurvature initial conditions. In the approximation that recombination is in the
matter-dominated regime (which is not quite true), and the scalar potentials are equal (which is again
not quite true), so Ψ(𝜂rec) + Φ(𝜂rec) ≈ 2Φsuper(late) = − 6

5𝜁c, the CMB transfer function for the radiation
monopole at superhorizon scales, normalized to 𝜁c, is

𝑇0(𝜂rec, 𝑘) =
Ψsuper(𝜂rec,𝑘) + Φsuper(𝜂rec,𝑘) + 𝜁𝛾(𝑘)

𝜁c(𝑘)
≈ −6

5
+
𝜁𝛾(𝑘)

𝜁c(𝑘)
=

{︃
− 1

5 adiabatic ,

− 6
5 isocurvature .

(34.41)

The monopole transfer function 𝑇0(𝜂rec, 𝑘) at recombination is thus approximately constant at superhorizon
scales, although the value of the constant depends on the initial conditions.
At superhorizon scales, the CMB transfer function 𝑇ℓ(𝜂0, 𝑘) in the ℓ’th harmonic today is, from equa-

tion (34.39),

𝑇ℓ(𝜂0, 𝑘) = 𝑇0(𝜂rec, 𝑘)𝑗ℓ [𝑘(𝜂0 − 𝜂rec)] . (34.42)

The resulting CMB angular power spectrum at superhorizon scales 𝑘𝜂𝑠,rec ≪ 1 is

𝐶ℓ(𝜂0) = 4𝜋𝑇0(𝜂rec, 𝑘)
2

∫︁ ∞
0

𝑗ℓ [𝑘(𝜂0 − 𝜂rec)]2 Δ2
𝜁(𝑘)

𝑑𝑘

𝑘
, (34.43)

where 𝑇0(𝜂rec, 𝑘), being approximately constant, equation (34.41), has been taken outside the integral. If the
primordial curvature power spectrum Δ2

𝜁(𝑘) is a power law with tilt 𝑛, equation (30.137), then the integral
over the squared Bessel function can be done analytically, equation (34.56b), yielding

𝐶ℓ(𝜂0) = 4𝜋𝑇0(𝜂rec, 𝑘)
2Δ2

𝜁

[︀
1/(𝜂0 − 𝜂rec)

]︀
𝑈ℓ;ℓ(𝑛− 1) . (34.44)

For the particular case of a scale-invariant primordial power spectrum, 𝑛 = 1, the CMB power spectrum 𝐶ℓ
at large scales today is given by

ℓ(ℓ+ 1)𝐶ℓ(𝜂0)

2𝜋
= 𝑇0(𝜂rec, 𝑘)

2Δ2
𝜁

[︀
1/(𝜂0 − 𝜂rec)

]︀
if 𝑛 = 1 . (34.45)



34.6 Radiative transfer of neutrinos 919

Thus the characteristic feature of a scale-invariant primordial power spectrum, 𝑛 = 1, is that ℓ(ℓ + 1)𝐶ℓ
should be approximately constant at the largest angular scales, ℓ ≪ 𝜂0/𝜂rec. The normalization factor
1/(2𝜋) converts to the power of large scale fluctuations in the potential at recombination. This is the reason
that CMB folk routinely plot ℓ(ℓ+ 1)𝐶ℓ/(2𝜋) rather than 𝐶ℓ.

34.6 Radiative transfer of neutrinos

Neutrinos decouple not at recombination, but rather after electron-positron annihilation at a redshift 1+𝑧 ∼
109. From that point neutrinos streamed freely. The horizon distance 𝜂𝜈 at neutrino decoupling relative to
that at matter-radiation equality was 𝜂𝜈/𝜂eq ∼ 10−5. As with radiation, inflation predicts that initially the
neutrino distribution was isotropic at superhorizon scales, with only a monopole mode present. But once
a mode entered the horizon, without collisions to isotropize their distribution, freely streaming neutrinos
could develop appreciable higher multipole moments, Figure 33.2. Prior to recombination, the neutrino
quadrupole provided the dominant source for the difference Ψ−Φ between the scalar potentials, Figure 33.4.
In Exercise 33.5 you discovered that the neutrino quadrupole causes a finite difference Ψ − Φ even in the
superhorizon initial conditions, equation (33.97).
Observationally accessible scales in the CMB or in the clustering of matter are large compared to the

horizon distance 𝜂𝜈 at neutrino decoupling. At such large scales, 𝑘𝜂𝜈 ≪ 1, only the neutrino monopole 𝒩0

was present at neutrino decoupling. The neutrino analogue to the solution (34.17) of the radiative transfer
equation is then

𝒩ℓ(𝜂,𝑘) + 𝛿ℓ0Ψ(𝜂,𝑘) =

∫︁ 𝜂

0

[︀
Ψ̇(𝜂′,𝑘) + Φ̇(𝜂′,𝑘)

]︀
𝑗ℓ [𝑘(𝜂

′− 𝜂)] 𝑑𝜂′ ISW

+
[︀
𝒩0(0,𝑘) + Ψ(0,𝑘)

]︀
𝑗ℓ(−𝑘𝜂) monopole ,

(34.46)

which contains only Integrated Sachs-Wolfe and dipole terms. In equation (34.46), the time 𝜂𝜈 of neutrino
decoupling has been replaced by zero, and the optical depth factor 𝑒−𝜏 omitted, since the neutrino decoupling
scale is so much smaller than cosmological scales.
Equation (34.46) holds at any time 𝜂 after neutrino decoupling, as long as the neutrinos remain relativistic.

Neutrino oscillation data suggest that at least 2 of the 3 neutrino types are massive, with masses at least
0.01 eV and 0.05 eV (see §42.4.15). Such neutrinos would have become non-relativistic at a redshift of 1+𝑧 ≈
60 and 300 respectively. However, all 3 neutrino types were relativistic prior to and at recombination, when
the physics of dark matter and the photon-baryon fluid was imposing its imprint on the CMB.

34.6.1 Truncating the neutrino Boltzmann hierarchy

The integral solution (34.46) provides one way to compute neutrino multipoles of arbitrary order. The solution
is equivalent to solving the entire collisionless Boltzmann hierarchy of differential equations for neutrinos.
However, it is more common for computer codes to solve for neutrino multipoles using the Boltzmann
hierarchy truncated in a suitable fashion. The strategy of setting multipoles above some maximum harmonic
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to zero does not work well for neutrinos, because free-streaming allows neutrinos to develop higher order
multipoles comparable to the monopole and dipole. An alternative strategy for truncating the neutrino
hierarchy, described immediately following, was proposed by Ma and Bertschinger (1995).
Spherical Bessel functions are related by

𝑗ℓ(𝑦)−
2ℓ+ 3

𝑦
𝑗ℓ+1(𝑦) + 𝑗ℓ+2(𝑦) = 0 . (34.47)

This motivates considering the combination (𝒩ℓ +Ψ𝛿ℓ0) + (2ℓ+ 3)𝒩ℓ+1/𝑦 +𝒩ℓ+2, with 𝑦 = 𝑘𝜂, of neutrino
multipoles, which has the property that the monopole term from the second line of equation (34.46) vanishes.
The ISW term on the first line of equation (34.46) gives a non-vanishing contribution to the combination,
which is, with the identity 1/𝑦 = 𝑦′/[𝑦(𝑦′− 𝑦)]− 1/(𝑦′− 𝑦),

𝒩ℓ + 𝛿ℓ0Ψ+
2ℓ+ 3

𝑦
𝒩ℓ+1 +𝒩ℓ+2 = (2ℓ+ 3)

∫︁ 𝑦

0

𝜕
[︀
Ψ(𝑦′) + Φ(𝑦′)

]︀
𝜕𝑦′

𝑦′

𝑦

𝑗ℓ+1(𝑦
′− 𝑦)

(𝑦′− 𝑦)
𝑑𝑦′ . (34.48)

The integrand on the right hand side of equation (34.48) is everywhere finite, and for 𝑦 ≫ 𝑦′ is of order
𝑦′/𝑦2 times the integrand of the ISW integral in equation (34.46). In the actual case, Ψ + Φ varies rapidly
at horizon-crossing, 𝑦′ ∼ 1, but subsequently varies slowly, Figure 33.2. In this case the integral on the right
hand side of equation (34.50) is small compared to 𝒩ℓ+2 for 𝑦 ≫ 1. The integral is also small for 𝑦 ≪ ℓ+ 1,
since 𝑗ℓ+1(𝑦

′− 𝑦)/(𝑦′− 𝑦) ≈ (𝑦′− 𝑦)ℓ/(2ℓ+ 1)!! for 0 ≤ 𝑦′ ≤ 𝑦 ≪ ℓ+ 1. The approximation that the integral
is small is better for larger harmonic number ℓ.
If the integral on the right hand side of equation (34.48) is neglected, which becomes an increasingly good

approximation at higher ℓ, then

𝒩ℓ+2 ≈ − (𝒩ℓ + 𝛿ℓ0Ψ)− 2ℓ+ 3

𝑘𝜂
𝒩ℓ+1 . (34.49)

Ma and Bertschinger (1995) proposed truncating the neutrino Boltzmann hierarchy by using the approxi-
mation (34.49) at some suitably high harmonic number ℓ. The approximation is worst around epochs where
Ψ+Φ varies rapidly, such as around horizon-crossing, 𝑘𝜂 ∼ 1.

34.6.2 Approximate neutrino quadrupole

The neutrino quadrupole 𝒩2 is of special interest because it is a principal source for the difference Ψ−Φ in
scalar potentials. For the quadrupole, the approximation (34.49) is

𝒩2 ≈ − (𝒩0 +Ψ)− 3𝒩1

𝑘𝜂
. (34.50)

The approximation (34.50) is not adequate for precision modelling, but it provides the basis for the ap-
proximation of neutrinos as an imperfect fluid, equation (32.11). It is a better approximation than simply
setting the neutrino quadrupole to zero, 𝒩2 = 0. The approximation (34.50) leads to a second order differ-
ential equation for the neutrino monopole, equation (32.91), which allows the behaviour of neutrinos to be
explored qualitatively, Exercise 32.7.
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Exercise 34.3. Cosmic Neutrino Background.

1. Is there a Cosmic Neutrino Background? Think about whether neutrinos are relativistic or non-relativistic
today.

2. Suppose that one neutrino is relativistic. Calculate the power spectrum of the Cosmic Neutrino Back-
ground for that neutrino in the approximation that the ISW contribution is negligible.

3. What is the effect of the ISW contribution resulting from the change in the potential when neutrinos
entered the horizon in the radiation-dominated regime?

Solution.

1. Neutrinos with the masses of (at least) 0.01 eV and 0.05 eV suggested by neutrino oscillation data
(see §42.4.15) would have become non-relativistic at a redshift of 1 + 𝑧 ≈ 60 and 300 respectively,
whereupon they would start to cluster like dark matter and baryons, rather than continuing to stream
like cosmic background photons in more or less straight lines into astronomers’ telescopes. There remains
the possibility that one of the neutrino types may be light enough,𝑚𝜈 . 10−4 eV, to be relativistic today.
Such a relativistic neutrino would produce a background today that is an imprint of fluctuations in the
Universe at the time of neutrino decoupling.

2. For a light, relativistic neutrino, the multipole moments of the cosmic background today are given by
equation (34.46) with 𝜂 = 𝜂0. Without the ISW term, only the monopole term remains,

𝒩ℓ(𝜂0,𝑘) + 𝛿ℓ0Ψ(𝜂0,𝑘) = [𝒩0(0,𝑘) + Ψ(0,𝑘)] 𝑗ℓ(𝑘𝜂0) . (34.51)

The initial value is the superhorizon result

𝒩0(0,𝑘) + Ψ(0,𝑘) = Ψ(0) + Φ(0) + 𝜁𝜈 . (34.52)

The neutrino power spectrum is proportional to the photon Sachs-Wolfe power spectrum (34.43), with
constant of proportionality

𝐶
(𝜈)
ℓ

𝐶SW
ℓ

=

(︂
Ψ(0) + Φ(0) + 𝜁𝜈

Ψsuper(𝜂rec) + Φsuper(𝜂rec) + 𝜁𝛾

)︂2

. (34.53)

In the approximation that recombination is in the matter-dominated regime (which is not quite true),
and the scalar potentials are equal (which is not quite true thanks to neutrinos), the potentials at
recombination are approximately the late time potentials given by equations (30.68), so

𝐶
(𝜈)
ℓ

𝐶SW
ℓ

≈
(︂− 3

5𝜁r + 𝜁𝜈

− 6
5𝜁c + 𝜁𝛾

)︂2

. (34.54)

Inflation generically predicts adiabatic fluctuations with 𝜁’s of all species the same, in which case

𝐶
(𝜈)
ℓ

𝐶SW
ℓ

≈
(︂
5

3

)︂2

. (34.55)
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3. An ISW effect results from the change in the potential at horizon-crossing for modes that entered the
horizon during the radiation-dominated era. The potential Ψ(𝑦)+Φ(𝑦) is a universal function of 𝑦 ≡ 𝑘𝜂
during horizon-crossing in the radiation-dominated era, independent of 𝑘. The ISW integral yields a
result that looks like the spherical Bessel function of the monopole contribution on the second line of
equation (34.46), but with a different amplitude and phase. The net result is a power spectrum that
again looks like the Sachs-Wolfe power spectrum, but with a (somewhat) different amplitude than the
large-scale power spectrum, whose modes entered the horizon in the matter-dominated regime.

34.7 Appendix: Integrals over spherical Bessel functions

Two useful integrals over spherical Bessel functions are

𝑈ℓ(𝑧) ≡
∫︁ ∞
0

𝑗ℓ(𝑦)𝑦
𝑧 𝑑𝑦

𝑦
=

2𝑧−2
√
𝜋 Γ
[︀
1
2 (ℓ+ 𝑧)

]︀
Γ
[︀
1
2 (ℓ+ 3− 𝑧)

]︀ , (34.56a)

𝑈ℓ;ℓ′(𝑧) ≡
∫︁ ∞
0

𝑗ℓ(𝑦)𝑗ℓ′(𝑦)𝑦
𝑧 𝑑𝑦

𝑦
=

2𝑧−3𝜋Γ(2− 𝑧)Γ
[︀
1
2 (ℓ+ ℓ′ + 𝑧)

]︀
Γ
[︀
1
2 (ℓ+ ℓ′+ 4− 𝑧)

]︀
Γ
[︀
1
2 (ℓ− ℓ′+ 3− 𝑧)

]︀
Γ
[︀
1
2 (ℓ
′− ℓ+ 3− 𝑧)

]︀ ,
(34.56b)

where Γ(𝑧) is the Gamma function. The integrals satisfy the recurrence relations

𝑈ℓ(𝑧) = (ℓ− 2 + 𝑧)𝑈ℓ−1(𝑧 − 1)

=
ℓ− 2 + 𝑧

ℓ+ 1− 𝑧
𝑈ℓ−2(𝑧) , (34.57a)

𝑈ℓ;ℓ′(𝑧) =
ℓ+ ℓ′− 2 + 𝑧

ℓ+ ℓ′+ 2− 𝑧
𝑈ℓ−1;ℓ′−1(𝑧)

=
(ℓ+ ℓ′− 2 + 𝑧)(ℓ− ℓ′− 3 + 𝑧)

2(𝑧 − 2)
𝑈ℓ−1;ℓ′(𝑧 − 1)

=
(ℓ+ ℓ′− 2 + 𝑧)(ℓ− ℓ′− 3 + 𝑧)

(ℓ+ ℓ′+ 2− 𝑧)(ℓ′− ℓ− 1 + 𝑧)
𝑈ℓ−2;ℓ′(𝑧) . (34.57b)
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Cosmological perturbations including
polarization

Well before recombination, frequent collisions drive photons into thermodynamic equilibrium. In thermody-
namic equilibrium, the photon distribution is unpolarized. But, as will be seen in §35.10, photons scattering
off electrons become linearly polarized. The CMB bears the imprint of polarization generated near the surface
of last scattering.
Polarization produces distinct 𝐸-mode (electric parity) and𝐵-mode (magnetic parity) fluctuations, §35.6.2.

The 𝐵-mode fluctuation can be generated only by vector or tensor, not scalar, gravitational potential fluc-
tuations. The 𝐵-mode polarization has opposite parity to, and can thereby be observationally distinguished
from, the much stronger unpolarized and polarized scalar fluctuations. Thus the 𝐵-mode polarization pro-
vides a clean window to gravitational waves generated during inflation in the very early Universe. A detection
of 𝐵-mode polarization was initially claimed by the BICEP2 collaboration (Ade et al., 2014), but subsequent
cross-comparison between BICEP2 and Planck data suggests that the detected polarization may have been
a galactic foreground from dust aligned by the galactic magnetic field (Ade et al., 2015). If a cosmological
signal of 𝐵-mode polarization is detected in the future, it would present a remarkable observation of physics
at near-Planck energies far exceeding those accessible in earthly particle accelerators.

35.1 Photon polarization

Photons have spin one. They have two distinct spin eigenstates, or polarizations, transverse to the photon
direction of motion. A general spin eigenstate of a photon is a complex linear combination of the two spin
states. Any pair of transverse spin states can be chosen as a basis. If the photon direction of motion is along
the 3-direction (𝑧-direction), then the two basis spin states can for example be taken to be linear polarizations
𝛾𝛾1 and 𝛾𝛾2 along the 1- and 2-directions (𝑥- and 𝑦-directions) transverse to the 3-direction. An elegant choice
of basis spin states are right- and left-circular polarizations 𝛾𝛾+ ≡ (𝛾𝛾1 + 𝑖𝛾𝛾2)/

√
2 and 𝛾𝛾− ≡ (𝛾𝛾1 − 𝑖𝛾𝛾2)/

√
2,

equations (39.1), in which the spin is respectively aligned (+) and anti-aligned (−) with the photon direction
of motion 𝛾𝛾3. The condition of right- or left-circular polarization, aligned or anti-aligned with the direction
of motion, is Lorentz invariant, unchanged by any Lorentz transformation. The general spin eigenstate of
a photon is described by a complex polarization vector 𝑎, a complex linear combination of right- and

923



924 Cosmological perturbations including polarization

left-handed eigenstates,

𝑎 ≡ 𝑎𝑎𝛾𝛾𝑎 = 𝑎+𝛾𝛾+ + 𝑎−𝛾𝛾− . (35.1)

The polarization vector 𝑎 is transverse, that is, it is orthogonal both to the time axis 𝛾𝛾0 and to the direction
𝛾𝛾3 of the photon’s direction of motion,

𝑎 · 𝛾𝛾0 = 𝑎 · 𝛾𝛾3 = 0 . (35.2)

According to the rules of quantum mechanics, the squared amplitude is the probability of the photon,
which for a single photon is one,

|𝑎+|2 + |𝑎−|2 = 1 . (35.3)

The squared individual amplitudes |𝑎+|2 and |𝑎−|2 of the polarization vector (35.1) represent the probabilities
of observing the photon to have polarization 𝛾𝛾+ or 𝛾𝛾−. For example, if a photon with polarization 𝑎 is sent
through a right-circularly polarized filter, then the photon will be transmitted with probability |𝑎+|2, and
the transmitted photon will then be 100% right-circularly polarized. The total probability of the spin states
of the photon is one, equation (35.3). There is a Lorentz-invariant operation of conjugation that leaves
orthonormal vectors unchanged, equation (39.112), but flips the spin indices +↔ −, equation (39.113). The
conjugate �̄� of the polarization vector is

�̄� = 𝑎+*�̄�𝛾+ + 𝑎−*�̄�𝛾− = 𝑎+*𝛾𝛾− + 𝑎−*𝛾𝛾+ . (35.4)

The normalization condition (35.3) can then be written

�̄� · 𝑎 = 1 . (35.5)

More generally, if a photon has polarization 𝑎, then the probability 𝑃𝑎′ of observing it to have polarization
𝑎′ is, by the rules of quantum mechanics,

𝑃𝑎′ = |�̄�′ · 𝑎|2 . (35.6)

A photon in a pure 𝛾𝛾+ eigenstate (i.e. with polarization vector 𝑒−𝑖𝜑𝛾𝛾+ where 𝑒−𝑖𝜑 is some arbitrary phase
factor) is right-circularly polarized, while a photon in a pure 𝛾𝛾− eigenstate is left-circularly polarized. A pho-
ton that is a superposition of equal magnitudes of right- and left-circular polarizations is said to be linearly po-
larized. For example a photon with polarization vector 𝑎1 = 𝑒−𝑖𝜑(𝛾𝛾++𝛾𝛾−)/

√
2 = 𝑒−𝑖𝜑𝛾𝛾1 is linearly polarized

in the 1-direction (𝑥-direction), while a photon with polarization vector 𝑎2 = 𝑒−𝑖𝜑(𝛾𝛾+−𝛾𝛾−)/(
√
2 𝑖) = 𝑒−𝑖𝜑𝛾𝛾2

is linearly polarized in the 2-direction (𝑦-direction). More generally, a photon with polarization vector

𝑎𝜒 = 𝑒−𝑖𝜑
𝑒−𝑖𝜒𝛾𝛾+ + 𝑒𝑖𝜒𝛾𝛾−√

2
(35.7)

is linearly polarized along a direction rotated right-handedly by angle 𝜒 from the 1-axis. Polarization angles
𝜒 = 0 and 𝜋/2 correspond to photons linearly polarized along respectively the 1- and 2-directions. A polar-
ization angle of 𝜒 = 𝜋 flips the sign of 𝑎𝜒, equivalent to changing its phase 𝜑, so the polarization angle 𝜒 is
determined only modulo 𝜋.
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The most general polarization vector of a photon is elliptically polarized, a superposition of unequal
non-zero magnitudes of right and left polarizations,

𝑎𝜒,𝜖 = 𝑒−𝑖𝜑
𝑒−𝑖𝜒 cos 𝜖𝛾𝛾+ + 𝑒𝑖𝜒 sin 𝜖𝛾𝛾−√

2
. (35.8)

The elliptic angle 𝜖 varies from 𝜖 = 0 for pure right-circular polarization, to 𝜖 = 𝜋/4 for linear polarization,
to 𝜖 = 𝜋/2 for pure left-circular polarization. The polarization angle 𝜒 is the angle by which the polarization
ellipse is rotated right-handedly from the 1-axis.
As is usual in quantum mechanics, the phase 𝑒−𝑖𝜑 of a polarization vector 𝑎 is by itself unobservable; only

probabilities (35.6) are observable.

Concept question 35.1. Relation of the polarization vector to the electromagnetic potential.

How is the polarization vector 𝑎 related to the electromagnetic potential 𝐴? Answer. As discussed in
§27.6, the gauge freedom of electromagnetism means that only 3 of the 4 components of the electromagnetic
potential 𝐴 are gauge-invariant, equations (27.37), and only the 2 vector (i.e. transverse) components 𝐴⊥ of
the electromagnetic potential describe propagating waves, equation (27.40). Plane-wave solutions propagating
in the 𝛾𝛾3-direction (𝑧-direction) are functions of 𝐴(𝑡 − 𝑧) with 𝐴 transverse. The associated electric and
magnetic fields are, equations (27.38),

𝐸 = −�̇� , 𝐵 = 𝛾𝛾3 ∧𝐸 . (35.9)

The electric and magnetic fields of a propagating wave are transverse and orthogonal to each other. In
quantum field theory, §??, the electromagnetic potential 𝐴 is fundamentally complex. Monochromatic waves
of positive angular frequency 𝜔 propagating forwards in time in the 𝑧-direction in Minkowski space are
described by a complex potential

𝐴 = 𝐴0𝑒
−𝑖𝜔(𝑡−𝑧) , (35.10)

where 𝐴0 is a constant complex transverse vector. The mean-squared potential is

⟨�̄� ·𝐴⟩ = ⟨�̄�0 ·𝐴0⟩ = 𝐴2 . (35.11)

The polarization vector 𝑎, which has unit magnitude, equation (35.3), equals the constant potential 𝐴0

scaled to unit magnitude, modulo a possible phase factor,

𝑎 =
𝐴0

𝐴
mod phase . (35.12)

In classical electromagnetism it is possible and conventional to work with real quantities only, since the
phase of the electromagnetic potential 𝐴 is by itself unobservable. That is, although Maxwell’s equations
admit complex wave solutions such as (35.10), classical electromagnetism does not require them. In classical
electromagnetism, a real wave is the real part of a complex wave (35.10), multiplied by

√
2 to get the

mean-squared amplitude right. Thus in classical electromagnetism real linearly polarized waves oscillating
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in respectively the 1- and 2-directions are

𝐴1
2
=
√
2𝐴𝛾𝛾1

2
Re 𝑒−𝑖𝜔(𝑡−𝑧) =

√
2𝐴𝛾𝛾1

2
cos𝜔(𝑡− 𝑧) , (35.13)

while real right- and left-circularly polarized waves are

𝐴± =
√
2𝐴Re𝛾𝛾±𝑒

−𝑖𝜔(𝑡−𝑧) = 𝐴Re
(︀
(𝛾𝛾1 ± 𝑖𝛾𝛾2)𝑒

−𝑖𝜔(𝑡−𝑧))︀ = 𝐴
(︀
𝛾𝛾1 cos𝜔(𝑡− 𝑧)± 𝛾𝛾2 sin𝜔(𝑡− 𝑧)

)︀
. (35.14)

Note that the “complex conjugate” of 𝛾𝛾𝑚 in this context strictly refers to the Lorentz-invariant conjugate
�̄�𝛾𝑚, equation (39.112), with respect to which 𝛾𝛾1 and 𝛾𝛾2 are both real. For each of the linearly polarized
waves (35.13), or circularly polarized waves (35.14), the mean-squared potential is

⟨𝐴2
1
2

⟩ = 2𝐴2⟨cos2𝜔𝑡⟩ = 𝐴2 , ⟨𝐴2
±⟩ = 𝐴2 . (35.15)

Evidently, when dealing with polarization, it is simpler to work with complex (quantum mechanical) waves
than with real (classical) waves.

35.2 Photon density matrix

It is necessary to distinguish between photons in mixed states and mixtures of photons in different states. For
example, a system consisting of photons all in a linearly polarized state (35.7) is not the same as a mixture
of purely right-handed and purely left-handed photons. The systems can be distinguished experimentally by
passing the photons through polarizers.
To deal with these distinctions, a statistical ensemble of photons in various polarization states must be

described by a density matrix. Suppose that the system consists of photons in pure polarization states 𝑎
with real occupation numbers 𝑓(𝑎). Then the density matrix 𝑓 may be defined by the tensor

𝑓 ≡
∑︁

photons 𝑎

𝑓(𝑎)𝑎⊗ �̄� . (35.16)

In any basis 𝛾𝛾𝑎, the density matrix is

𝑓 =
∑︁
𝑎�̄�

𝑓𝑎�̄�𝛾𝛾𝑎 ∧𝛾𝛾�̄� , (35.17)

with components

𝑓𝑎�̄� =
∑︁

photons 𝑎

𝑓(𝑎)𝑎𝑎𝑎𝑏* . (35.18)

A conjugated index �̄� signifies the index of the conjugated vector, 𝛾𝛾�̄� = �̄�𝛾𝑏. For orthonormal vectors 𝛾𝛾1 and
𝛾𝛾2, conjugated vectors are themselves, so 1̄ = 1 and 2̄ = 2; while for chiral vectors 𝛾𝛾+ and 𝛾𝛾−, conjugation
flips spin, so +̄ = − and −̄ = +. The density matrix is Hermitian,

(𝑓𝑎�̄�)* = 𝑓 𝑏�̄� . (35.19)
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Its trace is ∑︁
𝑎

𝑓𝑎�̄� =
∑︁

photons 𝑎

𝑓(𝑎)
∑︁
𝑎

𝑎𝑎𝑎𝑎* =
∑︁

photons 𝑎

𝑓(𝑎) , (35.20)

which counts the total number of photons.
If the system of photons is measured along the polarization direction 𝑎, then the occupation number of

photons with that polarization will be found to be, in accordance with equation (35.6),

𝑓(𝑎) = 𝑓𝑎�̄�𝑎𝑎𝑎
*
𝑏 . (35.21)

The conjugate 𝑓 of the density matrix 𝑓 is

𝑓 =
∑︁

photons 𝑎

𝑓(𝑎) �̄�⊗ 𝑎 =
∑︁
�̄�𝑏

𝑓 �̄�𝑏𝛾𝛾�̄� ∧𝛾𝛾𝑏 , (35.22)

whose components are

𝑓 �̄�𝑏 =
∑︁

photons 𝑎

𝑓(𝑎)𝑎𝑎*𝑎𝑏 . (35.23)

35.2.1 Physical interpretation of the photon density matrix

Since the complex 2× 2 photon density matrix 𝑓𝑎�̄� is Hermitian, equation (35.19), it is diagonalizable with
2 real eigenvalues. The form (35.16) of the density matrix ensures that the matrix is positive definite, that
is, its eigenvalues are both non-negative. If only one eigenvalue is positive, and the other is zero, then the
density matrix represents a pure state. The most general pure state consists of photons all in the same (in
general elliptically polarized) state. The most general impure state is equivalent to a mixture of photons in
two orthogonal (in general elliptically polarized) states. In thermodynamic equilibrium, the two eigenvalues
are equal, and the density matrix describes a mixture of equal numbers of photons in any pair of orthogonal
states.
With respect to a circularly polarized (Newman-Penrose) basis 𝛾𝛾±, the 2× 2 density matrix 𝑓𝑎�̄� is

𝑓𝑎�̄� =

(︂
𝑓+− 𝑓++

𝑓−− 𝑓−+

)︂
. (35.24)

The components 𝑓𝑎�̄� comprise two real scalar (spin 0) components 𝑓+− and 𝑓−+, and a complex tensor
(spin 2) component 𝑓++ = 𝑓−−*. The trace of the density matrix (35.24) counts the total number of
photons, equation (35.20). The unpolarized scalar occupation number 𝑓 defined earlier, equation (31.28),
equals one when there is one photon in either of the two polarization states, so the trace equals twice the
unpolarized occupation number 𝑓 ,∑︁

𝑎

𝑓𝑎�̄� = 𝑓+− + 𝑓−+ =
∑︁

photons 𝑎

𝑓(𝑎) = 2𝑓 . (35.25)
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Conjugation flips chiral indices +↔ −, so the components of the conjugate density matrix are

𝑓 �̄�𝑏 =

(︂
𝑓−+ 𝑓−−

𝑓++ 𝑓+−

)︂
. (35.26)

Note that conjugation here signifies the Lorentz-invariant operation described in §39.7.4, which is related to,
but not the same as, complex conjugation. In particular, the components 𝑓+− and 𝑓−+ are conjugates of
each other, but they are nevertheless real.
The spin-0 component 𝑓+− (the coefficient of 𝛾𝛾+⊗ �̄�𝛾+) measures the intensity of right-circularly polarized

light, while the other spin-0 component 𝑓−+ (the coefficient of 𝛾𝛾− ⊗ �̄�𝛾−) measures the intensity of left-
circularly polarized light. The sum 2𝑓 = 𝑓+−+𝑓−+ measures the total intensity of light in both polarizations,
while the difference 𝑓+−− 𝑓−+ measures the net circularly polarized intensity, the excess of right- over left-
circular polarized intensities.
The complex spin-2 component 𝑓++ measures the degree of linear polarization of the light. A photon

linearly polarized in the direction 𝜒, equation (35.7), contributes a density matrix

𝑎𝜒 ⊗ �̄�𝜒 = 1
2 (𝛾𝛾+ ⊗ 𝛾𝛾− + 𝛾𝛾− ⊗ 𝛾𝛾+) +

1
2𝑒
−2𝑖𝜒𝛾𝛾+ ⊗ 𝛾𝛾+ + 1

2𝑒
2𝑖𝜒𝛾𝛾− ⊗ 𝛾𝛾− , (35.27)

whose components are

𝑓𝑎�̄�𝜒 =
1

2

(︂
1 𝑒−2𝑖𝜒

𝑒2𝑖𝜒 1

)︂
. (35.28)

The trace of the density matrix is one, which is as it should be for a single photon. Twice the amplitude of
𝑓++ gives the degree of linear polarization, which here is one (100% linearly polarized), while the phase 2𝜒

of 𝑓++ measures the angle 𝜒 by which the direction of polarization is rotated right-handedly from the 1-axis
(𝑥-axis).
In the cosmological case under consideration, Thomson scattering generates linear but not circular polar-

ization. In this case the photon density matrix is

𝑓𝑎�̄� =

(︂
𝑓 𝑓++

𝑓−− 𝑓

)︂
, (35.29)

with 𝑓 the unpolarized occupation number. The equality of the diagonal elements of the density matrix,
𝑓+− = 𝑓−+ = 𝑓 , expresses the absence of circular polarization.

Concept question 35.2. Elliptically polarized light. Can a beam of elliptically polarized light be
distinguished from a sum of beams of linearly polarized and circularly polarized light? Answer. Yes. A
beam containing photons all in the same elliptically polarized state is in a pure state, which is not equivalent
to any sum of beams of different polarizations. In a beam in a pure state, 100% of the photons will pass
through a matched filter, whereas in a beam in a mixed state some photons will be passed through and some
will be absorbed by the matched filter.
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35.2.2 Relation to Stokes parameters

The 4 components of the polarization density matrix 𝑓𝑎�̄� are related to the 4 conventional real Stokes
parameters 𝐼, 𝑉 , 𝑄, and 𝑈 by

2𝑓 = 𝑓+− + 𝑓−+ = 𝐼 , (35.30a)

𝑓+− − 𝑓−+ = 𝑉 , (35.30b)

𝑓++ + 𝑓−− = 𝑄 , (35.30c)

𝑓++ − 𝑓−− = 𝑖𝑈 . (35.30d)

The Stokes parameters here are normalized so that the total intensity 𝐼 measures the total occupation
number 2𝑓 , the trace of the density matrix. Stokes parameters can be normalized in other ways, whatever
may be convenient. Some of the ways that astronomers normalize intensity are described in the paragraph
containing equation (1.80).

35.3 Temperature fluctuation for polarized photons

Previously, the perturbation to the unpolarized scalar occupation number 𝑓 was expressed in terms of
the temperature fluctuation, Θ ≡ 𝛿𝑇/𝑇 , equation (33.38). The temperature fluctuation Θ ≡ Θ𝑎�̄�𝛾𝛾𝑎 ⊗ �̄�𝛾𝑏
including polarization can be defined similarly in terms of the density matrix 𝑓𝑎�̄�, equation (35.18), which
is the generalization of the occupation number to include polarization,

1

𝑓𝑎�̄� ≡ 𝜕
0

𝑓𝛾
𝜕 ln𝑇

Θ𝑎�̄� . (35.31)

The trace of Θ𝑎�̄� is twice the scalar temperature fluctuation,
∑︀
𝑎Θ

𝑎�̄� = 2Θ. The trace-free part of Θ𝑎�̄�

describes the polarized temperature fluctuation.
It is conventional in cosmology, and elsewhere in physics, to signify the components of the photon density

matrix using a spin index 𝑠, positioned to the left of the symbol to distinguish it from harmonic indices ℓ𝑚,

0Θ ≡ Θ+− , −0Θ ≡ Θ−+ , 2Θ ≡ Θ++ , −2Θ ≡ Θ−− . (35.32)

In the cosmological situation being considered, Thomson scattering generates linear but not circular polar-
ization, with the consequence that the two spin 0 components ±0Θ are equal, and equal to the unpolarized
temperature fluctuation Θ,

0Θ = −0Θ = Θ . (35.33)

The spin index 𝑠 signifies how the polarized temperature fluctuation varies, and is to be distinguished from
harmonic indices ℓ𝑚. A temperature fluctuation 𝑠Θℓ𝑚, equation (35.37), is the coefficient of an eigenmode
that varies as 𝐷ℓ𝑚𝑠 ∝ 𝑒−𝑖𝑠𝜒 under a right-handed rotation by angle 𝜒 about the photon’s direction 𝑝

of motion, and as 𝐷ℓ𝑚𝑠 ∝ 𝑒−𝑖𝑚𝜑 under a right-handed rotation by angle 𝜑 about the direction �̂� of the
wavevector of the fluctuation.



930 Cosmological perturbations including polarization

35.4 Summary of equations including polarization

This section summarizes the coupled Boltzmann and Einstein equations needed to compute linear cosmo-
logical fluctuations including photon polarization.
Polarization involves not only scalar (𝑚 = 0) but also vector (𝑚 = ±1) and tensor (𝑚 = ±2) fluctuations

𝑠Θℓ𝑚. The hierarchy of Boltzmann and Einstein equations for different 𝑚 are decoupled from each other, so
scalar, vector, and tensor equations may be calculated separately. Symmetry between positive and negative
𝑚 means that in practice equations need be solved only for positive 𝑚 = 0, 1, and 2. Vector (𝑚 = 1) modes
are commonly treated as being negligible, for the reasons given at the end of this section. Thomson scattering
couples unpolarized Θℓ𝑚 and electric polarized 𝐸ℓ𝑚 photon multipoles, equations (35.68c) and (35.68d). The
polarized photon Boltzmann equations (35.45b) and (35.45c) couple the electric 𝐸ℓ𝑚 and magnetic 𝐵ℓ𝑚
parts of the polarized multipoles.
The Boltzmann equations for nonbaryonic dark matter and for baryons are equations (35.49) and (35.48),

generalizing the scalar matter equations (33.1) and (33.2).
The Boltzmann equations for polarized photons are given by equations (35.45), with gravitational redshift

source terms 𝐺ℓ𝑚 (not to be confused with the Einstein tensor) given by equations (35.41), and Thomson-
scattering collision terms 𝐶[Θℓ𝑚], 𝐶[𝐸ℓ𝑚], and 𝐶[𝐵ℓ𝑚] given by equations (35.68). These generalize the
scalar Boltzmann equations (33.81) for unpolarized photons.
The Boltzmann equations for neutrinos are equations (35.47), generalizing the scalar neutrino equa-

tions (33.91).
The Boltzmann hierarchies for photons and neutrinos may be truncated as described in §35.10.1.
Scalar, vector, and tensor Einstein equations are equations (33.7), (35.52) and (35.53).
Vector and tensor gravitational potentials 𝑊± and ℎ±± are in general complex (with 𝑊− = 𝑊 *+ and

ℎ−− = ℎ*++). Linear vector and tensor fluctuations (of all species) are proportional to the initial amplitudes
𝑊±(0) and ℎ±±(0). Therefore in numerical calculations the initial amplitudes𝑊±(0) and ℎ±±(0) can be taken
to be real, any phase factor being absorbed into a normalization factor. The phase factor cancels in power
spectra, equation (36.25). If the initial amplitudes 𝑊±(0) and ℎ±±(0) are real, then the coupled Boltzmann
and Einstein equations ensure that𝑊± and ℎ±± and the photon multipoles Θℓ𝑚, 𝐸ℓ𝑚, and 𝐵ℓ𝑚 remain real,
as do matter and neutrino multipoles. Since the polarized photon multipoles 𝐸ℓ𝑚 and 𝐵ℓ𝑚 are real, it can
be convenient numerically to combine them into the complex polarized multipoles 2Θℓ𝑚 = 𝐸ℓ𝑚+ 𝑖𝐵ℓ𝑚, and
to solve a complex polarized Boltzmann equation whose left hand side is the complex expression (35.39).
Thomson scattering couples the unpolarized fluctuation Θℓ𝑚 only to the electric part, that is, the real part,
of the polarized fluctuation 2Θℓ𝑚 = 𝐸ℓ𝑚+ 𝑖𝐵ℓ𝑚.
Collisions (before neutrino decoupling in the case of neutrinos, and before recombination in the case

of photons) tend to drive initial vector (|𝑚| = 1) and tensor (|𝑚| = 2) multipoles of all particle species
to zero, §35.11. Vector gravitational fluctuations 𝑊± tend to redshift to zero, equation (29.51), so vector
fluctuations of all species are expected to be negligible. On the other hand, tensor gravitational fluctuations
ℎ±± (gravitational waves) generated during inflation survive to low redshift, equation 29.53, and drive tensor
fluctuations in collisionless relativistic species, first neutrinos, and then photons near and after recombination.
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Exercise 35.3. Boltzmann code including polarization. Upgrade the code you wrote in Exercise 33.1
to implement polarization. Read the summary section 35.4 above for guidance.

35.5 Boltzmann equations for polarized photons

Whereas the unpolarized occupation number 𝑓 is a scalar, the polarized occupation number 𝑓𝑎𝑏 is a tensor.
The directed derivative 𝜕𝑚 on the left hand side of the Boltzmann equation (33.8) should therefore be
replaced by the covariant derivative 𝐷𝑚𝑓

𝑎𝑏,

𝐷𝑚𝑓
𝑎𝑏 = 𝜕𝑚𝑓

𝑎𝑏 + Γ𝑎𝑐𝑚𝑓
𝑐𝑏 + Γ𝑏𝑐𝑚𝑓

𝑎𝑐 . (35.34)

However, the polarized (trace-free) part of 𝑓𝑎𝑏 is of linear order, and the tetrad-frame connections Γ𝑎𝑏𝑚 with
𝑎, 𝑏 both spatial are all of linear order, equation (29.23) (in any gauge), so the connection terms on the right
hand side of equation (35.34) are of quadratic order and can be neglected. Consequently no additional terms
depending on connections arise on the left hand side of the Boltzmann equation for the polarized photon
distribution.
The Boltzmann equation for the unpolarized photon distribution was given previously by equation (33.44)

in conformal Newtonian gauge. The gravitational 𝐺 term in this equation arises, equation (33.21), from the
redshifting of photons in the unperturbed photon distribution

0

𝑓 . Since the unperturbed photon distribution
is unpolarized, the gravitational redshift terms contribute only to the unpolarized Boltzmann equation, not
to the polarized Boltzmann equation. The unpolarized (spin-0) and polarized (spin-2) photon Boltzmann
equations are thus

Θ̇− 𝑖𝑘𝜇Θ−𝐺 = 𝐶[Θ] , (35.35a)

2Θ̇− 𝑖𝑘𝜇 2Θ = 𝐶[2Θ] . (35.35b)

The collision terms 𝐶[𝑠Θ] that arise from non-relativistic electron-photon (Thomson) scattering are calculated
in §35.10. In conformal Newtonian gauge, and including not only scalar (𝑚 = 0) but also vector (|𝑚| = 1)
and tensor (|𝑚| = 2) potentials from Exercise 33.3, equation (33.26), the gravitational redshift term 𝐺 in
the unpolarized Boltzmann equation (35.35a) is

𝐺(𝜂,𝑘,𝑝) = Φ̇ + 𝑖𝑘𝜇Ψ+ 𝑖𝑘𝜇𝑝 ·𝑊 + 𝑝𝑎𝑝𝑏ℎ̇𝑎𝑏 . (35.36)

35.6 Spherical harmonics of the polarized photon distribution

The spin-𝑠 component 𝑠Θ of the temperature fluctuation is naturally expanded in spin-𝑠 spherical harmonics

𝑠𝑌ℓ𝑚, §35.12 (Seljak and Zaldarriaga, 1997; Zaldarriaga and Seljak, 1997; Hu and White, 1997). With the
normalization conventional in CMB studies, the harmonic expansion of the polarized temperature fluctuation
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𝑠Θ is, consistent with the expansion (33.47) of the scalar (𝑚 = 0) fluctuation Θ, with �̂� taken along the
3-direction (𝑧-direction),

𝑠Θ(𝜂,𝑘,𝑝, 𝜒) =

∞∑︁
ℓ=|𝑠|

min(ℓ,2)∑︁
𝑚=−min(ℓ,2)

(−𝑖)ℓ+𝑚−𝑠
√︀
4𝜋(2ℓ+ 1) 𝑠Θℓ𝑚(𝜂,𝑘)−𝑠𝑌

*
ℓ𝑚(𝑝, 𝜒)

=

∞∑︁
ℓ=|𝑠|

min(ℓ,2)∑︁
𝑚=−min(ℓ,2)

(−𝑖)ℓ+𝑚−𝑠(2ℓ+ 1) 𝑠Θℓ𝑚(𝜂,𝑘)𝐷ℓ𝑚𝑠(𝜑, 𝜃, 𝜒) , (35.37)

where 𝑠𝑌ℓ𝑚(𝑝, 𝜒) are the spin-weighted spherical harmonics defined by equation (35.84), and𝐷ℓ𝑚𝑠(𝜑, 𝜃, 𝜒) are
the Wigner rotation matrices discussed in §35.12.2. The angles 𝜃 and 𝜑 are the polar coordinates of the photon
direction 𝑝. Modes 𝑠Θℓ𝑚 with |𝑚| = 0, 1, 2 correspond respectively to scalar, vector, and tensor fluctuations.
The index on the scalar (𝑚 = 0) fluctuation is often omitted for brevity, 𝑠Θℓ0 = 𝑠Θℓ. The orthogonality
relation (35.143) implies that the spin harmonics 𝑠Θℓ𝑚 are angular integrals of the temperature fluctuation

𝑠Θ over momentum directions 𝑝, generalizing equation (33.48),

𝑠Θℓ𝑚(𝜂,𝑘) = 𝑖ℓ+𝑚−𝑠
∫︁

𝑠Θ(𝜂,𝑘,𝑝, 0)𝐷*ℓ𝑚𝑠(𝜑, 𝜃, 0)
𝑑𝑜𝑝
4𝜋

. (35.38)

The expansion (35.37) differs from the convention of Hu and White (1997) in that (a) the expansion is
with respect to −𝑠𝑌 *ℓ𝑚 as opposed to 𝑠𝑌ℓ𝑚, (b) there is an extra factor of (−𝑖)𝑚−𝑠, (c) the spin harmonics

−𝑠𝑌
*
ℓ𝑚(𝑝, 𝜒) include a factor of 𝑒−𝑖𝑠𝜒. The point of expanding with respect to −𝑠𝑌 *ℓ𝑚 is that 𝑠Θℓ𝑚 is then the

coefficient of the spin-weight 𝑠 and 𝑚 (rather than 𝑠 and −𝑚) term under rotations about respectively the 𝑝
and �̂� directions, consistent with the convention in this book that the spin-weight of an object can be read off
from its covariant indices. The factor of (−𝑖)𝑚−𝑠 is introduced to cancel the factor of (−)𝑚−𝑠 between 𝐷ℓ𝑚𝑠

and its complex conjugate, equation (35.129), ensuring reality conditions (35.46) on the harmonic coefficients
that match those on the Newman-Penrose components of the gravitational potentials. The factor of 𝑒−𝑖𝑠𝜒 in

−𝑠𝑌
*
ℓ𝑚 or 𝐷ℓ𝑚𝑠 makes explicit the spin factor that Hu and White (1997) absorb into basis vectors 𝛾𝛾𝑎⊗𝛾𝛾𝑏 of

the polarization matrix.

35.6.1 Boltzmann equations for spherical harmonics of the polarized photon

distribution

The action of 𝜇 ≡ cos 𝜃 ≡ �̂� ·𝑝 on the spin harmonics follows from from the recursion formula (35.145) for the
rotation matrices𝐷ℓ𝑚𝑛. The resulting expression for the terms 𝑠Θ̇−𝑖𝑘𝜇 𝑠Θ of the Boltzmann equation (35.35),
common to all spins 𝑠 and all harmonics ℓ𝑚, is

(︀
𝑠Θ̇− 𝑖𝑘𝜇 𝑠Θ

)︀
ℓ𝑚

= 𝑠Θ̇ℓ𝑚 + 𝑘

[︂
𝜅ℓ𝑚𝑠
2ℓ+ 1

𝑠Θℓ−1,𝑚 +
𝑖𝑠𝑚

ℓ(ℓ+ 1)
𝑠Θℓ𝑚 −

𝜅ℓ+1,𝑚𝑠

2ℓ+ 1
𝑠Θℓ+1,𝑚

]︂
, (35.39)
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where the coefficients 𝜅ℓ𝑚𝑛 are given by equation (35.146). The harmonic expansion of the gravitational
term 𝐺, equation (35.36), in the unpolarized Boltzmann equation is

𝐺(𝜂,𝑘,𝑝) =

2∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

(−𝑖)ℓ+𝑚(2ℓ+ 1)𝐺ℓ𝑚(𝜂,𝑘)𝐷ℓ𝑚0(𝜑, 𝜃) , (35.40)

with non-vanishing harmonics (do not confuse 𝐺ℓ𝑚 here with the Einstein tensor)

𝐺00 = Φ̇ , (35.41a)

𝐺10 = −𝑘
3
Ψ , (35.41b)

𝐺2,±1 = − 𝑘

5
√
3
𝑊± , (35.41c)

𝐺2,±2 =

√
2

5
√
3
ℎ̇±± , (35.41d)

where 𝑊± ≡ 1√
2
(𝑊𝑥 ± 𝑖𝑊𝑦) are the spin-weight ±1 components of the vector perturbation 𝑊𝑎, equa-

tion (27.22), and ℎ±± ≡ ℎ𝑥𝑥 ± 𝑖 ℎ𝑥𝑦 are the spin-weight ±2 components of the tensor perturbation ℎ𝑎𝑏,
equation (27.23).

35.6.2 Electric and magnetic parts of the polarized photon distribution

The Wigner rotation matrices 𝐷ℓ𝑚𝑠 transform under a variety of discrete transformations. Of particular
relevance here is one that flips the spin index 𝑠, which is accomplished by a parity transformation (35.130).
Parity eigenstates of the rotation matrices are

(1± 𝑃 )𝐷ℓ𝑚𝑠(𝜑, 𝜃, 𝜒) = 𝐷ℓ𝑚𝑠(𝜑, 𝜃, 𝜒)±𝐷ℓ𝑚𝑠(𝜑+ 𝜋, 𝜋 − 𝜃,−𝜒)
= 𝐷ℓ𝑚𝑠(𝜑, 𝜃, 𝜒)± (−)ℓ𝐷ℓ𝑚,−𝑠(𝜑, 𝜃, 𝜒) . (35.42)

The harmonics ±𝑠Θℓ𝑚 of the spin ±𝑠 fluctuation thus split into an “electric” part 𝑠𝐸ℓ𝑚 of parity (−)ℓ and a
“magnetic” part 𝑠𝐵ℓ𝑚 of opposite parity (−)ℓ+1,

±𝑠Θℓ𝑚 = 𝑠𝐸ℓ𝑚 ± 𝑖 𝑠𝐵ℓ𝑚 . (35.43)

The names electric and magnetic come from the fact that the parity is the same as that of electric and
magnetic multipole radiation; 𝐸 and 𝐵 here are unrelated to the electric and magnetic fields of the underlying
electromagnetic radiation. There being no ambiguity, the spin index 𝑠 is dropped on 𝑠𝐸 and 𝑠𝐵 for the spin
±2 fluctuation,

±2Θℓ𝑚 = 𝐸ℓ𝑚 ± 𝑖𝐵ℓ𝑚 , (35.44)

that is, 𝐸ℓ𝑚 ≡ 2𝐸ℓ𝑚 and 𝐵ℓ𝑚 ≡ 2𝐵ℓ𝑚. The resolution of the polarized fluctuation into parity eigenstates is
motivated by the fact that the gravitational redshift term 𝐺 and Thomson scattering collision terms 𝐶[𝑠Θ]

are invariant under a parity transformation, so parity is an eigenstate of evolution of the polarized photon
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distribution. As a consequence, the parity components of the temperature fluctuation satisfy the reality
conditions (35.46).
Resolved into parity eigenstates, the Boltzmann equations (35.35) for the unpolarized and polarized tem-

perature fluctuations are(︀
Θ̇− 𝑖𝑘𝜇Θ

)︀
ℓ𝑚

= Θ̇ℓ𝑚 + 𝑘

(︂
𝜅ℓ𝑚0

2ℓ+ 1
Θℓ−1,𝑚 −

𝜅ℓ+1,𝑚0

2ℓ+ 1
Θℓ+1,𝑚

)︂
= 𝐺ℓ𝑚 + 𝐶[Θℓ𝑚] , (35.45a)

(︀
�̇� − 𝑖𝑘𝜇𝐸

)︀
ℓ𝑚

= �̇�ℓ𝑚 + 𝑘

(︂
𝜅ℓ𝑚2

2ℓ+ 1
𝐸ℓ−1,𝑚 −

2𝑚

ℓ(ℓ+ 1)
𝐵ℓ𝑚 −

𝜅ℓ+1,𝑚2

2ℓ+ 1
𝐸ℓ+1,𝑚

)︂
= 𝐶[𝐸ℓ𝑚] , (35.45b)

(︀
�̇� − 𝑖𝑘𝜇𝐵

)︀
ℓ𝑚

= �̇�ℓ𝑚 + 𝑘

(︂
𝜅ℓ𝑚2

2ℓ+ 1
𝐵ℓ−1,𝑚 +

2𝑚

ℓ(ℓ+ 1)
𝐸ℓ𝑚 −

𝜅ℓ+1,𝑚2

2ℓ+ 1
𝐵ℓ+1,𝑚

)︂
= 𝐶[𝐵ℓ𝑚] , (35.45c)

with coefficients 𝜅ℓ𝑚𝑛 given by equation (35.146). The azimuthal index 𝑚 runs over scalar (𝑚 = 0), vector
(𝑚 = ±1), and tensor (𝑚 = ±2) modes. Do not confuse the azimuthal index 𝑚 with spin 𝑠: the unpolarized
temperature fluctuation Θℓ𝑚 ≡ 0Θℓ𝑚 is spin 0, while the polarized temperature fluctuations 𝐸ℓ𝑚 ≡ 2𝐸ℓ𝑚
and 𝐵ℓ𝑚 ≡ 2𝐵ℓ𝑚 are spin 2. The harmonic number ℓ must be greater than or equal to both 𝑚 and 𝑠, so ℓ
runs from |𝑚| to∞ for Θℓ𝑚, and from 2 to∞ for 𝐸ℓ𝑚 and 𝐵ℓ𝑚. When combined with the Einstein equations,
§35.9, the Boltzmann equations (35.45) imply the reality conditions (35.46), which among other things imply
that scalar 𝐵-modes vanish identically, 𝐵ℓ0 = 0.

Concept question 35.4. 𝐸 and 𝐵 modes versus Stokes parameters. Since 2Θ = 𝐸 + 𝑖𝐵, aren’t 𝐸
and 𝐵 (up to a factor) the same as the Stokes parameters 𝑄 and 𝑈 in 2Θ ∝ 𝑓++ ∝ 𝑄+ 𝑖𝑈 , equation (35.30)?
Answer. No. In 𝑠Θ = 𝑠𝐸 + 𝑖 𝑠𝐵 it is necessary to distinguish the two spins 𝑠 = 2 and 𝑠 = −2. The two sets
of opposite spin 𝑠 = ±2 are expansions in eigenfunctions 𝐷ℓ𝑚𝑠 of opposite spin 𝑠. In other words, 2𝐸 is not
the same as −2𝐸 because the eigenfunctions 𝐷ℓ𝑚2 and 𝐷ℓ𝑚,−2 are not the same, even though the coefficients

𝑠𝐸ℓ𝑚 are the same for 𝑠 = ±2.

35.6.3 Reality conditions on the polarized photon distribution

The initial photon distribution well before recombination is in thermodynamic equilibrium and therefore
unpolarized. The Einstein scalar (33.7), vector (35.52), and tensor (35.53) equations show that the scalar Ψ
and Φ, vector 𝑊±, and tensor ℎ±± gravitational potentials are sourced by unpolarized (𝑠 = 0) temperature
multipoles Θℓ𝑚 with respectively |𝑚| = 0, 1, and 2 (and |𝑚| ≤ ℓ ≤ 2). The unpolarized temperature multi-
poles Θℓ𝑚 with |𝑚| = 0, 1, and 2 are in turn sourced by gravitational redshift terms 𝐺ℓ𝑚, equations (35.41).
Modes with different 𝑚 (= −2,−1, 0, 1, 2) are decoupled: gravitational modes of given 𝑚 can generate only
temperature fluctuations of the same 𝑚, and vice versa.
Thomson scattering generates spin 2 electric quadrupole polarization 𝐸2𝑚 from unpolarized quadrupole

multipoles Θ2𝑚, equation (35.68d). The polarized Boltzmann hierarchy (35.45) then feeds ℓ ≥ 3 electric 𝐸ℓ𝑚
and, for 𝑚 ̸= 0, magnetic 𝐵ℓ𝑚 multipoles with the same 𝑚.
The scalar potentials Ψ and Φ are real, while the Newman-Penrose components 𝑊± and ℎ±± components
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of the vector and tensor potentials are complex, satisfying 𝑊 *+ = 𝑊− and ℎ*++ = ℎ−−. The Einstein and
Boltzmann equations then imply the reality conditions

Θ*ℓ𝑚 = Θℓ,−𝑚 , 𝐸*ℓ𝑚 = 𝐸ℓ,−𝑚 , 𝐵*ℓ𝑚 = −𝐵ℓ,−𝑚 . (35.46)

In particular, all scalar (𝑚 = 0) fluctuations are real. The scalar magnetic fluctuation vanishes, 𝐵ℓ0 = 0.
The multipoles Θℓ𝑚, 𝐸ℓ𝑚, and 𝐵ℓ𝑚 are complex for 𝑚 ̸= 0.
As remarked in §35.4, without loss of generality the initial gravitational potentials 𝑊±(0) and ℎ±±(0)

can be taken to be real by absorbing a complex phase factor into their normalization (the phase factor for
negative 𝑚 is the complex conjugate of the phase factor for positive 𝑚; and the phase factor is different
for different 𝑚 and/or wavevector 𝑘). All linear fluctuations are proportional to the same phase factor. The
phase factor cancels in power spectra, equation (36.25). If the initial gravitational potentials are real, then
the Einstein and Boltzmann equations preserve that reality, so that all multipoles, including the gravitational
potentials, the photon multipoles Θℓ𝑚, 𝐸ℓ𝑚, and 𝐵ℓ𝑚, and matter and neutrino multipoles, are real.

Concept question 35.5. Fluctuations with |𝑚| ≥ 3? Are there fluctuations with |𝑚| ≥ 3? Answer.
No, because there are no gravitational potentials with |𝑚| ≥ 3. Well before recombination in the case of
photons, or well before electron-positron annihilation in the case of neutrinos, collisions drive the distribution
into thermodynamic equilibrium, characterized only by its first two moments, the monopole and dipole, or
equivalently the density and bulk velocity. The monopole (ℓ = 0) admits 𝑚 = 0, while the dipole (ℓ = 1)
admits 𝑚 = 0 or 𝑚 = ±1. Later, free streaming allows higher multipoles (ℓ ≥ 2) to develop, but symmetry
about the wavevector direction �̂� ensures that the azimuthal mode 𝑚 remains unchanged. Gravity supports
scalar (𝑚 = 0), vector (𝑚 = ±1), and tensor (𝑚 = ±2) modes, and these source photon or neutrino
multipoles of the same 𝑚, equations (35.41). Thomson scattering sources polarized fluctuations, but leaves
the azimuthal mode 𝑚 remains unchanged.

35.7 Neutrino Boltzmann equations

Vector and tensor Einstein equations (35.52) and (35.53) are sourced by neutrinos as well as photons.
Relativistic neutrinos satisfy a set of Boltzmann equations similar to the unpolarized photon Boltzmann
equations (35.45a) but without scattering terms,(︀

�̇� − 𝑖𝑘𝜇Θ
)︀
ℓ𝑚

= �̇�ℓ𝑚 + 𝑘

(︂
𝜅ℓ𝑚0

2ℓ+ 1
𝒩ℓ−1,𝑚 −

𝜅ℓ+1,𝑚0

2ℓ+ 1
𝒩ℓ+1,𝑚

)︂
= 𝐺ℓ𝑚 , (35.47)

where 𝜇 ≡ �̂� ·𝑝 is the cosine of the angle between the wavevector 𝑘 and the neutrino momentum 𝑝. Here 𝐺ℓ𝑚
are the harmonics (35.41) of the gravitational term 𝐺 in the Boltzmann equation, the same as for photons.
Equations (35.47) include not only scalar (𝑚 = 0) but also vector (𝑚 = ±1) and tensor (𝑚 = ±2) equations.
The scalar equations are the same as before, equations (33.91).
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Concept question 35.6. Are neutrinos polarized? Relativistic neutrinos are purely left-handed, spin
antialigned with their direction of motion. If neutrinos are pure left-polarized, should they not be treated
using a polarized density matrix? Answer. A pure circularly polarized distribution is in a pure state, not
a mixed state, and is described by the spin-weight 𝑠 = 0 (not 𝑠 = ±2) component 𝑓+− of the polarization
density matrix, §35.2.1. Gravity (in the present case, the gravitational redshift term 𝐺) is invariant under
a parity transformation, and affects left- and right-handed spin states the same. The collisionless neutrino
Boltzmann equation is a spin 0 equation.

35.8 Matter Boltzmann equations

Matter Boltzmann equations contain vector (𝑚 = ±1) as well as scalar (𝑚 = 0) parts. Matter sources con-
tribute to the vector Einstein equations (35.52). The scalar equations are the same as before, equations (33.1)
and (33.2). The Boltzmann equations for nonbaryonic cold dark matter including scalar and vector parts are

�̇�c − 𝑘 vc = 3 Φ̇ (𝑚 = 0) , (35.48a)

v̇c,𝑚 +
�̇�

𝑎
vc,𝑚 = 0 (𝑚 = 0,±1) . (35.48b)

The Boltzmann equations for baryonic matter including scalar and vector parts are

�̇�b − 𝑘 vb = 3 Φ̇ (𝑚 = 0) , (35.49a)

v̇b,𝑚 +
�̇�

𝑎
vb,𝑚 = − |𝜏 |

𝑅
(vb,𝑚 − 3Θ1𝑚) (𝑚 = 0,±1) . (35.49b)

35.9 Vector and tensor Einstein equations

The photon and neutrino energy-momenta 𝑇 𝑘𝑙 depends only on the unpolarized photon and neutrino dis-
tributions Θ and 𝒩 . The scalar components of the photon energy-momenta were given previously by equa-
tions (33.53). The vector components of the photon energy-momenta are given in terms of unpolarized
multipole moments Θℓ𝑚 by, from equation (33.51) with integrals over Θ being converted to harmonics Θℓ𝑚
using equations (35.38),

𝑇 0∓ = −𝑇0± = 4 𝜌Θ1,±1 , (35.50a)

𝑇 3∓ = 𝑇3± = −𝑖 4√
3
𝜌Θ2,±1 , (35.50b)

while the tensor components are

𝑇∓∓ = 𝑇±± =
4
√
2√
3
𝜌Θ2,±2 . (35.51)
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Massless neutrinos satisfy a similar set of equations.
The scalar Einstein equations were given previously by equations (33.7). The vector Einstein equations

are, from equations (29.50),

−𝑘2𝑊± = −16𝜋𝐺𝑎2 (𝜌cvc,± + 𝜌bvb,± + 4𝜌𝛾Θ1,±1 + 4𝜌𝜈𝒩1,±1) , (35.52a)

𝑘
(︁ 𝜕
𝜕𝜂

+ 2
�̇�

𝑎

)︁
𝑊± =

64√
3
𝜋𝐺𝑎2 (𝜌𝛾 Θ2,±1 + 𝜌𝜈 𝒩2,±1) , (35.52b)

where v± ≡ 1√
2
(v𝑥 ± 𝑖 v𝑦) are the spin-weight ±1 components of the bulk velocity of a species. Only one of

the two equations (35.52) is needed; the other is satisfied automatically as long as total energy-momentum
is conserved. The tensor Einstein equations are, from equation (29.52),(︁ 𝜕2

𝜕𝜂2
+ 2

�̇�

𝑎

𝜕

𝜕𝜂
+ 𝑘2

)︁
ℎ±± = −32

√
2√
3
𝜋𝐺𝑎2 (𝜌𝛾Θ2,±2 + 𝜌𝜈𝒩2,±2) . (35.53)

35.10 Polarized Thomson scattering

The invariant mean amplitude squared ⟨|ℳ|2⟩ for electron-photon scattering by non-relativistic electrons
with random spins, in which the initial photon polarization state is 𝑎 (not to be confused with cosmic scale
factor 𝑎) and the final polarization state 𝑎′, is, from equation (??), generalizing the unpolarized expres-
sion (33.55),

⟨|ℳ|2⟩ = (8𝜋𝛼)2|�̄�′ · 𝑎|2 , (35.54)

where 𝛼 ≡ 𝑒2/(~𝑐) is the fine-structure constant. The mean amplitude squared (35.54) is averaged over initial
electron spins but not over initial photon spins, since here the initial photon polarization 𝑎 is being specified.
The adjective “mean” refers to the averaging over initial electron spins. The differential cross-section 𝑑𝜎T/𝑑𝑜′,
equation (??), for polarized Thomson scattering is related to the mean amplitude squared ⟨|ℳ|2⟩ by, in units
𝑐 = ~ = 1,

𝑑𝜎T
𝑑𝑜′

=
⟨|ℳ|2⟩
(8𝜋𝑚𝑒)2

=
𝛼2

𝑚2
𝑒

|�̄�′ · 𝑎|2 = 𝑟2𝑒 |�̄�′ · 𝑎|2 =
3

8𝜋
𝜎T |�̄�′ · 𝑎|2 , (35.55)

where 𝑟𝑒 = 𝑒2/𝑚𝑒𝑐
2 is the classical electron radius, and 𝜎T = (8𝜋/3)𝑟2𝑒 is the total Thomson cross-section.

The collision integral 𝐶[Θ] for unpolarized Thomson scattering was given previously by equation (33.74).
The same equation holds for polarized scattering, except that the scalar temperature fluctuation Θ, equa-
tion (33.47), is replaced by the polarized temperature fluctuations 𝑠Θ, equation (35.37), and the Thomson
scattering matrix ⟨|ℳ|2| becomes a matrix that couples the different spins 𝑠.
The polarized Thomson scattering matrix ⟨|ℳ|2⟩ is not diagonal in a spin (circularly polarized) basis 𝛾𝛾±

(see equation (35.60)), but it is diagonal with respect to a linearly polarized basis 𝛾𝛾𝑥, 𝛾𝛾𝑦 in a frame where the
momentum 𝑝 of the incoming photon is along the 𝑧-direction, and the momentum 𝑝′ of the scattered photon
is in the 𝑥–𝑧 plane, as illustrated in Figure 35.1. In this special frame, the polarized Thomson scattering
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Figure 35.1 Polarized light incident in the 𝑧 direction (wiggly blue line) on an electron causes the electron to oscillate

in the direction 𝑎 of polarization (red arrow). The oscillating electron emits scattered light at the same frequency

(wiggly blue line). For incident light with polarization vector 𝑎𝑥 in the scattering plane (left), the polarization vector

𝑎𝑥′ of the scattered light is rotated by the scattering angle 𝜓, and reduced in amplitude by a factor cos𝜓, so that

𝑎𝑥 · 𝑎𝑥′ = cos𝜓. On the other hand, for incident light with polarization vector 𝑎𝑦 orthogonal to the scattering plane

(right), the polarization vector 𝑎𝑦′ of the scattered light is the same as that of the incident light, so that 𝑎𝑦 ·𝑎𝑦′ = 1.

matrix ⟨|ℳ|2⟩ is, equation (??),

[︀
⟨|ℳ|2⟩

]︀𝑎𝑏
𝑎′𝑏′

= (8𝜋𝛼)2

⎛⎜⎜⎝
cos2𝜓 0 0 0

0 cos𝜓 0 0

0 0 cos𝜓 0

0 0 0 1

⎞⎟⎟⎠ , (35.56)

where 𝜓 is the scattering angle. The ordering of rows 𝑎𝑏 and columns 𝑎′𝑏′ here is 𝑥𝑥, 𝑥𝑦, 𝑦𝑥, 𝑦𝑦. Note
that up to this point the second of the two polarization indices 𝑎�̄� has been written as a conjugate �̄� (as a
reminder that the diagonal components ++̄ = +− and −−̄ = −+ transform as spin 0, while the off-diagonal
components +−̄ = ++ and −+̄ = −− transform as spin 2), but here the conjugate symbol on the 𝑥, 𝑦 indices
can be dropped because the conjugates of orthonormal vectors are themselves, �̄�𝛾𝑥 = 𝛾𝛾𝑥 and �̄�𝛾𝑦 = 𝛾𝛾𝑦.
The collision integral (33.74) generalizes to

𝐶[Θ𝑎𝑏(𝑝, 𝜒)] =
�̄�𝑒𝑎

16𝜋𝑚2
𝑒

∫︁ [︀
⟨|ℳ|2⟩

]︀𝑎𝑏
𝑎′𝑏′

[︁
(𝑝− 𝑝′) · vvvb −Θ𝑎

′𝑏′(𝑝, 𝜒) + Θ𝑎
′𝑏′(𝑝′, 𝜒′)

]︁ 𝑑𝑜′
4𝜋

𝑑𝜒′

2𝜋
. (35.57)

The baryon bulk velocity vvvb term in the integrand comes from a difference in the unperturbed, unpolarized
photon distribution, the first terms on the right hand side of equation (33.65), so the integral over the baryon
velocity term yields the same result as in the unpolarized case. The term Θ𝑎

′𝑏′(𝑝) is independent of 𝑝′, and can
be taken outside the integral. The collision integral (35.57) thus reduces by the same manipulations (33.75)–



35.10 Polarized Thomson scattering 939

(33.78) as in the unpolarized case to

𝐶[Θ𝑎𝑏(𝑝, 𝜒)] = |𝜏 |
{︂
𝑝 · vvvb 𝛿𝑎𝑏,0 −Θ𝑎𝑏(𝑝, 𝜒) +

∫︁
3

2

[︀
|�̄�′ · 𝑎|2

]︀𝑎𝑏
𝑎′𝑏′

Θ𝑎
′𝑏′(𝑝′, 𝜒′)

𝑑𝑜′

4𝜋

𝑑𝜒′

2𝜋

}︂
, (35.58)

generalizing the unpolarized collision integral (33.78). The Kronecker delta 𝛿𝑎𝑏,0 is to be interpreted as
equal to 1 for the unpolarized collision term 𝐶[Θ], and zero otherwise. In the special frame aligned with the
scattering plane, the integrand on the right hand side of the collision integral (35.58) is, from equation (35.56),

3

2

[︀
|�̄�′ · 𝑎|2

]︀𝑎𝑏
𝑎′𝑏′

Θ𝑎
′𝑏′(𝑝′) =

3

2

⎛⎜⎜⎝
cos2𝜓 0 0 0

0 cos𝜓 0 0

0 0 cos𝜓 0

0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

Θ𝑥𝑥

Θ𝑥𝑦

Θ𝑦𝑥

Θ𝑦𝑦

⎞⎟⎟⎠ . (35.59)

Since Θ𝑎𝑏 is Hermitian, Θ𝑥𝑥 and Θ𝑦𝑦 are real, but Θ𝑥𝑦 may be complex, with Θ𝑥𝑦* = Θ𝑦𝑥. Well before
recombination, frequent collisions drive the photons into thermodynamic equilibrium, so the photon distri-
bution is initially unpolarized, with Θ𝑥𝑥 = Θ𝑦𝑦 and Θ𝑥𝑦 = 0. Equation (35.59) shows that if light incident in
a given direction is initially unpolarized (Θ𝑎𝑏 isotropic, proportional to the unit matrix), then the scattered
light will be polarized (Θ𝑎𝑏 anisotropic). But if Θ𝑥𝑦 is initially real, it remains real after a scattering event.
Since the imaginary part of Θ𝑥𝑦 is associated with circular polarization, Thomson scattering generates linear
polarization, but not circular polarization. The reality of Θ𝑥𝑦 means that Θ𝑥𝑦 = Θ𝑦𝑥, so Θ𝑦𝑥 is redundant,
and may be dropped.
In Newman-Penrose components, the absence of circularly polarized light implies that Θ+− = Θ−+ = Θ,

where Θ is the unpolarized temperature fluctuation. In Newman-Penrose components, equation (35.59)
becomes

3

2

[︀
|𝑎′ · 𝑎|2

]︀𝑎𝑏
𝑎′𝑏′

Θ𝑎
′𝑏′(𝑝′) =

3

4

⎛⎝ 1 + cos2𝜓 − 1
2 sin

2𝜓 − 1
2 sin

2𝜓

− sin2𝜓 1
2 (1 + cos𝜓) 1

2 (1− cos𝜓)

− sin2𝜓 1
2 (1− cos𝜓) 1

2 (1 + cos𝜓)

⎞⎠⎛⎝ Θ

Θ++

Θ−−

⎞⎠

=
3

2

⎛⎜⎜⎜⎝
2
3 𝑑000 +

1
3 𝑑200 −

√︁
1
6 𝑑202 −

√︁
1
6 𝑑20−2

−
√︁

2
3 𝑑220 𝑑222 𝑑22−2

−
√︁

2
3 𝑑2−20 𝑑2−22 𝑑2−2−2

⎞⎟⎟⎟⎠
⎛⎝ Θ

Θ++

Θ−−

⎞⎠ , (35.60)

where the functions 𝑑ℓ𝑚𝑛(𝜓) are the polar part of the Wigner rotation matrix, equation (35.125). The pairs
𝑎𝑏 and 𝑎′𝑏′ of indices in equations (35.60) run over +−, ++, and −−. Equation (35.60) can be written

3

2

[︀
|𝑎′ · 𝑎|2

]︀𝑠′
𝑠 𝑠′Θ = Θ 𝛿𝑠0 +

∑︁
𝑠′

(−𝑖)𝑠
′−𝑠𝑐𝑠𝑠′𝑑2𝑠𝑠′(𝜓) 𝑠′Θ , (35.61)

with 𝑠 running over 0, 2,−2 and 𝑠′ summed over 0, 2,−2. The first term on the right hand side of equa-
tion (35.61) is the unpolarized contribution, while the remainder is the polarized contribution. The coeffi-
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Figure 35.2 Angles between photon momentum 𝑝, scattered photon momentum 𝑝′, and wavevector �̂�.

cients 𝑐𝑠𝑠′ encapsulate the polarization structure of Thomson scattering,

𝑐𝑠𝑠′ =

⎛⎜⎜⎜⎝
1
2

√︁
3
8

√︁
3
8√︁

3
2

3
2

3
2√︁

3
2

3
2

3
2

⎞⎟⎟⎟⎠ . (35.62)

The coefficients depend only on the absolute value of the spins, 𝑐𝑠𝑠′ = 𝑐|𝑠||𝑠′|.
The addition theorem (35.152) allows the rotation matrix 𝑑2𝑠𝑠′(𝜓) from the 𝑝′ frame into the 𝑝 frame to

be written as a product of rotation matrices from the 𝑝′ frame into the �̂� frame into the 𝑝 frame,

3

2

[︀
|𝑎′ · 𝑎|2

]︀𝑠′
𝑠 𝑠′Θ(𝑝′, 𝜒′) = Θ(𝑝′) 𝛿𝑠0 +

∑︁
𝑠′

(−𝑖)𝑠
′−𝑠𝑐𝑠𝑠′ 𝑠′Θ(𝑝′, 𝜒′)

2∑︁
𝑚=−2

𝐷2𝑚𝑠(𝜑, 𝜃, 𝜒)𝐷
*
2𝑚𝑠′(𝜑

′, 𝜃′, 𝜒′) .

(35.63)
Figure 35.2 illustrates the various angles involved in transforming from the scattering frame to a frame where
the wavevector �̂� is along the 𝑧-axis.
When 𝑠′Θ(𝑝′, 𝜒′) in equation (35.63) is expanded in rotation matrices, equation (35.37), the orthogonality

of the rotation matrices, equation (35.143), makes the integration over directions 𝑝′ and 𝜒′ straightforward,
yielding∫︁

3

2

[︀
|𝑎′ · 𝑎|2

]︀𝑠′
𝑠 𝑠′Θ(𝑝′, 𝜒′)

𝑑𝑜′

4𝜋

𝑑𝜒′

2𝜋
= Θ00 𝛿𝑠0 +

2∑︁
𝑚=−2

(−𝑖)2+𝑚−𝑠𝐷2𝑚𝑠(𝜑, 𝜃, 𝜒)
∑︁
𝑠′

𝑐𝑠𝑠′ 𝑠′Θ2𝑚 . (35.64)

Equation (35.64) shows that Thomson scattering changes 𝑠 (generates polarization), but preserves the scalar-
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vector-tensor index 𝑚. The sum over 𝑐𝑠𝑠′ in equation (35.64) is∑︁
𝑠′

𝑐𝑠𝑠′ 𝑠′Θ2𝑚 = 𝑐𝑠0Θ2𝑚 + 2𝑐𝑠2𝐸2𝑚 = 𝑐𝑠0
(︀
Θ2𝑚 +

√
6𝐸2𝑚

)︀
. (35.65)

The collision integral (35.58) is then

𝐶[𝑠Θ(𝑝, 𝜒)] = |𝜏 |

[︃
𝑝 · vvvb 𝛿𝑠0 − 𝑠Θ(𝑝) + Θ00 𝛿𝑠0 + 𝑐𝑠0

2∑︁
𝑚=−2

(−𝑖)2+𝑚−𝑠𝐷2𝑚𝑠(𝜑, 𝜃, 𝜒)
(︀
Θ2𝑚 +

√
6𝐸2𝑚

)︀]︃
.

(35.66)
Expanded in harmonics, the collision integral is

𝐶[𝑠Θ] =

∞∑︁
ℓ=|𝑠|

ℓ∑︁
𝑚=−ℓ

(−𝑖)ℓ+𝑚−𝑠(2ℓ+ 1)𝐶[𝑠Θℓ𝑚]𝐷ℓ𝑚𝑠(𝜑, 𝜃, 𝜒) , (35.67)

with collision terms for the individual harmonics being

𝐶[Θ00] = 0 , (35.68a)

𝐶[Θ1𝑚] = −|𝜏 |
[︁
Θ1𝑚 −

1

3
vb,𝑚

]︁
, (35.68b)

𝐶[Θ2𝑚] = −|𝜏 |
[︁
Θ2𝑚 −

1

10

(︀
Θ2𝑚 +

√
6𝐸2𝑚

)︀]︁
, (35.68c)

𝐶[𝐸2𝑚] = −|𝜏 |
[︁
𝐸2𝑚 −

√
6

10

(︀
Θ2𝑚 +

√
6𝐸2𝑚

)︀]︁
, (35.68d)

𝐶[𝐵2𝑚] = −|𝜏 |𝐵2𝑚 , (35.68e)

𝐶[𝑠Θℓ𝑚] = −|𝜏 | 𝑠Θℓ𝑚 (ℓ ≥ 3) . (35.68f)

Scalar, vector, and tensor modes correspond to those with respectively 𝑚 = 0, ±1, and ±2.

