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Notation

Except where actual units are needed, units are such that the speed of light is one, ¢ = 1, and Newton’s
gravitational constant is one, G = 1.

The metric signature is —+++.

Greek (brown) letters x, A, ..., denote spacetime (4D, usually) coordinate indices. Latin (black) letters k,
l, ..., denote spacetime (4D, usually) tetrad indices. Early-alphabet greek letters «, 3, ... denote spatial (3D,
usually) coordinate indices. Early-alphabet latin letters a, b, ... denote spatial (3D, usually) tetrad indices.
To avoid distraction, colouring is applied only to coordinate indices, not to the coordinates themselves.
Early-alphabet latin letters a, b, ... are also used to denote spinor indices.

Sequences of indices, as encountered in multivectors (Chapter 13) and differential forms (Chapter 15), are
denoted by capital letters. Greek (brown) capital letters A, II, ... denote sequences of spacetime (4D, usually)
coordinate indices. Latin (black) capital letters K, L, ... denote sequences of spacetime (4D, usually) tetrad
indices. Early-alphabet capital letters denote sequences of spatial (3D, usually) indices, coloured brown A,
B, ... for coordinate indices, and black A, B, ... for tetrad indices.

Specific (non-dummy) components of a vector are labelled by the corresponding coordinate (brown) or
tetrad (black) direction, for example A* = {A’, A" AY, A*} or A™ = {A! A* AY A*}. Sometimes it is
convenient to use numerical indices, as in A" = {A% A' A% A%} or A™ = {A", At A2 A3}. Allowing the
same label to denote either a coordinate or a tetrad index risks ambiguity, but it should be apparent from
the context (or colour) what is meant. Some texts distinguish coordinate and tetrad indices for example by
a caret on the latter (there is no widespread convention), but this produces notational overload.

Boldface denotes abstract vectors, in either 3D or 4D. In 4D, A = A'e, = A™~,,, where e, denote
coordinate tangent axes, and «,, denote tetrad axes.

Repeated paired dummy indices are summed over, the implicit summation convention. In special and
general relativity, one index of a pair must be up (contravariant), while the other must be down (covariant).
If the space being considered is Euclidean, then both indices may be down.

0/0x* denotes coordinate partial derivatives, which commute. 9,, denotes tetrad directed derivatives,
which do not commute. D,, and D,, denote respectively coordinate-frame and tetrad-frame covariant deriva-
tives.



Notation 3
Choice of metric signature

There is a tendency, by no means unanimous, for general relativists to prefer the —++4+ metric signature,
while particle physicists prefer +———.

For someone like me who does general relativistic visualization, there is no contest: the choice has to be
——+++, so that signs remain consistent between 3D spatial vectors and 4D spacetime vectors. For example,
the 3D industry knows well that quaternions provide the most efficient and powerful way to implement
spatial rotations. As shown in Chapter 13, complex quaternions provide the best way to implement Lorentz
transformations, with the subgroup of real quaternions continuing to provide spatial rotations. Compatibility
requires —+++. Actually, OpenGL and other graphics languages put spatial coordinates in the first three
indices, leaving time to occupy the fourth index; but in these notes I stick to the physics convention of
putting time in the zeroth index.

In practical calculations it is convenient to be able to switch transparently between boldface and in-
dex notation in both 3D and 4D contexts. This is where the +——— signature poses greater potential for
misinterpretation in 3D. For example, with this signature, what is the sign of the 3D scalar product

a-b?

Isita-b = Zi:l a.b® or a-b = 22:1 a®b*? To be consistent with common 3D usage, it must be the
latter. With the +——— signature, it must be that a-b = —a,b%, where the repeated indices signify implicit
summation over spatial indices. So you have to remember to introduce a minus sign in switching between
boldface and index notation.

As another example, what is the sign of the 3D vector product

axb?

Isitaxb= ZZ,C:l EabeaPbC or ax b = 227021 £%,.alb® or ax b = chzl £%eqbpe? Well, if you want to switch
transparently between boldface and index notation, and you decide that you want boldface consistently to
signify a vector with a raised index, then maybe you’d choose the middle option. To be consistent with
standard 3D convention for the sign of the vector product, maybe you’d choose %, to have positive sign for
abc an even permutation of zyz.

Finally, what is the sign of the 3D spatial gradient operator

V = i ?
ox
Isit V = 9/0x2% or V = 9/0z,? Convention dictates the former, in which case it must be that some boldface
3D vectors must signify a vector with a raised index, and others a vector with a lowered index. Oh dear.
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14.
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Concept Questions

What does ¢ = universal constant mean? What is speed? What is distance? What is time?

. ¢+ ¢ = c. How can that be possible?

The first postulate of special relativity asserts that spacetime forms a 4-dimensional continuum. The
fourth postulate of special relativity asserts that spacetime has no absolute existence. Isn’t that a
contradiction?

The principle of special relativity says that there is no absolute spacetime, no absolute frame of reference
with respect to which position and velocity are defined. Yet does not the cosmic microwave background
define such a frame of reference?

How can two people moving relative to each other at near ¢ both think each other’s clock runs slow?
How can two people moving relative to each other at near ¢ both think the other is Lorentz-contracted?
All paradoxes in special relativity have the same solution. In one word, what is that solution?

All conceptual paradoxes in special relativity can be understood by drawing what kind of diagram?
Your twin takes a trip to a Cen at near ¢, then returns to Earth at near c. Meeting your twin, you see
that the twin has aged less than you. But from your twin’s perspective, it was you that receded at near
¢, then returned at near ¢, so your twin thinks you aged less. Is it true?

Blobs in the jet of the galaxy M87 have been tracked by the Hubble Space Telescope to be moving at
about 6¢. Does this violate special relativity?

If you watch an object move at near ¢, does it actually appear Lorentz-contracted? Explain.

You speed towards the centre of our Galaxy, the Milky Way, at near c. Does the centre appear to you
closer or farther away?

You go on a trip to the centre of the Milky Way, 30,000 lightyears distant, at near c¢. How long does the
trip take you?

You surf a light ray from a distant quasar to Earth. How much time does the trip take, from your
perspective?

If light is a wave, what is waving?

As you surf the light ray, how fast does it appear to vibrate?

How does the phase of a light ray vary along the light ray? Draw surfaces of constant phase on a
spacetime diagram.
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19.

20.
21.
22.

23.

24.
25.
26.
27.

28.
29.

Concept Questions

. You see a distant galaxy at a redshift of z = 1. If you could see a clock on the galaxy, how fast would
the clock appear to tick? Could this be tested observationally?

You take a trip to o Cen at near ¢, then instantaneously accelerate to return at near c. If you are
looking through a telescope at a clock on the Earth while you instantaneously accelerate, what do you
see happen to the clock?

In what sense is time an imaginary spatial dimension?

In what sense is a Lorentz boost a rotation by an imaginary angle?

You know what it means for an object to be rotating at constant angular velocity. What does it mean
for an object to be boosting at a constant rate?

A wheel is spinning so that its rim is moving at near c¢. The rim is Lorentz-contracted, but the spokes
are not. How can that be?

You watch a wheel rotate at near the speed of light. The spokes appear bent. How can that be?

Does a sunbeam appear straight or bent when you pass by it at near the speed of light?

Energy and momentum are unified in special relativity. Explain.

In what sense is mass equivalent to energy in special relativity? In what sense is mass different from
energy?

Why is the Minkowski metric unchanged by a Lorentz transformation?

What is the best way to program Lorentz transformations on a computer?
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What’s important?

The postulates of special relativity.
Understanding conceptually the unification of space and time implied by special relativity.
a. Spacetime diagrams.
b. Simultaneity.
c. Understanding the paradoxes of relativity — time dilation, Lorentz contraction, the twin paradox.

. The mathematics of spacetime transformations.

a. Lorentz transformations.

Invariant spacetime distance.

Minkowski metric.

4-vectors.

Energy-momentum 4-vector. £ = mc
f. The energy-momentum 4-vector of massless particles, such as photons.

. What things look like at relativistic speeds.

e &0 T
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Special Relativity

Special relativity is a fundamental building block of general relativity. General relativity postulates that the
local structure of spacetime is that of special relativity.

The primary goal of this Chapter is to convey a clear conceptual understanding of special relativity.
Everyday experience gives the impression that time is absolute, and that space is entirely distinct from time,
as Galileo and Newton postulated. Special relativity demands, in apparent contradiction to experience, the
revolutionary notion that space and time are united into a single 4-dimensional entity, called spacetime.
The revolution forces conclusions that appear paradoxical: how can two people moving relative to each other
both measure the speed of light to be the same, both think each other’s clock runs slow, and both think the
other is Lorentz-contracted?

In fact special relativity does not contradict everyday experience. It is just that we humans move through
our world at speeds that are so much smaller than the speed of light that we are not aware of relativistic
effects. The correctness of special relativity is confirmed every day in particle accelerators that smash particles
together at highly relativistic speeds.

See https://jila.colorado.edu/~ajsh/sr/ for animated versions of several of the diagrams in this Chapter.

1.1 Motivation

The history of the development of special relativity is rich and human, and it is beyond the intended scope
of this book to give any reasonable account of it. If you are interested in the history, I recommend starting
with the popular account by Thorne (1994).

As first proposed by James Clerk Maxwell in 1864, light is an electromagnetic wave. Maxwell believed
(Goldman, 1984) that electromagnetic waves must be carried by some medium, the luminiferous aether,
just as sound waves are carried by air. However, Maxwell knew that his equations of electromagnetism had
empirical validity without any need for the hypothesis of an aether.

For Albert Einstein, the theory of special relativity was motivated by the curious circumstance that
Maxwell’s equations of electromagnetism seemed to imply that the speed of light was independent of the
motion of an observer. Others before Einstein had noticed this curious feature of Maxwell’s equations. Joseph
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Larmor, Hendrick Lorentz, and Henri Poincaré all noticed that the form of Maxwell’s equations could be
preserved if lengths and times measured by an observer were somehow altered by motion through the aether.
The transformations of special relativity were discovered before Einstein by Lorentz (1904), the name “Lorentz
transformations” being conferred by Poincaré (1905).

Einstein’s great contribution was to propose (Einstein, 1905) that there was no aether, no absolute space-
time. From this simple and profound idea stemmed his theory of special relativity.

1.2 The postulates of special relativity

The theory of special relativity can be derived formally from a small number of postulates:

1. Space and time form a 4-dimensional continuum;

2. The existence of globally inertial frames;

3. The speed of light is constant;

4. The principle of special relativity.
The first two postulates are assertions about the structure of spacetime, while the last two postulates form
the heart of special relativity. Most books mention just the last two postulates, but I think it is important
to know that special (and general) relativity simply postulate the 4-dimensional character of spacetime, and
that special relativity postulates moreover that spacetime is flat.

1. Space and time form a 4-dimensional continuum. The correct mathematical word for continuum
is manifold. A 4-dimensional manifold is defined mathematically to be a topological space that is locally
homeomorphic to Euclidean 4-space R*.

The postulate that spacetime forms a 4-dimensional continuum is a generalization of the classical Galilean
concept that space and time form separate 3 and 1 dimensional continua. The postulate of a 4-dimensional
spacetime continuum is retained in general relativity.

Physicists widely believe that this postulate must ultimately break down, that space and time are quantized
over extremely small intervals of space and time, the Planck length \/Gh/c3 ~ 1073% m, and the Planck time
VGh/c® =~ 107%3 s, where G is Newton’s gravitational constant, A = h/(27) is Planck’s constant divided by
27, and c is the speed of light.

2. The existence of globally inertial frames. Statement: “There exist global spacetime frames with
respect to which unaccelerated objects move in straight lines at constant velocity.”

A spacetime frame is a system of coordinates for labelling space and time. Four coordinates are needed,
because spacetime is 4-dimensional. A frame in which unaccelerated objects move in straight lines at con-
stant velocity is called an inertial frame. One can easily think of non-inertial frames: a rotating frame, an
accelerating frame, or simply a frame with some bizarre Dahlian labelling of coordinates.