Exercise 35.7. Photon diffusion including polarization. A diffusion approximation for the photon
quadrupole fluctuation Θ2 is obtained by neglecting time derivatives, Θ̇2 = 0, and higher order multipoles,
Θ3 = 0, in the Boltzmann equation for Θ2. Without polarization, this led to the quadrupole (32.67) in the
unpolarized Boltzmann equation (33.81c). Derive the diffusion approximation for the photon quadrupole Θ2

taking into account polarization.
Solution. With polarization, the Boltzmann equations for the quadrupole scalar (ℓ𝑚 = 20) unpolarized
and polarized fluctuations Θ2 and 𝐸2 are coupled to each other by Thomson-scattering collision terms,
equations (35.68c) and (35.68d). The Boltzmann equations are (the 𝑚 = 0 subscript on Θℓ𝑚 and 𝐸ℓ𝑚 is
dropped in accordance with the standard convention)

Θ̇2 +
𝑘

5
(2Θ1 − 3Θ3) = −|𝜏 |

[︁
Θ2 −

1

10

(︀
Θ2 +

√
6𝐸2

)︀]︁
, (35.69a)

�̇�2 −
𝑘√
5
𝐸3 = −|𝜏 |

[︁
𝐸2 −

√
6

10

(︀
Θ2 +

√
6𝐸2

)︀]︁
. (35.69b)
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The diffusion approximation amounts to setting time derivatives to zero, Θ̇2 = �̇�2 = 0, and higher order
multipoles to zero, Θ3 = 𝐸3 = 0, which reduces equations (35.69) to

2𝑘

5
Θ1 = −|𝜏 |

[︁
Θ2 −

1

10

(︀
Θ2 +

√
6𝐸2

)︀]︁
, (35.70a)

0 = −|𝜏 |
[︁
𝐸2 −

√
6

10

(︀
Θ2 +

√
6𝐸2

)︀]︁
. (35.70b)

The equation (35.70b) for 𝐸2 implies that

𝐸2 =

√︂
3

8
Θ2 . (35.71)

Inserting this into the equation (35.70a) for Θ2 implies

Θ2 = − 8𝑘

15|𝜏 |
Θ1 . (35.72)

This looks like the earlier unpolarized estimate (32.67), except that the earlier factor 4
9 is replaced by the

factor 8
15 . The revised diffusion coefficient changes the factor 8

9 to 16
15 in the photon-baryon momentum

conservation equations (32.74)–(32.76).

35.10.1 Truncating the polarized Boltzmann hierarchy

As in the unpolarized case, §33.10.1, photons are tightly coupled to baryons by scattering well before recom-
bination, and stream freely well after recombination.
Prior to recombination, when |𝜏 | is large, keeping only the dominant 𝑠Θℓ𝑚 term in the Boltzmann hierar-

chy (35.45) implies the tight-couipling approximation, generalizing the unpolarized equation (33.83),

𝑠Θℓ𝑚 ≈ −
𝑘𝜅ℓ𝑚𝑠

(2ℓ+ 1)|𝜏 | 𝑠
Θℓ−1,𝑚 (ℓ ≥ 3) , (35.73)

which holds for both unpolarized (𝑠 = 0) and polarized (𝑠 = 2) multipoles.
Conversely, multipoles 𝑠Θℓ𝑚 in the free-streaming limit are obtained, similarly to the unpolarized case

§34.6.1, from solution of the polarized radiative transfer equations (36.14). The radiative transfer equa-
tions (36.14) involve unpolarized and polarized spin spherical Bessel functions 𝑗ℓ𝑚𝑚 and 𝜖ℓ2𝑚 + 𝑖 𝛽ℓ2𝑚 =

𝑗ℓ2𝑚2 = 𝑗ℓ22𝑚. The recurrence (35.162) implies that the unpolarized and polarized spin spherical Bessel
functions satisfy, generalizing equation (34.47),

𝜅ℓ+1,𝑚0

ℓ+𝑚+ 1
𝑗ℓ+1,𝑚𝑚 =

2ℓ+ 1

𝑦
𝑗ℓ𝑚𝑚 −

𝜅ℓ𝑚0

ℓ−𝑚
𝑗ℓ−1,𝑚𝑚 (ℓ > 𝑚 ≥ 0) , (35.74a)

𝜅ℓ+1,𝑚2

ℓ+ 3
𝑗ℓ+1,22𝑚 = (2ℓ+ 1)

[︂
1

𝑦
− 𝑖𝑚

ℓ(ℓ+ 1)

]︂
𝑗ℓ22𝑚 −

𝜅ℓ𝑚2

ℓ− 2
𝑗ℓ−1,22𝑚 (ℓ ≥ 3) . (35.74b)

Corresponding linear combinations of multipoles in the radiative transfer equations (36.14) yield an inte-
gral similar to that on the right hand side of the neutrino equation (34.48); the integral is small in the
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free-streaming limit. The result is the free-streaming approximation for unpolarized and polarized photon
multipoles (note 𝑦 → −𝑘𝜂), generalizing equation (33.84),

𝜅ℓ+1,𝑚0

ℓ+ |𝑚|+ 1
Θℓ+1,𝑚(𝜂,𝑘) ≈ − 2ℓ+ 1

𝑘𝜂
Θℓ𝑚(𝜂,𝑘)− 𝜅ℓ𝑚0

ℓ− |𝑚|
Θℓ−1,𝑚(𝜂,𝑘) , (35.75a)

𝜅ℓ+1,𝑚2

ℓ+ 3
2Θℓ+1,𝑚(𝜂,𝑘) ≈ − (2ℓ+ 1)

[︂
1

𝑘𝜂
+

𝑖𝑚

ℓ(ℓ+ 1)

]︂
2Θℓ𝑚(𝜂,𝑘)− 𝜅ℓ𝑚2

ℓ− 2
2Θℓ−1,𝑚(𝜂,𝑘) . (35.75b)

Normally the Boltzmann equations would be truncated at a suitably large harmonic number ℓ, but if the
equations are truncated at small ℓ (for example, ℓ = 1 for unpolarized scalar fluctuations, 𝑚 = 𝑠 = 0, yields
the hydrodynamic approximation, §32.2), then unpolarized multipoles Θℓ𝑚 with ℓ = |𝑚| and 𝑚 = 0 or ±1
in equations (35.75a) should be replaced by Θ00 → Θ00 +Ψ and Θ1,±1 → Θ1,±1 +

1
3𝑊±.

Approximations similar to the unpolarized free-streaming approximation (35.75a) hold also for neutrino
multipoles 𝒩ℓ𝑚, generalizing the scalar (𝑚 = 0) free-streaming approximation (33.92).

35.11 Initial conditions for vector and tensor fluctuations

Collisions tend to isotropize particle distributions, leaving only the monopole moment ℓ𝑚 = 00 finite. In the
particular case of the dipole, ℓ = 1, the Boltzmann equation (30.11b) contains a redshift term proportional to
(1− 3𝑤)�̇�/𝑎 that drives the velocity to decay as v ∝ 𝑎3𝑤−1. The redshift term drives the velocity of massive
species, 𝑤 = 0, to decay as v ∝ 𝑎−1. The redshift term vanishes for relativistic species, 𝑤 = 1

3 , but drag from
collisions with massive species still causes the velocity of relativistic species to decay. Thanks to collisions,
the vector and tensor fluctuations of all particle species were initially close to zero. Although neutrinos are
presently collisionless, they were collisional prior to neutrino decoupling, and were isotropized at that time.
In the absence of a vector source, the vector Einstein equation (29.50a) forces the vector potential 𝑊𝑎 to

vanish,

𝑊𝑎 = 0 . (35.76)

With no vector gravitational potential, there is no potential to drive vector multipoles of particle species
away from their initial zero values. Thus all vector components of all species should remain essentially zero.
This conclusion applies only to scales where fluctuations are linear: at nonlinear scales, stream-crossing and
collapse generate non-zero vector components (rotations) (Hahn, Angulo, and Abel, 2015). See Exercise 35.9
for more.
In contrast to the vector potential, the tensor gravitational potential ℎ±± in the absence of sources has

a mode that remains constant outside the horizon, equation (29.53). This tensor gravitational potential
drives tensor multipoles of collisionless species such as neutrinos, and also photons after recombination.
Exercise 35.10 explores the initial evolution of tensor multipoles of neutrinos.
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Exercise 35.8. Generic behaviour of scalar, vector, and tensor fluctuations of neutrinos. This
exercise generalizes Exercise 32.7 to the case of vector (𝑚 = ±1) and tensor (𝑚 = ±2) fluctuations of massless
neutrinos. Start with the two lowest non-vanishing Boltzmann equations (35.47), those for𝒩ℓ,±𝑚 with ℓ = |𝑚|
and |𝑚|+1, and eliminate the multipole with ℓ = |𝑚|+2 using the free-streaming approximation (35.75a).
Conclude that, generalizing equation (32.91),(︂

𝑑2

𝑑𝜂2
+

2

𝜂

𝑑

𝑑𝜂
+ 𝑘2

)︂
(𝒩0 − Φ) = −𝑘2(Ψ + Φ) , (35.77a)(︂

𝜕2

𝜕𝜂2
+

4

𝜂

𝜕

𝜕𝜂
+ 𝑘2

)︂
𝒩1,±1 = −𝑘

2

3
𝑊± , (35.77b)(︂

𝜕2

𝜕𝜂2
+

6

𝜂

𝜕

𝜕𝜂
+ 𝑘2

)︂(︂
𝒩2,±2 −

√
2

5
√
3
ℎ±±

)︂
= −
√
2 𝑘2

5
√
3
ℎ±± . (35.77c)

Equations (35.77) are forced, damped wave equations with effective sound speed equal to the speed of light.
Generically, neutrinos are decaying waves in which:
1. Scalar: 𝒩0 − Φ oscillates about −(Ψ + Φ);
2. Vector: 𝒩1,±1 oscillates about − 1

3𝑊±;

3. Tensor: 𝒩2,±2 −
√
2

5
√
3
ℎ±± oscillates about −

√
2

5
√
3
ℎ±±.

These conclusions hold for any relativistic, freely streaming particles, so apply also to photons after recom-
bination.

Exercise 35.9. Initial evolution of vector fluctuations of neutrinos. Show that neutrinos do not
naturally develop vector fluctuations.
Solution. Vector potentials 𝑊± are different from scalar or tensor potentials. Scalar and tensor potentials
Ψ + Φ and ℎ±± can and generically do have non-zero constant initial values well outside the horizon,
𝑘𝜂 ≪ 1. Scalar potentials can have non-zero initial values because they are sourced by non-zero initial scalar
overdensities Θ0 and 𝒩0, equations (33.98). Tensor potentials can have non-zero initial values even if there
are zero initial tensor sources Θ2,±2 and 𝑁2,±2, Exercise 35.10. But vector potentials 𝑊± are constrained by
the Einstein equation (35.52a), which in standard cosmology precludes the development of a non-zero vector
potential from an initially vanishing vector source. In the radiation-dominated regime following neutrino
decoupling, Thomson scattering tends to isotropize radiation, so neutrinos are expected to be the dominant
vector source on the right hand side of the Einstein equation (35.52a). With only neutrinos sourcing 𝑊± in
the Einstein equation (35.52a), the approximate neutrino Boltzmann equation (35.77b) becomes(︂

𝜕2

𝜕𝜂2
+

4

𝜂

𝜕

𝜕𝜂
+ 𝑘2

)︂
𝒩1,±1 = −64𝜋𝐺𝑎2𝜌𝜈

3
𝒩1,±1 = −8𝑓𝜈

𝜂2
𝒩1,±1 , (35.78)

in which the final expression holds in the radiation-dominated regime, where 𝑎 ∝ 𝜂. The 𝑘2 term is negligible
well outside the horizon, 𝑘𝜂 ≪ 1. Equation (35.78) then has solutions that are power laws 𝒩1,±1 ∝ 𝜂𝑞, but
for positive neutrino fraction, 𝑓𝜈 > 0, there are no solutions for which the index 𝑞 has a non-negative real
part. So there are no solutions in which 𝒩1,±1 is initially zero or finite (as opposed to divergent).
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Exercise 35.10. Initial evolution of tensor fluctuations of neutrinos. Derive how tensor (𝑚 = ±2)
neutrino multipoles evolve initially in response to gravitational waves from the early Universe, that is, to
a tensor gravitational potential ℎ±±. This is a generalization of Exercise 33.5, which addressed the initial
evolution of scalar fluctuations of neutrinos.
Solution. The Boltzmann equations for neutrinos are equations (35.47). Prior to neutrino decoupling, col-
lisions drive all tensor multipoles to zero, 𝒩ℓ,±2 = 0. After decoupling, neutrinos stream freely, and the
gravitational tensor potential ℎ±± drives the lowest order tensor multipole, ℓ = 2, away from zero. Lower
order multipoles then drive the higher multipoles, so that the equations reduce to the form �̇�ℓ,±2 ∝ 𝒩ℓ−1,±2.
The Boltzmann hierarchy (35.47) reduces to, with 𝑦 ≡ 𝑘𝜂,

𝑑𝒩2,±2

𝑑𝑦
=

√
2

5
√
3

𝑑ℎ±±
𝑑𝑦

, (35.79a)

𝑑𝒩ℓ,±2
𝑑𝑦

= −𝜅ℓ,±2,0
2ℓ+ 1

𝒩ℓ−1,±2 (ℓ ≥ 3) . (35.79b)

Well outside the horizon, 𝑦 ≪ 1, the gravitational potential ℎ±± is constant, equation (29.53), while all
neutrino multipoles, including the lowest multipole 𝒩2,±2, are zero. With the initial condition 𝒩2,±2(0) = 0,
equation (35.79a) solves to

𝒩2,±2 =

√
2

5
√
3

[︀
ℎ±±(𝑦)− ℎ±±(0)

]︀
. (35.80)

The initial (𝑦 ≪ 1) evolution of the gravitational tensor potential depends on the equation of state 𝑤 of the
background energy-momentum, equation (29.57), and is

ℎ±± ∝ 𝑦𝑛𝐽𝑛(𝑦) ∝ 1− 𝑦2

4(1 + 𝑛)
, (35.81)

with 𝑛 given in terms of 𝑤 by equation (29.58). Therefore the ℓ = 2 neutrino moment evolves initially as
𝒩2,±2 ∝ 𝑦2, from equation (35.80),

𝒩2,±2 ≈ −𝒩 (0)𝑦2 , 𝒩 (0) ≡ ℎ±±(0)

10
√
6 (1 + 𝑛)

. (35.82)

The Boltzmann equations (35.79b) then imply that the initial (𝑦 ≪ 1) behaviour of the neutrino tensor
multipoles in general is

𝒩ℓ,±2 = −
√︂

(ℓ− 2)!(ℓ+ 2)!

4!

2!5!!

ℓ!(2ℓ+ 1)!!
(−𝑦)ℓ𝒩 (0) (ℓ ≥ 2) . (35.83)
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35.12 Appendix: Spin-weighted spherical harmonics

Spherical harmonics 𝑌ℓ𝑚(𝜃, 𝜑) are simultaneous eigenfunctions of the squared total angular momentum op-
erator 𝐿2 and its component 𝐿𝑧 along some direction 𝑧. They arise as eigenfunctions of the wave operator
when separated in spherical coordinates.
Spin contributes to angular momentum. When wave equations for fields of non-zero spin are separated

in a spherically symmetric space, the resulting angular eigenfunctions are the spin-weighted spherical

harmonics, denoted 𝑠𝑌ℓ𝑚(𝜃, 𝜑, 𝜒). The spin-weighted spherical harmonics 𝑠𝑌ℓ𝑚(𝜃, 𝜑, 𝜒) are defined in terms
of the Wigner rotation matrix 𝐷ℓ𝑚𝑛(𝜑, 𝜃, 𝜒) discussed in §35.12.2 by

𝑠𝑌ℓ𝑚(𝜃, 𝜑, 𝜒) ≡
√︂

2ℓ+ 1

4𝜋
𝐷*ℓ,𝑚,−𝑠(𝜑, 𝜃, 𝜒) . (35.84)

The usual spherical harmonics equal the spin-weighted harmonics with zero spin, 𝑌ℓ𝑚 = 0𝑌ℓ𝑚. The reason
for complex conjugation and the sign flip of the spin index 𝑠 on the right hand side of equation (35.84) is
that conventionally 𝑠𝑌ℓ𝑚 ∝ 𝑒𝑖𝑚𝜑−𝑖𝑠𝜒 whereas 𝐷ℓ𝑚𝑠 ∝ 𝑒−𝑖𝑚𝜑−𝑖𝑠𝜒. The convention for the Wigner matrix,
which treats the angles 𝜑 and 𝜒 symmetrically, is more natural than the convention for the spin-weighted
spherical harmonics. In this book the temperature fluctuations 𝑠Θℓ𝑚 are coefficients of an expansion in
Wigner functions 𝐷ℓ𝑚𝑠, equation (35.37), rather than in spin-weighted spherical harmonics.
In the cosmological literature, the spin factor 𝑒−𝑖𝑠𝜒 in the spin harmonics is often omitted, being absorbed

in the case of photons into the behaviour of the polarization density matrix. The spin harmonics with spin
factor suppressed are abbreviated

𝑠𝑌ℓ𝑚(𝜃, 𝜑) ≡ 𝑠𝑌ℓ𝑚(𝜃, 𝜑, 0) . (35.85)

35.12.1 Wigner rotation matrix

The full 3-dimensional rotation group is the orthogonal group O(3), or, when extended to objects of half-
integral spin, its covering group SU(2). The eigenfunctions of O(3) or SU(2) are the elements 𝐷ℓ𝑚′𝑚 of the
Wigner rotation matrix.
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The Wigner rotation matrix 𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) is defined to be the matrix element between harmonics
𝑌ℓ𝑚(𝑛) in one frame and harmonics 𝑌 *ℓ𝑚′(𝑛′) in a frame rotated by Euler angles 𝜒′, 𝜓, 𝜒,∫︁

𝑌 *ℓ′𝑚′(𝑛′)𝑌ℓ𝑚(𝑛) 𝑑𝑜 =

∫︁ ∑︁
𝑚′′

(︀
𝐷ℓ′𝑚′𝑚′′(𝜒′, 𝜓, 𝜒)𝑌ℓ′𝑚′′(𝑛)

)︀*
𝑌ℓ𝑚(𝑛) 𝑑𝑜 = 𝛿ℓ′ℓ𝐷

*
ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) . (35.86)

𝛿ℓ′ℓ𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) ≡
∫︁
𝑌 *ℓ′𝑚′(𝑛)𝐷(𝜒′, 𝜓, 𝜒)𝑌ℓ𝑚(𝑛) 𝑑𝑜 =

∫︁
𝑌 *ℓ′𝑚′(𝑛)

∑︁
𝑚′′

𝐷ℓ𝑚𝑚′′(𝜒′, 𝜓, 𝜒)𝑌ℓ𝑚′′(𝑛) 𝑑𝑜 =

∫︁
𝑌 *ℓ′𝑚′(𝑛)𝑌ℓ𝑚(𝑛′) 𝑑𝑜 .

(35.87)
The quantum numbers ℓ, 𝑚′, and 𝑚 must be either all integral or all half-integral, and ℓ must exceed both
|𝑚′| and |𝑚|,

ℓ ≥ |𝑚′|, |𝑚| . (35.88)

Equivalently, the spherical harmonics in the unrotated and rotated frames are related by

𝑌ℓ𝑚′(𝑛′) ≡ 𝐷(𝜒′, 𝜓, 𝜒)𝑌ℓ𝑚(𝑛) =

ℓ∑︁
𝑚′=−ℓ

𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒)𝑌ℓ𝑚(𝑛) , (35.89a)

𝑌ℓ𝑚(𝑛) =

ℓ∑︁
𝑚′=−ℓ

𝐷†ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒)𝑌ℓ𝑚′(𝑛′) . (35.89b)

Notice that spherical harmonics rotate into linear combinations of harmonics of the same harmonic number
ℓ, which is true because rotation leaves the total angular momentum 𝐿2 unchanged. The Euler angles 𝜒′,
𝜓, 𝜒 in equation (35.122) correspond to a right-handed rotation of the unit vector 𝑛′ by angle 𝜒′ about the
𝑧-axis, followed by a right-handed rotation by angle 𝜓 about the 𝑦-axis, followed by a right-handed rotation
by angle 𝜒 about the 𝑧-axis,⎛⎝ 𝑛𝑥

𝑛𝑦
𝑛𝑧

⎞⎠ =

⎛⎝ cos𝜒 sin𝜒 0

− sin𝜒 cos𝜒 0

0 0 1

⎞⎠⎛⎝ cos𝜓 0 − sin𝜓

0 1 0

sin𝜓 0 cos𝜓

⎞⎠⎛⎝ cos𝜒′ sin𝜒′ 0

− sin𝜒′ cos𝜒′ 0

0 0 1

⎞⎠⎛⎝ 𝑛′𝑥
𝑛′𝑦
𝑛′𝑧

⎞⎠ . (35.90)

The generator of an infinitesimal rotation about an axis 𝑛 is −𝑖𝑛 · 𝐿, and the operator corresponding to a
finite rotation by angle 𝜒 about direction 𝑛 is exp(−𝑖𝜒𝑛 ·𝐿). Thus the operator 𝐷(𝜒′, 𝜓, 𝜒) that generates
a rotation by the 3 Euler angles is

𝐷(𝜒′, 𝜓, 𝜒) = 𝑒−𝑖𝜒𝐿𝑧𝑒−𝑖𝜓𝐿𝑦𝑒−𝑖𝜒
′𝐿𝑧 . (35.91)

The spherical harmonic components of the rotation operator are correspondingly (no sum over 𝑚′, 𝑚)

𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = 𝑒−𝑖𝑚𝜒𝑑ℓ𝑚′𝑚(𝜓)𝑒−𝑖𝑚
′𝜒′

. (35.92)

The matrix 𝑑ℓ𝑚′𝑚(𝜓) is the polar part of the full rotation matrix 𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒). The polar rotation matrix
𝑑ℓ𝑚′𝑚(𝜓) is a real matrix, orthogonal with respect to 𝑚′𝑚, with matrix inverse

𝑑ℓ𝑚′𝑚(𝜓)−1 = 𝑑ℓ𝑚′𝑚(−𝜓) = 𝑑ℓ𝑚𝑚′(𝜓) = 𝑑ℓ,−𝑚′,−𝑚(𝜓) = (−)𝑚
′−𝑚𝑑ℓ𝑚′𝑚(𝜓) . (35.93)
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A parity transformation 𝜓 → 𝜋−𝜓 flips the sign of one of the indices 𝑚′ or 𝑚 and multiplies by (−)ℓ−𝑚 or
(−)ℓ+𝑚′

,

𝑑ℓ𝑚′𝑚(𝜋 − 𝜓) = (−)ℓ−𝑚𝑑ℓ,−𝑚′,𝑚(𝜓) = (−)ℓ+𝑚
′
𝑑ℓ,𝑚′,−𝑚(𝜓) . (35.94)

The matrix inverse of the Wigner rotation matrix is its Hermitian conjugate, its complex conjugate transpose,

𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒)−1 = 𝐷ℓ𝑚′𝑚(−𝜒,−𝜓,−𝜒′) = 𝐷*ℓ𝑚𝑚′(𝜒′, 𝜓, 𝜒) . (35.95)

Complex conjugation flips the signs of 𝑚′ and 𝑚, and multiplies by (−)𝑚′−𝑚,

𝐷*ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = (−)𝑚
′−𝑚𝐷ℓ,−𝑚′,−𝑚(𝜒′, 𝜓, 𝜒) . (35.96)

A parity transformation 𝜓 → 𝜋 − 𝜓, 𝜒′ → 𝜒′+ 𝜋, 𝜒→ −𝜒 flips the sign of 𝑚 and multiplies by (−)ℓ,

𝐷ℓ𝑚′𝑚(𝜒′+ 𝜋, 𝜋 − 𝜓,−𝜒) = (−)ℓ𝐷ℓ,𝑚′,−𝑚(𝜒′, 𝜓, 𝜒) . (35.97)

Particular examples of equation (35.122), illustrating how the signs work out, are

𝑌ℓ𝑚(𝜃, 𝜑) =

ℓ∑︁
𝑚′=−ℓ

𝐷ℓ𝑚′𝑚(𝜒′, 0, 𝜒)𝑌ℓ𝑚′(𝜃, 𝜑+ 𝜒′+ 𝜒) , (35.98a)

𝑌ℓ𝑚(𝜃, 𝜑) =

ℓ∑︁
𝑚′=−ℓ

𝐷ℓ𝑚′𝑚(𝜑′, 𝜓,−𝜑)𝑌ℓ𝑚′(𝜃 + 𝜓, 𝜑′) . (35.98b)

Since 𝑌ℓ𝑚(0, 0) =
√︀
(2ℓ+ 1)/(4𝜋) 𝛿𝑚0, the spherical harmonics 𝑌ℓ𝑚(𝜃, 𝜑) themselves can be expressed in

terms of Wigner rotation matrices,

𝑌ℓ𝑚(𝜃, 𝜑) =

√︂
2ℓ+ 1

4𝜋
𝐷ℓ0𝑚(0,−𝜃,−𝜑) =

√︂
2ℓ+ 1

4𝜋
𝐷*ℓ𝑚0(𝜑, 𝜃, 0) , (35.99)

consistent with equation (35.84).
The explicit form of the Wigner rotation matrix elements 𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) is derived most elegantly from

the Newman-Penrose components 𝐿𝑧, 𝐿± of the total angular momentum operator 𝐿, which are (Newman
and Penrose, 1962; Goldberg et al., 1967; Geroch, Held, and Penrose, 1973)

𝐿𝑧 ≡ −𝑖
𝜕

𝜕𝜒
, 𝐿± ≡

𝑒±𝑖𝜒√
2

(︂
± 𝜕

𝜕𝜓
+ 𝑖

1

sin𝜓

𝜕

𝜕𝜒′
+ 𝑖

cos𝜓

sin𝜓

𝜕

𝜕𝜒

)︂
. (35.100)

A similar set of equations holds for the total angular momentum operator 𝐿′ in the rotated (primed) frame,
with 𝜒′ ↔ 𝜒,

𝐿′𝑧 ≡ −𝑖
𝜕

𝜕𝜒′
, 𝐿′± ≡

𝑒±𝑖𝜒
′

√
2

(︂
± 𝜕

𝜕𝜓
+ 𝑖

cos𝜓

sin𝜓

𝜕

𝜕𝜒′
+ 𝑖

1

sin𝜓

𝜕

𝜕𝜒

)︂
. (35.101)

The Newman-Penrose components 𝐿± are Hermitian conjugates with respect to integration over Euler angles,

𝐿†+ = 𝐿− , (35.102)
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meaning that for any differentiable functions 𝑓(𝜒′, 𝜓, 𝜒) and 𝑔(𝜒′, 𝜓, 𝜒),∫︁ 2𝜋

0

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝑓 (𝐿+𝑔) sin𝜓 𝑑𝜓𝑑𝜒
′𝑑𝜒 =

∫︁ 2𝜋

0

∫︁ 2𝜋

0

∫︁ 𝜋

0

(𝐿−𝑓) 𝑔 sin𝜓 𝑑𝜓𝑑𝜒′𝑑𝜒 , (35.103)

which follows from an integration by parts, the surface term vanishing when the integration is taken over
the full ranges of the Euler angles. The Newman-Penrose components of the angular momentum operator
form a Lie algebra, with commutators

[𝐿+, 𝐿−] = 𝐿𝑧 , [𝐿𝑧, 𝐿±] = ±𝐿± . (35.104)

It follows from the commutation rules (35.137) that the angular momentum operators 𝐿± raise and lower
by one unit the 𝑧-component 𝐿𝑧 of the angular momentum, and similarly the angular momentum operators
𝐿′± raise and lower by one unit the 𝑧-component 𝐿′𝑧 of the angular momentum,

𝐿±𝐷ℓ,𝑚′,−𝑚(𝜒′, 𝜓, 𝜒) =

√︂
(ℓ±𝑚)(ℓ∓𝑚+ 1)

2
𝐷ℓ,𝑚′,−(𝑚±1)(𝜒

′, 𝜓, 𝜒) , (35.105a)

𝐿′±𝐷ℓ,𝑚′,−𝑚(𝜒′, 𝜓, 𝜒) =

√︂
(ℓ±𝑚′)(ℓ∓𝑚′+ 1)

2
𝐷ℓ,𝑚′±1,−𝑚(𝜒′, 𝜓, 𝜒) . (35.105b)

The squared total angular momentum operator is

𝐿2 = 𝐿+𝐿− + 𝐿−𝐿+ + 𝐿2
𝑧

= 𝐿′2 = 𝐿′+𝐿
′
− + 𝐿′−𝐿

′
+ + 𝐿′2𝑧 . (35.106)

The explicit form of the squared total angular momentum operator is

𝐿2 = − 1

sin𝜓

𝜕

𝜕𝜓
sin𝜓

𝜕

𝜕𝜓
+

1

sin2 𝜓

(︀
𝐿′2𝑧 − 2 cos𝜓𝐿′𝑧𝐿𝑧 + 𝐿2

𝑧

)︀
. (35.107)

The Wigner rotation matrix elements 𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) are simultaneous eigenfunctions of the total squared
angular momentum operator 𝐿2 and of the operators 𝐿′𝑧 ≡ −𝑖 𝜕/𝜕𝜒′, and 𝐿𝑧 ≡ −𝑖 𝜕/𝜕𝜒 with eigenvalues
respectively ℓ(ℓ+ 1), −𝑚′, and −𝑚,

𝐿2𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = ℓ(ℓ+ 1)𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) , (35.108a)

𝐿′𝑧𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = −𝑚′𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) , (35.108b)

𝐿𝑧𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = −𝑚𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) . (35.108c)

The polar part 𝑑ℓ𝑚′𝑚(𝜓) satisfies

𝐿2𝑑ℓ𝑚′𝑚(𝜓) = − 1

sin𝜓

𝜕

𝜕𝜓
sin𝜓

𝜕

𝜕𝜓
+

1

sin2 𝜓

(︀
𝑚′2 − 2𝑚′𝑚 cos𝜓 +𝑚2

)︀
𝑑ℓ𝑚′𝑚(𝜓) = ℓ(ℓ+ 1)𝑑ℓ𝑚′𝑚(𝜓) .

(35.109)
The Wigner rotation matrices are orthogonal with respect to integration over Euler angles,∫︁ 2𝜋

0

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝐷*ℓ′𝑚′𝑛′(𝜒′, 𝜓, 𝜒)𝐷ℓ𝑚𝑛(𝜒
′, 𝜓, 𝜒) sin𝜓 𝑑𝜓𝑑𝜒′𝑑𝜒 =

8𝜋2

2ℓ+ 1
𝛿ℓ′ℓ𝛿𝑚′𝑚𝛿𝑛′𝑛 . (35.110)
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The functions 𝐷ℓ𝑚𝑛(𝜒
′, 𝜓, 𝜒) and 𝑑ℓ𝑚𝑛(𝜓) satisfy many recurrence relations. A set of 4 building-block

recurrences connecting 𝐷ℓ𝑚𝑛 to 𝐷ℓ± 1
2 ,𝑚±

1
2 ,𝑛±

1
2
is

𝐷 1
2 ,

𝑝
2 ,

𝑞
2
𝐷ℓ𝑚𝑛 = (35.111)

1

2ℓ+ 1

(︁
𝑝𝑞
√︀
(ℓ− 𝑝𝑚)(ℓ− 𝑞𝑛)𝐷ℓ− 1

2 ,𝑚+ 𝑝
2 ,𝑛+

𝑞
2
+
√︀
(ℓ+ 1 + 𝑝𝑚)(ℓ+ 1 + 𝑞𝑛)𝐷ℓ+ 1

2 ,𝑚+ 𝑝
2 ,𝑛+

𝑞
2

)︁
,

with 𝑝 = ±1 and 𝑞 = ±1. Equation (35.144) remains true with 𝐷 replaced by 𝑑 everywhere. Numerically the
most useful recurrence relation, stable for increasing ℓ, is, a consequence of equation (35.144),

𝜅ℓ+1,𝑚𝑛𝐷ℓ+1,𝑚𝑛 = (2ℓ+ 1)

[︂
cos𝜓 − 𝑚𝑛

ℓ(ℓ+ 1)

]︂
𝐷ℓ𝑚𝑛 − 𝜅ℓ𝑚𝑛𝐷ℓ−1,𝑚𝑛 , (35.112)

with

𝜅ℓ𝑚𝑛 ≡
√︂

(ℓ2 −𝑚2)(ℓ2 − 𝑛2)
ℓ2

, (35.113)

starting from 𝐷ℓ𝑚𝑛(𝜒
′, 𝜓, 𝜒) ≡ 𝑒−𝑖𝑛𝜒𝑑ℓ𝑚𝑛(𝜓)𝑒−𝑖𝑚𝜒

′
with 𝑚 or 𝑛 equal to ℓ, and

(−)ℓ−𝑚𝑑ℓℓ𝑚 = 𝑑ℓ𝑚ℓ =

√︃
(2ℓ)!

(ℓ+𝑚)!(ℓ−𝑚)!
cosℓ+𝑚

(︂
𝜓

2

)︂
sinℓ−𝑚

(︂
𝜓

2

)︂
. (35.114)

Another useful recurrence is

ℓ𝜅ℓ+1,𝑚𝑛𝐷ℓ+1,𝑚𝑛 = (2ℓ+ 1)

[︂
sin𝜓

𝜕

𝜕𝜓
+

𝑚𝑛

ℓ(ℓ+ 1)

]︂
𝐷ℓ𝑚𝑛 + (ℓ+ 1)𝜅ℓ𝑚𝑛𝐷ℓ−1,𝑚𝑛 . (35.115)

Again, equations (35.145) and (35.148) remain true with 𝐷 replaced by 𝑑 everywhere. The rotation matrices
𝐷ℓ𝑚𝑛 for 𝑚 = 𝑛 = 0 reduce to Legendre polynomials,

𝐷ℓ00(𝜒
′, 𝜓, 𝜒) = 𝑑ℓ00(𝜓) = 𝑃ℓ(cos𝜓) , (35.116)

and those for 𝑛 = 0 are proportional to associated Legendre polynomials,

𝐷ℓ𝑚0(𝜒
′, 𝜓, 𝜒) = 𝑑ℓ𝑚0(𝜓)𝑒

−𝑖𝑚𝜒′
=

√︃
(ℓ−𝑚)!

(ℓ+𝑚)!
𝑃𝑚ℓ (cos𝜓)𝑒−𝑖𝑚𝜒

′
. (35.117)

For general ℓ𝑚′𝑚, the rotation matrices 𝐷ℓ𝑚′𝑚 are proportional to Jacobi polynomials,

𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = 𝑑ℓ𝑚′𝑚(𝜓)𝑒−𝑖(𝑚𝜒+𝑚
′𝜒′) (35.118)

=

√︃
(ℓ−𝑚)!(ℓ+𝑚)!

(ℓ−𝑚′)!(ℓ+𝑚′)!
𝑃

(𝑚−𝑚′,𝑚+𝑚′)
ℓ−𝑚 (cos𝜓) cos𝑚+𝑚′

(︂
𝜓

2

)︂
sin𝑚−𝑚

′
(︂
𝜓

2

)︂
𝑒−𝑖(𝑚𝜒+𝑚

′𝜒′) .

The analysis of polarization in §35.10 involves resolving a rotation from 𝑝′ to 𝑝 into the product of a pair
of rotations with respect to a frame in which the 𝑧-axis lies along �̂�. A rotation by angle 𝜓 in the 𝑝′–𝑝 plane
is equivalent to a rotation by Euler angles −𝜒′, −𝜃′, −𝜑′ from the 𝑝′ frame into the �̂� frame, followed by
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a rotation by Euler angles 𝜑, 𝜃, 𝜒 from the �̂� frame into the 𝑝 frame. The various angles are illustrated in
Figure 35.2. The equivalence implies the addition theorem

𝑑ℓ𝑚′𝑚(𝜓) =

ℓ∑︁
𝑛=−ℓ

𝐷ℓ𝑛𝑚(𝜑, 𝜃, 𝜒)𝐷ℓ𝑚′𝑛(−𝜒′,−𝜃′,−𝜑′)

=

ℓ∑︁
𝑛=−ℓ

𝐷ℓ𝑛𝑚(𝜑, 𝜃, 𝜒)𝐷*ℓ𝑛𝑚′(𝜑′, 𝜃′, 𝜒′) . (35.119)

35.12.2 Wigner rotation matrix

The full 3-dimensional rotation group is the orthogonal group O(3), or, when extended to objects of half-
integral spin, its covering group SU(2). The eigenfunctions of O(3) or SU(2) are the elements 𝐷ℓ𝑚′𝑚 of the
Wigner rotation matrix.
The Wigner rotation matrix 𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) is defined to be the matrix element between harmonics

𝑌ℓ𝑚(𝑛) in one frame and harmonics 𝑌 *ℓ𝑚′(𝑛′) in a frame rotated by Euler angles 𝜒′, 𝜓, 𝜒,

𝛿ℓ′ℓ𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) ≡
∫︁
𝑌 *ℓ′𝑚′(𝑛′)𝑌ℓ𝑚(𝑛) 𝑑𝑜 . (35.120)

The quantum numbers ℓ, 𝑚′, and 𝑚 must be either all integral or all half-integral, and ℓ must exceed both
|𝑚′| and |𝑚|,

ℓ ≥ |𝑚′|, |𝑚| . (35.121)

Equivalently, the spherical harmonics in the unrotated and rotated frames are related by

𝑌ℓ𝑚′(𝑛′) =

ℓ∑︁
𝑚=−ℓ

𝐷*ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒)𝑌ℓ𝑚(𝑛) , 𝑌ℓ𝑚(𝑛) =

ℓ∑︁
𝑚=−ℓ

𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒)𝑌ℓ𝑚′(𝑛′) . (35.122)

Notice that spherical harmonics rotate into linear combinations of harmonics of the same harmonic number
ℓ, which is true because rotation leaves the total angular momentum 𝐿2 unchanged. The Euler angles 𝜒′,
𝜓, 𝜒 in equation (35.122) correspond to a right-handed rotation of the unit vector 𝑛 by angle 𝜒 about the
𝑧-axis, followed by a right-handed rotation by angle 𝜓 about the 𝑦-axis, followed by a right-handed rotation
by angle 𝜒′ about the 𝑧′-axis,⎛⎝ 𝑛′𝑥

𝑛′𝑦
𝑛′𝑧

⎞⎠ =

⎛⎝ cos𝜒′ − sin𝜒′ 0

sin𝜒′ cos𝜒′ 0

0 0 1

⎞⎠⎛⎝ cos𝜓 0 − sin𝜓

0 1 0

sin𝜓 0 cos𝜓

⎞⎠⎛⎝ cos𝜒 − sin𝜒 0

sin𝜒 cos𝜒 0

0 0 1

⎞⎠⎛⎝ 𝑛𝑥
𝑛𝑦
𝑛𝑧

⎞⎠ . (35.123)

The generator of an infinitesimal rotation about an axis 𝑛 is −𝑖𝑛 · 𝐿, and the operator corresponding to a
finite rotation by angle 𝜒 about direction 𝑛 is exp(−𝑖𝜒𝑛 ·𝐿). Thus the operator 𝐷(𝜒′, 𝜓, 𝜒) that generates
a rotation by the 3 Euler angles is

𝐷(𝜒′, 𝜓, 𝜒) = 𝑒−𝑖𝜒
′𝐿𝑧𝑒−𝑖𝜓𝐿𝑦𝑒−𝑖𝜒𝐿𝑧 . (35.124)
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The spherical harmonic components of the rotation operator are correspondingly (no sum over 𝑚′, 𝑚)

𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = 𝑒−𝑖𝑚
′𝜒′
𝑑ℓ𝑚′𝑚(𝜓)𝑒−𝑖𝑚𝜒 . (35.125)

The matrix 𝑑ℓ𝑚′𝑚(𝜓) is the polar part of the full rotation matrix 𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒). The polar rotation matrix
𝑑ℓ𝑚′𝑚(𝜓) is a real matrix, orthogonal with respect to 𝑚′𝑚, with matrix inverse

𝑑ℓ𝑚′𝑚(𝜓)−1 = 𝑑ℓ𝑚′𝑚(−𝜓) = 𝑑ℓ𝑚𝑚′(𝜓) = 𝑑ℓ,−𝑚′,−𝑚(𝜓) = (−)𝑚
′−𝑚𝑑ℓ𝑚′𝑚(𝜓) . (35.126)

A parity transformation 𝜓 → 𝜋−𝜓 flips the sign of one of the indices 𝑚′ or 𝑚 and multiplies by (−)ℓ−𝑚 or
(−)ℓ+𝑚′

,

𝑑ℓ𝑚′𝑚(𝜋 − 𝜓) = (−)ℓ−𝑚𝑑ℓ,−𝑚′,𝑚(𝜓) = (−)ℓ+𝑚
′
𝑑ℓ,𝑚′,−𝑚(𝜓) . (35.127)

The matrix inverse of the Wigner rotation matrix is its Hermitian conjugate, its complex conjugate transpose,

𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒)−1 = 𝐷ℓ𝑚′𝑚(−𝜒,−𝜓,−𝜒′) = 𝐷*ℓ𝑚𝑚′(𝜒′, 𝜓, 𝜒) . (35.128)

Complex conjugation flips the signs of 𝑚′ and 𝑚, and multiplies by (−)𝑚′−𝑚,

𝐷*ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = (−)𝑚
′−𝑚𝐷ℓ,−𝑚′,−𝑚(𝜒′, 𝜓, 𝜒) . (35.129)

A parity transformation 𝜓 → 𝜋 − 𝜓, 𝜒′ → 𝜒′+ 𝜋, 𝜒→ −𝜒 flips the sign of 𝑚 and multiplies by (−)ℓ,

𝐷ℓ𝑚′𝑚(𝜒′+ 𝜋, 𝜋 − 𝜓,−𝜒) = (−)ℓ𝐷ℓ,𝑚′,−𝑚(𝜒′, 𝜓, 𝜒) . (35.130)

Particular examples of equation (35.122), illustrating how the signs work out, are

𝑌ℓ𝑚(𝜃, 𝜑) =

ℓ∑︁
𝑚′=−ℓ

𝐷ℓ𝑚′𝑚(𝜒′, 0, 𝜒)𝑌ℓ𝑚′(𝜃, 𝜑+ 𝜒′+ 𝜒) , (35.131a)

𝑌ℓ𝑚(𝜃, 𝜑) =

ℓ∑︁
𝑚′=−ℓ

𝐷ℓ𝑚′𝑚(𝜑′, 𝜓,−𝜑)𝑌ℓ𝑚′(𝜃 + 𝜓, 𝜑′) . (35.131b)

Since 𝑌ℓ𝑚(0, 0) =
√︀
(2ℓ+ 1)/(4𝜋) 𝛿𝑚0, the spherical harmonics 𝑌ℓ𝑚(𝜃, 𝜑) themselves can be expressed in

terms of Wigner rotation matrices,

𝑌ℓ𝑚(𝜃, 𝜑) =

√︂
2ℓ+ 1

4𝜋
𝐷ℓ0𝑚(0,−𝜃,−𝜑) =

√︂
2ℓ+ 1

4𝜋
𝐷*ℓ𝑚0(𝜑, 𝜃, 0) , (35.132)

consistent with equation (35.84).
The explicit form of the Wigner rotation matrix elements 𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) is derived most elegantly from

the Newman-Penrose components 𝐿𝑧, 𝐿± of the total angular momentum operator 𝐿, which are (Newman
and Penrose, 1962; Goldberg et al., 1967; Geroch, Held, and Penrose, 1973)

𝐿𝑧 ≡ −𝑖
𝜕

𝜕𝜒
, 𝐿± ≡

𝑒±𝑖𝜒√
2

(︂
± 𝜕

𝜕𝜓
+ 𝑖

1

sin𝜓

𝜕

𝜕𝜒′
+ 𝑖

cos𝜓

sin𝜓

𝜕

𝜕𝜒

)︂
. (35.133)
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A similar set of equations holds for the total angular momentum operator 𝐿′ in the rotated (primed) frame,
with 𝜒′ ↔ 𝜒,

𝐿′𝑧 ≡ −𝑖
𝜕

𝜕𝜒′
, 𝐿′± ≡

𝑒±𝑖𝜒
′

√
2

(︂
± 𝜕

𝜕𝜓
+ 𝑖

cos𝜓

sin𝜓

𝜕

𝜕𝜒′
+ 𝑖

1

sin𝜓

𝜕

𝜕𝜒

)︂
. (35.134)

The Newman-Penrose components 𝐿± are Hermitian conjugates with respect to integration over Euler angles,

𝐿†+ = 𝐿− , (35.135)

meaning that for any differentiable functions 𝑓(𝜒′, 𝜓, 𝜒) and 𝑔(𝜒′, 𝜓, 𝜒),∫︁ 2𝜋

0

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝑓 (𝐿+𝑔) sin𝜓 𝑑𝜓𝑑𝜒
′𝑑𝜒 =

∫︁ 2𝜋

0

∫︁ 2𝜋

0

∫︁ 𝜋

0

(𝐿−𝑓) 𝑔 sin𝜓 𝑑𝜓𝑑𝜒′𝑑𝜒 , (35.136)

which follows from an integration by parts, the surface term vanishing when the integration is taken over
the full ranges of the Euler angles. The Newman-Penrose components of the angular momentum operator
form a Lie algebra, with commutators

[𝐿+, 𝐿−] = 𝐿𝑧 , [𝐿𝑧, 𝐿±] = ±𝐿± . (35.137)

It follows from the commutation rules (35.137) that the angular momentum operators 𝐿± raise and lower
by one unit the 𝑧-component 𝐿𝑧 of the angular momentum, and similarly the angular momentum operators
𝐿′± raise and lower by one unit the 𝑧-component 𝐿′𝑧 of the angular momentum,

𝐿±𝐷ℓ,𝑚′,−𝑚(𝜒′, 𝜓, 𝜒) =

√︂
(ℓ±𝑚)(ℓ∓𝑚+ 1)

2
𝐷ℓ,𝑚′,−(𝑚±1)(𝜒

′, 𝜓, 𝜒) , (35.138a)

𝐿′±𝐷ℓ,𝑚′,−𝑚(𝜒′, 𝜓, 𝜒) =

√︂
(ℓ±𝑚′)(ℓ∓𝑚′+ 1)

2
𝐷ℓ,𝑚′±1,−𝑚(𝜒′, 𝜓, 𝜒) . (35.138b)

The squared total angular momentum operator is

𝐿2 = 𝐿+𝐿− + 𝐿−𝐿+ + 𝐿2
𝑧

= 𝐿′2 = 𝐿′+𝐿
′
− + 𝐿′−𝐿

′
+ + 𝐿′2𝑧 . (35.139)

The explicit form of the squared total angular momentum operator is

𝐿2 = − 1

sin𝜓

𝜕

𝜕𝜓
sin𝜓

𝜕

𝜕𝜓
+

1

sin2 𝜓

(︀
𝐿′2𝑧 − 2 cos𝜓𝐿′𝑧𝐿𝑧 + 𝐿2

𝑧

)︀
. (35.140)

The Wigner rotation matrix elements 𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) are simultaneous eigenfunctions of the total squared
angular momentum operator 𝐿2 and of the operators 𝐿′𝑧 ≡ −𝑖 𝜕/𝜕𝜒′, and 𝐿𝑧 ≡ −𝑖 𝜕/𝜕𝜒 with eigenvalues
respectively ℓ(ℓ+ 1), −𝑚′, and −𝑚,

𝐿2𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = ℓ(ℓ+ 1)𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) , (35.141a)

𝐿′𝑧𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = −𝑚′𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) , (35.141b)

𝐿𝑧𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = −𝑚𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) . (35.141c)
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The polar part 𝑑ℓ𝑚′𝑚(𝜓) satisfies

𝐿2𝑑ℓ𝑚′𝑚(𝜓) = − 1

sin𝜓

𝜕

𝜕𝜓
sin𝜓

𝜕

𝜕𝜓
+

1

sin2 𝜓

(︀
𝑚′2 − 2𝑚′𝑚 cos𝜓 +𝑚2

)︀
𝑑ℓ𝑚′𝑚(𝜓) = ℓ(ℓ+ 1)𝑑ℓ𝑚′𝑚(𝜓) .

(35.142)
The Wigner rotation matrices are orthogonal with respect to integration over Euler angles,∫︁ 2𝜋

0

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝐷*ℓ′𝑚′𝑛′(𝜒′, 𝜓, 𝜒)𝐷ℓ𝑚𝑛(𝜒
′, 𝜓, 𝜒) sin𝜓 𝑑𝜓𝑑𝜒′𝑑𝜒 =

8𝜋2

2ℓ+ 1
𝛿ℓ′ℓ𝛿𝑚′𝑚𝛿𝑛′𝑛 . (35.143)

The functions 𝐷ℓ𝑚𝑛(𝜒
′, 𝜓, 𝜒) and 𝑑ℓ𝑚𝑛(𝜓) satisfy many recurrence relations. A set of 4 building-block

recurrences connecting 𝐷ℓ𝑚𝑛 to 𝐷ℓ± 1
2 ,𝑚±

1
2 ,𝑛±

1
2
is

𝐷 1
2 ,

𝑝
2 ,

𝑞
2
𝐷ℓ𝑚𝑛 = (35.144)

1

2ℓ+ 1

(︁
𝑝𝑞
√︀
(ℓ− 𝑝𝑚)(ℓ− 𝑞𝑛)𝐷ℓ− 1

2 ,𝑚+ 𝑝
2 ,𝑛+

𝑞
2
+
√︀
(ℓ+ 1 + 𝑝𝑚)(ℓ+ 1 + 𝑞𝑛)𝐷ℓ+ 1

2 ,𝑚+ 𝑝
2 ,𝑛+

𝑞
2

)︁
,

with 𝑝 = ±1 and 𝑞 = ±1. Equation (35.144) remains true with 𝐷 replaced by 𝑑 everywhere. Numerically the
most useful recurrence relation, stable for increasing ℓ, is, a consequence of equation (35.144),

𝜅ℓ+1,𝑚𝑛𝐷ℓ+1,𝑚𝑛 = (2ℓ+ 1)

[︂
cos𝜓 − 𝑚𝑛

ℓ(ℓ+ 1)

]︂
𝐷ℓ𝑚𝑛 − 𝜅ℓ𝑚𝑛𝐷ℓ−1,𝑚𝑛 , (35.145)

with

𝜅ℓ𝑚𝑛 ≡
√︂

(ℓ2 −𝑚2)(ℓ2 − 𝑛2)
ℓ2

, (35.146)

starting from 𝐷ℓ𝑚𝑛(𝜒
′, 𝜓, 𝜒) ≡ 𝑒−𝑖𝑛𝜒𝑑ℓ𝑚𝑛(𝜓)𝑒−𝑖𝑚𝜒

′
with 𝑚 or 𝑛 equal to ℓ, and

(−)ℓ−𝑚𝑑ℓℓ𝑚 = 𝑑ℓ𝑚ℓ =

√︃
(2ℓ)!

(ℓ+𝑚)!(ℓ−𝑚)!
cosℓ+𝑚

(︂
𝜓

2

)︂
sinℓ−𝑚

(︂
𝜓

2

)︂
. (35.147)

Another useful recurrence is

ℓ𝜅ℓ+1,𝑚𝑛𝐷ℓ+1,𝑚𝑛 = (2ℓ+ 1)

[︂
sin𝜓

𝜕

𝜕𝜓
+

𝑚𝑛

ℓ(ℓ+ 1)

]︂
𝐷ℓ𝑚𝑛 + (ℓ+ 1)𝜅ℓ𝑚𝑛𝐷ℓ−1,𝑚𝑛 . (35.148)

Again, equations (35.145) and (35.148) remain true with 𝐷 replaced by 𝑑 everywhere. The rotation matrices
𝐷ℓ𝑚𝑛 for 𝑚 = 𝑛 = 0 reduce to Legendre polynomials,

𝐷ℓ00(𝜒
′, 𝜓, 𝜒) = 𝑑ℓ00(𝜓) = 𝑃ℓ(cos𝜓) , (35.149)

and those for 𝑛 = 0 are proportional to associated Legendre polynomials,

𝐷ℓ𝑚0(𝜒
′, 𝜓, 𝜒) = 𝑑ℓ𝑚0(𝜓)𝑒

−𝑖𝑚𝜒′
=

√︃
(ℓ−𝑚)!

(ℓ+𝑚)!
𝑃𝑚ℓ (cos𝜓)𝑒−𝑖𝑚𝜒

′
. (35.150)
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For general ℓ𝑚′𝑚, the rotation matrices 𝐷ℓ𝑚′𝑚 are proportional to Jacobi polynomials,

𝐷ℓ𝑚′𝑚(𝜒′, 𝜓, 𝜒) = 𝑑ℓ𝑚′𝑚(𝜓)𝑒−𝑖(𝑚
′𝜒′+𝑚𝜒) (35.151)

=

√︃
(ℓ−𝑚)!(ℓ+𝑚)!

(ℓ−𝑚′)!(ℓ+𝑚′)!
𝑃

(𝑚−𝑚′,𝑚+𝑚′)
ℓ−𝑚 (cos𝜓) cos𝑚+𝑚′

(︂
𝜓

2

)︂
sin𝑚−𝑚

′
(︂
𝜓

2

)︂
𝑒−𝑖(𝑚

′𝜒′+𝑚𝜒) .

The analysis of polarization in §35.10 involves resolving a rotation from 𝑝′ to 𝑝 into the product of a pair
of rotations with respect to a frame in which the 𝑧-axis lies along �̂�. A rotation by angle 𝜓 in the 𝑝′–𝑝 plane
is equivalent to a rotation by Euler angles −𝜒′, −𝜃′, −𝜑′ from the 𝑝′ frame into the �̂� frame, followed by
a rotation by Euler angles 𝜑, 𝜃, 𝜒 from the �̂� frame into the 𝑝 frame. The various angles are illustrated in
Figure 35.2. The equivalence implies the addition theorem FIX: WRONG?

𝑑ℓ𝑚′𝑚(𝜓) =

ℓ∑︁
𝑛=−ℓ

𝐷ℓ𝑛𝑚(𝜑, 𝜃, 𝜒)𝐷ℓ𝑚′𝑛(−𝜒′,−𝜃′,−𝜑′)

=

ℓ∑︁
𝑛=−ℓ

𝐷ℓ𝑛𝑚(𝜑, 𝜃, 𝜒)𝐷*ℓ𝑛𝑚′(𝜑′, 𝜃′, 𝜒′) , (35.152)

in which

cos𝜓 = cos 𝜃 cos 𝜃′ + cos(𝜑− 𝜑′) sin 𝜃 sin 𝜃′ . (35.153)

Rotation by Euler angles 𝜑, 𝜃, 𝜒 followed by a rotation by Euler angles 𝜑′, 𝜃′, 𝜒′, is equivalent to a rotation
by Euler angles Φ,Θ,X

ℓ∑︁
𝑛=−ℓ

𝐷ℓ𝑛𝑚′(𝜑′, 𝜃′, 𝜒′)𝐷ℓ𝑚𝑛(𝜑, 𝜃, 𝜒) = 𝐷ℓ𝑚𝑚′(Φ,Θ,X) , (35.154)

where.

35.12.3 Spin-weighted spherical Bessel functions

Spin-weighted spherical Bessel functions 𝑗ℓ𝑛𝑚𝑠(𝑦), with ℓ, 𝑛 ≥ max(|𝑚|, |𝑠|), are defined by equation (36.8).
The defining equation (36.8) along with the orthogonality relations of the Wigner matrices equation (35.143),
imply that

𝑗ℓ𝑛𝑚𝑠(𝑦) = 𝑖ℓ−𝑛
∫︁ 𝜋

0

𝑒−𝑖𝑦 cos 𝜃𝑑ℓ𝑚𝑠(𝜃)𝑑𝑛𝑚𝑠(𝜃)
sin 𝜃 𝑑𝜃

2
. (35.155)

Equation (35.155) implies that the spin spherical Bessel functions 𝑗ℓ𝑛𝑚𝑠 are symmetric or antisymmetric in
their first two indices ℓ𝑛 as their difference ℓ− 𝑛 is even or odd,

𝑗ℓ𝑛𝑚𝑠(𝑦) = (−)ℓ−𝑛𝑗𝑛ℓ𝑚𝑠(𝑦) . (35.156)
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Equation (35.155) also implies that 𝑗ℓ𝑛𝑚𝑠 are symmetric in their last two indices 𝑚𝑠, because 𝑑ℓ𝑚𝑠(𝜃) =

𝑑ℓ𝑠𝑚(−𝜃), equation (35.126),

𝑗ℓ𝑛𝑚𝑠 = 𝑗ℓ𝑛𝑠𝑚 . (35.157)

Equation (35.130) implies that a parity flip transforms 𝑑ℓ𝑚𝑠(𝜋 − 𝜃) = (−)ℓ𝑑ℓ𝑚,−𝑠(𝜃); since a parity flip also
flips the sign of cos 𝜃, the net result is that complex conjugation of 𝑗ℓ𝑛𝑚𝑠 given by equation (35.155) flips the
sign of 𝑚 or 𝑠,

𝑗*ℓ𝑛𝑚𝑠 = 𝑗ℓ𝑛,−𝑚,𝑠 = 𝑗ℓ𝑛,𝑚,−𝑠 . (35.158)

Application of the operator (−𝑖) 1
2 (1+𝑝−𝑞)𝐷 1

2 ,
𝑝
2 ,

𝑞
2
with 𝑝 = ±1 and 𝑞 = ±1 to both sides of the defining

equation (36.8) for 𝑗ℓ𝑛𝑚𝑠 implies, from the recurrence (35.144),

1

2𝑛+ 1

[︁√︀
(𝑛+ 1 + 𝑝𝑚)(𝑛+ 1 + 𝑞𝑠) 𝑗ℓ+ 1

2 ,𝑛+
1
2 ,𝑚+ 𝑝

2 ,𝑠+
𝑞
2
− 𝑖𝑝𝑞

√︀
(𝑛− 𝑝𝑚)(𝑛− 𝑞𝑠) 𝑗ℓ+ 1

2 ,𝑛−
1
2 ,𝑚+ 𝑝

2 ,𝑠+
𝑞
2

]︁
=

1

2𝑙 + 2

[︁√︀
(ℓ+ 1 + 𝑝𝑚)(ℓ+ 1 + 𝑞𝑠) 𝑗ℓ𝑛𝑚𝑠 − 𝑖𝑝𝑞

√︀
(ℓ+ 1− 𝑝𝑚)(ℓ+ 1− 𝑞𝑠) 𝑗ℓ+1,𝑛𝑚𝑠

]︁
. (35.159)

For 𝑚 = 𝑛 and 𝑝 = 1, the recurrence (35.159) simplifies to√︂
𝑛+ 1 + 𝑞𝑠

2𝑛+ 1
𝑗ℓ+ 1

2 ,𝑛+
1
2 ,𝑛+

1
2 ,𝑠+

𝑞
2

=
1

2ℓ+ 2

[︁√︀
(ℓ+ 1 + 𝑛)(ℓ+ 1 + 𝑞𝑠) 𝑗ℓ𝑛𝑛𝑠 − 𝑖𝑞

√︀
(ℓ+ 1− 𝑛)(ℓ+ 1− 𝑞𝑠) 𝑗ℓ+1,𝑛𝑛𝑠

]︁
. (35.160)

From the recurrence (35.160) it can be shown by induction that 𝑗ℓ𝑛𝑚,±𝑠(𝑦) with 𝑚 = 𝑛 and integral ℓ ≥ 𝑛 ≥
𝑠 ≥ 0 is

𝑗ℓ𝑛𝑛,±𝑠(𝑦) =

√︃
(2𝑛)!

(𝑛+ 𝑠)!(𝑛− 𝑠)!

√︃
(ℓ+ 𝑛)!(ℓ− 𝑠)!
(ℓ− 𝑛)!(ℓ+ 𝑠)!

1

(2𝑦)𝑛

(︂
𝜕

𝜕𝑦
∓ 𝑖
)︂𝑠[︀

𝑦𝑠𝑗ℓ(𝑦)
]︀
. (35.161)

The 𝑗ℓ𝑛𝑚𝑠(𝑦) with 𝑚 = 𝑛 satisfy the recurrence

𝜅ℓ+1,𝑛𝑠

ℓ+ 𝑛+ 1
𝑗ℓ+1,𝑛𝑛𝑠 = (2ℓ+ 1)

[︂
1

𝑦
− 𝑖𝑠

ℓ(ℓ+ 1)

]︂
𝑗ℓ𝑛𝑛𝑠 −

𝜅ℓ𝑛𝑠
ℓ− 𝑛

𝑗ℓ−1,𝑛𝑛𝑠 , (35.162)

with 𝜅ℓ𝑛𝑠 defined by equation (35.146). Applying 𝜕/𝜕𝑦 to either side of the defining relation (36.8), and
using the recurrence relation (35.145), implies the recurrence

𝜅𝑛+1,𝑚𝑠 𝑗ℓ,𝑛+1,𝑚𝑠 = (2𝑛+ 1)

[︂
𝜕

𝜕𝑦
+

𝑖𝑚𝑠

𝑛(𝑛+ 1)

]︂
𝑗ℓ𝑛𝑚𝑠 + 𝜅𝑛𝑚𝑠 𝑗ℓ,𝑛−1,𝑚𝑠 , (35.163)

which yields 𝑗ℓ𝑛𝑚𝑠(𝑦) in general. The recurrence (35.163) of 𝑗ℓ𝑛𝑚𝑠 with respect to 𝑛, along with the symme-
try (35.156) of 𝑗ℓ𝑛𝑚𝑠 in ℓ𝑛, implies a similar recurrence of 𝑗ℓ𝑛𝑚𝑠 with respect to ℓ,

𝜅ℓ+1,𝑚𝑠 𝑗ℓ+1,𝑛𝑚𝑠 = − (2ℓ+ 1)

[︂
𝜕

𝜕𝑦
+

𝑖𝑚𝑠

ℓ(ℓ+ 1)

]︂
𝑗ℓ𝑛𝑚𝑠 + 𝜅ℓ𝑚𝑠 𝑗ℓ−1,𝑛𝑚𝑠 . (35.164)



36

Polarization of the Cosmic Microwave
Background

36.1 Radiative transfer of the polarized CMB

The Boltzmann, or radiative transfer, equation for unpolarized photons was given previously by equa-
tion (34.1). For the polarized photon distribution, the radiative transfer equations are(︂

𝜕

𝜕𝜂
− 𝑖𝑘𝜇− 𝜏

)︂
(Θ + Ψ+ 𝑝 ·𝑊 ) = 𝐼 − 𝜏 𝑆 , (36.1a)(︂
𝜕

𝜕𝜂
− 𝑖𝑘𝜇− 𝜏

)︂
2Θ = −𝜏 2𝑆 . (36.1b)

The 𝐼 in the unpolarized radiative transfer equation (36.1a) is the ISW contribution, a sum of harmonics

𝐼(𝜂,𝑘,𝑝) ≡ Ψ̇ + Φ̇ + 𝑝 · �̇� + 𝑝𝑎𝑝𝑏ℎ̇𝑎𝑏 =

2∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

(−)𝑛−𝑚𝐼𝑛𝑚(𝜂,𝑘)𝐷𝑛𝑚0(𝜑, 𝜃) , (36.2)

with

𝐼00 ≡ Ψ̇ + Φ̇ , (36.3a)

𝐼1,±1 ≡ �̇�± , (36.3b)

𝐼2,±2 ≡
√︁

2
3 ℎ̇±± . (36.3c)

The 𝑠𝑆 in equations (36.1) are Thomson-scattering source terms,

𝑆(𝜂,𝑘,𝑝) = Ψ + 𝑝 ·𝑊 + 𝑝 · vvv𝑏 +Θ00 +
1

2

2∑︁
𝑚=−2

(−𝑖)2+𝑚
(︀
Θ2𝑚 +

√
6𝐸2𝑚

)︀
𝐷2𝑚0 , (36.4a)

2𝑆(𝜂,𝑘,𝑝, 𝜒) =

√︂
3

2

2∑︁
𝑚=−2

(−𝑖)2+𝑚−2
(︀
Θ2𝑚 +

√
6𝐸2𝑚

)︀
𝐷2𝑚2 . (36.4b)
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The harmonic components 𝑠𝑆𝑛𝑚 of 𝑠𝑆 defined by

𝑠𝑆(𝜂,𝑘,𝑝, 𝜒) =

2∑︁
𝑛=|𝑠|

𝑛∑︁
𝑚=−𝑛

(−𝑖)𝑛+𝑚−𝑠𝑠𝑆𝑛𝑚(𝜂,𝑘)𝐷𝑛𝑚𝑠(𝜑, 𝜃, 𝜒) (36.5)

are, generalizing equations (34.4),

𝑆00 ≡ Θ00 +Ψ , (36.6a)

𝑆10 ≡ vb , (36.6b)

𝑆1,±1 ≡ vb,± +𝑊± , (36.6c)

𝑆2𝑚 ≡
1

2

(︀
Θ2𝑚 +

√
6𝐸2𝑚

)︀
(−2 ≤ 𝑚 ≤ 2) , (36.6d)

2𝑆2𝑚 ≡
√︂

3

2

(︀
Θ2𝑚 +

√
6𝐸2𝑚

)︀
(−2 ≤ 𝑚 ≤ 2) . (36.6e)

The solution of the radiative transfer equations (36.1) is, generalizing the unpolarized solution (34.6),

Θ(𝜂0,𝑘,𝑝) + Ψ(𝜂0,𝑘) + 𝑝 ·𝑊 (𝜂0,𝑘) =

∫︁ 𝜂0

0

[︀
𝑒−𝜏𝐼(𝜂,𝑘) + 𝑔(𝜂)𝑆(𝜂,𝑘)

]︀
𝑒−𝑖𝑘𝜇(𝜂−𝜂0) 𝑑𝜂 , (36.7a)

2Θ(𝜂0,𝑘,𝑝, 𝜒) =

∫︁ 𝜂0

0

𝑔(𝜂) 2𝑆(𝜂,𝑘) 𝑒
−𝑖𝑘𝜇(𝜂−𝜂0) 𝑑𝜂 , (36.7b)

where 𝑔(𝜂) is the visibility function, equation (34.7).

36.2 Harmonics of the polarized CMB photon distribution

The spherical harmonics of the solution (36.7) can be found, as previously, by expanding the exponential
𝑒−𝑖𝑦𝜇 in spherical Bessel functions, equation (34.10). Spin-weighted spherical Bessel functions 𝑗ℓ𝑛𝑚𝑠(𝑦) with
ℓ, 𝑛 ≥ max(|𝑚|, |𝑠|) can be defined by a generalization of equation (34.11),

(−𝑖)𝑛+𝑚−𝑠𝐷𝑛𝑚𝑠(𝜑, 𝜃, 𝜒)𝑒
−𝑖𝑦 cos 𝜃 =

∞∑︁
ℓ=max(|𝑚|,|𝑠|)

(−𝑖)ℓ+𝑚−𝑠(2ℓ+ 1)𝐷ℓ𝑚𝑠(𝜑, 𝜃, 𝜒) 𝑗ℓ𝑛𝑚𝑠(𝑦) . (36.8)

The spin index is dropped for brevity from the spin 0 modified Bessel functions, 𝑗ℓ𝑛𝑚0(𝑦) = 𝑗ℓ𝑛𝑚(𝑦). Prop-
erties of the spin-weighted spherical Bessel functions are addressed in Appendix 35.12.3. The spin-weighted
spherical Bessel functions are symmetric or antisymmetric in their first two indices ℓ𝑛, equation (35.156), and
symmetric in their last two indices 𝑚𝑠, equation (35.157), and flipping the sign of either 𝑚 or 𝑠 tranforms
them to their complex conjugates, equation (35.158),

𝑗ℓ𝑛𝑚𝑠 = (−)ℓ−𝑛𝑗𝑛ℓ𝑚𝑠 , 𝑗ℓ𝑛𝑚𝑠 = 𝑗ℓ𝑛𝑠𝑚 , 𝑗*ℓ𝑛𝑚𝑠 = 𝑗ℓ𝑛,−𝑚,𝑠 = 𝑗ℓ𝑛,𝑚,−𝑠 . (36.9)

In particular, the spin zero functions 𝑗ℓ𝑛𝑚 are real, and all scalar (𝑚 = 0) components 𝑗ℓ𝑛0𝑠 are real. The
real (electric) and imaginary (magnetic) parts of 𝑗ℓ𝑛𝑚𝑠 are conveniently denoted by the real functions 𝑠𝜖ℓ𝑛𝑚
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and 𝑠𝛽ℓ𝑛𝑚 defined by

𝑗ℓ𝑛𝑚,±𝑠 = 𝑠𝜖ℓ𝑛𝑚 ± 𝑖 𝑠𝛽ℓ𝑛𝑚 . (36.10)

The spin zero magnetic part vanishes, 0𝛽ℓ𝑛𝑚 = 0. The only other spin relevant is 𝑠 = ±2, so the spin index
is dropped for brevity on the spin two electric and magnetic components,

𝑗ℓ𝑛𝑚,±2 = 𝜖ℓ𝑛𝑚 ± 𝑖 𝛽ℓ𝑛𝑚 . (36.11)

Under 𝑚→ −𝑚, the electric components are unchanged, while the magnetic components change sign,

𝑗ℓ𝑛,−𝑚 = 𝑗ℓ𝑛𝑚 , 𝜖ℓ𝑛,−𝑚 = 𝜖ℓ𝑛𝑚 , 𝛽ℓ𝑛,−𝑚 = −𝛽ℓ𝑛𝑚 . (36.12)

In all, the spin spherical Bessel functions of relevance are, from equation (35.161) for 𝑗ℓ𝑛𝑚𝑠 with 𝑛 = 𝑚,
and the recurrence (35.163) for 𝑛 > 𝑚,

𝑗ℓ00 = 𝑗ℓ , 𝑗ℓ10 =
𝑑𝑗ℓ
𝑑𝑦

, 𝑗ℓ20 =
1

2

(︂
1 + 3

𝑑2

𝑑𝑦2

)︂
𝑗ℓ , (36.13a)

𝑗ℓ11 =

√︂
ℓ(ℓ+ 1)

2

𝑗ℓ
𝑦
, 𝑗ℓ21 =

√︂
3ℓ(ℓ+ 1)

2

𝑑(𝑗ℓ/𝑦)

𝑑𝑦
, (36.13b)

𝑗ℓ22 =

√︃
3(ℓ+ 2)!

8(ℓ− 2)!

𝑗ℓ
𝑦2

, (36.13c)

𝜖ℓ20 =

√︃
3(ℓ+ 2)!

8(ℓ− 2)!

𝑗ℓ
𝑦2

, 𝜖ℓ21 =

√︀
(ℓ− 1)(ℓ+ 2)

2

1

𝑦2
𝑑(𝑦 𝑗ℓ)

𝑑𝑦
, 𝜖ℓ22 =

1

4𝑦2

(︂
𝑑2

𝑑𝑦2
− 1

)︂
(𝑦2𝑗ℓ) , (36.13d)

𝛽ℓ20 = 0 , 𝛽ℓ21 = −
√︀

(ℓ− 1)(ℓ+ 2)

2

𝑗ℓ
𝑦
, 𝛽ℓ22 = − 1

2𝑦2
𝑑(𝑦2𝑗ℓ)

𝑑𝑦
. (36.13e)

Expanding the solution (36.7) in spherical harmonics using equation (36.8) yields the harmonics of the
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CMB photon distribution today including polarization, generalizing equation (34.17),

Θℓ0(𝜂0,𝑘) + 𝛿ℓ0Ψ(𝜂0,𝑘) =

∫︁ 𝜂0

0

𝑒−𝜏
[︁
Ψ̇(𝜂0,𝑘) + Φ̇(𝜂0,𝑘)

]︁
𝑗ℓ00 [𝑘(𝜂 − 𝜂0)]

+ 𝑔(𝜂)

2∑︁
𝑛=0

𝑆𝑛0(𝜂,𝑘) 𝑗ℓ𝑛0 [𝑘(𝜂 − 𝜂0)] 𝑑𝜂 , (36.14a)

Θℓ,±1(𝜂0,𝑘) +
1
3𝛿ℓ1𝑊±(𝜂0,𝑘) =

∫︁ 𝜂0

0

𝑒−𝜏�̇�±(𝜂0,𝑘) 𝑗ℓ11 [𝑘(𝜂 − 𝜂0)]

+ 𝑔(𝜂)

2∑︁
𝑛=1

𝑆𝑛,±1(𝜂,𝑘) 𝑗ℓ𝑛1 [𝑘(𝜂 − 𝜂0)] 𝑑𝜂 , (36.14b)

Θℓ,±2(𝜂0,𝑘) =

∫︁ 𝜂0

0

𝑒−𝜏
√︁

2
3 ℎ̇±±(𝜂0,𝑘) 𝑗ℓ22 [𝑘(𝜂 − 𝜂0)]

+ 𝑔(𝜂)𝑆2,±2(𝜂,𝑘) 𝑗ℓ22 [𝑘(𝜂 − 𝜂0)] 𝑑𝜂 , (36.14c)

𝐸ℓ𝑚(𝜂0,𝑘) =

∫︁ 𝜂0

0

𝑔(𝜂) 2𝑆2𝑚(𝜂,𝑘) 𝜖ℓ2𝑚 [𝑘(𝜂 − 𝜂0)] 𝑑𝜂 (−2 ≤ 𝑚 ≤ 2) , (36.14d)

𝐵ℓ𝑚(𝜂0,𝑘) =

∫︁ 𝜂0

0

𝑔(𝜂) 2𝑆2𝑚(𝜂,𝑘)𝛽ℓ2𝑚 [𝑘(𝜂 − 𝜂0)] 𝑑𝜂 (−2 ≤ 𝑚 ≤ 2) . (36.14e)

The Thomson-scattering source terms 𝑠𝑆𝑛𝑚 are given by equations (36.6), and the spin spherical Bessel
functions by equations (36.13a).

Exercise 36.1. Neutrino harmonics including vectors and tensors. Equation (34.46) gave the solution
to the radiative transfer equation for scalar (𝑚 = 0) fluctuations of (massless) neutrinos. Generalize this to
include vector (𝑚 = ±1) and tensor (𝑚 = ±2) neutrino fluctuations.
Solution. The solution is similar to that (36.14a)–(36.14c) for unpolarized photons, but without the Thom-
son scattering terms:

𝒩ℓ(𝜂,𝑘) + 𝛿ℓ0Ψ(𝜂,𝑘) =

∫︁ 𝜂

0

[︀
Ψ̇(𝜂′,𝑘) + Φ̇(𝜂′,𝑘)

]︀
𝑗ℓ [𝑘(𝜂

′− 𝜂)] 𝑑𝜂′

+
[︀
𝒩0(0,𝑘) + Ψ(0,𝑘)

]︀
𝑗ℓ(−𝑘𝜂) , (36.15a)

𝒩ℓ,±1(𝜂,𝑘) + 1
3𝛿ℓ1𝑊±(𝜂,𝑘) =

∫︁ 𝜂

0

�̇�±(𝜂
′,𝑘)𝑗ℓ11 [𝑘(𝜂

′− 𝜂)] 𝑑𝜂′

+ 𝑊±(0,𝑘)𝑗ℓ11(−𝑘𝜂) , (36.15b)

𝒩ℓ,±2(𝜂,𝑘) =
∫︁ 𝜂

0

√︁
2
3 ℎ̇±±(𝜂

′,𝑘) 𝑗ℓ22 [𝑘(𝜂
′− 𝜂)] 𝑑𝜂′ . (36.15c)
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As in equation (34.46), the time 𝜂𝜈 of neutrino decoupling has been replaced by zero, and the optical depth
factor omitted, since the neutrino decoupling scale is so much smaller than cosmological scales.

36.2.1 Harmonics of the polarized CMB with respect to observed photon directions

As with the unpolarized power spectrum, §34.2.1, the observed direction of �̂� of a photon from the CMB
is opposite to the photon’s direction of motion, �̂� = −𝑝. Moreover the right-handed direction around 𝑝

becomes a left-handed direction about �̂�, so the spin angle 𝜒 also flips in sign. Thus harmonics with respect
to the observed direction �̂� are related to those relative to the photon direction 𝑝 by 𝑠Θ

obs(𝜂,𝑘,𝑝, 𝜒) =

𝑠Θ(𝜂,𝑘,−𝑝,−𝜒). The reversal of 𝑝 and 𝜒 is equivalent to a parity flip, which changes the spin 𝑠 temperature
multipoles by 𝑠Θ

obs
ℓ𝑚 (𝜂0,𝑘) = (−)ℓ+𝑠−𝑠Θℓ𝑚(𝜂0,𝑘). Equivalently, generalizing equation (34.18),

Θobs
ℓ𝑚 (𝜂0,𝑘) ≡ (−)ℓΘℓ𝑚(𝜂0,𝑘) , 𝐸obs

ℓ𝑚 (𝜂0,𝑘) ≡ (−)ℓ𝐸ℓ𝑚(𝜂0,𝑘) , 𝐵obs
ℓ𝑚 (𝜂0,𝑘) ≡ (−)ℓ+1𝐵ℓ𝑚(𝜂0,𝑘) .

(36.16)
Equivalently, as in the unpolarized equation (34.17), multipoles with respect to the observed direction �̂� to
the CMB are obtained from equations (36.14) by flipping the sign of the arguments of the spin spherical
Bessel functions 𝑗ℓ𝑛𝑚𝑠 and simultaneously flipping the sign of source terms 𝑠𝑆𝑛𝑚 with odd 𝑛, namely 𝑆1𝑚,

𝑘(𝜂 − 𝜂0)→ 𝑘(𝜂0 − 𝜂) , 𝑆1𝑚 → −𝑆1𝑚 . (36.17)

The sign flips do not affect power spectra, which involve products of fluctuations with the same ℓ and parity.

36.3 Harmonics of the polarized CMB in real space

The real-space polarized temperature fluctuation 𝑠Θ(𝜂,𝑥, �̂�, 𝜒) at time 𝜂 and comoving position 𝑥 in observed
direction �̂� on the sky is related to the Fourier-space polarized temperature fluctuation 𝑠Θ(𝜂,𝑘, �̂�, 𝜒) by,
generalizing the unpolarized expression (34.28),

𝑠Θ(𝜂,𝑥, �̂�, 𝜒) =

∫︁
𝑒−𝑖𝑘·𝑥 𝑠Θ(𝜂,𝑘, �̂�, 𝜒)

𝑑3𝑘

(2𝜋)3
. (36.18)

Astronomers observe the temperature fluctuation 𝑠Θ(𝜂0,𝑥0, �̂�, 𝜒) now, at time 𝜂0, and here, at position 𝑥0.
Without loss of generality, our position can be taken to be at the origin, 𝑥0 = 0, in which case the phase
factor is unity, 𝑒−𝑖𝑘·𝑥0 = 1, and can be omitted,

𝑠Θ(𝜂0,𝑥0, �̂�, 𝜒) =

∫︁
Θ(𝜂0,𝑘, �̂�, 𝜒)

𝑑3𝑘

(2𝜋)3
, (36.19)

which generalizes the unpolarized expression (34.29).
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The spherical harmonic expansion of the observed real-space temperature fluctuation today is, with con-
ventional normalization of harmonics 𝑠Θℓ𝑚,

𝑠Θ(𝜂0,𝑥0, �̂�, 𝜒) =

∞∑︁
ℓ=|𝑠|

ℓ∑︁
𝑚=−ℓ

𝑠Θℓ𝑚(𝜂0,𝑥0)−𝑠𝑌
*
ℓ𝑚(�̂�, 𝜒) , (36.20)

which generalizes equation (34.30). The reason for the expansion with respect to −𝑠𝑌 *ℓ𝑚 as opposed to 𝑠𝑌ℓ𝑚
is that, as already remarked after equation (35.37), the coefficient 𝑠Θℓ𝑚 then has spin weight 𝑠 and 𝑚 as
opposed to 𝑠 and −𝑚. The spherical harmonic expansion (35.37) of the Fourier-space temperature fluctuation
may be written

𝑠Θ(𝜂0,𝑘, �̂�, 𝜒) =

∞∑︁
ℓ=|𝑠|

min(ℓ,2)∑︁
𝑚=−min(ℓ,2)

ℓ∑︁
𝑛=−ℓ

(−𝑖)ℓ+𝑚−𝑠
√︀

4𝜋(2ℓ+ 1) 𝑠Θℓ𝑚(𝜂,𝑘)−𝑠𝐷
*
ℓ𝑛𝑚(𝑧, �̂�)−𝑠𝑌

*
ℓ𝑛(�̂�, 𝜒) ,

(36.21)
where 𝑠𝐷ℓ𝑚′𝑚(�̂�′, �̂�) is the matrix that rotates spin harmonics 𝑠𝑌ℓ𝑚, defined by, analogously to the defini-
tion (35.120) of Wigner rotation matrices 𝐷ℓ𝑚′𝑚(�̂�′, �̂�),

𝛿ℓ′ℓ 𝑠𝐷ℓ𝑚′𝑚(�̂�′, �̂�) ≡
∫︁

𝑠𝑌
*
ℓ′𝑚′(�̂�′) 𝑠𝑌ℓ𝑚(�̂�) 𝑑𝑜 . (36.22)

It is not necessary to know an explicit form for the spin rotation matrices 𝑠𝐷ℓ𝑚′𝑚, because observable power
spectra are rotation invariant, and do not depend on the form of 𝑠𝐷ℓ𝑚′𝑚. Whereas the original harmonics

𝑠Θℓ𝑚(𝑘) are with respect to a frame in which the 𝑧-axis is along the wavevector 𝑘, the rotated harmonics∑︀
𝑚 𝑠Θℓ𝑚(𝑘)−𝑠𝐷

*
ℓ𝑛𝑚(𝑧, �̂�) in equation (36.21) are with respect to a frame in which the 𝑧-axis is along a

direction 𝑧 fixed in space.

From equations (36.19)–(36.21) it follows that the real-space harmonics are

𝑠Θℓ𝑛(𝜂0,𝑥0) =
√︀

4𝜋(2ℓ+ 1)

min(ℓ,2)∑︁
𝑚=−min(ℓ,2)

(−𝑖)ℓ+𝑚−𝑠
∫︁

𝑠Θℓ𝑚(𝜂,𝑘)−𝑠𝐷
*
ℓ𝑛𝑚(𝑧, �̂�)

𝑑3𝑘

(2𝜋)3
. (36.23)

The factors of
√︀

4𝜋(2ℓ+ 1)(−𝑖)ℓ+𝑚−𝑠 arise because of the different choices of normalization of the har-
monics (as is the standard cosmological convention) in the harmonic expansions (35.37) and (36.20) of the
temperature fluctuation in Fourier and real space.

Rotating the Fourier-space harmonics 𝑠Θℓ𝑚(𝜂,𝑘) from the �̂� frame into the 𝑧 frame leaves their parity un-
changed, so the real-space harmonics inherit their parity from Fourier space. Resolved into parity eigenstates,
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the real-space harmonics (36.23) are

Θℓ𝑛(𝜂0,𝑥0) =
√︀
4𝜋(2ℓ+ 1)

min(ℓ,2)∑︁
𝑚=−min(ℓ,2)

(−𝑖)ℓ+𝑚
∫︁

Θℓ𝑚(𝜂,𝑘)𝐷*ℓ𝑛𝑚(𝑧, �̂�)
𝑑3𝑘

(2𝜋)3
, (36.24a)

𝐸ℓ𝑛(𝜂0,𝑥0) =
√︀
4𝜋(2ℓ+ 1)

2∑︁
𝑚=−2

(−𝑖)ℓ+𝑚−2
∫︁
𝐸ℓ𝑚(𝜂,𝑘)−𝑠𝐷

*
ℓ𝑛𝑚(𝑧, �̂�)

𝑑3𝑘

(2𝜋)3
, (36.24b)

𝐵ℓ𝑛(𝜂0,𝑥0) =
√︀
4𝜋(2ℓ+ 1)

2∑︁
𝑚=−2

(−𝑖)ℓ+𝑚−2
∫︁
𝐵ℓ𝑚(𝜂,𝑘)−𝑠𝐷

*
ℓ𝑛𝑚(𝑧, �̂�)

𝑑3𝑘

(2𝜋)3
. (36.24c)

36.4 Polarized CMB power spectra

36.4.1 Polarized CMB power spectra in Fourier space

Power spectra 𝐶𝑋
′𝑋

ℓ (𝜂, 𝑘) with 𝑋 ′ and 𝑋 running over any of Θ, 𝐸, and 𝐵 are defined by, analogously to
the power spectrum 𝐶ℓ(𝜂, 𝑘) of unpolarized temperature multipoles, equation (34.26),

𝛿ℓ′ℓ
4𝜋

(2𝜋)3𝛿𝐷(𝑘
′+ 𝑘)𝐶𝑋

′𝑋
ℓ (𝜂, 𝑘) ≡

min(ℓ,2)∑︁
𝑚=−min(ℓ,2)

⟨︀
𝑋 ′*ℓ′𝑚(𝜂,𝑘′)𝑋ℓ𝑚(𝜂,𝑘)

⟩︀
. (36.25)

The reality conditions (35.46) imply that the power spectra are real-valued, and symmetric in 𝑋 ′𝑋, 𝐶𝑋
′𝑋

ℓ =

𝐶𝑋𝑋
′

ℓ . Strictly, on the right hand side of equation (36.25) the unpolarized monopole Θ00 should be replaced
by the redshifted monopole Θ00 +Ψ, and the unpolarized dipole Θ1,±1 should be replaced by the Doppler-
shifted dipole Θ1,±1 +

1
3𝑊±, in accordance with equations (36.14), but these refinements are omitted here

to avoid cluttering the equation.
Polarized CMB transfer functions 𝑇𝑋ℓ𝑚(𝜂, 𝑘) for any of 𝑋 = Θ, 𝐸, or 𝐵 are defined by, generalizing

equation (34.20) (the contributions Ψ and 1
3𝑊± to the unpolarized monopole and dipole are again omitted

for brevity),

𝑇𝑋ℓ𝑚(𝜂, 𝑘) ≡ 𝑋ℓ𝑚(𝜂,𝑘)

𝜁(𝑘)
, (36.26)

where 𝜁(𝑘) is the primordial curvature fluctuation. In terms of the transfer functions (36.26) and the pri-
mordial curvature power spectrum 𝑃𝜁 , equation (30.132), the power spectrum 𝐶𝑋

′𝑋
ℓ (𝜂,𝑘) is

𝐶𝑋
′𝑋

ℓ (𝜂,𝑘) = 4𝜋

2∑︁
𝑚=−2

𝑇𝑋
′*

ℓ𝑚 (𝜂, 𝑘)𝑇𝑋ℓ𝑚(𝜂, 𝑘)𝑃𝜁(𝑘) . (36.27)
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36.4.2 Conditions on polarized CMB power spectra from parity symmetry

The Universe at large is consistent with being statistically homogeneous and isotropic, and it is reasonable to
expect that the statistical properties would similarly be parity symmetric, unchanged under spatial inversion.
The prediction of parity symmetry is, like homogeneity and isotropy, testable observationally. The temper-
ature and electric fluctuations Θℓ𝑚 and 𝐸ℓ𝑚 have the same (−)ℓ parity under spatial inversion, while the
magnetic fluctuation 𝐵ℓ𝑚 has the opposite (−)ℓ+1 parity. The assumption of parity symmetry then implies
that cross power spectra between fluctuations of opposite parity should vanish, 𝐶Θ𝐵

ℓ = 𝐶𝐸𝐵ℓ = 0, since these
power spectra change sign under parity inversion. Parity symmetry predicts that the non-vanishing power
spectra are

𝐶ΘΘ
ℓ , 𝐶Θ𝐸

ℓ , 𝐶𝐸𝐸ℓ , 𝐶𝐵𝐵ℓ . (36.28)

36.4.3 Polarized CMB power spectra in real space

CMB power spectra 𝐶𝑋
′𝑋

ℓ (𝜂0) on the sky today with 𝑋 ′ and 𝑋 any of Θ, 𝐸, and 𝐵 are defined such that,
generalizing equation (34.33),

𝛿ℓ′ℓ𝛿𝑚′𝑚𝐶
𝑋′𝑋
ℓ (𝜂0) ≡

⟨︀
𝑋 ′*ℓ′𝑚′(𝜂0,𝑥0)𝑋ℓ𝑚(𝜂0,𝑥0)

⟩︀
. (36.29)

Once again, the redshift contribution Ψ to the unpolarized monopole Θ00, and the Doppler-shift contribution
1
3𝑊𝑚 to the dipole Θ1𝑚 on the right hand side of equation (36.29) have been omitted for brevity. The
monopole and dipole are indistinguishable from a rescaling of the mean temperature and from a change in
the motion of the observer, so cannot be measured by an observer confined to position 𝑥0.
From the expressions (36.24) for the real-space harmonics in terms of Fourier-space harmonics, together

with the power spectra (36.25) of the Fourier-space harmonics, it follows that the power spectra 𝐶𝑋
′𝑋

ℓ (𝜂0)

of real-space harmonics of the CMB today are, generalizing equation (34.34),

𝐶𝑋
′𝑋

ℓ (𝜂0) =

∫︁
𝐶𝑋

′𝑋
ℓ (𝜂0, 𝑘)

4𝜋𝑘2𝑑𝑘

(2𝜋)3
. (36.30)

The CMB power spectra 𝐶𝑋
′𝑋

ℓ (𝜂0) inherit from 𝐶𝑋
′𝑋

ℓ (𝜂0, 𝑘) the properties of being real-valued and sym-
metric in 𝑋 ′𝑋.
In terms of the polarized CMB transfer functions 𝑇𝑋ℓ𝑚 defined by equation (36.26) and the primordial

curvature power spectrum 𝑃𝜁 , the power spectra 𝐶𝑋
′𝑋

ℓ (𝜂0) are, from equation (36.27),

𝐶𝑋
′𝑋

ℓ (𝜂0) = 4𝜋

min(ℓ,2)∑︁
𝑚=−min(ℓ,2)

∫︁
𝑇𝑋

′*
ℓ𝑚 (𝜂0, 𝑘)𝑇

𝑋
ℓ𝑚(𝜂0, 𝑘)𝑃𝜁(𝑘)

4𝜋𝑘2𝑑𝑘

(2𝜋)3
. (36.31)

Concept question 36.2. Scalar, vector, tensor power spectra? Can power spectra of scalar, vector,
and tensor modes be distinguished observationally? Answer. No, with an exception. Scalar, vector, and
tensor modes are characterized by their transformation properties under rotation about the wavevector 𝑘 of
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the perturbation. An observed temperature fluctuation in real space is a superposition of fluctuations with
many wavevectors 𝑘, and thereby becomes a mixture of scalar, vector, and tensor modes. The exception is that
the scalar magnetic fluctuation 𝐵ℓ0 vanishes identically, so the magnetic power spectrum 𝐶𝐵𝐵ℓ measures only
vector and tensor modes. Mathematically, the real-space harmonics (36.24) of the temperature fluctuation
are sums over scalar, vector, and tensor modes, |𝑚| = 0, 1, 2. In Fourier space, power spectra 𝐶ℓ𝑚(𝜂0, 𝑘) with
definite 𝑚 can be defined by equation (36.25) without summing over 𝑚. But in real space, the CMB power
spectrum 𝐶ℓ(𝜂0), equation (36.31), is a sum over the scalar, vector, and tensor Fourier-space power spectra,

𝐶𝑋
′𝑋

ℓ (𝜂0) =

min(ℓ,2)∑︁
𝑚=−min(ℓ,2)

∫︁
𝐶𝑋

′𝑋
ℓ𝑚 (𝜂0, 𝑘)

4𝜋𝑘2𝑑𝑘

(2𝜋)3
. (36.32)

Exercise 36.3. CMB polarized power spectrum. Generalize the CMB code you wrote in Exercise 34.1
to include polarization.



37

Gravitational lensing of the Cosmic
Microwave Background

Galaxies along the line of sight slightly perturb the trajectories of photons emitted at the surface of last
scattering (Zaldarriaga and Seljak, 1998, and references therein). The qualitative effect of this gravitational
lensing effect is to tend to blur CMB fluctations at small scales. The gravitational lensing effect has been
neglected in this book up to now on the grounds that its magnitude is proportional to a product

𝑑𝑝

𝑑𝜆
· 𝜕𝑓
𝜕𝑝

(37.1)

of terms that were both linear in the photon Boltzmann equation (33.8), and therefore of the second order
of smallness. The reason the gravitational lensing effect is important despite being of second order is that it
feeds 𝐵-mode polarization from 𝐸-mode polarization. At small angular scales, gravitational lensing proves
to dominate the primordial 𝐵-mode signal expected from gravitational waves generated at inflation. Fortu-
nately the lensing effect is small at large angular scales, leaving a window where a signal from primordial
gravitational waves might be seen in the future. An upside of gravitational lensing is that, because it depends
on the clustering of matter well after recombination, it resolves degeneracies in cosmological parameters that
would be inferred from the unlensed CMB power spectrum at the surface of last scattering.
The product of terms that was neglected in the photon Boltzmann equation (33.8) is 𝑑𝑝/𝑑𝜆 · 𝜕𝑓/𝜕𝑝, and

these must now be restored.
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38

The super geometric algebra

The super geometric algebra generalizes the geometric algebra to include spinors, which are spin- 12
objects.
For simplicity, this Chapter focuses on the super geometric algebra in 3 spatial dimensions. The gener-

alization to arbitrarily many spatial dimensions is given as Exercise 38.3 at the end of the Chapter. The
generalization of the super geometric algebra to Minkowski space, with a time dimension in addition to spa-
tial dimensions, is presented in Chapter 39. The generalization to arbitrarily many space and time dimensions
is given as Exercise 39.5.

38.1 Spin basis vectors in 3D

A systematic way to project tensors into spin components is to work in a spin basis. Start with an orthonor-
mal triad {𝛾𝛾1,𝛾𝛾2,𝛾𝛾3} (or {𝛾𝛾𝑥,𝛾𝛾𝑦,𝛾𝛾𝑧} if you prefer). Choose a pair of basis vectors, in three dimensions
conventionally taken to be the pair {𝛾𝛾1,𝛾𝛾2}, and from them form the spin basis vectors {𝛾𝛾+,𝛾𝛾−}, the
complex combinations

𝛾𝛾+ ≡ 1√
2
(𝛾𝛾1 + 𝑖𝛾𝛾2) , (38.1a)

𝛾𝛾− ≡ 1√
2
(𝛾𝛾1 − 𝑖𝛾𝛾2) . (38.1b)

This is the same trick used to define the spin components 𝐿± of the angular momentum operator 𝐿 in
quantum mechanics. The metric of the spin triad {𝛾𝛾+,𝛾𝛾−,𝛾𝛾3} is

𝛾𝑎𝑏 ≡ 𝛾𝛾𝑎 · 𝛾𝛾𝑏 =

⎛⎝ 0 1 0

1 0 0

0 0 1

⎞⎠ . (38.2)

Notice that the spin basis vectors {𝛾𝛾+,𝛾𝛾−} are themselves null, 𝛾𝛾+ · 𝛾𝛾+ = 𝛾𝛾− · 𝛾𝛾− = 0, whereas their scalar
product with each other is non-zero 𝛾𝛾+ · 𝛾𝛾− = 1.
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38.2 Spin weight

An object is defined to have spin weight 𝑠 if it varies by

𝑒−𝑖𝑠𝜃 (38.3)

under a right-handed rotation by angle 𝜃 in the 𝛾𝛾1–𝛾𝛾2 plane. In 3D, a right-handed rotation in the 𝛾𝛾1–𝛾𝛾2

plane is the same as a right-handed rotation about the 3-axis, and the spin weight is the projection of the
spin along the 3-axis, the spin analogue of the projection 𝐿3 (or 𝐿𝑧) of the angular momentum along the
3-axis (or 𝑧-axis). Sometimes the term spin weight is abbreviated to spin, when there is no ambiguity. An
object of spin weight 𝑠 is unchanged by a rotation of 2𝜋/𝑠 in the 𝛾𝛾1–𝛾𝛾2 plane. An object of spin weight 0 is
rotationally symmetric, unchanged by a rotation by any angle in the 𝛾𝛾1–𝛾𝛾2 plane.
Under a right-handed rotation by angle 𝜃 in the 𝛾𝛾1–𝛾𝛾2 plane, the basis vectors 𝛾𝛾𝑎 transform as (13.51)

𝛾𝛾1 → cos 𝜃 𝛾𝛾1 + sin 𝜃 𝛾𝛾2 ,

𝛾𝛾2 → sin 𝜃 𝛾𝛾1 − cos 𝜃 𝛾𝛾2 ,

𝛾𝛾3 → 𝛾𝛾3 . (38.4)

It follows that the spin basis vectors 𝛾𝛾+ and 𝛾𝛾− transform under a right-handed rotation by angle 𝜃 in the
𝛾𝛾1–𝛾𝛾2 plane

𝛾𝛾± → 𝑒∓𝑖𝜃 𝛾𝛾± . (38.5)

The transformation (38.5) identifies the spin vectors 𝛾𝛾+ and 𝛾𝛾− as having spin weight +1 and −1 respectively.
The 𝛾𝛾3 vector has spin weight 0, since it is unchanged by a rotation in the 𝛾𝛾1–𝛾𝛾2 plane.
The components of a tensor in a spin basis inherit their spin properties from that of the spin basis. The

general rule is that the spin weight 𝑠 of any tensor component is equal to the number of + covariant indices
minus the number of − covariant indices:

spin weight 𝑠 = number of + minus − covariant indices . (38.6)

The spin properties of the components of a tensor are thus manifest when expressed in a spin basis.

38.3 Pauli representation of spin basis vectors

In the Pauli representation (13.112), the spin basis vectors 𝛾𝛾± are represented by the real 2×2 Pauli matrices

𝛾𝛾+ = 𝜎+ ≡
1√
2
(𝜎1 + 𝑖𝜎2) =

√
2

(︂
0 1

0 0

)︂
, 𝛾𝛾− = 𝜎− ≡

1√
2
(𝜎1 − 𝑖𝜎2) =

√
2

(︂
0 0

1 0

)︂
. (38.7)

The basis vector 𝛾𝛾3 is represented as usual by the real Pauli matrix 𝜎3,

𝛾𝛾3 = 𝜎3 =

(︂
1 0

0 −1

)︂
. (38.8)
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38.4 Basis spinors

Introduce a dyad of basis spinors 𝜖𝑎 with the index 𝑎 running over spin up ↑ and spin down ↓ (the braces in
equation (38.9) signify a set of spinors, not anticommutation),

𝜖𝑎 ≡ {𝜖↑, 𝜖↓} . (38.9)

The basis spinors 𝜖↑ and 𝜖↓ physically signify spin up and spin down eigenstates. A more conventional (Dirac)
notation is

𝜖↑ = |↑⟩ , 𝜖↓ = |↓⟩ . (38.10)

It will be seen in §38.11 that the basis spinors 𝜖𝑎 are related to the 3D basis vectors 𝛾𝛾𝑎 through a super
geometric algebra that is essentially the square root of the geometric algebra. Elements of the geometric
algebra act by pre-multiplication on the basis spinors 𝜖𝑎. Under a rotation by rotor 𝑅, the basis spinors 𝜖𝑎
are defined to transform in the same way as rotors,

𝑅 : 𝜖𝑎 → 𝑅𝜖𝑎 . (38.11)

In the Pauli representation (13.112) the basis spinors 𝜖𝑎 are the column vectors

𝜖↑ =

(︂
1

0

)︂
, 𝜖↓ =

(︂
0

1

)︂
, (38.12)

that are rotated by pre-multiplying by elements of the special unitary group SU(2). Rotations transform the
basis spinors 𝜖𝑎 into linear combinations of each other.
The rotor 𝑅 corresponding to a right-handed rotation by angle 𝜃 in the 𝛾𝛾1–𝛾𝛾2 plane is 𝑒−𝚤3𝜃/2, equa-

tion (13.106). In the Pauli representation (38.9), the action of 𝚤3 = 𝐼3𝜎3 on the basis spinors is 𝚤3𝜖↑ = 𝑖𝜖↑
and 𝚤3𝜖↓ = −𝑖𝜖↓. Under a right-handed rotation by angle 𝜃 in the 𝛾𝛾1–𝛾𝛾2 plane, the basis spinors 𝜖𝑎 therefore
transform as

𝜖↑ → 𝑒−𝑖𝜃/2𝜖↑ , 𝜖↓ → 𝑒𝑖𝜃/2𝜖↓ . (38.13)

The behaviour (38.13), along with the definition (38.3) of spin, shows that the basis spinors 𝜖↑ and 𝜖↓ have
respective spin weights + 1

2 and − 1
2 . A rotation by 𝜃 = 2𝜋 changes the sign of the basis spinors 𝜖𝑎. A rotation

by 4𝜋 is required to rotate the basis spinors back to their original values.
Spinor tensors inherit their spin properties from those of the basis spinors. The rule (38.6) generalizes to

the statement that the spin weight of a spinor tensor is

spin weight 𝑠 = 1
2 (number of ↑ minus ↓ covariant indices) . (38.14)

In any equality between vector and spinor tensors, the spin weights of the left and right hand sides must be
equal. The rule (38.14) hold not only for column spinors 𝜖𝑎, but also for row spinors 𝜖𝑎 ·, §38.7, and for inner
and outer products of spinors, §§38.8 and 38.10.



972 The super geometric algebra

38.5 Pauli spinor

A Pauli spinor 𝜙 is a complex (with respect to 𝑖) linear combination of the basis spinors 𝜖𝑎,

𝜙 = 𝜙𝑎𝜖𝑎 . (38.15)

Just as a multivector 𝑎𝑎𝛾𝛾𝑎 is a vector in the geometric algebra, so also 𝜙𝑎𝜖𝑎 is a spinor in the super geometric
algebra.
By construction, a Pauli spinor transforms under a spatial rotation by rotor 𝑅 like the basis spinors,

equation (38.11),

𝑅 : 𝜙→ 𝑅𝜙 . (38.16)

A Pauli spinor 𝜙 is a spin- 12 object, in the sense that a rotation by 2𝜋 changes the sign of the spinor, and a
rotation by 4𝜋 is required to return the spinor to its original value.

38.6 Spinor metric

In a matrix representation, the tensor product of basis spinors 𝜖𝑎 and 𝜖𝑏 can be represented as the 2 × 2

matrix 𝜖𝑎𝜖
⊤
𝑏 , a matrix product of the column spinor 𝜖𝑎 with the row spinor 𝜖⊤𝑏 . In accordance with the

transformation rule (38.11), the tensor product of basis spinors rotates as

𝑅 : 𝜖𝑎𝜖
⊤
𝑏 → 𝑅𝜖𝑎𝜖

⊤
𝑏 𝑅
⊤ . (38.17)

Consider the spinor tensor 𝜀 with the defining property that for any rotor 𝑅

𝜀𝑅⊤ = 𝑅𝜀 . (38.18)

The condition (38.18) implies that the spinor tensor 𝜀 is invariant under rotations,

𝑅 : 𝜀→ 𝑅𝜀𝑅⊤ = 𝑅𝑅𝜀 = 𝜀 . (38.19)

The spinor tensor 𝜀 is the spinor metric. Like the Euclidean metric, it is that tensor which remains invariant
under rotations.
Since a rotor is a linear combination of even elements 1 and 𝐼3𝛾𝛾𝑎 of the geometric algebra, and bivectors

𝐼3𝛾𝛾𝑎 change sign under reversal, a necessary and sufficient condition for (38.18) is

𝜀(𝐼3𝛾𝛾𝑎)
⊤ = −𝐼3𝛾𝛾𝑎𝜀 for 𝑎 = 1, 2, 3 . (38.20)

In the Pauli representation (13.112), where 𝛾𝛾𝑎 = 𝜎𝑎 and 𝐼3 equals 𝑖 times the unit matrix, the condi-
tion (38.20) requires that 𝜀 commutes with 𝛾𝛾2, and anticommutes with 𝛾𝛾1 and 𝛾𝛾3. The only basis element
of the spacetime algebra with the required (anti)commutation properties is 𝛾𝛾2, so the spinor metric 𝜀 must
equal 𝛾𝛾2 up to a possible scalar normalization,

𝜀 ≡ 𝑖𝛾𝛾2 . (38.21)
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In the Pauli representation (13.112), the spinor metric (38.21) is the antisymmetric matrix

𝜀 =

(︂
0 1

−1 0

)︂
. (38.22)

The chosen normalization is such that 𝜀 is real (with respect to 𝑖). The spinor metric 𝜀 is then orthogonal,
and its square is minus the unit matrix,

𝜀−1 = 𝜀⊤ , 𝜀2 = −1 . (38.23)

Despite the equality of 𝜀 and 𝑖𝛾𝛾2 in the Pauli representation, 𝜀 is defined to transform as a spinor tensor
under spatial rotations, not as an element of the geometric algebra. The components of the spinor metric
matrix 𝜀 constitute the spinor metric 𝜀𝑎𝑏,

𝜖⊤𝑎𝜀𝜖𝑏 = 𝜀𝑎𝑏 . (38.24)

Commuting the spinor metric 𝜀 through the orthonormal basis vectors 𝛾𝛾𝑎 converts them to minus their
transposes,

𝛾𝛾⊤𝑎 𝜀 = −𝜀𝛾𝛾𝑎 . (38.25)

38.7 Row basis spinors

It is convenient to use the symbol 𝜖𝑎 · with a trailing dot, symbolic of the trailing 𝜀, to denote the row spinor
𝜖⊤𝑎𝜀,

𝜖𝑎 · ≡ 𝜖⊤𝑎 𝜀 . (38.26)

The motivation for the trailing dot notation is equation (38.30) below. The two row spinors (the braces in
equation (38.27) signify a set of spinors, not anticommutation)

𝜖𝑎 · = {𝜖↑ ·, 𝜖↓ ·} (38.27)

provide a basis for row spinors. The spin weights of the row basis spinors are in accord with their covariant
indices: 𝜖↑ · has spin weight + 1

2 , while 𝜖↓ · has spin weight − 1
2 . The row spinors 𝜖𝑎 · rotate as

𝑅 : 𝜖𝑎 · ≡ 𝜖⊤𝑎𝜀→ 𝜖⊤𝑎 𝑅
⊤𝜀 = 𝜖⊤𝑎𝜀𝑅 = 𝜖𝑎 ·𝑅 . (38.28)

Thus row spinors 𝜖𝑎 · transform like reverse rotors, just as column spinors 𝜖𝑎 transform like rotors. In the
Pauli representation (13.112) the row basis spinors 𝜖𝑎 · are the row spinors

𝜖↑ · = ( 0 1 ) , 𝜖↓ · = ( − 1 0 ) . (38.29)
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38.8 Inner products of basis spinors

The product of the row spinor 𝜖𝑎 · with the column spinor 𝜖𝑏 defines their inner product, or scalar product,
which equals the spinor metric 𝜀𝑎𝑏 in accordance with equation (38.24),

𝜖𝑎 · 𝜖𝑏 = 𝜀𝑎𝑏 . (38.30)

Equation (38.30) motivates the trailing dot notation for the row spinor. The scalar product is antisymmetric,

𝜖𝑎 · 𝜖𝑏 = −𝜖𝑏 · 𝜖𝑎 . (38.31)

In the Pauli representation, the non-zero components of the scalar product are explicitly, equation (38.22),

𝜖↑ · 𝜖↓ = −𝜖↓ · 𝜖↑ = 1 . (38.32)

The antisymmetry of the spinor scalar product contrasts with the symmetry of the usual vector scalar
product. The scalar product (38.30) is a scalar,

𝑅 : 𝜖𝑎 · 𝜖𝑏 → 𝜖𝑎 ·𝑅𝑅 𝜖𝑏 = 𝜖𝑎 · 𝜖𝑏 . (38.33)

Thus the spinor metric 𝜀𝑎𝑏 is invariant under rotations, just like the Euclidean metric 𝛿𝑎𝑏.

38.9 Lowering and raising spinor indices

The antisymmetric spinor metric 𝜀𝑎𝑏 is given in the Pauli representation by equation (38.24). The inverse
metric 𝜀𝑎𝑏 is defined by 𝜀𝑎𝑏𝜀𝑏𝑐 = 𝛿𝑎𝑐 . The spinor metric and its inverse satisfy

𝜀𝑎𝑏 = −𝜀𝑏𝑎 = −𝜀𝑎𝑏 = 𝜀𝑏𝑎 . (38.34)

Indices on a spinor tensor are lowered and raised by pre-multiplying by the metric 𝜀𝑎𝑏 and its inverse 𝜀𝑎𝑏.
The contravariant components 𝜖𝑎 of the column basis spinors, satisfying 𝜖𝑎 = 𝜀𝑎𝑏𝜖𝑏, are

𝜖↑ = −𝜖↓ , 𝜖↓ = 𝜖↑ . (38.35)

For example, 𝜖↑ = 𝜀↑↓𝜖↓ = −𝜖↓. A spinor index is lowered or raised by pre-multiplying by the metric or its
inverse: post-multiplying by the metric or its inverse yields a result of opposite sign, 𝜖𝑎 = 𝜀𝑎𝑏𝜖𝑏 = −𝜖𝑏𝜀𝑏𝑎.
The contravariant components 𝜖𝑎 · of the row basis spinors satisfy the same relations (38.35) with a trailing
dot appended on left and right hand sides. The scalar products of contravariant row with covariant column
basis spinors form the unit matrix,

𝜖𝑎 · 𝜖𝑏 = −𝜖𝑏 · 𝜖𝑎 = 𝛿𝑎𝑏 . (38.36)
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38.9.1 Scalar products of Pauli spinors

A general row spinor 𝜙 · is a complex (with respect to 𝑖) linear combination of the row basis spinors

𝜙 · ≡ 𝜙⊤𝜀 = 𝜙𝑎𝜖𝑎 · . (38.37)

It rotates as

𝑅 : 𝜙 · → 𝜙 ·𝑅 . (38.38)

A row spinor 𝜙 · transforms like a reverse rotor.
The product of a row Pauli spinor 𝜙 · = 𝜙𝑎𝜖𝑎 · with a column Pauli spinor 𝜒 = 𝜒𝑎𝜖𝑎 forms a scalar, which

may be written variously

𝜙 · 𝜒 = 𝜙⊤𝜀𝜒 = 𝜙𝑎𝜖𝑎 · 𝜒𝑏𝜖𝑏 = 𝜀𝑎𝑏𝜙
𝑎𝜒𝑏 = 𝜙𝑎𝜒𝑎 = −𝜙𝑎𝜒𝑎 = −𝜀𝑎𝑏𝜙𝑎𝜒𝑏 . (38.39)

Notice that when the scalar product 𝜙 · 𝜒 is written in the contracted form 𝜙𝑎𝜒𝑎, the first index is raised
and the second is lowered. An additional minus sign appears if the first index is lowered and the second is
raised.
The components 𝜙𝑎 of a column spinor 𝜙 can be projected out by pre-multiplying by the row basis spinor

𝜖𝑎 ·,

𝜖𝑎 · 𝜙 = 𝜖𝑎 · 𝜙𝑏𝜖𝑏 = 𝛿𝑎𝑏𝜙
𝑏 = 𝜙𝑎 . (38.40)

The components 𝜙𝑎 of a row spinor 𝜙 · can be projected out by post-multiplying by minus the column basis
spinor 𝜖𝑎,

− 𝜙 · 𝜖𝑎 = −𝜙𝑏𝜖𝑏 · 𝜖𝑎 = 𝛿𝑎𝑏𝜙
𝑏 = 𝜙𝑎 . (38.41)

If the coefficients 𝜙𝑎 and 𝜒𝑏 of Pauli spinors 𝜙 = 𝜙𝑎𝜖𝑎 and 𝜒 = 𝜒𝑏𝜖𝑏 are taken to be ordinary commuting
complex numbers, then the Pauli scalar product is anticommuting

𝜙 · 𝜒 = −𝜒 · 𝜙 . (38.42)

In quantum field theory spinor coefficients are sometimes taken to be anticommuting, in which case the
scalar product would be commuting. A proof that Pauli spinors anticommute (so their coefficients must be
ordinary commuting complex numbers) is given later, equation (38.73).

38.10 Outer products of basis spinors

A row spinor 𝜖𝑎 · multiplied by a column spinor 𝜖𝑏 yields their scalar product. In the opposite order, a column
spinor 𝜖𝑎 multiplied by a row spinor 𝜖𝑏 · yields their outer product. The outer product 𝜖𝑎𝜖𝑏 · rotates like a
multivector in the geometric algebra,

𝑅 : 𝜖𝑎𝜖𝑏 · ≡ 𝜖𝑎𝜖
⊤
𝑏 𝜀→ 𝑅𝜖𝑎𝜖

⊤
𝑏 𝑅
⊤𝜀 = 𝑅𝜖𝑎𝜖

⊤
𝑏 𝜀𝑅 = 𝑅𝜖𝑎𝜖𝑏 ·𝑅 . (38.43)
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The trailing dot on the outer product 𝜖𝑎𝜖𝑏 · is symbolic of the trailing 𝜀, necessary to convert the spinor
tensor 𝜖𝑎𝜖⊤𝑏 into an object that transforms like a multivector.
The products of the 2 column basis spinors 𝜖𝑎 with the 2 row basis spinors 𝜖𝑏 · form 4 outer products. The

3D geometric algebra has 8 basis elements, but the pseudoscalar 𝐼3 is a commuting imaginary which in the
Pauli representation is just 𝑖 times the unit matrix, so the 3D geometric algebra is equivalent to a complex
algebra with 4 basis elements. The 4 outer products of basis spinors thus suffice to generate the complete
complex 3D geometric algebra. In the Pauli representation (13.112), the 4 outer products of basis spinors
map to elements of the 3D geometric algebra as follows.
The antisymmetric outer products of spinors form a scalar singlet,

[𝜖↓, 𝜖↑] · = 1 , (38.44)

where the 1 on the right hand side denotes the unit element of the 3D geometric algebra, the 2× 2 identity
matrix. The trailing dot on the commutator indicates that the right partner of each product is a row
spinor, [𝜖↑, 𝜖↓] · = 𝜖↑𝜖

⊤
↓𝜀− 𝜖↓𝜖

⊤
↑𝜀. The combination (38.44) is familiar from quantum mechanics as, modulo a

normalization factor, the spin-0 singlet formed from a combination of two spin- 12 particles, commonly written
in Dirac notation

[𝜖↓, 𝜖↑] = |↓⟩|↑⟩ − |↑⟩|↓⟩ . (38.45)

The spin weight of the singlet (38.44) is zero according to the rule (38.14), as it should be for a scalar.
The symmetric outer products of spinors form a triplet,

{𝜖↑, 𝜖↑}· =
√
2𝛾𝛾+ , {𝜖↑, 𝜖↓}· = −𝛾𝛾3 , {𝜖↓, 𝜖↓}· = −

√
2𝛾𝛾− . (38.46)

The combinations (38.46) of basis spinors are, modulo normalization factors, familiar from quantum me-
chanics as the three components of the spin-1 triplet formed from a combination of two spin- 12 particles,

{𝜖↑, 𝜖↑} = 2 |↑⟩|↑⟩ , {𝜖↑, 𝜖↓} = |↑⟩|↓⟩+ |↓⟩|↑⟩ , {𝜖↓, 𝜖↓} = 2 |↓⟩|↓⟩ . (38.47)

The spin weights of the triplet (38.46) are respectively +1, 0, −1 according to the rules (38.6) and (38.14).
The spin weights of left and right hand sides match, as they should.
The trace of the outer product of a pair of basis spinors gives their scalar product (note that the 1 on the

right hand side of equation (38.44) is the unit matrix, whose trace is 2),

Tr 𝜖𝑎 𝜖𝑏 · = 𝜖𝑏 · 𝜖𝑎 = 𝜀𝑏𝑎 . (38.48)

The expansion of the 4 outer products 𝜖𝑎𝜖𝑏 · of spinors in terms of the basis elements 𝛾𝛾𝐴 of the geometric
algebra, and vice versa, define the matrix of coefficients 𝛾𝐴𝑎𝑏 and its inverse 𝛾𝑎𝑏𝐴 ,

𝜖𝑎𝜖𝑏 · = 𝛾𝐴𝑎𝑏𝛾𝛾𝐴 , 𝛾𝛾𝐴 = 𝛾𝑎𝑏𝐴 𝜖𝑎𝜖𝑏 · . (38.49)

The coefficients 𝛾𝐴𝑎𝑏 and 𝛾
𝑎𝑏
𝐴 in the chiral representation are

𝛾𝐴𝑎𝑏 =
1
2 𝜖𝑏 · 𝛾𝛾

𝐴𝜖𝑎 , 𝛾𝑎𝑏𝐴 = − 𝜖𝑎 · 𝛾𝛾𝐴𝜖𝑏 . (38.50)
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Exercise 38.1. Consistency of spinor and multivector scalar products. Confirm that the spinor and
multivector scalar products are consistent.
Solution. Multivector vectors are equivalent to outer products of Pauli spinors in accordance with equa-
tions (38.46). For example, the scalar product of the multivectors 𝛾𝛾+ and 𝛾𝛾− is

𝛾𝛾+ · 𝛾𝛾− = 1
2 (𝛾𝛾+𝛾𝛾− + 𝛾𝛾−𝛾𝛾+)

= − 1
4

(︀
{𝜖↑, 𝜖↑} · {𝜖↓, 𝜖↓}·+ {𝜖↓, 𝜖↓} · {𝜖↑, 𝜖↑}·

)︀
= −

(︀
𝜖↑(𝜖↑ · 𝜖↓)𝜖↓ ·+ 𝜖↓(𝜖↓ · 𝜖↑)𝜖↑ ·

)︀
= − 𝜖↑𝜖↓ ·+ 𝜖↓𝜖↑ ·
= [𝜖↓, 𝜖↑] ·
= 1 , (38.51)

the fourth step of which invokes the spinor scalar product (38.32), and the last step of which is from the
equivalence (38.44). The result agrees with the multivector scalar product (38.2).

38.11 The 3D super geometric algebra

The 3D super geometric algebra comprises 4 distinct species of objects: true scalars, column spinors, row
spinors, and multivectors. In a matrix representation, they are complex (with respect to 𝑖) matrices with
dimensions 1× 1, 1× 2, 2× 1, and 2× 2. The true scalars are just complex numbers. A column spinor 𝜙 is
a complex linear combination of column basis spinors 𝜖𝑎,

𝜙 = 𝜙𝑎𝜖𝑎 , (38.52)

while a row spinor 𝜙 · is a complex linear combination of row basis spinors 𝜖𝑎 ·,

𝜙 · = 𝜙𝑎𝜖𝑎 · . (38.53)

A multivector 𝑎 is a complex linear combination of outer products of the column and row basis spinors,

𝑎 = 𝑎𝑎𝑏𝜖𝑎𝜖𝑏 · . (38.54)

Linearity and the transformation law (38.43) imply that the algebra of sums and products of outer products
of spinors is isomorphic to the geometric algebra.
There are two distinct kinds of scalar in the super geometric algebra, true scalars that are just complex

numbers, and multivector scalars that are proportional to the unit matrix in a matrix representation. See
§39.6.2 for an explanation of this conundrum.
As seen in §38.8 and §38.10, a column spinor 𝜙 and a row spinor 𝜒 · can be multiplied in either order,

yielding an inner product which is a scalar, and an outer product which is a multivector. However, a column
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spinor cannot be multiplied by a column spinor, and likewise a row spinor cannot be multiplied by a row
spinor, as is manifestly true in a matrix representation.
In applications to quantum field theory, rather than prohibiting certain kinds of multiplication, it is

convenient instead to assert that prohibited multiplications simply yield a true scalar value of zero. Thus

𝜙𝜒 = 0 , 𝜙 · 𝜒 · = 0 , 𝜙𝑎 = 0 , 𝑎𝜙 · = 0 . (38.55)

This allows all objects in the super geometric algebra to be added and multiplied, regardless of their species.
In general, a sequence of products of spinors yields a non-zero result provided that they alternate between

column spinor and row spinor,

𝜙𝜒 · 𝜓 or 𝜙 · 𝜒𝜓 · . (38.56)

Both product sequences are associative,

𝜙𝜒 · 𝜓 = (𝜙𝜒 ·)𝜓 = 𝜙 (𝜒 · 𝜓) , (38.57a)

𝜙 · 𝜒𝜓 · = (𝜙 · 𝜒)𝜓 · = 𝜙 ·(𝜒𝜓 ·) . (38.57b)

A product of an even number of spinors yields a scalar or a multivector depending on whether the first spinor
is a row or a column spinor. A product of an odd number of spinors yields a row spinor or a column spinor
depending on whether the first spinor is a row or a column spinor.
The scalar product and the associative law make it straightforward to simplify long sequences of products.

Let 𝑎 = 𝑎𝑎𝑏𝜖𝑎𝜖𝑏 · and 𝑏 = 𝑏𝑎𝑏𝜖𝑎𝜖𝑏 · be two multivectors expressed as a sum of outer products of spinors.
Their product is the multivector

𝑎𝑏 = 𝑎𝑎𝑏𝜖𝑎𝜖𝑏 · 𝑏𝑐𝑑𝜖𝑐𝜖𝑑 · = 𝜖𝑎𝑎
𝑎𝑏𝜀𝑏𝑐𝑏

𝑐𝑑𝜖𝑑 · = 𝜖𝑎𝑎
𝑎𝑏𝑏𝑏

𝑑𝜖𝑑 · . (38.58)

A sequence such as 𝜙 · 𝑎𝜒 simplifies as

𝜙 · 𝑎𝜒 = 𝜙𝑎𝜖𝑎 · 𝑎𝑏𝑐𝜖𝑏𝜖𝑐 · 𝜒𝑑𝜖𝑑 = 𝜙𝑎𝜀𝑎𝑏𝑎
𝑏𝑐𝜀𝑐𝑑𝜒

𝑑 = 𝜙𝑎𝑎𝑎
𝑐𝜒𝑐 . (38.59)

The trace, equation (38.48), of an outer product of spinors is a true scalar

Tr 𝜒𝜙 · = 𝜒𝑎𝜙𝑏𝜀𝑏𝑎 = −𝜒 · 𝜙 = 𝜙 · 𝜒 , (38.60)

the last step of which assumes that the coefficients 𝜒𝑎 and 𝜙𝑏 are ordinary commuting complex numbers,
equation (38.42).

38.12 Conjugate Pauli spinor

The 3D super geometric algebra possesses a discrete transformation called conjugation. The conjugate Pauli
spinor 𝜙 is defined by equation (38.63). It has the defining properties that (a) its components are complex
conjugates (with respect to 𝑖) of those of the parent spinor 𝜙, and (b) the conjugate spinor 𝜙 rotates in the
same way as the spinor 𝜙.
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The complex conjugate 𝜙* of a Pauli spinor 𝜙 = 𝜙𝑎𝜖𝑎 is defined to be the spinor with complex conjugate
(with respect to 𝑖) coefficients,

𝜙* ≡ 𝜙𝑎*𝜖𝑎 . (38.61)

In effect, the basis spinors 𝜖𝑎 are taken to be real, just as the basis vectors 𝛾𝛾± and 𝛾𝛾3 in the spin basis
are real, equations (38.7). Since the spinor 𝜙 rotates under a rotor 𝑅 as 𝜙→ 𝑅𝜙, its complex conjugate 𝜙*

rotates according to the complex conjugate representation of the Pauli matrices,

𝑅 : 𝜙* → (𝑅𝜙)* = 𝑅*𝜙* . (38.62)

The conjugate Pauli spinor 𝜙 is defined by (despite the similar notation, the conjugate spinor 𝜙 is not the
reverse spinor 𝜙 defined by equation (13.129); rather, the reverse spinor coincides with the row conjugate
spinor 𝜙 = 𝜙 · defined by equation (38.68); note that the conjugate overbar ¯ is slightly smaller and thinner
than the reverse overbar ; but in any case, it should be clear from the context whether the conjugate or
reverse spinor is intended)

𝜙 ≡ 𝜀𝜙* . (38.63)

The 3D spinor metric tensor 𝜀 was constructed earlier to have the property (38.25) that commutation with 𝜀
converts orthonormal basis vectors 𝛾𝛾𝑎 of the geometric algebra to minus their transposes. The spinor metric
tensor 𝜀 has the additional property that commutation with it converts even (but not odd) orthonormal
basis elements 1 and 𝐼3𝛾𝛾𝑎 of the geometric algebra to their complex conjugates (with respect to 𝑖) in the
Pauli representation (13.112). Consequently commutation with 𝜀 converts rotors 𝑅, which are real linear
combinations of the even orthonormal basis elements, to their complex conjugates,

𝜀𝑅* = 𝑅𝜀 , (38.64)

which also implies that 𝜀𝑅 = 𝑅*𝜀, since a rotor 𝑅 is a real linear combination of even orthonormal basis
multivectors, so the complex conjugate 𝑅* of a rotor 𝑅 is a rotor. It follows that the conjugate Pauli spinor
𝜙 rotates in the same way as the spinor 𝜙,

𝑅 : 𝜙 ≡ 𝜀𝜙* → 𝜀𝑅*𝜙* = 𝑅𝜀𝜙* = 𝑅𝜙 . (38.65)

In components,

𝜙 = 𝜙𝑎*�̄�𝑎 , �̄�𝑎 ≡ 𝜀𝜖𝑎 = ∓𝜖�̄� , (38.66)

where the index �̄� is the bit-flip of the index 𝑎, and the ∓ sign is − for ↑ and + for ↓, that is, 𝜀𝜖↑ = −𝜖↓ and
𝜀𝜖↓ = 𝜖↑.
Conjugating a Pauli spinor 𝜙 twice changes its sign,

¯̄𝜙 = −𝜙 . (38.67)
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38.13 Scalar products of spinors and conjugate spinors

The row conjugate Pauli spinor 𝜙 · corresponding to the column conjugate spinor 𝜙 coincides with the
Hermitian conjugate spinor 𝜙†, which in turn coincides with the reverse spinor 𝜙, equation (13.129),

𝜙 · ≡ 𝜙⊤𝜀 = 𝜙†𝜀⊤𝜀 = 𝜙† = 𝜙 . (38.68)

Note that the reverse spinor 𝜙 equals the row conjugate spinor 𝜙 ·; the reverse spinor 𝜙 does not equal the
column conjugate spinor 𝜙 defined by equation (38.63), and the two should not be confused.
The scalar product of a row conjugate Pauli spinor 𝜙 · with a column Pauli spinor 𝜒 coincides with the

product of the Hermitian conjugate spinor 𝜙† with the spinor 𝜒,

𝜙 · 𝜒 = 𝜙†𝜒 =
(︀
𝜙↑* 𝜙↓*

)︀(︂ 𝜒↑

𝜒↓

)︂
= 𝜙↑*𝜒↑ + 𝜙↓*𝜒↓ . (38.69)

In particular, the scalar product 𝜙 · 𝜙 of a spinor with its own conjugate is real and positive,

𝜙 · 𝜙 = 𝜙†𝜙 . (38.70)

The complex conjugate of the scalar product satisfies

(𝜙 · 𝜒)* ≡
(︀
(𝜀𝜙*)⊤𝜀𝜒

)︀*
= 𝜙⊤𝜀⊤�̄� = −𝜙⊤𝜀�̄� = −𝜙 · �̄� . (38.71)

The sign flip in the fourth expression occurs because the spinor metric tensor 𝜀 is antisymmetric, 𝜀⊤ = −𝜀.
In particular, the complex conjugate of the product 𝜙 · 𝜙 of a spinor with its own conjugate is

(𝜙 · 𝜙)* = −𝜙 · 𝜙 . (38.72)

Equation (38.72), along with the condition that the scalar product be real, (𝜙 ·𝜙)* = 𝜙 ·𝜙, equation (38.70),
requires that the scalar product 𝜙 · 𝜙 be anticommuting,

𝜙 · 𝜙 = −𝜙 · 𝜙 . (38.73)

Equation (38.73) proves that the scalar product of Pauli spinors must be anticommuting, as asserted earlier,
equation (38.42).
In non-relativistic quantum mechanics, the real positive scalar (38.70) is interpreted as the probability

of the Pauli spinor 𝜙. Since conjugating a Pauli spinor twice flips its sign, equation (38.67), the scalar
product (38.70) is the same regardless of whether the spinor 𝜙 or its conjugate 𝜙 is taken:

¯̄𝜙 · 𝜙 = −𝜙 · 𝜙 = 𝜙 · 𝜙 . (38.74)

Concept question 38.2. Imaginary spinor metric? Would making the spinor metric 𝜀 imaginary allow
the spinor scalar product to be commuting instead of anticommuting? Answer. No. If the spinor metric 𝜀
were multiplied by 𝑖, or more generally by some arbitrary complex phase (which is possible since the spinor
metric is defined only up to a scalar normalization factor), then the conjugate spinor must be defined by
𝜙 = 𝜀*𝜙* in place of the definition (38.63) in order that the scalar product of the spinor and its conjugate
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remain real and positive, equation (38.70). A manipulation similar to equation (38.71) carries through, with
the result that equation (38.72) continues to hold regardless of any complex phase in spinor metric 𝜀. The
minus sign comes from 𝜀⊤ = −𝜀 regardless of any complex phase. The scalar product of Pauli scalars is
necessarily anticommuting.

38.14 Conjugate multivectors

Conjugate multivectors �̄� in the super geometric algebra are defined, similarly to conjugate Pauli spinors,
such that their components are complex conjugates of the parent multivector 𝑎, and they rotate in the same
way as multivectors (the conjugate multivector �̄� is not the same as the reverse multivector 𝑎; note that the
conjugate overbar ¯ is slightly smaller and thinner than the reverse overbar ).
The complex conjugate multivector 𝑎* of a multivector 𝑎 ≡ 𝑎𝐴𝛾𝛾𝐴 is defined to be

𝑎* ≡ 𝑎𝐴*𝛾𝛾*𝐴 , (38.75)

where 𝛾𝛾*𝐴 is the complex conjugate of the basis multivector 𝛾𝛾𝐴 in the Pauli representation. The spin basis
vectors 𝛾𝛾± and 𝛾𝛾3 are real in the Pauli representation, which is consistent with the basis spinors 𝜖𝑎 being
taken to be real, equation (38.61). Since 𝑎 rotates as 𝑎→ 𝑅𝑎𝑅, the complex conjugate 𝑎* rotates as

𝑅 : 𝑎* → (𝑅𝑎𝑅)* = 𝑅*𝑎*𝑅* . (38.76)

Complex conjugation commutes with the isomorphism between multivectors and outer products of spinors
in the super geometric algebra. That is, if the multivector is an outer product of spinors, 𝑎 = 𝜙𝜒 ·, then the
complex conjugate multivector is the outer product of the complex conjugate spinors, 𝑎* = 𝜙*𝜒* ·.
Similarly, consistent with the definition (38.63) of the conjugate spinor 𝜙*, the conjugate multivector �̄� is

defined by

�̄� ≡ 𝜀𝑎*𝜀−1 . (38.77)

If the multivector is an outer product of spinors, 𝑎 = 𝜙𝜒 ·, then the conjugate multivector is the outer product
of the conjugate spinors, �̄� = 𝜙�̄� ·. Like the conjugate spinor, equation (38.65), the conjugate multivector �̄�
rotates in the same way as a multivector,

𝑅 : �̄� ≡ 𝜀𝑎*𝜀−1 → 𝜀𝑅*𝑎*𝑅*𝜀−1 = 𝑅𝜀𝑎*𝜀−1𝑅 = 𝑅�̄�𝑅 . (38.78)

In the Pauli representation, the conjugates of the orthonormal basis vectors 𝛾𝛾𝑎 are minus themselves,

�̄�𝛾𝑎 ≡ 𝜀𝛾𝛾*𝑎𝜀−1 = −𝛾𝛾𝑎 . (38.79)

The conjugate of a grade-𝑝 multivector 𝑎 is, in components,

�̄� = 𝑎𝐴*�̄�𝛾𝐴 , �̄�𝛾𝐴 = (−)𝑝𝛾𝛾𝐴 . (38.80)
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38.14.1 Real subalgebra

In the Pauli representation, the basis vectors 𝛾𝛾± and 𝛾𝛾3 in a spin basis are real, equations (38.7) and (38.8),
and the basis spinors 𝜖↕ are similarly real, equations (38.12). One might therefore contemplate forming a
real subalgebra of the super geometric algebra from real linear combinations of these basis spinors and their
products. This does not work however, because spatial rotations transform the basis spinors into complex
combinations of each other, equation (13.120). Any viable real subalgebra must be closed under rotations.
Orthonormal basis multivectors on the other hand do transform into real linear combinations of each other

under rotations. A real subalgebra of the geometric algebra may be obtained by restricting to multivectors
satisfying the reality condition that they are their own conjugates,

�̄� = 𝑎 . (38.81)

Since conjugates of even and odd orthonormal basis vectors 𝛾𝛾𝐴 are respectively plus and are minus them-
selves, equation (38.80), in the Pauli representation there is a real subalgebra consisting of linear combinations
𝑎𝐴𝛾𝛾𝐴 of odd orthonormal multivectors with pure imaginary coefficients, and even orthonormal multivectors
with pure real coefficients. But in the Pauli algebra the (odd) pseudoscalar 𝐼3 is identified with 𝑖 times the unit
matrix, so the real Pauli subalgebra reduces to real linear combinations of even orthonormal multivectors.

38.15 The super geometric algebra in arbitrarily many spatial dimensions

Exercise 38.3. Generalize the super geometric algebra to an arbitrary number of dimensions.

Generalize the super geometric algebra to an arbitrary number of spatial dimensions 𝑁 . Exercise 39.5 gen-
eralizes this exercise to an arbitrary number of space and time dimensions.
Solution.

1. Basis of spin vectors 𝛾𝛾𝑎. Let 𝛾𝛾𝑎, 𝑎 = 1, ..., 𝑁 be an orthonormal (𝛾𝛾𝑎 · 𝛾𝛾𝑏 = 𝛿𝑎𝑏) basis of vectors
in the 𝑁 -dimensional geometric algebra. Group the basis vectors into pairs. The following complex
combinations of the pairs define a basis of spin vectors 𝛾𝛾±𝑖 ,

𝛾𝛾+𝑖 ≡ 1√
2
(𝛾𝛾2𝑖−1 + 𝑖𝛾𝛾2𝑖) , 𝛾𝛾−𝑖 ≡ 1√

2
(𝛾𝛾2𝑖−1 − 𝑖𝛾𝛾2𝑖) , 𝑖 = 1, ..., [𝑁/2] , (38.82)

generalizing equations (38.1). If the dimension 𝑁 is odd, then one basis vector, 𝛾𝛾𝑁 , will remain unpaired.

Under a right-handed rotation by angle 𝜃 in the 𝛾𝛾2𝑖−1–𝛾𝛾2𝑖 plane, the 𝑖’th pair of spin basis vectors
𝛾𝛾±𝑖

transform as

𝛾𝛾±𝑖
→ 𝑒∓𝑖𝜃 𝛾𝛾±𝑖

. (38.83)

The transformation (38.83) identifies the spin basis vectors 𝛾𝛾±𝑖
as having 𝑖’th spin weight equal to ±1.

All other spin basis vectors, 𝛾𝛾±𝑗
with 𝑗 ̸= 𝑖, together with the unpaired basis vector 𝛾𝛾𝑁 if 𝑁 is odd,

have zero 𝑖’th spin weight. There are [𝑁/2] different spin weights 𝑖. The components of a tensor in a
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spin basis inherit their spin properties from those of the spin basis. The 𝑖’th spin-weight 𝑠𝑖 of any tensor
component is

spin weight 𝑠𝑖 = number of +𝑖 minus −𝑖 covariant indices , (38.84)

generalizing equation (38.6).
The geometric algebra, Chapter 13, generated by inner and outer products of the 𝑁 basis vectors 𝛾𝛾𝑎

is a vector space of dimension 2𝑁 .
2. Basis of spinors 𝜖𝑎. Spinor axes are defined by 2[𝑁/2] basis spinors 𝜖𝑎,

𝜖𝑎 ≡ 𝜖𝑎1...𝑎[𝑁/2]
(38.85)

where 𝑎1...𝑎[𝑁/2] denotes not a set of indices, but rather a bitcode specifying the single index 𝑎. Each
bit 𝑎𝑖 is either up ↑ or down ↓. For example, one of the basis spinors is the all-up basis spinor 𝜖↑↑...↑.
Under a right-handed rotation by angle 𝜃 in the 𝛾𝛾2𝑖−1–𝛾𝛾2𝑖 plane, a basis spinor 𝜖𝑎 transforms as

𝜖...↑𝑖... → 𝑒−𝑖𝜃/2 𝜖...↑𝑖... , 𝜖...↓𝑖... → 𝑒𝑖𝜃/2 𝜖...↓𝑖... . (38.86)

The transformation (38.86) shows that each basis spinor 𝜖𝑎 has 𝑖’th spin weight either + 1
2 or − 1

2 in each
of its [𝑁/2] bits. The components of a spinor tensor in a spin basis inherit their spin properties from
those of the spin basis. The 𝑖’th spin-weight 𝑠𝑖 of any spinor tensor component is

spin weight 𝑠𝑖 = 1
2 (number of ↑𝑖 minus ↓𝑖 covariant indices) , (38.87)

generalizing equation (38.14).
A spinor 𝜙,

𝜙 = 𝜙𝑎𝜖𝑎 , (38.88)

is a linear combination of the 2[𝑁/2] basis spinors 𝜖𝑎. The spinor can be represented as a column vector
𝜙𝑎 of dimension 2[𝑁/2], the index 𝑎 running over bitcodes 𝑎1...𝑎[𝑁/2].

3. Spinor metric tensor. A spinor metric 𝜀 can be defined as that spinor tensor that is invariant under
rotations, suitably normalized, §38.6. Invariance of the spinor metric 𝜀 under rotations requires that for
any rotor 𝑅,

𝜀𝑅⊤ = 𝑅𝜀 , (38.89)

the same as condition (38.18). A rotor 𝑅 is a real linear combination of even elements of the geometric
algebra in an orthonormal basis. Thus the condition (38.89) is determined by the commutation prop-
erties of 𝜀 with the orthonormal bivectors of the geometric algebra (an orthonormal bivector is defined
here to be a wedge product of orthonormal vectors; the square of an orthonormal bivector is thus −1).
In the canonical chiral representation defined by the construction (38.109), orthonormal basis bivectors
𝛾𝛾𝑎 ∧𝛾𝛾𝑏 are represented by traceless, unitary (𝐴−1 = 𝐴†), skew-Hermitian (𝐴† = −𝐴) matrices. Then
condition (38.89) holds if 𝜀 commutes with orthonormal basis bivectors whose representation is real,
and anticommutes with orthonormal basis bivectors whose representation is imaginary. In the construc-
tion (38.109), all chiral basis vectors 𝛾𝛾±𝑖

are real, so orthonormal basis vectors 𝛾𝛾2𝑖−1 are real while 𝛾𝛾2𝑖
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Table 38.1: Symmetry of spinor metric

𝑁 𝜀2 = (−)[(𝑁+1)/4] 𝜀2alt = (−)[(𝑁+2)/4] 𝜀2 = (−)[𝑁/4] 𝜀2alt = (−)[(𝑁+3)/4]

1 (mod 8) + + + −
2 (mod 8) + −
3 (mod 8) − − + −
4 (mod 8) − −
5 (mod 8) − − − +

6 (mod 8) − +

7 (mod 8) + + − +

8 (mod 8) + +

are imaginary. The only matrix 𝜀 with the required commutation properties with basis bivectors is, up
to a scalar or pseudoscalar normalization factor, the product of all the odd basis vectors 𝛾𝛾2𝑖−1,

𝜀 =

[(𝑁+1)/2]∏︁
𝑖=1

𝛾𝛾2𝑖−1 . (38.90)

An alternative version 𝜀alt of the spinor metric may be obtained by multiplying the spinor metric (38.90)
by the chiral factor κ𝑁 , which is the pseudoscalar 𝐼𝑁 , equation (38.121), normalized by a power of 𝑖 so
that κ2

𝑁 equals one, equation (38.124),

𝜀alt ≡ κ𝑁𝜀 =
[𝑁/2]∏︁
𝑖=1

𝑖𝛾𝛾2𝑖 . (38.91)

The factors of the imaginary 𝑖 are introduced so that the spinor metric 𝜀 is real.
If 𝑁 is odd, and if the odd algebra is constructed, as described in part 10 of this Exercise, by

embedding the odd algebra in one extra dimension and treating either the final (odd) dimension 𝛾𝛾𝑁 or
the extra (even) dimension 𝛾𝛾𝑁+1 as a scalar, then there are further options for the spinor metric. The
invariance condition (38.89) need hold only for rotors not involving the scalar dimension 𝛾𝛾𝑁 or 𝛾𝛾𝑁+1. If
the scalar dimension is the odd dimension 𝛾𝛾𝑁 , then 𝛾𝛾𝑁 can be dropped from the standard spinor metric
𝜀, leaving 𝜀 in 𝑁−1 dimensions. If the scalar dimension is the even dimension 𝛾𝛾𝑁+1, then 𝑖𝛾𝛾𝑁+1 can
be adjoined to the alternative spinor metric 𝜀alt, giving 𝜀alt in 𝑁+1 dimensions. The resulting spinor
metrics, distinguished with a tilde, are

𝜀𝑁 = 𝜀𝑁𝛾𝛾𝑁 = 𝜀𝑁−1 , 𝜀alt,𝑁 = 𝜀alt,𝑁 𝑖𝛾𝛾𝑁+1 = 𝜀alt,𝑁+1 (𝑁 odd) . (38.92)

The spinor metric 𝜀, in any of the forms (38.90)–(38.92), is real and orthogonal, and its square is plus
or minus the unit matrix,

𝜀−1 = 𝜀⊤ , 𝜀2 = ±1 , (38.93)
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Table 38.2: Sign of 𝛾𝛾⊤𝑎𝜀 = ±𝜀𝛾𝛾𝑎

𝑁 𝜀 : (−)[(𝑁+3)/2] 𝜀alt : (−)[𝑁/2] 𝜀 : (−)[(𝑁+2)/2] 𝜀alt : (−)[(𝑁+1)/2]

1 (mod 8) + + − −
2 (mod 8) + −
3 (mod 8) − − + +

4 (mod 8) − +

5 (mod 8) + + − −
6 (mod 8) + −
7 (mod 8) − − + +

8 (mod 8) − +

where the ± sign is as tabulated in Table 38.1. The square of the spinor metric coincides with the
symmetry of the spinor metric under exchange of its indices, equation (38.98) below. The spinor metric
matrix 𝜀 is always Hermitian,

𝜀−1 = 𝜀† . (38.94)

Despite the equality of 𝜀 and
∏︀
𝑖 𝛾𝛾2𝑖−1 (or of 𝜀alt and

∏︀
𝑖 𝑖𝛾𝛾2𝑖) in the representation (38.109), 𝜀 (or 𝜀alt)

is defined to transform as a spinor tensor under rotations, not as an element of the geometric algebra.
In the representation (38.109), the ordering of rows or columns indexed by spinor index 𝑎 = 𝑎1...𝑎[𝑁/2]
is that of binary numbers 𝑎[𝑁/2]...𝑎1 with 0 for up ↑ and 1 for down ↓. The components 𝜀𝑏𝑎 of the spinor
metric 𝜀,

𝜀𝑏𝑎 ≡ 𝜖𝑏 · 𝜖𝑎 ≡ 𝜖⊤𝑏 𝜀𝜖𝑎 , (38.95)

are non-vanishing only between basis spinors 𝜖𝑏 and 𝜖𝑎 that are bit flips of each other. The sign of 𝜀�̄�𝑎,
where �̄� denotes the bit flip of 𝑎, follows inductively from equations (38.107), and is

𝜀𝜖𝑎 = sign(𝜀�̄�𝑎)𝜖�̄� , sign(𝜀�̄�𝑎) ≡ sign(𝜀�̄�1...�̄�[𝑁/2]𝑎1...𝑎[𝑁/2]
) =

∏︁
𝑎𝑖= ↑

(−)𝑖−1 . (38.96)

For the alternative spinor metric (38.91), the sign is

𝜀alt𝜖𝑎 = sign(𝜀alt�̄�𝑎 )𝜖�̄� , sign(𝜀alt�̄�𝑎 ) ≡ sign(𝜀alt�̄�1...�̄�[𝑁/2]𝑎1...𝑎[𝑁/2]
) =

∏︁
𝑎𝑖= ↑

(−)𝑖 . (38.97)

The spinor metric is symmetric or antisymmetric as its square is positive or negative,

𝜀𝑎𝑏 = ±𝜀𝑏𝑎 , (38.98)

where the ± sign is as tabulated in Table 38.1.
Commuting the spinor metric 𝜀 through the orthonormal basis vectors 𝛾𝛾𝑎 converts them to plus or

minus their transposes,

𝛾𝛾⊤𝑎 𝜀 = ±𝜀𝛾𝛾𝑎 . (38.99)
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Table 38.2 tabulates the sign in equation (38.99) for the spinor metric 𝜀 and the alternative spinor metric
𝜀alt, along with the tilde’d versions (38.92) for odd 𝑁 . For tilde’d spinor metrics, equation (38.99) holds
for all orthonormal basis vectors 𝛾𝛾𝑎 excepting the scalar vector 𝛾𝛾𝑁 or 𝛾𝛾𝑁+1, for which there is an extra
minus sign, that is, 𝛾𝛾⊤𝑁𝜀 = −±𝜀𝛾𝛾𝑁 if the scalar dimension is 𝛾𝛾𝑁 , or 𝛾𝛾⊤𝑁+1𝜀alt = −±𝜀alt𝛾𝛾𝑁+1 if the scalar
dimension is 𝛾𝛾𝑁+1. Equation (38.99) is proved by induction: equations (38.110) and (38.115) imply that
if (38.99) has a certain sign in 𝑁−2 dimensions, then it has the same sign in 𝑁 dimensions; the sign is
then determined at the smallest dimension for which the spinor metric 𝜀 is defined, 𝑁 = 1 or 2.
Equation (38.99) implies that the commutation rule of an orthonormal multivector 𝛾𝛾𝐴 of grade 𝑝 with

the spinor metric 𝜀 is

𝛾𝛾⊤𝐴𝜀 = (±)𝑝𝜀𝛾𝛾𝐴 = (±)𝑝(−)[𝑝/2]𝜀𝛾𝛾𝐴 , (38.100)

where 𝛾𝛾𝐴 is the reverse (not conjugate) of 𝛾𝛾𝐴, and the ± sign in (±)𝑝 is that in equation (38.99), which
depends on dimension 𝑁 as tabulated in Table 38.2.

4. Scalar product of spinors. Corresponding to any column basis spinor 𝜖𝑎 is a row basis spinor 𝜖𝑎 ·
defined by

𝜖𝑎 · ≡ 𝜖⊤𝑎𝜀 . (38.101)

(or by 𝜖𝑎 · ≡ 𝜖⊤𝑎𝜀alt if the alternative spinor metric is used). The row spinor 𝜙 · corresponding to a column
spinor 𝜙 = 𝜙𝑎𝜖𝑎 is

𝜙 · ≡ 𝜙⊤𝜀 = 𝜙𝑎𝜖𝑎 · . (38.102)

The scalar product of row and column spinors is

𝜙 · 𝜒 = 𝜀𝑎𝑏𝜙
𝑎𝜒𝑏 . (38.103)

The scalar product is symmetric or antisymmetric as the spinor metric is symmetric or antisymmetric,

𝜙 · 𝜒 = 𝜀2 𝜒 · 𝜙 , (38.104)

the sign of 𝜀2 being as given in Table 38.1.
Linear combinations of outer products 𝜖𝑎𝜖𝑏 · of basis spinors,

𝜙𝜒 · = 𝜙𝑎𝜒𝑏𝜖𝑎𝜖𝑏 · , (38.105)

form a vector space of dimension 22[𝑁/2]. Multiplication of outer products satisfies the associative rule

(𝜙𝜒 ·)(𝜓𝜉 ·) = 𝜙(𝜒 · 𝜓)𝜉 · , (38.106)

which since 𝜒 · 𝜓 is a scalar is proportional to the outer product 𝜙𝜉 ·.
5. Chiral representation of the super geometric algebra. There is an isomorphism between the al-

gebra of outer products of spinors and the geometric algebra (Brauer and Weyl, 1935). The isomorphism
may be established by an explicit representation in terms of column and row vectors for spinors, and
matrices for multivectors in the geometric algebra. This part 5 of this Exercise takes the spinor metric
to be the standard spinor metric 𝜀, equation (38.90). The next part 6 of this Exercise describes the
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modifications that must be made if the spinor metric is taken to be the alternative spinor metric 𝜀alt,
equation (38.91).

The construction below yields the chiral representation, generated inductively starting from 𝑁 = 0.
Given a representation of column and row basis spinors 𝜖𝐴 and 𝜖𝐴 · in 𝑁−2 dimensions, a representation
of column and row basis spinors 𝜖𝐴𝑎 and 𝜖𝐴𝑎 · (with one extra index 𝑎 = ↑ or ↓) in 𝑁 dimensions are
column and row matrices of length 2𝑁/2,

𝜖𝐴↑ =

(︂
𝜖𝐴
0

)︂
, 𝜖𝐴↑ · =

(︀
0 𝜖𝐴 ·

)︀
, (38.107a)

𝜖𝐴↓ =

(︂
0

𝜖𝐴

)︂
, 𝜖𝐴↓ · =

(︀
(−)(𝑁−2)/2𝜖𝐴 · 0

)︀
, (38.107b)

where 0 represents respectively a zero column or row vector of length 2(𝑁−2)/2, and the index 𝑁/2 on ↑
and ↓ has been dropped for brevity. The induction starts at 𝑁 = 2 where 𝐴 is empty and 𝜖𝐴 = 𝜖𝐴 · = 1.
The trailing dot signifies the spinor metric tensor 𝜀. The construction (38.107) assumes that the spinor
metric 𝜀 is a product (38.90) of factors, the last factor 𝛾𝛾𝑁−1 taking the form (38.113), so that the
relation between the spinor metric in 𝑁 and 𝑁−2 dimensions is given by equation (38.115).

The outer products of the column basis spinors 𝜖𝐴𝑎 and row basis spinors 𝜖𝐵𝑏 · given by the inductive
relations (38.107) are 2𝑁/2 × 2𝑁/2 matrices

𝜖𝐴↑𝜖𝐵↑ · =
(︂

0 𝜖𝐴𝜖𝐵 ·
0 0

)︂
, (38.108a)

𝜖𝐴↑𝜖𝐵↓ · =
(︂

(−)(𝑁−2)/2𝜖𝐴𝜖𝐵 · 0

0 0

)︂
, (38.108b)

𝜖𝐴↓𝜖𝐵↑ · =
(︂

0 0

0 𝜖𝐴𝜖𝐵 ·

)︂
, (38.108c)

𝜖𝐴↓𝜖𝐵↓ · =
(︂

0 0

(−)(𝑁−2)/2𝜖𝐴𝜖𝐵 · 0

)︂
, (38.108d)

where the 0’s in equations (38.108) represent zero 2(𝑁−2)/2 × 2(𝑁−2)/2 matrices, and the index 𝑁/2 on
↑ and ↓ has again been dropped for brevity. Again, the induction (38.108) starts at 𝑁 = 2 where 𝐴 and
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𝐵 are empty, and 𝜖𝐴𝜖𝐵 · = 1. The outer products (38.108) can be rewritten

𝜖𝐴↑𝜖𝐵↑ · =
1√
2

(︂
𝜖𝐴𝜖𝐵 · 0

0 ±𝜖𝐴𝜖𝐵 ·

)︂(︂
0
√
2

0 0

)︂
, (38.109a)

𝜖𝐴↑𝜖𝐵↓ · = (−)(𝑁−2)/2 1
2

(︂
𝜖𝐴𝜖𝐵 · 0

0 ±𝜖𝐴𝜖𝐵 ·

)︂(︂
2 0

0 0

)︂
, (38.109b)

𝜖𝐴↓𝜖𝐵↑ · = ±
1

2

(︂
𝜖𝐴𝜖𝐵 · 0

0 ±𝜖𝐴𝜖𝐵 ·

)︂(︂
0 0

0 2

)︂
, (38.109c)

𝜖𝐴↓𝜖𝐵↓ · = ±(−)(𝑁−2)/2
1√
2

(︂
𝜖𝐴𝜖𝐵 · 0

0 ±𝜖𝐴𝜖𝐵 ·

)︂(︂
0 0√
2 0

)︂
, (38.109d)

where the upper/lower sign is for even/odd 𝜖𝐴𝜖𝐵 · (that is, the total spin weight
∑︀
𝑖 𝑠𝑖 of 𝜖𝐴𝜖𝐵 · is

even/odd). The first matrix on the right hand sides of equations (38.109) is the matrix representation
of the multivector 𝜖𝐴𝜖𝐵 · in 𝑁 dimensions in terms of its representation in 𝑁−2 dimensions,

𝜖𝐴𝜖𝐵 · = (−)(𝑁−2)/2𝜖𝐴↑𝜖𝐵↓ · ± 𝜖𝐴↓𝜖𝐵↑ · =
(︂

𝜖𝐴𝜖𝐵 · 0

0 ±𝜖𝐴𝜖𝐵 ·

)︂
. (38.110)

The rightmost factors in equations (38.109) constitute the matrix representations of 𝛾𝛾+, 𝛾𝛾+𝛾𝛾−, 𝛾𝛾−𝛾𝛾+,
and 𝛾𝛾− in 𝑁 dimensions,

𝛾𝛾+ =

(︂
0
√
2

0 0

)︂
, 𝛾𝛾+𝛾𝛾− =

(︂
2 0

0 0

)︂
, 𝛾𝛾−𝛾𝛾+ =

(︂
0 0

0 2

)︂
, 𝛾𝛾− =

(︂
0 0√
2 0

)︂
, (38.111)

which have the correct normalization and commutation rules with respect to each other. The signs in
equations (38.109) are arranged so that the correct commutation rules of the geometric algebra are
respected: 𝛾𝛾+ and 𝛾𝛾−, which are odd, commute/anticommute with 𝜖𝐴𝜖𝐵 · according as the latter is
even/odd; and 𝛾𝛾+𝛾𝛾− and 𝛾𝛾−𝛾𝛾+, which are even, always commute with 𝜖𝐴𝜖𝐵 ·. In terms of scalar and
wedge products, the multivectors 𝛾𝛾+𝛾𝛾− and 𝛾𝛾−𝛾𝛾+ in equations (38.111) are

𝛾𝛾±𝛾𝛾∓ = 𝛾𝛾+ · 𝛾𝛾− ± 𝛾𝛾+ ∧𝛾𝛾− , 𝛾𝛾+ · 𝛾𝛾− =

(︂
1 0

0 1

)︂
, 𝛾𝛾+ ∧𝛾𝛾− =

(︂
1 0

0 −1

)︂
. (38.112)

Note that 𝛾𝛾+ ∧𝛾𝛾− = −𝑖𝛾𝛾𝑁−1 ∧𝛾𝛾𝑁 , so that (𝛾𝛾+ ∧𝛾𝛾−)2 = 1. The orthonormal basis vectors 𝛾𝛾𝑁−1 and
𝛾𝛾𝑁 at the (𝑁/2)’th step are

𝛾𝛾𝑁−1 =

(︂
0 1

1 0

)︂
, 𝛾𝛾𝑁 =

(︂
0 −𝑖
𝑖 0

)︂
, (38.113)

which are traceless, unitary, and Hermitian. The orthonormal basis bivector 𝛾𝛾𝑁−1 ∧𝛾𝛾𝑁 is

𝛾𝛾𝑁−1 ∧𝛾𝛾𝑁 =

(︂
𝑖 0

0 −𝑖

)︂
, (38.114)
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which is traceless, unitary, and skew-Hermitian. An iterative expression for the spinor metric 𝜀𝑁 follows
from its expression (38.90) as a product of basis vectors, and is the antidiagonal matrix

𝜀𝑁 = 𝜀𝑁−2 𝛾𝛾𝑁−1 =

(︂
𝜀𝑁−2 0

0 (−)(𝑁−2)/2𝜀𝑁−2

)︂(︂
0 1

1 0

)︂
=

(︂
0 𝜀𝑁−2

(−)(𝑁−2)/2𝜀𝑁−2 0

)︂
.