A globally inertial frame is an inertial frame that covers all of space and time. The postulate that
globally inertial frames exist is carried over from classical mechanics (Newton’s first law of motion).
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Notice the subtle shift from the Newtonian perspective. The postulate is not that particles move in straight
lines, but rather that there exist spacetime frames with respect to which particles move in straight lines.

Implicit in the assumption of the existence of globally inertial frames is the assumption that the geometry of
spacetime is flat, the geometry of Euclid, where parallel lines remain parallel to infinity. In general relativity,
this postulate is replaced by the weaker postulate that local (not global) inertial frames exist. A locally
inertial frame is one which is inertial in a “small neighbourhood” of a spacetime point. In general relativity,
spacetime can be curved.

3. The speed of light is constant. Statement: “The speed of light ¢ is a universal constant, the same in
any inertial frame.”

This postulate is the nub of special relativity. The immediate challenge of this Chapter, §1.3, is to confront
its paradoxical implications, and to resolve them.

Measuring speed requires being able to measure intervals of both space and time: speed is distance travelled
divided by time elapsed. Inertial frames constitute a special class of spacetime coordinate systems; it is with
respect to distance and time intervals in these special frames that the speed of light is asserted to be constant.

In general relativity, arbitrarily weird coordinate systems are allowed, and light need move neither in
straight lines nor at constant velocity with respect to bizarre coordinates (why should it, if the labelling
of space and time is totally arbitrary?). However, general relativity asserts the existence of locally inertial
frames, and the speed of light is a universal constant in those frames.

In 1983, the General Conference on Weights and Measures officially defined the speed of light to be

¢ =299,792,458 ms ™!, (1.1)

and the metre, instead of being a primary measure, became a secondary quantity, defined in terms of the
second and the speed of light.

4. The principle of special relativity. Statement: “The laws of physics are the same in any inertial frame,
regardless of position or velocity.”

Physically, this means that there is no absolute spacetime, no absolute frame of reference with respect to
which position and velocity are defined. Only relative positions and velocities between objects are meaningful.

Mathematically, the principle of special relativity requires that the equations of special relativity be
Lorentz covariant.

It is to be noted that the principle of special relativity does not imply the constancy of the speed of light,
although the postulates are consistent with each other. Moreover the constancy of the speed of light does
not imply the Principle of Special Relativity, although for Einstein the former appears to have been the
inspiration for the latter.

An example of the application of the principle of special relativity is the construction of the energy-
momentum 4-vector of a particle, which should have the same form in any inertial frame (§1.11).
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1.3 The paradox of the constancy of the speed of light

The postulate that the speed of light is the same in any inertial frame leads immediately to a paradox.
Resolution of this paradox compels a revolution in which space and time are united from separate 3 and
1-dimensional continua into a single 4-dimensional continuum.

Figure 1.1 shows Vermilion emitting a flash of light, which expands away from her in all directions.
Vermilion thinks that the light moves outward at the same speed in all directions. So Vermilion thinks that
she is at the centre of the expanding sphere of light.

Figure 1.1 shows also Cerulean, who is moving away from Vermilion at about half the speed of light. But,
says special relativity, Cerulean also thinks that the light moves outward at the same speed in all directions
from him. So Cerulean should be at the centre of the expanding light sphere too. But he’s not, is he. Paradox!

. e @@@

Figure 1.1 Vermilion emits a flash of light, which (from left to right) expands away from her in all directions. Since
the speed of light is constant in all directions, she finds herself at the centre of the expanding sphere of light. Cerulean
is moving to the right at half of the speed of light relative to Vermilion. Special relativity declares that Cerulean too
thinks that the speed of light is constant in all directions. So should not Cerulean think that he too is at the centre
of the expanding sphere of light? Paradox!

Concept question 1.1. Does light move differently depending on who emits it? Would the light
have expanded differently if Cerulean had emitted the light?

Exercise 1.2. Challenge problem: the paradox of the constancy of the speed of light. Can you
figure out a solution to the paradox? Somehow you have to arrange that both Vermilion and Cerulean regard
themselves as being in the centre of the expanding sphere of light.

1.3.1 Spacetime diagram

A spacetime diagram suggests a way of thinking, first advocated by Minkowski (1909), that leads to the
solution of the paradox of the constancy of the speed of light. Indeed, spacetime diagrams provide the way
to resolve all conceptual paradoxes in special relativity, so it is thoroughly worthwhile to understand them.

A spacetime diagram, Figure 1.2, is a diagram in which the vertical axis represents time, while the
horizontal axis represents space. Really there are three dimensions of space, which can be thought of as
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filling additional horizontal dimensions. But for simplicity a spacetime diagram usually shows just one spatial

Special Relativity

O
Time

N Space

Figure 1.2 A spacetime diagram shows events in space and time. In a spacetime diagram, time goes upward, while
space dimensions are horizontal. Really there should be 3 space dimensions, but usually it suffices to show 1 spatial
dimension, as here. In a spacetime diagram, the units of space and time are chosen so that light goes one unit of
distance in one unit of time, i.e. the units are such that the speed of light is one, ¢ = 1. Thus light moves upward and
outward at 45° from vertical in a spacetime diagram.

dimension.

In a spacetime diagram, the units of space and time are chosen so that light goes one unit of distance in
one unit of time, i.e. the units are such that the speed of light is one, ¢ = 1. Thus light always moves upward
at 45° from vertical in a spacetime diagram. Each point in 4-dimensional spacetime is called an event. Light

Time

Figure 1.3 Spacetime diagram of Vermilion emitting a flash of light. This is a spacetime diagram version of the
situation illustrated in Figure 1.1. The lines along which Vermilion and Cerulean move through spacetime are called
their worldlines. Each point in 4-dimensional spacetime is called an event. Light signals converging to or expanding
from an event follow a 3-dimensional hypersurface called the lightcone. In the diagram, the sphere of light expanding
from the emission event is following the future lightcone. There is also a past lightcone, not shown here.
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signals converging to or expanding from an event follow a 3-dimensional hypersurface called the lightcone.
Light converging on to an event in on the past lightcone, while light emerging from an event is on the
future lightcone.

Figure 1.3 shows a spacetime diagram of Vermilion emitting a flash of light, and Cerulean moving relative
to Vermilion at about % the speed of light. This is a spacetime diagram version of the situation illustrated in
Figure 1.1. The lines along which Vermilion and Cerulean move through spacetime are called their world-
lines.

Consider again the challenge problem. The problem is to arrange that both Vermilion and Cerulean are
at the centre of the lightcone, from their own points of view.

Here’s a clue. Cerulean’s concept of space and time may not be the same as Vermilion’s.

1.3.2 Centre of the lightcone

The solution to the paradox is that Cerulean’s spacetime is skewed compared to Vermilion’s, as illustrated
by Figure 1.4. The thing to notice in the diagram is that Cerulean is in the centre of the lightcone, according
to the way Cerulean perceives space and time. Vermilion remains at the centre of the lightcone according
to the way Vermilion perceives space and time. In the diagram Vermilion and her space are drawn at one
“tick” of her clock past the point of emission, and likewise Cerulean and his space are drawn at one “tick” of
his identical clock past the point of emission. Of course, from Cerulean’s point of view his spacetime is quite
normal, and it is Vermilion’s spacetime that is skewed.

In special relativity, the transformation between the spacetime frames of two inertial observers is called a

7

Time

Figure 1.4 The solution to how both Vermilion and Cerulean can consider themselves to be at the centre of the
lightcone. Cerulean’s spacetime is skewed compared to Vermilion’s. Cerulean is in the centre of the lightcone, according
to the way Cerulean perceives space and time, while Vermilion remains at the centre of the lightcone according to the
way Vermilion perceives space and time. In the diagram Vermilion (red) and her space are drawn at one “tick” of her
clock past the point of emission, and likewise Cerulean (blue) and his space are drawn at one “tick” of his identical
clock past the point of emission.
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Lorentz transformation. In general, a Lorentz transformation consists of a spatial rotation about some
spatial axis, combined with a Lorentz boost by some velocity in some direction.

Only space along the direction of motion gets skewed with time. Distances perpendicular to the direction
of motion remain unchanged. Why must this be so? Consider two hoops which have the same size when at
rest relative to each other. Now set the hoops moving towards each other. Which hoop passes inside the
other? Neither! For suppose Vermilion thinks Cerulean’s hoop passed inside hers; by symmetry, Cerulean
must think Vermilion’s hoop passed inside his; but both cannot be true; the only possibility is that the hoops
remain the same size in directions perpendicular to the direction of motion.

If you have understood all this, then you have understood the crux of special relativity, and you can
now go away and figure out all the mathematics of Lorentz transformations. The mathematical problem is:
what is the relation between the spacetime coordinates {¢,z,y, 2z} and {t',2’,y’, 2’} of a spacetime interval,
a 4-vector, in Vermilion’s versus Cerulean’s frames, if Cerulean is moving relative to Vermilion at velocity v
in, say, the x direction? The solution follows from requiring

1. that both observers consider themselves to be at the centre of the lightcone, as illustrated by Figure 1.4,

and

2. that distances perpendicular to the direction of motion remain unchanged, as illustrated by Figure 1.5.
An alternative version of the second condition is that a Lorentz transformation at velocity v followed by a
Lorentz transformation at velocity —v should yield the unit transformation.

Note that the postulate of the existence of globally inertial frames implies that Lorentz transformations
are linear, that straight lines (4-vectors) in one inertial spacetime frame transform into straight lines in other
inertial frames.

You will solve this problem in the next section but two, §1.6. As a prelude, the next two sections, §1.4 and
§1.5 discuss simultaneity and time dilation.

-
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Space

Figure 1.5 Same as Figure 1.4, but with Cerulean moving into the page instead of to the right. This is just Figure 1.4
spatially rotated by 90° in the horizontal plane. Distances perpendicular to the direction of motion are unchanged.
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1.4 Simultaneity

Most (all?) of the apparent paradoxes of special relativity arise because observers moving at different velocities
relative to each other have different notions of simultaneity.

1.4.1 Operational definition of simultaneity

How can simultaneity, the notion of events occurring at the same time at different places, be defined opera-
tionally?

One way is illustrated in the sequences of spacetime diagrams in Figure 1.6. Vermilion surrounds herself
with a set of mirrors, equidistant from Vermilion. She sends out a flash of light, which reflects off the mirrors
back to Vermilion. How does Vermilion know that the mirrors are all the same distance from her? Because the
reflected flash from the mirrors arrives back to Vermilion all at the same instant. Vermilion asserts that the
light flash must have hit all the mirrors simultaneously. Vermilion also asserts that the instant when the light
hit the mirrors must have been the instant, as registered by her wristwatch, precisely half way between the
moment she emitted the flash and the moment she received it back again. If it takes, say, 2 seconds between
flash and receipt, then Vermilion concludes that the mirrors are 1 lightsecond away from her. The spatial
hyperplane passing through these events is a hypersurface of simultaneity. More generally, from Vermilion’s
perspective, each horizontal hyperplane in the spacetime diagram is a hypersurface of simultaneity.

Cerulean defines surfaces of simultaneity using the same operational setup: he encompasses himself with
mirrors, arranging them so that a flash of light returns from them to him all at the same instant. But whereas
Cerulean concludes that his mirrors are all equidistant from him and that the light bounces off them all at the
same instant, Vermilion thinks otherwise. From Vermilion’s point of view, the light bounces off Cerulean’s
mirrors at different times and moreover at different distances from Cerulean, as illustrated in Figure 1.7.
Only so can the speed of light be constant, as Vermilion sees it, and yet the light return to Cerulean all at
the same instant.