(38.115)
The left factor in the third expression of equations (38.115) is the matrix representation of 𝜀𝑁−2 in
𝑁 dimensions in terms of its representation in 𝑁−2 dimensions, in accordance with equation (38.110).
The factor of (−)(𝑁−2)/2 comes from the fact that the spinor metric 𝜀𝑁−2 is a product of (𝑁−2)/2
basis vectors, equation (38.90), so is even/odd (total spin weight even/odd) as (𝑁−2)/2 is even or
odd. Equation (38.115), which was assumed in the initial step (38.107) of the construction of the chiral
representation of the super geometric algebra, proves the consistency of the construction.
The matrix representation of the column and row basis spinors (38.107) and of their outer prod-

ucts (38.109) is entirely real (with respect to 𝑖). The expansion of the 2𝑁 outer products 𝜖𝑎𝜖𝑏 · of spinors
in terms of the 2𝑁 basis multivectors 𝛾𝛾𝐴 of the spacetime algebra, and vice versa, define the matrix of
coefficients 𝛾𝐴𝑎𝑏 and its inverse 𝛾𝑎𝑏𝐴 ,

𝜖𝑎𝜖𝑏 · = 𝛾𝐴𝑎𝑏𝛾𝛾𝐴 , 𝛾𝛾𝐴 = 𝛾𝑎𝑏𝐴 𝜖𝑎𝜖𝑏 · . (38.116)

The coefficients 𝛾𝐴𝑎𝑏 and 𝛾
𝑎𝑏
𝐴 in the chiral representation are

𝛾𝐴𝑎𝑏 =
1

2[𝑁/2]
𝜖𝑏 · 𝛾𝛾𝐴𝜖𝑎 , 𝛾𝑎𝑏𝐴 = sign(𝜀2) 𝜖𝑎 · 𝛾𝛾𝐴𝜖𝑏 , (38.117)

where sign(𝜀2) is the symmetry of the spinor metric, Table 38.1.
For even 𝑁 , the above construction establishes an isomorphism between outer products of spinors

and the geometric algebra,

outer products of spinors ∼= geometric algebra (𝑁 even) . (38.118)

Both spaces are complex 2𝑁 -dimensional vector spaces. Their representation as 2𝑁/2 × 2𝑁/2 dimen-
sional matrices is minimal: there is no representation of the geometric algebra with matrices of smaller
dimension.

6. Chiral representation of the super geometric algebra using the alternative spinor metric.

The chiral representation of the super geometric algebra with the alternative spinor metric (38.91) is
the same as the construction in part 5, but with the replacement

(−)(𝑁−2)/2 → (−)𝑁/2 (38.119)

in equations (38.107) to (38.110). Analogously to equation (38.115), an iterative equation for the al-
ternative spinor metric follows from its expression (38.91) as a product of basis vectors, and is the
antidiagonal matrix

𝜀alt𝑁 = 𝜀alt𝑁−2 𝑖𝛾𝛾𝑁 =

(︂
𝜀alt𝑁−2 0

0 (−)(𝑁−2)/2𝜀alt𝑁−2

)︂(︂
0 1

−1 0

)︂
=

(︂
0 𝜀alt𝑁−2

(−)𝑁/2𝜀alt𝑁−2 0

)︂
. (38.120)
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7. Super geometric algebra in odd dimensions, version 1. The construction of the super geometric
algebra in part 5 works in even dimensions 𝑁 . What about 𝑁 odd? One approach, dealt with in this
part, is to project the odd-dimensional algebra into one lower dimension, which requires identifying the
chiral operator κ𝑁 with 1, equation (38.125). The resulting algebra of outer products of spinors, besides
not yielding the full odd-𝑁 geometric algbra, does not include a parity operator. A richer approach, put
forward in part 10, is to embed the odd-dimensional algebra in the algebra with one higher dimension,
and to treat the extra dimension as a scalar, which proves to be a parity operator.
Consider that the pseudoscalar 𝐼𝑁 of the geometric algebra can be written

𝐼𝑁 ≡ 𝛾𝛾1 ∧𝛾𝛾2 ∧ ...∧𝛾𝛾𝑁 = 𝑖[𝑁/2]κ𝑁 , (38.121)

where the chiral operator κ𝑁 (the generalization of the 4D Dirac chiral operator 𝛾5) is defined by

κ𝑁 ≡ 𝛾𝛾+1 ∧𝛾𝛾−1 ∧ ...∧𝛾𝛾+[𝑁/2]
∧𝛾𝛾−[𝑁/2]

{∧𝛾𝛾𝑁 if 𝑁 is odd} . (38.122)

In the chiral representation (38.109), the representation of the chiral operator κ𝑁 in 𝑁 even dimensions
in terms of its representation κ𝑁−2 in 𝑁−2 dimensions is the diagonal matrix

κ𝑁 =

(︂
κ𝑁−2 0

0 −κ𝑁−2

)︂
(𝑁 even) . (38.123)

The chiral operator is diagonal in the chiral representation by construction. The square of the pseu-
doscalar is 𝐼2𝑁 = (−)[𝑁/2], equation (13.21), so the square of the chiral operator is the unit matrix 1,

κ2
𝑁 = 1 . (38.124)

Like the pseudoscalar 𝐼𝑁 , the chiral operator κ𝑁 is invariant under rotations. For even 𝑁 , the chiral
operator κ𝑁 is defined through equation (38.122) as a prescribed member of both algebras, the algebra of
spinor outer products and the geometric algebra. But for odd 𝑁 , since the definition (38.122) involves 𝛾𝛾𝑁
which (as yet) has no expression in the algebra of outer products of spinors, there is the possibility that
κ𝑁 could be a distinct element not belonging to the algebra of spinor outer products. The element κ𝑁
is a rotationally invariant scalar that squares to 1, and that (for odd 𝑁) commutes with all basis vectors
𝛾𝛾𝑎. The other element of the odd-𝑁 algebra of spinor outer products that possesses those properties is
(up to a possible sign) the unit element. Thus if the chiral operator κ𝑁 is identified with 1,

κ𝑁 = 1 (𝑁 odd) , (38.125)

then there is an isomorphism between the algebra of outer products of spinors in 𝑁−1 dimensions and
the geometric algebra in 𝑁 dimensions modulo the chiral operator κ𝑁 ,

outer products of spinors ∼= geometric algebra (mod κ𝑁 ) (𝑁 odd) . (38.126)

Given the identification (38.125) of the chiral operator with 1, it then follows from the definition equa-
tion (38.122) of κ𝑁 that the final element 𝛾𝛾𝑁 of the geometric algebra is

𝛾𝛾𝑁 = κ𝑁−1 = 𝛾𝛾+1 ∧𝛾𝛾−1 ∧ ...∧𝛾𝛾+[𝑁/2]
∧𝛾𝛾−[𝑁/2]

(𝑁 odd) . (38.127)
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In the case 𝑁 = 3, this gives

𝛾𝛾3 = 𝛾𝛾+ ∧𝛾𝛾− =

(︂
1 0

0 −1

)︂
, (38.128)

in agreement with the Pauli matrix equation (38.8). With the identification (38.125), the pseudoscalar
𝐼𝑁 itself is, equation (38.121),

𝐼𝑁 = 𝑖[𝑁/2] (𝑁 odd) . (38.129)

For odd 𝑁 , the chiral operator κ𝑁 defined by equation (38.122) is (before κ𝑁 is identified with 1)
an odd element of the geometric algebra. Thus for odd 𝑁 , the odd part of the geometric algebra is
isomorphic to κ𝑁 times the even geometric algebra. Only the odd geometric algebra is affected by the
identification (38.125) of the chiral operator with unity; the even geometric algebra is unaffected. The
square of the chiral operator is always 1, equation (38.124), so the product of two odd multivectors
yields the correct even multivector regardless of the identification (38.125).

The imaginary 𝑖 was introduced already in the very first step (38.82) of the construction of the super
geometric algebra. One might ask where that imaginary came from? An intriguing observation is that
if 𝑁 is odd and [𝑁/2] is odd (thus 𝑁 = 3, 7, 11, ...), then the pseudoscalar 𝐼𝑁 squares to −1 and
commutes with all elements of the geometric algebra, just like the imaginary 𝑖. One might take the view
that maybe that’s where 𝑖 comes from. Taking the view that 𝐼𝑁 is indeed the imaginary is equivalent to
indentifying the chiral operator κ𝑁 with unity, equation (38.125), in which case 𝑖 is, up to a sign, the
pseudoscalar 𝐼𝑁 , equation (38.129).

In summary, the algebra of spinor outer products in 2[𝑁/2] dimensions is isomorphic to the geometric
algebra for both even and odd 𝑁 , modulo κ𝑁 in the case of odd 𝑁 . The algebra is a complex (with
respect to 𝑖) vector space of dimension 22[𝑁/2], represented in the chiral construction (38.109) by 2[𝑁/2]×
2[𝑁/2] matrices. For example, the 𝑁 = 2 geometric algebra is the complex vector space generated by
1,𝛾𝛾+,𝛾𝛾−,𝛾𝛾+ ∧𝛾𝛾−, while the 𝑁 = 3 geometric algebra (the Pauli algebra) is the complex vector space
generated by 1,𝛾𝛾+,𝛾𝛾−,𝛾𝛾3, the pseudoscalar 𝐼3 being identified with the imaginary 𝑖.

8. Extra symmetry of the super geometric algebra in odd dimensions. Given that, if κ𝑁 is
identified with 1, the geometric algebra for odd 𝑁 is isomorphic to the geometric algebra for even
𝑁−1, what is the difference between the two algebras? Since the algebras are isomorphic, there is of
course no difference. However, bivectors are special in that they are the only generators that generate
transformations that preserve grade, and therefore correspond to what one usually thinks of as spatial
rotations. If one restricts only to rotations generated by bivectors, then the odd algebra has a higher
degree of symmetry. The equivalence (38.127) means that the pseudoscalar κ𝑁−1 in the even algebra
is promoted to a vector 𝛾𝛾𝑁 in the odd algebra, and pseudovectors 𝛾𝛾𝑎κ𝑁−1 in the even algebra become
bivectors 𝛾𝛾𝑎 ∧𝛾𝛾𝑁 in the odd algebra. Thus the odd algebra has 𝑁−1 more rotations than the even
algebra.

The final basis vector 𝛾𝛾𝑁 = κ𝑁−1 of the odd algebra has the same properties as the other orthonormal
basis vectors 𝛾𝛾1 to 𝛾𝛾𝑁−1: its square is 1, it anticommutes with the other orthonormal basis vectors, it is
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represented by a traceless, unitary, Hermitian matrix, and its reverse is (by definition) itself, 𝛾𝛾𝑁 = 𝛾𝛾𝑁 .
And, like the other orthonormal basis vectors 𝛾𝛾2𝑖−1 of odd index, the representation of 𝛾𝛾𝑁 is real.
The Pauli algebra (13.115) in 𝑁 = 3 dimensions offers a familiar example. In both 2 and 3 dimensions

there are just 2 basis spinors, 𝜖↑ and 𝜖↓, which one commonly conceptualizes as being up and down
along a “3-axis”. But whereas in 2 dimensions there is just one rotation, generated by the bivector 𝛾𝛾1 ∧𝛾𝛾2

(rotation about the “3-axis”), in 3 dimensions there are 2 more rotations, generated by the bivectors
𝛾𝛾2 ∧𝛾𝛾3 and 𝛾𝛾3 ∧𝛾𝛾1 (rotations about the “1-axis” and “2-axis”).

9. Parity reversal. A second approach to the odd-𝑁 algebra is put forward in the next part 10, but first
it is necessary to consider the issue of parity reversal. Parity reversal is the operation of reflecting an odd
number of spatial axes 𝛾𝛾𝑎, corresponding to an improper rotation with determinant −1. By contrast,
reflecting an even number of axes can be accomplished by a continuous rotation with determinant 1.
If the number 𝑁 of dimensions is even, then parity reversal may be realised by picking one particular

axis, say 𝑃 = 𝛾𝛾𝑁 , and transforming spinors 𝜓 and multivectors 𝑎 by

𝑃 : 𝜓 → 𝑃𝜓 , 𝑎→ 𝑃𝑎𝑃−1 . (38.130)

The transformation (38.130) reflects all axes except the axis 𝑃 = 𝛾𝛾𝑁 , so reflects an odd number of axes
provided that 𝑁 is even.
If the number 𝑁 of dimensions is odd, and if the geometric algebra is projected into one dimension

lower as proposed in part 7, equation (38.125), then there is no element of the geometric algebra that
accomplishes parity reversal 𝑃 by the operation (38.130). The difficulty is that any anticommutation of 𝑃
with a basis vector 𝛾𝛾𝑎 is cancelled by a corresponding anticommutation with the final basis vector 𝛾𝛾𝑁 ∝
𝛾𝛾1...𝛾𝛾𝑁−1, for no net anticommutation. The absence of a parity operator in the geometric algebra holds
true even if the odd-dimensional chiral operator κ𝑁 is not identified with unity, since all vectors commute
with the odd-dimensional chiral operator. The problem of constructing an odd-𝑁 super geometric algebra
that incorporates a parity operator is solved in the next part 10.

10. Super geometric algebra in odd dimensions, version 2. The previous part 9 brought up the fact
that the geometric algebra in odd 𝑁 dimensions does not contain a parity operator 𝑃 , at least if the
path proposed in part 7 is followed, that is, if the odd-𝑁 algebra is projected into one lower dimension.
The problem is not that the operation of parity reversal does not exist, but rather, how to construct

such a parity operator out of products of spinors.
The solution is to embed the odd 𝑁 -dimensional algebra in the even (𝑁+1)-dimensional algebra, and

to treat either the final (odd) dimension 𝛾𝛾𝑁 or the extra (even) orthonormal dimension 𝛾𝛾𝑁+1 as the
scalar parity operator 𝑃 ,

𝑃 = 𝛾𝛾𝑁 or 𝛾𝛾𝑁+1 . (38.131)

The vectors 𝛾𝛾𝑁 or 𝛾𝛾𝑁+1 have the usual property that they anticommute with all orthonormal vectors
𝛾𝛾𝑎 other than themselves, so the parity operator 𝑃 defined by equation (38.131) has the property that
it reflects all axes except itself,

𝑃 : 𝛾𝛾𝑎 → 𝑃𝛾𝛾𝑎𝑃
−1 = −𝛾𝛾𝑎 . (38.132)
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Since 𝑁 is odd, this choice of 𝑃 reflects an odd number of axes, so indeed reverses parity. The operation
𝑃 of reflecting all axes (other than the scalar axis 𝛾𝛾𝑁 or 𝛾𝛾𝑁+1) is rotationally invariant with respect to
rotations in 𝑁 dimensions (with the scalar axis 𝛾𝛾𝑁 or 𝛾𝛾𝑁+1 fixed).

As usual, there is a spin bit (the [(𝑁+1)/2]’th bit) associated with the pair 𝛾𝛾𝑁 and 𝛾𝛾𝑁+1 of axes.
Normally a rotation in the 𝛾𝛾𝑁 ∧𝛾𝛾𝑁+1 plane would rotate spinors by a phase 𝑒∓𝑖𝜃/2 with sign ∓ de-
pending on whether the spin bit is up ↑ or down ↓. But since 𝑃 is a scalar, there is no such rotation.
Notwithstanding the absence of a rotation by a phase, the spin bit is still there, part of the bitcode
index 𝑎 = 𝑎1...𝑎[(𝑁+1)/2] of a basis spinor 𝜖𝑎.

11. Properties of orthonormal basis multivectors in the chiral representation. In the chiral rep-
resentation constructed in part 5, all orthonormal basis vectors 𝛾𝛾𝑎, and all orthonormal basis 𝑝-vectors
𝛾𝛾𝑎1...𝑎𝑝 ≡ 𝛾𝛾𝑎1 ∧ ...∧𝛾𝛾𝑎𝑝 , are traceless (except for the unit basis element 1), unitary, and either Hermitian
(if [𝑝/2] is even, i.e. 𝑝 = 0, 1, 4, 5, ...) or skew-Hermitian (if [𝑝/2] is odd, i.e. 𝑝 = 2, 3, 6, 7, ...) 2[𝑁/2]×2[𝑁/2]
matrices. All matrices have determinant 1, except that for 𝑁 = 2 the vectors (grade 𝑝 = 1) have de-
terminant −1. The unit element is represented by the unit matrix. Most of these assertions can be
proved by induction using the expression (38.110), which gives the representation of a multivector in 𝑁
dimensions in terms of its representation in 𝑁−2 dimensions.

12. Right- and left-handed chiral subalgebras in even dimensions. In even 𝑁 dimensions, a spinor
is said to be right- or left-handed depending on whether its chirality is even or odd. A basis spinor 𝜖𝑎 is
right- or left-handed depending on whether the number of spin flips of the index 𝑎 = 𝑎1...𝑎[𝑁/2], relative
to the all-up index ↑↑ ... ↑, is even or odd,

κ𝑁𝜖𝑎 =
(︁ ∏︁
𝑎𝑖= ↓

(−)
)︁
𝜖𝑎 . (38.133)

In other words, a basis spinor 𝜖𝑎 is right- or left-handed as the number of down ↓ indices is even or odd.
In even 𝑁 dimensions, the chirality of a spinor is invariant under rotations.

In odd 𝑁 dimensions, if the path proposed in part 7 is followed, where the algebra is projected into
one lower dimension, which requires identifying the chiral operator κ𝑁 with unity, equation (38.125),
then rotations mix right-and left-handed spinors, and chirality is not a rotationally invariant property
of spinors.

If on the other hand 𝑁 is odd and the path proposed in part 10 is followed, where the algebra is
embedded in one higher dimension, then a basis spinor 𝜖𝑎 has [(𝑁+1)/2] bits, and its chirality is that
of the algebra in one higher dimension. The chirality operator is κ𝑁+1. In the rest of this part of this
Exercise, replace 𝑁 by 𝑁+1 if 𝑁 is odd and part 10 is followed.

Right- and left-handed chiral multivectors are eigenvalues of the chiral operator κ𝑁 (or κ𝑁+1 if 𝑁 is
odd and part 10 is followed), with eigenvalues ±1,

κ𝑁𝑎R
L
= ±𝑎R

L
. (38.134)
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Right- and left-handed chirality projection operators 𝑃R
L
may be defined by

𝑃R
L
≡ 1

2 (1± κ𝑁 ) = 1
2 (1± 𝑖

−[𝑁/2]𝐼𝑁 ) , (38.135)

which are projection operators because their squares are one, (𝑃±𝑁 )2 = 1, and their product is zero,
𝑃+
𝑁𝑃
−
𝑁 = 0. A multivector 𝑎 splits into right- and left-handed chiral parts,

𝑎 = 𝑎R + 𝑎L, 𝑎R
L
≡ 𝑃R

L
𝑎 . (38.136)

Since the chiral operator κ𝑁 is proportional to the pseudoscalar 𝐼𝑁 , a purely right- or left-handed
multivector is necessarily a linear combination of a multivector and its Hodge dual.
An outer product of a right-handed column spinor with any row spinor (right- or left-handed) is a

right-handed multivector. An outer product of a left-handed column spinor with any row spinor is a
left-handed multivector.
Equations (38.109) provide a matrix representation of the isomorphism between spinor outer products

and multivectors. To make the split into right- and left-handed algebras more transparent, it can be
convenient to permute the rows and columns of the matrices so that the chiral operator κ𝑁 is rep-
resented by the matrix with all positive diagonal entries +1 coming first, and all negative diagonal
entries −1 coming last (for example, this is the ordering adopted for Dirac spinors in 𝑁 = 4 dimensions,
equation (39.20)),

κ𝑁 =

(︂
1 0

0 −1

)︂
. (38.137)

The 0’s and 1’s represent zero and unit 2[𝑁/2]−1×2[𝑁/2]−1 matrices. There are many ways to accomplish
the permutation. Since the chirality of a basis spinor 𝜖𝑎 is right- or left-handed as the number of down
bits in the index 𝑎 is even or odd, equation (38.133), one possibility is to reorder the rows and columns
on a single bit, say the first bit 𝑎1 of the index 𝑎, leaving the ordering with respect to all other bits
unchanged. The ordering on the chosen single bit is such that the index with total number of down bits
even (right-handed) joins the first 2[𝑁/2]−1 indices, while the index with total number of down bits odd
(left-handed) joins the last 2[𝑁/2]−1 indices.
The result of the permutation is that the matrix representation of a multivector is block diagonal with

all right-handed chiral multivectors in the top half, all left-handed chiral multivectors in the bottom
half, and with all even multivectors on-diagonal and all odd multivectors off-diagonal,

multivector =

(︂
R even R odd
L odd L even

)︂
. (38.138)

The splitting into even and odd multivectors follows because the chiral operator κ𝑁 commutes with all
even multivectors but anticommutes with all odd multivectors.

13. Pure grade components of spinor outer products. An outer product 𝜒𝜙 · of spinors is a multi-
vector, and its grade 𝑝 component may be denoted in the usual way, equation (13.27),

⟨𝜒𝜙 ·⟩𝑝 . (38.139)
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The trace of the outer product is the scalar product,

Tr (𝜒𝜙 ·) = 𝜙 · 𝜒 . (38.140)

The grade 0 component of the outer product 𝜒𝜙 · is the scalar product 𝜙·𝜒multiplied by the 2[𝑁/2]×2[𝑁/2]
unit matrix 1 normalized by the reciprocal of its trace, Tr 1 = 2[𝑁/2] (the 1 in equations (38.141)–(38.143)
denotes the unit matrix),

⟨𝜒𝜙 ·⟩0 = (𝜙 · 𝜒) 1

2[𝑁/2]
. (38.141)

If 𝑎 is a multivector of grade 𝑝, then the scalar sequence 𝜙 · 𝑎𝜒, multiplied by the normalized unit
matrix, may be re-expressed as the scalar product of 𝑎 with the grade 𝑝 part of 𝜒𝜙 ·,

(𝜙 · 𝑎𝜒) 1

2[𝑁/2]
= ⟨𝑎𝜒𝜙 ·⟩0 = 𝑎 · ⟨𝜒𝜙 ·⟩𝑝 . (38.142)

The Hodge dual of the grade 𝑝 multivector 𝑎 is 𝐼𝑁𝑎, and the scalar sequence 𝜙 · 𝐼𝑁𝑎𝜒, multiplied by
the normalized unit matrix, may be re-expressed as the Hodge dual of the wedge product of 𝑎 with the
grade 𝑁−𝑝 part of 𝜒𝜙 ·,

(𝜙 · 𝐼𝑁𝑎𝜒)
1

2[𝑁/2]
= (𝐼𝑁𝑎) · ⟨𝜒𝜙 ·⟩𝑁−𝑝 = 𝐼𝑁 (𝑎∧⟨𝜒𝜙 ·⟩𝑁−𝑝) . (38.143)

14. Conjugation. The rotationally-invariant conjugation operator 𝐶 is defined such that commutation with
it converts rotors 𝑅 in the chiral representation (38.109) to their complex conjugates (with respect to
𝑖) (compare equation (38.64)),

𝐶𝑅* = 𝑅𝐶 . (38.144)

Note that since a rotor 𝑅 is a real linear combination of even orthonormal basis multivectors, the
complex conjugate 𝑅* of a rotor 𝑅 is a rotor. The complex conjugate 𝜙* of a spinor 𝜙 is defined to be
its complex conjugate (with respect to 𝑖) in the representation (38.109), where the basis spinors 𝜖𝑎 are
real column vectors,

𝜙* = 𝜙𝑎*𝜖𝑎 . (38.145)

The conjugate spinor 𝜙 of a spinor 𝜙 = 𝜙𝑎𝜖𝑎 is defined by, equation (38.63),

𝜙 ≡ 𝐶𝜙* = 𝐶𝜙𝑎*𝜖𝑎 . (38.146)

The condition (38.144) on the conjugation operator 𝐶 is imposed precisely so that the conjugate spinor
𝜙 rotates under a rotor 𝑅 in the same way as the spinor 𝜙,

𝑅 : 𝜙 ≡ 𝐶𝜙* → 𝐶(𝑅𝜙)* = 𝐶𝑅*𝜙* = 𝑅𝐶𝜙* = 𝑅𝜙 . (38.147)

A necessary and sufficient condition for (38.144) to hold is that 𝐶 commute with all real (with respect
to 𝑖) orthonormal bivectors, and anticommute with all imaginary orthonormal bivectors. This is the
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same condition that previously the spinor metric tensor 𝜀 was required to satisfy, so 𝐶 must equal 𝜀 (up
to a possible normalization factor),

𝐶 = 𝜀 =

[(𝑁+1)/2]∏︁
𝑖=1

𝛾𝛾2𝑖−1 . (38.148)

If the alternative spinor metric (38.91) is used, then the conjugation operator is

𝐶alt = 𝜀alt =

[𝑁/2]∏︁
𝑖=1

𝑖𝛾𝛾2𝑖 . (38.149)

Choosing 𝐶 = 𝜀 (or 𝐶alt = 𝜀alt) without any additional normalization factor ensures that the scalar
product 𝜙 ·𝜙 of a spinor with its own conjugate is real and positive, equation (38.154). There is no loss
of generality in imposing that 𝜀, hence 𝐶, be real. If 𝜀 were multiplied by an arbitrary complex phase,
then the conjugation operator would have to be defined by 𝐶 = 𝜀* in place of the definition (38.148), in
order that the scalar product of a spinor with its conjugate remain real and positive, equation (38.154).
The modification by a phase leaves various key results unchanged; for example the double conjugate of
a spinor, equation (38.151), becomes ¯̄𝜙 = 𝐶𝐶*𝜙, which is unaffected by a complex phase in 𝐶.

The conjugate of a basis spinor 𝜖𝑎 is

�̄�𝑎 ≡ 𝐶𝜖𝑎 = ±𝜖�̄� , (38.150)

where the conjugate index �̄� is the index 𝑎 with all bits flipped. Conjugation flips the chirality of a spinor
if [𝑁/2] is odd, and leaves the chirality unchanged if [𝑁/2] is even. The ± sign in equation (38.150) is as
given by equation (38.96), or by equation (38.97) if the alternative spinor metric is used. Conjugation
flips all the bits of a spinor; for example, the conjugate of the all-up basis spinor is the all-down basis
spinor, �̄�↑↑...↑ = ±𝜖↓↓...↓. The conjugate spinor 𝜙 of a spinor 𝜙 is, equation (38.146), 𝜙 = 𝜙𝑎*�̄�𝑎. The
double conjugate of a spinor is

¯̄𝜙 = 𝐶2𝜙 = 𝜀2𝜙 , (38.151)

where the sign 𝜀2 is as given in Table 38.1.

The scalar product of a conjugate spinor 𝜙 with a spinor 𝜒 is

𝜙 · 𝜒 = (𝐶𝜙*)⊤𝜀𝜒 = 𝜙†𝐶⊤𝜀𝜒 = 𝜙†𝜒 , (38.152)

which is a complex number. In particular, the scalar product of a conjugate basis spinor �̄�𝑎 with a basis
spinor 𝜖𝑏 is a Kronecker delta,

�̄�𝑎 · 𝜖𝑏 = 𝛿𝑎𝑏 . (38.153)

The scalar product of a spinor 𝜙 with its own conjugate is real and positive,

𝜙 · 𝜙 = 𝜙†𝜙 . (38.154)
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The scalar product of 𝜙 with its conjugate is the same as the scalar product (38.154) of 𝜙 with its
conjugate,

¯̄𝜙 · 𝜙 = 𝐶2𝜙 · 𝜙 = 𝜙 · 𝜙 . (38.155)

The complex conjugate (with respect to 𝑖) 𝑎* of a multivector 𝑎 = 𝑎𝐴𝛾𝛾𝐴 is defined to be its complex
conjugate in the chiral representation (38.109) of multivectors,

𝑎* = 𝑎𝐴*𝛾𝛾*𝐴 . (38.156)

In the representation (38.109), the spin basis vectors 𝛾𝛾±𝑖
(and the final vector 𝛾𝛾𝑁 if 𝑁 is odd) are real,

so the orthonormal basis vectors 𝛾𝛾2𝑖−1 and 𝛾𝛾2𝑖 are respectively real and imaginary. The conjugate �̄�

of a multivector 𝑎 = 𝑎𝐴𝛾𝛾𝐴 is defined to be, consistent with the definition (38.146) of the conjugate
of a spinor (do not confuse the conjugate multivector �̄� with the reverse multivector 𝑎; the conjugate
overbar ¯ is slightly smaller and thinner than the reverse overbar ),

�̄� ≡ 𝐶𝑎*𝐶−1 . (38.157)

The conjugate multivector �̄� rotates under a rotor 𝑅 in the same way as the multivector 𝑎,

𝑅 : �̄� ≡ 𝐶𝑎*𝐶−1 → 𝐶(𝑅𝑎𝑅)*𝐶−1 = 𝐶𝑅*𝑎*𝑅
*
𝐶−1 = 𝑅𝐶𝑎*𝐶−1𝑅 = 𝑅�̄�𝑅 . (38.158)

Conjugation is multiplicative over multivectors, and over multivectors with spinors,

𝑎𝑏 = �̄��̄� , 𝑎𝜓 = �̄�𝜓 . (38.159)

If the outer product of two spinors 𝜙 and 𝜒 equals the multivector 𝑎, then the outer product of conjugate
spinors 𝜙 and �̄� equals the conjugate multivector �̄�,

𝜙𝜒 · = 𝑎 , 𝜙�̄� · = �̄� . (38.160)

Equation (38.160) holds because (with 𝐶 = 𝜀)

𝜙�̄� · ≡ 𝜀𝜙*(𝜀𝜒*)⊤𝜀 = 𝜀𝜙*(𝜒*)⊤ = 𝜀(𝜙𝜒⊤𝜀)*𝜀−1 = 𝜀𝑎*𝜀−1 = �̄� . (38.161)

The conjugate of a basis multivector 𝛾𝛾𝐴 is defined to be

�̄�𝛾𝐴 ≡ 𝐶𝛾𝛾*𝐴𝐶−1 , (38.162)

so that a conjugate multivector �̄� is

�̄� = 𝑎𝐴*�̄�𝛾𝐴 . (38.163)

The conjugate of an orthonormal basis vector 𝛾𝛾𝑎 is

�̄�𝛾𝑎 = ±𝛾𝛾𝑎 , (38.164)

where the ± factor depends on the choice of spinor metric, and is as given in Table 38.2. The conjugates
of spin basis vectors 𝛾𝛾±𝑖

defined by equations (38.82) have their index flipped +𝑖 ↔ −𝑖 ,

�̄�𝛾±𝑖
= ±𝛾𝛾∓𝑖

, (38.165)



998 The super geometric algebra

where the ± factor is again as given in Table 38.2.
15. Real subalgebra. The chiral matrix representations (38.107) of the column and row basis spinors 𝜖𝑎

and 𝜖𝑎 ·, and (38.109) of their outer products (which yield the full set of basis multivectors in the chiral
representation), are all real. One might therefore contemplate forming a real subalgebra consisting of
spinors 𝜙𝑎𝜖𝑎 and multivectors 𝑎𝐴𝛾𝛾𝐴 with real coefficients 𝜙𝑎 and 𝑎𝐴 in the chiral representation. This
does not work however, because spatial rotations transform the basis spinors (and their outer products)
into complex combinations of each other, equations (38.86). Any viable subalgebra must be closed under
rotations.
Orthonormal basis multivectors on the other hand do transform into real linear combinations of each

other under rotations. A real subalgebra of the complex geometric algebra may be obtained by restricting
to multivectors satisfying the reality condition that they are their own conjugates,

�̄� = 𝑎 . (38.166)

Conjugates of orthonormal basis vectors 𝛾𝛾𝑎 are equal to either plus themselves, or minus themselves,
depending on the choice of spinor metric, equation (38.164). If the conjugates of the orthonormal basis
vectors are themselves, �̄�𝛾𝑎 = 𝛾𝛾𝑎 (+ in Table 38.2), then the real subalgebra consists of real linear
combinations of orthonormal basis multivectors. If the conjugates of the orthonormal basis vectors are
minus themselves, �̄�𝛾𝑎 = −𝛾𝛾𝑎 (− in Table 38.2), then the real subalgebra consists of linear combinations
of odd-grade orthonormal multivectors with pure imaginary coefficients and even-grade orthonormal
multivectors with pure real coefficients.
A real super geometric subalgebra may similarly be obtained by restricting to spinors satisfying the

reality condition that they are their own conjugates,

𝜙 = 𝜙 . (38.167)

The spinor reality condition (38.167) is more restrictive than the multivector reality condition (38.166).
Whereas the multivector reality condition (38.166) can always be imposed, the spinor reality condi-
tion (38.167) can be imposed only if the double conjugate spinor is itself, equation (38.151), which is to
say, only if the spinor metric is symmetric, Table 38.1.
If the self-conjugate condition (38.167) holds, then the relation (38.160) implies that outer products

of self-conjugate spinors 𝜙 and 𝜒 are self-conjugate multivectors,

�̄� = 𝜙�̄� · = 𝜙𝜒 · = 𝑎 . (38.168)

Thus the multivector part of the real super geometric subalgebra is the real geometric subalgebra
corresponding to the reality condition (38.166) for a symmetric choice of spinor metric.

16. Transformations that leave the spinor scalar product unchanged. The spinor metric 𝜀, hence
the spinor scalar product, is by definition invariant under rotations, that is, under the rotor group gener-
ated by bivectors of the geometric algebra. However, the geometric algebra contains multivectors of other
grades, that generate other Lie groups of transformations of the algebra, Exercise 13.6. An element 𝑅 of
a Lie group generated by a set of orthonormal multivectors 𝛾𝛾𝐴 takes the form 𝑅 = exp(− 1

2

∑︀
𝐴 𝜃𝐴𝛾𝛾𝐴),
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where, depending on the choice of group, the coefficients 𝜃𝐴 could be real or imaginary or complex. The el-
ement 𝑅 transforms multivectors 𝑎 by 𝑅 : 𝑎→ 𝑅𝑎𝑅−1, the inverse of 𝑅 being 𝑅−1 = exp

(︀
1
2

∑︀
𝐴 𝜃𝐴𝛾𝛾𝐴

)︀
.

All such transformations preserve the scalar product of multivectors. However, not all such transforma-
tions preserve the scalar product of spinors.
Let 𝑅 = 𝑒−𝜃𝛾𝛾𝐴/2 be a transformation generated by an orthonormal basis multivector 𝛾𝛾𝐴, with 𝜃 real,

imaginary, or complex. The condition for the spinor metric 𝜀 to be invariant under the transformation
𝑅 is that commuting the generator 𝛾𝛾𝐴 through 𝜀 should convert it to minus its transpose,

𝛾𝛾⊤𝐴𝜀 = −𝜀𝛾𝛾𝐴 . (38.169)

For then 𝑅⊤𝜀 = 𝑒−𝜃𝛾
⊤
𝐴/2𝜀 = 𝜀𝑒𝜃𝛾𝛾𝐴/2 = 𝜀𝑅−1, which implies that a scalar product 𝜙 · 𝜒 of spinors is

invariant under 𝑅,

(𝑅𝜙) · (𝑅𝜒) = 𝜙⊤𝑅⊤𝜀𝑅𝜒 = 𝜙⊤𝜀𝑅−1𝑅𝜒 = 𝜙 · 𝜒 . (38.170)

Comparing the condition (38.169) to the actual commutation rule (38.100) shows that the grades of
orthonormal multivectors that generate transformations that leave the spinor scalar product unchanged
are, with the + or − from Table 38.2,

+ : grades (2 or 3) mod 4 (thus 2, 3, 6, 7, ...) , (38.171a)
− : grades (1 or 2) mod 4 (thus 1, 2, 5, 6, ...) . (38.171b)

For tilde’d spinor metrics, equation (38.100) holds, hence the list (38.171) holds, for multivectors 𝛾𝛾𝐴
that do not include a factor of whichever is the scalar dimension, 𝛾𝛾𝑁 or 𝛾𝛾𝑁+1. If the multivector 𝛾𝛾𝐴
includes a factor of the scalar dimension 𝛾𝛾𝑁 or 𝛾𝛾𝑁+1, then equation (38.100) holds with an extra minus
sign (the grade 𝑝 being that of 𝛾𝛾𝐴 including the scalar dimension), and the grades of generators that
leave the spinor scalar product unchanged are the complement of those in the list (38.171).
If the scalar product is between spinors and conjugate spinors, then whether a transformation 𝑅 =

𝑒−𝜃𝛾𝛾𝐴/2 generated by a grade-𝑝 multivector 𝛾𝛾𝐴 preserves the spinor scalar product depends on whether
the coefficient 𝜃 is real or imaginary. A conjugate spinor 𝜙 transforms under 𝑅 as

𝑅 : 𝜙 ≡ 𝐶𝜙* → 𝐶(𝑅𝜙)* . (38.172)

The commutation rule (38.144) for rotors is replaced by

𝐶𝑅* = 𝐶𝑒−𝜃
*𝛾𝛾*

𝐴/2 = 𝑒−𝜃
*�̄�𝛾𝐴/2𝐶 = 𝑒−(±)

𝑝𝜃*𝛾𝛾𝐴/2𝐶 , (38.173)

where the ± sign in (±)𝑝, from equation (38.164), is as given in Table 38.2. For rotors, which are
generated by real linear combinations of bivectors, the grade 𝑝 is 2, and 𝜃 is real, and equation (38.173)
recovers the commutation rule (38.144). The scalar product 𝜙 · 𝜒 of a conjugate spinor with a spinor
transforms under 𝑅 to

(𝐶(𝑅𝜙)*) · (𝑅𝜒) = 𝜙𝑒−(±)
𝑝𝜃*𝛾𝛾⊤

𝐴 /2𝜀𝑅𝜒 = 𝜙𝜀𝑒−(−)
[𝑝/2]𝜃*𝛾𝛾𝐴/2𝑅𝜒 , (38.174)

where the sign (−)[𝑝/2] in the final expression is the product of (±)𝑝 and the sign (±)𝑝(−)[𝑝/2] in the
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commutation rule (38.100) of a multivector 𝛾𝛾𝐴 through the spinor metric 𝜀. The spinor product is
preserved provided that 𝑒−(−)

[𝑝/2]𝜃*𝛾𝛾𝐴/2 = 𝑅−1, which is to say provided that

− (−)[𝑝/2]𝜃* = 𝜃 . (38.175)

Therefore the scalar product of spinors and conjugate spinors is preserved under transformations gen-
erated by multivectors of grade 𝑝 provided that the coefficient 𝜃 satisfies

𝜃 real grades (2 or 3) mod 4 (thus 2, 3, 6, 7, ...) , (38.176a)
𝜃 imaginary grades (0 or 1) mod 4 (thus 0, 1, 4, 5, ...) . (38.176b)

17. Rotor group. Unimodular elements of the (even or odd) geometric algebra generated by the 𝑁(𝑁−1)/2
orthonormal bivectors 𝛾𝛾𝑎 ∧𝛾𝛾𝑏 form a group, the rotor group, also called the spin group, or Spin(𝑁).
The rotor group Spin(𝑁) comprises all distinct rotations of spinors (spin- 12 objects) in 𝑁 dimensions,
and is the double cover of the special orthogonal group SO(𝑁), which comprises all distinct rotations
of vectors (spin-1 objects) in 𝑁 dimensions.

As noted in part 11 of this Exercise, the chiral representation represents orthonormal basis bivectors
𝛾𝛾𝑎 ∧𝛾𝛾𝑏 in even 𝑁 dimensions by traceless, skew-Hermitian, unitary 2[𝑁/2] × 2[𝑁/2] matrices. The rotor
group generated by the basis bivectors is then represented by unitary 2[𝑁/2] × 2[𝑁/2] matrices. Thus
the rotor group in even 𝑁 dimensions is a subgroup of SU(2[𝑁/2]), the special unitary group in 2[𝑁/2]

dimensions,

Spin(𝑁) ⊂ SU(2[𝑁/2]) . (38.177)

The embedding (38.177) holds also if 𝑁 is odd, since as described in part 7, in odd 𝑁 dimensions the
𝑁 -dimensional chiral operator κ𝑁 can be identified with unity, equation (38.125), in which case the final
odd vector 𝛾𝛾𝑁 is equivalent to the (𝑁−1)-dimensional chiral operator κ𝑁−1, and bivectors 𝛾𝛾𝑎 ∧𝛾𝛾𝑁 are
again represented by traceless, skew-Hermitian, unitary 2[𝑁/2] × 2[𝑁/2] matrices.

The generators of the unitary group are skew-Hermitian. The orthonormal basis multivectors of the
geometric algebra are either skew-Hermitian (grades 𝑝 = (2 or 3) mod 4) or Hermitian (grades 𝑝 =

(0 or 1) mod 4). Multiplying a Hermitian generator by 𝑖 makes it skew-Hermitian. The set of 2𝑁

orthonormal basis multivectors in even 𝑁 dimensions, with Hermitian multivectors multiplied by 𝑖,
generates the full unitary group U(2[𝑁/2]). This is the group denoted G23𝑖01(𝑁) by Shirokov (2017),

G23𝑖01(𝑁) ∼= U(2[𝑁/2]) . (38.178)

If the generator consisting of 𝑖 times the unit matrix is excised, the result is the special unitary group
SU(2[𝑁/2]).

18. Grade-preserving subgroup of Spin(2𝑁). The rotor group Spin(2𝑁) contains a subgroup that pre-
serves the spinor grade, the number of up bits, of a spinor (Atiyah, Bott, and Shapiro, 1964). The
subgroup is isomorphic to U(𝑁), so that

SU(𝑁) ⊂ U(𝑁) ⊂ Spin(2𝑁) . (38.179)
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The generators of Spin(2𝑁) that preserve spinor grade are bivectors with zero total spin. These gen-
erators must be real linear combinations of orthonormal Spin(2𝑁) bivectors that, when expressed in
terms of spin vectors 𝛾𝛾±𝑖

, are (complex) linear combinations of bivectors of the form 𝛾𝛾+𝑖
∧𝛾𝛾−𝑗

. Such a
bivector flips the 𝑖’th bit of a spinor from down to up, and the 𝑗’th bit from up to down, preserving the
total number of up bits of the spinor. Linearly independent generators satisfying these conditions are

𝛾𝛾2𝑖−1 ∧𝛾𝛾2𝑗−1 + 𝛾𝛾2𝑖 ∧𝛾𝛾2𝑗 = 𝛾𝛾+𝑖
∧𝛾𝛾−𝑗

− 𝛾𝛾+𝑗
∧𝛾𝛾−𝑖

(𝑁(𝑁−1)/2 generators) , (38.180a)

𝛾𝛾2𝑖−1 ∧𝛾𝛾2𝑗 − 𝛾𝛾2𝑖 ∧𝛾𝛾2𝑗−1 = 𝑖(𝛾𝛾+𝑖 ∧𝛾𝛾−𝑗 + 𝛾𝛾+𝑗 ∧𝛾𝛾−𝑖) (𝑁(𝑁−1)/2 generators) , (38.180b)

𝛾𝛾2𝑖−1 ∧𝛾𝛾2𝑖 = 𝑖𝛾𝛾+𝑖 ∧𝛾𝛾−𝑖 (𝑁 generators) , (38.180c)

a total of 𝑁2 generators. The Lie algebra of commutators of the generators (38.180) coincides with the
Lie algebra of commutators in which 1

2𝛾𝛾+𝑖
∧𝛾𝛾−𝑗

is represented by the 𝑁 ×𝑁 matrix 1𝑖𝑗 with 1 in the
𝑖𝑗’th entry and 0 elsewhere,

1
2𝛾𝛾+𝑖

∧𝛾𝛾−𝑗
→ 1𝑖𝑗 . (38.181)

But that algebra is just that of the group U(𝑁) of unitary 𝑁×𝑁 matrices. The generator 𝑖
2

∑︀
𝑖 𝛾𝛾+𝑖

∧𝛾𝛾−𝑖

is represented by 𝑖 times the unit matrix, which generates a rotation by an overall phase. Eliminating
that generator yields the algebra of the group SU(𝑁) of special unitary 𝑁 × 𝑁 matrices. Thus U(𝑁)

and SU(𝑁) are subgroups of Spin(2𝑁) as claimed. The chain (38.179) of subgroups extends (trivially)
to

SU(𝑁) ⊂ U(𝑁) ⊂ Spin(2𝑁) ⊂ Spin(2𝑁+1) . (38.182)
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Super spacetime algebra

This Chapter presents the super spacetime algebra, the generalization of the 4-dimensional spacetime
algebra to include spinors.

39.1 Newman-Penrose formalism

The extension of the spacetime algebra to spinors is most direct when the basis vectors of the spacetime
algebra are expressed in a Newman-Penrose basis (Newman and Penrose, 1962). Newman-Penrose adopts a
tetrad in which two of the tetrad axes are lightlike, 𝛾𝛾𝑣 (outgoing) and 𝛾𝛾𝑢 (ingoing), while the remaining two
axes 𝛾𝛾+ and 𝛾𝛾− are spin axes.

39.1.1 Newman-Penrose tetrad

A Newman-Penrose tetrad {𝛾𝛾𝑣,𝛾𝛾𝑢,𝛾𝛾+,𝛾𝛾−} is defined in terms of an orthonormal tetrad {𝛾𝛾0,𝛾𝛾1,𝛾𝛾2,𝛾𝛾3}, (or
{𝛾𝛾𝑡,𝛾𝛾𝑥,𝛾𝛾𝑦,𝛾𝛾𝑧} if you prefer), by

𝛾𝛾𝑣 ≡ 1√
2
(𝛾𝛾0 + 𝛾𝛾3) , (39.1a)

𝛾𝛾𝑢 ≡ 1√
2
(𝛾𝛾0 − 𝛾𝛾3) , (39.1b)

𝛾𝛾+ ≡ 1√
2
(𝛾𝛾1 + 𝑖𝛾𝛾2) , (39.1c)

𝛾𝛾− ≡ 1√
2
(𝛾𝛾1 − 𝑖𝛾𝛾2) , (39.1d)

or in matrix form ⎛⎜⎜⎝
𝛾𝛾𝑣
𝛾𝛾𝑢
𝛾𝛾+

𝛾𝛾−

⎞⎟⎟⎠ =
1√
2

⎛⎜⎜⎝
1 0 0 1

1 0 0 −1
0 1 𝑖 0

0 1 −𝑖 0

⎞⎟⎟⎠
⎛⎜⎜⎝

𝛾𝛾0

𝛾𝛾1

𝛾𝛾2

𝛾𝛾3

⎞⎟⎟⎠ . (39.2)

1002



39.1 Newman-Penrose formalism 1003

All four tetrad axes are null

𝛾𝛾𝑣 · 𝛾𝛾𝑣 = 𝛾𝛾𝑢 · 𝛾𝛾𝑢 = 𝛾𝛾+ · 𝛾𝛾+ = 𝛾𝛾− · 𝛾𝛾− = 0 . (39.3)

The tetrad metric of the Newman-Penrose tetrad {𝛾𝛾𝑣,𝛾𝛾𝑢,𝛾𝛾+,𝛾𝛾−} is

𝛾𝑚𝑛 =

⎛⎜⎜⎝
0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎠ . (39.4)

39.1.2 Boost and spin weight

An object is defined to have boost weight 𝑛 if it varies by

𝑒𝑛𝜃 (39.5)

under a boost by rapidity 𝜃 along the positive 3-direction.
Under a boost by rapidity 𝜃 in the 3-direction, the basis vectors 𝛾𝛾𝑚 transform as (14.44)

𝛾𝛾0 → 𝛾𝛾0 cosh 𝜃 + 𝛾𝛾3 sinh 𝜃 , (39.6a)

𝛾𝛾3 → 𝛾𝛾3 cosh 𝜃 + 𝛾𝛾0 sinh 𝜃 , (39.6b)

𝛾𝛾𝑎 → 𝛾𝛾𝑎 (𝑎 = 1, 2) . (39.6c)

It follows that a boost by rapidity 𝜃 in the 3-direction multiplies the outgoing and ingoing axes 𝛾𝛾𝑣 and 𝛾𝛾𝑢
by a blueshift factor 𝑒𝜃 and its reciprocal,

𝛾𝛾𝑣 → 𝑒𝜃 𝛾𝛾𝑣 , 𝛾𝛾𝑢 → 𝑒−𝜃 𝛾𝛾𝑢 . (39.7)

In terms of the boost velocity 𝑣 = tanh 𝜃 (not to be confused with the Newman-Penrose index 𝑣), the
blueshift factor is the special relativistic Doppler shift factor

𝑒𝜃 =

(︂
1 + 𝑣

1− 𝑣

)︂1/2

. (39.8)

Thus 𝛾𝛾𝑣 has boost weight +1, and 𝛾𝛾𝑢 has boost weight −1. The spin axes 𝛾𝛾± both have boost weight 0. The
Newman-Penrose components of a tensor inherit their boost weight properties from those of the Newman-
Penrose basis. The general rule is that the boost weight 𝑛 of any tensor component is equal to the number
of 𝑣 covariant indices minus the number of 𝑢 covariant indices:

boost weight 𝑛 = number of 𝑣 minus 𝑢 covariant indices . (39.9)

The operation of boosting along the 3-axis, which is the same as a rotation in the 𝛾𝛾0–𝛾𝛾3 plane, commutes
with the operation of rotating in the 𝛾𝛾1–𝛾𝛾2 plane. The concept of spin weight presented in §38.2 holds
unchanged. The outgoing and ingoing basis vectors 𝛾𝛾𝑣 and 𝛾𝛾𝑢 have spin weight zero, while 𝛾𝛾+ and 𝛾𝛾− have
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spin weight +1 and −1. The general rule is that the spin weight 𝑠 of any tensor component equals the number
of + covariant indices minus the number of − covariant indices (this repeats rule (38.14)):

spin weight 𝑠 = number of + minus − covariant indices . (39.10)

The boost and spin properties of the components of a tensor are thus manifest in a Newman-Penrose
tetrad.

39.2 Chiral representation of 𝛾-matrices

The chiral representation of the Dirac 𝛾-matrices provides the natural extension of the Newman-Penrose
tetrad to spin- 12 particles. The chiral representation may be obtained from the Dirac representation (14.102)
by the transformation (Dirac → chiral)

𝑋 : 𝛾𝛾𝑚 → 𝑋𝛾𝛾𝑚𝑋
−1 , (39.11)

where 𝑋 is the symmetric (𝑋 = 𝑋⊤), unitary (𝑋−1 = 𝑋†) matrix

𝑋 ≡ 1√
2

⎛⎜⎜⎝
1 0 𝑖 0

0 1 0 𝑖

𝑖 0 1 0

0 𝑖 0 1

⎞⎟⎟⎠ . (39.12)

As in the Dirac representation, all the 𝛾-matrices in the chiral representation are traceless; the only basis
matrix of the algebra with finite trace is the unit matrix. The 𝛾-matrices in the chiral representation are the
unitary matrices

𝛾𝛾0 =

(︂
0 1

−1 0

)︂
, 𝛾𝛾𝑎 =

(︂
0 𝜎𝑎
𝜎𝑎 0

)︂
. (39.13)

The bivectors 𝜎𝑎 and 𝐼𝜎𝑎 and the pseudoscalar 𝐼 are

𝛾𝛾0𝛾𝛾𝑎 = 𝜎𝑎 =

(︂
𝜎𝑎 0

0 −𝜎𝑎

)︂
, 1

2𝜀𝑎𝑏𝑐𝛾𝛾𝑏𝛾𝛾𝑐 = 𝐼𝜎𝑎 = 𝑖

(︂
𝜎𝑎 0

0 𝜎𝑎

)︂
, 𝐼 = 𝑖

(︂
1 0

0 −1

)︂
. (39.14)

The Newman-Penrose basis vectors in the chiral representation are the real matrices

𝛾𝛾𝑣 =

(︂
0 𝜎𝑣
−𝜎𝑢 0

)︂
, 𝛾𝛾𝑢 =

(︂
0 𝜎𝑢
−𝜎𝑣 0

)︂
, 𝛾𝛾+ =

(︂
0 𝜎+
𝜎+ 0

)︂
, 𝛾𝛾− =

(︂
0 𝜎−
𝜎− 0

)︂
, (39.15)

where 𝜎𝑚 are the Newman-Penrose Pauli matrices

𝜎𝑣 ≡
1√
2
(1 + 𝜎3) =

√
2

(︂
1 0

0 0

)︂
, 𝜎𝑢 ≡

1√
2
(1− 𝜎3) =

√
2

(︂
0 0

0 1

)︂
, (39.16a)

𝜎+ ≡
1√
2
(𝜎1 + 𝑖𝜎2) =

√
2

(︂
0 1

0 0

)︂
, 𝜎− ≡

1√
2
(𝜎1 − 𝑖𝜎2) =

√
2

(︂
0 0

1 0

)︂
. (39.16b)
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The Newman-Penrose bivectors form 6 real matrices that group into three right-handed bivectors (notation
𝛾𝛾𝑚𝑛 ≡ 𝛾𝛾𝑚 ∧𝛾𝛾𝑛),

𝛾𝛾𝑣+ =
√
2

(︂
𝜎+ 0

0 0

)︂
, 1

2 (𝛾𝛾𝑣𝑢 − 𝛾𝛾+−) =

(︂
−𝜎3 0

0 0

)︂
, 𝛾𝛾𝑢− =

√
2

(︂
𝜎− 0

0 0

)︂
, (39.17)

and three left-handed bivectors,

𝛾𝛾𝑢+ =
√
2

(︂
0 0

0 −𝜎+

)︂
, 1

2 (𝛾𝛾𝑣𝑢 + 𝛾𝛾+−) =

(︂
0 0

0 𝜎3

)︂
, 𝛾𝛾𝑣− =

√
2

(︂
0 0

0 −𝜎−

)︂
. (39.18)

The chiral matrix 𝛾5 is

𝛾5 ≡ −𝑖𝐼 = −𝛾𝛾𝑣 ∧𝛾𝛾𝑢 ∧𝛾𝛾+ ∧𝛾𝛾− =

(︂
1 0

0 −1

)︂
. (39.19)

By construction, the chiral matrix 𝛾5 is diagonal in the chiral representation.

39.3 Basis spinors

Introduce a tetrad of basis spinors 𝜖𝑎,

𝜖𝑎 ≡ {𝜖𝑉 ↑, 𝜖𝑈↓, 𝜖𝑈↑, 𝜖𝑉 ↓} . (39.20)

The indices {𝑉 ↑, 𝑈↓, 𝑈↑, 𝑉 ↓} signify the transformation properties of the basis spinors: 𝑉 and 𝑈 signify boost
weight + 1

2 and − 1
2 , while ↑ and ↓ signify spin weight + 1

2 and − 1
2 . The index notation, while non-standard,

fits naturally with the Newman-Penrose {𝑣, 𝑢,+,−} index notation. Under a Lorentz transformation, the
basis spinors 𝜖𝑎 are defined to transform in the same way as rotors,

𝑅 : 𝜖𝑎 → 𝑅𝜖𝑎 . (39.21)

In the chiral representation (39.13) the basis spinors 𝜖𝑎 are the column spinors

𝜖𝑉 ↑ =

⎛⎜⎜⎝
1

0

0

0

⎞⎟⎟⎠ , 𝜖𝑈↓ =

⎛⎜⎜⎝
0

1

0

0

⎞⎟⎟⎠ , 𝜖𝑈↑ =

⎛⎜⎜⎝
0

0

1

0

⎞⎟⎟⎠ , 𝜖𝑉 ↓ =

⎛⎜⎜⎝
0

0

0

1

⎞⎟⎟⎠ , (39.22)

which are Lorentz-transformed by pre-multiplying by rotors expressed in the chiral representation. The
basis spinors 𝜖𝑎 in the chiral representation may be obtained from those in the Dirac representation by the
transformation (Dirac → chiral)

𝑋 : 𝜖𝑎 → 𝑋𝜖𝑎 , (39.23)

where the matrix 𝑋 is defined by equation (39.12).
The basis spinors 𝜖𝑎 are eigenvectors of the chirality operator 𝛾5, equation (39.19), with eigenvalues ±1.
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Positive chirality spinors are called right-handed, while negative chirality spinors are called left-handed. The
first two basis spinors are right-handed, while the last two are left-handed,

𝛾5𝜖𝑉 ↑ = 𝜖𝑉 ↑ , 𝛾5𝜖𝑈↓ = 𝜖𝑈↓ , 𝛾5𝜖𝑈↑ = −𝜖𝑈↑ , 𝛾5𝜖𝑉 ↓ = −𝜖𝑉 ↓ . (39.24)

Lorentz transformation preserves chirality, as is evident from the block-diagonal form of the even elements
of the spacetime algebra in the chiral representation, equations (39.14). The right-handed basis spinors 𝜖𝑉 ↑
and 𝜖𝑈↓ are called right-handed because the boost axis and the spin axis point in the same direction (along
the 3-direction for 𝜖𝑉 ↑, and along the negative 3-direction for 𝜖𝑈↓). Conversely, the left-handed basis spinors
𝜖𝑈↑ and 𝜖𝑉 ↓ are called left-handed because the boost axis and the spin axis point in opposite directions.
A Lorentz boost 𝑅 = 𝑒𝜎3𝜃/2 = cosh(𝜃/2)+𝜎3 sinh(𝜃/2) by rapidity 𝜃 along the spin axis (3-axis) multiplies

the basis spinors 𝜖𝑎 by 𝑒±𝜃/2 according to

𝜖𝑉 ↑ → 𝑒𝜃/2𝜖𝑉 ↑ , 𝜖𝑈↓ → 𝑒−𝜃/2𝜖𝑈↓ , 𝜖𝑈↑ → 𝑒−𝜃/2𝜖𝑈↑ , 𝜖𝑉 ↓ → 𝑒𝜃/2𝜖𝑉 ↓ . (39.25)

The transformations (39.25) confirm that the basis spinors with a 𝑉 index have boost weight + 1
2 , while

the basis spinors with a 𝑈 index have boost weight − 1
2 . A right-handed spatial rotation 𝑅 = 𝑒−𝐼𝜎3𝜃/2 =

cos(𝜃/2) − 𝐼𝜎3 sin(𝜃/2) by rotation angle 𝜃 about the spin axis (3-axis) multiplies the basis spinors 𝜖𝑎 by
𝑒±𝑖𝜃/2 according to

𝜖𝑉 ↑ → 𝑒−𝑖𝜃/2𝜖𝑉 ↑ , 𝜖𝑈↓ → 𝑒𝑖𝜃/2𝜖𝑈↓ , 𝜖𝑈↑ → 𝑒−𝑖𝜃/2𝜖𝑈↑ , 𝜖𝑉 ↓ → 𝑒𝑖𝜃/2𝜖𝑉 ↓ . (39.26)

The transformations (39.26) confirm that the basis spinors with a ↑ index have spin weight + 1
2 , while the

basis spinors with a ↓ index have spin weight − 1
2 . This justifies the choice of indices on the basis spinors.

Spinor tensors inherit their boost and spin weights from those of the basis spinors. The rules are

boost weight 𝑛 = 1
2 (number of 𝑉 minus 𝑈 covariant indices) , (39.27a)

spin weight 𝑠 = 1
2 (number of ↑ minus ↓ covariant indices) , (39.27b)

which generalize the rules (39.9) and (39.10). The rules (39.27) hold not only for column spinors 𝜖𝑎, but also
for row spinors 𝜖𝑎 ·, §39.5.2, and for inner and outer products of spinors, §39.5.3 and §39.6.1.

39.4 Dirac and Weyl spinors

A Dirac spinor 𝜓 is a complex (with respect to 𝑖) linear combination of the 4 basis spinors 𝜖𝑎,

𝜓 = 𝜓𝑎𝜖𝑎 . (39.28)

A Dirac spinor has 4 complex components, making 8 degrees of freedom in all. Just as a multivector 𝑎𝑚𝛾𝛾𝑚
is a vector in the spacetime algebra, so also 𝜓𝑎𝜖𝑎 is a spinor in the super spacetime algebra.
A Dirac spinor 𝜓 Lorentz transforms as

𝑅 : 𝜓 → 𝑅𝜓 . (39.29)
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A Dirac spinor 𝜓 is a spin-12 object, in the sense that a rotation by 2𝜋 changes the sign of the spinor, and a
rotation by 4𝜋 is required to return the spinor to its original value.

Concept question 39.1. Lorentz transformation of the phase of a spinor. Should not a Lorentz
transformation also change the phase of a spinor 𝜓 as a function of position? For example, if the phase is
𝜓 ∼ 𝑒−𝑖𝑚𝑡 in the spinor rest frame, would not the phase be 𝜓 ∼ 𝑒−𝑖𝜔𝑡+𝑖𝑘·𝑥 in the Lorentz-transformed frame?
Answer. No. A Lorentz transformation is a tetrad transformation, not a coordinate transformation. That
being said, in flat (Minkowski) space it is possible to choose inertial coordinates {𝑡,𝑥} aligned everywhere
with the tetrad frame. It is true that 𝜓 ∼ 𝑒−𝑖𝜔𝑡+𝑖𝑘·𝑥 with respect to Lorentz-transformed inertial coordinates.

39.4.1 Weyl decomposition of a Dirac spinor

A Dirac spinor 𝜓 can be decomposed into a sum of right- and left-handed chiral Weyl spinors 𝜓R and 𝜓L

𝜓 = 𝜓R + 𝜓L , (39.30)

that are right- and left-handed eigenvectors of the chiral operator 𝛾5,

𝛾5𝜓R
L
= ±𝜓R

L
. (39.31)

The right- and left-handed chiral spinors can be projected out by applying the chiral projection operators
1
2 (1± 𝛾5) (which are projection operators because their squares are themselves) to the Dirac spinor 𝜓,

𝜓R
L
= 1

2 (1± 𝛾5)𝜓 . (39.32)

Since chirality is Lorentz invariant, the chiral decomposition of a Dirac spinor is unique. The right- and
left-handed components of a Dirac spinor each contain 2 complex components. The right- and left-handed
components of a Dirac spinor cannot be rotated into each other by any Lorentz transformation.

39.5 Spinor scalar product

39.5.1 Spinor metric tensor

In a matrix representation, the tensor product of Dirac basis spinors 𝜖𝑎 and 𝜖𝑏 can be represented as the
matrix 𝜖𝑎𝜖

⊤
𝑏 , a matrix product of the column spinor 𝜖𝑎 with the row spinor 𝜖⊤𝑏 . In accordance with the

transformation rule (39.21), the tensor product of basis spinors Lorentz transforms as

𝑅 : 𝜖𝑎𝜖
⊤
𝑏 → 𝑅𝜖𝑎𝜖

⊤
𝑏 𝑅
⊤ . (39.33)

Consider the spinor metric tensor 𝜀 with the defining property that for any Lorentz rotor 𝑅

𝑅⊤𝜀 = 𝜀𝑅 . (39.34)
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That 𝜀 defines a Lorentz-invariant spinor metric will be seen in §39.5.3. A Lorentz rotor is a real (with
respect to 𝑖) linear combination of even elements 1, 𝐼, 𝜎𝑎, and 𝐼𝜎𝑎 of the spacetime algebra. Consequently,
in the Dirac representation (14.103) a necessary and sufficient condition for (39.34) to hold is that 𝜀 anti-
commutes with 𝐼 and 𝜎2, and commutes with 𝜎1 and 𝜎3. This requires that 𝜀 be proportional to 𝛾𝛾2 in the
Dirac representation, with a proportionality factor that could be some arbitrary complex (with respect to
𝑖 and/or 𝐼) number. To be consistent with standard Dirac theory, the spinor metric tensor 𝜀 in the Dirac
representation (14.103) is taken to be the real unitary matrix

𝜀 = 𝑖𝛾𝛾2 =

⎛⎜⎜⎝
0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

⎞⎟⎟⎠ . (39.35)

Despite the equality of 𝜀 and 𝑖𝛾𝛾2 in the Dirac representation, 𝜀 is defined to transform as a spinor tensor
under Lorentz transformations, not as an element of the spacetime algebra. The spinor metric (39.35) in the
Dirac representation translates into the chiral representation (39.13) as 𝜀chiral = 𝑋−⊤𝜀Dirac𝑋

−1 = −𝑖𝐼𝜎2.
However, the resulting chiral spinor metric 𝜀chiral is imaginary. The chiral spinor metric can be made real by
scaling it by a factor of 𝑖,

𝜀chiral = 𝑖𝑋−⊤𝜀Dirac𝑋
−1 = 𝐼𝜎2 =

⎛⎜⎜⎝
0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎞⎟⎟⎠ . (39.36)

The normalization is chosen such that 𝜀 in either the Dirac or chiral representations is real and orthogonal.
Its square is minus the unit matrix,

𝜀−1 = 𝜀⊤ , 𝜀2 = −1 . (39.37)

In both Dirac and chiral representations, commuting the spinor metric 𝜀 through the orthonormal basis
vectors 𝛾𝛾𝑚 converts them to minus their transposes,

𝛾𝛾⊤𝑚𝜀 = −𝜀𝛾𝛾𝑚 . (39.38)

The condition (39.34) implies that the spinor tensor 𝜀 is invariant under Lorentz transformations,

𝑅 : 𝜀→ 𝑅⊤𝜀𝑅 = 𝜀𝑅𝑅 = 𝜀 . (39.39)

The components of the spinor tensor 𝜀 define the antisymmetric spinor metric 𝜀𝑎𝑏,

𝜖⊤𝑎𝜀𝜖𝑏 = 𝜀𝑎𝑏 . (39.40)

Notice that the spinor metric tensor 𝜀𝑎𝑏 is non-vanishing only between like-chiral indices 𝑎𝑏.
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39.5.2 Row basis spinors

It is convenient to use the symbol 𝜖𝑎 · with a trailing dot, symbolic of the trailing 𝜀, to denote the row spinor
𝜖⊤𝑎𝜀,

𝜖𝑎 · ≡ 𝜖⊤𝑎 𝜀 . (39.41)

The motivation for the trailing dot notation is equation (39.45) below. The four row spinors

𝜖𝑎 · = {𝜖𝑉 ↑ ·, 𝜖𝑈↓ ·, 𝜖𝑈↑ ·, 𝜖𝑉 ↓ ·} (39.42)

provide a basis for row spinors. The boost and spin weights of the row basis spinors are in accord with their
covariant indices: basis spinors with a 𝑉 index have boost weight + 1

2 , while basis spinors with a 𝑈 index
have boost weight − 1

2 . Likewise basis spinors with a ↑ index have spin weight + 1
2 , while basis spinors with

a ↓ index have spin weight − 1
2 . The row spinors 𝜖𝑎 · Lorentz transform as

𝑅 : 𝜖𝑎 · ≡ 𝜖⊤𝑎𝜀→ 𝜖⊤𝑎 𝑅
⊤𝜀 = 𝜖⊤𝑎𝜀𝑅 = 𝜖𝑎 ·𝑅 . (39.43)

In the chiral representation (39.13) the row basis spinors 𝜖𝑎 · are the row spinors

𝜖𝑉 ↑ · = ( 0 1 0 0 ) , 𝜖𝑈↓ · = ( −1 0 0 0 ) , 𝜖𝑈↑ · = ( 0 0 0 1 ) , 𝜖𝑉 ↓ · = ( 0 0 −1 0 ) . (39.44)

39.5.3 Inner products of basis spinors

The product of the row spinor 𝜖𝑎 · with the column spinor 𝜖𝑏 defines their inner product, or scalar product,
which equals the spinor metric 𝜀𝑎𝑏 in accordance with equation (39.40),

𝜖𝑎 · 𝜖𝑏 = 𝜀𝑎𝑏 . (39.45)

Equation (39.45) motivates the trailing dot notation for the row spinor. The scalar product is antisymmetric,

𝜖𝑎 · 𝜖𝑏 = −𝜖𝑏 · 𝜖𝑎 . (39.46)

In the chiral representation, the non-zero components of the scalar product are explicitly, equation (39.36),

𝜖𝑉 ↑ · 𝜖𝑈↓ = −𝜖𝑈↓ · 𝜖𝑉 ↑ = 1 , 𝜖𝑈↑ · 𝜖𝑉 ↓ = −𝜖𝑉 ↓ · 𝜖𝑈↑ = 1 . (39.47)

The scalar product (39.45) is a Lorentz scalar,

𝑅 : 𝜖𝑎 · 𝜖𝑏 → 𝜖𝑎 ·𝑅𝑅 𝜖𝑏 = 𝜖𝑎 · 𝜖𝑏 . (39.48)

Thus the spinor metric 𝜀𝑎𝑏 is Lorentz invariant, just like the Minkowski metric 𝜂𝑚𝑛.

39.5.4 Lowering and raising spinor indices

The antisymmetric spinor metric 𝜀𝑎𝑏 is given in the chiral representation by equation (39.36). The inverse
metric 𝜀𝑎𝑏 is defined by 𝜀𝑎𝑏𝜀𝑏𝑐 = 𝛿𝑎𝑐 . The spinor metric and its inverse satisfy

𝜀𝑎𝑏 = −𝜀𝑏𝑎 = −𝜀𝑎𝑏 = 𝜀𝑏𝑎 . (39.49)
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Indices on a spinor tensor are lowered and raised by pre-multiplying by the metric 𝜀𝑎𝑏 and its inverse 𝜀𝑎𝑏.
The contravariant components 𝜖𝑎 of the column basis spinors. satisfying 𝜖𝑎 = 𝜀𝑎𝑏𝜖𝑏, are

𝜖𝑉 ↑ = −𝜖𝑈↓ , 𝜖𝑈↓ = 𝜖𝑉 ↑ , 𝜖𝑈↑ = 𝜖𝑉 ↓ , 𝜖𝑉 ↓ = −𝜖𝑈↑ . (39.50)

For example, 𝜖𝑉 ↑ = 𝜀𝑉 ↑𝑈↓𝜖𝑈↓ = −𝜖𝑈↓. Post-multiplying by the metric or its inverse yields a result of
opposite sign, 𝜖𝑎 = 𝜀𝑎𝑏𝜖𝑏 = −𝜖𝑏𝜀𝑏𝑎. The contravariant components 𝜖𝑎 · of the row basis spinors satisfy the
same relations (39.50) with a trailing dot appended on left and right hand sides. The scalar products of
contravariant with covariant basis spinors form the unit matrix,

𝜖𝑎 · 𝜖𝑏 = −𝜖𝑏 · 𝜖𝑎 = 𝛿𝑎𝑏 . (39.51)

The scalar products of contravariant basis spinors are

𝜖𝑎 · 𝜖𝑏 = −𝜖𝑏 · 𝜖𝑎 = −𝜀𝑎𝑏 . (39.52)

39.5.5 Scalar products of Dirac spinors

A general row Dirac spinor 𝜓 · is a complex (with respect to 𝑖) linear combination of the 4 row basis spinors

𝜓 · ≡ 𝜓⊤𝜀 = 𝜓𝑎𝜖𝑎 · . (39.53)

It Lorentz transforms as

𝑅 : 𝜓 · → 𝜓 ·𝑅 . (39.54)

A row spinor 𝜓 · transforms like a reverse rotor.
The scalar product of a row spinor 𝜓 · = 𝜓𝑎𝜖𝑎 · with a column spinor 𝜒 = 𝜒𝑎𝜖𝑎 may be written variously

𝜓 · 𝜒 = 𝜓⊤𝜀 𝜒 = 𝜓𝑎𝜖𝑎 · 𝜒𝑏𝜖𝑏 = 𝜀𝑎𝑏𝜓
𝑎𝜒𝑏 = 𝜓𝑎𝜒𝑎 = −𝜓𝑎𝜒𝑎 = −𝜀𝑎𝑏𝜓𝑎𝜒𝑏 . (39.55)

Notice that when the scalar product 𝜓 · 𝜒 is written in the contracted form 𝜓𝑎𝜒𝑎, the first index is raised
and the second is lowered. An additional minus sign appears if the first index is lowered and the second is
raised. Flipping the indices on the expansion 𝜓𝑎𝜖𝑎 of a spinor in components similarly changes the sign,

𝜓 = 𝜓𝑎𝜖𝑎 = 𝜓𝑎𝜀𝑎𝑏𝜖
𝑏 = −𝜓𝑎𝜖𝑎 . (39.56)

The components 𝜓𝑎 of a column spinor 𝜓 can be projected out by pre-multiplying by the row basis spinor
𝜖𝑎 ·,

𝜖𝑎 · 𝜓 = 𝜖𝑎 · 𝜓𝑏𝜖𝑏 = 𝛿𝑎𝑏𝜓
𝑏 = 𝜓𝑎 . (39.57)

The components 𝜓𝑎 of a row spinor 𝜓 · can be projected out by post-multiplying by minus the column basis
spinor 𝜖𝑎,

− 𝜓 · 𝜖𝑎 = −𝜓𝑏𝜖𝑏 · 𝜖𝑎 = 𝛿𝑎𝑏𝜓
𝑏 = 𝜓𝑎 . (39.58)
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39.6 Super spacetime algebra

39.6.1 Outer products of basis spinors

A row spinor 𝜖𝑎 · multiplied by a column spinor 𝜖𝑏 yields their scalar product. In the opposite order, a
column spinor 𝜖𝑎 multiplied by a row spinor 𝜖𝑏 · yields their outer product. The outer product 𝜖𝑎𝜖𝑏 · Lorentz
transforms like a multivector in the spacetime algebra,

𝑅 : 𝜖𝑎𝜖𝑏 · ≡ 𝜖𝑎𝜖
⊤
𝑏 𝜀→ 𝑅𝜖𝑎𝜖

⊤
𝑏 𝑅
⊤𝜀 = 𝑅𝜖𝑎𝜖

⊤
𝑏 𝜀𝑅 = 𝑅𝜖𝑎𝜖𝑏 ·𝑅 . (39.59)

The trailing dot on the outer product 𝜖𝑎𝜖𝑏 · is symbolic of the trailing 𝜀, necessary to convert the spinor
tensor 𝜖𝑎𝜖⊤𝑏 into an object that transforms like a multivector.
The products of the 4 column basis spinors 𝜖𝑎 with the 4 row basis spinors 𝜖𝑏 · form 16 outer products.

All 16 outer products are non-vanishing, and their algebra is isomorphic to the 4D spacetime algebra of
multivectors. Unlike the spacetime algebra, the outer product contains both antisymmetric and symmetric
products.
The 16 outer products divide into 8 outer products of spinors of like chirality (two right, or two left),

and 8 outer products of spinors of opposite chirality (one right, one left). The outer products of spinors of
like chirality yield the 8 even-grade elements of the spacetime algebra, while outer products of spinors of
opposite chirality yield the 8 odd-grade elements of the spacetime algebra. The 8 even elements preserve
chirality (they transform a spinor of given chirality to another of like chirality), while the 8 odd elements
flip chirality (they transform a spinor of given chirality to another of opposite chirality).
In the chiral representation (39.13), the 8 outer products of basis spinors of like chirality map to even

multivectors of the spacetime algebra as follows. The boost and spin weights of the left and right hand
sides of each of equations (39.60)–(39.63) below match, as they should. The antisymmetric outer products
of right-handed spinors form a right-handed scalar singlet,

[𝜖𝑈↓, 𝜖𝑉 ↑] · = 1
2 (1 + 𝛾5) . (39.60)

The trailing dot on the commutator indicates that the right partner of each product is a row spinor,
[𝜖𝑈↓, 𝜖𝑉 ↑] · = 𝜖𝑈↓𝜖

⊤
𝑉 ↑ · − 𝜖𝑉 ↑𝜖

⊤
𝑈↓ ·. Similarly the antisymmetric outer products of left-handed spinors form a

left-handed scalar singlet,

[𝜖𝑉 ↓, 𝜖𝑈↑] · = 1
2 (1− 𝛾5) . (39.61)

The symmetric outer products of right-handed spinors form a triplet of right-handed bivectors,

{𝜖𝑉 ↑, 𝜖𝑉 ↑}· = 𝛾𝛾𝑣+ , {𝜖𝑉 ↑, 𝜖𝑈↓}· = 1
2 (𝛾𝛾𝑣𝑢 − 𝛾𝛾+−) , {𝜖𝑈↓, 𝜖𝑈↓}· = −𝛾𝛾𝑢− . (39.62)

The symmetric outer products of left-handed spinors form a triplet of left-handed bivectors,

{𝜖𝑈↑, 𝜖𝑈↑}· = −𝛾𝛾𝑢+ , {𝜖𝑈↑, 𝜖𝑉 ↓}· = − 1
2 (𝛾𝛾𝑣𝑢 + 𝛾𝛾+−) , {𝜖𝑉 ↓, 𝜖𝑉 ↓}· = 𝛾𝛾𝑣− . (39.63)

In the chiral representation (39.13), the 8 outer products of basis spinors of opposite chirality map to odd
multivectors of the spacetime algebra as follows. Again, the boost and spin weights of the left and right hand
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sides of each of equations (39.64)–(39.65) below match, as they should. The 4 symmetric outer products of
right- with left-handed spinors yield the 4 Newman-Penrose basis vectors,

{𝜖𝑉 ↑, 𝜖𝑉 ↓}· = − 1√
2
𝛾𝛾𝑣 , {𝜖𝑈↓, 𝜖𝑈↑}· = 1√

2
𝛾𝛾𝑢 , {𝜖𝑉 ↑, 𝜖𝑈↑}· = 1√

2
𝛾𝛾+ , {𝜖𝑈↓, 𝜖𝑉 ↓}· = − 1√

2
𝛾𝛾− . (39.64)

The 4 antisymmetric outer products of right- with left-handed spinors yield the 4 Newman-Penrose basis
pseudovectors,

[𝜖𝑉 ↑, 𝜖𝑉 ↓] · = − 1√
2
𝛾5𝛾𝛾𝑣 , [𝜖𝑈↓, 𝜖𝑈↑] · = 1√

2
𝛾5𝛾𝛾𝑢 , [𝜖𝑉 ↑, 𝜖𝑈↑] · = 1√

2
𝛾5𝛾𝛾+ , [𝜖𝑈↓, 𝜖𝑉 ↓] · = − 1√

2
𝛾5𝛾𝛾− .

(39.65)
The trace of the outer product of a pair of basis spinors gives their scalar product (note that the 1 on the

right hand sides of equations (39.60) and (39.61) is the unit matrix, whose trace is 4),

Tr 𝜖𝑎 𝜖𝑏 · = 𝜖𝑏 · 𝜖𝑎 = 𝜀𝑏𝑎 . (39.66)

The expansion of the 16 outer products 𝜖𝑎𝜖𝑏 · of spinors in terms of the 16 basis elements 𝛾𝛾𝑀 of the
spacetime algebra, and vice versa, define the matrix of coefficients 𝛾𝑀𝑎𝑏 and its inverse 𝛾𝑎𝑏𝑀 ,

𝜖𝑎𝜖𝑏 · = 𝛾𝑀𝑎𝑏𝛾𝛾𝑀 , 𝛾𝛾𝑀 = 𝛾𝑎𝑏𝑀𝜖𝑎𝜖𝑏 · . (39.67)

The coefficients 𝛾𝑀𝑎𝑏 and 𝛾𝑎𝑏𝑀 are

𝛾𝑀𝑎𝑏 = 1
4 𝜖𝑏 · 𝛾𝛾

𝑀𝜖𝑎 , 𝛾𝑎𝑏𝑀 = − 𝜖𝑎 · 𝛾𝛾𝑀𝜖𝑏 . (39.68)

The coefficients in the chiral representation in terms of Newman-Penrose basis multivectors can be read off
from equations (39.60)–(39.65), and are all real.