Of course from Cerulean’s point of view all is fine: he thinks his mirrors are equidistant from him, and

Time Time Time Time /

Figure 1.6 How Vermilion defines hypersurfaces of simultaneity. She surrounds herself with (green) mirrors all at the
same distance. She sends out a light beam, which reflects off the mirrors, and returns to her all at the same moment.
She knows that the mirrors are all at the same distance precisely because the light returns to her all at the same
moment. The events where the light bounced off the mirrors defines a hypersurface of simultaneity for Vermilion.
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Figure 1.7 Cerulean defines hypersurfaces of simultaneity using the same operational setup as Vermilion: he bounces
light off (green) mirrors all at the same distance from him, arranging them so that the light returns to him all at the
same time. But from Vermilion’s frame, Cerulean’s experiment looks skewed, as shown here.

that the light bounces off them all at the same instant. The inevitable conclusion is that Cerulean must
measure space and time along axes that are skewed relative to Vermilion’s. Events that happen at the same
time according to Cerulean happen at different times according to Vermilion; and vice versa. Cerulean’s
hypersurfaces of simultaneity are not the same as Vermilion’s.

From Cerulean’s point of view, Cerulean remains always at the centre of the lightcone. Thus for Cerulean,
as for Vermilion, the speed of light is constant, the same in all directions.

1.5 Time dilation

Vermilion and Cerulean construct identical clocks, Figure 1.8, consisting of a light beam which bounces off a
mirror. Tick, the light beam hits the mirror, tock, the beam returns to its owner. As long as Vermilion and
Cerulean remain at rest relative to each other, both agree that each other’s clock tick-tocks at the same rate
as their own.

But now suppose Cerulean goes off at velocity v relative to Vermilion, in a direction perpendicular to the
direction of the mirror. A far as Cerulean is concerned, his clock tick-tocks at the same rate as before, a tick
at the mirror, a tock on return. But from Vermilion’s point of view, although the distance between Cerulean
and his mirror at any instant remains the same as before, the light has farther to go. And since the speed
of light is constant, Vermilion thinks it takes longer for Cerulean’s clock to tick-tock than her own. Thus
Vermilion thinks Cerulean’s clock runs slow relative to her own.
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Figure 1.8 Vermilion and Cerulean construct identical clocks, consisting of a light beam that bounces off a (green)
mirror and returns to them. In the left panel, Cerulean is at rest relative to Vermilion. They both agree that their
clocks are identical. In the middle panel, Cerulean is moving to the right at speed v relative to Vermilion. The vertical
distance to the mirror is unchanged by Cerulean’s motion in a direction orthogonal to the direction to the mirror.
Whereas Cerulean thinks his clock ticks at the usual rate, Vermilion sees the path of the light taken by Cerulean’s
clock is longer, by a factor 7, than the path of light taken by her own clock. Since the speed of light is constant,
Vermilion thinks Cerulean’s clock takes longer to tick, by a factor -, than her own. The sides of the triangle formed
by the distance 1 to the mirror, the length v of the lightpath to Cerulean’s clock, and the distance v travelled by
Cerulean, form a right-angled triangle, illustrated in the right panel.

1.5.1 Lorentz gamma factor

How much slower does Cerulean’s clock run, from Vermilion’s point of view? In special relativity the factor
is called the Lorentz gamma factor ~, introduced by the Dutch physicist Hendrik A. Lorentz in 1904, one
year before Einstein proposed his theory of special relativity.

In units where the speed of light is one, ¢ = 1, Vermilion’s mirror in Figure 1.8 is one tick away from her,
and from her point of view the vertical distance between Cerulean and his mirror is the same, one tick. But
Vermilion thinks that the distance travelled by the light beam between Cerulean and his mirror is ~y ticks.
Cerulean is moving at speed v, so Vermilion thinks he moves a distance of v ticks during the « ticks of time
taken by the light to travel from Cerulean to his mirror. Thus, from Vermilion’s point of view, the vertical
line from Cerulean to his mirror, Cerulean’s light beam, and Cerulean’s path form a triangle with sides 1,
v, and v, as illustrated in Figure 1.8. Pythogoras’ theorem implies that

124 ()2 =42 (1.2)

From this it follows that the Lorentz gamma factor  is related to Cerulean’s velocity v by

1

Y= \/17_702 ) (1.3)

which is Lorentz’s famous formula.

1.6 Lorentz transformation

A Lorentz transformation is a rotation of space and time. Lorentz transformations form a 6-dimensional
group, with 3 dimensions from spatial rotations, and 3 dimensions from Lorentz boosts.
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If you wish to understand special relativity mathematically, then it is essential for you to go through the
exercise of deriving the form of Lorentz transformations for yourself. Indeed, this problem is the challenge
problem posed in §1.3, recast as a mathematical exercise. For simplicity, it is enough to consider the case of
a Lorentz boost by velocity v along the z-axis.

You can derive the form of a Lorentz transformation either pictorially (geometrically), or algebraically.
Ideally you should do both.
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Figure 1.9 Spacetime diagram representing the experiments shown in Figures 1.6 and 1.7. The right panel shows a
detail of how the spacetime diagram can be drawn using only a straight edge and a compass. If Cerulean’s position is
drawn first, then Vermilion’s position follows from drawing the arc as shown.

Exercise 1.3. Pictorial derivation of the Lorentz transformation. Construct, with ruler and compass,
a spacetime diagram that looks like the one in Figure 1.9. You should recognize that the square represents the
paths of lightrays that Vermilion uses to define a hypersurface of simultaneity, while the rectangle represents
the same thing for Cerulean. Notice that Cerulean’s worldline and line of simultaneity are diagonals along his
light rectangle, so the angles between those lines and the lightcone are equal. Notice also that the areas of the
square and the rectangle are the same, which expresses the fact that the area is multiplied by the determinant
of the Lorentz transformation matrix, which must be one (why?). Use your geometric construction to derive
the mathematical form of the Lorentz transformation.

Exercise 1.4. 3D model of the Lorentz transformation. Make a 3D spacetime diagram of the Lorentz
transformation, something like that in Figure 1.4, with not only an z-dimension, as in Exercise 1.3, but also
a y-dimension. You can use a 3D computer modelling program, or you can make a real 3D model. Make the
lightcone from flexible paperboard, the spatial hypersurface of simultaneity from stiff paperboard, and the
worldline from wooden dowel.

Exercise 1.5. Mathematical derivation of the Lorentz transformation. Relative to person A (Ver-
milion, unprimed frame), person B (Cerulean, primed frame) moves at velocity v along the z-axis. Derive
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the form of the Lorentz transformation between the coordinates (¢, x,y, z) of a 4-vector in A’s frame and the
corresponding coordinates (t/,z’,y', 2’) in B’s frame from the assumptions:

1.
2.
3.

that the transformation is linear;

that the spatial coordinates in the directions orthogonal to the direction of motion are unchanged;
that the speed of light ¢ is the same for both A and B, so that = ¢ in A’s frame transforms to 2’ = ¢/
in B’s frame, and likewise = —t in A’s frame transforms to 2’ = —t' in B’s frame;

the definition of speed; if B is moving at speed v relative to A, then x = vt in A’s frame transforms to
2z’ = 0 in B’s frame;

spatial isotropy; specifically, show that if A thinks B is moving at velocity v, then B must think that A
is moving at velocity —v, and symmetry (spatial isotropy) between these two situations then fixes the
Lorentz ~ factor.

Your logic should be precise, and explained in clear, concise English.

You should find that the Lorentz transformation for a Lorentz boost by velocity v along the z-axis is

' = ~yt— -z t yt' + yvx'
7 = —qut+z z = ~yot' + 2
y o=y oy =Y (14)
Z = =z z 2’
The transformation can be written more elegantly in matrix notation:
t’ v —yw 0 0 t
!/
—yv v 0 0 T
171 o 0o 10 ’ (1.5)
Y Y
2! 0 0 0 1 z
with inverse
t v qv 0 0 t/
x yv v 0 0 x’ (1.6)
Yy 0 0 10 y' ’
z 0 0 01 2!

A Lorentz transformation at velocity v followed by a Lorentz transformation at velocity v in the opposite
direction, i.e. at velocity —uv, yields the unit transformation, as it should:

v v 0 0 ol —yv 0 0 1 0 0 0

yv v 0 0 —yv v 0 0 _ 01 00 (1.7)
0 0 1 0 0 0 10 0 01 0
0 0 01 0 0 01 0 0 0 1



22 Special Relativity
The determinant of the Lorentz transformation is one, as it should be:

ol —yv 0 0
—vv v 0 0
0 0 10
0 0 0 1

=71 -2?)=1. (1.8)

Indeed, requiring that the determinant be one provides another derivation of the formula (1.3) for the Lorentz
gamma factor.

Concept question 1.6. Determinant of a Lorentz transformation. Why must the determinant of a
Lorentz transformation be one?

1.7 Paradoxes: Time dilation, Lorentz contraction, and the Twin paradox

There are several classic paradoxes in special relativity. One of them has already been met above, the paradox
of the constancy of the speed of light in §1.3. This section collects three famous paradoxes: time dilation,
Lorentz contraction, and the Twin paradox.

If you wish to understand special relativity conceptually, then you should work through all these paradoxes
yourself. As remarked in §1.4, most (all?) paradoxes in special relativity arise because different observers
have different notions of simultaneity, and most (all?) paradoxes can be solved using spacetime diagrams.

The Twin paradox is particularly helpful because it illustrates several different facets of special relativity,
not only time dilation, but also how light travel time modifies what an observer actually sees.

1.7.1 Time dilation

If a timelike interval {¢,r} corresponds to motion at velocity v, then r = wvt. The proper time along the
interval is

7':\/2?2—7"2225\/1—112:%. (1.9)

This is Lorentz time dilation: the proper time interval 7 experienced by a moving person is a factor v less
than the time interval ¢ according to an onlooker.

1.7.2 Fitzgerald-Lorentz contraction

Consider a rocket of proper length [, so that in the rocket’s own rest frame (primed) the back and front ends
of the rocket move through time ¢’ with coordinates

{t',2'} = {t',0} and {t',I}. (1.10)
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From the perspective of an observer who sees the rocket move at velocity v in the z-direction, the worldlines
of the back and front ends of the rocket are at

{t,x} = {yt',yot'} and {yt' + yol,yot’ +~1} . (1.11)

However, the observer measures the length of the rocket simultaneously in their own frame, not the rocket
frame. Solving for v¢' =t at the back and ~t' + yvl =t at the front gives

{t,z} = {t,vt} and {Lvt + i} (1.12)

which says that the observer measures the front end of the rocket to be a distance I/ ahead of the back
end. This is Lorentz contraction: an object of proper length [ is measured by a moving person to be shorter
by a factor ~.

Exercise 1.7. Time dilation. On a spacetime diagram such as that in the left panel of Figure 1.10, show
how two observers moving relative to each other can both consider the other’s clock to run slow compared

to their own.
% f-

Figure 1.10 (Left) Time dilation, and (right) Lorentz contraction spacetime diagrams.

Exercise 1.8. Lorentz contraction. On a spacetime diagram such as that in the right panel Figure 1.10,
show how two observers moving relative to each other can both consider the other to be contracted along
the direction of motion.

Concept question 1.9. Is one side of a cube shorter than the other? Figure 1.11 shows a picture
of a 3-dimensional cube. Is one edge shorter than the other? Projected on to the page, it appears so, but in
reality all the edges have equal length. In what ways is this situation similar or dissimilar to time dilation
and Lorentz contraction in 4-dimensional relativity?
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Figure 1.11 A cube. Are the lengths of its sides all equal?

Exercise 1.10. Twin paradox. Your twin leaves you on Earth and travels to the spacestation Alpha,
¢ = 3 lyr away, at a good fraction of the speed of light, then immediately returns to Earth at the same speed.
Figure 1.12 shows on a spacetime diagram the corresponding worldlines of both you and your twin. Aside

from part 1 and the first part of 2, you should derive your answers mathematically, using logic and Lorentz

transformations. However, the diagram is accurately drawn, and you should be able to check your answers
by measuring.
1. On a spacetime diagram such that in Figure 1.12, label the worldlines of you and your twin. Draw the

worldline of a light signal which travels from you on Earth, hits Alpha just when your twin arrives,
and immediately returns to Earth. Draw the twin’s “now” (line of simultaneity) when just arriving at
Alpha, and the twin’s “now” (line of simultaneity) just departing from Alpha (in the first case the twin
is moving toward Alpha, while in the second case the twin is moving back toward Earth).