Exercise 39.2. Consistency of spinor and multivector scalar products. Confirm that the spinor and
multivector scalar products are consistent. This exercise is similar to Exercise 38.1.
Solution. Multivector vectors 𝛾𝛾𝑚 are equivalent to outer products of Dirac spinors in accordance with
equations (39.64) and (39.64). For example, the scalar product of the multivectors 𝛾𝛾𝑣 and 𝛾𝛾𝑢 is

−𝛾𝛾𝑣 · 𝛾𝛾𝑢 = − 1
2 (𝛾𝛾𝑣𝛾𝛾𝑢 + 𝛾𝛾𝑢𝛾𝛾𝑣)

= {𝜖𝑉 ↑, 𝜖𝑉 ↓} · {𝜖𝑈↓, 𝜖𝑈↑}·+ {𝜖𝑈↓, 𝜖𝑈↑} · {𝜖𝑉 ↑, 𝜖𝑉 ↓}·
= 𝜖𝑉 ↑(𝜖𝑉 ↓ · 𝜖𝑈↑)𝜖𝑈↓ ·+ 𝜖𝑉 ↓(𝜖𝑉 ↑ · 𝜖𝑈↓)𝜖𝑈↑ ·+ 𝜖𝑈↓(𝜖𝑈↑ · 𝜖𝑉 ↓)𝜖𝑉 ↑ ·+ 𝜖𝑈↑(𝜖𝑈↓ · 𝜖𝑉 ↑)𝜖𝑉 ↓ ·
= − 𝜖𝑉 ↑𝜖𝑈↓ ·+ 𝜖𝑉 ↓𝜖𝑈↑ ·+ 𝜖𝑈↓𝜖𝑉 ↑ · − 𝜖𝑈↑𝜖𝑉 ↓ ·
= [𝜖𝑈↓, 𝜖𝑉 ↑] ·+ [𝜖𝑉 ↓, 𝜖𝑈↑] ·
= 1

2 (1 + 𝛾5) +
1
2 (1− 𝛾5)

= 1 , (39.69)

the fourth step of which invokes the spinor scalar product (39.47), and the penultimate step is from the
equivalences (39.60) and (39.61). The result agrees with the multivector scalar product (39.4).
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Concept question 39.3. Chiral scalar. A scalar field has no spin. How then can a scalar field have
chirality? Answer. A chiral scalar is a sum of a scalar and a pseudoscalar. For example, a right-handed
chiral scalar is

𝜙R = 1
2 (1 + 𝛾5)𝜙 , (39.70)

where 𝜙 is a complex scalar. The chiral operator 𝛾5 is not a scalar, but rather a totally antisymmetric tensor
of rank 4. The Newman-Penrose expression (39.114) for 𝛾5 shows that it has zero boost and spin weight.

39.6.2 The 4D super spacetime algebra

The super spacetime algebra comprises 4 distinct species of objects: true scalars, column spinors, row spinors,
and multivectors. In a matrix representation, they are complex (with respect to 𝑖) matrices with dimensions
1× 1, 1× 4, 4× 1, and 4× 4. The super spacetime algebra consists of arbitrary sums and products of all 4
species.
The true scalars are just complex numbers. A column spinor 𝜓 is a complex linear combination of column

basis spinors 𝜖𝑎,

𝜓 = 𝜓𝑎𝜖𝑎 , (39.71)

while a row spinor 𝜓 · is a complex linear combination of row basis spinors 𝜖𝑎 ·,

𝜓 · = 𝜓𝑎𝜖𝑎 · . (39.72)

A multivector 𝑎 is a complex linear combination of outer products of the column and row basis spinors,

𝑎 = 𝑎𝑎𝑏𝜖𝑎𝜖𝑏 · . (39.73)

Linearity and the transformation law (39.59) imply that the algebra of sums and products of outer products
of spinors is isomorphic to the spacetime algebra.
As seen in §39.5.3 and §39.6.1, a column spinor 𝜓 and a row spinor 𝜒 · can be multiplied in either order,

yielding an inner product which is a true scalar, and an outer product which is a multivector. However,
a column spinor cannot be multiplied by a column spinor, and likewise a row spinor cannot be multiplied
by a row spinor, as is manifestly true in a matrix representation. Rather than prohibit multiplication, it is
advantageous (because it facilitates interpretation of the column and row spinors as creation and annihilation
operators) to assert that the product of a column spinor with a column spinor is zero, and the product of a
row spinor with a row spinor is zero,

𝜓𝜒 = 0 , 𝜓 · 𝜒 · = 0 . (39.74)

Similarly, a multivector 𝑎 can only pre-multiply a column spinor 𝜓, and can only post-multiply a row spinor
𝜓 ·, as is again manifestly true in a matrix representation. Thus a multivector 𝑎 post-multiplying a column
spinor or pre-multiplying a row spinor yields zero,

𝜓𝑎 = 0 , 𝑎(𝜓 ·) = 0 . (39.75)
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In general, a sequence of products of spinors yields a non-zero result provided that they alternate between
column spinor and row spinor,

𝜓 𝜒 · 𝜙 or 𝜓 · 𝜒𝜙 · . (39.76)

Both product sequences are associative,

𝜓 𝜒 · 𝜙 = (𝜓 𝜒 ·)𝜙 = 𝜓 (𝜒 · 𝜙) , (39.77a)

𝜓 · 𝜒𝜙 · = (𝜓 · 𝜒)𝜙 · = 𝜓 · (𝜒𝜙 ·) . (39.77b)

One of the advantages of the trailing dot notation is that it makes the directionality of spinor multiplication,
and the corresponding associative law, transparent. A multivector 𝑎 is equivalent to an outer product of
spinors, so products such as

𝜓 · 𝑎𝜒 (39.78)

are admissible, and in general non-vanishing.
The trace of an outer product of spinors is a true scalar

Tr 𝜓𝜒 · = 𝜓𝑎𝜒𝑏𝜀𝑏𝑎 = −𝜓 · 𝜒 = 𝜒 · 𝜓 , (39.79)

the last step of which assumes that the coefficients 𝜓𝑎 and 𝜒𝑏 are ordinary commuting complex numbers,
equation (39.120).

39.6.3 Fierz identities

FIX The associative law and the scalar product make it straightforward to simplify long strings of products
of spinors and multivectors, a process known in quantum field theory as Fierz rearrangement.
Let 𝑎 = 𝑎𝑎𝑏𝜖𝑎𝜖𝑏 · and 𝑏 = 𝑏𝑎𝑏𝜖𝑎𝜖𝑏 · be two multivectors expressed as a sum of outer products of spinors.

Their product is the multivector

𝑎𝑏 = 𝑎𝑎𝑏𝜖𝑎𝜖𝑏 · 𝑏𝑐𝑑𝜖𝑐𝜖𝑑 · = 𝜖𝑎𝑎
𝑎𝑏𝜀𝑏𝑐𝑏

𝑐𝑑𝜖𝑑 · = 𝜖𝑎𝑎
𝑎𝑏𝑏𝑏

𝑑𝜖𝑑 · . (39.80)

A sequence of multivectors sandwiched by spinors simplifies as

𝜓 · 𝑎𝑏𝜒 = 𝜓𝑎𝜖𝑎 · 𝑎𝑏𝑐𝜖𝑏𝜖𝑐 · 𝑏𝑑𝑒𝜖𝑑𝜖𝑒 · 𝜒𝑓𝜖𝑓 = 𝜓𝑎𝜀𝑎𝑏 𝑎
𝑏𝑐𝜀𝑐𝑑 𝑏

𝑑𝑒𝜀𝑒𝑓 𝜒
𝑓 = 𝜓𝑎𝑎𝑎

𝑐𝑏𝑐
𝑒𝜒𝑒 . (39.81)

39.7 Charge conjugation

The super spacetime algebra possesses a discrete transformation, called charge conjugation (or simply conju-
gation, when there is no ambiguity), denoted 𝐶, that transforms a particle into its antiparticle (Bjorken and
Drell, 1964, §5.2). The charge-conjugate Dirac spinor 𝜓 is defined by equation (39.91) below (Bjorken and
Drell (1964) denote the charge conjugate by 𝜓𝑐). The conjugate spinor 𝜓 has the defining properties that
(a) its components are complex conjugates of those of the parent spinor 𝜓, and (b) it Lorentz transforms in
the same way as 𝜓.
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39.7.1 Conjugation operator 𝐶

Consider the conjugation operator 𝐶 with the defining property that commutation with it converts any
Lorentz rotor 𝑅 in the chiral or Dirac representations to its complex conjugate (with respect to 𝑖),

𝐶𝑅* = 𝑅𝐶 . (39.82)

Note that the complex conjugate 𝑅* of a Lorentz rotor 𝑅 is also a Lorentz rotor, since a Lorentz rotor
𝑅 is a real (with respect to 𝑖) linear combination of even orthonormal basis multivectors of the spacetime
algebra. In the Dirac representation (14.103), a necessary and sufficient condition for (39.82) to hold is that 𝐶
commutes with 𝐼 and 𝜎2, and anticommutes with 𝜎1 and 𝜎3. This requires that in the Dirac representation
𝐶 is proportional to 𝜎2 with a proportionality factor that could be some arbitrary complex (with respect to
𝑖 and/or 𝐼) number. To be consistent with standard Dirac theory, the conjugation operator 𝐶 is taken to be
the real unitary matrix

𝐶 = −𝜎2 =

⎛⎜⎜⎝
0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

⎞⎟⎟⎠ . (39.83)

Notwithstanding the equality of 𝐶 and −𝜎2 in the Dirac representation, the conjugation operator 𝐶 is defined
to transform not as an element of the geometric algebra, but rather as

𝑅 : 𝐶 → 𝑅𝐶𝑅−* , (39.84)

in accordance with the defining condition (39.82). Note that if the Lorentz rotor 𝑅 were unitary, then 𝑅𝐶𝑅−*

would equal 𝑅𝐶𝑅⊤; but although spatial rotations are unitary, Lorentz boosts are not. The spinor tensor that
Lorentz transforms as (39.84) and remains invariant under that transformation is precisely the conjugation
operator 𝐶.
The conjugation matrix (39.83) in the Dirac representation translates into the chiral representation (39.13)

as 𝐶chiral = 𝑋𝐶Dirac𝑋
−*, which happens to be the same matrix as in the Dirac representation, 𝐶chiral =

𝐶Dirac. However, to compensate for the extra factor of 𝑖 introduced into the definition (39.36) of the chiral
spinor metric 𝜀chiral, it is necessary to introduce an extra factor of −𝑖 in the definition of the chiral conjugation
matrix 𝐶chiral,

𝐶chiral = −𝑖𝑋𝐶Dirac𝑋
−* = −𝑖𝐶Dirac =

⎛⎜⎜⎝
0 0 0 𝑖

0 0 −𝑖 0

0 −𝑖 0 0

𝑖 0 0 0

⎞⎟⎟⎠ . (39.85)

The compatibility of the normalizations of 𝜀 and 𝐶 is necessary to ensure that the scalar product 𝜓 · 𝜓 of a
spinor with its conjugate is real, equation (39.148). Note that the conjugation matrix (39.85) in the chiral
representation (39.13) is 𝐶chiral = 𝑖𝐼𝛾𝛾2, not −𝜎2.
In both Dirac and chiral representations (39.83) and (39.85), the conjugation operator is symmetric and
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unitary,

𝐶⊤ = 𝐶 , 𝐶𝐶† = 𝐶𝐶* = 1 . (39.86)

In both Dirac and chiral representations, commuting the conjugation operator 𝐶 through the orthonormal
basis vectors 𝛾𝛾𝑚 converts them to their complex (with respect to 𝑖) conjugates,

𝐶𝛾𝛾𝑚 = 𝛾𝛾*𝑚𝐶 . (39.87)

In both Dirac and chiral representations, commuting 𝐶 through the spinor metric 𝜀 converts the former to
minus its complex conjugate,

𝐶𝜀 = −𝜀𝐶* . (39.88)

39.7.2 Conjugate spinor

The complex conjugate 𝜓* of a Dirac spinor 𝜓 = 𝜓𝑎𝜖𝑎 is defined to be the spinor with complex-conjugated
(with respect to 𝑖) coefficients in the Dirac or chiral matrix representation of the spinor,

𝜓* ≡ 𝜓𝑎*𝜖𝑎 . (39.89)

In effect, the basis spinors 𝜖𝑎 are taken to be real in the Dirac or chiral representations. The operation (39.89)
of complex conjugation of a spinor is representation-dependent, as is evident from the fact that the unitary
matrix𝑋, equation (39.12), that transforms between Dirac and chiral representations is complex. By contrast,
the conjugation operation (39.91) below is representation-independent. Complex conjugation leaves the boost
and spin of a spinor unchanged. Since a spinor 𝜓 Lorentz transforms under a Lorentz rotor 𝑅 as 𝜓 → 𝑅𝜓,
its complex conjugate 𝜓* transforms according to the complex-conjugate representation of the 𝛾-matrices,

𝑅 : 𝜓* → (𝑅𝜓)* = 𝑅*𝜓* . (39.90)

The conjugate Dirac spinor 𝜓 is defined by

𝜓 ≡ 𝐶𝜓* , (39.91)

where 𝐶 is the conjugation operator defined in the Dirac or chiral representations by equations (39.83)
and (39.85). The conjugation operator 𝐶 is by construction Lorentz invariant, so the conjugate spinor 𝜓
Lorentz transforms as

𝑅 : 𝜓 ≡ 𝐶𝜓* → 𝐶𝑅*𝜓* = 𝑅𝐶𝜓* = 𝑅𝜓 , (39.92)

that is, the conjugate spinor 𝜓 Lorentz transforms in the same way as the spinor 𝜓. The middle expression
of equation (39.92) is 𝐶𝑅*𝜓* = 𝐶(𝑅𝜓)* = 𝑅𝜓, so

𝑅𝜓 = 𝑅𝜓 , (39.93)

that is, the operations of conjugation and Lorentz transformation commute.
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The symmetry of the conjugation operator, 𝐶 = 𝐶⊤, implies that conjugating a Dirac spinor 𝜓 twice
recovers the original spinor,

¯̄𝜓 = 𝐶(𝐶𝜓*)* = 𝐶𝐶*𝜓 = 𝐶𝐶−⊤𝜓 = 𝜓 . (39.94)

If 𝜓 = 𝜓𝑎𝜖𝑎, then the conjugate spinor 𝜓 is

𝜓 = 𝜓𝑎*�̄�𝑎 , (39.95)

where the conjugate basis spinors �̄�𝑎 are defined by

�̄�𝑎 ≡ 𝐶𝜖𝑎 . (39.96)

In the Dirac representation the conjugate basis spinors �̄�𝑎 are, from the expression (39.83) for 𝐶,

{�̄�⇑↑, �̄�⇑↓, �̄�⇓↑, �̄�⇓↓} = {−𝜖⇓↓, 𝜖⇓↑, 𝜖⇑↓,−𝜖⇑↑} . (39.97)

In the chiral representation the conjugate basis spinors �̄�𝑎 are, from the expression (39.85) for 𝐶,

{�̄�𝑉 ↑, �̄�𝑈↓, �̄�𝑈↑, �̄�𝑉 ↓} = {𝑖𝜖𝑉 ↓,−𝑖𝜖𝑈↑,−𝑖𝜖𝑈↓, 𝑖𝜖𝑉 ↑} . (39.98)

Equation (39.98) shows that conjugation flips spin, but leaves boost unchanged.

39.7.3 Row conjugate spinor

In both Dirac (14.102) and chiral (39.13) representations, the row conjugate spinor 𝜓 · corresponding to the
column conjugate spinor 𝜓 is

𝜓 · ≡ 𝜓⊤𝜀 = 𝜓†𝐶⊤𝜀 = −𝑖𝜓†𝛾𝛾0 . (39.99)

The row conjugate spinor 𝜓 · is commonly called the adjoint spinor. The row conjugate spinor 𝜓 · equals the
reverse spinor 𝜓 defined by equation (14.119). Note that the column conjugate spinor 𝜓 is not the same as
the conventional adjoint spinor 𝜓; rather the conventional adjoint spinor 𝜓 is the row conjugate spinor 𝜓 ·.
Equation (39.99) implies that

𝐶⊤𝜀 = −𝑖𝛾𝛾0 . (39.100)

Equation (39.100) holds in both Dirac and chiral representations, but in fact it must be true in any satisfactory
representation of Dirac spinors governed by the Dirac Lagrangian (41.29), in order that the Dirac number
current density 𝑛0 ≡ 𝑖 𝜓 · 𝛾𝛾0𝜓, equation (41.19), equal a positive number 𝜓†𝜓.
The spinor metric 𝜀 and conjugation operator 𝐶 may be regarded as being defined by their actions (39.38)

and (39.87) on the Minkowski basis vectors 𝛾𝛾𝑚, namely 𝛾𝛾⊤𝑚 = −𝜀𝛾𝛾𝑚𝜀−1 and 𝛾𝛾*𝑚 = 𝐶𝛾𝛾𝑚𝐶
−1. If equa-

tion (39.100) holds, as it must do, and if in addition 𝐶 is symmetric, 𝐶⊤ = 𝐶, as it must be if 𝐶 is unitary
and the double conjugate of a spinor is itself, as it is in Dirac representation, then the Hermitian conjugates
of the basis vectors 𝛾𝛾𝑚 satisfy

𝛾𝛾†𝑚 = (𝛾𝛾⊤𝑚)* = −𝐶𝜀𝛾𝛾𝑚𝜀−1𝐶−1 = −(𝐶⊤𝜀)𝛾𝛾𝑚(𝐶⊤𝜀)−1 = −(𝛾𝛾0)
−1𝛾𝛾𝑚(𝛾𝛾0) = 𝛾𝛾0𝛾𝛾𝑚𝛾𝛾0 = 𝛾𝛾𝑚 . (39.101)

Equation (39.101) shows that 𝛾𝛾𝑚 are unitary, which is the condition (14.100) originally adopted for the Dirac
𝛾-matrices.
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39.7.4 Conjugate multivector

.
The complex conjugate (with respect to 𝑖) 𝑎* of a multivector 𝑎 = 𝑎𝑀𝛾𝛾𝑀 is defined to be, in either the

Dirac or chiral representation (and in either an orthonormal or Newman-Penrose basis),

𝑎* ≡ 𝑎𝑀*𝛾𝛾*𝑀 . (39.102)

Since 𝑎 Lorentz transforms under a Lorentz rotor 𝑅 as 𝑎 → 𝑅𝑎𝑅, its complex conjugate 𝑎* transforms
according to the complex conjugate representation of the 𝛾-matrices,

𝑅 : 𝑎* → (𝑅𝑎𝑅)* = 𝑅*𝑎𝑅* . (39.103)

So defined, complex conjugation is multiplicative over multivectors and spinors,

(𝑎𝜓)* = 𝑎*𝜓* , (39.104)

and consistent with the spacetime algebra in the sense that the complex conjugate of a multivector that is
an outer product of spinors is the outer product of the complex conjugate spinors,

(𝜓𝜒·)* = 𝜓*𝜒* · . (39.105)

Complex conjugation leaves the boost and spin of a multivector unchanged.
The conjugate multivector �̄� (not to be confused with the reverse multivector 𝑎) of a multivector 𝑎 is

defined to be

�̄� ≡ 𝐶𝑎*𝐶−1 . (39.106)

The conjugate multivector �̄� Lorentz transforms in the same way as the parent multivector 𝑎,

𝑅 : �̄�→ 𝐶𝑅*𝑎*𝑅*𝐶−1 = 𝑅𝐶𝑎𝐶−1𝑅 = 𝑅�̄�𝑅 . (39.107)

Conjugation is multiplicative over multivectors and spinors,

𝑎𝜓 = �̄�𝜓 . (39.108)

The conjugate of a multivector that is an outer product of spinors is minus the outer product of the conjugate
spinors,

𝜓𝜒 · = −𝜓�̄� · . (39.109)

The sign comes from the anticommutation of the conjugation operator with the spinor metric tensor, equa-
tion (39.88).
If 𝑎 = 𝑎𝑀𝛾𝛾𝑀 , then the conjugate multivector �̄� is

�̄� = 𝑎𝑀*�̄�𝛾𝑀 , (39.110)

where the conjugate basis elements �̄�𝛾𝑀 are, in either an orthonormal or Newman-Penrose basis, and in either
the Dirac or chiral representations,

�̄�𝛾𝑀 = 𝐶𝛾𝛾*𝑀𝐶
−1 . (39.111)
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The conjugates of orthonormal basis elements are equal to themselves,

�̄�𝛾𝑀 = 𝛾𝛾𝑀 orthonormal basis multivectors . (39.112)

But the conjugates of Newman-Penrose basis vectors are not equal to themselves. Just as conjugation flips
the spin but not boost of a spinor 𝜓, so also conjugation flips the spin but not boost of a multivector 𝑎.
Conjugation flips the spin indices +↔ − of the Newman-Penrose basis vectors 𝛾𝛾𝑚, while leaving the boost
indices 𝑣 and 𝑢 unchanged,

�̄�𝛾𝑣 = 𝛾𝛾𝑣 , �̄�𝛾𝑢 = 𝛾𝛾𝑢 , �̄�𝛾+ = 𝛾𝛾− , �̄�𝛾− = 𝛾𝛾+ , (39.113)

as can be verified by direct calculation from the matrices (39.15) and (39.85). This is true in general: the
conjugate of any Newman-Penrose basis multivector 𝛾𝛾𝑀 is obtained by flipping its spin indices +↔ −. The
chiral matrix 𝛾5 expressed in the Newman-Penrose tetrad is

𝛾5 ≡ −𝑖𝐼 = − 𝑖

4!
𝜀𝑣𝑢+−𝛾𝛾𝑣𝛾𝛾𝑢𝛾𝛾+𝛾𝛾− = −𝛾𝛾𝑣 ∧𝛾𝛾𝑢 ∧𝛾𝛾+ ∧𝛾𝛾− , (39.114)

where the imaginary factor 𝑖 in the definition of 𝛾5 cancels against the imaginary determinant of the trans-
formation from Minkowski to Newman-Penrose tetrad, leaving a real factor in the rightmost expression of
equations (39.114). Conjugation flips the sign of the chiral operator 𝛾5,

𝛾5 = −𝛾5 . (39.115)

39.7.5 Real multivector

Conventionally, a multivector 𝑎 = 𝑎𝑀𝛾𝛾𝑀 is said to be real if its conjugate is itself (the overbar here denotes
the conjugate, not the reverse),

�̄� = 𝑎 . (39.116)

In an orthonormal basis, the conjugates of the basis elements are themselves, �̄�𝛾𝑀 = 𝛾𝛾𝑀 , and a multivector
𝑎 is then real if and only if the coefficients 𝑎𝑀 of its expansion 𝑎 = 𝑎𝑀𝛾𝛾𝑀 in the orthonormal basis are real.
Most classical multivectors are real. For example, derivatives are real, Lorentz rotors are real, the classical

electromagnetic field is real.

39.8 Anticommutation of Dirac spinors

The Dirac spinor Lagrangian (41.2) involves a mass term 𝑚𝜓 ·𝜓. The complex conjugate (with respect to 𝑖)
of the Dirac mass term is, Exercise 39.4,

(𝑚𝜓 · 𝜓)* = −𝑚𝜓 · 𝜓 . (39.117)
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Requiring that the Dirac mass term be real, as required for a real Lagrangian, then imposes the condition
that the scalar product of the Dirac spinors 𝜓 and 𝜓 be antisymmetric,

𝜓 · 𝜓 = −𝜓 · 𝜓 . (39.118)

More generally, in the traditional Dirac theory, the scalar product of any two Dirac spinors is antisymmetric,

𝜓 · 𝜒 = −𝜒 · 𝜓 . (39.119)

Since the scalar products of the basis Dirac spinors 𝜖𝑎 are already antisymmetric, the antisymmetric con-
dition (39.119) in turn imposes the condition that the coefficients 𝜓𝑎 and 𝜒𝑏 must be ordinary commuting
complex numbers,

𝜓𝑎𝜒𝑏 = 𝜒𝑏𝜓𝑎 . (39.120)

The spinor scalar product is non-vanishing only between like-chiral components. Since the conjugate of a
right-handed chiral spinor is left-handed, and vice versa, the scalar product of a pure right- or left-handed
spinor (a Weyl spinor) with its conjugate is necessarily zero,

𝜓 · 𝜓 = 𝜓 · 𝐼𝜓 = 0 (Weyl) . (39.121)

Thus Weyl spinors are necessarily massless.
If a Dirac spinor 𝜓 is decomposed into its right- and left-handed chiral parts 𝜓R and 𝜓L, equation (39.30),

then since conjugation flips chirality, the scalar product is non-vanishing only between like-chiral spinors.
The scalar and pseudoscalar products of 𝜓 and 𝜓 are

𝜓 · 𝜓 = 𝜓L · 𝜓R + 𝜓R · 𝜓L , 𝜓 · 𝐼𝜓 = 𝑖(𝜓L · 𝜓R − 𝜓R · 𝜓L) . (39.122)

Note that 𝜓L is right-handed, and 𝜓R is left-handed.

Exercise 39.4. Complex conjugate of a product of spinors and multivectors.

1. What is the complex conjugate (with respect to 𝑖) of a product 𝜒 ·𝑎𝜓 of a row spinor 𝜒 ·, a multivector
𝑎 of grade 𝑝, and a column spinor 𝜓?

2. If 𝑎 is a real multivector of grade 𝑝, is the product 𝜓 · 𝑎𝜓 real or imaginary?
Solution.

1. The complex conjugate of 𝜒 · 𝑎𝜓 is

(𝜒 · 𝑎𝜓)* = 𝜒* · 𝑎*𝜓* = �̄�⊤𝐶−⊤𝜀𝑎*𝐶−1𝜓 = −�̄�⊤𝜀𝐶𝑎*𝐶−1𝜓 = −�̄� · �̄�𝜓 . (39.123)

The sign flip in the penultimate expression occurs because commuting the conjugation operator 𝐶
through the spinor metric tensor 𝜀 converts 𝐶 to minus its complex conjugate, equation (39.88). An
alternative, equivalent expression follows from the antisymmetry of the spinor metric,

(𝜒 · 𝑎𝜓)* = −�̄� · �̄�𝜓 = (�̄�𝜓) · �̄� = 𝜓�̄�⊤ · �̄� = (−)𝑝(−)[𝑝/2]𝜓 · �̄��̄� . (39.124)

The first equality is equation (39.123), while the second equality is from the anticommutation of Dirac
spinors, equation (39.119). The (−)𝑝 sign in the final expression comes from commuting a grade-𝑝
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multivector through the spinor metric, equation (39.38), while the (−)[𝑝/2] sign comes from the reversion
needed to undo the transposition of a grade-𝑝 multivector. The overall (−)𝑝+[𝑝/2] sign is positive for
scalars, trivectors, and pseudoscalars, negative for vectors and bivectors.

2. If the multivector 𝑎 is real, �̄� = 𝑎, then the complex conjugate of 𝜓 · 𝑎𝜓, is, from equation (39.124),

(𝜓 · 𝑎𝜓)* = (−)𝑝(−)[𝑝/2]𝜓 · 𝑎𝜓 . (39.125)

Thus 𝜓 · 𝑎𝜓 is real for scalars, trivectors, and pseudoscalars, imaginary for vectors and bivectors.

39.9 Discrete transformations 𝑃 , 𝑇

Besides conjugation 𝐶, the super spacetime algebra contains two other discrete transformations, parity
inversion 𝑃 , and time reversal 𝑇 . Parity and time reversal are improper Lorentz transformations, which
preserve the Minkowski metric, but which cannot be obtained by any continuous Lorentz transformation
starting from the identity. Parity and time-reversal are examples of the geometric algebra transformation of
reflection through an axis, §13.6.

39.9.1 Parity inversion 𝑃

The parity inversion operation 𝑃 reverses all the spatial axes, while keeping the time axis unchanged1,

𝑃 : 𝛾𝛾𝑚 → 𝑃𝛾𝛾𝑚𝑃
−1 =

{︂
𝛾𝛾𝑚 𝑚 = 0 ,

−𝛾𝛾𝑚 𝑚 = 1, 2, 3 .
(39.126)

Parity reversal transforms a Dirac spinor 𝜓 as

𝑃 : 𝜓 → 𝑃𝜓 . (39.127)

In any representation, the transformation (39.126) requires 𝑃 to commute with the time axis 𝛾𝛾0 and an-
ticommute with the spatial axes 𝛾𝛾𝑎, 𝑎 = 1, 2, 3. The only basis element of the spacetime algebra with the
required (anti)commutation properties is the time vector 𝛾𝛾0, so 𝑃 must equal 𝛾𝛾0 up to a possible scalar
normalization:

𝑃 = 𝛾𝛾0 . (39.128)

If desired, a scalar factor of 𝑖 could be inserted, 𝑃 = 𝑖𝛾𝛾0, so that 𝑃 2 = 1, but the choice of phase factor
is not essential. Parity flips boost 𝑉 ↔ 𝑈 while leaving spin unchanged. This makes some physical sense:
flipping boost flips the direction of the momentum of the spinor; while spin is a form of angular momentum,
which is unchanged by parity inversion. Parity flips chirality, the projection of spin along the direction of
momentum.
1 Defining parity inversion as a reversal of all spatial axes is convenient when the number of spatial dimensions is odd, as
here. In general the spatial rotation group splits into two disjoint parts, a proper group connected continuously to the
identity, and an improper group obtained by a reflection through any one spatial axis and a continuous rotation. Parity
inversion can be achieved by reflecting through any odd number of spatial axes.
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39.9.2 Time reversal 𝑇

The time-reversal operation 𝑇 reverses the time axis, while keeping all the spatial axes unchanged,

𝑇 : 𝛾𝛾𝑚 → 𝑇𝛾𝛾𝑚𝑇
−1 =

{︂
−𝛾𝛾𝑚 𝑚 = 0 ,

𝛾𝛾𝑚 𝑚 = 1, 2, 3 .
(39.129)

Time reversal transforms a Dirac spinor 𝜓 as

𝑇 : 𝜓 → 𝑇𝜓 . (39.130)

In any representation, the transformation (39.129) requires 𝑇 to anticommute with the time axis 𝛾𝛾0 and
commute with the spatial axes 𝛾𝛾𝑎, 𝑎 = 1, 2, 3. The only basis element of the spacetime algebra with the
required (anti)commutation properties is the time pseudovector 𝐼𝛾𝛾0, so 𝑇 must equal that pseudovector up
to a possible scalar normalization:

𝑇 = 𝐼𝛾𝛾0 . (39.131)

If desired, a scalar factor of −𝑖 could be inserted, 𝑇 = −𝑖𝐼𝛾𝛾0, to ensure that 𝑇 2 = 1 and 𝑃𝑇 = 𝐼 (with
𝑃 = 𝑖𝛾𝛾0), but again the choice of phase factor is not essential.

39.9.3 𝑃𝑇

The product 𝑃𝑇 of the parity and time inversion operators,

𝑃𝑇 = 𝐼 , (39.132)

reverses all 4 spacetime axes 𝛾𝛾𝑚,

𝑃𝑇 : 𝛾𝛾𝑚 → 𝐼𝛾𝛾𝑚𝐼
−1 = −𝛾𝛾𝑚 , (39.133)

and transforms a Dirac spinor 𝜓 as

𝑃𝑇 : 𝜓 → 𝐼𝜓 . (39.134)

The fact that the 𝑃𝑇 operator equals the pseudoscalar 𝐼 makes physical sense. The operation of reversing
all axes, both space and time, is Lorentz invariant. The only Lorentz-invariant basis multivectors of the
spacetime algebra are the unit matrix and the pseudoscalar. The pseudoscalar is related to the chiral matrix
by 𝐼 = 𝑖𝛾5, so the basis spinors 𝜖𝑎 in the chiral representation are 𝑃𝑇 -eigenstates.

39.10 The super geometric algebra in arbitrarily many space and time
dimensions
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Exercise 39.5. Generalize the super spacetime algebra to an arbitrary number of space and

time dimensions. Generalize the super spacetime algebra to an arbitrary number of dimensions, with 𝐾
spatial dimensions, and𝑀 timelike dimensions, and a total of𝐾+𝑀 = 𝑁 dimensions. This is a generalization
of Exercise 38.3.
Solution. The construction described in Exercise 38.3, in which all dimensions are spatial, carries through
unchanged through parts 1–13. After the construction is completed, modify the matrix representing any
timelike orthonormal basis vector 𝛾𝛾𝑚 by multiplying the matrix by 𝑖 (or −𝑖, if preferred),

𝛾𝛾𝑚 → ±𝑖𝛾𝛾𝑚 for timelike orthonormal basis vectors 𝛾𝛾𝑚 . (39.135)

Propagate that modification through the basis orthonormal multivectors of the spacetime algebra. The spinor
metric 𝜀 can be left unchanged, so that it remains real.
As an example of this algorithm, the spin basis vectors 𝛾𝛾±𝑖

for 𝑖 = 1...[𝑁/2] continue to be defined in
terms of orthonormal vectors 𝛾𝛾𝑚 by the unchanged equations (38.82), 𝛾𝛾±𝑖 = 1√

2
(𝛾𝛾2𝑖−1 ± 𝑖𝛾𝛾2𝑖). The chiral

construction in part 5 of Exercise 38.3 yields unchanged real matrix representations of all spin basis vectors
𝛾𝛾±𝑖 . If in fact 𝛾𝛾2𝑖 (say) is timelike, then replacing 𝛾𝛾2𝑖 → −𝑖𝛾𝛾2𝑖 (after the construction is completed) means
that 𝛾𝛾±𝑖

= 1√
2
(𝛾𝛾2𝑖−1 ± 𝛾𝛾2𝑖) is really a sum of spacelike and timelike vectors, like the null vectors 𝛾𝛾𝑣 and 𝛾𝛾𝑢

in the Newman-Penrose formalism.
A super spacetime algebra with both space and time dimensions differs from an algebra with only space (or

only time) dimensions in that rotations in a time-space plane are non-compact, whereas rotations in a space-
space (or time-time) plane are compact. Rotations in a time-space plane are called (Lorentz) boosts. For
example, if one of 𝛾𝛾2𝑖−1 and 𝛾𝛾2𝑖 is timelike and the other spacelike, then a rotation by boost angle (rapidity)
𝜃 in the 𝛾𝛾2𝑖−1–𝛾𝛾2𝑖 plane transforms the the 𝑖’th pair of spin basis vectors 𝛾𝛾±𝑖

as, in place of (38.83),

𝛾𝛾±𝑖
→ 𝑒±𝜃 𝛾𝛾±𝑖

, (39.136)

and a basis spinor 𝜖𝑎 transforms as, in place of (38.86),

𝜖...↑𝑖... → 𝑒𝜃/2 𝜖...↑𝑖... , 𝜖...↓𝑖... → 𝑒−𝜃/2 𝜖...↓𝑖... . (39.137)

The chiral representation (39.13) of Dirac 𝛾-matrices is equivalent to the chiral construction in part 5 of
Exercise 38.3 with the following rearrangement of indices:

{𝛾𝛾1,𝛾𝛾2,𝛾𝛾3,𝛾𝛾0}Dirac = {𝛾𝛾3,𝛾𝛾4,𝛾𝛾1, 𝑖𝛾𝛾2} . (39.138)

9. Parity and time reversal. Parity reversal is the operation of reflecting an odd number of spatial axes.
Time reversal is the operation of reflecting an odd number of time axes. A reflection of an even number
of spatial axes can be accomplished by a continous rotation in spatial dimensions, while a reflection of
an even number of time axes can be accomplished by a continuous rotation in time dimensions.

If the total number 𝑁 = 𝐾+𝑀 of spacetime dimensions is even, then parity reversal may be accom-
plished by setting the parity operator 𝑃 equal to one of the space dimensions if 𝐾 is even, or to one of



1024 Super spacetime algebra

the time dimensions if 𝐾 is odd, and transforming spinors and multivectors by

𝑃 : 𝜓 → 𝑃𝜓 , 𝑎→ 𝑃𝑎𝑃−1 . (39.139)

If desired, a phase factor can be inserted into 𝑃 to ensure that 𝑃 2 = 1, but the choice of phase factor
is not essential. Again, if the total number 𝑁 = 𝐾+𝑀 of spacetime dimensions is even, then the
combined operation of parity and time reversal may be accomplished by setting the 𝑃𝑇 operator equal
to the pseudoscalar 𝐼𝑁 ,

𝑃𝑇 : 𝜓 → 𝐼𝑁𝜓 , 𝑎→ 𝐼𝑁𝑎𝐼−1𝑁 . (39.140)

Time reversal is accomplished by the operator 𝑇 = 𝑃 (𝑃𝑇 ) = 𝑃𝐼𝑁 .
As in part 9 of Exercise 38.3, if the total number 𝑁 = 𝐾+𝑀 of spacetime dimensions is odd, then

there is no element of the geometric algebra that accomplishes parity or time reversal by operations
like (39.139) and (39.140). The implementation of parity and time reversal in odd 𝑁 dimensions is
described in the next part.

10. Super spacetime algebra in odd dimensions, version 2. As described in parts 7 and 10 of Exer-
cise 38.3, there are two ways to construct the super geometric algebra in odd 𝑁 = 𝐾+𝑀 dimensions,
the first being to project the algebra into one dimension lower, the second to embed the algebra in one
dimension higher, and to treat either the final (odd) dimension 𝛾𝛾𝑁 or the extra (even) dimension 𝛾𝛾𝑁+1

as a scalar. The vectors 𝛾𝛾𝑁 or 𝛾𝛾𝑁+1 have the usual property of anticommuting with all orthonormal
vectors 𝛾𝛾𝑚 other than themselves. If the number 𝐾 of time dimensions is odd, then the scalar axis 𝛾𝛾𝑁
or 𝛾𝛾𝑁+1 serves as a time-reversal operator 𝑇 , while if the number of time dimensions is even, then the
scalar axis serves as a parity-reversal operator 𝑃 . If the number of time dimensions is odd, a suitable
parity operator is 𝑃 = 𝛾𝛾𝑎𝑇 , where 𝛾𝛾𝑎 is any spatial vector; while if the number of time dimensions is
even, a suitable time-reversal operator is 𝑇 = 𝛾𝛾𝑘𝑃 where 𝛾𝛾𝑘 is any time vector.

14. Conjugation. Part 14 of Exercise 38.3 mostly carries through, but the condition that the Lorentz-
invariant conjugation operator 𝐶 commute with all real orthonormal bivectors, and anticommute with
all imaginary orthonormal bivectors translates into the condition that, in place of expression (38.148),
𝐶 equals, modulo a normalization factor, the product of the spinor metric tensor 𝜀 (or the alternative
spinor metric tensor 𝜀alt) with the product of all timelike orthonormal basis vectors,

𝐶 = 𝜀Γ⊤ , Γ ≡
∏︁
𝑚

(−𝑖𝛾𝛾𝑚)(timelike) . (39.141)

The normalization of Γ is such that the eigenvalues of Γ are real, which ensures that 𝜓 · 𝜓 is real,
equation (39.146). The square of Γ is one, Γ2 = 1. The eigenvalues of Γ are ±1, and there are equal
numbers of +1 and −1 eigenvalues, since the trace of Γ is zero. For example, if there is just one time
dimension 𝛾𝛾0, as in the 4D spacetime algebra considered in this Chapter, then Γ is, equation (39.100),

Γ = −𝑖𝛾𝛾0 . (39.142)

Notwithstanding equation (39.141), the conjugation operator 𝐶 is defined to transform not as an element
of the geometric algebra, but rather as a spinor tensor that is invariant under Lorentz transformations.
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Table 39.1: Symmetry of the conjugation operator 𝐶

𝐾 −𝑀 𝐶 𝐶alt 𝐶 𝐶alt

1 (mod 8) + + + −
2 (mod 8) + −
3 (mod 8) − − + −
4 (mod 8) − −
5 (mod 8) − − − +

6 (mod 8) − +

7 (mod 8) + + − +

8 (mod 8) + +

Conjugation flips all space-space and time-time bits of a spinor, while keeping all space-time bits un-
flipped. The chirality of a spinor is its sign under the chiral operator κ𝑁 . For even 𝐾−𝑀 , conjugation
flips the chirality of a spinor if (𝐾−𝑀)/2 is odd, and leaves the chirality unchanged if (𝐾−𝑀)/2 is
even. For odd 𝐾−𝑀 , if the path proposed in part 7 is followed, where the odd-𝑁 algebra is projected
into one lower dimension, which requires identifying κ𝑁 with unity, then chirality is not a rotationally
invariant property of spinors. If on the other hand the path proposed in part 10 is followed, where the
odd-𝑁 algebra is projected into one higher dimension, then chirality is the sign under κ𝑁+1.

The double conjugate of a spinor is

¯̄𝜓 = 𝐶𝐶*𝜓 = ±𝜓 , (39.143)

where the sign is + or − depending on whether the conjugation operator is symmetric, 𝐶 = 𝐶⊤, or
antisymmetric (the symmetry condition 𝐶 = 𝐶⊤ is equivalent to 𝐶𝐶* = 1 in view of the unitarity of
𝐶, equation (39.86)). Table 39.1 shows the symmetry of conjugation operator 𝐶 for the standard and
alternative spinor metrics, including the tilde’d versions (38.92) for odd 𝐾−𝑀 . Table 39.1 is essentially
identical to the earlier Table 38.1, except that the number 𝑁 of spatial dimensions is changed to the
difference 𝐾−𝑀 of numbers of space and time dimensions. For Dirac spinors in 3+1 dimensions, the
conventional choice is the standard spinor metric (38.90), which ensures that the conjugation operator
is symmetric, hence that the double conjugate of a spinor is itself, ¯̄𝜓 = 𝜓.

The scalar product of a conjugate spinor 𝜓 with a spinor 𝜒 is (compare equation (39.99))

𝜓 · 𝜒 = 𝜓†𝐶⊤𝜀𝜒 = 𝜓†Γ𝜒 , (39.144)

which is a complex (with respect to 𝑖) number. In particular, in a basis with respect to which Γ is
diagonal, the scalar product of a conjugate basis spinor �̄�𝑎 with a basis spinor 𝜖𝑏 is plus or minus the
Kronecker delta,

�̄�𝑎 · 𝜖𝑏 = ±𝛿𝑎𝑏 , (39.145)
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the sign being that of the eigenvalue of Γ. The scalar product of a spinor 𝜓 with its conjugate is

𝜓 · 𝜓 = 𝜓†Γ𝜓 , (39.146)

which is real given that the eigenvalues of Γ are real. In zero time dimensions the scalar product of a
spinor with its conjugate was always positive, equation (38.70), but with one or more time dimensions
the scalar product of a spinor with its conjugate can be either positive or negative.
The scalar product 𝜓 · Γ𝜒 is

𝜓 · Γ𝜒 = 𝜓†𝜒 . (39.147)

In particular, 𝜓 · Γ𝜓 is real and positive,

𝜓 · Γ𝜓 = 𝜓†𝜓 . (39.148)

The conjugate �̄�𝛾𝐴 of a basis multivector is defined by equation (38.163). The conjugate of an or-
thonormal basis vector 𝛾𝛾𝑚 is, in place of equation (38.164),

�̄�𝛾𝑚 = ±(−)𝑀𝛾𝛾𝑚 , (39.149)

where the ± sign is as given in Table 38.2. For the (3+1)-dimensional Dirac algebra, the ± sign is −,
and 𝑀 = 1, so �̄�𝛾𝑚 = 𝛾𝛾𝑚, in agreement with equation (39.112).

15. Real subalgebra. As in part 15 of Exercise 38.3, a real subalgebra of the complex geometric algebra
may be obtained by restricting to multivectors satisfying the reality condition that they are their own
conjugates,

�̄� = 𝑎 . (39.150)

Conjugates of orthonormal basis vectors are plus or minus themselves per equation (39.149). If the
overall sign ±(−)𝑀 in equation (39.149) is +, as it is for example in the (3+1)-dimensional Dirac
algebra, then the real subalgebra consists of real linear combinations of orthonormal basis multivectors.
If the sign ±(−)𝑀 in equation (39.149) is −, then the real subalgebra consists of linear combinations
of odd-grade orthonormal multivectors with pure imaginary coefficients and even-grade orthonormal
multivectors with pure real coefficients.
Part 15 of Exercise 38.3 showed that a real super spacetime subalgebra could be obtained as the

algebra of outer products of self-conjugate spinors,

𝜓 = 𝜓 , (39.151)

which worked provided that the conjugation operator is symmetric. If there are time as well as space di-
mensions, then the algebra of outer products of self-conjugate spinors is real, satisfying condition (39.150),
only if both the spinor metric 𝜀 and the conjugation operator 𝐶 are symmetric, that is, the sign is + in
both Tables 38.1 and 39.1. This is not true for example in the (3+1)-dimensional Dirac algebra, where
the spinor metric is antisymmetric. Suppose that 𝜓 = 𝜓 and 𝜒 = �̄� are self-conjugate spinors. The
conjugate of their multivector outer product 𝑎 = 𝜓𝜒 · satisfies

�̄� = 𝜓𝜒 · = 𝐶(𝜓𝜒 ·)*𝐶−1 = ±(𝐶𝜓*)𝜒†𝐶⊤𝜀 = ±(𝐶𝜓*)(𝐶𝜒*)⊤ · = ±𝜓�̄� · = ±𝜓𝜒 · = ±𝑎 , (39.152)
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the ± sign at the third step coming from commuting the conjugation operator through the spinor
metric. Given that the conjugation operator must be symmetric for spinors to be self-conjugate, so
𝐶 = 𝐶⊤ = Γ𝜀⊤, it follows that

𝐶𝜀𝐶 = Γ𝜀⊤𝜀Γ𝜀⊤ = Γ2𝜀⊤ = 𝜀⊤ = ±𝜀 , (39.153)

the ± sign being the symmetry of the spinor metric. The sign is positive, yielding a real geometric
algebra satisfying equation (39.150), only if the spinor metric is symmetric.

16. Transformations that leave the spinor scalar product unchanged. The first half of part 16 of
Exercise 38.3 carries through. The list (38.171) of grades of multivectors that generate transformations
that preserve the spinor scalar product remains unchanged.
But the condition for the scalar product of spinors and conjugate spinors to be preserved under a

transformation 𝑅 = 𝑒−𝜃𝛾𝛾𝐴/2 generated by a grade-𝑝 multivector 𝛾𝛾𝐴 is modified. The commutation
rule (38.173) is modified to

𝐶𝑅* = 𝐶𝑒−𝜃
*𝛾𝛾*

𝐴/2 = 𝑒−𝜃
*�̄�𝛾𝐴/2𝐶 = 𝑒−(±)

𝑝(−)𝑀𝑝𝜃*𝛾𝛾𝐴/2𝐶 , (39.154)

where the ± sign in (±)𝑝, from equation (39.149), is as given in Table 38.2. A scalar product 𝜓 · 𝜒 of a
conjugate spinor with a spinor transforms under 𝑅 to, in place of equation (38.174),

(𝐶(𝑅𝜓)*) · (𝑅𝜒) = 𝜓𝑒−(±)
𝑝(−)𝑀𝑝𝜃*𝛾𝛾⊤

𝐴 /2𝜀𝑅𝜒 = 𝜓𝜀𝑒−(−)
[𝑝/2](−)𝑀𝑝𝜃*𝛾𝛾𝐴/2𝑅𝜒 , (39.155)

where the sign (−)[𝑝/2](−)𝑀𝑝 in the final expression is the product of (±)𝑝(−)𝑀𝑝 and the sign (±)𝑝(−)[𝑝/2]
in the commutation rule (38.100) of a multivector 𝛾𝛾𝐴 through the spinor metric 𝜀. The spinor product
is preserved provided that 𝑒−(−)

[𝑝/2](−)𝑀𝑝𝜃*𝛾𝛾𝐴/2 = 𝑅−1, which is to say provided that

− (−)[𝑝/2](−)𝑀𝑝𝜃* = 𝜃 . (39.156)

If the number of time dimensions is 𝑀 = 1, or more generally if the number 𝑀 of time dimensions
is odd, then the scalar product of spinors and conjugate spinors is preserved under transformations
generated by multivectors of grade 𝑝 provided that the coefficient 𝜃 satisfies

𝜃 real grades (1 or 2) mod 4 (thus 1, 2, 5, 6, ...) , (39.157a)
𝜃 imaginary grades (0 or 3) mod 4 (thus 0, 3, 4, 7, ...) . (39.157b)

If the number 𝑀 of time dimensions is even, then (−)𝑀𝑝 = 1, and the earlier condition (38.176) holds.
17. Rotor group. The rotor group is generated by the basis of orthonormal bivectors. Bivectors that are

the wedge product of a timelike vector and a spacelike vector are multiplied by 𝑖, so that rotations
in a time-space plane take the exponential form 𝑒𝜃/2, rather than being rotations by a phase, 𝑒−𝑖𝜃/2.
The orthonormal basis bivectors remain traceless and unitary, but whereas time-time and space-space
bivectors remain skew-Hermitian, the time-space bivectors become Hermitian. The rotor group in 𝐾

spatial dimensions and 𝑀 time dimensions is called Spin(𝐾,𝑀). The construction (38.109) described
in Exercise 38.3 embeds Spin(𝐾,𝑀) as a subgroup of the group SL(2[𝑁/2],C), where 𝑁 ≡ 𝐾+𝑀 , of
complex 2[𝑁/2] × 2[𝑁/2] matrices of unit determinant,

Spin(𝐾,𝑀) ⊆ SL(2[𝑁/2],C) , 𝑁 ≡ 𝐾 +𝑀 . (39.158)
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The group is not unitary, since bivector generators that are wedge products of a timelike vector and a
spacelike vector are Hermitian, whereas unitarity requires all generators to be skew-Hermitian (compare
Exercise 14.17). Switching time and space dimensions leaves the group unchanged, so Spin(𝐾,𝑀) is
isomorphic to Spin(𝑀,𝐾).

18. Grade-preserving subgroup of Spin(𝐾,𝑀). As in part 18 of Exercise 38.3, there exists a subgroup of
Spin(𝐾,𝑀) that preserves the grade (number of up bits) of the spinor. The construction (38.180) runs
into an obstacle because mixed space-time bivectors cannot be combined in real linear combinations with
space-space or time-time bivectors to form bivectors of zero spin (complex linear combinations yes, but
not real linear combinations). The best that can be done is to minimize the number of mixed space-time
bivectors, by grouping spatial dimensions into pairs, and time dimensions into pairs, leaving at most
one pair of dimensions a mixed combination of a space and a time dimension. The mixed pair is needed
only if both space and time dimensions 𝐾 and 𝑀 are odd. The construction (38.180) then yields [𝐾/2]2

skew-Hermitian space-space generators, [𝑀/2]2 skew-Hermitian time-time generators, and 2[𝐾/2][𝑀/2]

Hermitian space-time generators. If there is a mixed space-time pair of dimensions, then there is 1
extra Hermitian space-time generator. Altogether the grade-preserving subgroup of Spin(𝐾,𝑀) has
dimension [(𝐾+𝑀)/2]2 if at most one of 𝐾 or 𝑀 is odd, or ([𝐾/2] + [𝑀/2])2 + 1 if 𝐾 and 𝑀 are both
odd. The largest unitary subgroup of Spin(𝐾,𝑀) is the direct product U([𝐾/2])×U([𝑀/2]) of unitary
groups generated by the [𝐾/2]2 skew-Hermitian space-space generators and the [𝑀/2]2 skew-Hermitian
time-time generators.



40

Geometric Differentiation and Integration
of Spinors

40.1 Covariant derivative of a spinor

A Lorentz transformation of a Dirac spinor 𝜓 by rotor 𝑅 transforms the spinor by 𝜓 → 𝑅𝜓. An infinitesimal
Lorentz transformation 𝑅 = 1 + 𝜖Γ/2 generated by a bivector Γ transforms 𝜓 → 𝜓 + 1

2𝜖Γ𝜓. Consequently
the action of the connection operator Γ̂𝑛 on a spinor 𝜓 is

Γ̂𝑛𝜓 = 1
2Γ𝑛𝜓 , (40.1)

where Γ𝑛 is the 𝑁 -tuple of bivectors (15.9). The covariant derivative of a spinor 𝜓 is thus

𝐷𝑛𝜓 = 𝜕𝑛𝜓 + 1
2Γ𝑛𝜓 , (40.2)

In equation (40.2), as previously in equations (15.6) and (15.15), for a spinor 𝜓 = 𝜖𝑎𝜓
𝑎, the directed

derivative 𝜕𝑛 is to be interpreted as acting only on the components 𝜓𝑎 of the spinor, 𝜕𝑛𝜓 = 𝜖𝑎 𝜕𝑛𝜓
𝑎. In the

convention (39.75) that multivectors acting to the right of a column spinor yield zero, the connection term
in equation (40.2) can be written as a commutator, in the same form as (15.15),

𝐷𝑛𝜓 = 𝜕𝑛𝜓 + 1
2 [Γ𝑛, 𝜓] . (40.3)

Acting on a spinor 𝜓, the Riemann curvature operator �̂�𝑘𝑙, equation (15.21), yields another spinor,

�̂�𝑘𝑙𝜓 = 1
2𝑅𝑘𝑙𝜓 . (40.4)

Again in the convention (39.75) that multivectors acting to the right of a column spinor yield zero, equa-
tion (40.4) can be written in the same form as equation (15.23),

�̂�𝑘𝑙𝜓 = 1
2 [𝑅𝑘𝑙, 𝜓] . (40.5)

40.1.1 Covariant derivative of a row spinor

A row Dirac spinor 𝜓 · Lorentz transforms as 𝜓 · → 𝜓 · �̄�, so an infinitesimal Lorentz transformation �̄� =

1− 𝜖Γ/2 generated by a bivector Γ transforms 𝜓 · → 𝜓 ·− 1
2𝜖𝜓 ·Γ. Consequently the action of the connection
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operator Γ̂𝑛 on a row spinor 𝜓 · is
Γ̂𝑛𝜓 · = − 1

2𝜓 · Γ𝑛 , (40.6)

and the covariant derivative of a row spinor 𝜓 · is then

𝐷𝑛𝜓 · = 𝜕𝑛𝜓 · − 1
2𝜓 · Γ𝑛 . (40.7)

Again in the convention (39.75) that multivectors acting to the left of a row spinor yield zero, the connection
term in equation (40.7) can be written as a commutator, in the same form as (15.15),

𝐷𝑛𝜓 · = 𝜕𝑛𝜓 ·+ 1
2 [Γ𝑛, 𝜓 ·] . (40.8)

Acting on a row spinor 𝜓 ·, the Riemann curvature operator �̂�𝑘𝑙, equation (15.21), yields another row
spinor,

�̂�𝑘𝑙𝜓 · = − 1
2𝜓 ·𝑅𝑘𝑙 . (40.9)

Again in the convention (39.75) that multivectors acting to the left of a row spinor yield zero, equation (40.9)
can be written in the same form as equation (15.23),

�̂�𝑘𝑙𝜓 · = 1
2 [𝑅𝑘𝑙, 𝜓 ·] . (40.10)

Equations (15.15), (40.3), and (40.8) show that if 𝑎 is any element of the super geometric algebra, either
a multivector or a column or row spinor, or a true scalar, its covariant derivative 𝐷𝑛𝑎 can be written in the
same form

𝐷𝑛𝑎 = 𝜕𝑛𝑎+
1
2 [Γ𝑛, 𝑎] . (40.11)

Likewise the action of the Riemann curvature operator �̂�𝑘𝑙, equation (15.21), on any element 𝑎 of the super
geometric algebra takes the same form

�̂�𝑘𝑙𝑎 = 1
2 [𝑅𝑘𝑙, 𝑎] . (40.12)

40.2 Covariant derivative in a spinor basis

The covariant derivative 𝐷𝑛 can also be expressed in a spinor basis.
The spinor tetrad connections Γ𝑏𝑎𝑛 are defined, analogously to the definition (11.37) of the tetrad connec-

tions Γ𝑘𝑚𝑛, to be the coefficients of the change of the spinor axes 𝜖𝑎 parallel-transported along the direction
𝛾𝛾𝑛,

Γ𝑏𝑎𝑛𝜖𝑏 ≡ 𝜕𝑛𝜖𝑎 . (40.13)

The same equation (40.13) with a trailing dot appended on both sides holds for row spinors. The constancy
of the spinor metric,

0 = 𝜕𝑛𝜀𝑎𝑏 = 𝜕𝑛(𝜖𝑎 · 𝜖𝑏) = Γ𝑐𝑏𝑛𝜖𝑎 · 𝜖𝑐 + Γ𝑐𝑎𝑛𝜖𝑐 · 𝜖𝑏 = Γ𝑐𝑏𝑛𝜀𝑎𝑐 + Γ𝑐𝑎𝑛𝜀𝑐𝑏 = Γ𝑎𝑏𝑛 − Γ𝑏𝑎𝑛 , (40.14)
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along with the antisymmetry of the spinor metric, implies that the spinor tetrad connection Γ𝑎𝑏𝑛 is symmetric
in its first two indices,

Γ𝑎𝑏𝑛 = Γ𝑏𝑎𝑛 . (40.15)

The symmetry of the spinor tetrad connection is analogous to the antisymmetry of the tetrad connection,
equation (11.47). The preservation of chirality under parallel transport implies that the spinor connections
Γ𝑎𝑏𝑛 are non-vanishing only when 𝑎 and 𝑏 have the same chirality,

Γ𝑎𝑏𝑛 = 0 for 𝑎, 𝑏 of opposite chirality . (40.16)

In the 4D super spacetime algebra, the non-vanishing spinor connection coefficients comprise 12 right-
handed spinor connections, and 12 left-handed spinor connections. The 24 spinor connection coefficients
Γ𝑎𝑏𝑛 are related to the 24 tetrad connection coefficients Γ𝑘𝑚𝑛 by

Γ𝑎𝑏𝑛 = 𝛾𝑘𝑚𝑎𝑏 Γ𝑘𝑚𝑛 , (40.17)

where 𝛾𝑘𝑚𝑎𝑏 is the matrix defined by equation (39.68) with 𝑘𝑚 running over the 6 bivector indices, and 𝑘𝑚
are implicitly summed over distinct bivector indices. In the chiral representation, the matrix coefficients are
given by equations (39.62) and (39.63).
The connection Γ𝑛 defined by equation (15.9) is in terms of the spinor basis

Γ𝑛 = Γ𝑎𝑏𝑛𝜖
𝑎𝜖𝑏 · , (40.18)

implicitly summed over distinct symmetric self-chiral pairs 𝑎𝑏 of spinor indices. Expressions (15.15), (40.3),
and (40.8) for the covariant derivatives of multivectors and spinors remain valid with the connection Γ𝑛
given by equation (40.18).

40.3 Covariant spacetime derivative of a spinor

Acting on a Dirac column spinor 𝜓, the covariant spacetime derivative 𝐷 ≡ 𝛾𝛾𝑛𝐷𝑛 yields another Dirac
spinor

𝐷𝜓 column spinor . (40.19)

This derivative is a fundamental ingredient in the Lagrangian for a Dirac field, and in the resulting Dirac
equations of motion.
The covariant spacetime derivative of a row spinor 𝜓 · is defined to equal the row spinor corresponding to

the covariant spacetime derivative of the column spinor 𝜓, that is,𝐷𝜓 · ≡ (𝐷𝜓) ·. The following manipulation
shows that the spacetime derivative of the row spinor is minus the spacetime derivative acting on the row
spinor to the left:

𝐷𝜓 · ≡ (𝐷𝜓) · = (𝐷𝜓)⊤𝜀 = 𝜓⊤
←
𝐷⊤𝜀 = −𝜓⊤𝜀

←
𝐷 = −𝜓 ·

←
𝐷 . (40.20)

The penultimate step is true because 𝛾𝛾𝑛⊤𝜀 = −𝜀𝛾𝛾𝑛, equation (39.38).
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40.4 Gauss’ theorem for spinors

In practical applications to spinor Lagrangians, Gauss’ theorem occurs in the form∫︁ (︀
𝜒 ·𝐷𝜓 + 𝜓 ·𝐷𝜒

)︀
𝑑4𝑥 =

∫︁
𝐷𝑛(𝜒 · 𝛾𝛾𝑛𝜓) 𝑑4𝑥 =

∮︁
𝜒 · 𝛾𝛾𝑛𝜓 𝑑3𝑥𝑛 , (40.21)

where 𝜓 and 𝜒 are spinors, and 𝐷 is the torsion-full covariant spacetime derivative.
Equation (40.21) is proved as follows:

𝜒 ·𝐷𝜓 + 𝜓 ·𝐷𝜒 = 𝜒 ·𝐷𝜓 − (𝐷𝜒) · 𝜓
= 𝜒 · 𝛾𝛾𝑛𝐷𝑛𝜓 − (𝛾𝛾𝑛𝐷𝑛𝜒) · 𝜓
= 𝜒 · 𝛾𝛾𝑛𝐷𝑛𝜓 + (𝐷𝑛𝜒) · 𝛾𝛾𝑛𝜓

= 𝜒 · 𝛾𝛾𝑛(𝐷𝑛 + 1
2𝐾𝑛)𝜓 +

(︁
(𝐷𝑛 + 1

2𝐾𝑛)𝜒
)︁
· 𝛾𝛾𝑛𝜓

= 𝜒 · 𝛾𝛾𝑛𝐷𝑛𝜓 + (𝐷𝑛𝜒) · 𝛾𝛾𝑛𝜓 + 1
2 𝜒 · 𝛾𝛾

𝑛𝐾𝑛𝜓 − 1
2 𝜒 ·𝐾𝑛𝛾𝛾

𝑛𝜓

= 𝐷𝑛(𝜒 · 𝛾𝛾𝑛𝜓)− 𝜒 ·
(︁
𝐷𝑛𝛾𝛾

𝑛 + 1
2 [𝐾𝑛,𝛾𝛾

𝑛]
)︁
𝜓

= 𝐷𝑛(𝜒 · 𝛾𝛾𝑛𝜓) , (40.22)

where 𝐾𝑛 ≡ 1
2𝐾𝑘𝑙𝑛 𝛾𝛾

𝑘 ∧𝛾𝛾𝑙 is the contortion, equation (15.47). The sign flip on the first line comes from
the anticommutation of Dirac spinors, equation (39.119). The sign flip is cancelled on the third line from
commuting the basis vectors 𝛾𝛾𝑛 through the spinor metric, equation (39.38). The last term on the penultimate
line of equation (40.22) vanishes because the torsion-full covariant derivative of the basis vectors 𝛾𝛾𝑛 vanishes,
𝐷𝑛𝛾𝛾

𝑛 + 1
2 [𝐾𝑛,𝛾𝛾

𝑛] = 𝐷𝑛𝛾𝛾
𝑛 = 0.
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Action principle for spinor fields

As expounded in Chapter 15, 𝑑4𝑥 denotes the invariant scalar 4-volume, equation (15.102), not the pseu-
doscalar 4-volume. The units are 𝑐 = ~ = 1.
The relation between energy-momenta 𝑝𝑛 and spacetime derivatives 𝜕𝑛 adopted here is the standard

quantum mechanics convention,

𝑝𝑛 = −𝑖~ 𝜕𝑛 . (41.1)

Beware that this convention is opposite to the standard cosmological convention, §26.8.2, adopted in Chap-
ters 26–37.

41.1 Dirac spinor field

41.1.1 Dirac Lagrangian

The general relativistic scalar Lagrangian 𝐿 of a free Dirac spinor field 𝜓 of mass 𝑚 is

𝐿 = 𝜓 · (𝐷 +𝑚)𝜓 . (41.2)

Here 𝐷 ≡ 𝛾𝛾𝑛𝐷𝑛 is the (torsion-full, in general1) covariant spacetime derivative, equation (15.31), and 𝜓

is the conjugate field defined by equation (39.91). In flat (Minkowski) space the justification for the Dirac
Lagrangian (41.2) is that it leads to equations that reproduce ample experiment. Equation (41.2) is the
covariant generalization of the flat space Lagrangian of a Dirac field. If units are restored, then the mass is
𝑚/(~𝑐). The spinor field 𝜓 has units of length−3/2.
As it stands, the Lagrangian (41.2) is strangely asymmetric in the fields, as it depends only on the velocity

𝐷𝜓 of the field, not on the velocity 𝐷𝜓 of the conjugate field. Moreover the Lagrangian (41.2) is complex,
not real. Symmetry and reality can be restored by symmetrizing the Lagrangian (41.2) with its complex
conjugate. The covariant spacetime derivative 𝐷 ≡ 𝛾𝛾𝑛𝐷

𝑛 has real coefficients 𝐷𝑛 in an orthonormal basis

1 Gauge fields such as electromagnetism are necessarily defined in terms of torsion-free derivatives, §16.5, but spinor fields
contribute to, and experience, torsion, Exercises 16.5 and 16.7.
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𝛾𝛾𝑛. For any multivector 𝑎 whose coefficients are real in an orthonormal basis, the complex conjugate of 𝜓 ·𝑎𝜓
is, equation (39.123), (︀

𝜓 · 𝑎𝜓
)︀*

= −𝜓 · 𝑎𝜓 . (41.3)

The symmetrized, real Lagrangian is thus

𝐿 = 1
2𝜓 · (𝐷 +𝑚)𝜓 − 1

2𝜓 · (𝐷 +𝑚)𝜓 . (41.4)

Despite being asymmetric and complex, the original Dirac Lagrangian (41.2) does yield the correct Dirac
equations because the imaginary part of the Lagrangian integrates to a surface term, by Gauss’ theo-
rem (40.21),

𝑖

∫︁
Im(𝜓 ·𝐷𝜓) 𝑑4𝑥 = 1

2

∫︁
(𝜓 ·𝐷𝜓 + 𝜓 ·𝐷𝜓) 𝑑4𝑥 = 1

2

∮︁
𝜓 · 𝛾𝛾𝑛𝜓 𝑑3𝑥𝑛 , (41.5)

and therefore has no effect on the equations of motion.
The original complex Dirac Lagrangian (41.2) is in (super-)Hamiltonian form 𝑝 ·𝐷𝑞−𝐻 with coordinates

𝑞 = 𝜓, momenta 𝑝 = 𝜓, and (super-)Hamiltonian

𝐻 = −𝑚𝜓 · 𝜓 . (41.6)

Varying the action with complex Dirac Lagrangian (41.2) with respect to the field 𝜓 and its conjugate
momentum 𝜓 yields, with the help of Gauss’ theorem (40.21) to integrate 𝛿(𝐷𝜓) = 𝐷(𝛿𝜓) by parts,

𝛿𝑆 =

∮︁
𝜓 · 𝛾𝛾𝑛𝛿𝜓 𝑑3𝑥𝑛 +

∫︁ [︀
𝛿𝜓 · (𝐷𝜓 +𝑚𝜓) +

(︀
𝐷𝜓 +𝑚𝜓

)︀
· 𝛿𝜓

]︀
𝑑4𝑥 . (41.7)

The resulting Hamilton equations of motion are the Dirac equations

(𝐷 +𝑚)𝜓 = 0 , (41.8a)

(𝐷 +𝑚)𝜓 = 0 . (41.8b)

In flat (Minkowski) space, the solutions of the free Dirac equations (41.8) are plane waves. The solutions
are most straightforward to obtain in the rest frame, where the spinor 𝜓 is one of the Dirac basis spinors 𝜓⇑
or 𝜓⇓ (with spin either up ↑ or down ↓), equations (14.108), and the covariant derivative reduces to the time
derivative 𝐷 → 𝛾𝛾0𝜕0. The conjugate of a spinor is 𝜓 ≡ 𝐶𝜓*, equation (39.91), and the expression (39.83)
for 𝐶 says that conjugation flips the 𝜓⇑ and 𝜓⇓ states. The Dirac equations (41.8) in the rest frame become

(− 𝑖𝜕0 +𝑚)𝜓⇑ = 0 , (𝑖𝜕0 +𝑚)𝜓⇓ = 0 , (41.9a)

(− 𝑖𝜕0 +𝑚)𝜓*⇓ = 0 , (𝑖𝜕0 +𝑚)𝜓*⇑ = 0 , (41.9b)

whose solutions are

𝜓⇑ ∝ 𝑒−𝑖𝑚𝑡 , 𝜓⇓ ∝ 𝑒𝑖𝑚𝑡 , (41.10a)

𝜓*⇓ ∝ 𝑒−𝑖𝑚𝑡 , 𝜓*⇑ ∝ 𝑒𝑖𝑚𝑡 . (41.10b)

While the solution for 𝜓⇑ has positive mass 𝑚, the solution for 𝜓⇓ appears to have negative mass 𝑚. This
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𝑒 𝑒

𝛾 𝛾

Figure 41.1 Feynman diagram illustrating the Stueckelberg-Feynman interpretation of antiparticles as negative mass

particles moving backwards in time (Stueckelberg, 1941; Feynman, 1949). The diagram shows an electron 𝑒 and

positron 𝑒 annihilating into two photons (conservation of energy-momentum prohibits annihilation into one photon).

The arrows represent the direction of charge.

is Dirac’s celebrated problem of negative mass states (Bjorken and Drell, 1964). On the other hand, the
complex conjugate 𝜓*⇓ of the negative mass state 𝜓⇓ has positive mass.
The idea that the negative mass states are antiparticles dates to Stueckelberg (1941), who proposed that

an antiparticle is a negative mass particle moving backwards in time, as illustrated in Figure 41.1.
The problem of negative mass states ultimately finds its solution in quantum field theory, Chapter ??,

which allows particles to be created and destroyed. FIX: CHECK Positive-energy solutions are associated
with operators that destroy particles, while negative-energy solutions are associated with operators that
create particles.

41.1.2 Dirac (super-)Hamiltonian

Although the Dirac Lagrangian (41.2) yields the correct equations of motion (41.8) (and the symmetrized
Lagrangian (41.4) yields the same equations), it is not altogether satisfactory. The problem is that the
Lagrangians (41.2) or (41.4) assume a priori that the momentum conjugate to 𝜓 is its conjugate 𝜓. In
a “correct” Hamiltonian approach, the coordinates and momenta are independent fields, and any relation
between them should emerge as an equation of motion.
The solution to the problem is to introduce a momentum 𝜋 conjugate to the field 𝜓, with no a priori

relation between 𝜋 and 𝜓, and to treat the fields 𝜓 and 𝜋 and their conjugates 𝜓 and �̄� as 4 independent
fields. In terms of the 4 fields, the Dirac Lagrangian, symmetrized with its complex conjugate so as to make
it real, is

𝐿 = 1
2𝜋 ·𝐷𝜓 − 1

2 �̄� ·𝐷𝜓 −𝐻 , (41.11)

with a (super-)Hamiltonian 𝐻 that resembles the Hamiltonian of a simple harmonic oscillator,

𝐻 = − 1
2𝑚
(︀
𝜋 · �̄� + 𝜓 · 𝜓

)︀
. (41.12)
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The momentum conjugate to 𝜓 is 1
2𝜋, while the momentum conjugate to 𝜓 is − 1

2 �̄�. The Dirac Hamil-
tonian (41.12) is consistent with, though does not follow uniquely from, the original Hamiltonian (41.6). The
justification for the Hamiltonian (41.12) is that it yields the correct Dirac equations of motion, along with
𝜋 = 𝜓 and �̄� = 𝜓 as constraint equations, equations (41.14).
Varying the Dirac action with Lagrangian (41.11) with respect to the coordinates 𝜓 and 𝜓 and their

conjugate momenta 𝜋 and −�̄� yields

𝛿𝑆 = 1
2

∮︁ (︀
𝜋 · 𝛾𝛾𝑛𝛿𝜓 − �̄� · 𝛾𝛾𝑛𝛿𝜓

)︀
𝑑3𝑥𝑛

+ 1
2

∫︁ [︀
𝛿𝜋 · (𝐷𝜓 +𝑚�̄�)− 𝛿�̄� ·

(︀
𝐷𝜓 +𝑚𝜋

)︀
+
(︀
𝐷𝜋 +𝑚𝜓

)︀
· 𝛿𝜓 − (𝐷�̄� +𝑚𝜓) · 𝛿𝜓

]︀
𝑑4𝑥 . (41.13)

The resulting Hamilton’s equations can be written

(𝐷 +𝑚)(�̄� + 𝜓) = 0 , (𝐷 +𝑚)(𝜋 + 𝜓) = 0 , (41.14a)

(𝐷 −𝑚)(�̄� − 𝜓) = 0 , (𝐷 −𝑚)(𝜋 − 𝜓) = 0 . (41.14b)

Hamilton’s equations (41.14) appear to describe solutions with both signs of mass 𝑚. If the standard choices
𝜋 = 𝜓 and �̄� = 𝜓 are imposed initially, then the −𝑚 Dirac equations (41.14b) ensure that 𝜋 = 𝜓 and
�̄� = 𝜓 thereafter. The +𝑚 Dirac equations (41.14a) then reproduce the usual Dirac equations (41.8). The
conditions 𝜋 = 𝜓 and �̄� = 𝜓 thus emerge as constraint equations. The original Hamiltonian (41.6) can be
interpreted as an effective Hamiltonian, valid after the solution 𝜋 = 𝜓 and �̄� = 𝜓 to the equation of motion
is imposed.

41.1.3 Conserved Dirac number current

The Dirac Lagrangians (41.2), (41.4), or (41.11) are unchanged if the field and its conjugate are changed by
opposing complex phases, 𝜓 → 𝑒−𝑖𝜖𝜓 and 𝜓 → 𝑒𝑖𝜖𝜓, and likewise the conjugate momenta are changed as
𝜋 → 𝑒𝑖𝜖𝜋 and �̄� → 𝑒−𝑖𝜖�̄�. In infinitesimal form, this transformation is

𝜓 → 𝜓 − 𝑖𝜖𝜓 , 𝜓 → 𝜓 + 𝑖𝜖𝜓 , 𝜋 → 𝜋 + 𝑖𝜖𝜋 , �̄� → �̄� − 𝑖𝜖�̄� . (41.15)

The corresponding conserved Noether current, equation (16.17), is

𝑛𝑚 = 1
2 𝑖
(︀
𝜋 · 𝛾𝛾𝑚𝜓 + �̄� · 𝛾𝛾𝑚𝜓

)︀
. (41.16)

The relative sign of the two terms on the right hand side of equation (41.16) is positive because the fields
vary with opposite sign under the transformation (41.15), 𝛿𝜓 = −𝛿𝜓. Imposing the positive mass conditions
𝜋 = 𝜓 and �̄� = 𝜓 brings the Noether current to

𝑛𝑚 = 1
2 𝑖
(︀
𝜓 · 𝛾𝛾𝑚𝜓 + 𝜓 · 𝛾𝛾𝑚𝜓

)︀
. (41.17)

The two terms on the right hand side of equation (41.17) are the same since

𝜓 · 𝛾𝛾𝑚𝜓 = −(𝛾𝛾𝑚𝜓) · 𝜓 = 𝜓 · 𝛾𝛾𝑚𝜓 , (41.18)
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so equation (41.17) simplifies to

𝑛𝑚 = 𝑖 𝜓 · 𝛾𝛾𝑚𝜓 . (41.19)

The Dirac current (41.19) is covariantly conserved in accordance with Noether’s theorem, equation (16.18),

𝐷𝑚𝑛
𝑚 = 0 . (41.20)

The factor 𝑖 in the Dirac current (41.19) is introduced so that the time component 𝑛0 is a positive number,

𝑛0 = 𝜓†𝜓 , (41.21)

where, in accordance with equation (39.99), 𝜓† ≡ 𝜓*⊤ is the Hermitian conjugate of 𝜓. The Dirac current
𝑛𝑚 is interpreted as a conserved probability number current with a positive density 𝑛0.
If the current (41.19) is written

𝑛 = 𝛾𝛾𝑚𝑛
𝑚 = 𝑖𝛾𝛾𝑚 𝜓 · 𝛾𝛾𝑚𝜓 , (41.22)

then the probability conservation equation (41.20) is

�̊� · 𝑛 = 0 . (41.23)

If the Dirac spinor is null, 𝜓 · 𝜓 = 𝜓 · 𝐼𝜓 = 0, then the free Dirac equations preserve chirality. In this case
the right- and left-handed components of the current 𝑛 are separately conserved. It follows that, for a free
null spinor in the absence of interactions, the pseudovector current

𝑛𝑚5 ≡ 𝑖 𝜓 · 𝛾5𝛾𝛾𝑚𝜓 (41.24)

is also conserved.