. From the diagram, measure the twin’s speed v relative to you, in units where the speed of light is unity,

¢ = 1. Deduce the Lorentz gamma factor -y, and the redshift factor 14+ z = [(1 +v)/(1 — v)]*/2, in the
cases (i) where the twin is receding, and (ii) where the twin is approaching.

Choose the spacetime origin to be the event where the twin leaves Earth. Argue that the position
4-vector of the twin on arrival at Alpha is

{t,z,y,2z} = {£/v,£,0,0} . (1.13)

Lorentz transform this 4-vector to determine the position 4-vector of the twin on arrival at Alpha, in
the twin’s frame. Express your answer first in terms of ¢, v, and v, and then in (light)years. State in
words what this position 4-vector means.

How much do you and your twin age respectively during the round trip to Alpha and back? What is
the ratio of these ages? Express your answers first in terms of £, v, and +, and then in years.

What is the distance between the Earth and Alpha from the twin’s point of view? What is the ratio
of this distance to the distance between Earth and Alpha from your point of view? Explain how your
arrived at your result. Express your answer first in terms of ¢, v, and ~, and then in lightyears.

You watch your twin through a telescope. How much time do you see (through the telescope) elapse
on your twin’s wristwatch between launch and arrival on Alpha? How much time passes on your own
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Figure 1.12 Twin paradox spacetime diagram.

wristwatch during this time? What is the ratio of these two times? Express your answers first in terms
of £, v, and v, and then in years.

. On arrival at Alpha, your twin looks back through a telescope at your wristwatch. How much time does
your twin see (through the telescope) has elapsed since launch on your watch? How much time has
elapsed on the twin’s own wristwatch during this time? What is the ratio of these two times? Express
your answers first in terms of ¢, v, and ~, and then in years.

. You continue to watch your twin through a telescope. How much time elapses on your twin’s wristwatch,
as seen by you through the telescope, during the twin’s journey back from Alpha to Earth? How much
time passes on your own watch as you watch (through the telescope) the twin journey back from Alpha
to Earth? What is the ratio of these two times? Express your answers first in terms of ¢, v, and ~, and
then in years.

. During the journey back from Alpha to Earth, your twin likewise continues to look through a telescope
at the time registered on your watch. How much time passes on your wristwatch, as seen by your twin
through the telescope, during the journey back? How much time passes on the twin’s wristwatch from
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the twin’s point of view during the journey back? What is the ratio of these two times? Express your
answers first in terms of ¢, v, and v, and then in years.

Concept question 1.11. What breaks the symmetry between you and your twin? From your
point of view, you saw the twin recede from you at velocity v on the outbound journey, then approach you
at velocity v on the inbound journey. But the twin saw the essentially same thing: from the twin’s point of
view, the twin saw you recede at velocity v on the outbound journey, then approach the twin at velocity
v on the inbound journey. Isn’t the situation symmetrical, so shouldn’t you and the twin age identically?
What breaks the symmetry, allowing your twin to age less?

1.8 The spacetime wheel

1.8.1 Wheel

Figure 1.13 shows an ordinary 3-dimensional wheel. As the wheel rotates, a point on the wheel describes an
invariant circle. The coordinates {z,y} of a point on the wheel relative to its centre change, but the distance
r between the point and the centre remains constant

r? = 2% + y® = constant . (1.14)
More generally, the coordinates {z,y, z} of the interval between any two points in 3-dimensional space (a
vector) change when the coordinate system is rotated in 3 dimensions, but the separation r of the two points
remains constant

r? = 2® + y® + 2% = constant . (1.15)

Figure 1.13 A wheel.
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Figure 1.14 A spacetime wheel.

1.8.2 Spacetime wheel

Figure 1.14 shows a spacetime wheel. The diagram here is a spacetime diagram, with time ¢ vertical and
space x horizontal. A rotation between time ¢ and space z is a Lorentz boost in the z-direction. As the
spacetime wheel boosts, a point on the wheel describes an invariant hyperbola. The spacetime coordinates
{t,z} of a point on the wheel relative to its centre change, but the spacetime separation s between the point
and the centre remains constant

s? = —t*> + 22 = constant . (1.16)

More generally, the coordinates {¢, z,y, z} of the interval between any two events in 4-dimensional spacetime
(a 4-vector) change when the coordinate system is boosted or rotated, but the spacetime separation s of the
two events remains constant

s = —t* + 2% + y* + 2* = constant . (1.17)

1.8.3 Lorentz boost as a rotation by an imaginary angle

The — sign instead of a + sign in front of the 2 in the spacetime separation formula (1.17) means that time
t can often be treated mathematically as if it were an imaginary spatial dimension. That is, ¢ = iw where
i =+/—1 and w is a “fourth spatial coordinate.”

A Lorentz boost by a velocity v can likewise be treated as a rotation by an imaginary angle. Consider a
normal spatial rotation in which a primed frame is rotated in the waz-plane clockwise by an angle a about
the origin, relative to the unprimed frame. The relation between the coordinates {w’, 2’} and {w,z} of a

point in the two frames is
w' '\ [ cosa —sina w (1.18)
) \ sina cosa x ' )
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Now set t = iw and o = ia with ¢ and « both real. In other words, take the spatial coordinate w to be
imaginary, and the rotation angle a likewise to be imaginary. Then the rotation formula above becomes

t/ cosha —sinha t
( ' ) N < —sinha  cosha > ( T ) (1.19)

This agrees with the usual Lorentz transformation formula (1.5) if the boost velocity v and boost angle «
are related by

v =tanha , (1.20)

so that
v=cosha, ~v=sinha. (1.21)

The boost angle « is commonly called the rapidity. This provides a convenient way to add velocities in
special relativity: the rapidities simply add (for boosts along the same direction), just as spatial rotation
angles add (for rotations about the same axis). Thus a boost by velocity v; = tanh a; followed by a boost
by velocity v, = tanh cg in the same direction gives a net velocity boost of v = tanh o where

a=a1+as. (1.22)

The equivalent formula for the velocities themselves is

v+

_ 1.23
o0 (1.23)

the special relativistic velocity addition formula.

1.8.4 Trip across the Universe at constant acceleration

Suppose that you took a trip across the Universe in a spaceship, accelerating all the time at one Earth
gravity g. How far would you travel in how much time?

The spacetime wheel offers a cute way to solve this problem, since the rotating spacetime wheel can be
regarded as representing spacetime frames undergoing constant acceleration. Points on the right quadrant of
the rotating spacetime wheel, Figure 1.15, represent worldlines of persons who accelerate with constant ac-
celeration in their own frame. The spokes of the spacetime wheel are lines of simultaneity for the accelerating
persons.

If the units of space and time are chosen so that the speed of light and the gravitational acceleration are
both one, ¢ = g = 1, then the proper time experienced by the accelerating person is the rapidity «, and the
time and space coordinates of the accelerating person, relative to a person who remains at rest, are those of
a point on the spacetime wheel, namely

{t, x} = {sinh o, cosha} . (1.24)
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Figure 1.15 The right quadrant of the spacetime wheel represents the worldlines and lines of simultaneity of persons
who accelerate in the x direction with uniform acceleration in their own frames.

In the case where the acceleration is one Earth gravity, ¢ = 9.80665 ms~2, the unit of time is

¢ 299,792,458 ms!
¢ _ 220 —0.97
g 9.80665ms2 v

Table 1.1: Trip across the Universe.

Time elapsed

Time elapsed

(1.25)

on spaceship on Earth Distance travelled To
in years in years in lightyears
Q sinh o cosha —1
0 0 0 Earth (starting point)
1 1.175 5431
2 3.627 2.762
2.34 5.12 4.22 Proxima Cen
3.962 26.3 25.3 Vega
6.60 368 367 Pleiades
10.9 2.7 x 10* 2.7 x 10* Centre of Milky Way
154 2.44 x 108 2.44 x 108 Andromeda galaxy
18.4 4.9 x 107 4.9 x 107 Virgo cluster
19.2 1.1 x 108 1.1 x 108 Coma cluster
25.3 5 x 1010 5 x 1010 Edge of observable Universe
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just short of one year. For simplicity, Table 1.1, which tabulates some milestones along the way, takes the
unit of time to be exactly one year, which would be the case if you were accelerating at 0.97 g = 9.5ms2.

After a slow start, you cover ground at an ever increasing rate, crossing 50 billion lightyears, the distance
to the edge of the currently observable Universe, in just over 25 years of your own time.

Does this mean you go faster than the speed of light? No. From the point of view of a person at rest
on Earth, you never go faster than the speed of light. From your own point of view, distances along your
direction of motion are Lorentz-contracted, so distances that are vast from Earth’s point of view appear
much shorter to you. Fast as the Universe rushes by, it never goes faster than the speed of light.

This rosy picture of being able to flit around the Universe has drawbacks. Firstly, it would take a huge
amount of energy to keep you accelerating at g. Secondly, you would use up a huge amount of Earth time
travelling around at relativistic speeds. If you took a trip to the edge of the Universe, then by the time
you got back not only would all your friends and relations be dead, but the Earth would probably be gone,
swallowed by the Sun in its red giant phase, the Sun would have exhausted its fuel and shrivelled into a
cold white dwarf star, and the Solar System, having orbited the Galaxy a thousand times, would be lost
somewhere in its milky ways.

Technical point. The Universe is expanding, so the distance to the edge of the currently observable Universe
is increasing. Thus it would actually take longer than indicated in the table to reach the edge of the currently
observable Universe. Moreover if the Universe is accelerating, as evidence from the Hubble diagram of Type Ia
Supernovae indicates, then you will never be able to reach the edge of the currently observable Universe,
however fast you go.

Exercise 1.12. Length of a particle accelerator that reaches the GUT or Planck scale. Consider
a linear particle accelerator able to accelerate particles at constant acceleration g in the particles’ own
frame.
1. How long must the particle accelerator be to reach a Lorentz gamma factor of 7
2. Estimate the acceleration g for a contemporary accelerator such as the Large Hadron Collider.
3. Estimate the length of a particle accelerator needed to accelerate a proton, rest mass 1 GeV, to a GUT
energy of 10'6 GeV, or alternatively to a Planck energy of 10!° GeV.
4. Show that a GUT density of 1 GUT mass per (GUT length)?3 is about 10%* times the density of water.
Approximately what is the Planck density relative to the density of water?
5. To what Lorentz v factor would you have to accelerate two rocks so that they achieve a GUT or Planck
density when slammed together? How long would the particle accelerator be to achieve this v factor?
Solution.
1. The rapidity « achieved by a particle that accelerates at constant acceleration g in its own frame for a
proper time 7 is

a== (1.26)

The Lorentz gamma factor « is related to the rapidity by v = cosh «, equation (1.21). The distance z
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the particle moves in the background frame is

c? c?
x=—(cosha—1)=—(y—1). (1.27)
) )

In the highly relativistic regime, v > 1, the distance travelled is

Tr =

2
e (1.28)
g
The distance x increases linearly with ~.
2. The Large Hadron Collider (LHC) accelerates protons and heavier nuclei to energies of order 1TeV,
whereat a proton has a gamma, factor of v =~ 103. The acceleration occurs over scales of kilometres, or
102 m. So the acceleration is about one per metre,

g _
7%11'1’11.
C

(1.29)

3. A GUT energy of 10'® GeV requires a gamma factor of 106, hence a particle accelerator of length
r~10°%m~1lyr. (1.30)
A Planck energy of 10' GeV requires a particle accelerator of length
x~ 10" m ~ 1000lyr . (1.31)

4. The Planck energy 10'? GeV is 10 higher than the GUT density 10'® GeV. The Planck density is then
(10%)* = 10'2 times higher than the GUT density of 108! gm cm~3. The Planck density is 10 gm cm 3.