41.2 Dirac field with electromagnetism

Electromagnetism emerges from the hypothesis that the Lagrangian is invariant under a symmetry that
rotates the Dirac field 𝜓 by a complex phase proportional to the electric charge 𝑒 of the field. This kind
of transformation is called a gauge transformation. The three forces of the Standard Model, §42.1, the
electromagnetic, weak, and strong forces, all emerge from gauge transformations. Electromagnetism is the
simplest gauge field, based on the 1-dimensional unitary group Uem(1) of rotations about a circle.
Under an electromagnetic gauge transformation, a Dirac field 𝜓 of charge 𝑒, and its conjugate field 𝜓,

which is proportional to the complex conjugate of the field, equation (39.91), and likewise their conjugate
momenta 𝜋 and �̄�, transform as

𝜓 → 𝑒−𝑖𝑒𝜃𝜓 , 𝜓 → 𝑒𝑖𝑒𝜃𝜓 , 𝜋 → 𝑒𝑖𝑒𝜃𝜋 , �̄� → 𝑒−𝑖𝑒𝜃�̄� , (41.25)

where the phase 𝜃(𝑥) is some arbitrary function of spacetime. The charge 𝑒 is dimensionless, and the charge−𝑒
of the conjugate field 𝜓 must be minus that of the field. To ensure that the Dirac Lagrangian (41.4) remains
invariant under the gauge transformation, the derivative 𝐷 must be replaced by a gauge-covariant derivative
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𝐷±𝑖𝑒𝐴 which, when acting on the field and its conjugate, transforms under the gauge transformation (41.25)
as

(𝐷 + 𝑖𝑒𝐴)𝜓 → 𝑒−𝑖𝑒𝜃(𝐷 + 𝑖𝑒𝐴)𝜓 , (𝐷 − 𝑖𝑒𝐴)𝜓 → 𝑒𝑖𝑒𝜃(𝐷 − 𝑖𝑒𝐴)𝜓 . (41.26)

The conjugate momenta 𝜋 and �̄� transform respectively as 𝜓 and 𝜓. The gauge-covariant derivative trans-
forms correctly provided that the gauge field 𝐴 transforms under the electromagnetic gauge transforma-
tion (41.25) as

𝐴→ 𝐴+𝐷𝜃 . (41.27)

The gauge field 𝐴 is the electromagnetic potential.
The general relativistic scalar Lagrangian 𝐿 of a Dirac spinor field 𝜓 of mass 𝑚 and charge 𝑒 is obtained

from the uncharged Dirac Lagrangian (41.2) by changing the (torsion-full, in general) covariant derivative
𝐷 to the gauge covariant derivative 𝐷 + 𝑖𝑒𝐴,

𝐿 = 𝜓 · (𝐷 + 𝑖𝑒𝐴+𝑚)𝜓 . (41.28)

Symmetrized with its complex conjugate, the charged Dirac Lagrangian (41.28) is

𝐿 = 1
2𝜓 · (𝐷 + 𝑖𝑒𝐴+𝑚)𝜓 − 1

2𝜓 · (𝐷 − 𝑖𝑒𝐴+𝑚)𝜓 . (41.29)

If the momentum 𝜋 conjugate to 𝜓 is treated as a distinct field as in §41.1.2, then the charged Dirac
Lagrangian is

𝐿 = 1
2𝜋 · (𝐷 + 𝑖𝑒𝐴)𝜓 − 1

2 �̄� · (𝐷 − 𝑖𝑒𝐴)𝜓 + 1
2𝑚
(︀
− �̄� · 𝜋 + 𝜓 · 𝜓

)︀
. (41.30)

Varying the action with Lagrangian (41.30) yields Hamilton’s equations for a charged Dirac field,

(𝐷 + 𝑖𝑒𝐴+𝑚)(�̄� + 𝜓) = 0 , (𝐷 − 𝑖𝑒𝐴+𝑚)(𝜋 + 𝜓) = 0 , (41.31a)

(𝐷 + 𝑖𝑒𝐴−𝑚)(�̄� − 𝜓) = 0 , (𝐷 − 𝑖𝑒𝐴−𝑚)(𝜋 − 𝜓) = 0 , (41.31b)

generalizing the earlier uncharged equations (41.14). Once again, the +𝑚 conditions 𝜋 = 𝜓 and �̄� = 𝜓

emerge as constraint equations if the conjugate momenta 𝜋 and �̄� are treated as fields independent from 𝜓

and 𝜓. Under the +𝑚 conditions, the Dirac equations (41.31) reduce to

(𝐷 + 𝑖𝑒𝐴+𝑚)𝜓 = 0 , (41.32a)

(𝐷 − 𝑖𝑒𝐴+𝑚)𝜓 = 0 . (41.32b)

The Dirac equation (41.32b) for the conjugate field 𝜓 looks like that (41.32a) for the field 𝜓 but with opposite
charge 𝑒.
The charged Dirac field has an electric current 𝑗 given by the product of the charge 𝑒 and the conserved

number current 𝑛 ≡ 𝛾𝛾𝑚𝑛
𝑚, equation (41.19),

𝑗 ≡ 𝑒𝑛 . (41.33)

Like the number current, equation (41.20), the electric current 𝑗 is covariantly conserved,

�̊� · 𝑗 = 0 . (41.34)
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Current conservation (41.34) is a consequence of the invariance of the Lagrangian (41.29) under an electro-
magnetic gauge transformation (41.25). The electromagnetic contribution to the Dirac Lagrangian (41.29)
can be interpreted as describing the interaction between the electromagnetic field 𝐴 and the Dirac electric
current 𝑗,

𝐿int = 𝑖𝑒 𝜓 ·𝐴𝜓 = 𝐴 · 𝑗 . (41.35)

Resolved into components 𝜓⇑ and 𝜓⇓ in the Dirac representation, §14.8, the Dirac equations (41.32)
become, generalizing equations (41.9),

(− 𝑖𝐷0 + 𝑒𝐴0 +𝑚)𝜓⇑ = −𝜎𝑎(𝐷𝑎 + 𝑖𝑒𝐴𝑎)𝜓⇓ , (𝑖𝐷0 − 𝑒𝐴0 +𝑚)𝜓⇓ = −𝜎𝑎(𝐷𝑎 + 𝑖𝑒𝐴𝑎)𝜓⇑ , (41.36a)

(− 𝑖𝐷0 − 𝑒𝐴0 +𝑚)𝜓*⇓ = −𝜎*𝑎(𝐷𝑎 − 𝑖𝑒𝐴𝑎)𝜓*⇑ , (𝑖𝐷0 + 𝑒𝐴0 +𝑚)𝜓*⇑ = −𝜎*𝑎(𝐷𝑎 − 𝑖𝑒𝐴𝑎)𝜓*⇓ . (41.36b)

The charge-conjugate Dirac equations (41.36b) are complex conjugates (with respect to 𝑖) of the parent
equations (41.36a). As discussed in §14.8, a Dirac spinor 𝜓 contains two components, which in the rest frame
are 𝜓⇑ and 𝜓⇓, that cannot be transformed into each other by any proper Lorentz transformation. The
two components describe particles and antiparticles. Lorentz-transformed out of the rest frame, particles
and antiparticles are each linear combinations of both 𝜓⇑ and 𝜓⇓, but still those combinations cannot
be transformed into each other: for particles, 𝜓⇑ dominates, while for antiparticles 𝜓⇓ dominates. The
first pair (41.36a) of Dirac equations describes the evolution of particles, where 𝜓⇑ dominates. The pair
of equations are coupled first-order differential equations for 𝜓⇑ and 𝜓⇓, which combine to yield a second-
order equation for 𝜓⇑. Likewise the second pair (41.36b) describes the evolution of antiparticles, where the
negative-mass component 𝜓⇓, or physically its positive-mass complex conjugate 𝜓*⇓, dominates. The second
pair (41.36b) combine to yield a second-order equation for 𝜓*⇓. The charged Dirac equations (41.36) confirm
the earlier inference from equations (41.32) that particles and antiparticles have opposite electric charges.
Resolved instead into chiral components 𝜓R and 𝜓L, §39.2, the Dirac equations(41.32) are

[−𝐷0 − 𝑖𝑒𝐴0 + 𝜎𝑎(𝐷𝑎 + 𝑖𝐴𝑎)]𝜓L = −𝑚𝜓R , [−𝐷0 − 𝑖𝑒𝐴0 − 𝜎𝑎(𝐷𝑎 + 𝑖𝐴𝑎)]𝜓R = 𝑚𝜓L , (41.37a)

[−𝐷0 + 𝑖𝑒𝐴0 − 𝜎*𝑎(𝐷𝑎 − 𝑖𝐴𝑎)]𝜓*R = 𝑚𝜓*L , [−𝐷0 + 𝑖𝑒𝐴0 + 𝜎*𝑎(𝐷𝑎 − 𝑖𝐴𝑎)]𝜓*L = −𝑚𝜓*R . (41.37b)

Again, the charge-conjugate Dirac equations (41.37b) are complex conjugates (with respect to 𝑖) of the parent
equations (41.37a).

41.3 Particles and antiparticles

The question of whether a Dirac spinor 𝜓 describes a particle or antiparticle can be decided from the sign
of the effective Dirac Hamiltonian, equation (41.6),

𝐻 = −𝑚𝜓 · 𝜓 = 𝑖𝑚𝜓†𝛾𝛾0𝜓 = −𝑚(𝜓†⇑𝜓⇑ − 𝜓
†
⇓𝜓⇓) . (41.38)

Whereas the number density 𝑛0 ≡ 𝑖𝜓 · 𝛾𝛾0𝜓 = 𝜓†𝜓 of the Dirac field is always positive, equation (41.21),
the scalar product 𝜓 · 𝜓 can be either positive or negative. If the spinor is a particle (𝜓⇑ dominates), then
𝜓 ·𝜓 is positive, and the Hamiltonian (41.38) with positive 𝑚 describes a timelike field. If on the other hand
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the spinor is an antiparticle (𝜓⇓ dominates), then 𝜓 · 𝜓 is negative, and the Hamiltonian would appear to
describe a spacelike field. (As usual in this book, do not confuse the scalar super-Hamiltonian (41.38) with
the conventional Hamiltonian, which is the time component of a 4-vector.)
The antisymmetry of the Dirac spinor scalar product means that the Hamiltonian (41.38) can be rewritten

𝐻 = 𝑚𝜓 · 𝜓 . (41.39)

This does not resolve the problem that, if the antiparticle component dominates, the Hamiltonian (41.39)
is still positive, for positive 𝑚, hence spacelike. A timelike Hamiltonian with positive mass 𝑚 when the
antiparticle field 𝜓 dominates can be obtained by taking its 𝑃𝑇 conjugate, yielding the 𝐶𝑃𝑇 -conjugate
field. Let fields with an underbar

¯
𝜓 denote the 𝑃𝑇 -conjugate fields obtained by pre-multiplying by the

pseudoscalar 𝐼, equation (39.134),

𝑃𝑇 :
¯
𝜓 = 𝐼𝜓 , 𝐶𝑃𝑇 :

¯
𝜓 ≡ 𝐼𝜓 . (41.40)

The fields
¯
𝜓 and

¯
𝜓 are charge conjugates of each other, equation (39.91), since 𝐶𝐼* = 𝐼𝐶. Since the

pseudoscalar satisfies 𝐼2 = −1 and 𝐼 commutes with the spinor metric 𝜀, the Hamiltonian of the 𝐶𝑃𝑇 -
conjugate field

¯
𝜓 is

𝐻 = −𝑚
¯
𝜓 ·

¯
𝜓 , (41.41)

which is timelike when
¯
𝜓 ·

¯
𝜓 is positive, that is, when the 𝐶𝑃𝑇 -conjugate field

¯
𝜓 dominates. Note that

introducing an additional phase factor, such as 𝑖, into the definition of the 𝑃𝑇 -conjugate fields makes no
difference to the Hamiltonian, because the opposing phase factors in

¯
𝜓 and

¯
𝜓 cancel each other.

41.3.1 𝐶, 𝑃 , and 𝑇 symmetries

The collection of Dirac equations for a spinor 𝜓, its charge conjugate 𝜓, and their 𝑃𝑇 conjugates
¯
𝜓 and

¯
𝜓

are

(𝐷 + 𝑖𝑒𝐴+𝑚)𝜓 = 0 , (41.42a)

𝑃𝑇 : (𝐷 + 𝑖𝑒𝐴−𝑚)
¯
𝜓 = 0 , (41.42b)

𝐶 : (𝐷 − 𝑖𝑒𝐴+𝑚)𝜓 = 0 , (41.42c)

𝐶𝑃𝑇 : (𝐷 − 𝑖𝑒𝐴−𝑚)
¯
𝜓 = 0 . (41.42d)

The 𝑃𝑇 -conjugate equations (41.42b) and (41.42d) are obtained by commuting the 𝑃𝑇 operator 𝐼 through
their parent equations (41.42a) and (41.42c), and noting that 𝐼 anticommutes with the basis vectors 𝛾𝛾𝑛.
The 𝑃𝑇 -conjugate Dirac equations (41.42b) and (41.42d) appear to be flipped in mass 𝑚 compared to their
parent Dirac equations (41.42a) and (41.42c), but if the equations are expanded in terms of components 𝜓⇑
and 𝜓⇓, as in equations (41.36), the 𝑃𝑇 -conjugate equations are identical to their parent counterparts.
Despite the apparently differing signs of charge 𝑒 and mass 𝑚, the four sets of Dirac equations (41.42) are

equivalent to each other, an equivalence that is manifest when the equations are expanded in components,
equations (41.36). The equivalences express symmetry of the charged Dirac equations with respect to the
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discrete operations of spacetime reversal 𝑃𝑇 and charge conjugation 𝐶. The 𝑃𝑇 symmetry says that the
transformation 𝛾𝛾𝑚 → −𝛾𝛾𝑚 and 𝜓 → 𝐼𝜓 ≡

¯
𝜓 leaves the Dirac equation unchanged. The 𝐶 symmetry says

that the transformation 𝑒→ −𝑒 and 𝜓 → 𝐶𝜓* ≡ 𝜓 leaves the Dirac equation unchanged.
The Dirac equations are also symmetric with respect to the parity operation 𝑃 . The 𝑃 symmetry says

that flipping the spatial axes 𝛾𝛾𝑎 → −𝛾𝛾𝑎 and transforming 𝜓 → 𝛾𝛾0𝜓 leaves the Dirac equation unchanged.
Electromagnetic, colour, and gravitational interactions all respect 𝐶, 𝑃 , and 𝑇 symmetries, but weak inter-

actions violate them. Weak interactions act only on left-handed particles (and right-handed antiparticles), not
their opposite-chiral counterparts. A parity transformation flips chirality (it flips momentum while leaving
spin unchanged), so weak interactions violate parity symmetry maximally. The excess of matter (baryons and
leptons) over antimatter (antibaryons and antileptons) in the Universe suggests that 𝑇 -violating processes
took place during the early Universe.
Although 𝐶, 𝑃 , and 𝑇 may be individually violated, the combination 𝐶𝑃𝑇 appears to be a general

symmetry of Nature. There is a 𝐶𝑃𝑇 theorem premised on the proposition that Lorentz transformations in
(3+1)-dimensional spacetime can be analytically continued to spatial rotations in 4 spatial dimensions. A
spatial rotation by 𝜋 in the Euclideanized 𝑡–𝑧 plane sends 𝑡→ −𝑡 and 𝑧 → −𝑧, equivalent to a combination
of time reversal and parity reversal in 3+1 spacetime dimensions. A spatial rotation preserves scalars, in
particular the scalar (super-)Hamiltonian (41.38); for the Hamiltonian to remain a scalar in 3+1 dimensions,
the transformation must be 𝐶𝑃𝑇 , equation (41.41).
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The Standard Model of Physics and beyond

A fundamental piece of the philosophy behind this Chapter is that, at its most fundamental level, spacetime
is somehow built out of spinors. As found in Exercises 38.3 and 39.5, the algebra of outer products of spinors
is isomorphic to the geometric algebra. The geometric algebra in 𝐾+𝑀 space+time dimensions contains
not only the bivector generators of Spin(𝐾,𝑀), but a complete set of multivectors that together generate
the complete Lie group of transformations of spinors. The potential importance of multivectors other than
bivectors is evidenced by Dirac’s (1928) discovery that vectors (multivectors of grade 1) generate spatial
translations of spinors.

42.1 Fermion content of the Standard Model of Physics

This section reviews the fermion content of the Standard Model of Physics (SM), which is based on the
gauge group U𝑌 (1)× SUL(2)× SU(3), the product of the electroweak group U𝑌 (1)× SUL(2) (which breaks
down to the electromagnetic group Uem(1) at energies below the electroweak unification scale ∼ 100GeV)
and the colour group SU(3). An excursion into Grand Unification is irresistible, in part because it helps to
make sense of the seemingly bizarre pattern of fermion charges, and in part because it presents a practical
application of super geometric algebras. See Baez and Huerta (2010) for an expository review.
The SM has 4 conserved charges consisting of hypercharge 𝑌 , weak isospin 𝐼L (commonly abbreviated

isospin1), and 2 colours. Colour conservation is commonly described in terms of 3 colours, suggestively
called red, green, and blue, which satisfy the condition that the sum of the 3 colours is colourless, or white,
𝑟 + 𝑔 + 𝑏 = 0. The fermions of the SM have charges listed in Table 42.1. Table 42.1 omits antifermions,
which have charges opposite to their fermion partners. Antifermions are conventionally denoted with a bar;
for example, an antineutrino is 𝜈 (the bar here signifies a fermion with all opposite charges; in §42.4.4 it will
be seen that the bar also signifies the charge conjugate). Each quark has a colour of 𝑟 or 𝑔 or 𝑏. Antiquarks
have opposing colours; for example antired is −𝑟 = 𝑔 + 𝑏. Actually, Table 42.1 lists only the fermions of

1 Weak isospin, or isospin, is often denoted 𝐼3, the 3 signifying the 3rd of the 3 Pauli matrices that generate SUL(2); but I
prefer the designation 𝐼L, to emphasize that isospin is non-zero only for left-handed fermions (and right-handed
antifermions).

1042
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Table 42.1: Conserved charges in the Standard Model

Uem(1) U𝑌 (1) SUL(2) SU(3)

Species symbol charge 𝑄 = 1
2𝑌 + 𝐼L hypercharge 𝑌 isospin 𝐼L colour 𝑐

Left-handed leptons

(︂
𝜈L
𝑒L

)︂
0

−1 −1 ± 1
2 white

Left-handed quarks

(︂
𝑢L
𝑑L

)︂ 2
3

− 1
3

1
3 ± 1

2 𝑟, 𝑔, 𝑏

Right-handed neutrino 𝜈R 0 0 0 white

Right-handed electron 𝑒R −1 −2 0 white

Right-handed up quark 𝑢R
2
3

4
3 0 𝑟, 𝑔, 𝑏

Right-handed down quark 𝑑R − 1
3 − 2

3 0 𝑟, 𝑔, 𝑏

the first generation, the electron generation. Altogether there are three generations, electron, muon, and
tauon, whose charges duplicate those in Table 42.1. The fermions of the three generations are distinguished
by having very different masses, §42.3.
The charges in Table 42.1 show some intriguing patterns that suggest that the SM group is a broken

remnant of some larger group. The three kinds of charge — hypercharge, isospin, and colour — each add to
zero when summed over all right-handed particles (or all left-handed antiparticles), or over all left-handed
particles (or all right-handed antiparticles).
The values of the hypercharge 𝑌 in Table 42.1 seem random, but they satisfy

3𝑌 − 6𝐼L + 2(𝑟 + 𝑔 + 𝑏) = 6𝑁 , (42.1)

where 𝑁 is an integer. As prettily described by Baez and Huerta (2010), the relation (42.1) is precisely such
as to allow the SM group U𝑌 (1) × SUL(2) × SU(3), modulo the discrete group Z6, to be embedded as a
subgroup of SU(5),

U𝑌 (1)× SUL(2)× SU(3) /Z6 = S
(︀
UL(2)×U(3)

)︀
⊂ SU(5) , (42.2)

suggesting that the SM could be a broken remnant of a larger Grand Unified Theory (GUT) group SU(5),
a possibility first pointed out by Georgi and Glashow (1974). The embedding is

U𝑌 (1)× SUL(2)× SU(3) /Z6 → S
(︀
UL(2)×U(3)

)︀
⊂ SU(5)

{𝛼, 𝑔, ℎ} →
(︂
𝛼3𝑔 0

0 𝛼−2ℎ

)︂
,

(42.3)

in which the hypercharge phase 𝛼 arises as a relative phase between elements of UL(2) and U(3). The choice
of powers of 𝛼 in the mapping (42.3) into S

(︀
UL(2) × U(3)

)︀
is consistent with the requirement that the

determinant on the right hand side be one, (𝛼3)2(𝛼−2)3 = 1 (don’t forget that 𝑔 and ℎ are respectively 2× 2
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and 3 × 3 matrices each of unit determinant, so the determinants of 𝛼3𝑔 and 𝛼−2ℎ are 𝛼6 and 𝛼−6). The
map (42.3) is modded by Z6 because if 𝑧 is any sixth root of unity, then the element {𝑧, diag 𝑧−3, diag 𝑧2} ∈
U𝑌 (1)× SUL(2)× SU(3) (both diag 𝑧−3 ∈ SUL(2) and diag 𝑧2 ∈ SU(3) have unit determinant) maps to the
same unit element {1, 1} of S

(︀
UL(2)×U(3)

)︀
. The mapping (42.3) is viable only if the kernel Z6 acts trivially

on all fermions of the SM. But the relation (42.1) ensures precisely this. The action of the sixth root of unity
𝑧 on a fermion 𝜓 of hypercharge 𝑌 , isospin 𝐼L, and colour 𝑟 or 𝑔 or 𝑏 is

{𝑧, 𝑧−3, 𝑧2} : 𝜓 → (𝑧)3𝑌 (𝑧−3)2𝐼L(𝑧2)𝑟+𝑔+𝑏𝜓 = 𝑧3𝑌−6𝐼L+2(𝑟+𝑔+𝑏)𝜓 = 𝜓 . (42.4)

The factors of 3 in 3𝑌 and 2 in 2𝐼L in the exponents arise because hypercharge and isospin are quantized in
units of respectively 1

3 and 1
2 ; the choice of exponents ensures that a unit phase factor 𝑧 = 𝑒2𝜋𝑖 acts trivially

on all fermions for each of the U𝑌 (1)× SUL(2)× SU(3) factors individually.
But there are other patterns among SM particles that SU(5) does not explain: right-handed particles look

like they should group into SUR(2) doublets like their left-handed counterparts; and neutrinos and electrons
look like they could be another species of up and down quark with a 4th colour. As it happens, as first
pointed out by Pati and Salam (1974), the SM group, modulo the discrete group Z3, extends as a subgroup
along precisely these lines,

U𝑌 (1)× SUL(2)× SU(3) /Z3 ⊂ SUR(2)× SUL(2)× SU(4) . (42.5)

Consider treating the right-handed leptons and quarks as SUR(2) doublets labelled by right-handed isospin
𝐼R, similar to their left-handed counterparts. Consider also treating white as a 4th colour 𝑤. The SM particles
in table 42.1 satisfy

3𝑌 − 6𝐼R + 3𝑤 − (𝑟 + 𝑔 + 𝑏) = 0 . (42.6)

The pattern suggests an embedding

U𝑌 (1)× SU(3) /Z3 → SUR(2)× SU(4)

{𝛼, ℎ} → {
(︂
𝛼3 0

0 𝛼−3

)︂
,

(︂
𝛼−3 0

0 𝛼ℎ

)︂
} . (42.7)

The map (42.7) implies that for example left-handed leptons and quarks (which transform trivially under
SUR(2)) transform under U𝑌 (1) respectively as 𝛼−3 and 𝛼, implying hypercharges −1 and 1

3 , in agreement
with Table 42.1; similarly, right-handed up leptons and quarks transform as 𝛼0 and 𝛼4, while right-handed
down leptons and quarks transform as 𝛼−6 and 𝛼−2, implying hypercharges 0, 4

3 , −2, and −
2
3 , again in

agreement with Table 42.1. The map (42.7) is into only if U𝑌 (1) × SU(3) is modded by Z3, because if 𝑧 is
any third root of unity then {𝑧, diag 𝑧−1} ∈ U𝑌 (1)×SU(3)maps to the same element {1, 1} of SUR(2)×SU(4).
Exercises 42.2 and 42.3 show that SU(2) × SU(2) is isomorphic to Spin(4), while SU(4) is isomorphic to

Spin(6). Consequently the Pati-Salam group on the right hand side of the embedding (42.5) is isomorphic
to Spin(4)× Spin(6),

SUL(2)× SUR(2)× SU(4) ∼= Spin(4)× Spin(6) . (42.8)

As discussed in Exercise 38.3, spinors in 2𝑁 dimensions are linear combinations of 2𝑁 basis spinors 𝜖𝑎
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labelled by an 𝑁 -component bitcode 𝑎 = 𝑎1...𝑎𝑁 with each of 𝑎𝑖 being up ↑ or down ↓, equation (38.85).
As discussed in part 18 of Exercise 38.3, SU(𝑁) is a subgroup of Spin(2𝑁), and the spinor bitcode also
encodes the indices of SU(𝑁) multivectors. In the Pati-Salam model, the Spin(4) factor is associated with
isospin, and particles can be labelled with spinor bitcodes – (blank), 𝑑, 𝑢, and 𝑑𝑢. The same spinor bitcodes
encode the transformation of spinors under the SUL(2) subgroup: – (blank) is an SUL(2) scalar, 𝑑 and 𝑢 are
SUL(2) vectors, and 𝑑𝑢 is an SUL(2) pseudoscalar. Similarly, under the SUR(2) subgroup, – (blank) and 𝑑𝑢
are SUR(2) vectors, while 𝑑 and 𝑢 are respectively an SUR(2) scalar and pseudoscalar. If each bit is assigned
the value + 1

2 or − 1
2 according to whether it is up or down, then left-handed isospin is 𝐼L = 1

2 (𝑢− 𝑑), while
right-handed isospin is 𝐼R = 1

2 (𝑢+𝑑). Of the fermions listed in Table 42.1, together with their corresponding
antifermions, there are 16 that transform under the left SUL(2) isospin group (but not under SUR(2)),
namely the left-handed leptons and quarks and right-handed antileptons and antiquarks, and 16 that do
not transform under SUL(2) (but do under SUR(2)), their partners of opposite chirality. The following
chart (42.9) labels the fermions with their Spin(4) spinor 𝑑, 𝑢 bitcodes:

– 𝑑, 𝑢 𝑑𝑢

𝜈L , 𝑒R , �̄�L , 𝑑R 𝑑 : 𝜈R , 𝑒L , �̄�R , 𝑑L 𝜈R , 𝑒L , 𝑢R , 𝑑L

𝑢 : 𝜈L , 𝑒R , 𝑢L , 𝑑R

(42.9)

The Spin(6) factor of the Pati-Salam group is associated with colour, and particles can be labelled with
a spinor bitcode 𝑟, 𝑔, 𝑏. Each quark 𝑑𝑐 or 𝑢𝑐 of colour 𝑐 = 𝑟, 𝑔, 𝑏 is labelled by a single bit 𝑟, 𝑔, or 𝑏. Each
antiquark 𝑑𝑐 or �̄�𝑐 is labelled by the bit-flipped bitcode 𝑐 = 𝑔𝑏, 𝑟𝑏, 𝑟𝑔 (antired, antigreen, antiblue, or cyan,
magenta, yellow if you prefer) of the quark colour 𝑐. The leptons 𝜈 and 𝑒 are labelled white 𝑟𝑔𝑏, and the
antileptons 𝜈 and 𝑒 by black – (blank, antiwhite). Again, the same spinor bitcodes encode the transformation
of spinors under the SU(3) colour subgroup: – (blank) is an SU(3) scalar, 𝑟, 𝑔, and 𝑏 are SU(3) vectors, 𝑔𝑏,
𝑟𝑏, and 𝑟𝑔 are SU(3) pseudovectors, and 𝑟𝑔𝑏 is an SU(3) pseudoscalar. The following chart (42.10) labels the
fermions with their Spin(6) 𝑟, 𝑔, 𝑏 spinor bitcodes:

– 𝑐 = 𝑟, 𝑔, 𝑏 𝑐 = 𝑔𝑏, 𝑟𝑏, 𝑟𝑔 𝑟𝑔𝑏

𝜈L,R , 𝑒L,R 𝑢𝑐L,R , 𝑑
𝑐
L,R �̄�𝑐L,R , 𝑑

𝑐
L,R 𝜈L,R , 𝑒L,R

(42.10)

Both the SU(5) embedding (42.3) and the Pati-Salam embedding (42.5) can be accommodated consistently
within an even grander group Spin(10), as originally proposed by Georgi (1975) and Fritzsch and Minkowski
(1975). The group Spin(4)× Spin(6) embeds naturally in Spin(10):

Spin(4)× Spin(6) /Z2 → Spin(10) . (42.11)

The mapping is mod Z2 because flipping the signs of both Spin(4) and Spin(6) rotors leaves the Spin(10)

rotor unchanged. Through the mapping (42.3), the multivector SUL(2) and SU(3) bitcodes map naturally
to a multivector SU(5) bitcode 𝑑, 𝑢, 𝑟, 𝑔, 𝑏, which through the natural mapping (42.11) encodes the particles
in Spin(10). The two charts (42.9) and (42.10) assemble into the following chart, organized by the grade
𝑝 (number of up bits) of the Spin(10) spinor bitcode labelling the fermion (compare Table 4 of Baez and
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Huerta (2010)):

0 1 2 3 4 5

– : 𝜈L 𝑑 : 𝜈R 𝑐 : �̄�𝑐L 𝑑𝑐 : �̄�𝑐R 𝑢𝑟𝑔𝑏 : 𝜈L 𝑑𝑢𝑟𝑔𝑏 : 𝜈R

𝑢 : 𝑒R 𝑑𝑢 : 𝑒L 𝑟𝑔𝑏 : 𝑒R 𝑑𝑟𝑔𝑏 : 𝑒L

𝑐 : 𝑑𝑐R 𝑑𝑐 : 𝑑𝑐L 𝑢𝑐 : 𝑑𝑐R 𝑑𝑢𝑐 : 𝑑𝑐L
𝑢𝑐 : 𝑢𝑐L 𝑑𝑢𝑐 : 𝑢𝑐R

(42.12)

As in the Spin(6) chart (42.10), the colour index 𝑐 on each quark 𝑑𝑐 or 𝑢𝑐 runs over 𝑐 = 𝑟, 𝑔, 𝑏, while the anti-
colour index 𝑐 on each anti-quark 𝑑𝑐 or 𝑢𝑐 runs over 𝑐 = 𝑔𝑏, 𝑟𝑏, 𝑟𝑔. Each of the 32 fermions and antifermions of
the SM is described uniquely by the Spin(10) 𝑑, 𝑢, 𝑟, 𝑔, 𝑏 code, so Spin(10) provides a complete unification of
the SM fermions within each of the 3 generations. The 𝑖’th column of the chart (42.12) is an SU(5)multivector
of grade 𝑖, that is, an antisymmetric SU(5) tensor of rank 𝑖. The dimensions of the columns are 1, 5, 10, 10,
5, 1. SU(5) transforms the components of each column into each other, but does not transform components
across columns. Thus SU(5) constitutes only a partial unification of the fermions within a generation, in
contrast to Spin(10) which unifies all 32 fermions within each of the 3 generations.
There is no experimental evidence for a right-handed neutrino 𝜈R or its antiparticle 𝜈L. SU(5) does not

require those particles, because they transform as SU(5) scalars, and are therefore unrelated to the other
fermions. By contrast, Spin(10) requires a right-handed neutrino and its antiparticle.
It might seem that Spin(10) does not quite unify all the spinors of the SM, since rotations in the 10-

dimensional space leave the Spin(10) handedness of the spinor unchanged. From the perspective of Spin(10),
the spinor is right-handed if all its five bits are up, or more generally if an odd number of its bits are up. The
right-handed spinors in the bitcode chart (42.12) are those in the columns with 1, 3, and 5 bits up, while
the left-handed spinors are those in the columns with 0, 2, and 4 bits up.
But the chart (42.12) indicates that the separation of the spinors into two sets under Spin(10) is simply the

separation into particles and antiparticles. Mathematically, antiparticles are 𝐶𝑃𝑇 conjugates of particles,
and 𝐶𝑃𝑇 appears to be an exact symmetry. In conjunction with 𝐶𝑃𝑇 , Spin(10) unifies all the 32 spinors of
a generation.
The presence of 3 generations of fermion — electron, muon, and tauon — suggests that perhaps there

should be an even larger Grand Unified group than Spin(10). However, the fact that the 3 generations differ
only in the masses of their particles, and that the 3 generations share the same gauge fields (there are not
multiple generations of gauge fields), admits the alternative hypothesis that the 3 generations are, somehow,
just different excitations of the same intrinsic object, similarly, perhaps, to that way that atoms and nuclei
have excited states.

42.1.1 Spin(10) charges

Spin(10) reorganizes the charges of the Standard Model in an interestingly different and elegant way. The
usual SM charges are hypercharge 𝑌 and isospin 𝐼L, and colours 𝑟, 𝑔, and 𝑏. Spin(10) reorganizes the 5
charges as a bit code 𝑑𝑢𝑟𝑔𝑏 with each bit (charge) taking values either + 1

2 (↑) or − 1
2 (↓) for each of the
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25 = 32 fundamental fermions of a generation. The relation between SM charges and Spin(10) charges is

𝑌 = 𝑢+ 𝑑− 2
3 (𝑟10 + 𝑔10 + 𝑏10) , (42.13a)

𝐼L = 1
2 (𝑢− 𝑑) , (42.13b)

𝑐 = 𝑐10 +
1
2 (𝑐 = 𝑟, 𝑔, 𝑏) . (42.13c)

The electromagnetic charge is

𝑄 = 1
2𝑌 + 𝐼L = 𝑢− 1

3 (𝑟10 + 𝑔10 + 𝑏10) . (42.14)

The subscripts 10 on the colour charges 𝑐10 (with 𝑐 one of 𝑟, 𝑔, 𝑏) on the right hand sides of equations (42.13)
distinguish the Spin(10) colour charge from the traditional SM colour charge 𝑐. The Spin(10) 𝑑𝑢𝑟𝑔𝑏 charges
on the right hand sides of equations (42.13) are to be interpreted as + 1

2 if the corresponding bit is up ↑ and
− 1

2 if down ↓. For example, equations (42.13) imply that the all-bit-down and all-bit-up fermions 𝜈L (↓↓↓↓↓)
and 𝜈R (↑↑↑↑↑) have SM electroweak charges 𝑌 = 𝐼L = 0, and SM colour charges respectively 0 (black) and
𝑟𝑔𝑏 (white).
Traditionally a quark has colour charge consisting of one unit of either 𝑟, 𝑔, or 𝑏. Spin(10) on the other

hand says that an 𝑟 quark (for example) has 𝑟𝑔𝑏 bits ↑↓↓, meaning that its 𝑟10 charge is + 1
2 while its 𝑔10

and 𝑏10 charges are − 1
2 . In the Spin(10) picture, when an 𝑟 quark turns into a 𝑔 quark, its 𝑟𝑔𝑏 bits flip from

↑↓↓ to ↓↑↓, meaning that its 𝑟10 charge flips from + 1
2 to − 1

2 while its 𝑔10 charge flips from − 1
2 to + 1

2 . In so
doing, the quark loses one unit of 𝑟 charge, and gains one unit of 𝑔 charge, consistent with the traditional
picture.
Equations (42.13) invert to yield Spin(10) charges in terms of SM charges,

𝑑 = 1
2𝑌 − 𝐼L + 1

3 (𝑟 + 𝑔 + 𝑏)− 1
2 , (42.15a)

𝑢 = 𝑄+ 1
3 (𝑟 + 𝑔 + 𝑏)− 1

2 , (42.15b)

𝑐10 = 𝑐− 1
2 (𝑐 = 𝑟, 𝑔, 𝑏) . (42.15c)

The 𝑑 charge can also be expressed in terms of the Pati-Salam right-handed isospin 𝐼R = 1
2 (𝑢+ 𝑑) as

𝑑 = 𝐼R − 𝐼L . (42.16)

The SM also preserves baryon number 𝐵 and lepton number 𝐿, quarks being assigned baryon number 1
3 and

zero lepton number, and neutrinos and electrons being assigned lepton number 1 and zero baryon number.
Spin(10) does not preserve baryon and lepton number individually, but it does preserve their difference 𝐵−𝐿,

𝐵 − 𝐿 = − 2
3 (𝑟10 + 𝑔10 + 𝑏10) . (42.17)

The sum of Spin(10) charges defines an 𝑋-charge (some works normalize 𝑋 differently)

𝑋 ≡ 𝑑+ 𝑢+ 𝑟10 + 𝑔10 + 𝑏10 = 𝑌 − 5
2 (𝐵 − 𝐿) . (42.18)

At low energies, the SM gauge group U𝑌 (1)× SUL(2)× SU(3) breaks down to Uem(1)× SU(3), in which
only the electromagnetic charge 𝑄 and the colour charges 𝑟, 𝑔, 𝑏 are conserved. In terms of Spin(10) charges,
equations (42.15), this means that the 𝑑 charge ceases to be conserved, while 𝑢, 𝑟, 𝑔, and 𝑏 charges continue
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to be conserved. The 𝑢 charge can be thought of as a fourth colour, but it is not the same as the fourth colour
contemplated by Pati and Salam (1974). Treating 𝑢 as a fourth colour means considering an embedding of
Uem(1)× SU(3) in SU(4),

Uem(1)× SU(3) /Z3 → SU(4)

{𝛼, ℎ} →
(︂
𝛼3 0

0 𝛼−1ℎ

)︂
,

(42.19)

which is similar to but not the same as the Pati-Salam embedding (42.7). The map (42.19) is into only if
Uem(1)× SU(3) is modded by Z3, because if 𝑧 is any third root of unity then {𝑧, diag 𝑧} ∈ Uem(1)× SU(3)

maps to the same element {1} of SU(4).
In accordance with the theorem of Atiyah, Bott, and Shapiro (1964) (see part 18 of Exercise 38.3), and

similarly to the embeddings of SUL(2) in Spin(4) based on the 𝑑, 𝑢 bits, chart (42.9), or of SU(3) in Spin(6)

based on the 𝑟, 𝑔, 𝑏 bits, chart (42.10), or of SU(5) in Spin(10) based on the 𝑑, 𝑢, 𝑟, 𝑔, 𝑏 bits, chart (42.12),
there is an embedding of SU(4) in Spin(8) based on the 𝑢, 𝑟, 𝑔, 𝑏 bits. The following chart labels the fermions
with their Spin(8) 𝑢, 𝑟, 𝑔, 𝑏 bitcodes:

0 1 2 3 4

– : 𝜈L,R 𝑢 : 𝑒L,R 𝑐 : �̄�𝑐L,R 𝑟𝑔𝑏 : 𝑒L,R 𝑢𝑟𝑔𝑏 : 𝜈L,R

𝑐 : 𝑑𝑐L,R 𝑢𝑐 : 𝑢𝑐L,R 𝑢𝑐 : 𝑑𝑐L,R

(42.20)

Compared to the Spin(10) chart (42.12), the Spin(8) chart (42.20), having lost the 𝑑-bit, lumps left- and
right-chiral species of fermions into the same box.

42.1.2 Spin(10) gauge fields

The 10 orthonormal basis vectors 𝛾𝛾±𝑖 , 𝑖 = 𝑑, 𝑢, 𝑟, 𝑔, 𝑏, of the geometric algebra associated with Spin(10) are,
in terms of chiral basis vectors 𝛾𝛾𝑖 and 𝛾𝛾�̄�,

𝛾𝛾+
𝑖 ≡

𝛾𝛾𝑖 + 𝛾𝛾�̄�√
2

and 𝛾𝛾−𝑖 ≡
𝛾𝛾𝑖 − 𝛾𝛾�̄�√

2 𝑖
. (42.21)

The Spin(10) chiral basis vectors 𝛾𝛾𝑖 and 𝛾𝛾�̄� are analogous to the vectors 𝛾𝛾+ and 𝛾𝛾− in the Newman-Penrose
formalism, equations (39.1). A chiral basis vector 𝛾𝛾𝑖 and its conjugate 𝛾𝛾�̄� have 𝑖-spin weight ±1 (they vary
by 𝑒∓𝑖𝜃 under a right-handed rotation by angle 𝜃 in the 𝛾𝛾+

𝑖 –𝛾𝛾
−
𝑖 plane), so carry respectively plus and minus

one unit of 𝑖 charge. The chiral basis vectors 𝛾𝛾𝑖 and 𝛾𝛾�̄� respectively raise and lower the charge of a spinor by
one unit of 𝑖 charge. If 𝜖𝑖 and 𝜖�̄� are basis spinors whose 𝑖-bit is respectively up and down, then (note that
𝛾𝛾𝑖 and 𝛾𝛾�̄� multiply by

√
2 while raising and lowering the 𝑖-bit of their argument, equations (38.111)):

𝛾𝛾𝑖√
2
𝜖𝑖 = 0 ,

𝛾𝛾𝑖√
2
𝜖�̄� = 𝜖𝑖 , (42.22a)

𝛾𝛾�̄�√
2
𝜖𝑖 = 𝜖�̄� ,

𝛾𝛾�̄�√
2
𝜖�̄� = 0 . (42.22b)
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The gauge fields associated with any gauge group form a multiplet labelled by the generators of the group.
The generators of the Spin(2𝑁) group with 𝑁 = 5 are its 𝑁(2𝑁−1) = 45 orthonormal basis bivectors
(products of orthonormal vectors) comprising the 2𝑁(𝑁−1) = 40 bivectors

𝛾𝛾+
𝑖 ∧𝛾𝛾

+
𝑗 = 1

2 (𝛾𝛾𝑖 + 𝛾𝛾�̄�)∧(𝛾𝛾𝑗 + 𝛾𝛾𝚥) , (42.23a)

𝛾𝛾+
𝑖 ∧𝛾𝛾

−
𝑗 = 1

2𝑖 (𝛾𝛾𝑖 + 𝛾𝛾�̄�)∧(𝛾𝛾𝑗 − 𝛾𝛾𝚥) , (42.23b)

𝛾𝛾−𝑖 ∧𝛾𝛾
+
𝑗 = 1

2𝑖 (𝛾𝛾𝑖 − 𝛾𝛾�̄�)∧(𝛾𝛾𝑗 + 𝛾𝛾𝚥) , (42.23c)

𝛾𝛾−𝑖 ∧𝛾𝛾
−
𝑗 = − 1

2 (𝛾𝛾𝑖 − 𝛾𝛾�̄�)∧(𝛾𝛾𝑗 − 𝛾𝛾𝚥) , (42.23d)

with distinct indices 𝑖 and 𝑗 each running over 𝑑, 𝑢, 𝑟, 𝑔, 𝑏, together with the 𝑁 = 5 bivectors

1
2 𝛾𝛾

+
𝑖 ∧𝛾𝛾

−
𝑖 = 𝑖

2 𝛾𝛾𝑖 ∧𝛾𝛾�̄� , (42.24)

with indices 𝑖 running over 𝑑, 𝑢, 𝑟, 𝑔, 𝑏. The normalization factor of 1
2 in equation (42.24) is introduced so

that the diagonal chiral bivectors 1
2 𝛾𝛾𝑖 ∧𝛾𝛾�̄� measure correctly the charge of the object they act on (see

equation (42.49)). Off-diagonal chiral bivectors 1
2 𝛾𝛾𝑖 ∧𝛾𝛾𝑗 increase the charge of the object they act on by one

unit of 𝑖 charge and one unit of 𝑗 charge (see again equation (42.49)).
The generators of a gauge group serve two roles. On the one hand they generate the symmetries that

rotate fields. On the other hand, the generators are themselves fields that are rotated by the symmetries
they generate. To appreciate the distinction, consider the diagonal chiral bivector

1
2 𝛾𝛾𝑖 ∧𝛾𝛾�̄� . (42.25)

On the one hand, the diagonal bivector acts as an operator whose eigenvalues equal the 𝑖 charge of the
objects it acts on. On the other hand, the diagonal bivector is itself an object whose 𝑖 charge is zero. As an
operator, a generator acts on its argument by commutation (equivalent to multiplication, if the argument is
a column spinor, since a columm spinor times a multivector is zero). As a field, a generator is itself acted on
by commutation. These assertions will become clearer in §42.2.
The Standard Model gauge group U𝑌 (1) × SUL(2) × SU(3) is a subgroup of the SU(5) subgroup of

Spin(10). The gauge fields (generators) of SU(5) comprise the subset of gauge fields of Spin(10) that leave
the number of up bits of a spinor unchanged. The gauge bivectors of SU(𝑁) with 𝑁 = 5 constitute (compare
equations (38.180)) (𝑁+1)(𝑁−1) = 24 bivectors comprising the 𝑁(𝑁 − 1) = 20 bivectors

1
2 (1− κ𝑖𝑗)𝛾𝛾+

𝑖 ∧𝛾𝛾
+
𝑗 = 1

2 (𝛾𝛾
+
𝑖 ∧𝛾𝛾

+
𝑗 + 𝛾𝛾−𝑖 ∧𝛾𝛾

−
𝑗 ) =

1
2 (𝛾𝛾𝑖 ∧𝛾𝛾𝚥 + 𝛾𝛾�̄� ∧𝛾𝛾𝑗) , (42.26a)

1
2 (1− κ𝑖𝑗)𝛾𝛾+

𝑖 ∧𝛾𝛾
−
𝑗 = 1

2 (𝛾𝛾
+
𝑖 ∧𝛾𝛾

−
𝑗 − 𝛾𝛾−𝑖 ∧𝛾𝛾

+
𝑗 ) =

𝑖
2 (𝛾𝛾𝑖 ∧𝛾𝛾𝚥 − 𝛾𝛾�̄� ∧𝛾𝛾𝑗) , (42.26b)

and the 𝑁−1 = 4 bivectors

1
2 𝛾𝛾

+
𝑖 ∧𝛾𝛾

−
𝑖 = 𝑖

2 𝛾𝛾𝑖 ∧𝛾𝛾�̄� modulo 1
2

∑︁
𝑖

𝛾𝛾+
𝑖 ∧𝛾𝛾

−
𝑖 = 𝑖

2

∑︁
𝑖

𝛾𝛾𝑖 ∧𝛾𝛾�̄� , (42.27)

with indices 𝑖 and 𝑗 running over 𝑑, 𝑢, 𝑟, 𝑔, 𝑏. The quantity κ𝑖𝑗 ≡ 𝛾𝛾𝑖 ∧𝛾𝛾�̄� ∧𝛾𝛾𝑗 ∧𝛾𝛾𝚥 = −𝛾𝛾+
𝑖 ∧𝛾𝛾

−
𝑖 ∧𝛾𝛾

+
𝑗 ∧𝛾𝛾

−
𝑗

in equations (42.26) is the 𝑖𝑗 chiral operator. The factor 1
2 (1−κ𝑖𝑗) is a projection operator, whose square is

itself, which serves to project its argument into the space where the sum of 𝑖 and 𝑗 charges is zero. The S in
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SU(5) restricts to U(5) matrices of unit determinant, effectively removing the bivector 1
2

∑︀
𝑖 𝛾𝛾

+
𝑖 ∧𝛾𝛾

−
𝑖 that

rotates all spinors in an SU(5) multiplet by a common phase.
The bivectors of Spin(10) that are not in SU(5) are the 20 bivectors

1
2 (1 + κ𝑖𝑗)𝛾𝛾+

𝑖 ∧𝛾𝛾
+
𝑗 = 1

2 (𝛾𝛾
+
𝑖 ∧𝛾𝛾

+
𝑗 − 𝛾𝛾−𝑖 ∧𝛾𝛾

−
𝑗 ) =

1
2 (𝛾𝛾𝑖 ∧𝛾𝛾𝑗 + 𝛾𝛾�̄� ∧𝛾𝛾𝚥) , (42.28a)

1
2 (1 + κ𝑖𝑗)𝛾𝛾+

𝑖 ∧𝛾𝛾
−
𝑗 = 1

2 (𝛾𝛾
+
𝑖 ∧𝛾𝛾

−
𝑗 + 𝛾𝛾−𝑖 ∧𝛾𝛾

+
𝑗 ) = − 𝑖

2 (𝛾𝛾𝑖 ∧𝛾𝛾𝑗 − 𝛾𝛾�̄� ∧𝛾𝛾𝚥) , (42.28b)

and the 1 bivector

𝑖𝑋 ≡ 1
2

∑︁
𝑖

𝛾𝛾+
𝑖 ∧𝛾𝛾

−
𝑖 = 𝑖

2

∑︁
𝑖

𝛾𝛾𝑖 ∧𝛾𝛾�̄� , (42.29)

with indices 𝑖 running over 𝑑, 𝑢, 𝑟, 𝑔, 𝑏. The bivector 𝑋 measures total 𝑑𝑢𝑟𝑔𝑏 charge, and 𝑖𝑋 is the generator
of the U(1) factor that would complete SU(5) to U(5).
The gauge fields of the SM gauge group U𝑌 (1) × SUL(2) × SU(3) are labelled by 1+3+8 = 12 bivectors.

The bivectors of the isospin group SUL(2) comprise the 2+(2−1) = 3 bivectors (42.26) and (42.27) with
𝑖 and 𝑗 running over 𝑑 and 𝑢, while the bivectors of the colour group SU(3) comprise the 6+(3−1) = 8

bivectors (42.26) and (42.27) with 𝑖 and 𝑗 running over 𝑟, 𝑔, and 𝑏. For some purposes it can be convenient
to recast the 3 bivectors of SUL(2) in terms of three weak Pauli generators 𝑖𝜏𝑖 defined by

𝑖𝜏1 ≡ 1
2 (1− κ𝑑𝑢)𝛾𝛾+

𝑑 𝛾𝛾
−
𝑢 = 1

2 (𝛾𝛾
+
𝑑 𝛾𝛾
−
𝑢 − 𝛾𝛾−𝑑 𝛾𝛾

+
𝑢 ) =

𝑖
2 (𝛾𝛾𝑑 ∧𝛾𝛾�̄� + 𝛾𝛾𝑢 ∧𝛾𝛾𝑑) , (42.30a)

𝑖𝜏2 ≡ − 1
2 (1− κ𝑑𝑢)𝛾𝛾+

𝑑 𝛾𝛾
+
𝑢 = − 1

2 (𝛾𝛾
+
𝑑 𝛾𝛾

+
𝑢 + 𝛾𝛾−𝑑 𝛾𝛾

−
𝑢 ) = − 1

2 (𝛾𝛾𝑑 ∧𝛾𝛾�̄� − 𝛾𝛾𝑢 ∧𝛾𝛾𝑑) , (42.30b)

𝑖𝜏3 ≡ − 1
2 (1− κ𝑑𝑢)𝛾𝛾+

𝑑 𝛾𝛾
−
𝑑 = − 1

2 (𝛾𝛾
+
𝑑 𝛾𝛾
−
𝑑 − 𝛾𝛾+

𝑢 𝛾𝛾
−
𝑢 ) =

𝑖
2 (𝛾𝛾𝑢 ∧𝛾𝛾�̄� − 𝛾𝛾𝑑 ∧𝛾𝛾𝑑) , (42.30c)

where κ𝑑𝑢 ≡ 𝛾𝛾𝑑 ∧𝛾𝛾𝑑 ∧𝛾𝛾𝑢 ∧𝛾𝛾�̄� is the weak chiral operator. The left-handed projection operator 1
2 (1 − κ𝑑𝑢)

equals 1 acting on left-handed weak chiral states, and vanishes acting on right-handed weak chiral states.
The weak Pauli matrix 𝜏3 has eigenvalue equal to twice the isospin 2𝐼L = 𝑢 − 𝑑, equation (42.13b). The
squares of the weak Pauli matrices are 𝜏21 = 𝜏22 = 𝜏23 = 1

2 (1−κ𝑑𝑢), which again is 1 acting on left-handed, 0
acting on right-handed states.
The 1 hypercharge bivector, the generator of U𝑌 (1), is defined to be the bivector whose eigenvalue is 𝑖𝑌

where 𝑌 is the hypercharge, equation (42.13a),

𝑖𝑌 ≡ 1
2

∑︁
𝑖=𝑑,𝑢

𝛾𝛾+
𝑖 ∧𝛾𝛾

−
𝑖 − 1

3

∑︁
𝑖=𝑟,𝑔,𝑏

𝛾𝛾+
𝑖 ∧𝛾𝛾

−
𝑖 = 𝑖

(︃
1
2

∑︁
𝑖=𝑑,𝑢

𝛾𝛾𝑖 ∧𝛾𝛾�̄� − 1
3

∑︁
𝑖=𝑟,𝑔,𝑏

𝛾𝛾𝑖 ∧𝛾𝛾�̄�

)︃
. (42.31)

After electroweak symmetry breaking, the gauge fields of the remaining unbroken gauge group Uem(1)×
SU(3) are labelled by 1+8 = 9 bivectors. The 8 bivectors of the colour group SU(3) are the same as those in
the SM. The 1 electromagnetic charge bivector, the generator of Uem(1), is defined to be the bivector whose
eigenvalue is 𝑖𝑄 where 𝑄 is the electric charge, equation (42.14),

𝑖𝑄 ≡ 1
2𝛾𝛾

+
𝑢 ∧𝛾𝛾−𝑢 − 1

6

∑︁
𝑖=𝑟,𝑔,𝑏

𝛾𝛾+
𝑖 ∧𝛾𝛾

−
𝑖 = 𝑖

(︃
1
2𝛾𝛾𝑢 ∧𝛾𝛾�̄� −

1
6

∑︁
𝑖=𝑟,𝑔,𝑏

𝛾𝛾𝑖 ∧𝛾𝛾�̄�

)︃
. (42.32)
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42.2 Representations of Lie groups

Physicists commonly discuss symmetry groups and unification in terms of representations. It is helpful
to translate the present approach, which is based on the super geometric algebra, into the language of
representations. The account in this section is compressed; several results are quoted without proof. See
Slansky (1981) for a pedagogical review in the context of unification.
The gauge groups of physics are continuous groups that act linearly on fields, preserving inner products.

That means symmetry transformations are unitary, and generators of symmetry transformations are Hermi-
tian or skew-Hermitian. The symmetry groups are then Lie groups, whose generators 𝑆𝐴 satisfy commutation
relations of the form

[𝑆𝐴, 𝑆𝐵 ] = 𝑓𝐴𝐵𝐶𝑆𝐶 . (42.33)

The complex coefficients 𝑓𝐴𝐵𝐶 are called the structure coefficients of the group.
The classification of all finitely generated Lie groups was completed by Cartan in 1894 (see Hawkins (2000)

for a historical review), and made transparent by Dynkin in 1946 (Dynkin, 1962). There are four infinite
sequences of finitely generated irreducible Lie groups, commonly denoted 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, and 𝐷𝑛, related to
the traditional special unitary (SU), spin (Spin), and symplectic (Sp) groups by

𝐴𝑛 = SU(𝑛+1) , 𝐵𝑛 = Spin(2𝑛+1) , 𝐶𝑛 = Sp(2𝑛) , 𝐷𝑛 = Spin(2𝑛) . (42.34)

In addition, there are 5 exceptional groups, denoted 𝐺2, 𝐹4, 𝐸6, 𝐸7, and 𝐸8.
Let 𝑆𝐴 be the generators of a continuous group 𝐺, and let 𝑣𝑖, 𝑖 = 1, ... , 𝑑 be a set of 𝑑 linearly independent

vectors that transform linearly into each other under the action of the group,

𝑆𝐴 : 𝑣𝑖 → (𝑆𝐴)𝑖𝑗𝑣𝑗 . (42.35)

The 𝑑 vectors 𝑣𝑖 and the accompanying set of 𝑑× 𝑑 matrices (𝑆𝐴)𝑖𝑗 define a 𝑑-dimensional representation of
the group. The dimension of the representation is defined to be the dimension 𝑑 of the vector space,

dim(rep) = 𝑑 . (42.36)

A representation is said to be irreducible, or simple, if the vector space contains no proper non-trivial subset
of vectors that transform exclusively among each other under the action of the group. Physicists often refer
to a representation by its dimension. For example, the spinor grade 𝑝 representations of SU(5), the columns
of the Spin(10) chart (42.12), are 1, 5, 10, and their conjugates 10, 5, 1.
The adjoint representation of a group is the special representation where the vectors upon which the group

acts are the group generators themselves. The generators of a Lie group act on each other by commutation,
and the adjoint representation is the set of matrices (𝑆𝐴)𝐵𝐶 satisfying

[𝑆𝐴, 𝑆𝐵 ] = (𝑆𝐴)𝐵𝐶𝑆𝐶 . (42.37)

Evidently the matrices of the adjoint representation are equal to the structure coefficients, (𝑆𝐴)𝐵𝐶 = 𝑓𝐴𝐵𝐶 .
The dimension of the adjoint representation of a Lie group equals the dimension of the group itself, the
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number of its generators,

dim(adj) = dim(𝐺) =

⎧⎪⎪⎨⎪⎪⎩
𝑛(𝑛+ 2) SU(𝑛+ 1)

𝑛(2𝑛+ 1) Spin(2𝑛+ 1)

𝑛(2𝑛+ 1) Sp(2𝑛)

𝑛(2𝑛− 1) Spin(2𝑛)

. (42.38)

Given a group, it is always possible to choose a basis of group generators that is orthonormal in the sense
that the trace of matrix products of generators 𝑆𝐴 and 𝑆𝐵 is proportional to the unit matrix 𝛿𝐴𝐵 in any
representation of the group (this assertion is not self-evidently true; but it is manifestly true in the examples
based on Spin(𝑁) and its subgroups considered below),

Tr(𝑆𝐴𝑆𝐵) ≡ (𝑆𝐴)𝑖𝑗(𝑆𝐵)𝑗𝑖 = 𝑆2(rep)𝛿𝐴𝐵 . (42.39)

The constant of proportionality defines the Dynkin index 𝑆2(rep), a real number whose value depends on
the representation. The structure coefficients 𝑓𝐴𝐵𝐶 in an orthonormal basis are totally antisymmetric.
In an orthonormal basis, the antisymmetry of the structure coefficients implies that the sum

∑︀
𝐴 𝑆

2
𝐴 of

matrix products of generators commutes with all generators, and is therefore proportional to the unit matrix,∑︁
𝐴

𝑆2
𝐴 ≡

∑︁
𝐴

(𝑆𝐴)𝑖𝑗(𝑆𝐴)𝑗𝑘 = 𝐶2(rep)𝛿𝑖𝑘 . (42.40)

The coefficient 𝐶2(rep) is called the quadratic Casimir invariant. For Spin(𝑁), the quadratic Casimir invariant
is the total angular momentum squared of the representation. Equating the trace of equation (42.39) over
generator indices 𝐴 with the trace of equation (42.40) over vector indices 𝑖 implies that the Dynkin index
𝑆2 is related to the Casimir invariant 𝐶2 by

𝑆2(rep) =
dim(rep)
dim(𝐺)

𝐶2(rep) . (42.41)

The orthonormal generators of Spin(𝑁) are its𝑁(𝑁−1)/2 bivectors 1
2𝛾𝛾[𝑎𝑏] ≡ 1

2𝛾𝛾𝑎 ∧𝛾𝛾𝑏 with distinct indices
𝑎 and 𝑏 running over 1 to 𝑁 . The normalization factor of 1

2 is introduced so that charges of eigenvectors
upon which the generators act differ by integer increments, for example equation (42.49). The non-vanishing
commutators of the orthonormal bivectors are

[ 12𝛾𝛾[𝑎𝑏],
1
2𝛾𝛾[𝑏𝑐]] =

1
2𝛾𝛾[𝑎𝑐] . (42.42)

The commutators (42.42) imply that the non-vanishing structure coefficients are

𝑓[𝑎𝑏][𝑏𝑐][𝑐𝑎] = −1 (42.43)

for any 𝑎 ̸= 𝑏 ̸= 𝑐 ̸= 𝑎. The structure coefficients 𝑓[𝑎𝑏][𝑏𝑐][𝑐𝑎] are totally antisymmetric in their indices [𝑎𝑏],
[𝑏𝑐], and [𝑐𝑎].
The bivector generators are operators that act on the vectors of a representation. To characterize and

construct representations, it is advantageous to work with the chiral representation of the bivector generators,
since these provide raising and lowering operators that connect the vectors of a representation. Spin(𝑁) has
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𝑛 ≡ [𝑁/2] mutually commuting bivector generators, whose eigenvalues are 𝑛 conserved charges. In place of
orthonormal indices 𝑎 = 1 , ... , 𝑁 , the chiral bivectors of Spin(𝑁) use chiral indices 𝑖 and �̄� with 𝑖 = 1 , ... , 𝑛,
plus a final index 𝑁 when 𝑁 is odd. In a chiral basis, the 𝑁(𝑁 − 1)/2 bivectors collect into:

1
2𝛾𝛾[𝑖�̄�] 𝑛 diagonal bivectors that measure charge 𝑖 , (42.44a)

1
2𝛾𝛾[𝑖𝑗] ,

1
2𝛾𝛾[𝑖𝚥] ,

1
2𝛾𝛾[̄𝚤𝑗] ,

1
2𝛾𝛾[̄𝚤𝚥] 2𝑛(𝑛− 1) bivectors that raise and/or lower 2 charges 𝑖 and 𝑗 , (42.44b)

1
2𝛾𝛾[𝑖𝑁 ] ,

1
2𝛾𝛾[̄𝚤𝑁 ] if 𝑁 is odd, 2𝑛 bivectors that raise or lower 1 charge 𝑖 . (42.44c)

The non-vanishing commutators of the chiral bivectors are

[ 12𝛾𝛾[𝑖𝚥],
1
2𝛾𝛾[𝑗�̄�]] =

1
2𝛾𝛾[𝑖�̄�] , (42.45)

and the same with 𝑖 ↔ �̄� and/or 𝑗 ↔ 𝚥 and/or 𝑘 ↔ 𝑘, and allowing 𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑘 = 𝑖, but excluding
𝑖 = 𝑗 = 𝑘. The commutators (42.45) imply that the non-vanishing chiral structure coefficients are

𝑓[𝑖𝚥][𝑗�̄�][𝑖�̄�] = 1 (42.46)

for any 𝑖 ̸= 𝑗 ̸= 𝑘 ̸= 𝑖. The chiral structure coefficients 𝑓[𝑖𝚥][𝑗�̄�][𝑖�̄�] are not totally antisymmetric in their
indices.
Suppose that |𝑚⟩ is an eigenvector with 𝑖-charge 𝑚𝑖,

1
2𝛾𝛾[𝑖�̄�]|𝑚⟩ = 𝑚𝑖|𝑚⟩ . (42.47)

Suppose further that the operator 1
2𝛾𝛾[𝑖𝑗] acting on the eigenvector |𝑚⟩ yields another vector |𝑚′⟩,

1
2𝛾𝛾[𝑖𝑗]|𝑚⟩ = |𝑚′⟩ . (42.48)

Then the 𝑖-charge of |𝑚′⟩ is
1
2𝛾𝛾[𝑖�̄�]|𝑚′⟩ = 1

2𝛾𝛾[𝑖�̄�]
1
2𝛾𝛾[𝑖𝑗]|𝑚⟩ =

(︀
1
2𝛾𝛾[𝑖𝑗]

1
2𝛾𝛾[𝑖�̄�] + [ 12𝛾𝛾[𝑖�̄�],

1
2𝛾𝛾[𝑖𝑗]]

)︀
|𝑚⟩ = (𝑚𝑖 + 1)|𝑚′⟩ , (42.49)

that is, the raising operator 1
2𝛾𝛾[𝑖𝑗] increases the 𝑖-charge of whatever it operates on by 1. The same raising

operator 1
2𝛾𝛾[𝑖𝑗] similarly increases the 𝑗-charge of whatever it operates on by 1. If 𝑖 is changed to �̄�, the

operator lowers 𝑖-charge by 1, and if 𝑗 is changed to 𝚥, the operator lowers 𝑗-charge by 1. The change of
charge by increments of 1 explains the factors of 1

2 in the choice of normalization of bivector generators. The
eigenvectors |𝑚⟩ and |𝑚′⟩ must be orthogonal because they have different charges. The normalization of
eigenvectors can be deduced from recurrence relations of the form

0 = ⟨𝑚
⃒⃒
[ 12𝛾𝛾[𝑖𝚥],

1
2𝛾𝛾[𝑗�̄�]]− 1

2𝛾𝛾[𝑖�̄�]

⃒⃒
𝑚⟩ = ⟨𝑚 1

2𝛾𝛾[𝑖𝚥]

⃒⃒
1
2𝛾𝛾[𝑗�̄�]𝑚⟩ − ⟨𝑚 1

2𝛾𝛾[𝑗�̄�]

⃒⃒
1
2𝛾𝛾[𝑖𝚥]𝑚⟩ − ⟨𝑚

⃒⃒
1
2𝛾𝛾[𝑖�̄�]

⃒⃒
𝑚⟩ . (42.50)

The vectors of a representation may be obtained by starting at one vector in the lattice of charges, and
successively applying raising and lowering operators until all vectors of the representation are found. The
Cartan-Weyl-Dynkin approach is to use a judiciously chosen minimal subset of 𝑛 raising operators and 𝑛

complementary lowering operators. The group SU(𝑛) is the subgroup of Spin(2𝑛) that preserves the sum of
all charges, so only 𝑛 − 1 raising operators are needed to fill out a representation of SU(𝑛); equivalently 𝑛
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1

2

3

Figure 42.1 Cartan-Weyl-Dynkin raising operators for the groups SU(3), Spin(6), Spin(7), and Sp(6) with 3 conserved

charges. The 3 charges point along orthogonal axes labelled 1, 2, and 3. All four groups share raising operators along

the 12̄ and 23̄ directions, drawn in black. The dashed black line is added to bring out the fact that the black lines

form edges of an equilateral triangle. The groups are distinguished by their final raising operator. SU(3) conserves the

total of the 3 charges, so only the 2 black raising operators are needed. The red, blue, and purple+blue lines are final

raising operators for respectively Spin(6), Spin(7), and Sp(6).

raising operators are needed by SU(𝑛+1). For the groups SU(𝑛+1), Spin(2𝑛+1), and Spin(2𝑛), the Cartan-
Weyl-Dynkin basis of 𝑛 raising operators is

1
2𝛾𝛾[12̄] ,

1
2𝛾𝛾[23̄] , ... ,

1
2𝛾𝛾[𝑛−1 �̄�] ,

⎧⎨⎩
1
2𝛾𝛾[𝑛𝑛+1] SU(𝑛+1)
1
2𝛾𝛾[𝑛𝑁 ] Spin(2𝑛+1)
1
2𝛾𝛾[𝑛−1𝑛] Spin(2𝑛)

. (42.51)

The lowering operators are their complements; for example the complement of 1
2𝛾𝛾[12̄] is

1
2𝛾𝛾[21̄]. The Cartan-

Weyl-Dynkin raising operators (42.51) can be regarded as vectors 𝛼𝑖 which shift the charge of a vector
through an integrally-spaced lattice of charges,

𝛼1 , ... , 𝛼𝑛 ≡ {1 ,−1 , ...0...} , {0 , 1 ,−1 , ...0...}, ...,

⎧⎪⎪⎨⎪⎪⎩
{...0... , 1 ,−1} SU(𝑛+1)

{...0... , 1} Spin(2𝑛+1)

{...0... , 2} Sp(2𝑛)

{...0... , 1 , 1} Spin(2𝑛)

, (42.52)

where ...0... denotes a (possibly empty) sequence of zeroes. The corresponding lowering vectors are −𝛼𝑖.
The raising vectors for the case where there are 3 conserved charges are illustrated in Figure 42.1. Notice
that the vectors 𝛼𝑖 for SU(𝑛+1) are in an (𝑛+1)-dimensional space of charges, whereas the vectors for the
other groups are in an 𝑛-dimensional space of charges. For SU(𝑛+1), the sum of all 𝑛 + 1 charges can be
taken without loss of generality to be zero, since the total charge separates into a commuting U(1) generator
characterized by a charge {1 , 1 , ... , 1}. Spin(2) has 1 conserved charge, and zero raising operators; it is
isomorphic to U(1).
The representation is built up by applying vectors 𝛼𝑖 successively. The charges𝑚𝑗 of a vector in the charge
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lattice may be expressed in terms of the net number 2𝜆𝑖/(𝛼𝑖 ·𝛼𝑖) of applications of 𝛼𝑖 needed to reach the
vector from the origin,

𝑚𝑗 =
∑︁
𝑖

2𝜆𝑖
𝛼𝑖 ·𝛼𝑖

𝛼𝑖𝑗 . (42.53)

Here the scalar product 𝛼𝑖 ·𝛼𝑗 is the Euclidean scalar product on the 𝑛-dimensional (or (𝑛+1)-dimensional
for SU(𝑛+1)) lattice of charges. The scaling factor 2/(𝛼𝑖 · 𝛼𝑖), which equals 1 for all but at most one
of the vectors 𝛼𝑖 in the set (42.52), is introduced to simplify the subsequent definition (42.54) of Dynkin
coordinates. For any representation, there is always a lowest vector with the smallest possible charge, and
a highest vector with the largest possible charge. The vector with the smallest charge is annihilated by all
lowering operators; the vector with the highest charge is annihilated by all raising operators. The vectors of
a representation can be obtained by starting with the highest (or lowest) vector and successively applying
lowering and raising operators in all possible ways until the lowest (or highest) vector is reached.
Suppose that 𝜆𝑖 is the highest vector of a representation. Only some choices of highest vector 𝜆𝑖 yield

viable representations. Dynkin’s key trick is to introduce Dynkin coordinates 𝜆𝑖 dual to the components 𝜆𝑖
(implicit sum over paired indices, one up and one down),

𝜆𝑖 = 𝑔𝑖𝑗𝜆
𝑗 , 𝜆𝑖 = 𝑔𝑖𝑗𝜆𝑗 , (42.54)

where the symmetric Dynkin metric 𝑔𝑖𝑗 and its inverse 𝑔𝑖𝑗 are defined by

𝑔𝑖𝑗 ≡
𝛼𝑖 ·𝛼𝑖

2
(𝛼𝑖 ·𝛼𝑗)−1

𝛼𝑗 ·𝛼𝑗
2

, 𝑔𝑖𝑗 ≡ 2

𝛼𝑖 ·𝛼𝑖
𝛼𝑖 ·𝛼𝑗

2

𝛼𝑗 ·𝛼𝑗
(no sum over 𝑖 or 𝑗) . (42.55)

The key result of Dynkin theory is that the Dynkin coordinates 𝜆𝑖 of every vector of a representation are
integers. Every sequence of non-negative integers 𝜆𝑖 = {𝜆1 , ... , 𝜆𝑛} defines a highest vector that gives rise
to a distinct representation, and every representation is characterized by such a sequence of non-negative
integers. A single step 𝛼𝑗 changes the Dynkin coordinates 𝜆𝑖 of a vector by

(Δ𝜆𝑖)𝑗 = 𝑔𝑖𝑗
𝛼𝑗 ·𝛼𝑗

2
=

2

𝛼𝑖 ·𝛼𝑖
𝛼𝑖 ·𝛼𝑗 (no sum over 𝑖 or 𝑗) , (42.56)

which is called the Cartan-Weyl matrix. The Cartan-Weyl matrix has all integer entries, consistent with the
fact that the Dynkin coordinates 𝜆𝑖 of any vector of a representation are always integers. The charge of a
vector with Dynkin coordinates 𝜆𝑖 is, from equations (42.53) and (42.54),

𝑚𝑘 =
∑︁
𝑖𝑗

𝜆𝑖𝑔𝑖𝑗
2𝛼𝑗𝑘

𝛼𝑗 ·𝛼𝑗
. (42.57)

The quadratic Casimir invariant, equation (42.40), of a representation whose highest vector has Dynkin
coordinates 𝜆𝑖 is

𝐶2(𝜆
𝑖) =

∑︁
𝑖𝑗

𝜆𝑖𝑔𝑖𝑗(𝜆
𝑗 + 2𝑗) , (42.58)

where 2𝑗 denotes the vector {2 , 2 , ... , 2}.
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The dimension of a representation with highest vector 𝜆𝑖 is given by Weyl’s formula (42.63) below. The
formula depends not only on the Cartan-Weyl-Dynkin basis set of 𝑛 raising operators (42.51), but on the
full set of raising operators. The raising and lowering operators of a group divide into two equal sets, raising
operators, and their complements, lowering operators. For Spin(𝑁), the raising operators from the list (42.44)
are 1

2𝛾𝛾[𝑖𝚥] with 𝑖 < 𝑗, and 1
2𝛾𝛾[𝑖𝑗] also with 𝑖 < 𝑗 without loss of generality. For 𝑁 odd, the raising operators

include 1
2𝛾𝛾[𝑖𝑁 ]. The number 𝑛raise of raising operators is

𝑛raise =

⎧⎪⎪⎨⎪⎪⎩
1
2𝑛(𝑛+1) SU(𝑛+1)

𝑛2 Spin(2𝑛+1)

𝑛2 Sp(2𝑛)

𝑛(𝑛− 1) Spin(2𝑛)

. (42.59)

The raising operators are characterized by 𝑛raise charge vectors 𝛼𝑖 whose components in the Euclidean space
of charges are

𝛼𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{...0... , 1 , ...0... ,−1 , ...0...} 1

2𝑛(𝑛+1) vectors SU(𝑛+1) ,

{...0... , 1 , ...0... ,−1 , ...0...} 1
2𝑛(𝑛−1) vectors Spin(2𝑛+1) , Sp(2𝑛) , Spin(2𝑛) ,

{...0... , 1 , ...0... , 1 , ...0...} 1
2𝑛(𝑛−1) vectors Spin(2𝑛+1) , Sp(2𝑛) , Spin(2𝑛) ,

{...0... , 1 , ...0...} 𝑛 vectors Spin(2𝑛+1) ,

{...0... , 2 , ...0...} 𝑛 vectors Sp(2𝑛) .

(42.60)

Express the charges 𝛼𝑖𝑗 of the raising operators 𝛼𝑖 as linear combinations of the charges of the Cartan-Weyl-
Dynkin basis operators 𝛼𝑘𝑗 given by equation (42.52),

𝛼𝑖𝑗 =

𝑛∑︁
𝑘=1

2𝑎𝑖𝑘
𝛼𝑘 ·𝛼𝑘

𝛼𝑘𝑗 , (42.61)

which defines the 𝑛raise × 𝑛 (or 𝑛raise × (𝑛+1) for SU(𝑛+1)) matrix 𝑎𝑖𝑘. The 𝑛raise rows 𝑎𝑖 of the matrix 𝑎𝑖𝑘
are

𝑎𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{...0... , 1... , 0...} 1
2𝑛(𝑛+1) vectors SU(𝑛+1) ,

{...0... , 1... , 0...} 1
2𝑛(𝑛−1) vectors

⎫⎬⎭ Spin(2𝑛+1) ,{...0... , 1... , ...2... , 1} 1
2𝑛(𝑛−1) vectors

{...0... , ...1... , 12} 𝑛 vectors

{...0... , 1... , 0...} 1
2𝑛(𝑛−1) vectors

⎫⎬⎭ Sp(2𝑛) ,{...0... , 1... , 2...} 1
2𝑛(𝑛−1) vectors

{...0... , 2...} 𝑛 vectors

{...0... , 1... , 0...} 1
2𝑛(𝑛−1) vectors

⎫⎪⎪⎬⎪⎪⎭ Spin(2𝑛) ,
{...0... , 1... , 2... , 1 , 1} 1

2 (𝑛−2)(𝑛−3) vectors
{...0... , ...1... , 0 , 1} 𝑛−1 vectors
{...0... , 1... , 1 , 1} 𝑛−2 vectors

(42.62)

where ...𝑖... (dots on both sides) denotes a possibly empty sequence of 𝑖’s, while 𝑖... (dots only on the right)
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Table 42.2: Example representations

Group Representation Spinor? Grade Dimension 𝐶2 𝑆2

All {0...} 0 1 0 0

SU(𝑛+1) {...0...
𝑝

, 1 , ...0...} X 𝑝 ≤ 𝑛
(︀
𝑛+1
𝑝

)︀ 𝑝(𝑛+1−𝑝)(𝑛+2)
(𝑛+1)

(︀
𝑛−1
𝑝−1
)︀

{...0...
𝑝

, 1 , ...0
𝑛+1−𝑝
... , 1 , ...0...} × 2𝑝 < 𝑛+1 𝑛+2−2𝑝

𝑛+2

(︀
𝑛+2
𝑝

)︀2
2𝑝(𝑛+2−2𝑝) 2(𝑛+2−2𝑝)

𝑛

(︀
𝑛+1
𝑝−1
)︀(︀
𝑛+1
𝑝

)︀
{...0...

𝑝

, 2 , ...0...} × 2𝑝 = 𝑛+1 1
𝑛+2

(︀
𝑛+2
𝑝

)︀2
𝑛+1 2

𝑛

(︀
𝑛+1
𝑝−1
)︀(︀
𝑛+1
𝑝

)︀
Spin(2𝑛+1) {...0... , 1} X − 2𝑛 1

4𝑛(2𝑛+1) 2𝑛−2

{...0...
𝑝

, 1, ...0...} × 𝑝 ≤ 𝑛−1
(︀
2𝑛+1
𝑝

)︀
𝑝(2𝑛+1−𝑝) 2

(︀
2(𝑛−1)
𝑝−1

)︀
{...0... , 2} × 𝑛

(︀
2𝑛+1
𝑛

)︀
𝑛(𝑛+1) 2

(︀
2(𝑛−1)
𝑛−1

)︀
Spin(2𝑛) {...0... , 1 , 0} or {...0... , 0 , 1} X − 2𝑛−1 1

4𝑛(2𝑛−1) 2𝑛−3

{...0...
𝑝

, 1 , ...0...} × 𝑝 ≤ 𝑛−2
(︀
2𝑛
𝑝

)︀
𝑝(2𝑛−𝑝) 2

(︀
2(𝑛−1)
𝑝−1

)︀
{...0... , 1 , 1} × 𝑛−1

(︀
2𝑛
𝑛−1
)︀

(𝑛−1)(𝑛+1) 2
(︀
2(𝑛−1)
𝑛−2

)︀
{...0... , 2 , 0} or {...0... , 0 , 2} × 𝑛 1

2

(︀
2𝑛
𝑛

)︀
𝑛2

(︀
2(𝑛−1)
𝑛−1

)︀

denote a non-empty sequence of 𝑖’s. Weyl’s formula for the dimension of a representation with highest vector
𝜆𝑗 is

dim(𝜆𝑗) =

𝑛raise∏︁
𝑖=1

∑︀𝑛
𝑗=1 𝑎𝑖𝑗(𝜆

𝑗 + 1𝑗)∑︀
𝑗 𝑎𝑖𝑗

, (42.63)

where 1𝑗 denotes the vector {1 , ... , 1}.
Two powerful features of Cartan-Weyl-Dynkin theory are that (1) a Lie group can be visualized in terms of

its diagram, Figure 42.1 for example, and (2) a Lie group is characterized by its Dynkin metric. Two groups
are isomorphic if and only if they have the same Dynkin metric (after a possible permutation of Dynkin
coordinates). An example is the isomorphism between SU(4) and Spin(6), Exercise 42.3.
The Dynkin metric 𝑔𝑖𝑗 of a Lie group that is a direct product of Lie groups with metrics 𝑔𝑖𝑗(1) and 𝑔𝑖𝑗(2)

is the block diagonal metric

𝑔𝑖𝑗 =

(︂
𝑔𝑖𝑗(1) 0

0 𝑔𝑖𝑗(2)

)︂
. (42.64)

If the Dynkin metric of a Lie group is block diagonal, then the group is a direct product. An example is the
isomorphism between Spin(4) and SU(2)× SU(2), Exercise 42.2.
The question of whether a Lie group is a direct product of groups can be determined by inspection from its

diagram. If the Cartan-Weyl-Dynkin raising operators of the group split into two sets that are orthogonal to
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each other (which is the same as the condition that the Dynkin metric is block diagonal), then the group is a
direct product. For example, the diagram of Spin(4) consists of the red line and the one black line orthogonal
to it in Figure 42.1. Therefore Spin(4) is isomorphic to the product of two groups each of whose diagrams
consist of a single line, namely SU(2).
Table 42.2 lists all spinor and multivector representations of SU(𝑁) and Spin(𝑁), along with the Dynkin

coordinates 𝜆𝑖 of the highest vector (which defines the representation), the dimension, quadratic Casimir in-
variant 𝐶2, and Dynkin index 𝑆2 of the representation. Other representations, not listed, are representations
of irreducible components of tensor products of spinors and/or multivectors. Beware that the Casimir invari-
ant and Dynkin index are proportional to charge squared, and their numerical values depend on the units
of charge adopted, which may vary between authors. The Casimir invariant and Dynkin index in Table 42.2
are in charge units such that the separation of adjacent charges on the charge lattice is unity, Figure 42.1.
Spin(2𝑛+1) has one spinor representation, while Spin(2𝑛) has two, which are conjugates of each other.

Spin(𝑁) has a representation for multivectors of grade 𝑝, and the same representation holds for their pseudo
partners, multivectors of grade 𝑁−𝑝; except that for Spin(2𝑛) and grade 𝑝 = 𝑛 there are two representations,
each containing half of the grade-𝑛 multivectors, one representation being the pseudoscalar times the other.
The adjoint representation is the bivector representation, grade 𝑝 = 2.

SU(𝑁) is the subgroup of Spin(2𝑁) (or of Spin(2𝑁+1)) that preserves the total charge (total spin weight,
or number of up bits, in the language of the super geometric algebra, §38.2). The spinor representations of
SU(𝑁) are characterized by their spinor grade, the number of up bits of the spinor. For example, SU(5) has
spinor representations of spinor grades 0 to 5, as listed in the Spin(10) chart (42.12), with dimensions 1,
5, 10, 10, 5, 1. SU(𝑁) has a multivector representation for each even grade 2𝑝, consisting of the subset of
Spin(2𝑁) multivectors of grade 2𝑝 that have zero charge (zero spin weight). The adjoint representation is
the bivector representation, grade 2𝑝 = 2.
Not included in Table 42.2 is the simplest of all Lie groups, the group U(1) of dimension 1. Whereas

generators of groups of dimension 2 or more are normalized naturally by setting the separation between
adjacent charges on the charge lattice to 1 (Figure 42.1), the group U(1), having only 1 charge, has no such
natural normalization. Yet the charges of the U𝑌 (1) hypercharge and Uem(1) electromagnetic groups do
come in discrete increments, leading to the commonly adopted empirical normalizations of hypercharge and
electric charge listed in the Table 42.1 of SM charges. A “natural” normalization of a U(1) charge may emerge
if it is embedded in a larger unifying group such as Spin(10). Regardless of the choice of units of charge, the
Casimir invariant 𝐶2 and Dynkin index 𝑆2 of U(1) are dimensionful quantities equal to the square of the
U(1) charge, equations (42.40) and (42.41).

Exercise 42.1. Representations of Spin(3). The group Spin(3) of rotations in 3 spatial dimensions is the
simplest irreducible Lie group with non-vanishing commutators.
1. Use the Cartan-Weyl-Dynkin approach to find all representations of Spin(3).

2. Given that Spin(3) is isomorphic to SU(2), is there any difference between their representations?
Solution.

1. The group Spin(3) has 3 generators, which in an orthonormal basis are 1
2𝛾𝛾[𝑎𝑏] with indices 𝑎 and 𝑏 drawn
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from 1, 2, 3. The orthonormal generators are commonly denoted by angular momentum operators 𝐿𝑎
with 𝑎 = 1, 2, 3 (or 𝑎 = 𝑥, 𝑦, 𝑧),

𝑖𝐿1 ≡ 1
2𝛾𝛾[23] , 𝑖𝐿2 ≡ 1

2𝛾𝛾[31] , 𝑖𝐿3 ≡ 1
2𝛾𝛾[12] . (42.65)

The commutators of the orthonormal generators 𝐿𝑎 are

[𝐿𝑎, 𝐿𝑏] = 𝑖𝜀𝑎𝑏𝑐𝐿𝑐 , (42.66)

with 𝜀𝑎𝑏𝑐 the totally antisymmetric symbol. In a chiral basis, the generators are the diagonal generator
1
2𝛾𝛾[11̄] and the raising and lower generators 1

2𝛾𝛾[13] and
1
2𝛾𝛾[1̄3]. The chiral generators are

𝐿3 = 1
2𝛾𝛾[11̄] , 𝐿+ ≡ 1√

2
(𝐿1 + 𝑖𝐿2) = − 1

2𝛾𝛾[13] , 𝐿− ≡ 1√
2
(𝐿1 − 𝑖𝐿2) =

1
2𝛾𝛾[1̄3] . (42.67)

The commutation rules of the chiral generators are

[𝐿+, 𝐿−] = 𝐿3 , [𝐿3, 𝐿±] = ±𝐿± , (42.68)

in agreement with equations (35.137). Spin(3) has a single conserved charge, the eigenvalue 𝑚 of 𝐿3,
the component of angular momentum about the 3-axis. A representation of Spin(3) is labelled by the
single Dynkin integer coordinate of its highest vector, 𝜆1 = 2ℓ. The Casimir invariant (42.58) is

𝐶2(2ℓ) = ℓ(ℓ+ 1) , (42.69)

the total angular momentum of the representation. The dimension of a representation of Dynkin coor-
dinate 2ℓ is

dim(2ℓ) = 2ℓ+ 1 . (42.70)

The Dynkin index (42.39) of a representation is

𝑆2(2ℓ) =
1
3ℓ(ℓ+ 1)(2ℓ+ 1) . (42.71)

The smallest non-trivial representation is the spinor representation ℓ = 1
2 , which has dimension 2ℓ+1 = 2.

The representation of the angular momentum operators in that case are 1
2 the Pauli matrices,

(𝐿3)𝑖𝑗 =
1
2𝜎3 , (𝐿±)𝑖𝑗 =

1
2𝜎± . (42.72)

2. Spin(3) is isomorphic not only to SU(2) but also to Sp(2). The isomorphism is evident from the fact that
the diagrams for all three groups are the same, a line joining two points. So yes, their representations
are the same. However, it is necessary to worry about units. The Dynkin metric is a 1× 1 matrix, but
with different normalizations,

𝑔𝑖𝑗 =
(︀
1
)︀
×

⎧⎨⎩
1
2 SU(2)
1
4 Spin(3)

1 Sp(2)

. (42.73)
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The quadratic Casimir invariants (42.58) differ correspondingly,

𝐶2(2ℓ) = ℓ(ℓ+ 1)×

⎧⎨⎩
2 SU(2)

1 Spin(3)

4 Sp(2)

. (42.74)

The reason for the difference is that the Dynkin metric and the quadratic Casimir invariant are propor-
tional to the square of the separation between adjacent charges, which, as can be seen in Figure 42.1,
is 2 (black line) for SU(2), 1 (blue line) for Spin(3), and 4 (purple+blue line) for Sp(2). The separation
of charges is a matter of units. In rotations in 3 dimensions, there is a single conserved charge, the
angular momentum 𝐿3 about the 3-axis. It is natural to adopt units such that a change by one unit in
the charge lattice (the vertical blue line in Figure 42.1) corresponds to one unit of angular momentum;
indeed this is so if angular momentum is measured in natural units ~. In weak interactions on the other
hand, there are two weak charges, 𝑑 and 𝑢, and it is natural to choose the charge separation such that
𝑑 and 𝑢 change by 1 in a weak interaction (the 45∘ black line in Figure 42.1). In those units, the correct
normalization of the Casimir invariant (42.74) for weak interactions is the SU(2) normalization.

Exercise 42.2. Prove that the group Spin(4) is isomorphic to SU(2)× SU(2).

Solution. The Dynkin metric of SU(2) is the 1× 1 matrix

𝑔𝑖𝑗 =
1

2

(︀
1
)︀
. (42.75)

The Dynkin metric of Spin(4) is the 2× 2 matrix

𝑔𝑖𝑗 =
1

2

(︂
1 0

0 1

)︂
, (42.76)

which is the block diagonal composition of two SU(2) Dynkin metrics. Therefore Spin(4) is isomorphic to
SU(2)× SU(2).

Exercise 42.3. Prove that the group SU(4) is isomorphic to Spin(6).

Solution. The Dynkin metrics of SU(4) and Spin(6) are

𝑔𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

4

⎛⎝ 3 2 1

2 4 2

1 2 3

⎞⎠ SU(4)

1

4

⎛⎝ 4 2 2

2 3 1

2 1 3

⎞⎠ Spin(6)

, (42.77)

which are related by permuting the first two rows and columns, 1 ↔ 2. Therefore SU(4) and Spin(6) are
isomorphic.
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42.3 The nature of mass

What is mass? Mass remains one of the most mysterious ingredients of the Standard Model (Quigg, 2007).
In the conventional picture, the chiral (right- or left-handed) fundamental fermions of the SM are taken to be
natively massless, since chirality is a property only of massless spinors. A massive spinor is a superposition
of two chiral spinors of opposite chirality, a linear combination of right- and left-handed chiral spinors. A
massive spinor at rest is an equal superposition of right- and left-handed spinors. For example, in the chiral
representation (39.12), an electron at rest is 𝑒⇑ = (𝑒R − 𝑖𝑒L)/

√
2, while a positron (an antielectron) at rest

is 𝑒⇓ = (− 𝑖𝑒R + 𝑒L)/
√
2.

The Spin(10) chart (42.12) of fermions shows that right- and left-handed versions of each species of fermion
(for example, 𝑒R and 𝑒L) differ by the 𝑑-bit. The SM postulates that fermions flip their 𝑑-bit as a result of
interaction with the Higgs field, §42.4.10, giving the fermions their fundamental masses. Spinors that come
in right- and left-handed versions are called Dirac spinors, and the mass that arises from flipping between
the massless right- and left-handed components is called Dirac mass. A Dirac mass that results from flipping
the 𝑑-bit is possible only after electroweak symmetry breaking, where 𝑑 charge is not conserved.
Table 42.3 shows the measured rest masses of the fundamental fermions, with leptons in the top two rows,

quarks in the bottom two. The fundamental fermions come in 3 generations, electron, muon, and tauon (or
1, 2, and 3), each generation repeating the same pattern of charges, Table 42.1, but with different masses.
The masses follow no clear pattern, except that higher generations are more massive, and neutrino masses
are substantially smaller than other fermion masses, as illustrated in Figure 42.2. Neutrino masses, and
their assignment to generation, remain as yet uncertain; neutrino oscillations, §42.3.2, yield mass squared
differences, and cosmological constraints yield only an upper limit

∑︀
𝑚𝜈 < 0.12 eV on the sum of the three

neutrino masses, equation (10.110).
Most of the mass of objects in the familiar world comes not from the masses of fundamental fermions,

but from protons and neutrons, which are bound states of quarks. Protons and neutrons, along with other
strongly interacting particles containing an odd number of quarks, are collectively called baryons. Baryons
themselves combine into nuclei, and thence with electrons into atoms and molecules. A proton is a colourless
combination 𝑢𝑢𝑑 of two up quarks and one down quark, while a neutron is a colourless combination 𝑢𝑑𝑑 of
one up quark and two down quarks. Colourless means that the combination is a symmetric superposition of

Table 42.3: Masses of fundamental fermions (NIST, 2014; Tanabashi et al., 2018)

Generation
1 2 3

𝑒-neutrino 𝜈𝑒 ? 𝜇-neutrino 𝜈𝜇 0.01 eV? 𝜏 -neutrino 𝜈𝜏 0.05 eV?
electron 𝑒 0.510 998 946(3)MeV muon 𝜇 105.658 375(3)MeV tauon 𝜏 1.776 82(16)GeV

up 𝑢 2.2(5)MeV charm 𝑐 1,275(30)MeV top 𝑡 173.0(4)GeV

down 𝑑 4.7(4)MeV strange 𝑠 95(6)MeV bottom 𝑏 4.18(4)GeV
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Figure 42.2 Masses of fundamental fermions, Table 42.3. Neutrino masses, and their assignment to generation, remain

uncertain.

equal contributions of 𝑟, 𝑔, and 𝑏 colours. Numerical calculation of quantum chromodynamics on a lattice
(lattice QCD) reveals that protons and neutrons should be thought of not as three quarks somehow stuck
together, but rather as a seething maelstrom of strongly interacting relativistic quarks and gluons bound
together by the colour force (Yang et al., 2018). The rest masses of the three “valence” 𝑢𝑢𝑑 or 𝑢𝑑𝑑 quarks
contribute only about 1% of the ≈ 1GeV mass of a proton or neutron.

42.3.1 Neutrino mass and the see-saw mechanism

Neutrinos cannot acquire their mass in the same way as the other fundamental fermions, since only left-
handed meutrinos (and right-handed antineutrinos) are observed. There is no experimental evidence for
a right-handed neutrino. Evidence from particle accelerator experiments indicates that there are only 3
neutrino types with masses less than half the mass of the 𝑍 neutral weak gauge boson, 1

2𝑚𝑍 ≈ 45GeV

(ALEPH Collaboration et al., 2006),

𝑁𝜈 = 2.984± 0.008 . (42.78)

Evidence from the CMB indicates that there are only 3 neutrino types with masses less than about the
electron mass (the observations set limits on the number of neutrino types post electron-positron annihilation)
(Aghanim et al., 2018),

𝑁eff = 3.0± 0.5 . (42.79)

Yet neutrinos are observed to have (small) masses. How can neutrinos have mass if they are purely chiral?
A leading idea is the see-saw mechanism proposed by Gell-Mann, Ramond, and Slansky (1979). They

argued that the right-handed neutrino, alone among all the fundamental fermions, could be a superposition
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of itself 𝜈R and its charge conjugate 𝜈L. The mass acquired by flipping between a massless particle and
its charge conjugate is called a Majorana mass (Majorana, 1937). The right-handed neutrino can have a
Majorana mass because it has no SM charge (no hypercharge 𝑌 , no isospin 𝐼L, and no colour, Table 42.1).
The right-handed neutrino 𝜈R is the all-bit-up spinor ↑↑↑↑↑ (and its charge conjugate 𝜈L is the all-bit-down
spinor ↓↓↓↓↓), which has zero SM charge because the SM excludes the generator 𝑖

∑︀
𝑎 𝛾𝛾𝑎 ∧𝛾𝛾�̄� that would

give 𝜈R a charge, equation (42.27). The right-handed neutrino is the only fundamental fermion with zero
SM charge. The right-handed neutrino could escape observation provided that it has a sufficiently large
Majorana mass, greater than the electroweak scale ∼ 1TeV.
Although a right-handed neutrino has no SM charge, it does have lepton number 𝐿. A Majorana mass

that flips between the right-handed neutrino and its charge conjugate, the left-handed antineutrino, violates
conservation of lepton number. It also violates conservation of the difference 𝐵 − 𝐿 of baryon and lepton
number. SM transformations conserve both baryon 𝐵 and lepton 𝐿 number, and Spin(10) conserves 𝐵 − 𝐿,
though not 𝐵 and 𝐿 individually, equation (42.17). Does Nature allow a lepton-non-conserving Majorana
mass? That is a secret that at present only Nature knows. But if it does, then out-of-equilibrium decay
of three generations of right-handed neutrino in the early Universe could lead to an excess of leptons over
antileptons, a process called leptogenesis (Fukugita, 1986; Buchmüller, Peccei, and Yanagida, 2005; Davidson,
Nardib, and Nir, 2008; Blanchet and Di Bari, 2012; Fong, Nardi, and Riotto, 2012; Drewes, 2013; Cline, 2018).
Leptogenesis can subsequently promote baryogenesis at the electroweak phase transition.
Gell-Mann, Ramond, and Slansky (1979) proposed that neutrinos, alone among the fundamental fermions,

acquire both kinds of masses, a Majorana mass 𝑀 that flips the right-handed neutrino and its charge
conjugate into each other 𝜈R ↔ 𝜈L, or equivalently 𝜈𝑉 ↑ ↔ 𝜈*𝑈↑ and 𝜈𝑈↓ ↔ 𝜈*𝑉 ↓, and a Dirac mass 𝑚 that
flips right- and left-handed neutrinos into each other, 𝜈R ↔ 𝜈L, or equivalently 𝜈𝑉 ↑ ↔ 𝜈𝑈↑ and 𝜈𝑉 ↓ ↔ 𝜈𝑈↓.
The result is that neutrino spinors are coupled to each other by a Hermitian mass matrix 𝑀 that, in the
chiral representation (39.13), is, for spin up ↑ spinors,

𝜈†𝑀𝜈 = 𝑖
(︀
𝜈*𝑉 ↑ 𝜈*𝑈↑ 𝜈𝑉 ↑ 𝜈𝑈↑

)︀⎛⎜⎜⎝
0 −𝑚 0 −𝑀
𝑚 0 0 0

0 0 0 𝑚

𝑀 0 −𝑚 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

𝜈𝑉 ↑
𝜈𝑈↑
𝜈*𝑉 ↑
𝜈*𝑈↑

⎞⎟⎟⎟⎠ . (42.80)

The same mass matrix 𝑀 holds for spinors of the same chirality but spin down ↓ instead of spin up ↑.
The signs and normalization of equation (42.80) stem from the fact that the Dirac mass term is 𝑚𝜈 · 𝜈 =

−𝑖𝑚 𝜈†𝛾𝛾0𝜈, equation (39.99). The mass matrix 𝑀 has 4 eigenvalues ±𝑚+ and ±𝑚− with

𝑚± = ±𝑀

2
+

√︃(︂
𝑀

2

)︂2

+𝑚2 , (42.81)

satisfying 𝑚+𝑚− = 𝑚2, or equivalently
𝑚−
𝑚

=
𝑚

𝑚+
. (42.82)

The condition (42.82) is called the see-saw condition. The mass eigenstates 𝜈± and their antiparticles 𝜈± are
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related to the chiral eigenstates by a unitary matrix,

𝑚+

𝑚−
−𝑚−
−𝑚+

:

⎛⎜⎜⎝
𝜈+
𝜈−
𝜈−
𝜈+

⎞⎟⎟⎠ =
1√︀

2(1 + 𝑎2)

⎛⎜⎜⎝
1 𝑖𝑎 𝑎 −𝑖
−𝑖𝑎 1 𝑖 𝑎

−𝑎 𝑖 1 𝑖𝑎

−𝑖 −𝑎 −𝑖𝑎 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

𝜈𝑉 ↑
𝜈𝑈↑
𝜈*𝑉 ↑
𝜈*𝑈↑

⎞⎟⎟⎟⎠ , (42.83)

where

𝑎 ≡ 𝑚−
𝑚

=
𝑚

𝑚+
. (42.84)

If the Majorana mass 𝑀 is much larger than the Dirac mass 𝑚, then the large mass 𝑚+ approximates the
Majorana mass and is much larger than the Dirac mass,𝑚+ ≈𝑀 ≫ 𝑚, while the small mass𝑚− is much less
than the Dirac mass, 𝑚− ≈ 𝑚2/𝑀 ≪ 𝑚. For example, if the muon neutrino has mass 𝑚− = 𝑚𝜈𝜇 ≈ 10−2 eV

and the Dirac mass of the muon neutrino approximates the mass of the muon, 𝑚 ≈ 𝑚𝜇 ≈ 100MeV, then the
Majorana mass of the right-handed muon neutrino is 𝑚+ ≈ 109 GeV, well above the electroweak symmetry
breaking scale, and large enough to make the right-handed neutrino inaccessible to current experiment.
If the Majorana mass 𝑀 is zero, which is true for fundamental fermions other than the neutrino, then

the two masses 𝑚± degenerate to the same Dirac mass, 𝑚± = 𝑚. The two degenerate mass eigenstates
correspond to spin up and down versions of the same spinor, and the negative mass eigenstates are their
antiparticles; for example the electron 𝑒⇑↑ and 𝑒⇑↓, and its antiparticle the positron 𝑒⇓↑ and 𝑒⇓↓.

42.3.2 Neutrino oscillations

A remarkable property of fundamental fermions is that weak eigenstates are misaligned with mass eigenstates.
This is true for neutrinos and quarks, and it could well be true also for the charged leptons (electrons, muons,
tauons). The weak eigenstates are often called flavours, to distinguish them from mass eigenstates.
The misalignment of weak and mass eigenstates is evidenced most spectacularly by oscillations between

the three generations of neutrino (Xing, 2020). Weak eigenstates 𝜈𝑤, 𝑤 = 𝑒, 𝜇, 𝜏 of neutrinos are linear
combinations of mass eigenstates 𝜈𝑖, 𝑖 = 1, 2, 3,

𝜈𝑤 =
∑︁
𝑖

𝑈𝑤𝑖𝜈𝑖 , (42.85)

where 𝑈𝑤𝑖 is a unitary matrix called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix (Pontecorvo,
1958; Maki, Nakagawa, and Sakata, 1962; Gribov and Pontecorvo, 1969). When a neutrino is created, for
example by the decay of a pion 𝜋+ → �̄� + 𝜈𝜇, it is created as a result of a weak interaction in a definite
weak eigenstate, in this example a muon neutrino 𝜈𝜇. But that weak eigenstate is a superposition of 3 mass
eigenstates, which propagate with slightly different frequencies and wavevectors. When the neutrino is then
detected some distance from its creation, it has oscillated into a superposition of weak eigenstates, and may
be detected as a different weak eigenstate from the one in which it was created.
Neutrino oscillations result from interference between mass eigenstates. The condition for detectable in-

terference between a pair (or more) of propagating waves is that they differ slightly in frequency 𝜔 and/or
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wavevector �⃗� ,

𝛿𝜔 ≪ 𝜔 , |𝛿�⃗� | ≪ |⃗𝑘 | , (42.86)

or equivalently in energy 𝐸 and/or momentum 𝑝 ,

𝛿𝐸 ≪ 𝐸 , |𝛿𝑝 | ≪ |𝑝 | . (42.87)

Neutrinos, whether created in the Sun or in a particle acclerator, are typically highly relativistic, and naturally
satisfy the conditions (42.87). By contrast, charged leptons are typically not highly relativistic, and moreover
are constantly interacting electromagnetically with other charged particles in the environment, decohering
them into one or other definite mass eigenstate.
As discussed by Kayser (1981), neutrino oscillations would be destroyed if the energy-momentum of the

neutrino were measured at source sufficiently accurately to determine its mass eigenstate, in much the same
way that the interference pattern from a two-slit experiment is destroyed if the wave/particle is located
with sufficient accuracy to determine through which slit it passed. For example, the mass of the neutrino
in pion decay 𝜋+ → �̄� + 𝜈𝜇 could be determined by measuring the energy-momenta of the pion and anti-
muon sufficiently accurately. Kayser (1981) concludes that a necessary condition for neutrino oscillations is
a distribution of neutrino energy-momenta broad enough to admit multiple mass eigenstates. An estimate
of the minimum range in energy-momentum comes from assuming that the eigenstates have the same en-
ergy, in which case the difference in their momenta is 𝛿𝑝 = 𝛿

√
𝐸2 −𝑚2 ≈ −𝛿(𝑚2)/2𝐸 in the relativistic

approximation 𝐸 ≫ 𝑚. The resulting minimum range of momentum is

|𝛿𝑝|
𝑝
&
|𝛿(𝑚2)|
2𝑝2

. (42.88)

A basic tenet of quantum field theory (qft) is that interactions occur at points of spacetime, and that
fields propagate as waves between those points. The interaction at points means that a neutrino can be
considered to be created at the origin at time zero, and then detected at position {𝑡, �⃗�}. These creation and
detection points are not necessarily known nor unique; qft demands integrating over whatever is not known or
specified. What is meant by interactions happening at spacetime points is that an entire neutrino, including
all its mass components, is created at a spacetime point, and then an entire neutrino, including all its mass
components, is detected at another spacetime point. In classical mechanics, a particle moving on a straight
line from the origin to {𝑡, �⃗�} has energy-momentum vector proportional to the spacetime distance along
the line, {𝐸, 𝑝} ∝ {𝑡, �⃗�} (with constant of proportionality mass over proper time, 𝑚/𝜏). In qft by contrast,
waves of all energy-momenta are permitted between interaction points. The classical energy-momentum is
merely the most probable of a range of possibilities.
A plane wave of a mass eigenstate 𝑖 with energy-momentum {𝐸𝑖, 𝑝 𝑖} that propates over spacetime distance

{𝑡, �⃗�} changes by a quantum mechanical phase factor 𝑒𝑖𝜑𝑖 with phase 𝜑𝑖 = −𝐸𝑖𝑡+𝑝 𝑖 · �⃗� . The phase difference
𝜑21 ≡ 𝜑2 − 𝜑1 between two mass eigenstates 1 and 2 is

𝜑21 = −𝐸21𝑡+ 𝑝21 · �⃗� , (42.89)

with 𝐸21 ≡ 𝐸2 − 𝐸1 and 𝑝21 ≡ 𝑝2 − 𝑝1. Akhmedov and Smirnov (2009) give a careful exposition of the
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evaluation of the phase difference 𝜑21. The first point is that the neutrino travels many wavelengths from
creation to detection. For example, a 1MeV relativistic neutrino has a wavelength of ℎ𝑐/MeV ≈ 10−12 m,
which is tiny compared to the distances of kilometers and more over which neutrino oscillations are measured.
Consequently each neutrino mass eigenstate is well approximated as a plane wave with momentum 𝑝 𝑖 aligned
with the direction �⃗� , that is, the transverse components of momentum can be neglected. Moreover, by the
time it has travelled many wavelengths, each mass eigenstate is to an excellent approximation on-shell,
meaning that the energy and momentum of a mass eigenstate of mass 𝑚𝑖 are related by 𝐸𝑖 =

√︀
𝑝2𝑖 +𝑚2

𝑖 .
The second point is that each mass eigenstate 𝑖 should be described by a wavepacket with a small but
finite range of momentum 𝑝𝑖 about some central momentum 𝑝𝑖. The group velocity of the wavepacket is
𝑣𝑖 = 𝜕𝐸𝑖/𝜕𝑝𝑖|𝑝𝑖=𝑝𝑖 . The third point is that the velocity 𝑣 = 𝑥/𝑡 between creation and detection equals

the mean group velocity 𝑣 ≡ 1
2 (𝑣1 + 𝑣2) with an uncertainty of order the difference 𝑣21 ≡ 𝑣2 − 𝑣1 of group

velocities, 𝑣 = 𝑣 +𝑂(𝑣21). Under these conditions, the phase difference between the mass eigenstates is

𝜑21 =
−𝑚2

21𝑥

2𝑝
. (42.90)

More precisely, including leading uncertainties, the phase difference is

𝜑21 =
−𝑚2

21𝑥

2𝑝

(︃
1 + 𝛼

(︂
𝑚2

21

2𝑝2
+
𝑝21
𝑝

)︂
+𝑂

(︂
𝑝21
𝑝

)︂2
)︃
, (42.91)

where 𝛼, a number of order unity, measures the departure of the spacetime velocity from the group velocity,
𝑣 = 𝑣 + 𝛼𝑣21. Equation (42.90) implies that the wavelength of a neutrino oscillation is

𝜆 =
4𝜋𝑝

𝑚2
21

= 24.8 km
(︁ 𝑚21

0.01 eV

)︁−2 (︁ 𝑝

1MeV

)︁
. (42.92)

To illustrate how the calculation of neutrino oscillations works out, consider the example of just two
neutrino eigenstates. The unitary matrix (42.85) is then a 2 × 2 matrix. Three arbitrary phases can be
absorbed into a rephasing of the weak and mass eigenstates 𝜈𝑤 and 𝜈𝑖, which reduces the matrix without
loss of generality to

𝑈𝑤𝑖 =

(︂
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

)︂
. (42.93)

The quantum-mechanical amplitude for a neutrino created in weak eigenstate 𝜈𝑤 to be detected as the weak
eigenstate 𝜈𝑤′ is

⟨𝜈𝑤′ |𝜈𝑤⟩ =
∑︁
𝑖

⟨𝜈𝑤′ |𝜈𝑖⟩𝑒−𝑖𝜑𝑖⟨𝜈𝑖|𝜈𝑤⟩ =
∑︁
𝑖

𝑈𝑤′𝑖𝑒
−𝑖𝜑𝑖𝑈*𝑖𝑤 , (42.94)

where 𝜑𝑖 is the change of phase of mass eigenstate 𝑖 from creation to detection. The probability that the
initial weak state 𝜈𝑤 is detected as the other weak state 𝜈𝑤′ is the square of the amplitude (42.94), which
simplifies to

𝑃 (𝜈𝑤 → 𝜈𝑤′) = |⟨𝜈𝑤′ |𝜈𝑤⟩|2 = sin22𝜃 sin2 𝜑21

2 , (42.95)
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where 𝜑21 is the phase difference of the mass eigenstates, equation (42.90). The probability of no change in
the weak state is 1 minus the probability (42.95) of a change,

𝑃 (𝜈𝑤 → 𝜈𝑤) = 𝑃 (𝜈𝑤′ → 𝜈𝑤′) = 1− 𝑃 (𝜈𝑤 → 𝜈𝑤′) . (42.96)

42.4 The Dirac and SM algebras are commuting subalgebras of the Spin(11, 1)
geometric algebra

Grand unified theories such as SU(5) or Spin(10) unify three of the four known forces of nature. The
fourth force is gravity, the gauge theory of the Poincaré group, consisting of spacetime rotations (Lorentz
transformations) and spacetime translations. An essential feature of the Standard Model is that the SM and
Poincaré groups are distinct: the two groups act on particles (fields) as a direct product of groups at each
point of 4-dimensional spacetime. Yet the Spin(10) chart (42.12) of fundamental fermions looks like it knows
at least about Lorentz transformations. Each species of fermion appears in the chart as four components (an
electron for example appears as 𝑒R, 𝑒L, 𝑒R, and 𝑒L), that are ordinarily distinguished from each other by
their behaviour under Lorentz transformations.
The intent of this section is to explore how Poincaré transformations might mesh with the Spin(10) GUT

group, or equivalently how the Lie algebras of the two groups might combine. When the Poincaré group
is extended to spinors, the resulting Lie algebra is the algebra of Dirac 𝛾-matrices. Similarly, the algebra
associated with the SM contains more than just the bivector generators of the SM group. There are also
generators associated with the mysterious Higgs field, which the SM invokes to flip the 𝑑-bit of a fermion,
thereby flipping fermions of the same species between their right- and left-handed chiral components, for
example 𝑒R ↔ 𝑒L. Such a flip is necessarily generated by an odd multivector in the Spin(10) geometric
algebra. And of course the SM contains spinors, and a scalar product of spinors. If Spin(10) is the GUT
group, then the associated relevant algebra is not merely the Lie algebra of the Spin(10) group, but the full
super geometric algebra associated with Spin(10).
The question then becomes, is the Dirac algebra a subalgebra of the Spin(10) geometric algebra, such that

the generators of Poincaré and SM transformations commute as required by the SM? An immediate obstacle
to embedding the Dirac algebra in the Spin(10) algebra is that the Dirac algebra contains a time dimension
whereas the 10 dimensions of Spin(10) are spacelike. This obstacle may be overcome by adjoining a pair of
extra dimensions, one of them timelike, to the 10 spacelike dimensions of Spin(10), §42.4.3, enlarging the
group to the group Spin(11, 1) of transformations in 11+1 spacetime dimensions.
A well-known no-go theorem (Coleman and Mandula, 1967; Mandula, 2015) states that, subject to some

plausible conditions, any symmetry group of the scattering matrix must be a direct product of the Poincaré
group and an internal symmetry group. The Coleman-Mandula theorem does not apply here because what
is being considered is a symmetry of the Lagrangian that is, somehow, broken, and therefore not necessarily
manifest in scattering experiments.
Percacci (1991) (see Nesti and Percacci (2008)) has previously proposed that the SM GUT group SO(10)

and the Lorentz group SO(3, 1) are unified in SO(13, 1).
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42.4.1 Striking and puzzling features of Spin(10) spinors

The Spin(10) chart (42.12) of fundamental fermions exhibits some striking features. The most prominent
striking feature is that the Spin(10) handedness coincides with the handedness, or chirality (R or L), of the
spinor under Lorentz transformations. The Spin(10) handedness of a spinor is the sign of the spinor under
the action of the Spin(10) chiral operator κ10, while chirality under Lorentz transformations is the sign of
the spinor under the action of the Dirac chirality operator traditionally denoted 𝛾5. Mathematically, the

coincidence (signified
?
=) is

𝐼 = 𝑖𝛾5 ≡ 𝛾𝛾0𝛾𝛾1𝛾𝛾2𝛾𝛾3
?
= 𝐼10 = 𝑖κ10 ≡ 𝛾𝛾+

𝑑 𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾
−
𝑢 𝛾𝛾

+
𝑟 𝛾𝛾
−
𝑟 𝛾𝛾

+
𝑔 𝛾𝛾
−
𝑔 𝛾𝛾

+
𝑏 𝛾𝛾
−
𝑏 . (42.97)

An essential property of the SM is that the Poincaré and SM groups commute, which implies that their Lie
algebras are distinct (combine as a commuting product). If the GUT group is Spin(10), and if the full Dirac
and Spin(10) geometric algebras are assumed to be distinct, then the Dirac and Spin(10) chiral operators
𝛾5 and κ10 would be distinct elements of the product algebra. But the fact that the 𝛾5 and κ10 operators
yield the same result in all cases suggests the alternative hypothesis that 𝛾5 and κ10 are in fact identical,
and that the spacetime 𝛾𝛾𝑚 (𝑚 = 0, 1, 2, 3) and SM 𝛾𝛾±𝑖 (𝑖 = 𝑑, 𝑢, 𝑟, 𝑔, 𝑏) vectors are related, not distinct.
A second provocative feature of the Spin(10) chart (42.12) is that SM transformations are arrayed vertically,

whereas the 4 components of fermions of the same species, such as electrons 𝑒R and 𝑒L and their positron
partners 𝑒L and 𝑒R, are arrayed (mostly) horizontally. SM transformations are vertical because the columns
of the chart are SU(5) multiplets, and SU(5) contains the SM group U𝑌 (1)×SUL(2)×SU(3). In Dirac theory,
a Dirac spinor such as an electron has 4 complex components that are distinguished by their properties under
Lorentz transformations. The electron, for example, is a complex linear combination of 2 right-handed Weyl
spinors 𝑒𝑉 ↑ and 𝑒𝑈↓ and 2 left-handed Weyl spinors 𝑒𝑈↑ and 𝑒𝑉 ↓, that are distinguished by a boost bit
𝑉 or 𝑈 and a spin bit ↑ or ↓. The boost and spin bits prescribe how the spinors transform under Lorentz
transformations. The juxtaposition of vertical SM and horizontal Lorentz transformations in the chart (42.12)
again signals that somehow Spin(10) incorporates both.
A third striking feature of the Spin(10) chart (42.12) is that flipping the 𝑑-bit preserves the identity of the

spinor but flips its chirality; for example the electron is flipped 𝑒R ↔ 𝑒L.
The Spin(10) chart (42.12) also presents puzzles. In any supergeometric algebra with even dimensions, the

spinor metric flips all bits. The number of bits is half the number of dimensions. In Dirac, the number of bits,
2, is even, so the spinor metric preserves chirality. In Spin(10), the number of bits, 5, is odd, so the spinor
metric flips chirality. As pointed out in equation (42.97), Spin(10) chirality happens to coincide with Dirac
chirality. So it would seem that the Spin(10) spinor metric is inconsistent with the Dirac spinor metric. This
puzzle is resolved in §42.4.3, which argues that, to accommodate a time dimension, two extra dimensions,
and correspondingly one extra bit, must be adjoined to the algebra.

42.4.2 Dirac chart

It is useful to start by writing out a chart of Dirac spinors in a form analogous to the Spin(10) chart (42.12).
Dirac spinors live in Spin(3, 1), and they have two bits, a boost bit 𝑉 (up) or 𝑈 (down), and a spin bit ↑
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(up) or ↓ (down). Electrons for example fill out the following Dirac chart, organized by the number of up
bits of the spinor:

0 1 2

𝑈↓* : 𝑒R 𝑈↑ : 𝑒L 𝑉 ↑ : 𝑒R

𝑉 ↓* : 𝑒L
(42.98)

A Dirac spinor is right- or left-handed as the number of up bits is even or odd. The expressions (39.35)
and (39.36) for the Dirac spinor metric show that the spinor metric connects spinors of opposite charge,
opposite spin, and opposite boost. The expressions (39.83) and (39.85) for the Dirac conjugation operator
show that Dirac conjugation flips charge and spin, but not boost. Consistent with the action of the Dirac
spinor metric and conjugation operator, the spinors in the chart (42.98) with spin up (↑) are labelled electrons
𝑒, while those with spin down (↓) are labelled positrons 𝑒.
The chart (42.98) raises an immediate issue of interpretation. The expressions (39.14) for the bivector

generators of Lorentz boosts and spatial rotations show that Lorentz transformations rotate the components
of like-chiral Dirac spinors into each other, for example 𝑉 ↑ ↔ 𝑈↓. But the chart (42.98) would seem to show
that the two components of like-chiral spinors have opposite charge, for example 𝑉 ↑ is 𝑒R while 𝑈↓ is 𝑒R,
and therefore cannot be rotated into each other since that would violate conservation of charge.
The resolution of this apparent contradiction is that chiral Dirac spinors are massless, and cannot unam-

biguously be assigned a charge. Only massive Dirac spinors, which are linear combinations of opposite-chiral
spinors, carry definite charge. A massive electron 𝑒⇑ and a massive positron 𝑒⇓ are linear combinations of
the same pair of opposite-chiral spinors, with opposing phases, from equation (39.23):

𝑒⇑↑ =
𝑒𝑉 ↑ − 𝑖𝑒𝑈↑√

2
, 𝑒⇑↓ =

𝑒𝑈↓ − 𝑖𝑒𝑉 ↓√
2

, (42.99a)

𝑖𝑒⇓↑ =
𝑒𝑉 ↑ + 𝑖𝑒𝑈↑√

2
, 𝑖𝑒⇓↓ =

𝑒𝑈↓ + 𝑖𝑒𝑉 ↓√
2

. (42.99b)

A massive electron 𝑒⇑ requires all 4 chiral spinors for its description, and a massive positron 𝑒⇓ requires
the same set of 4 chiral spinors. Equations (42.99) show that what distinguishes electrons and positrons is
that they are (modulo overall phases) complex conjugates of each other. Complex conjugation is a discrete
operation that cannot be accomplished by any continuous Lorentz transformation.
The essence of electromagnetism is that spinors of opposite charge transform with opposite phase under a

Uem(1) electromagnetic gauge transformation (41.25). The charge of an electron or positron is unambiguous,
and the complex conjugate of an electron is unambiguously a positron, per equations (42.99). But a chiral
spinor such as 𝑒𝑉 ↑ can be obtained as either an electron or a positron in the limit of diverging boost and
vanishing mass, so 𝑒𝑉 ↑ could have either charge. By itself, a massless, chiral spinor does not contain enough
information to determine the sign of its charge. To disambiguate their charge, the chiral spinors in the Dirac
chart (42.98) are written without or with a conjugation * symbol: unconjugated spinors (no *) have the
charge of an electron, while conjugated spinors (with *) have the charge of a positron. So disambiguated,
the charges of the chiral spinors in the Dirac chart (42.98) can be read off from their bits: spinors with spin
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bit up (↑) are electrons, while spinors with spin bit down (↓) are positrons. If the chart (42.98) is complex
conjugated, then all charges are flipped.
Charge is invariant under Lorentz transformations. Mathematically, the generator of a Uem(1) electromag-

netic transformation should commute with generators of Lorentz transformations. But in the chart (42.98),
the apparent Uem(1) electromagnetic generator 𝑖𝑄 coincides (up to a factor) with the generator 𝐼𝜎3 of a
spatial rotation about the 3-axis. The charge operator 𝑄 ∝ 𝐼𝜎3 anticommutes rather than commutes with
the other two generators 𝐼𝜎1 and 𝐼𝜎2 of spatial rotations. This anticommutation is in fact correct, because
the spatial rotation generators 𝐼𝜎𝑎, 𝑎 = 1, 2 flip spin ↑ ↔ ↓, which flips the charge 𝑄 assigned by the Dirac
chart (42.98), whereas spatial rotation leaves the actual charge unchanged. Thus the process 𝐼𝜎𝑎𝑄 of measur-
ing the charge 𝑄 then rotating to the spin-flipped spinor should coincide with the process −𝑄𝐼𝜎𝑎 of rotating
to the spin-flipped spinor then measuring minus the charge 𝑄 (that is, the charge of the complex-conjugated
spinor) assigned by the Dirac chart (42.98). The correct commutation of 𝑄 with spatial generators 𝐼𝜎𝑎 is

𝐼𝜎𝑎𝑄 = −𝑄𝐼𝜎𝑎 (𝑎 = 1, 2) , 𝐼𝜎3𝑄 = 𝑄𝐼𝜎3 . (42.100)

Another approach to imposing commutation of electromagnetic and Lorentz generators is to unconjugate
all the conjugated spinors in the Dirac chart (42.98). Equivalently, modify the electromagnetic generator so it
measures the charge of the unconjugated version of each spinor. In the Dirac chart (42.98), the modification
is accomplished by replacing 𝑖 in the electromagnetic generator 𝑖𝑄 by the generator 𝐼𝜎3 of a rotation about
the 3-axis,

𝑖𝑄→ 𝐼𝜎3𝑄 , (42.101)

in effect turning the electromagnetic generator into the unit operator, which of course commutes with all
Lorentz transformations. The modification trivializes the electromagnetic generator for the Dirac chart (42.98),
but that is because there is only one charge and only one generator. In the Spin(10) case, there are several
charges and many gauge generators, and the corresponding modification to the gauge generators, equa-
tions (42.113), is not trivial.

42.4.3 An eleventh, and twelfth, dimension, and a sixth bit

An obvious hurdle to uniting the Dirac and SM algebras in a common Spin(10) GUT algebra is that the
Dirac algebra has a time dimension, but Spin(10) does not.
To fix the problem, consider adding a single extra dimension, a time dimension, to Spin(10). Super ge-

ometric algebras live naturally in even dimensions. As discussed in parts 7 and 10 of Exercise 38.3, there
are two approaches to adding an extra odd, here 11th, dimension to a super geometric algebra. The first is
to project the 11-dimensional algebra into one lower dimension; the second is to embed the 11-dimensional
algebra in one higher dimension. The first approach, projecting into one lower dimension, requires identifying
the 11-dimensional chiral operator with unity, κ11 = 1, in which case the 10-dimensional pseudoscalar 𝐼10
behaves like a timelike 11th dimension. This option is excluded because the putative time dimension 𝛾𝛾0 = 𝐼10
commutes with the pseudoscalar 𝐼10, in contradiction to the Dirac algebra, where the Dirac time dimension
𝛾𝛾0 anticommutes with the Dirac pseudoscalar 𝐼 = 𝛾𝛾0𝛾𝛾1𝛾𝛾2𝛾𝛾3.
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The second approach to adjoining an extra, 11th, dimension, described in part 10 of Exercise 38.3, is to
add not one but two additional dimensions 𝛾𝛾11 and 𝛾𝛾12, and to treat the extra 12th dimension as a scalar. By
scalar is meant that for some reason, perhaps symmetry breaking, the 12th dimension does not participate
in the rotational symmetries connecting the other 11 dimensions.
Adding two extra dimensions works. But as the exposition unfolds, it will be seen that the 12th dimension

participates fully in the algebra. The evidence points toward the 12th dimension being a genuine extra
dimension, not merely a scalar. Notably, the electroweak Higgs field emerges naturally as a bivector generator
involving the 12th dimension, equation (42.124).
Adding two extra dimensions adjoins an additional, 6th, 𝑇 -bit, or time bit, to the 5 𝑑𝑢𝑟𝑔𝑏 bits of a Spin(10)

spinor. Like the other 5 bits, the 𝑇 -bit of a Spin(11, 1) spinor takes the values ± 1
2 , equal to the spin weight

of the spinor under rotations in the 𝛾𝛾11 ∧𝛾𝛾12 plane, part 2 of Exercise 38.3. In Dirac theory, spinors and
antispinors are complex conjugates of each other, and massive spinors at rest are eigenfunctions of the time
axis. These two conditions require interpreting the 12th dimension, not the 11th dimension, as providing the
time dimension 𝛾𝛾0. It is convenient to denote the 11th and 12th dimensions using the same notation as the
other SM vectors, equations (42.21),

𝛾𝛾11 ≡ 𝛾𝛾+
𝑇 =

𝛾𝛾𝑇 + 𝛾𝛾𝑇√
2

, 𝛾𝛾0 ≡ 𝑖𝛾𝛾12 ≡ 𝑖𝛾𝛾−𝑇 =
𝛾𝛾𝑇 − 𝛾𝛾𝑇√

2
. (42.102)

42.4.4 The spinor metric and the conjugation operator

Any super geometric algebra contains two operators, the spinor metric 𝜀, and the conjugation operator 𝐶,
that are invariant under rotations. A consistent translation between Dirac and Spin(11, 1) representations
must agree on the behaviour of these two operators.
The Dirac spinor metric 𝜀 and conjugation operator 𝐶 are respectively antisymmetric and symmetric.

Consistency requires that the Spin(11, 1) spinor metric and conjugation operator be similarly antisymmetric
and symmetric. Consultation of Tables 38.1 and 39.1 shows that in 11+1 dimensions only the standard choice
𝜀 of spinor metric and associated conjugation operator 𝐶 possess the desired antisymmetry and symmetry.
If one of the dimensions is a scalar, then in 10+1 dimensions both the standard 𝜀 and alternative 𝜀alt choices
of spinor metric, and the associated conjugation operators 𝐶 and 𝐶alt, possess the desired antisymmetry and
symmetry; the tilde’d spinor metrics and conjugation operators have the wrong symmetry, and are excluded.
The choice that works in both 10+1 and 11+1 dimensions, and that permits seamless translation between

the Dirac and Spin(11, 1) algebras is, as in the standard (3+1)-dimensional Dirac algebra, the standard
spinor metric

𝜀 = 𝛾𝛾+
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾

+
𝑟 𝛾𝛾

+
𝑔 𝛾𝛾

+
𝑏 𝛾𝛾

+
𝑇 . (42.103)

Below it will be found that the representation of the spatial rotation generator 𝐽𝜎2, equation (42.111),
coincides with the representation of the spinor metric (42.103), which is similar to the coincidence (39.36)
between 𝐼𝜎2 and the spinor metric 𝜀 in the chiral representation of the Dirac algebra.
Given the Spin(11, 1) spinor metric (42.103), and with the time axis 𝛾𝛾0 = 𝑖𝛾𝛾−𝑇 , the Spin(11, 1) conjugation
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operator is

𝐶 = −𝑖𝜀𝛾𝛾0 = 𝜀𝛾𝛾−𝑇 = 𝛾𝛾+
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾

+
𝑟 𝛾𝛾

+
𝑔 𝛾𝛾

+
𝑏 𝛾𝛾

+
𝑇 𝛾𝛾
−
𝑇 . (42.104)

Again, the choice (42.104) works in both 10+1 and 11+1 spacetime dimensions. Whereas the Spin(11, 1)

spinor metric (42.103) flips all bits, the conjugation operator (42.104) flips all bits except 𝑇 , that is, it flips
𝑑𝑢𝑟𝑔𝑏. This is the same as the Spin(10) conjugation operator, which flips the five 𝑑𝑢𝑟𝑔𝑏 bits.

42.4.5 Translation from Spin(11, 1) to Dirac representation, Part 1

The Spin(10) chart (42.12) can now be promoted to Spin(11, 1), and translated into the Dirac representation.
The conventional interpretation of the Spin(10) chart (42.12) is that each spinor is a Weyl spinor with

2 complex components (4 components altogether). For example, the right-handed electron 𝑒R is the Weyl
spinor with complex components 𝑒𝑉 ↑ and 𝑒𝑈↓. The conventional interpretation is tantamount to assuming
that the Dirac and Spin(10) algebras are distinct. The present approach explores instead the alternative
hypothesis that the Dirac and Spin(10) algebras are related non-trivially.
After electroweak symmetry breaking, flipping the 𝑑-bit flips spinors between right- and left-handed Dirac

chiralities of the same species, for example 𝑒R ↔ 𝑒L. Massive spinors are linear combinations of the two
chiralities. Since massive spinors have definite spin, either ↑ or ↓, flipping the 𝑑-bit must flip the Dirac boost
bit while preserving the spin bit, for example, 𝑒𝑉 ↑ ↔ 𝑒𝑈↑.
In the Dirac representation, conjugation flips spin while preserving the boost bit, equations (39.98).
These conditions, that flipping the 𝑑-bit flips boost 𝑉 ↔ 𝑈 while conjugation flips spin ↑↔↓, suffice to

determine the translation between Dirac and Spin(11, 1) spinors of the same species (electrons, for exam-
ple), but they do not fix the translation across different species. The translation across different species is
determined by the condition that Lorentz transformations commute with SM transformations. In the Dirac
representation, after electroweak symmetry breaking, a boost by rapidity 𝜃 in the 𝑉 -𝑈 boost plane boosts a
spinor by a real number 𝑒±𝜃/2, while a spatial rotation by angle 𝜃 in the ↑-↓ spin plane rotates a spinor by
a phase 𝑒∓𝑖𝜃/2. In the Spin(10) geometric algebra there are two mutually commuting generators that trans-
form all spinors by a boost or phase and also commute with all SM transformations, namely the electroweak
pseudoscalar 𝐼𝑑𝑢 and the colour pseudoscalar 𝐼𝑟𝑔𝑏 defined by

𝐼𝑑𝑢 ≡ 𝛾𝛾+
𝑑 𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾
−
𝑢 = −κ𝑑𝑢 ≡ −𝛾𝛾𝑑 ∧𝛾𝛾𝑑 ∧𝛾𝛾𝑢 ∧𝛾𝛾�̄� , (42.105a)

𝐼𝑟𝑔𝑏 ≡ 𝛾𝛾+
𝑟 𝛾𝛾
−
𝑟 𝛾𝛾

+
𝑔 𝛾𝛾
−
𝑔 𝛾𝛾

+
𝑏 𝛾𝛾
−
𝑏 = −𝑖κ𝑟𝑔𝑏 ≡ −𝑖𝛾𝛾𝑟 ∧𝛾𝛾𝑟 ∧𝛾𝛾𝑔 ∧𝛾𝛾𝑔 ∧𝛾𝛾𝑏 ∧𝛾𝛾�̄� . (42.105b)

The electroweak pseudoscalar 𝐼𝑑𝑢 changes sign when an odd number of 𝑑𝑢 bits are flipped, while the colour
pseudoscalar 𝐼𝑟𝑔𝑏 changes sign when an odd number of 𝑟𝑔𝑏 bits are flipped. The pseudoscalars 𝐼𝑑𝑢 and 𝐼𝑟𝑔𝑏
can therefore be interpreted as generating respectively a Lorentz boost and a spatial rotation. The product
of the commuting boost and rotation operators 𝐼𝑑𝑢 and 𝐼𝑟𝑔𝑏 is the Spin(10) pseudoscalar 𝐼10,

𝐼10 = 𝐼𝑑𝑢𝐼𝑟𝑔𝑏 = 𝑖κ10 . (42.106)

In Dirac theory, the equivalent product of commuting boost and rotation operators 𝛾𝛾0𝛾𝛾3 and 𝛾𝛾1𝛾𝛾2 is the
Dirac pseudoscalar 𝐼 = 𝛾𝛾0𝛾𝛾1𝛾𝛾2𝛾𝛾3. So it would seem that the identification of 𝐼𝑑𝑢 and 𝐼𝑟𝑔𝑏 as boost and
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rotation operators recovers the striking coincidence (42.97) between Dirac and Spin(10) pseudoscalars, an
encouraging result.
However, there is a hitch to identifying 𝐼𝑑𝑢 as generating a boost, which is that the time axis 𝛾𝛾0 = 𝑖𝛾𝛾−𝑇

commutes with 𝐼10, which is incompatible with the Dirac algebra, where the time axis 𝛾𝛾0 anticommutes with
the pseudoscalar 𝐼 = 𝛾𝛾0𝛾𝛾1𝛾𝛾2𝛾𝛾3. The solution is to multiply the boost operator 𝐼𝑑𝑢 by −𝑖𝛾𝛾+

𝑇 𝛾𝛾
−
𝑇 , so that the

boost operator becomes −𝑖𝐼𝑑𝑢𝑇 ≡ −𝑖𝐼𝑑𝑢𝛾𝛾+
𝑇 𝛾𝛾
−
𝑇 ,

− 𝑖𝐼𝑑𝑢𝑇 ≡ −𝑖𝛾𝛾+
𝑑 𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾
−
𝑢 𝛾𝛾

+
𝑇 𝛾𝛾
−
𝑇 = −κ𝑑𝑢𝑇 ≡ −𝛾𝛾𝑑 ∧𝛾𝛾𝑑 ∧𝛾𝛾𝑢 ∧𝛾𝛾�̄� ∧𝛾𝛾𝑇 ∧𝛾𝛾𝑇 . (42.107)

The factor 𝛾𝛾+
𝑇 𝛾𝛾
−
𝑇 cannot be adjoined to the rotation operator 𝐼𝑟𝑔𝑏 because the resulting algebra turns out

not to have the correct commutation rules. Appending the factor −𝑖𝛾𝛾+
𝑇 𝛾𝛾
−
𝑇 to the boost operator 𝐼𝑑𝑢 has the

consequence that spinors of opposite 𝑇 -bit then have opposite boost, which allows spinors before electroweak
symmetry breaking to be linear combinations of 𝑇 -up and 𝑇 -down spinors and therefore be massive, §42.4.14,
similarly to the way that after electroweak symmetry breaking massive spinors are linear combinations of
𝑑-up and 𝑑-down spinors with opposite boost.
The resulting pseudoscalar is not the 10-dimensional pseudoscalar 𝐼10, but rather the 12-dimensional

pseudoscalar 𝐽 ≡ −𝑖𝐼12,

𝐽 ≡ −𝑖𝐼12 = −𝑖𝐼𝑑𝑢𝑇 𝐼𝑟𝑔𝑏 = −𝑖𝛾𝛾+
𝑑 𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾
−
𝑢 𝛾𝛾

+
𝑇 𝛾𝛾
−
𝑇 𝛾𝛾

+
𝑟 𝛾𝛾
−
𝑟 𝛾𝛾

+
𝑔 𝛾𝛾
−
𝑔 𝛾𝛾

+
𝑏 𝛾𝛾
−
𝑏

= 𝑖κ12 ≡ 𝑖𝛾𝛾𝑑 ∧𝛾𝛾𝑑 ∧𝛾𝛾𝑢 ∧𝛾𝛾�̄� ∧𝛾𝛾𝑇 ∧𝛾𝛾𝑇 ∧𝛾𝛾𝑟 ∧𝛾𝛾𝑟 ∧𝛾𝛾𝑔 ∧𝛾𝛾𝑔 ∧𝛾𝛾𝑏 ∧𝛾𝛾�̄� . (42.108)

It is 𝐽 , not 𝐼10, that should be identified with the Dirac pseudoscalar 𝐼. The pseudoscalar 𝐽 squares to −1,
like the Spin(10) and Dirac pseudoscalars 𝐼10 and 𝐼. The 12-dimensional chiral operator κ12 analogous to
the Dirac chiral operator 𝛾5 = −𝑖𝐼 is

κ12 = −𝑖𝐽 = −𝐼12 . (42.109)

Notice that the boost and rotation generators 𝐼𝑑𝑢𝑇 and 𝐼𝑟𝑔𝑏 commute with the U𝑌 (1)× SUL(2)× SU(3)

transformations of the SM, but not with SU(5) transformations. As long as spacetime is 4-dimensional and
𝐼𝑑𝑢𝑇 and 𝐼𝑟𝑔𝑏 generate Lorentz transformations that commute with internal transformations, SU(5) cannot
be an internal symmetry.
In the Spin(11, 1) chart (42.110) below, in addition to being labelled by its Dirac boost (𝑉 or 𝑈) and

spin (↑ or ↓), each spinor is labelled by its weak (𝑑𝑢) chirality 𝑟 or 𝑙, per the weak chart (42.9). The
reason for appending the weak label 𝑟 or 𝑙 is that spinors that are of the same species after electroweak
symmetry breaking split into two separate species before electroweak symmetry breaking. For example,
electrons split into distinct right- and left-handed weak electron species 𝑒𝑟 and 𝑒𝑙 that respectively do not
and do experience the weak force. Weak right-handed 𝑟 spinors have zero left-handed isospin 𝐼L (𝑑- and 𝑢-bits
aligned, equation (42.13b)), and therefore do not experience the SUL(2) weak force, while weak left-handed
𝑙 spinors have non-zero left-handed isospin 𝐼L (𝑑- and 𝑢-bits anti-aligned), and do experience the weak force.
Weak chirality 𝑟 or 𝑙 is to be distinguished from Dirac chirality R or L, which in the present construction
coincides with Spin(11, 1) chirality, equation (42.109).
The Spin(10) chart (42.12) thus translates into the following Spin(11, 1) chart, expressed in a form com-



1074 The Standard Model of Physics and beyond

patible with the Dirac representation of spinors:

0 1 2 3 4 5

– :
𝜈 *𝑟𝑉 ↓
𝜈 *𝑟𝑈↓

𝑑 :
𝜈 *𝑙𝑈↓
𝜈 *𝑙𝑉 ↓

𝑐 :
𝑢𝑐 *𝑟𝑉 ↓
𝑢𝑐 *𝑟𝑈↓

𝑑𝑐 :
𝑢𝑐 *𝑙𝑈↓
𝑢𝑐 *𝑙𝑉 ↓

𝑢𝑟𝑔𝑏 :
𝜈𝑙𝑈↑
𝜈𝑙𝑉 ↑ 𝑑𝑢𝑟𝑔𝑏 :

𝜈𝑟𝑉 ↑
𝜈𝑟𝑈↑

𝑢 :
𝑒 *𝑙𝑈↓
𝑒 *𝑙𝑉 ↓

𝑑𝑢 :
𝑒 *𝑟𝑉 ↓
𝑒 *𝑟𝑈↓

𝑟𝑔𝑏 :
𝑒𝑟𝑉 ↑
𝑒𝑟𝑈↑ 𝑑𝑟𝑔𝑏 :

𝑒𝑙𝑈↑
𝑒𝑙𝑉 ↑

𝑐 :
𝑑𝑐𝑟𝑉 ↑
𝑑𝑐𝑟𝑈↑

𝑑𝑐 :
𝑑𝑐𝑙𝑈↑
𝑑𝑐𝑙𝑉 ↑

𝑢𝑐 :
𝑑𝑐 *𝑙𝑈↓
𝑑𝑐 *𝑙𝑉 ↓

𝑑𝑢𝑐 :
𝑑𝑐 *𝑟𝑉 ↓
𝑑𝑐 *𝑟𝑈↓

𝑢𝑐 :
𝑢𝑐𝑙𝑈↑
𝑢𝑐𝑙𝑉 ↑

𝑑𝑢𝑐 :
𝑢𝑐𝑟𝑉 ↑
𝑢𝑐𝑟𝑈↑

(42.110)

The Spin(11, 1) chart (42.110) contains two spinors for each entry, the upper for 𝑇 -bit up, the lower for 𝑇 -bit
down; the pair differ only in their boost bit 𝑉 or 𝑈 . The Dirac boost bit is 𝑉 or 𝑈 as κ𝑑𝑢𝑇 is positive or
negative, that is, as the number of 𝑑𝑢𝑇 up-bits is odd or even. The Dirac spin bit is ↑ or ↓ as κ𝑟𝑔𝑏 is positive
or negative, that is, as the number of 𝑟𝑔𝑏 up-bits is odd or even. The weak bit is 𝑟 or 𝑙 as κ𝑑𝑢 is positive or
negative, that is, as the number of 𝑑𝑢 up-bits is even or odd. For spinors with 𝑇 -bit up, weak chirality 𝑟 or 𝑙
coincides with Dirac chirality R or L, while for spinors with 𝑇 -bit down, weak chirality is opposite to Dirac
chirality. Spinors labelled with the complex conjugation sign * are those identified as charge conjugates in
the original Spin(10) chart (42.12), the same convention as in the Dirac chart (42.98). Complex-conjugated
spinors coincide with the spinors with spin bit down ↓, that is, with κ𝑟𝑔𝑏 negative.

42.4.6 Translation from Spin(11, 1) to Dirac representation, Part 2

In the Dirac representation, spinors of the same species and Dirac chirality but opposite boost and spin rotate
spatially into each other; for example, right-handed electrons rotate spatially into each other, 𝑒𝑉 ↑ ↔ 𝑒𝑈↓. In
the Dirac-Spin(11, 1) representation (42.110), a suitable choice of a generator that transforms spinors into
spinors of the same species but opposite boost and spin is

𝐽𝜎2 ≡ 𝛾𝛾+
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾

+
𝑇 𝛾𝛾

+
𝑟 𝛾𝛾

+
𝑔 𝛾𝛾

+
𝑏 , (42.111)

where 𝐽 is the pseudoscalar (42.108). Equation (42.111) can be regarded as defining 𝜎2; below, equa-
tion (42.114e), 𝜎2 will be identified as a generator of a Lorentz boost. This spatial generator 𝐽𝜎2 anticom-
mutes with the spatial generator 𝐼𝑟𝑔𝑏 of §42.4.5, consistent with the expected anticommutation of generators
of spatial rotations. The expression (42.111) for 𝐽𝜎2 coincides with that for the Spin(11, 1) spinor metric 𝜀,
equation (42.103), but the two are not the same because 𝐽𝜎2 transforms as a multivector whereas the spinor
metric 𝜀 transforms as a spinor tensor. The coincidence of the expressions for 𝐽𝜎2 and 𝜀 is similar to the
coincidence (39.36) between 𝐼𝜎2 and the spinor metric 𝜀 in the chiral representation of the Dirac algebra.
Lorentz generators must commute with SM generators, to ensure that SM charges are unchanged by

Lorentz transformations. However, although the spatial rotation generator 𝐽𝜎2, equation (42.111), does
commute with all real (in the chiral representation) bivectors (42.26a) of the SM group, it anticommutes
with all imaginary bivectors (42.26b) and (42.27) of the SM group.
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The problem is the same as that encountered with the Dirac chart (42.98), which is that the sign of the
charge of a massless, chiral spinor is ambiguous; only a massive spinor, that is, a linear combination of spinors
of opposite chirality, has an unambiguous charge. Like the Dirac chart (42.98), the Spin(11, 1) chart (42.110)
assigns charges in accordance with the Spin(10) generators (42.23) and (42.24), thereby assigning Spin(10)-
bit-flipped spinors opposite charges. Complex conjugation flips charge. Therefore 𝐽𝜎2 does in fact have
the correct commutation rules with SM generators. If 𝑆 is any of the SM bivector generators, the correct
commutation rule with 𝐽𝜎2 is

𝐽𝜎2 𝑆 = 𝑆*𝐽𝜎2 . (42.112)

Physically, the left hand side of equation (42.112) signifies the operation, apply the operator 𝑆 then rotate
to the bit-flipped spinor, while the right hand side signifies, rotate to the bit-flipped spinor then apply the
complex conjugate of the operator 𝑆 prescribed by the SM generator.
An alternative way to check that 𝐽𝜎2 has the correct commutation rules with SM generators, remarked in

the last paragraph of §42.4.2, is to modify the SM generators so that they measure the unconjugated charge
in the Spin(11, 1) chart (42.110). The conjugated spinors in the chart (42.110), those labelled with the *

conjugation symbol, are those with negative colour chirality κ𝑟𝑔𝑏, as is evident from the colour chart (42.10).
Therefore SM generators can be modified to measure the unconjugated charge by multiplying imaginary SM
bivectors by κ𝑟𝑔𝑏, which effectively replaces 𝑖 by 𝐼𝑟𝑔𝑏 = 𝑖κ𝑟𝑔𝑏 in the SM bivectors (42.26) and (42.27),

1
2 𝑖(𝛾𝛾𝑖 ∧𝛾𝛾𝚥 − 𝛾𝛾�̄� ∧𝛾𝛾𝑗)→ 1

2𝐼𝑟𝑔𝑏(𝛾𝛾𝑖 ∧𝛾𝛾𝚥 − 𝛾𝛾�̄� ∧𝛾𝛾𝑗) , (42.113a)
1
2 𝑖𝛾𝛾𝑖 ∧𝛾𝛾�̄� →

1
2𝐼𝑟𝑔𝑏 𝛾𝛾𝑖 ∧𝛾𝛾�̄� . (42.113b)

The colour chiral operator κ𝑟𝑔𝑏 has the properties that it commutes with all SM bivectors, and with the
boost 𝐼𝑑𝑢𝑇 and spatial rotation 𝐼𝑟𝑔𝑏 generators, but anticommutes with 𝐽𝜎2. Since κ𝑟𝑔𝑏 commutes with
all SM bivectors, the modification (42.113) of imaginary SM bivectors leaves the SM commutation rules of
the SM algebra unchanged. The Lorentz generators 𝐼𝑑𝑢𝑇 , 𝐼𝑟𝑔𝑏, and 𝐽𝜎2 commute with all the modified SM
generators, as required.

42.4.7 The Dirac algebra as a subalgebra of the Spin(11, 1) geometric algebra

The previous section 42.4.6 argued that, if a translation between Spin(11, 1) and Dirac representations exists,
then it must take the form (42.110). The Dirac algebra incorporates a full suite of Poincaré transformations.
Is the Dirac-Spin(11, 1) representation (42.110) consistent with the full suite, in the sense that all Poincaré
generators commute with all SM generators? This section shows that the answer is yes.
The generators 𝐽𝜎2 and 𝐼𝑟𝑔𝑏, equations (42.111) and (42.105b), and their product constitute a set of 3

anticommuting generators of spatial rotations that commute with all SM generators. The pseudoscalar 𝐽 is
given by equation (42.108). The full set of 6 Lorentz generators, consisting of 3 spatial generators 𝐽𝜎𝑎 and
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3 boost generators 𝜎𝑎, is

𝐽𝜎1 = 𝛾𝛾+
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾

+
𝑇 𝛾𝛾
−
𝑟 𝛾𝛾
−
𝑔 𝛾𝛾
−
𝑏 , (42.114a)

𝐽𝜎2 = 𝛾𝛾+
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾

+
𝑇 𝛾𝛾

+
𝑟 𝛾𝛾

+
𝑔 𝛾𝛾

+
𝑏 , (42.114b)

𝐽𝜎3 = 𝐼𝑟𝑔𝑏 = 𝛾𝛾+
𝑟 𝛾𝛾
−
𝑟 𝛾𝛾

+
𝑔 𝛾𝛾
−
𝑔 𝛾𝛾

+
𝑏 𝛾𝛾
−
𝑏 , (42.114c)

𝜎1 = −𝑖𝛾𝛾−𝑑 𝛾𝛾
−
𝑢 𝛾𝛾
−
𝑇 𝛾𝛾

+
𝑟 𝛾𝛾

+
𝑔 𝛾𝛾

+
𝑏 , (42.114d)

𝜎2 = 𝑖𝛾𝛾−𝑑 𝛾𝛾
−
𝑢 𝛾𝛾
−
𝑇 𝛾𝛾
−
𝑟 𝛾𝛾
−
𝑔 𝛾𝛾
−
𝑏 , (42.114e)

𝜎3 = −𝑖𝐼𝑑𝑢𝑇 = −𝑖𝛾𝛾+
𝑑 𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾
−
𝑢 𝛾𝛾

+
𝑇 𝛾𝛾
−
𝑇 . (42.114f)

The 6 Lorentz generators all have grade 6. They are not bivectors, but they nevertheless generate Lorentz
transformations. The 8 basis elements of the complete Lie algebra of Lorentz transformations comprise the 6
Lorentz generators (42.114) along with the unit element and the pseudoscalar 𝐽 given by equation (42.108).
The commutation rules of the elements of the Lie algebra are those of the Lorentz algebra. With the modi-
fication (42.113) to SM generators, all the Lorentz generators commute with all SM generators.
Given a time vector 𝛾𝛾0 and a set of generators 𝜎𝑎 of Lorentz boosts, spatial vectors 𝛾𝛾𝑎 can be deduced by

Lorentz transforming 𝛾𝛾0 appropriately. Since the boost generators satisfy 𝜎𝑎 = 𝛾𝛾0𝛾𝛾𝑎, spatial vectors satisfy
𝛾𝛾𝑎 = −𝛾𝛾0𝜎𝑎. With the time axis 𝛾𝛾0 = 𝑖𝛾𝛾−𝑇 and the expressions (42.114) for 𝜎𝑎, the full set of 4 spacetime
vectors 𝛾𝛾𝑚 is

𝛾𝛾0 = 𝑖𝛾𝛾−𝑇 , (42.115a)

𝛾𝛾1 = −𝛾𝛾−𝑑 𝛾𝛾
−
𝑢 𝛾𝛾

+
𝑟 𝛾𝛾

+
𝑔 𝛾𝛾

+
𝑏 , (42.115b)

𝛾𝛾2 = 𝛾𝛾−𝑑 𝛾𝛾
−
𝑢 𝛾𝛾
−
𝑟 𝛾𝛾
−
𝑔 𝛾𝛾
−
𝑏 , (42.115c)

𝛾𝛾3 = 𝛾𝛾+
𝑑 𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾
−
𝑢 𝛾𝛾

+
𝑇 . (42.115d)

The vectors (42.115) all have grade 1 mod 4. The multiplication rules for the vectors 𝛾𝛾𝑚 given by equa-
tions (42.115) agree with the usual multiplication rules for Dirac 𝛾-matrices: the vectors 𝛾𝛾𝑚 anticommute,
and their scalar products form the Minkowski metric. All the spacetime vectors 𝛾𝛾𝑚 commute with all SM
generators modified per (42.113). The Dirac pseudoscalar 𝐼 coincides with the Spin(11, 1) pseudoscalar 𝐽
defined by equation (42.108),

𝐼 ≡ 𝛾𝛾0𝛾𝛾1𝛾𝛾2𝛾𝛾3 = 𝐽 . (42.116)

Equivalently, the Dirac chiral operator 𝛾5 ≡ −𝑖𝐼 coincides with the Spin(11, 1) chiral operator κ12 ≡ −𝑖𝐽 .
Thus the Dirac and SM algebras are subalgebras of the Spin(11, 1) geometric algebra, such that all Dirac

generators commute with all SM generators modified per (42.113).
The time dimension (42.115a) is just a simple vector in the Spin(11, 1) algebra, but the 3 spatial dimen-

sions (42.115b)–(42.115d) are all 5-dimensional. The spatial dimensions share a common 2-dimensional factor
𝛾𝛾−𝑑 𝛾𝛾

−
𝑢 . Aside from that common factor, each of the 3 spatial dimensions is itself 3-dimensional: 𝛾𝛾+

𝑟 𝛾𝛾
+
𝑔 𝛾𝛾

+
𝑏 ,

𝛾𝛾−𝑟 𝛾𝛾
−
𝑔 𝛾𝛾
−
𝑏 , and 𝛾𝛾+

𝑑 𝛾𝛾
+
𝑢 𝛾𝛾

+
𝑇 .
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42.4.8 Invariance of the spinor Lagrangian

The spacetime and SM algebra just derived must satisfy a further consistency condition. The spinor La-
grangian involves a scalar product of spinors with their conjugates, and it must be checked that this scalar
product is invariant under spacetime and SM transformations.

The list (39.157) gives the grades of orthonormal multivectors that generate transformations that leave in-
variant the scalar product of spinors and conjugate spinors. Qualifying generators are real linear combinations
of orthonormal multivectors of grades (1 or 2) mod 4, and imaginary linear combinations of orthonormal
multivectors of grades (0 or 3) mod 4. All the spacetime and SM generators in the present construction
satisfy this criterion. The spacetime vectors 𝛾𝛾𝑚 given by equations (42.115) are real linear combinations of
orthonormal multivectors of grade 1 mod 4 (the time vector 𝛾𝛾0 = 𝑖𝛾𝛾−𝑇 counts as an orthonormal vector).
The Lorentz generators (42.114) are real linear combinations of orthonormal multivectors of grade 2 mod 4
(all factors of 𝑖 are accompanied by a factor of 𝛾𝛾−𝑇 ). Recall from the discussion in §42.4.6 that, to ensure
the correct designation of SM charge, and simultaneously to ensure commutation of SM generators with
spacetime generators, it was necessary to multiply those of the SM bivector generators that were imaginary
in the chiral representation by the colour chiral operator κ𝑟𝑔𝑏, modification (42.113). Both modified and
unmodified SM bivectors were real in an orthonormal basis. The unmodified SM bivectors are real in an
orthonormal basis, and have grade 2. The modified SM bivectors are multiplied by κ𝑟𝑔𝑏, which has grade
6 and is imaginary with respect to an orthonormal basis, equation (42.105b), so the modified SM bivectors
are imaginary in an orthonormal basis, and have grade 4 or 8, which is 0 mod 4. The proposed algebra of
spacetime and SM generators passes the consistency test.

It is worth remarking that the conditions (39.157) on the grades of multivector generators, combined
with the commutation rules of the Dirac and SM algebras, impose that spacetime vectors 𝛾𝛾𝑚 must be odd
multivectors, while Lorentz and SM generators must be even multivectors. The algebra indeed satisfies these
conditions.

42.4.9 Uniqueness

How unique are the identifications (42.115) between the spacetime vectors 𝛾𝛾𝑚 and the Spin(11, 1) multivec-
tors on the right hand side?

Consider multiplying each vector 𝛾𝛾𝑚 by some Spin(11, 1) multivector 𝑋𝑚. Any such multivector 𝑋𝑚 must
preserve all SM charges, which means that 𝑋𝑚 must commute with all SM generators modified per (42.113).
Moreover, since spacetime vectors 𝛾𝛾𝑚 must be odd, §42.4.8, 𝑋𝑚 must be even. This limits each 𝑋𝑚 to
κ𝑑𝑢, κ𝑟𝑔𝑏, 𝐽𝜎2, 𝛾𝛾+

𝑇 𝛾𝛾
−
𝑇 , or some product thereof. The modified vectors 𝑋𝑚𝛾𝛾𝑚 must preserve the standard

Dirac commutation relations between them. Define (−)𝑚𝑛 to be the sign of the commutation of 𝑋𝑚 with
𝛾𝛾𝑛, that is 𝑋𝑚𝛾𝛾𝑛 = (−)𝑚𝑛𝛾𝛾𝑛𝑋𝑚, and let (𝑋)𝑚𝑛 be the sign of the commutation of 𝑋𝑚 with 𝑋𝑛, that
is 𝑋𝑚𝑋𝑛 = (𝑋)𝑚𝑛𝑋𝑛𝑋𝑚. Preservation of the commutation rules between pairs 𝛾𝛾𝑚 and 𝛾𝛾𝑛 of spacetime
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vectors requires

(−)𝑚𝑚𝑋2
𝑚 = 1 𝑚 = 𝑛 , (42.117a)

(−)𝑚𝑛(−)𝑛𝑚(𝑋)𝑚𝑛 = 1 𝑚 ̸= 𝑛 . (42.117b)

The condition (42.117a) can always be accomplished by adjusting the phase of 𝑋𝑚, so imposes no constraint.
The most stringent condition on the algebra is that the Dirac pseudoscalar 𝐼 ≡ 𝛾𝛾0𝛾𝛾1𝛾𝛾2𝛾𝛾3 should coin-

cide with either the Spin(10) pseudoscalar 𝐼10, equation (42.97), or with the Spin(11, 1) pseudoscalar 𝐽 ,
equation (42.108),

𝐼 = 𝐼10 or 𝐽 . (42.118)

The condition (42.120) emerges from the observational fact that the Dirac pseudoscalar coincides with the
Spin(10) pseudoscalar 𝐼10, equation (42.97).
Modifications that merely swap 𝛾𝛾0 ↔ 𝛾𝛾3 (multiply 𝛾𝛾0 and 𝛾𝛾3 by κ𝑑𝑢𝑇 ) or 𝛾𝛾1 ↔ 𝛾𝛾2 (multiply 𝛾𝛾1 and 𝛾𝛾2

by κ𝑟𝑔𝑏) may be discarded as leaving the algebra essentially unchanged.
or that accomplish any of the following relabellings of Spin(11, 1) multivectors, may be discarded as leaving

the algebra essentially unchanged:

𝛾𝛾+
𝑇 ↔ 𝛾𝛾−𝑇 , 𝛾𝛾+

𝑑 𝛾𝛾
+
𝑢 ↔ 𝛾𝛾−𝑑 𝛾𝛾

−
𝑢 , 𝛾𝛾+

𝑟 𝛾𝛾
+
𝑔 𝛾𝛾

+
𝑏 ↔ 𝛾𝛾−𝑟 𝛾𝛾

−
𝑔 𝛾𝛾
−
𝑏 . (42.119)

Motivated by the arguments in §42.4.5, impose the conditions that the Dirac pseudoscalar 𝐼 ≡ 𝛾𝛾0𝛾𝛾1𝛾𝛾2𝛾𝛾3

coincides with the Spin(11, 1) pseudoscalar 𝐽 , equation (42.108), and that the boost generator 𝜎3 ≡ 𝛾𝛾0𝛾𝛾3

coincides with either 𝐼𝑑𝑢 or −𝑖𝐼𝑑𝑢𝑇 , equations (42.105a) or (42.107),

𝐼 = 𝐽 , 𝜎3 = 𝐼𝑑𝑢 or − 𝑖𝐼𝑑𝑢𝑇 . (42.120)

It turns out that there are no solutions with 𝜎3 = 𝐼𝑑𝑢, so 𝜎3 = −𝑖𝐼𝑑𝑢𝑇 is required. An exhaustive com-
puter search of possibilities shows that, if relabellings (42.119) are set aside, and if the conditions (42.120)
are imposed, then besides the choice (42.115) there is just one other choice, obtained by multiplying the
expressions on the right hand sides of equations (42.115) for 𝛾𝛾0 and 𝛾𝛾3 by the colour pseudoscalar 𝐼𝑟𝑔𝑏,
equation (42.105b), and for 𝛾𝛾1 and 𝛾𝛾2 by the 𝑇 -chiral operator κ𝑇 ≡ 𝑖𝛾𝛾+

𝑇 𝛾𝛾
−
𝑇 . All that can be said about

this second choice is that it is less elegant than the first choice (42.115). Except that second choice misses
𝛾𝛾±𝑖 ∧𝛾𝛾

+
𝑇 bivectors..