5. When two objects are slammed together at Lorentz factor -, the energy of each object is enhanced by
a factor v, and the length of each object is contracted along the direction of motion by another factor
of ~y, so overall the density is increased by a factor of 42. To reach a GUT density of 108! gm cm™3
by slamming together two rocks of initial density say 10 gmcm™3 would require a gamma factor of
V1080 = 10%°. Which would require a particle accelerator of length 10*°m, or 10?*lyr, or about 104
times the size of the observable Universe.

1.9 Scalar spacetime distance

The fact that Lorentz transformations leave unchanged a certain distance, the spacetime distance, between
any two events in spacetime is one the most fundamental features of Lorentz transformations. The scalar
spacetime distance As between two events separated by {At, Az, Ay, Az} is given by

As? = — At? + Ar?
= — A + A2? + Ay? + A2 (1.32)
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A quantity such as As? that remains unchanged under any Lorentz transformation is called a scalar. You
should check yourself that As? is unchanged under Lorentz transformations (see Exercise 1.14). Lorentz
transformations can be defined as linear spacetime transformations that leave As? invariant.

The single scalar spacetime squared interval As? replaces the two scalar quantities

time interval At

1.33
spatial interval Ar = \/A:c2 + Ay2 + Az? ( )

of classical Galilean spacetime.

1.9.1 Timelike, lightlike, spacelike

The scalar spacetime distance squared As?, equation (1.32), between two events can be negative, zero, or
positive. A spacetime interval {At, Az, Ay, Az} = {At, Ar} is called

timelike if At > Ar or equivalently if As? <0,
null or lightlike if At = Ar or equivalently if As?> =0, (1.34)
spacelike if At < Ar or equivalently if As? >0,

as illustrated in Figure 1.16.

Figure 1.16 Spacetime diagram illustrating timelike, lightlike, and spacelike intervals.

1.9.2 Proper time, proper distance

The scalar spacetime distance squared As? has a physical meaning.
If an interval {At, Ar} is timelike, At > Ar, then the square root of minus the spacetime interval squared
is the proper time A7 along it

AT = V/—As2 = /A2 — Ar? . (1.35)

This is the time experienced by an observer moving along that interval.
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If an interval {At, Ar} is spacelike, At < Ar, then the spacetime interval equals the proper distance

Al along it
Al = VAs?2 = Ar2 — At? . (1.36)

This is the distance between two events measured by an observer for whom those events are simultaneous.

Concept question 1.13. Proper time, proper distance. Justify the assertions (1.35) and (1.36).

1.9.3 Minkowski metric
It is convenient to denote an interval using an index notation,
Ax™ = {At, Ar} = {At, Az, Ay, Az} . (1.37)

The indices run over m = t,z,y, z, or sometimes m = 0,1, 2, 3. The scalar spacetime length squared As? of
an interval Axz™ can be abbreviated

AS% = n Az Az™ | (1.38)
where 7, is the Minkowski metric
-1 0 0 0
0 1 0 0
= 1.
Nimn 0 0 1 0 (1.39)
0 0 0 1

Equation (1.38) uses the implicit summation convention, according to which paired indices, one lowered
and one raised, are implicitly summed over.

1.10 4-vectors

1.10.1 Contravariant 4-vector

Under a Lorentz transformation, a coordinate interval Az™ transforms as
Az™ — Az = L™, Az" | (1.40)

where L™,, denotes a Lorentz transformation. The paired indices n on the right hand side of equation (1.40),
one lowered and one raised, are implicitly summed over. In matrix notation, L™, is a 4 x 4 matrix. For
example, for a Lorentz boost by velocity v along the z-axis, L™, is the matrix on the right hand side of
equation (1.5).

In special relativity a contravariant 4-vector is defined to be a quantity

a™ ={a',a",a%,a*} , (1.41)
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that transforms under Lorentz transformations like an interval Az™ of spacetime,
a™ —a™=L",a" . (1.42)

The indices run over m = t, x,y, z, or sometimes m = 0, 1,2, 3.

1.10.2 Covariant 4-vector

In special and general relativity, besides the contravariant 4-vector a™, with raised indices, it is convenient
to introduce a covariant 4-vector a,,, with lowered indices, obtained by multiplying the contravariant
4-vector by the metric,

Am, = Nmna” (1.43)
With the Minkowski metric (1.39), the covariant components a,, are

am = {—a',a",a¥,a*} , (1.44)

m

which differ from the contravariant components ¢ only in the sign of the time component.

The reason for introducing the two species of vector is that their implicitly summed product

a" Gy = Nmpa’™a”

= asa’ + aza” + aya? + a,a”
=—(a")? + (a")* + (a")* + (a*)? (1.45)
is a Lorentz scalar, a fact you will prove in Exercise 1.14.
The notation may seem overly elaborate, but it proves extremely useful in general relativity, where the

metric is more complicated than Minkowski. Further discussion of the formalism of 4-vectors is deferred to
Chapter 2.

Exercise 1.14. Scalar product. Suppose that a™ and b™ are two 4-vectors. Show that a,,b™ is a scalar,
that is, it is unchanged by any Lorentz transformation. [Hint: For the Minkowski metric of special relativity,
A b™ = — albt + a®b® + a¥b¥ + a*b*. Show that a/,b'™ = a,,b™. You may assume without proof the familiar
result that the 3D scalar product a - b = a®b* + a¥b¥ + a*b* of two 3-vectors is unchanged by any spatial
rotation, so it suffices to consider a Lorentz boost, say in the x direction.]

Exercise 1.15. The principle of longest proper time. Consider a person whose worldline goes from
spacetime event Py to spacetime event P; at velocity vy relative to some inertial frame, and then from P;
to spacetime event P, at velocity vo, as illustrated in Figure 1.17. Assume for simplicity that the velocities
are both in the (positive or negative) z-direction. Show that the proper time along a straight line from P,
to P, is always greater than or equal to the sum of the proper times along the two straight lines from F,
to P, followed by P; to P». Hence conclude that the longest proper time between two events is a straight
line. What does this imply about the twin paradox? [Hint: It is simplest to use rapidities « rather than
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Py

PO X
Figure 1.17 The longest proper time between Py and P» is a straight line.
velocities. Let the segment from Py to Py be {t1,21} = 11{cosh a;,sinh a1 }, and the segment from P; to P,

be {t2, 2} = m9{cosh ay, sinh as}. The segment from Py to Py is the sum of these, {t,x} = {t1 +t2, 21 + z2}.
Show that

7% — (11 + 12)* = 4m 72 8inh? (a2 ;a1> ; (1.46)

which is a minimum for ag = ay.]

1.11 Energy-momentum 4-vector

The foremost example of a 4-vector other than the interval Az™ is the energy-momentum 4-vector.

One of the great insights of modern physics is that conservation laws are associated with symmetries.
The Principle of Special Relativity asserts that the laws of physics should take the same form at any point.
There is no preferred origin in spacetime in special relativity. In special relativity, spacetime has translation
symmetry with respect to both time and space. Associated with those symmetries are laws of conservation
of energy and momentum:

Symmetry Conservation law

Time translation  Energy
Space translation Momentum

Since one-dimensional time and three-dimensional space are united in special relativity, this suggests that
the single component of energy and the three components of momentum should be combined into a 4-vector:

ener = time component
Herey P of a 4-vector. (1.47)
momentum = space component
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The Principle of Special Relativity requires that the equation of energy-momentum conservation

energy

= constant (1.48)
momentum

should take the same form in any inertial frame. The equation should be Lorentz covariant, that is, the
equation should transform like a Lorentz 4-vector.

1.11.1 Construction of the energy-momentum 4-vector

The energy-momentum 4-vector of a particle of mass m at position {¢,r} moving at velocity v = dr/dt can
be derived by requiring

1. that is a 4-vector, and

2. that it goes over to the Newtonian limit as v — 0.
In the Newtonian limit, the 3-momentum p equals mass m times velocity v,

d
p=mv= md—:; . (1.49)

To obtain a 4-vector, two things must be done to the Newtonian momentum:
1. replace r by a 4-vector z" = {t,r}, and
2. replace dt by a scalar; the only available scalar measure of time is the proper time interval dr along the
worldline of the particle.
The result is the energy-momentum 4-vector p™:

n dz™
= MM ——-
p dr
ol ar
o dr’ dr
=m{y, yv} . (1.50)

The components of the energy-momentum 4-vector are the special relativistic versions of energy FE and
momentum p,

p" =A{E, p} = {my, myv} . (1.51)

1.11.2 Special relativistic energy

From equation (1.51), the special relativistic energy FE is the product of the rest mass and the Lorentz
~-factor,

E=my (unitsc=1), (1.52)

or, restoring standard units,

E =mcy . (1.53)
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For small velocities v, the Taylor expansion of the Lorentz factor ~y is

10?2

I+ -=+... 1.54
+3a+ (1.54)

1
T VI—v2/2

Thus for small velocities, the special relativistic energy F Taylor expands as

102
E=mc* (14— + ...
mce ( +202+ )
2, 1 5
=mc —|—§mv + ... (1.55)

The first term, mc?, is the rest-mass energy. The second term, %va, is the non-relativistic kinetic energy.
Higher-order terms give relativistic corrections to the kinetic energy.

Einstein did not discard the constant term, but rather interpreted it seriously as indicating that mass
contains energy, the rest-mass energy

E =mc* (1.56)

perhaps the most famous equation in all of physics.

1.11.3 Rest mass is a scalar

The scalar quantity constructed from the energy-momentum 4-vector p"™ = {E, p} is

pap" = —E*+p°
= —m*(y* = ~*?)

= —m?, (1.57)

minus the square of the rest mass. The minus sign is associated with the choice —+++ of metric signature
in this book.

Elementary texts sometimes state that special relativity implies that the mass of a particle increases as its
velocity increases, but this is a confusing way of thinking. Mass is rest mass m, a scalar, not to be confused
with energy. That being said, Einstein’s famous equation (1.56) does suggest that rest mass is a form of
energy, and indeed that proves to be the case. Rest mass is routinely converted into energy in chemical or
nuclear reactions that liberate heat.

1.12 Photon energy-momentum

The energy-momentum 4-vectors of photons are of special interest because when you move through a scene
at near the speed of light, the scene appears distorted by the Lorentz transformation of the photon 4-vectors
that you see.
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A photon has zero rest mass
m=20. (1.58)
Its scalar energy-momentum squared is thus zero,
pop" =—E*+p°=-m*>=0. (1.59)
Consequently the 3-momentum of a photon equals its energy (in units ¢ = 1),
p=|p|=F. (1.60)
The energy-momentum 4-vector of a photon therefore takes the form
p" ={E, p}
=E{1, n}
= hv{l, n} (1.61)

where v is the photon frequency. The photon velocity is i, a unit vector. The photon speed is one, the speed
of light.

1.12.1 Lorentz transformation of the photon energy-momentum 4-vector

The energy-momentum 4-vector p” of a photon follows the usual rules for 4-vectors under Lorentz transfor-
mations. In the case that the emitter (primed frame) is moving at velocity v along the z-axis relative to the
observer (unprimed frame), the transformation is

I v —yw 00 P v(p" — vp”)
I B e R AN P Y(p* —vp) (1.62)
P 0O 0 10 Y Y ' ‘
p'* 0 0 0 1 p* p?
Equivalently
1 vy —yv 0 0 ~v(1 — n"v)
!
el v oy 000 n _ y(n® —v)
hv v | = 0 0 1 0 hv o | = hv ny . (1.63)
n'# 0 0 0 1 n n®
These mathematical relations imply the rules of 4-dimensional perspective, §1.13.2.

1.12.2 Redshift
The wavelength X of a photon is related to its frequency v by

A=c/v. (1.64)
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Astronomers define the redshift z of a photon by the shift of the observed wavelength \,,s compared to its

emitted wavelength Aqp,,

Aobs — Aem
Aem '

In relativity, it is often more convenient to use the redshift factor 1+ z,

z

(1.65)

Aobs Vem
1 = — = —. 1.66
2 )\cm Vobs ( )

Sometimes it is useful to use a blueshift factor which is just the reciprocal of the redshift factor,

1 )\em Vobs
=—. 1.67
1+2 Aobs Vem ( )

1.12.3 Special relativistic Doppler shift

If the emitter frame (primed) is moving with velocity v in the x-direction relative to the observer frame
(unprimed) then the emitted and observed frequencies are related by, equation (1.63),

hVem = honsy(1 — n®v) . (1.68)
The redshift factor is therefore
Vem
1+z=—
Vobs
=51 = n*v)
=7(1-mn-v). (1.69)

Equation (1.69) is the general formula for the special relativistic Doppler shift. In special cases,

1_
1/ H—J velocity directly towards observer (v aligned with n) |
v

142z= ¥ velocity in the transverse direction (v -n =0) , (1.70)

/1
# velocity directly away from observer (v anti-aligned with n) .
—v

1.13 What things look like at relativistic speeds

1.13.1 Light travel time effects

When you move through a scene at near the speed of light, the scene appears distorted not only by time
dilation and Lorentz contraction, but also by differences in the light travel time from different parts of the
scene. The effect of differential light travel times is comparable to the effects of time dilation and Lorentz
contraction, and cannot be ignored.
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An excellent way to see the importance of light travel time is to work through the twin paradox, Exer-
cise 1.10. Nature provides a striking example of the importance of light travel time in the form of superluminal
(faster-than-light) jets in galaxies, the subject of Exercise 1.16.

Exercise 1.16. Superluminal jets.

Radio observations of galaxies show in many cases twin jets emerging from the nucleus of the galaxy. The
jets are typically narrow and long, often penetrating beyond the optical extent of the galaxy. The jets are
frequently one-sided, and in some cases that are favourable to observation the jets are found to be superlu-
minal. A celebrated example is the giant elliptical galaxy M87 at the centre of the Local Supercluster, whose
jet is observed over a broad range of wavelengths, including optical wavelengths. Hubble Space Telescope
observations, Figure 1.18, show blobs in the M87 jet moving across the sky at approximately 6Gc.

1. Draw a spacetime diagram of the situation, in Earth’s frame of reference. Assume that the velocity of
the galaxy M8T7 relative to Earth is negligible. Let the z-axis be the direction to M87. Choose the y-axis
so the jet lies in the z—y-plane. Let the jet be moving at velocity v at angle 6 away from the direction
towards us on Earth, so that its spatial velocity relative to Earth is v = {v,,v,} = {—vcosf,vsin6}.

2. In Earth coordinates {t, z,y}, the jet moves in time ¢ a distance I = {l;,{,} = vt. Argue that during an

1994

1995

1996

1997

1998

6.0 55 6.1 6.0

Figure 1.18 The left panel shows an image of the galaxy M87 taken with the Advanced Camera for Surveys on the
Hubble Space Telescope. A jet, bluish compared to the starry background of the galaxy, emerges from the galaxy’s
central nucleus. Radio observations, not shown here, reveal that there is a second jet in the opposite direction. Credit:
STScI/AURA. The right panel is a sequence of Hubble images showing blobs in the jet moving superluminally, at
approximately 6¢. The slanting lines track the moving features, with speeds given in units of ¢. The upper strip shows
where in the jet the blobs were located. Credit: John Biretta, STScl.
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Earth time ¢, the jet has moved a distance [, nearer to the Earth (the distances I, and [, are both tiny
compared to the distance to M87), so the apparent time as seen through a telescope is not ¢, but rather
t diminished by the light travel time [, (units ¢ = 1). Hence conclude that the apparent transverse
velocity on the sky is

in 6
vsin (1.71)

Vppp = ———————— .
PP —weos

3. Sketch the apparent velocity vapp as a function of 6 for some given velocity v. In terms of v and the
Lorentz factor v, what are the values of 6§ and of v,,, at the point where v, reaches its maximum?
What can you conclude about the jet in M877

4. What is the expected redshift 1+ z, or equivalently blueshift 1/(1 + z), of the jet as a function of v and
67 By expressing v in terms of v,p, and 6 using equation (1.71), show that the blueshift factor is

1
142
[Hint: Remember to use the correct redshift formula, equation (1.69).]

5. In terms of vapp, at what value of 6 is the blueshift (i) infinite, or (ii) zero? What are these angles in
the case of M877 If the redshift of the jet were measurable, could you deduce the velocity v and opening
angle 07 Unfortunately the redshift of a superluminal jet is not usually observable, because the emission
is a continuum of synchrotron emission over a broad range of wavelengths, with no sharp atomic or ionic
lines to provide a redshift.

6. Why is the opposing jet not visible?

= /1 + 2uapp cOt 6 — 02, - (1.72)

app

1.13.2 The rules of 4-dimensional perspective

The distortion of a scene when you move through it at near the speed of light can be calculated most directly
from the Lorentz transformation of the energy-momentum 4-vectors of the photons that you see. The result
is what I call the “Rules of 4-dimensional perspective.”

Figure 1.19 illustrates the rules of 4-dimensional perspective, also called “special relativistic beaming,”
which describe how a scene appears when you move through it at near light speed.

On the left, you are at rest relative to the scene. Imagine painting the scene on a celestial sphere around
you. The arrows represent the directions of light rays (photons) from the scene on the celestial sphere to you
at the center.

On the right, you are moving to the right through the scene, at 0.8 times the speed of light. The celestial
sphere is stretched along the direction of your motion by the Lorentz gamma-factor v =1/v/1—0.82 =5/3
into a celestial ellipsoid. You, the observer, are not at the centre of the ellipsoid, but rather at one of its foci
(the left one, if you are moving to the right). The focus of the celestial ellipsoid, where you the observer are, is
displaced from centre by yv = 4/3. The scene appears relativistically aberrated, which is to say concentrated
ahead of you, and expanded behind you.

The lengths of the arrows are proportional to the energies, or frequencies, of the photons that you see.
When you are moving through the scene at near light speed, the arrows ahead of you, in your direction
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Observer v =0.8

1 T
¥

Figure 1.19 The rules of 4-dimensional perspective. In special relativity, the scene seen by an observer moving through
the scene (right) is relativistically beamed compared to the scene seen by an observer at rest relative to the scene
(left). On the left, the observer at the center of the circle is at rest relative to the surrounding scene. On the right,
the observer is moving to the right through the same scene at v = 0.8 times the speed of light. The arrowed lines
represent energy-momenta of photons. The length of an arrowed line is proportional to the perceived energy of the
photon. The scene ahead of the moving observer appears concentrated, blueshifted, and farther away, while the scene
behind appears expanded, redshifted, and closer.

of motion, are longer than at rest, so you see the photons blue-shifted, increased in energy, increased in
frequency. Conversely, the arrows behind you are shorter than at rest, so you see the photons red-shifted,
decreased in energy, decreased in frequency. Since photons are good clocks, the change in photon frequency
also tells you how fast or slow clocks attached to the scene appear to you to run.

This table summarizes the four effects of relativistic beaming on the appearance of a scene ahead of you
and behind you as you move through it at near the speed of light:

Effect Ahead Behind
Aberration Concentrated Expanded
Colour Blueshifted Redshifted
Brightness  Brighter Dimmer
Time Speeded up Slowed down

Mathematical details of the rules of 4-dimensional perspective are explored in the next several Exercises.

Exercise 1.17. The rules of 4-dimensional perspective.
1. In terms of the photon energy-momentum 4-vector p* in an unprimed frame, what is the photon energy
momentum 4-vector p’* in a primed frame of reference moving at speed v in the z direction relative to
the unprimed frame? Argue that the photon 4-vectors in the unprimed and primed frames are related
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geometrically by the “celestial ellipsoid” transformation illustrated in Figure 1.19. Bear in mind that the
photon vector is pointed towards the observer.

2. Aberration. The photon 4-vector seen by an observer is the null vector p* = E(1, —n), where E is the
photon energy, and n is a unit 3-vector in the direction away from the observer, the minus sign taking
into account the fact that the photon vector is pointed towards the observer. An object appears in the
unprimed frame at angle 6 to the z-direction and in the primed frame at angle 6’ to the z-direction.
Show that p’ = cos@’ and p = cosf are related by

P
a o ltop

(1.73)

3. Redshift. By what factor a = E'/E is the observed photon frequency from the object changed? Express
your answer as a function of 7, v, and pu.

4. Brightness. Photons at frequency E in the unprimed frame appear at frequency E’ in the primed
frame. Argue that the brightness F'(E), the number of photons per unit time per unit solid angle per
log interval of frequency (about E in the unprimed frame, and E’ in the primed frame),

dN(E)
F(B)= 2 1.74
()= Gtdodn E ° (L.74)
goes as
F(E) Ed
E) _Edu _ s (1.75)

F(E)  BdZ
[Hint: Photons number conservation implies that dN'(E’) = dN(E).]
5. Time. By what factor does the rate at which a clock ticks appear to change?

Exercise 1.18. Circles on the sky. Show that a circle on the sky Lorentz transforms to a circle on the sky.
Let the primed frame be moving at velocity v in the z-direction, let # be the angle between the z-direction
and the direction m to the center of the circle, and let a be the angle between the circle axis m and the
photon direction n. Show that the angle 6’ in the primed frame is given by

sin 0

tan 6’ = 1.
an y(veosa +cosf) ’ (1.76)

and that the angular radius o/ in the primed frame is given by

sin o
tano = . 1.77
ana ~(cos a4+ v cos ) (L77)

[This result was first obtained by Penrose (1959) and Terrell (1959), prior to which it had been widely
thought that circles would appear Lorentz-contracted and therefore squashed. The following simple proof
was told to me by Engelbert Schucking (NYU). The set of null 4-vectors p* = E{1,—n} on the circle
satisfies the Lorentz-invariant equation z;p*® = 0, where 2* = |z|{— cosa, m} is a spacelike 4-vector whose
spatial components |x|m point to the center of the circle. Note that |z| is a magnitude of a 3-vector, not a
Lorentz-invariant scalar.]
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Exercise 1.19. Lorentz transformation preserves angles on the sky. From equation (1.73), show

that the angular metric do? = d#? + sin?6 d¢? on the sky Lorentz transforms as
1— 2

7vd02

(14 vcosh)?

This kind of transformation, which multiplies the metric by an overall factor, called a conformal factor, is
called a conformal transformation. The conformal transformation (1.78) of the angular metric shrinks

do"? = (1.78)

and expands patches on the sky while preserving their shapes, that is, while preserving angles between lines.

Exercise 1.20. The aberration of starlight. The aberration of starlight was discovered by James Bradley
(1728) through precision measurements of the position of v Draconis observed from London with a specially
commissioned “zenith sector.” Stellar aberration results from the annual motion of the Earth about the
Sun. Calculate the size of the effect, in arcseconds. Are special relativistic effects important? How does the
observational signature of stellar aberration differ from that of stellar parallax?

Concept question 1.21. Apparent (affine) distance. The rules of 4-dimensional perspective illustrated
in Figure 1.19 suggest that when you move through a scene at near lightspeed, the scene ahead looks farther
away (and not Lorentz-contracted at all). Is the scene really farther away, or is it just an illusion? Answer.
What is reality? In a deep sense, reality is what can be observed (by something, not necessarily a person).
So yes, the scene ahead really is farther away. Let the observer take a tape measure that is at rest relative
to the observer, and lay it out to the emitter. The laying has to be done in advance, because the emitter
is moving. Observers who move at different velocities lay out tapes that move at different velocities. The
observer moving faster toward the emitter indeed sees the emitter farther away, according to their tape
measure. The distance measured in this fashion is called the affine distance, §2.18, a measure of distance
along the past lightcone of the observer.