42.4.10 Electroweak Higgs field

The U𝑌 (1)×SUL(2) theory of electroweak interactions in the SM is called the Weinberg-Salam theory (Salam
and Ward, 1959; Weinberg, 1967), for which Glashow, Salam, and Weinberg shared the 1979 Nobel prize.
The mechanism by which the electroweak symmetry is broken to the electromagnetic symmetry Uem(1) was
proposed by Weinberg (1967), who invoked the so-called Higgs mechanism (Englert and Brout, 1964; Higgs,
1964; Guralnik, Hagen, and Kibble, 1964). The exposition of the electroweak Higgs mechanism that follows
leans on Peskin and Schroeder (1995, Ch. 20).
The Higgs mechanism posits a mysterious Higgs field that accomplishes four things: it breaks a gauge
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symmetry; it gives masses to fundamental fermions; it gives masses to some gauge bosons; and it generates
a massive spin 0 particle. The Higgs field achieves these outcomes through the peculiar property that it has
a finite value in the Minkowski vacuum. This contrasts with fermionic and gauge fields, which vanish in the
empty vacuum of Minkowski space. The Higgs field must be a Lorentz scalar to allow it to have a non-zero
expectation value in the vacuum. If instead the Higgs field were for example a Lorentz spinor or vector, then
its presence would define a preferred direction and rest frame, contradicting the observed Lorentz symmetry
of the laws of physics. The Higgs field could potentially be a composite particle (though that is not argued
here), but that composite particle must still have spin 0.
The electroweak Higgs field breaks the 𝑑-symmetry of the SM. It does so by carrying a finite 𝑑-charge, and

zero other SM charges 𝑢𝑟𝑔𝑏. The Higgs field gives masses to fundamental fermions by flipping their 𝑑-bit
between up and down. And the Higgs field gives masses to 3 of the 4 weak gauge bosons of U𝑌 (1)× SUL(2),
the so-called charged 𝑊± and neutral 𝑍 weak gauge bosons. The 4th gauge boson, the photon 𝛾, remains
massless. The electroweak Higgs field gives masses to gauge bosons by virtue of being part of a multiplet
of 4 Higgs scalar fields that transform under U𝑌 (1) × SUL(2). The 1+3 = 4 gauge bosons of the unbroken
electroweak symmetry U𝑌 (1)× SUL(2) are natively massless. Each massless gauge boson has just 2 degrees
of freedom, its spin in the directions transverse to its direction of motion. To become massive, a gauge boson
must gain a 3rd degree of freedom, corresponding to a longitudinal spin along the direction of motion. When
the Higgs field acquires a vacuum expectation value along a special direction, the 3 degrees of freedom of
the Higgs field orthogonal to the special direction morph into longitudinal degrees of freedom of the gauge
bosons, giving 3 gauge bosons their mass. The remaining 1 degree of freedom of the Higgs field becomes a
massive particle, the Higgs scalar boson. A particle with properties consistent with being the Higgs boson,
with a mass of 125GeV, was discovered in 2012 by the CMS and ATLAS collaborations at the Large Hadron
Collider (Chatrchyan et al., 2012; Aad et al., 2012).
What makes the Weinberg theory of electroweak symmetry breaking especially compelling is that it pre-

dicts a relation between the ratio 𝑔𝑌 /𝑔𝑤 of hypercharge and weak coupling constants, and the ratio 𝑚𝑍/𝑚𝑊

of the masses of 𝑍 and 𝑊 gauge bosons, a relation that is experimentally well satisfied. The relation is
𝑔𝑌
𝑔𝑤

= tan 𝜃𝑤 ,
𝑚𝑊

𝑚𝑍
= cos 𝜃𝑤 , (42.121)

where 𝜃𝑤 is the weak mixing angle, or Weinberg angle. The NIST 2018 CODATA recommended value of the
weak mixing angle is (NIST, 2018)

sin2𝜃𝑤 = 0.2229± 0.0003 . (42.122)

In the present context, the Higgs field must be identified with a multivector that flips the 𝑑-bit. To
preserve Poincaré symmetry, the Higgs field must commute with all the spacetime vectors 𝛾𝛾𝑚 given by
equations (42.115). An exhaustive search over multivectors concludes that the largest subgroup of Spin(11, 1)
that commutes with the Poincaré group is the group

Spin(5)× Spin(6) . (42.123)

Here the generators of Spin(5) are the 10 bivectors drawn from the 5 vectors consisting of the 4 electroweak
vectors 𝛾𝛾±𝑖 , 𝑖 = 𝑑, 𝑢 along with the 1 vector 𝛾𝛾+

𝑇 . The generators of Spin(6) are the 15 bivectors drawn from
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the 6 colour vectors 𝛾𝛾±𝑖 with 𝑖 = 𝑟, 𝑔, 𝑏. The subalgebra of the Spin(11, 1) geometric algebra that commutes
with the Poincaré algebra is the algebra generated by Spin(5)× Spin(6) bivectors and their products (all of
which are even multivectors in the Spin(11, 1) geometric algebra).
The 4 bivector generators 𝛾𝛾±𝑖 𝛾𝛾

+
𝑇 with 𝑖 = 𝑑, 𝑢 call attention to themselves because they transform spinors

by one unit of SM charge 𝑑 or 𝑢, whereas the remaining 6 + 15 = 21 bivector generators, which generate
the Pati-Salam group (42.8), transform spinors by an even number of SM charges. The Weinberg theory
requires the electroweak Higgs field to be part of a multiplet of 4 fields that transform into each other under
U𝑌 (1)× SUL(2). Indeed the 4 bivector generators 𝛾𝛾±𝑖 𝛾𝛾

+
𝑇 with 𝑖 = 𝑑, 𝑢 provide precisely such a set of fields.

Define therefore the 4-component Higgs field 𝐻 by

𝐻 ≡ 𝐻𝑎𝛾𝛾𝑎𝛾𝛾
+
𝑇 , 𝑎 = 𝑑+, 𝑑−, 𝑢+, 𝑢− . (42.124)

Electroweak symmetry breaking occurs when the Higgs field acquires a vacuum expectation value propor-
tional to 𝛾𝛾−𝑑 𝛾𝛾

+
𝑇 ,

⟨𝐻⟩ = ⟨𝐻⟩𝛾𝛾−𝑑 𝛾𝛾
+
𝑇 . (42.125)

When combined with the time axis −𝑖𝛾𝛾0 ≡ 𝛾𝛾−𝑇 in a fermion mass term 𝜓 ·𝑀𝜓 = −𝑖𝜓†𝛾𝛾0𝑀𝜓, the vacuum
Higgs field (42.125) yields a Dirac mass term proportional to

𝛾𝛾−𝑑 𝛾𝛾
+
𝑇 𝛾𝛾
−
𝑇 , (42.126)

consistent with the Dirac mass terms in equation (42.185). The Higgs field (42.125) is proportional to 𝛾𝛾−𝑑 𝛾𝛾
+
𝑇

not 𝛾𝛾+
𝑑 𝛾𝛾

+
𝑇 because 𝛾𝛾−𝑑 preserves the spinor identity, whereas 𝛾𝛾+

𝑑 flips between spinor and antispinor2.
In the standard approach to spontaneous symmetry breaking in Spin(10) (Croon et al., 2019), the Higgs

field must be part of a Spin(10) multiplet in order that its Lagrangian be invariant under Spin(10). The
standard approach is premised on the assumption that the Poincaré and Spin(10) algebras commute, which
is not true in the present construction; rather, the Poincaré and SM algebras here are commuting subalgebras
of the Spin(11, 1) geometric algebra. In the standard approach the Higgs field must be an odd Spin(10) multi-
vector (because it flips only 1 bit, the 𝑑-bit), so must be a vector or pseudovector (dimension 10), trivector or
pseudotrivector (dimension 120), or pentavector (2 possibilities, a pentavector or a pseudopentavector, each
of dimension 126). In the present construction, a multiplet of fields with properties matching the electroweak
Higgs fields is present without having to be introduced ad hoc.
For a spinor field 𝜓, the gauge-covariant derivative with respect to U𝑌 (1)× SUL(2) transformations is

𝐷𝑚𝜓 = (𝜕𝑚 + 𝑔𝑌𝐵𝑚 + 𝑔𝑤𝑊𝑚)𝜓 , (42.128)

2 For example, an electron 𝑒 and positron 𝑒 at rest are linear combinations 𝑒 = (𝑒𝑑 − 𝑖𝑒𝑑)/
√
2 and 𝑒 = (𝑒𝑑 + 𝑖𝑒𝑑)/(

√
2 𝑖) of

𝑑-down and 𝑑-up spinors 𝑒𝑑 and 𝑒𝑑. The bivector 𝛾𝛾
−
𝑑 acting on the electron leaves the electron unchanged, while 𝛾𝛾+

𝑑 flips

the electron to its positron partner (note that 𝛾𝛾𝑑 and 𝛾𝛾𝑑 multiply by
√
2 while raising and lowering the 𝑑-bit of their

argument, equations (38.111)):

𝛾𝛾−
𝑑

𝑒𝑑 − 𝑖𝑒𝑑√
2

=
𝛾𝛾𝑑 − 𝛾𝛾𝑑√

2 𝑖

𝑒𝑑 − 𝑖𝑒𝑑√
2

=
𝑒𝑑 − 𝑖𝑒𝑑√

2
, (42.127a)

𝛾𝛾+
𝑑

𝑒𝑑 − 𝑖𝑒𝑑√
2

=
𝛾𝛾𝑑 + 𝛾𝛾𝑑√

2

𝑒𝑑 − 𝑖𝑒𝑑√
2

=
𝑒𝑑 + 𝑖𝑒𝑑√

2 𝑖
. (42.127b)
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where 𝐵𝑚 and 𝑊𝑚 are the U𝑌 (1) and SUL(2) gauge fields

𝐵𝑚 ≡ 𝑖𝐵𝑚𝑌 , 𝑊𝑚 ≡ 𝑖𝑊 𝑖
𝑚𝜏𝑖 , (42.129)

and 𝑔𝑌 and 𝑔𝑤 are dimensionless coupling strengths for those fields. Here 𝑖𝑌 , equation (42.31), is the generator
of the hypercharge symmetry U𝑌 (1), while the weak Pauli matrices 𝑖𝜏𝑖, equations (42.30), are generators of
SUL(2). The weak Pauli matrix 𝜏3 acting on a spinor has eigenvalue equal to twice the isospin 2𝐼L = 𝑢− 𝑑,
equation (42.13b). The electromagnetic charge generator 𝑖𝑄, equation (42.32), is related to the hypercharge
and weak generators 𝑖𝑌 and 𝑖𝜏3 by, equation (42.14),

𝑄 = 1
2 (𝑌 + 𝜏3) . (42.130)

The sum 𝑊 𝑖
𝑚𝜏𝑖 in the gauge field 𝑊𝑚, equation (42.129), can be expressed with respect to either an or-

thonormal or a chiral basis,

𝑊 𝑖
𝑚𝜏𝑖 =𝑊 1

𝑚𝜏1 +𝑊 2
𝑚𝜏2 +𝑊 3

𝑚𝜏3 =𝑊+
𝑚𝜏+ +𝑊−𝑚𝜏− +𝑊 3

𝑚𝜏3 , 𝑊±𝑚 ≡
𝑊 1
𝑚 ∓ 𝑖𝑊 2

𝑚√
2

, (42.131)

where the chiral Pauli operators 𝜏± are

𝜏+ ≡
𝜏1 + 𝑖𝜏2√

2
=

𝛾𝛾𝑢 ∧𝛾𝛾𝑑√
2

, 𝜏− ≡
𝜏2 − 𝑖𝜏2√

2
=

𝛾𝛾𝑑 ∧𝛾𝛾�̄�√
2

. (42.132)

The operator 𝜏+ increases 𝑢-charge by 1 and decreases 𝑑-charge by 1, and therefore carries +1 unit of each
of electric charge 𝑄 and isospin 𝐼L. Conversely, 𝜏− decreases 𝑢-charge by 1 and increases 𝑑-charge by 1, and
therefore carries −1 unit of each of electric charge 𝑄 and isospin 𝐼L. The operators 𝑌 and 𝜏3 leave 𝑑- and
𝑢-charge unchanged, so carry zero electric charge 𝑄 and isospin 𝐼L.
Introduce the weak mixing, or Weinberg, angle 𝜃𝑤 defined by

sin 𝜃𝑤 ≡
𝑔𝑌
𝑔
, cos 𝜃𝑤 ≡

𝑔𝑤
𝑔
, 𝑔 ≡

√︁
𝑔2𝑌 + 𝑔2𝑤 . (42.133)

Define the electromagnetic and weak fields 𝐴𝑚 and 𝑍𝑚 to be the orthogonal linear combinations of 𝐵𝑚 and
𝑊 3
𝑚, (︂

𝐴𝑚
𝑍𝑚

)︂
≡
(︂

cos 𝜃𝑤 sin 𝜃𝑤
− sin 𝜃𝑤 cos 𝜃𝑤

)︂(︂
𝐵𝑚
𝑊 3
𝑚

)︂
. (42.134)

In terms of the electromagnetic and weak fields 𝐴𝑚 and 𝑍𝑚, the electroweak gauge connection is

𝑔𝑌𝐵𝑚 + 𝑔𝑤𝑊𝑚 = 𝑖
(︁
2𝑒𝐴𝑚𝑄+ 2𝑔𝑍𝑚(𝐼L − sin2𝜃𝑤𝑄) + 𝑔𝑤(𝑊

+
𝑚𝜏+ +𝑊−𝑚𝜏−)

)︁
, (42.135)

where the electromagnetic coupling 𝑒 is

𝑒 =
𝑔𝑌 𝑔𝑤
𝑔

= 𝑔𝑌 cos 𝜃𝑤 = 𝑔𝑤 sin 𝜃𝑤 = 𝑔 cos 𝜃𝑤 sin 𝜃𝑤 . (42.136)

The particular orthogonal combination (42.134) is chosen because the electric charge operator 𝑄 commutes
with the vacuum Higgs field (42.125), with the consequence that the vacuum Higgs field generates a mass
for the electroweak field 𝑍𝑚, but leaves the electromagnetic field 𝐴𝑚 massless.
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Figure 42.3 Mexican hat quartic potential 𝑉 of a Higgs field of magnitude 𝐻.

The gauge-covariant derivative of the 4-component Higgs field 𝐻 with respect to U𝑌 (1)× SUL(2) trans-
formations is

𝐷𝑚𝐻 = 𝜕𝑚𝐻 + 𝑔𝑌 [𝐵𝑚,𝐻] + 𝑔𝑤[𝑊𝑚,𝐻] . (42.137)

Whereas in the covariant derivative (42.128) of a spinor 𝜓, the fields 𝐵𝑚 and 𝑊𝑚 act directly on the
spinor, in the covariant derivative (42.137) of the Higgs field 𝐻, the fields act as a commutator, because
whereas a spinor transforms as 𝜓 → 𝑅𝜓 under a rotor 𝑅, a multivector such as the Higgs field transforms
as 𝐻 → 𝑅𝐻𝑅.
The Lagrangian 𝐿𝐻 of the 4-component Higgs field 𝐻 is

𝐿𝐻 = − 1
2 (𝐷

𝑚𝐻) · (𝐷𝑚𝐻)− 𝑉 (𝐻 ·𝐻) , (42.138)

where 𝐷𝑚𝐻 is the gauge-covariant derivative (42.137) of the Higgs field, and 𝑉 (𝐻 ·𝐻) is a potential energy,
a function of the scalar product 𝐻2 ≡𝐻 ·𝐻 of the Higgs field 𝐻 and its reverse 𝐻. The potential energy 𝑉
is postulated to have a minimum at a non-zero value of 𝐻2, which serves to make it energetically favourable
for the Higgs field to acquire a non-zero expectation value. A commonly adopted potential, with the virtue
of yielding a renormalizable quantum field theory, is a “Mexican hat” quartic, illustrated in Figure 42.3,

𝑉 (𝐻2) = 𝜌𝐻 − 1
4𝑚

2
𝐻𝐻

2 + 1
8𝜆𝐻

4 . (42.139)

The Higgs field 𝐻 has units of mass, and the potential 𝑉 has units of mass4, or energy density. The con-
stant 𝑉 (0) = 𝜌𝐻 looks like a vacuum density that could play the role of a cosmological constant before
electroweak symmetry breaking, when 𝐻 = 0. The quantity 𝑚𝐻 proves to be the mass of the Higgs bo-
son, equation (42.153). The minimum of the potential 𝑉 defines the vacuum expectation value ⟨𝐻⟩ of the
magnitude of the Higgs field,

⟨𝐻⟩ =
√︂
𝑚2
𝐻

𝜆
. (42.140)
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The covariant derivative of the expectation value (42.125) of the Higgs field is

𝐷𝑚⟨𝐻⟩ = ⟨𝐻⟩
(︀
𝑔𝑌𝐵𝑚[𝑖𝑌,𝛾𝛾−𝑑 𝛾𝛾

+
𝑇 ] + 𝑔𝑤𝑊

𝑖
𝑚[𝑖𝜏𝑖,𝛾𝛾

−
𝑑 𝛾𝛾

+
𝑇 ]
)︀
. (42.141)

The relevant commutators of the generators 𝑖𝑌 of U𝑌 (1), equation (42.31), and 𝑖𝜏𝑖 of SUL(2), equa-
tions (42.30), with the electroweak Higgs field 𝛾𝛾−𝑑 𝛾𝛾

+
𝑇 are

[𝑖𝑌,𝛾𝛾−𝑑 𝛾𝛾
+
𝑇 ] = 𝛾𝛾+

𝑑 𝛾𝛾
−
𝑑 𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑇 = 𝛾𝛾+

𝑑 𝛾𝛾
+
𝑇 , (42.142a)

[𝑖𝜏1,𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑇 ] = −𝛾𝛾

−
𝑑 𝛾𝛾

+
𝑢 𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑇 = 𝛾𝛾+

𝑢 𝛾𝛾
+
𝑇 , (42.142b)

[𝑖𝜏2,𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑇 ] = −𝛾𝛾

−
𝑑 𝛾𝛾
−
𝑢 𝛾𝛾
−
𝑑 𝛾𝛾
−
𝑇 = 𝛾𝛾−𝑢 𝛾𝛾

+
𝑇 , (42.142c)

[𝑖𝜏3,𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑇 ] = −𝛾𝛾

+
𝑑 𝛾𝛾
−
𝑑 𝛾𝛾
−
𝑑 𝛾𝛾

+
𝑇 = −𝛾𝛾+

𝑑 𝛾𝛾
+
𝑇 . (42.142d)

With the commutators (42.142), the covariant derivative (42.141) becomes

𝐷𝑚⟨𝐻⟩ = ⟨𝐻⟩
(︁
(𝑔𝑌𝐵𝑚 − 𝑔𝑤𝑊 3

𝑚)𝛾𝛾+
𝑑 𝛾𝛾

+
𝑇 + 𝑔𝑤(𝑊

1
𝑚𝛾𝛾+

𝑢 𝛾𝛾
+
𝑇 +𝑊 2

𝑚𝛾𝛾−𝑢 𝛾𝛾
+
𝑇 )
)︁

= ⟨𝐻⟩
(︁
−𝑔𝑍𝑚𝛾𝛾+

𝑑 𝛾𝛾
+
𝑇 + 𝑔𝑤(𝑊

+
𝑚𝛾𝛾𝑢𝛾𝛾

+
𝑇 +𝑊−𝑚𝛾𝛾�̄�𝛾𝛾

+
𝑇 )
)︁
. (42.143)

The covariant derivative (42.143) squared, which enters the Higgs Lagrangian (42.138), is (abbreviating
𝑍𝑚𝑍𝑚 = (𝑍𝑚)2 and so forth)

(𝐷𝑚⟨𝐻⟩) · (𝐷𝑚⟨𝐻⟩) = ⟨𝐻⟩2
(︁
𝑔2(𝑍𝑚)2 + 𝑔2𝑤

(︀
(𝑊+

𝑚)2 + (𝑊−𝑚)2
)︀)︁

. (42.144)

An originally massless field acquires mass when its Lagrangian is modified so that the d’Alembertian in the
equation of motion is modified to �→ �−𝑚2. In the case of a gauge field such as 𝑍𝑚, the modification of
the Lagrangian that gives 𝑍𝑚 a mass 𝑚𝑍 is

Δ𝐿 = − 1
2𝑚

2
𝑍(𝑍𝑚)2 . (42.145)

The contribution (42.144) to the Lagrangian has the form of mass squared terms for the 𝑍𝑚 and 𝑊±𝑚
electroweak fields. The Higgs field thus generates masses 𝑚𝑍 and 𝑚𝑊 for the 𝑍𝑚 and 𝑊±𝑚 fields,

𝑚𝑍 ≡ 𝑔⟨𝐻⟩ , 𝑚𝑊 ≡ 𝑔𝑤⟨𝐻⟩ . (42.146)

The masses (42.146) along with the definition (42.133) of the weak mixing angle 𝜃𝑤 imply the relations (42.121).
The electromagnetic field 𝐴𝑚 remains massless. In accordance with the remarks after equations (42.132),
the electromagnetic field 𝐴𝑚 and weak field 𝑍𝑚 both carry zero electric charge and isospin, while the weak
fields 𝑊±𝑚 carry respectively ±1 unit of each of electric charge 𝑄 and isospin 𝐼L.
Having acquired a non-zero expectation value, the reconfigured 4-component Higgs field generates a single

massive spin 0 particle, the Higgs boson. As emphasized above, central to the behaviour of the Higgs field
is that its components rotate into each other under U𝑌 (1) × SUL(2) transformations, equations (42.142).
Therefore the Higgs field 𝐻 can be written as a product of a unitary rotation 𝑈 in U𝑌 (1) × SUL(2) and a
Higgs field 𝐻0 pointed in a certain direction, which can be taken to be the broken direction (42.125),

𝐻 ≡ 𝑈𝐻0 , 𝐻0 ≡ 𝐻𝛾𝛾−𝑑 𝛾𝛾
+
𝑇 . (42.147)
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By definition, the gauge-covariant derivative of the Higgs field transforms under the unitary rotation 𝑈 as

𝐷𝑚𝐻 = 𝑈𝐷𝑚𝐻0 . (42.148)

The Higgs Lagrangian (42.138) is, by construction, invariant under gauge transformations, so in terms of the
(un)rotated Higgs fields 𝐻0 is

𝐿𝐻 = − 1
2 (𝐷

𝑚𝐻0) · (𝐷𝑚𝐻0)− 𝑉 (𝐻0 ·𝐻0) . (42.149)

Define the perturbation ℎ of the magnitude 𝐻 of the Higgs field by

ℎ ≡ 𝐻 − ⟨𝐻⟩ . (42.150)

In terms of ℎ, the potential 𝑉 (𝐻2), equation (42.139), in the Higgs Lagrangian (42.149) is (note that
𝜆 = 𝑚2

𝐻/⟨𝐻⟩2 from equation (42.140))

𝑉 = 1
2𝑚

2
𝐻ℎ

2

(︂
1 +

ℎ

2⟨𝐻⟩

)︂2

. (42.151)

The potential vanishes at ℎ = 0 provided that the constant term in equation (42.139) is 𝜌𝐻 = 1
8𝑚

2
𝐻⟨𝐻⟩2.

The Higgs Lagrangian (42.149) in terms of the perturbation ℎ is

𝐿𝐻 = − 1
2

(︂
(𝜕𝑚ℎ)(𝜕𝑚ℎ) +

(︁
𝑚2
𝑍(𝑍𝑚)2 +𝑚2

𝑊

(︀
(𝑊+

𝑚)2 + (𝑊−𝑚)2
)︀)︁(︁

1 +
ℎ

⟨𝐻⟩

)︁2
+𝑚2

𝐻ℎ
2
(︁
1 +

ℎ

2⟨𝐻⟩

)︁2)︂
.

(42.152)
If the 𝑍𝑚 and 𝑊±𝑚 mass terms are set aside, then to lowest order in ℎ the Lagrangian (42.152) looks like the
Lagrangian of a free scalar field of mass 𝑚𝐻 ,

𝐿𝐻 = − 1
2

(︁
(𝜕𝑚ℎ)(𝜕𝑚ℎ) +𝑚2

𝐻ℎ
2
)︁
. (42.153)

The interpretation is that ℎ describes a spin 0 field of mass 𝑚𝐻 , the Higgs boson. Other terms proportional
to powers of ℎ in the Higgs Lagrangian (42.152) describe interactions between the Higgs boson ℎ and the
weak gauge fields, and self interactions of the Higgs boson.

42.4.11 Vector versus scalar: gauge versus Higgs fields

The previous section 42.4.10 argued that the electroweak Higgs bivectors (42.124) are among the generators
of the group Spin(5) × Spin(6) that contains the SM group U𝑌 (1) × SUL(2) × SU(3) and is the largest
subgroup of Spin(11, 1) that commutes with the Poincaré group generated by the multivectors (42.115). Yet
the gauge fields of the SM are Lorentz vectors, while the electroweak Higgs fields are Lorentz scalars. Does
that make any sense?
On the one hand, if spinors satisfy a local gauge symmetry, then the associated gauge field arises as

a connection in a gauge-covariant derivative, and must be a Lorentz vector. On the other hand, an elec-
troweak Higgs field that acquires a non-zero vacuum expectation value must be a scalar, since otherwise it
would impose a preferred spatial direction and rest frame, breaking Lorentz symmetry in contradiction to
observation.
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The issue is salient here because the next section 42.4.12 explores how the Spin(5) × Spin(6) symmetry
broke down to the observed SM symmetry. The electroweak Higgs multiplet is a scalar after electroweak
symmetry breaking, but could it have been a vector before symmetry breaking? If the Spin(5) × Spin(6)

symmetry was restored, then the Higgs bivectors, being among the generators of that symmetry, must have
been vectors. Or did the Higgs bivectors remain scalars, in which case symmetry restoration would stop short
at the Pati-Salam group Spin(4)× Spin(6)?

Can a vector field somehow transition into a scalar field? In the conventional picture where the GUT and
Lorentz groups are distinct, the spin of a field is a conserved charge associated with Lorentz symmetry, and it
is natural to assume that spin remains an immutable property of a field through GUT symmetry breaking. But
in the present construction, at least some aspects of symmetry breaking are associated with reconfiguration of
spacetime rather than with Higgs fields. For example, SU(5) is broken because its generators fail to commute
with the Lorentz generators −𝑖𝐼𝑑𝑢𝑇 and 𝐼𝑟𝑔𝑏. It is worth remarking that in string theory the dimensionality
of objects is not immutable.

The next section 42.4.12 will argue that Spin(5)× Spin(6) is broken by a Higgs field that is the generator
of a U(1) subgroup of Spin(5) × Spin(6). Similarly to the electroweak Higgs fields, the U(1) bivector calls
attention to itself because it happens to be a generator of the Spin(5)×Spin(6) group that commutes with the
Poincaré group, and it happens to have precisely the properties needed to break Spin(5)× Spin(6) down to
the SM group. The posited U(1) Higgs field has the additional merits that: (1) it removes the baryon-lepton
symmetry group U𝐵−𝐿(1), notably absent from the SM group, from being a symmetry of the SM; and (2)
it generates fermionic mass terms distinct from those generated by the electroweak Higgs fields, mass terms
that are needed to fill out the fermionic mass matrix in the presence of the 𝑇 -bit in a manner consistent
with observation, §42.4.14.

The U(1) Higgs field that breaks Spin(5) × Spin(6) symmetry remains present today, and like the elec-
troweak Higgs field must be a scalar to preserve the observed Lorentz symmetry of spacetime. If the
Spin(5) × Spin(6) symmetry was restored before being broken, then the U(1) Higgs field, being one of
the generators of Spin(5)× Spin(6), must have been a vector. Conversely, if the U(1) Higgs field remained a
scalar before Spin(5)× Spin(6) symmetry breaking, then the restored group cannot have included the U(1)

factor. But one of the consequences of the Cartan-Weyl-Dynkin theory discussed in §42.2 is that finitely
generated Lie groups are direct products of irreducible groups (Maschke’s theorem), so the restored group
must in fact have commuted with the U(1) Higgs factor. But the subgroup of Spin(5) × Spin(6) that com-
mutes with the U(1) factor is precisely the SM group (this is the property that picks out the U(1) Higgs
field in the first place). Thus the U(1) Higgs field cannot break Spin(5) × Spin(6) symmetry if it was a
scalar before it broke the symmetry. Could it be that there was both a scalar and a vector U(1) field before
Spin(5)× Spin(6) symmetry breaking, the former to break the symmetry, the latter to be a generator of the
unbroken symmetry? This option is excluded because the U(1) scalar field would commute with the U(1)

vector field, so the U(1) Higgs scalar would leave the U(1) gauge symmetry unbroken, contradicting the SM.

The conclusion is that the U(1) Higgs field that breaks Spin(5)× Spin(6) symmetry must transition from
vector to scalar at Spin(5)× Spin(6) symmetry breaking. It is natural then to suppose that the electroweak
Higgs field likewise transitioned from vector to scalar at electroweak symmetry breaking.
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42.4.12 The Higgs field that breaks Spin(5)× Spin(6) symmetry

As remarked in §42.4.10, the largest subgroup of Spin(11, 1) that commutes with the Poincaré group is the
group (42.123), Spin(5) × Spin(6). How does the group Spin(5) × Spin(6) break down to the observed SM
group U𝑌 (1)× SUL(2)× SU(3)?
With two exceptions, every generator of Spin(5)×Spin(6) that preserves the number of 𝑑𝑢𝑟𝑔𝑏 up bits is a

generator of the SM, and every generator of Spin(5)× Spin(6) that does not preserve the number of up bits
is not a generator of the SM. The exceptions are the generator 𝑖𝑅 of an overall phase transformation U𝑅(1)

of the 𝑑𝑢 subgroup Spin(4) of Spin(5), and the generator 𝑖𝑆 of an overall phase transformation U𝑆(1) of the
𝑟𝑔𝑏 group Spin(6),

𝑖𝑅 ≡ 1
2

∑︁
𝑖=𝑑,𝑢

𝛾𝛾+
𝑖 ∧𝛾𝛾

−
𝑖 = 𝑖

2

∑︁
𝑖=𝑑,𝑢

𝛾𝛾𝑎 ∧𝛾𝛾�̄� , 𝑖𝑆 ≡ 1
3

∑︁
𝑖=𝑟,𝑔,𝑏

𝛾𝛾+
𝑖 ∧𝛾𝛾

−
𝑖 = 𝑖

3

∑︁
𝑖=𝑟,𝑔,𝑏

𝛾𝛾𝑎 ∧𝛾𝛾�̄� . (42.154)

The bivector 𝑅 equals the third Pauli generator of the right-handed weak group SUR(2). 𝑅-charge and
𝑆-charge are related to Spin(10) 𝑑𝑢𝑟𝑔𝑏 charges by

𝑅 = 𝑑+ 𝑢 , 𝑆 = 2
3 (𝑟10 + 𝑔10 + 𝑏10) = −(𝐵 − 𝐿) . (42.155)

The expression for 𝑆 in terms of the baryon-lepton difference 𝐵 − 𝐿 is from equation (42.17). In terms of
the bivectors 𝑅 and 𝑆, hypercharge 𝑌 is, equation (42.31),

𝑌 = 𝑅− 𝑆 . (42.156)

It is natural to hypothesize that some linear combination 𝐸 (in honour of Englert and Brout (1964), who
proposed the Higgs mechanism marginally before Higgs (1964)) of the bivectors 𝑅 and 𝑆 is a Higgs field,
that is, 𝐸 acquires a non-zero expectation value ⟨𝐸⟩ in the Minkowski vacuum. As long as the coefficients
of both 𝑅 and 𝑆 in ⟨𝐸⟩ are non-zero, then, excepting 𝑅 and 𝑆 themselves, the vacuum Higgs field ⟨𝐸⟩ non-
commutes with non-SM generators of Spin(5)× Spin(6), thereby giving mass to the associated gauge fields,
while commuting with all SM generators. Only a single combination of 𝑅 and 𝑆 can be a Higgs field; if both
𝑅 and 𝑆 were Higgs fields separately, then the hypercharge symmetry U𝑌 (1) would be broken, contradicting
the SM. If 𝐸 is a Higgs field that acquires a non-zero vacuum expection ⟨𝐸⟩, then it: spontaneously breaks
Spin(5) × Spin(6) to the SM group U𝑌 (1) × SUL(2) × SU(3); removes the U𝐸(1) symmetry from being a
symmetry of the SM; gives masses to gauge fields that are in Spin(5)× Spin(6) but not in the SM; provides
another way, besides Dirac mass, to give masses to fermions, as discussed in §42.4.14 below; and it generates
a massive spin 0 Higgs boson.
The Spin(5)× Spin(6) gauge connection is

𝑔𝑤𝑊𝑚 + 𝑔𝑐𝐶𝑚 , (42.157)

where 𝑊𝑚 are gauge fields of Spin(5), and 𝐶𝑚 are gauge fields of Spin(6), and 𝑔𝑤 and 𝑔𝑐 are dimension-
less coupling parameters of the Spin(5) and Spin(6) groups. The groups U𝑅(1) and U𝑆(1) are subgroups
respectively of Spin(5) and Spin(6). The part of the Spin(5) × Spin(6) connection (42.157) associated with
the U𝑅(1)×U𝑆(1) symmetry is

𝑖
(︀
𝑔𝑤𝑊

𝑅
𝑚𝑅+ 𝑔𝑐𝐶

𝑆
𝑚𝑆
)︀
, (42.158)
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where 𝑊𝑅
𝑚 and 𝐶𝑆𝑚 are the corresponding connection coefficients. The hypothesis is that some combination

𝐸𝑚 of the fields 𝑊𝑅
𝑚 and 𝐶𝑆𝑚 acquires a non-zero vacuum expectation value, while leaving the hypercharge

symmetry U𝑌 (1) unbroken. To achieve this goal, define rotated gauge fields 𝐵𝑚 and 𝐸𝑚 by(︂
𝐵𝑚
𝐸𝑚

)︂
≡
(︂

cos 𝜃56 − sin 𝜃56
sin 𝜃56 cos 𝜃56

)︂(︂
𝑊𝑅
𝑚

𝐶𝑆𝑚

)︂
, (42.159)

where the Spin(5)× Spin(6) mixing angle 𝜃56 is defined by

sin 𝜃56 ≡
𝑔𝑤
𝑔
, cos 𝜃56 ≡

𝑔𝑐
𝑔
, 𝑔 ≡

√︀
𝑔2𝑤 + 𝑔2𝑐 . (42.160)

In terms of the rotated fields 𝐵𝑚 and 𝐸𝑚, the U𝑅(1)×U𝑆(1) connection (42.158) is

𝑖
(︀
𝑔𝑤𝑊

𝑅
𝑚𝑅+ 𝑔𝑐𝐶

𝑆
𝑚𝑆
)︀
= 𝑖
(︀
𝑔𝑌𝐵𝑚𝑌 + 𝑔𝐸𝑚(sin2𝜃56𝑅+ cos2𝜃56 𝑆)

)︀
= 𝑖
(︀
𝑔𝑌𝐵𝑚𝑌 + 𝑔𝐸𝑚(𝑆 + sin2𝜃56𝑌 )

)︀
,

(42.161)
where the hypercharge coupling parameter 𝑔𝑌 is

𝑔𝑌 ≡ 𝑔𝑤 cos 𝜃56 = 𝑔𝑐 sin 𝜃56 = 𝑔 cos 𝜃56 sin 𝜃56 . (42.162)

The term proportional to 𝐵𝑚𝑌 in the connection (42.161) has the correct form for the U𝑌 (1) hypercharge
connection. The hypercharge, weak, and colour coupling parameters are predicted to be related by

𝑔𝑔𝑌
𝑔𝑤𝑔𝑐

= 1 . (42.163)

In renormalization theory the coupling parameters vary with the energy at which they are probed. The
condition (42.163) is interpreted in the next section 42.4.13 as determining the energy scale of Spin(5) ×
Spin(6) symmetry breaking, which proves to be ∼ 1012 GeV.
The term proportional to 𝐸𝑚 in the connection (42.161) must be interpreted as the Higgs field. To make

this work, it is necessary to assume that 𝐸𝑚 ceases to be a Lorentz vector field, and instead becomes a
Lorentz scalar field 𝐸. This is essential because any field that acquires a non-zero vacuum expectation value
must be a Lorentz scalar, to avoid destroying Lorentz symmetry. As discussed in §42.4.11, the transition
from vector to scalar is a logical necessity. Define therefore the Higgs field 𝐸 to be, per the term proportional
to 𝐸𝑚 in the connection (42.161),

𝐸 ≡ 𝑖𝐸(sin2𝜃56𝑅+ cos2𝜃56 𝑆) . (42.164)

The magnitude 𝐸 acquires a non-zero expectation value ⟨𝐸⟩ in the Minkowski vacuum. The Spin(5) ×
Spin(6) fields 𝑊𝑚 and 𝐶𝑚 with non-vanishing commutators with the 𝐸 Higgs field (42.164) are the 12 fields
comprising: first, the 4 electroweak Higgs fields (42.124); second, the 2 right-handed weak fields given by
equations (42.28) with weak indices 𝑖, 𝑗 = 𝑑, 𝑢; and third, the 6 leptoquark fields given by equations (42.28)
with 𝑖, 𝑗 drawn from pairs of colour indices 𝑟, 𝑔, 𝑏. The four electroweak Higgs fields carry one unit of 𝑑 or 𝑢
charge, and zero colour charge 𝑟, 𝑔, 𝑏. They transform right-handed leptons and quarks into their left-handed
partners, such as 𝑒R ↔ 𝑒L, and their antiparticle versions. The two right-handed weak fields carry two units
of 𝑑, 𝑢 charge and zero colour charge 𝑟, 𝑔, 𝑏. They transform right-handed leptons and quarks into their right-
handed weak partners, 𝑒R ↔ 𝜈R or 𝑑R ↔ 𝑢R, and their antiparticle versions. Leptoquarks carry zero 𝑑 or 𝑢
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charge, and two units of 𝑟, 𝑔, 𝑏 charge. They are called leptoquarks because they transform between leptons
and quarks, 𝑑↔ 𝑒 and 𝑢↔ 𝜈 in both right- and left-handed versions, and in both particle and antiparticle
versions. The non-vanishing commutators of the Spin(5)× Spin(6) fields with the component fields 𝑅 and 𝑆
of the Higgs field 𝐸 are

[𝛾𝛾±𝑖 𝛾𝛾
+
𝑇 , 𝑅] = ±𝛾𝛾

∓
𝑖 𝛾𝛾

+
𝑇 𝑖 = 𝑑, 𝑢 , (42.165a)

[ 12 (𝛾𝛾
+
𝑖 𝛾𝛾

+
𝑗 − 𝛾𝛾−𝑖 𝛾𝛾

−
𝑗 ), 𝑅] = 𝛾𝛾−𝑖 𝛾𝛾

+
𝑗 + 𝛾𝛾+

𝑖 𝛾𝛾
−
𝑗 𝑖𝑗 = 𝑑𝑢 , (42.165b)

[ 12 (𝛾𝛾
+
𝑖 𝛾𝛾
−
𝑗 + 𝛾𝛾−𝑖 𝛾𝛾

+
𝑗 ), 𝑅] = −𝛾𝛾+

𝑖 𝛾𝛾
+
𝑗 + 𝛾𝛾−𝑖 𝛾𝛾

−
𝑗 𝑖𝑗 = 𝑑𝑢 , (42.165c)

[ 12 (𝛾𝛾
+
𝑖 𝛾𝛾

+
𝑗 − 𝛾𝛾−𝑖 𝛾𝛾

−
𝑗 ), 𝑆] =

2
3 (𝛾𝛾
−
𝑖 𝛾𝛾

+
𝑗 + 𝛾𝛾+

𝑖 𝛾𝛾
−
𝑗 ) 𝑖𝑗 in 𝑟𝑔𝑏 , (42.165d)

[ 12 (𝛾𝛾
+
𝑖 𝛾𝛾
−
𝑗 + 𝛾𝛾−𝑖 𝛾𝛾

+
𝑗 ), 𝑆] =

2
3 (−𝛾𝛾+

𝑖 𝛾𝛾
+
𝑗 + 𝛾𝛾−𝑖 𝛾𝛾

−
𝑗 ) 𝑖𝑗 in 𝑟𝑔𝑏 . (42.165e)

The top line (42.165a) are commutators for the 4 electroweak Higgs fields (42.124); the second and third
lines (42.165b) and (42.165c) are commutators for the 2 right-handed weak fields; and the fourth and fifth
lines (42.165d) and (42.165e) are commutators for the 6 leptoquark fields. In each case the commutator of
the field yields another field of the same species. The scalar product of each commutator with its reverse
equals 1 for the top line (42.165a), 2 for the second and third lines (42.165c) and (42.165b), and 8

9 for the
bottom two lines (42.165d) and (42.165e).
The covariant derivative of the expectation value ⟨𝐸⟩ of the Higgs field (42.164) is

𝐷𝑚⟨𝐸⟩ = 𝑖⟨𝐸⟩
(︀
𝑔𝑤 sin2𝜃56[𝑊𝑚, 𝑅] + 𝑔𝑐 cos

2𝜃56[𝐶𝑚, 𝑆]
)︀
. (42.166)

From the commutators (42.165), the square of the covariant derivative (42.166) is

(𝐷𝑚⟨𝐸⟩) · (𝐷𝑚⟨𝐸⟩) = 𝑔2⟨𝐸⟩2
(︁
sin6𝜃56

(︁
(𝐻𝑖

𝑚)2 + 2(𝑊 [𝑖𝑗]
𝑚 )2

)︁
+ 8

9 cos
6𝜃56(𝐶

[𝑖𝑗]
𝑚 )2

)︁
, (42.167)

where the fields on the right hand sides are the subset of the weak and colour fields 𝑊𝑚 and 𝐶𝑚 that fail to
commute with the Higgs field 𝐸. The fields 𝐻𝑖

𝑚 are the 4 electroweak Higgs fields, with index 𝑖 running over
𝑑, 𝑑, 𝑢, �̄�; the Higgs fields are taken here to be vectors in accordance with the argments in §42.4.11. The 𝑊 [𝑖𝑗]

𝑚

are the 2 right-handed weak fields, with index 𝑖𝑗 running over 𝑑𝑢, 𝑑�̄�. The 𝐶 [𝑖𝑗]
𝑚 are the 6 leptoquark fields,

with index 𝑖𝑗 running over 𝑟𝑔, 𝑔𝑏, 𝑏𝑟, 𝑟𝑔, 𝑔�̄�, �̄�𝑟. The fields carry SM charges in accordance with their 𝑑𝑢𝑟𝑔𝑏
indices. Equation (42.167) shows that the Higgs field 𝐸 generates masses for the non-commuting fields,

𝑚𝐻 = 𝑔 sin3𝜃56⟨𝐸⟩ , 𝑚𝑊 =
√
2 𝑔 sin3𝜃56⟨𝐸⟩ , 𝑚𝐶 = 2

3

√
2 𝑔 cos3𝜃56⟨𝐸⟩ . (42.168)

The mass 𝑚𝐻 is the mass of each of the 4 electroweak Higgs fields after Spin(5)×Spin(6) symmetry breaking
but before electroweak symmetry breaking. This mass 𝑚𝐻 is different from the mass 𝑚𝐻 of the electroweak
Higgs boson after electroweak symmetry breaking, because the masses are generated in different ways. The
mass 𝑚𝑊 is the mass of each of the 2 right-handed weak gauge bosons after Spin(5) × Spin(6) symmetry
breaking; the mass is different from the mass of the 2 left-handed charged weak gauge bosons. The mass
𝑚𝐶 is the mass of each of the 6 leptoquark gauge bosons after Spin(5) × Spin(6) symmetry breaking. A
prediction of the model is that the masses 𝑚𝐻 , 𝑚𝑊 , and 𝑚𝐶 are related by

√
2𝑚𝐻 = 𝑚𝑊 = 3

2𝑚𝐶 tan3𝜃56 . (42.169)
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After Spin(5) × Spin(6) symmetry breaking but before electroweak symmetry breaking, the symmetry
group is the usual SM group U𝑌 (1) × SUL(2) × SU(3). The Spin(5) × Spin(6) gauge connection reduces to
the SM connection

𝑖𝑔𝑌𝐵𝑚𝑌 + 𝑔𝑤𝑊𝑚 + 𝑔𝑐𝐶𝑚 , (42.170)

in which the fields that remain are the subset of Spin(5) × Spin(6) fields 𝑊𝑚 and 𝐶𝑚 that (aside from 𝐸

itself) commute with the Higgs field 𝐸, and therefore remain massless and unbroken. The SM fields are the
1 hypercharge field 𝑖𝐵𝑚𝑌 , the 3 left-handed weak fields 𝑊𝑚, and the 8 colour (gluon) fields 𝐶𝑚.

42.4.13 Running of coupling parameters

According to renormalization theory, to leading (one-loop) order, the coupling parameter 𝑔 associated with
a gauge group 𝐺 varies with the log of the cutoff energy 𝜇 as (e.g. Peskin (1997, eq. (39)), or Schienbein
et al. (2019, eq. (5.15)))

𝑑𝑔−2

𝑑 ln𝜇
=

1

16𝜋2

(︁
11
3 𝑆2(𝐺, adj)− 2

3𝑛𝑓𝑆2(𝐺, spinor)− 1
3𝑛𝑠𝑆2(𝐺, scalar)

)︁
, (42.171)

where 𝑆2(𝐺, rep) is the Dynkin index of the representation of the group, equation (42.39), and 𝑛𝑓 and 𝑛𝑠 are
respectively the number of fermion and scalar multiplets that couple to the gauge group 𝐺. The normalization
1/(16𝜋2) in equation (42.171) is a factor 1

2 that of Peskin (1997) or Schienbein et al. (2019); the Dynkin
indices 𝑆2 here are correspondingly a factor of 2 times those of Peskin or Schienbein et al. The difference
in normalization is a choice of units, as discussed for example around equation (42.74). The normalization
adopted here and by Slansky (1981) corresponds to unit separation of charges on the charge lattice (blue
line in Figure 42.1), whereas the normalization adopted by Peskin and Schienbein et al. corresponds to unit
separation along a diagonal direction (black line in Figure 42.1). Technically, the Dynkin index 𝑆2 is additive
over distinct multiplets, so the fermion and scalar numbers 𝑛𝑓 and 𝑛𝑠 in equation (42.171) could be omitted;
the numbers are included as a reminder to sum the Dynkin index over the multiplets that the group acts
on. A particle and its antiparticle count as belonging to the same multiplet.
The Lagrangian involves a product of a coupling parameter 𝑔 and the associated charge operator; for

example, the hypercharge Lagrangian involves the product 𝑔𝑌 𝑌 of the coupling parameter 𝑔𝑌 and the
associated charge operator 𝑌 . Invariance of the Lagrangian requires the product to be invariant under
rescaling charge, so the coupling parameter must scale inversely with charge. The units of equation (42.171)
are thus consistent, as they must be: both sides have units of charge squared.
According to Table 42.2, the Dynkin index of a multiplet in the adjoint or spinor representations relevant

here is

𝑆2(SU(𝑁), adj) = 2𝑁 , 𝑆2(SU(𝑁), spinor) = 1 , (42.172a)

𝑆2(Spin(𝑁), adj) = 2(𝑁−2) , 𝑆2(Spin(𝑁), spinor) = 2[(𝑁−1)/2]−2 . (42.172b)

The case of U𝑌 (1), whose Dynkin index depends on a correct choice of units of the hypercharge 𝑌 , is ad-
dressed in the next paragraph. The adjoint representation is the bivector representation, the multivector
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representation of grade 𝑝 = 2. Spin(𝑁) has a unique spin representation, but SU(𝑁) has spinor representa-
tions of spinor grades 𝑝 ≤ 𝑁/2. The spinor representation of SU(𝑁) given by equation (42.172a) is that for
spinor grade 𝑝 = 1, which is the only non-trivial spinor grade for the groups SU(2) and SU(3) considered
here.
The Dynkin index 𝑆2, equation (42.39), of a multiplet equals the trace of the square of an orthonormal

generator, suitably normalized. The hypercharge group U𝑌 (1) has a single generator, the hypercharge 𝑌 .
The Dynkin index of U𝑌 (1) that enters equation (42.171) equals the hypercharge squared summed over
the particles of the SM, suitably normalized. The sum of squared hypercharges 𝑌 2 of the 16 fermions in
Table 42.1 is 40

3 . By comparison, the sum over the third weak Pauli matrix squared 𝜏23 = (2𝐼L)
2 of the same

16 fermions is 8. The U𝑌 (1) Dynkin index 𝑆2(U𝑌 (1), spinor) is therefore an average of 40
3 /8 = 5

3 times that
of SUL(2), per fermion. This is the factor 5

3 that enters equation (42.173a). Not coincidentally, the number
5
3 equals the ratio of the length squared of the hypercharge generator 𝑌 to that of the weak generator 𝜏3
on the lattice of charges, Figure 42.1. It is common practice to scale the hypercharge squared 𝑌 2 by 3

5 , and
accordingly to scale the inverse coupling strength 𝑔−2𝑌 by 3

5 , on the grounds that when unification occurs,
the orthonormal generators should be normalized so their squares all have the same trace. This adjustment
is not needed and not made here.
In the SM, the left-handed weak group SUL(2) acts on 4 fermion multiplets, namely the (𝜈L, 𝑒L) left-handed

lepton multiplet, and the three (𝑢𝑐L, 𝑑
𝑐
L) left-handed quark multiplets of colours 𝑐 = 𝑟, 𝑔, 𝑏. The colour group

SU(3) acts on 4 fermion multiplets, namely the left- and right-handed up and down quark multiplets 𝑢L, 𝑢R,
𝑑L, and 𝑑R. Each fermion multiplet comes in 3 generations, so the number of fermions in equation (42.171)
is 𝑛𝑓 = 4× 3 = 12 for each of SUL(2) and SU(3).
The weak group Spin(5), which unifies left- and right-handed fermions, acts on enlarged fermion multiplets

that include both left- and right-handed weak chiral components, the lepton multiplet (𝜈L, 𝑒L, 𝜈R, 𝑒R), and
the three quark multiplets (𝑢𝑐L, 𝑑

𝑐
L, 𝑢

𝑐
R, 𝑑

𝑐
R) of colours 𝑐 = 𝑟, 𝑔, 𝑏. The colour group Spin(6) acts on enlarged

fermion multiplets that contain leptons as well as quarks, (𝜈L, 𝑢L), (𝜈R, 𝑢R), (𝑒L, 𝑑L), and (𝑒R, 𝑑R). In both
Spin(5) and Spin(6), the number of fermion multiplets is still 𝑛𝑓 = 4× 3 = 12.
However, 𝑇 -bit doubling doubles the number 𝑛𝑓 of fermion multiplets, as is evident in the chart (42.110),

and as will be discussed further in §42.4.14. Each spinor comes in two species, with weak chirality respectively
aligned and anti-aligned with its Dirac chirality, equations (42.174). To be consistent with observation, after
electroweak symmetry breaking only spinors whose weak chirality aligns (approximately) with their Dirac
chirality remain observably light, while spinors whose weak chirality anti-aligns with their Dirac chirality
become unobservably massive, and do not contribute to the running of coupling parameters. Between elec-
troweak and grand symmetry breaking, the number of fermion multiplets could vary from 𝑛𝑓 = 4 × 3 = 12

(only light fermions contribute) to 𝑛𝑓 = 2 × 4 × 3 = 24 (all fermions, both light and massive, contribute).
The number 𝑛𝑓 of fermion multiplets could increase incrementally between electroweak and grand symmetry
breaking, as the energy scale 𝜇 rises above the mass of each heavy fermion multiplet. The observed masses
of fermions after electroweak symmetry breaking, Table 42.3, vary from tiny compared to the electroweak
scale (neutrinos) to comparable to the electroweak scale (the top quark, at 173GeV). The masses of heavy
fermions could be similarly irregular.
In the SM, there are various hypotheses for the “Higgs sector” prior to electroweak symmetry breaking,
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Figure 42.4 (Left) Symmetry breaking of Spin(5)×Spin(6) to the standard model should occur where 𝑔𝑔𝑌 /(𝑔𝑤𝑔𝑐) = 1.

The running of coupling parameters with energy 𝜇, equation (42.171), depends on the number 𝑛𝑓 of fermion multiplets,

which in the present construction depends on the unknown masses of the massive fermions predicted to accompany

the known light fermions, but should be between 𝑛𝑓 = 12 (only light fermions have energies . 𝜇) and 𝑛𝑓 = 24 (both

light and heavy fermions have energies . 𝜇). The graph shows the running for both limiting cases 𝑛𝑓 = 12 and

𝑛𝑓 = 24, and (thicker line) an illustrative case where 𝑛𝑓 increases from 12 to 24 as the energy scale 𝜇 increases from

electroweak to grand symmetry breaking. The energy scale of Spin(5)×Spin(6) symmetry breaking is predicted to be

𝜇 ≈ 1012 GeV, with a factor of ∼ 3 uncertainty from the uncertainty in 𝑛𝑓 . (Right) Running of the standard-model

coupling parameters 𝑔𝑌 , 𝑔𝑤, and 𝑔𝑐 with renormalization energy scale 𝜇, equation (42.171), for the illustrative case

where 𝑛𝑓 increases from 12 to 24 between electroweak and grand symmetry breaking (thick line in the left graph). The

transition from the standard-model group U𝑌 (1)× SUL(2)× SU(3) to Spin(5)× Spin(6) occurs at 𝜇 ≈ 6× 1011 GeV.

Regardless of 𝑛𝑓 , grand unification, in the sense that the weak and colour couplings 𝑔𝑤 and 𝑔𝑐 are equal, occurs at

𝜇 ≈ 3× 1017 GeV.

the common denominator being that there must be 4 real (or 2 complex) scalar fields that carry hypercharge
and weak charge, and transform appropriately under U𝑌 (1) × SUL(2). In the “minimal” model, the Higgs
fields form a complex massless field that transforms as a spinor doublet under SUL(2), and as a scalar under
Lorentz transformations. In this model, the number of scalars is 𝑛𝑠 = 1 for U𝑌 (1) and SUL(2), and 𝑛𝑠 = 0

for SU(3).

In the present construction, as described in §42.4.11, the electroweak Higgs fields transition from being be-
ing massive gauge fields before electroweak symmetry breaking to being massive scalar fields after electroweak
symmetry breaking. There are never any light scalar fields, so the number of scalars in equation (42.171) is
always 𝑛𝑠 = 0.

In summary, the factor in parentheses on the right hand side of equation (42.171) for the running of
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coupling pararameters is, for each of the groups relevant here,

U𝑌 (1) : − 2
3 ×

5
3 × 𝑛𝑓 , (42.173a)

SUL(2) :
11
3 × 4 − 2

3 × 1× 𝑛𝑓 , (42.173b)

SU(3) : 11
3 × 6 − 2

3 × 1× 𝑛𝑓 , (42.173c)

Spin(5) : 11
3 × 6 − 2

3 × 1× 𝑛𝑓 , (42.173d)

Spin(6) : 11
3 × 8 − 2

3 × 1× 𝑛𝑓 . (42.173e)

Strictly, the running of the hypercharge coupling 𝑔𝑌 should take in to account the actual hypercharges of
the fermions whose masses fall below the running energy 𝜇, but the expression (42.173a) is adequate for the
present purpose.
The right panel of Figure 42.4 shows the running of the hypercharge, weak, and colour coupling parameters

𝑔𝑌 , 𝑔𝑤, and 𝑔𝑐 as a function of the renormalization cutoff energy 𝜇, for an illustrative model in which
the number of fermion multiplets 𝑛𝑓 increases from 12 at electroweak symmetry breaking to 24 at grand
symmetry breaking. More precisely, in the model shown, the number of fermion multiplets increases in
equally spaced increments of log𝜇 from 𝑛𝑓 = 12 at electroweak symmetry breaking (𝜇 = 91GeV, the 𝑍-
boson mass), to 𝑛𝑓 = 18 at Spin(5) × Spin(6) symmetry breaking (𝜇 = 6 × 1011 GeV), and then by further
equally spaced increments of log𝜇 to 𝑛𝑓 = 24 at grand symmetry breaking (𝜇 = 3 × 1017 GeV). The left
panel of Figure 42.4 shows the combination 𝑔𝑔𝑌 /(𝑔𝑤𝑔𝑐), equation (42.163), which is predicted to be 1 at
Spin(5)×Spin(6) symmetry breaking, for the above-mentioned model, as well as for limiting models where the
number of fermion multiplets is constant between electroweak and grand symmetry breaking, with limiting
values 𝑛𝑓 = 12 and 24. The condition (42.163) for Spin(5)× Spin(6) symmetry breaking occurs at an energy
𝜇 ≈ 1012 GeV to within a factor of 3. More precisely, for the three models shown, condition (42.163) holds
at respectively 4 × 1011 GeV (𝑛𝑓 = 12), 6 × 1011 GeV (𝑛𝑓 increasing from 12 to 24), and 3 × 1012 GeV

(𝑛𝑓 = 24). The ratio 𝑚𝐶/𝑚𝑊 of masses of leptoquark to right-handed weak gauge bosons predicted by
equations (42.169) are respectively 1.09, 1.07, and 0.96.
Grand unification occurs where the weak and colour couplings coincide, 𝑔𝑤 = 𝑔𝑐, which happens at

an energy of 𝜇 ≈ 3 × 1017 GeV irrespective of how the number 𝑛𝑓 of fermion multiplets varies between
electroweak and grand symmetry breaking. The reason for the insensitivity to 𝑛𝑓 is that, according to the
expressions (42.173), the running of couplings has the same dependence on 𝑛𝑓 for all four groups SUL(2),
SU(3), Spin(5), and Spin(6).

42.4.14 Fermion masses

The 𝑇 -bit emerged in §42.4.3 as a byproduct of enlarging Spin(10) to Spin(11, 1) in order to accommodate
a time dimension. Adding the 𝑇 -bit doubles the number of spinors from the 25 = 32 spinors of Spin(10)
to 26 = 64, each spinor coming in 𝑇 -bit-up and 𝑇 -bit-down varieties. Thus the electron, for example, fills
out 8 entries in the Spin(11, 1) chart (42.110), in place of the 4 entries in the Spin(10) chart (42.12). The 8
electron components in the Spin(11, 1) chart (42.110) group into four 2-component electrons of various weak
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and Dirac chiralities,

𝑒𝑟R ≡ {𝑒𝑟R↑, 𝑒𝑟R↓} = {𝑇𝑟𝑔𝑏, 𝑑𝑢} , 𝑒𝑙L ≡ {𝑒𝑙L↑, 𝑒𝑙L↓} = {𝑑𝑇𝑟𝑔𝑏, 𝑢} , (42.174a)

𝑒𝑟L ≡ {𝑒𝑟L↑, 𝑒𝑟L↓} = {𝑟𝑔𝑏, 𝑑𝑢𝑇} , 𝑒𝑙R ≡ {𝑒𝑙R↑, 𝑒𝑙R↓} = {𝑑𝑟𝑔𝑏, 𝑢𝑇} . (42.174b)

The first component of each 2-component electron in equations (42.174) has spin up (↑), the second spin
down (↓). Electrons 𝑒𝑙 with left-handed weak chirality κ𝑑𝑢 have non-zero left-handed isopsin 𝐼L (𝑑- and 𝑢-bits
anti-aligned, equation (42.13b)) and experience the SUL(2) force, while electrons 𝑒𝑟 with right-handed weak
chirality κ𝑑𝑢 have zero left-handed isospin 𝐼L (𝑑- and 𝑢-bits aligned), and do not experience the weak force.
Weak chirality 𝑟 or 𝑙 is to be distinguished from Dirac chirality R or L, which in the present construction
coincides with Spin(11, 1) chirality 𝐽 , equation (42.116). Right- and left-handed Dirac or Spin(11, 1) chirality
correspond to boost and spin respectively aligned and anti-aligned, R = {𝑉 ↑, 𝑈↓} and L = {𝑈↑, 𝑉 ↓}.
The Higgs fields discussed in sections 42.4.10 and 42.4.12 provide mass terms that link the 4 same-

spin components of a fermion species. The electroweak Higgs field (42.125) generates Dirac mass terms
𝑚𝐷 and 𝑚𝑑 proportional to ⟨𝐻⟩𝛾𝛾−𝑇 ∝ 𝛾𝛾−𝑑 𝛾𝛾

+
𝑇 𝛾𝛾
−
𝑇 that flip the 𝑑-bit. The U𝐸(1) Higgs field (42.164) that

breaks Spin(5) × Spin(6) symmetry provides 𝑇 -mass terms 𝑚𝑇 and 𝑚𝑡 proportional to ⟨𝐸⟩𝛾𝛾−𝑇 that flip
the 𝑇 -bit. Besides the electroweak and Spin(5) × Spin(6) Higgs fields, there is the possibility of a scalar
field generated by the unit multivector, which is allowed because it commutes with everything. The unit
multivector generates a mass term proportional to 𝛾𝛾−𝑇 , which like the U𝐸(1) Higgs field flips the 𝑇 -bit. There
are three regimes of energy, the three mass terms turning on successively as the energy decreases. Between
grand and Spin(5) × Spin(6) symmetry breaking only the mass term generated by the unit multivector
contributes; between Spin(5)× Spin(6) and electroweak symmetry breaking the unit-multivector and U𝐸(1)

mass terms contribute; and after electroweak symmetry breaking all three mass terms contribute, the unit-
multivector, U𝐸(1), and electroweak mass terms.
The mass terms connecting the electron (for example) components in the chart (42.110) are

𝑒𝑟R 𝑒𝑙L

𝑒𝑟L 𝑒𝑙R

𝑚𝑑

𝑚𝑇 𝑚𝑡

𝑚𝐷

(42.175)

The upper and lower rows of the diagram (42.175) are for 𝑇 -bit respectively up and down, while the left and
right columns are for 𝑑-bit respectively down and up.
Before electroweak symmetry breaking, when 𝑑 charge is conserved, the Dirac mass terms vanish, and only

mass terms that flip the 𝑇 -bit are non-zero. The 8 components (42.174) of the electron split into two massive
4-component species, a weakly interacting electron 𝑒𝑙 and a non-weakly interacting para-electron 𝑒𝑟, each of
which is an equal linear combination of components of opposite Dirac chirality but like weak chirality,

𝑒𝑟 =
𝑒𝑟R − 𝑖𝑒𝑟L√

2
, 𝑒𝑙 =

𝑒𝑙R − 𝑖𝑒𝑙L√
2

, (42.176a)

𝑒𝑟 =
−𝑖𝑒𝑟R + 𝑒𝑟L√

2
, 𝑒𝑙 =

−𝑖𝑒𝑙R + 𝑒𝑙L√
2

. (42.176b)
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The Dirac chiral components R and L of each species are coupled by the mass terms 𝑚𝑇 and 𝑚𝑡 that flip the
𝑇 -bit, in accordance with the diagram (42.175). The anti-electron eigenstates 𝑒𝑟 and 𝑒𝑙 are, modulo a phase,
complex conjugates of the electron eigenstates 𝑒𝑟 and 𝑒𝑙. Having distinct weak interactions, the masses of
the non-weak and weak electrons 𝑒𝑟 and 𝑒𝑙 could be different.
After electroweak symmetry breaking, 𝑑 charge is not conserved, and the 8 electron components (42.174)

are coupled not only by mass terms that flip the 𝑇 -bit, but also by Dirac mass terms that flip the 𝑑-bit. The
8-component electron has 4 mass eigenstates, which can be labelled as 2 electron eigenstates 𝑒± with rest
masses 𝑚±, and 2 anti-electron (positron) eigenstates 𝑒± with rest masses −𝑚±. To be consistent with the
fact that only one species of electron is observed, the observed electron must be identified with the lighter
mass eigenstate 𝑒− with mass 𝑚−, while to elude observation the heavier mass eigenstate 𝑒+ must have mass
𝑚+ greater than, possibly much greater than, the electroweak scale. The heavier mass 𝑚+ must be much
larger than the lighter mass 𝑚−,

𝑚+ ≫ 𝑚− . (42.177)

The heavier mass electron eigenstate 𝑒+ cannot be a second generation of electron (a muon or tauon), since
as will be seen momentarily, equation (42.178b), the heavier electron has Dirac chirality opposite to its weak
chirality, whereas a second generation of electron would, like the electron itself, have Dirac chirality equal to
its weak chirality.
Experiment establishes that the weak chirality of observed electrons (and other fundamental fermions)

coincides with their Dirac chirality; that is, only left-handed (L) electrons (and right-handed (R) positrons)
experience the weak force. The electron 𝑒− and its positron partner 𝑒−, and the heavy electron states 𝑒+
and 𝑒+ orthogonal to them, must be

𝑒− ≈
−𝑒𝑟R − 𝑖𝑒𝑙L√

2
, 𝑒+ ≈

𝑒𝑙R − 𝑖𝑒𝑟L√
2

, (42.178a)

𝑒− ≈
𝑖𝑒𝑟R + 𝑒𝑙L√

2
, 𝑒+ ≈

−𝑖𝑒𝑙R + 𝑒𝑟L√
2

. (42.178b)

The relations (42.178) are written as approximations, not equalities, to allow the possibility that there could
be some small departure from exact equality of weak and Dirac chirality of light electrons. The heavy electron
eigenstates (42.178b) have the same SM charges as the light electron eigenstates (42.178a), but the heavy
electrons have Dirac chirality opposite to their weak chirality.
To find the most general mass eigenstate of the 8-component electron (42.174), start with the fact that

each mass eigenstate in its rest frame must be an equal linear combination of massless right- and left-handed
Dirac chiral components 𝑒±R and 𝑒±L,

𝑚±
−𝑚±

:

(︂
𝑒±
𝑒±

)︂
=

1√
2

(︂
1 −𝑖
−𝑖 1

)︂(︂
𝑒±R
𝑒±L

)︂
. (42.179)

The anti-electron eigenstates 𝑒± are, modulo a phase, complex conjugates of the electron eigenstates 𝑒±.
The most general Dirac chiral eigenstate 𝑒𝑚X, with the mass index 𝑚 running over + and −, and the chiral
index X running over right- and left-handed Dirac chiralities R and L, is obtained by rotating weak and
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Dirac chiral eigenstates 𝑒𝑤X, with the weak index 𝑤 running over weak chiralities 𝑟 and 𝑙, by an element 𝑅X

of SU(2), a Pauli rotor, equation (13.120),

𝑒𝑚X = 𝑅X𝑒𝑤X . (42.180)

When the rotor 𝑅X is resolved into rotations by 3 Euler angles, the initial and final Euler rotations about the
3-axis can be absorbed into a rephasing of the components 𝑒𝑚X and 𝑒𝑤X of the mass and weak eigenstates,
reducing equation (42.180) to(︂

𝑒+R

𝑒−R

)︂
=

(︂
sin 𝜃R cos 𝜃R
− cos 𝜃R sin 𝜃R

)︂(︂
𝑒𝑟R
𝑒𝑙R

)︂
,

(︂
𝑒+L

𝑒−L

)︂
=

(︂
cos 𝜃L sin 𝜃L
− sin 𝜃L cos 𝜃L

)︂(︂
𝑒𝑟L
𝑒𝑙L

)︂
. (42.181)

The relations (42.176) and approximations (42.178) indicate that

𝜃R = 𝜋
2 and 𝜃L = 0 before electroweak symmetry breaking , (42.182a)

𝜃R ≈ 0 and 𝜃L ≈ 0 after electroweak symmetry breaking . (42.182b)

In full, the mass eigenstates 𝑒± and 𝑒± are related to the weak chiral eigenstates 𝑒𝑤X by, from combining
equations (42.179) and (42.181),

𝑚+

𝑚−
−𝑚−
−𝑚+

:

⎛⎜⎜⎝
𝑒+
𝑒−
𝑒−
𝑒+

⎞⎟⎟⎠ =
1√
2

⎛⎜⎜⎜⎝
sin 𝜃R cos 𝜃R −𝑖 cos 𝜃L −𝑖 sin 𝜃L
− cos 𝜃R sin 𝜃R 𝑖 sin 𝜃L −𝑖 cos 𝜃L
𝑖 cos 𝜃R −𝑖 sin 𝜃R − sin 𝜃L cos 𝜃L

−𝑖 sin 𝜃R −𝑖 cos 𝜃R cos 𝜃L sin 𝜃L

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

𝑒𝑟R
𝑒𝑙R
𝑒𝑟L
𝑒𝑙L

⎞⎟⎟⎠ . (42.183)

The electron mass matrix 𝑀 is by definition diagonal with respect to the mass eigenstates 𝑒±, 𝑒±. With
respect to the Dirac chiral eigenstates 𝑒±X the Hermitian mass matrix𝑀 is given by, from equation (42.179),

𝑒 ·𝑀𝑒 = −𝑖𝑒†𝛾𝛾0𝑀𝑒 = 𝑖
(︁
𝑒†+R 𝑒†−R 𝑒†+L 𝑒†−L

)︁⎛⎜⎜⎝
0 0 −𝑚+ 0

0 0 0 −𝑚−
𝑚+ 0 0 0

0 𝑚− 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑒+R

𝑒−R
𝑒+L

𝑒−L

⎞⎟⎟⎠ . (42.184)

Each of the 4 components 𝑒𝑚X (𝑚 = +,− and X = R,L) in equation (42.184) is itself a 2-component object
with spin up (↑) and down (↓), equations (42.174). The mass matrix 𝑀 is the same for both spins. With
respect to the weak eigenstates 𝑒𝑤X the mass matrix 𝑀 is given by

𝑒 ·𝑀𝑒 = 𝑖
(︁
𝑒†𝑟R 𝑒†𝑙R 𝑒†𝑟L 𝑒†𝑙L

)︁⎛⎜⎜⎝
0 0 −𝑚𝑇 −𝑚𝑑

0 0 −𝑚𝐷 −𝑚𝑡

𝑚𝑇 𝑚𝐷 0 0

𝑚𝑑 𝑚𝑡 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑒𝑟R
𝑒𝑙R
𝑒𝑟L
𝑒𝑙L

⎞⎟⎟⎠ , (42.185)

where, from equations (42.181),(︂
𝑚𝑇 𝑚𝐷

𝑚𝑑 𝑚𝑡

)︂
= 𝑅†L𝑚𝑅R =

(︂
cos 𝜃L − sin 𝜃L
sin 𝜃L cos 𝜃L

)︂(︂
𝑚+ 0

0 𝑚−

)︂(︂
sin 𝜃R cos 𝜃R
− cos 𝜃R sin 𝜃R

)︂
, (42.186)
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giving

𝑚𝑇 ≡ 𝑚+ sin 𝜃R cos 𝜃L +𝑚− cos 𝜃R sin 𝜃L , 𝑚𝐷 ≡ 𝑚+ cos 𝜃R cos 𝜃L −𝑚− sin 𝜃R sin 𝜃L , (42.187a)

𝑚𝑑 ≡ 𝑚+ sin 𝜃R sin 𝜃L −𝑚− cos 𝜃R cos 𝜃L , 𝑚𝑡 ≡ 𝑚+ cos 𝜃R sin 𝜃L +𝑚− sin 𝜃R cos 𝜃L . (42.187b)

The masses 𝑚𝑇 and 𝑚𝑡 couple the 𝑇 -up and 𝑇 -down components, while the Dirac masses 𝑚𝐷 and 𝑚𝑑 couple
𝑑-up and 𝑑-down components. The masses satisfy

𝑚+𝑚− = 𝑚𝑇𝑚𝑡 −𝑚𝐷𝑚𝑑 , 𝑚2
+ +𝑚2

− = 𝑚2
𝑇 +𝑚′2𝑇 +𝑚2

𝐷 +𝑚′2𝐷 . (42.188)

Before electroweak symmetry breaking, 𝑑-charge is conserved, the Dirac masses 𝑚𝐷 and 𝑚𝑑 are zero, while
the 𝑇 -flip masses 𝑚𝑇 and 𝑚𝑡 are the mass eigenvalues,

𝑚𝑇 = 𝑚+ , 𝑚𝑡 = 𝑚− . (42.189)

The mass eigenstates are given by equations (42.176).
After electroweak symmetry breaking, the mixing angles 𝜃R and 𝜃L are small, approximations (42.182b),

and to leading order the 𝑇 masses and Dirac masses are

𝑚𝑇 ≈ 𝑚+𝜃R +𝑚−𝜃L , 𝑚𝐷 ≈ 𝑚+ −𝑚−𝜃R𝜃L , (42.190a)

𝑚𝑑 ≈ 𝑚+𝜃R𝜃L −𝑚− , 𝑚𝑡 ≈ 𝑚+𝜃L +𝑚−𝜃R . (42.190b)

Given that 𝑚+ ≫ 𝑚−, the mass terms (42.190) satisfy the hierarchy

𝑚+ ≈ 𝑚𝐷 ≫ 𝑚𝑇 ∼ 𝑚𝑡 ≫ 𝑚𝑑 . (42.191)

It is possible that the see-saw condition 𝑚𝑑 = 0 holds, in which case 𝑚−/𝑚+ = tan 𝜃R tan 𝜃L ≈ 𝜃R𝜃L. The
vanishing of 𝑚𝑑 would mean that only the heavy-mass components of the electron are coupled by a Dirac
mass term; the light-mass components are uncoupled.
A priori, one might anticipate that the Dirac masses 𝑚𝑑 and 𝑚𝐷 would be close to the electroweak symme-

try breaking scale of ≈ 100GeV, while the 𝑇 masses 𝑚𝑡 and 𝑚𝑇 would be close to the Spin(5)×Spin(6) sym-
metry breaking scale of ≈ 1012 GeV. That expectation is not realised here. Rather, the inequalities (42.191)
require that the Dirac masses straddle the 𝑇 masses. The best that can be said about this failure to meet
expectations is that fermionic masses are one of the most mysterious ingredients of the standard model
Quigg, 2007; for example, the lightness of the electron compared to the electroweak scale is unexplained. It
is hard to declare the target missed when the target is a blur.

42.4.15 Neutrino masses

As described in §42.3.1, neutrinos cannot acquire their mass in the same way as the other fundamental
fermions, because only left-handed neutrinos (and right-handed antineutrinos) are observed in Nature. The
leading standard solution to the puzzle of neutrino masses is the see-saw mechanism, §42.3.1, and that
remains the most promising solution in the present construction. The see-saw mechanism posits that, alone
among fermions, a right-handed neutrino, having no conserved SM charge, has a Majorana mass that couples
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it to its left-handed antineutrino partner. The see-saw mechanism holds that (after electroweak symmetry
breaking) the neutrino has a Dirac mass like other fermions, but the Majorana mass 𝑚𝑚 is much greater
than the Dirac mass 𝑚𝑑. The see-saw mechanism then predicts a heavy right-handed neutrino of mass 𝑚+

and a light left-handed neutrino of mass 𝑚− satisfying the see-saw relation, equation (42.81),

𝑚+ ≈ 𝑚𝑚 , 𝑚− ≈
𝑚2
𝑑

𝑚𝑚
. (42.192)

As with other fermions, section 42.4.14, adding the 𝑇 -bit doubles the number of neutrino species, as
illustrated in the chart (42.110). There are neutrinos whose weak chirality coincides with their Dirac chirality,
and neutrinos whose weak chirality is opposite to their Dirac chirality. As with other fermions, the extra
neutrino species do not comprise another generation; another generation would have weak and Dirac chirality
equal, not opposite.
After electroweak symmetry breaking, experiment establishes that the weak chirality of observed neutrinos

coincides with their Dirac chirality. The diagram of neutrino mass couplings analogous to the electron
diagram (42.175) after electroweak symmetry breaking is

𝜈𝑙L 𝜈𝑟R

𝜈*𝑙R 𝜈*𝑟L

𝑚𝑑

𝑚𝑚

𝑚𝑑

𝜈𝑙R 𝜈𝑟L

𝜈*𝑙L 𝜈*𝑟R

𝑚𝐷

𝑚𝑀

𝑚𝐷

. (42.193)

The left diagram is for weakly-interacting neutrinos whose weak chirality coincides with their Dirac chirality
(or, for antineutrinos, whose weak chirality opposes their Dirac chirality); the right diagram is for non-weakly-
interacting neutrinos whose weak chirality opposes their Dirac chirality (or, for antineutrinos, whose weak
chirality aligns with their Dirac chirality). The bottom rows of the two diagrams (42.193) are antiparticles
of the top rows. The vertical arrows in the two diagrams (42.193), labelled 𝑚𝑚 and 𝑚𝑀 , are Majorana
mass terms that connect the right-handed neutrino 𝜈𝑟 to its antineutrino partner. The left-handed neutrino
𝜈𝑙 cannot have a Majorana mass because it has a conserved standard-model charge. The fact that only
left-handed neutrinos are observed precludes a 𝑇 -mass term connecting 𝜈𝑙L to 𝜈𝑙R. The horizontal arrows,
labelled 𝑚𝑑 and 𝑚𝐷, are Dirac mass terms.
It should be emphasized that the present construction does not predict that the see-saw mechanism applies

to neutrinos; rather, as in the standard model, the see-saw mechanism must be invoked to reconcile theory
with experiment. The neutrino mass coupling diagram (42.193) could be over-simplified, or wrong. But if
the diagram is correct, then neutrinos separate into two distinct species, the left and right diagrams, each of
which has a mass matrix whose eigenvalues separately satisfy equation (42.81).
The left diagram (42.193) includes the observed left-handed, weakly interacting neutrino 𝜈𝑙L whose weak

chirality coincides with its Dirac chirality. The standard see-saw mechanism posits that the Majorana mass
is much larger than the Dirac mass, 𝑚𝑚 ≫ 𝑚𝑑, making the observed left-handed neutrino light, and the
right-handed neutrino unobservably heavy, equations (42.192).
The right diagram (42.193) predicts a second set of neutrinos none of which are observed. The set includes

a weakly interacting neutrino 𝜈𝑙R whose weak chirality opposes its Dirac chirality. To be consistent with the
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experimental constraint (42.78), the mass of this neutrino must exceed of order the electroweak scale, which
requires that the Dirac mass 𝑚𝐷 be sufficiently large. The condition that the Dirac mass 𝑚𝐷 be large is
reminiscent of the conditions (42.191) on non-neutrino fermions.
Where does the Majorana mass term come from, in the present construction? In Dirac theory, the time axis

𝛾𝛾0 is diagonal acting on massive spinors in their rest frame, while the time axis’ Newman-Penrose partner
𝛾𝛾3 transforms massive spinors to their anti-spinor partners. Similarly, in the present construction the time
axis 𝛾𝛾0 = 𝑖𝛾𝛾−𝑇 preserves the standard-model charges of massive spinors in their rest frames, while its partner
𝛾𝛾+
𝑇 transforms massive spinors to their anti-spinor partners of opposite standard-model charge. So one way

to construct a mass term that links neutrinos to their anti-neutrino partners is to replace the U𝐸(1) mass
term ⟨𝐸⟩𝛾𝛾−𝑇 by ⟨𝐸⟩𝛾𝛾+

𝑇 , or the unit-multivector mass term 𝛾𝛾−𝑇 by 𝛾𝛾+
𝑇 . However, these mass terms are not

Lorentz invariant. Lorentz-invariant mass terms that couple neutrinos and anti-neutrinos may be obtained
by multiplying the standard U𝐸(1) or unit-multivector mass terms by the Spin(11, 1) pseudoscalar 𝐽 defined
by equation (42.108),

𝐽⟨𝐸⟩𝛾𝛾−𝑇 or 𝐽𝛾𝛾−𝑇 . (42.194)

The exposition in this section 42.4.15 so far holds after electroweak symmetry breaking. What about
before electroweak symmetry breaking? Dirac mass terms, which are generated by the electroweak Higgs
field, cease to operate before electroweak symmetry breaking. Majorana mass terms (42.194) generated
by the U𝐸(1) Higgs field and unit multivector continue to operate before electroweak symmetry breaking.
However, the experimental evidence constrains the number of neutrino types at energies below electroweak
symmetry breaking, equation (42.78), so the arrangement of neutrino mass couplings could differ from the
diagram (42.193) before electroweak symmetry breaking. Neutrino mass couplings could perhaps resemble
those of other fermions before electroweak symmetry breaking.
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