1.14 Occupation number, phase-space volume, intensity, and flux

Exercise 1.17 asked you to discover how the appearance of an emitter changes when the observer boosts
into a different frame. The change (1.75) in brightness can be derived at a more fundamental level from the
concepts of occupation number and phase-space volume.

The intensity of light can be described by the number dN of photons in a 3-volume element d®r of space
(as measured by an observer in their own rest frame) with momenta in a 3-volume element d®p of momentum
(again as measured by an observer). The 6-dimensional product d®r d®p of spatial and momentum 3-volumes,
called the phase-space volume, is Lorentz-invariant, unchanged by a boost or rotation of the observer’s frame
(see §10.26.1 for a proof). Indeed, as shown in §4.22, the phase-space volume element d>rd%p is invariant
under a wide range of transformations (called canonical transformations, §4.17).

In quantum mechanics, the phase volume divided by (27h)? (which is the same as h3; but in quantum
mechanics 7 is a more natural unit; for example, angular momentum is quantized in units of f, and spin in
units of %h) counts the number of free states of particles, here photons. Particles typically have spin, and an
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associated discrete number of distinct spin states. Photons have spin 1, and two spin states. The occupation
number f(¢,r,p) is defined to be the number of photons per state at time ¢ and spatial position r with
momenta p. The number dN of photons is the product of the occupation number f, the number g of spin
states, and the number d®r d®p/(27h)3 of free quantum states,
gd3rd3p

dN(t,r,p) = f(t,r,p) e (1.79)
The number dNV of photons, the occupation number f, the number g of spin states, and the phase volume
d®r d3p/(2mh)? are all Lorentz invariant.

Astronomers conventionally define the intensity I, of light observed from an object to be the energy
received per unit time ¢ per unit area A (of the telescope mirror or lens) per unit solid angle o per unit
frequency v. Often intensity is quoted per unit wavelength A or per unit energy FE instead of per unit
frequency v, and the intensity is subscripted accordingly, I or Ig. The intensity measures are related by
I,dv = I,d\ = IgdFE with A\ = ¢/v and E = 2rhv. The intensity Ir per unit energy is related to the
occupation number f by

EdN gp’

Ip=——m— =
E= GdAdodE ~  amn)

(1.80)

the spatial and momentum 3-volumes being d®r = cdt dA and d®p = p?dp do. The p? factor in equation (1.80)
reproduces the brightness factor a® = (E'/E)? in equation (1.75).

Stars typically appear to astronomers as point sources. Astronomers define the flux F,, from a source to be
the intensity I, integrated over the solid angle of the source. Again, flux is often quoted per unit wavelength
A or per unit energy F, and subscripted accordingly, F)\ or Fg.

Concept question 1.22. Brightness of a star. How does the flux from a star change when an observer
boosts into another frame? The flux that an observer, or a telescope, actually sees depends on the spectrum
of the light incident on the observer (the flux as a function of photon energy) and on the sensitivity of the
detector as a function of photon energy. But imagine a perfect detector that sees all photons incident on it,
of any photon energy.

Solution. The flux Fg in an interval dE of energy is

EdN gp? /
Fp= - do . 1.81
5= Grdade - “@anp ) 1% (1.81)

2

Since the solid angle varies as do o< p~2, while the occupation number f is Lorentz invariant, and the photon
energy and momentum are related by E = pc, the flux F varies as

Fgx E , (1.82)

that is, the flux is proportional to the blueshift factor. Physically, the observed number of photons per unit
time increases in proportion to the photon frequency. The flux integrated over d1n E counts the total number
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of photons observed per unit time, which again increases in proportion to the blueshift factor,

/FEdlnEocE . (1.83)

The flux integrated over dE counts the total energy observed per unit time, which increases as the square
of the blueshift factor,

/FE dE < E* . (1.84)

1.15 How to program Lorentz transformations on a computer

3D gaming programmers are familiar with the fact that the best way to program spatial rotations on a
computer is with quaternions. Compared to standard rotation matrices, quaternions offer increased speed
and require less storage, and their algebraic properties simplify interpolation and splining.

Section 1.8 showed that a Lorentz boost is mathematically equivalent to a rotation by an imaginary
angle. Thus suggests that Lorentz transformations might be treated as complexified spatial rotations, which
proves to be true. Indeed, the best way to program Lorentz transformation on a computer is with complex
quaternions, §14.5.

Figure 1.20 Tachyon spacetime diagram.

Exercise 1.23. Tachyons. A tachyon is a hypothetical particle that moves faster than the speed of light. The
purpose of this problem is to discover that the existence of tachyons would imply a violation of causality.
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. On a spacetime diagram such as that in Figure 1.20, show how a tachyon emitted by Vermilion at speed
v > 1 can appear to go backwards in time, with v < —1, in another frame, that of Cerulean.

. What is the smallest velocity that Cerulean must be moving relative to Vermilion in order that the
tachyon appears to go backwards in Cerulean’s time?

. Suppose that Cerulean returns the tachyonic signal at the same speed v > 1 relative to his own frame.
Show on the spacetime diagram how Cerulean’s tachyonic signal can reach Vermilion before she sent
out the original tachyon.

. What is the smallest velocity that Cerulean must be moving relative to Vermilion in order that his
tachyon reach Vermilion before she sent out her tachyon?

. Why is the situation problematic?

. If it is possible for Vermilion to send out a particle with v > 1, do you think it should also be possible
for her to send out a particle backward in time, with v < —1, from her point of view? Explain how she
might do this, or not, as the case may be.
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Concept Questions

What assumption of general relativity makes it possible to introduce a coordinate system?

Is the speed of light a universal constant in general relativity? If so, in what sense?

What does “locally inertial” mean? How local is local?

Why is spacetime locally inertial?

What assumption of general relativity makes it possible to introduce clocks and rulers?

Consider two observers at the same point and with the same instantaneous velocity, but one is acceler-
ating and the other is in free-fall. What is the relation between the proper time or proper distance along
an infinitesimal interval measured by the two observers? What assumption of general relativity implies
this?

Does Einstein’s principle of equivalence imply that two unequal masses will fall at the same rate in a
gravitational field? Explain.

In what respects is Einstein’s principle of equivalence (gravity is equivalent to acceleration) stronger
than the weak principle of equivalence (gravitating mass equals inertial mass)?

Standing on the surface of the Earth, you hold an object of negative mass in your hand, and drop it.
According to the principle of equivalence, does the negative mass fall up or down?

Same as the previous question, but what does Newtonian gravity predict?

You have a box of negative mass particles, and you remove energy from it. Do the particles move faster
or slower? Does the entropy of the box increase or decrease? Does the pressure exerted by the particles
on the walls of the box increase or decrease?

You shine two light beams along identical directions in a gravitational field. The two light beams are
identical in every way except that they have two different frequencies. Does the equivalence principle
imply that the interference pattern produced by each of the beams individually is the same?

What is a “straight line,” according to the principle of equivalence?

If all objects move on straight lines, how is it that when, standing on the surface of the Earth, you throw
two objects in the same direction but with different velocities, they follow two different trajectories?
In relativity, what is the generalization of the “shortest distance between two points”?

What kinds of general coordinate transformations are allowed in general relativity?

48



17.

18.
19.
20.
21.

22.
23.
24.

25.
26.
27.

28.

29.

30.

31.

32.
33.

34.
35.
36.
37.
38.
39.

40.
41.
42.
43.
44.

Concept Questions 49

In general relativity, what is a scalar? A 4-vector? A tensor? Which of the following is a scalar/vector/
tensor /none-of-the-above? (a) a set of coordinates x*; (b) a coordinate interval dx*; (c) proper time
T?

What does general covariance mean?

What does parallel transport mean?

Why is it important to define covariant derivatives that behave like tensors?

Is covariant differentiation a derivation? That is, is covariant differentiation a linear operation, and does
it obey the Leibniz rule for the derivative of a product?

What is the covariant derivative of the metric tensor? Explain.

What does a connection coefficient I'),, mean physically? Is it a tensor? Why, or why not?

An astronaut is in free-fall in orbit around the Earth. Can the astronaut detect that there is a gravita-
tional field?

Can a gravitational field exist in flat space?

How can you tell whether a given metric is equivalent to the Minkowski metric of flat space?

How many degrees of freedom does the metric have? How many of these degrees of freedom can be
removed by arbitrary transformations of the spacetime coordinates, and therefore how many physical
degrees of freedom are there in spacetime?

If you insist that the spacetime is spherical, how many physical degrees of freedom are there in the
spacetime?

If you insist that the spacetime is spatially homogeneous and isotropic (the cosmological principle), how
many physical degrees of freedom are there in the spacetime?

In general relativity, you are free to prescribe any spacetime (any metric) you like, including metrics
with wormholes and metrics that connect the future to the past so as to violate causality. True or false?
If it is true that in general relativity you can prescribe any metric you like, then why aren’t you bumping
into wormholes and causality violations all the time?

How much mass does it take to curve space significantly (significantly meaning by of order unity)?
What is the relation between the energy-momentum 4-vector of a particle and the energy-momentum
tensor?

It is straightforward to go from a prescribed metric to the energy-momentum tensor. True or false?

It is straightforward to go from a prescribed energy-momentum tensor to the metric. True or false?
Does the principle of equivalence imply Einstein’s equations?

What do Einstein’s equations mean physically?

What does the Riemann curvature tensor R,.),, mean physically? Is it a tensor?

The Riemann tensor splits into compressive (Ricci) and tidal (Weyl) parts. What do these parts mean,
physically?

Einstein’s equations imply conservation of energy-momentum, but what does that mean?

Do Einstein’s equations describe gravitational waves?

Do photons (massless particles) gravitate?

How do different forms of mass-energy gravitate?

How does negative mass gravitate?



What’s important?

. The postulates of general relativity. How do the various postulates imply the mathematical structure of
general relativity?

. The road from spacetime curvature to energy-momentum:
metric g,

— connection coefficients I';,

— Riemann curvature tensor R,

— Ricci tensor R, and scalar R

— Einstein tensor G, = R, — %gwR

— energy-momentum tensor 7},

. 4-velocity and 4-momentum. Geodesic equation.

. Bianchi identities guarantee conservation of energy-momentum.
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Fundamentals of General Relativity

As of writing (2013), general relativity continues to beat all-comers in the Darwinian struggle to be top theory
of gravity and spacetime (Will, 2005). Despite its success, most physicists accept that general relativity cannot
ultimately be correct, because of the difficulty in reconciling it with that other pillar of physics, quantum
mechanics. The other three known forces of Nature, the electromagnetic, weak, and colour (strong) forces,
are described by renormalizable quantum field theories, the so-called Standard Model of Physics, that agree
extraordinarily well with experiment, and whose predictions have continued to be confirmed by ever more
precise measurements. Attempts to quantize general relativity in a similar fashion fail. The attempt to unite
general relativity and quantum mechanics continues to exercise some of the brightest minds in physics.

One place where general relativity predicts its own demise is at singularities inside black holes. What
physics replaces general relativity at singularities? This is a deep question, providing one of the motivations
for this book’s emphasis on black hole interiors.

The aim of this Chapter is to give a condensed introduction to the fundamentals of general relativity, using
the traditional coordinate-based approach to general relativity. The approach is neither the most insightful
nor the most powerful, but it is the fastest route to connecting the metric to the energy-momentum content
of spacetime. The Chapter does not attempt to convey a deep conceptual understanding, which T think is
difficult to gain from the mathematics by itself. Later Chapters, starting with Chapter 7 on the Schwarzschild
geometry, present visualizations intended to aid conceptual understanding.

One of the drawbacks of the coordinate approach is that it works with frames that are aligned at each point
with the tangent vectors e, to the coordinates at that point. General relativity postulates the existence of
locally inertial frames, so the coordinates at any point can always be arranged such that the tangent vectors
at that one point are orthonormal, and the spacetime is locally flat (Minkowski) about that point. But
in a curved spacetime it is impossible to arrange the coordinate tangent vectors e, to be orthonormal
everywhere. Thus the coordinate approach inevitably presents quantities in a frame that is skewed compared
to the natural, orthonormal frame. It is like looking at a scene with your eyes crossed. The problem is not so
bad if the spacetime is empty of energy-momentum, as in the Schwarzschild and Kerr geometries for ideal
spherical and rotating black holes, but it becomes a significant handicap in realistic spacetimes that contain
energy-momentuin.

The coordinate approach is adequate to deal with ideal black holes, Chapter 6 to 9, and with the Friedmann-
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Lemaitre-Robertson-Walker spacetime of a homogeneous, isotropic cosmology, Chapter 10. After that, the
book restarts essentially from scratch. Chapter 11 introduces the tetrad formalism, the springboard for
further explorations of gravity, black holes, and cosmology.

The convention in this book is that greek (brown) dummy indices label curved spacetime coordinates,
while latin (black) dummy indices label locally inertial (more generally, tetrad) coordinates.

2.1 Motivation

Special relativity was unsatisfactory almost from the outset. Einstein had conceived special relativity by
abolishing the aether. Yet for something that had no absolute substance, the spacetime of special relativity
had strikingly absolute properties: in special relativity, two particles on parallel trajectories would remain
parallel for ever, just as in Euclidean geometry.

Moreover whereas special relativity neatly accommodated the electromagnetic force, which propagated
at the speed of light, it did not accommodate the other force known at the beginning of the 20th century,
gravity. Plainly Newton’s theory of gravity could not be correct, since it posited instantaneous transmission
of the gravitational force, whereas special relativity seemed to preclude anything from moving faster than
light, Exercise 1.23. You might think that gravity, an inverse square law like electromagnetism, might satisfy
a similar set of equations, but this is not so. Whereas an electromagnetic wave carries no electric charge, and
therefore does not interact with itself, any wave of gravity must carry energy, and therefore must interact
with itself. This proves to be a considerable complication.

A partial solution, the principle of equivalence of gravity and acceleration, occurred to Einstein while
working on an invited review on special relativity (Einstein, 1907). Einstein realised that “if a person falls
freely, he will not feel his own weight,” an idea that Einstein would later refer to as “the happiest thought of
my life.” The principle of equivalence meant that gravity could be reinterpreted as a curvature of spacetime.
In this picture, the trajectories of two freely-falling particles that pass either side of a massive body are caused

Figure 2.1 Particles initially on parallel trajectories passing either side of the Earth are caused to converge by the
Earth’s gravity. According to Einstein’s principle of equivalence, the situation is equivalent to one where the particles
are moving in straight lines in local free-fall frames. This allows the gravitational force to be reinterpreted as being
produced by a curvature of spacetime induced by the presence of the Earth.
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to converge not because of a gravitational force, but rather because the massive body curves spacetime, and
the particles follow straight lines in the curved spacetime, Figure 2.1.

Einstein’s principle of equivalence is only half the story. The principle of equivalence determines how
particles must move in a spacetime of given curvature, but it does not determine how spacetime is itself
curved by mass. That was a much more difficult problem, which Einstein took several more years to crack.
The eventual solution was Einstein’s equations, the final version of which he set out in a presentation to the
Prussian Academy at the end of November 1915 (Einstein, 1915).

Contemporaneously with Einstein’s discovery, David Hilbert derived Einstein’s equations independently
and elegantly from an action principle (Hilbert, 1915). In the present Chapter, Einstein’s equations are simply
postulated, since their real justification is that they reproduce experiment and observation. A derivation of
Einstein’s equations from the Hilbert action is deferred to Chapter 16.

2.2 The postulates of General Relativity

General relativity follows from three postulates:
1. Spacetime is a 4-dimensional differentiable manifold;
2. Einstein’s principle of equivalence;
3. Einstein’s equations.

2.2.1 Spacetime is a 4-dimensional differentiable manifold

A 4-dimensional manifold is defined mathematically to be a topological space that is locally homeomorphic
to Euclidean 4-space R*. A homeomorphism is a continuous map that has a continuous inverse.

The postulate that spacetime is a 4-dimensional manifold means that it is possible to set up a coordinate
system, possibly in patches, called charts,

o' = {2zt 2?, 2% (2.1)

such that each point of a chart of the spacetime has a unique coordinate.

It is not always possible to cover a manifold with a single chart, that is, with a coordinate system such
that every point of spacetime has a unique coordinate. A simple example of a 2-dimensional manifold that
cannot be covered with a single chart is the 2-sphere S2, the 2-dimensional surface of a 3-dimensional sphere,
as illustrated in Figure 2.2. Inevitably, lines of constant coordinate must cross somewhere on the 2-sphere.
At least two charts are required to cover a 2-sphere.

When more than one chart is necessary, neighbouring charts are required to overlap, in order that the
structure of the manifold be consistent across the overlap. General relativity postulates that the mapping
between the coordinates of overlapping charts be at least doubly differentiable. A manifold subject to this
property is called differentiable.

In practice one often uses coordinate systems that misbehave at some points, but in an innocuous fashion.
The 2-sphere again provides a classic example, where the standard choice of polar coordinates z* = {0, ¢}
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Figure 2.2 The 2-sphere is a 2-manifold, a topological space that is locally homeomorphic to Euclidean 2-space R2.
Any attempt to cover the surface of a 2-sphere with a single chart, that is, with coordinates x and y such that each
point on the sphere is specified by a unique coordinate {x, y}, fails at at least one point. In the left panel, a coordinate
grid draped over the sphere fails at one point, the south pole, where coordinate lines cross. At least two charts are
required to cover the surface of a 2-sphere, as illustrated in the middle panel, where one chart covers the north pole,
the other the south pole. Where the two charts overlap, the two sets of coordinates are related differentiably. The right
panel shows standard polar coordinates 6, ¢ on the 2-sphere. The polar coordinatization fails at the north and south
poles, where lines of longitude cross, the azimuthal angle ¢ is not unique, and a person passing smoothly through the
pole would see the azimuthal angle jump by 7. Such misbehaving points, called coordinate singularities, are however
innocuous: they can be removed by cutting out a patch around the coordinate singularity, and pasting on a separate
chart.

misbehaves at the north and south poles, Figure 2.2. A person passing smoothly through a pole sees the
azimuthal coordinate jump discontinuously by =. This is called a coordinate singularity. It is innocuous
because it can be removed by excising a patch around the pole, and pasting on a separate chart.

2.2.2 Principle of equivalence

The weak principle of equivalence states that: “Gravitating mass equals inertial mass.” General relativity
satisfies the weak principle of equivalence, but then so also does Newtonian gravity.

Einstein’s principle of equivalence is actually two separate statements: “The laws of physics in a
gravitating frame are equivalent to those in an accelerating frame,” and “The laws of physics in a non-
accelerating, or free-fall, frame are locally those of special relativity.”

Einstein’s principle of equivalence implies that it is possible to remove the effects of gravity locally by going
into a non-accelerating, or free-fall, frame. The structure of spacetime in a non-accelerating, or free-fall, frame
is locally inertial, with the local structure of Minkowski space. By locally inertial is meant that at each point
of spacetime it is possible to choose coordinates such that (a) the metric at that point is Minkowski, and (b)
the first derivatives of the metric are all zero!. In other words, Einstein’s principle of equivalence asserts the
existence of locally inertial frames.

L Actually, general relativity goes a step further. The metric is the scalar product of coordinate tangent axes, equation (2.26).

General relativity postulates, §2.10.1, that in a locally inertial frame the first derivatives not only of the metric, but also of
the tangent axes themselves, vanish. See also Concept question 2.5.
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Since special relativity is a metric theory, and the principle of equivalence asserts that general relativity
looks locally like special relativity, general relativity inherits from special relativity the property of being a
metric theory. A notable consequence is that the proper times and distances measured by an accelerating
observer are the same as those measured by a freely-falling observer at the same point and with the same
instantaneous velocity.

2.2.3 Einstein’s equations

Einstein’s equations comprise a 4 X 4 symmetric matrix of equations

G,u// = 87TG,-ZL// . (22)

Here G is the Newtonian gravitational constant, G, is the Einstein tensor, and 7, is the energy-
momentum tensor.
Physically, Einstein’s equations signify

(compressive part of) curvature = energy-momentum content . (2.3)
Einstein’s equations generalize Poisson’s equation
V20 = 47Gp (2.4)

where ® is the Newtonian gravitational potential, and p the mass-energy density. Poisson’s equation is the
time-time component of Einstein’s equations in the limit of a weak gravitational field and slowly moving
matter, §2.27.

2.3 Implications of Einstein’s principle of equivalence

2.3.1 The gravitational redshift of light

Einstein’s principle of equivalence implies that light will redshift in a gravitational field. In a weak gravita-
tional field, the gravitational redshift of light can be deduced quantitatively from the equivalence principle
without any further assumption (such as Einstein’s equations), Exercises 2.1 and 2.2. A fully general rel-
ativistic treatment for the redshift between observers at rest in a stationary gravitational field is given in
Exercise 2.9.

Exercise 2.1. The equivalence principle implies the gravitational redshift of light, Part 1. A
rigorous general relativistic version of this exercise is Exercise 2.10. A person standing at rest on the surface
of the Earth is to a good approximation in a uniform gravitational field, with gravitational acceleration g.
The principle of equivalence asserts that the situation is equivalent to that of a frame uniformly accelerating
at g. Assume that the non-accelerating, free-fall frame is Minkowski to a good approximation. Define the
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Figure 2.3 Einstein’s principle of equivalence implies the gravitational redshift of light, and the gravitational bending
of light. In the left panel, persons A and B are at rest relative to each other in a uniform gravitational field. They
are shown moving to the right to bring out the evolution of the system in time. A sends a beam of light upward to
B. The principle of equivalence asserts that the uniform gravitational field is equivalent to a uniformly accelerating
frame. The right panel shows the equivalent uniformly accelerating situation as perceived by a person in free-fall. In
the free-fall frame, the light moves on a straight line, and has constant frequency. Back in the gravitating/accelerating
frame in the left panel, the light appears to bend, and to redshift as it climbs from A to B.

potential ® by the usual Newtonian formula ¢ = —V®. Show that for small differences in their gravitational
potentials, B perceives the light emitted by A to be redshifted by (with units restored)
(I)obs - CI)em
e (2.5)

Exercise 2.2. The equivalence principle implies the gravitational redshift of light, Part 2. A
rigorous general relativistic version of this exercise is Exercise 2.11. Consider a person who, at rest in
Minkowski space, whirls a clock around them on the end of string, so fast that the clock is moving at near
the speed of light. The person sees the clock redshifted by the Lorentz y-factor (the string is of fixed length,
so the light travel time from clock to observer is always the same, and does not affect the redshift). Tugged
on by the string, the clock experiences a centripetal acceleration towards the whirling person. According to
the principle of equivalence, the centripetal acceleration is equivalent to a centrifugal gravitational force. In a
Newtonian approximation, if the clock is whirling around at angular velocity w, then the effective centrifugal
potential at radius r from the observer is

P = —%wQTQ . (2.6)

Show that, for non-relativistic velocities wr < ¢, the observer perceives the light emitted from the clock to
be redshifted by (with units restored)

— 2.7)
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2.3.2 The gravitational bending of light

The principle of equivalence also implies that light will appear to bend in a gravitational field, as illustrated
by Figure 2.3. However, a quantitative prediction for the bending of light requires full general relativity. The
bending of light in a weak gravitational field is the subject of Exercise 2.17.

2.4 Metric

Postulate (1), §2.2.1, of general relativity means that it is possible to choose coordinates
o' = {2, 2t 2?, 2%} (2.8)

covering a patch of spacetime.
Postulate (2), §2.2.2, of general relativity implies that at each point of spacetime it is possible to choose
locally inertial coordinates

& ={¢%,¢4,¢%,¢% (2.9)
such that the metric is Minkowski,
ds® = N dE™dE™ (2.10)

in an infinitesimal neighbourhood of the point. Infinitesimal neighbourhood means that the metric is the
Minkowski metric 7,,, at the point, and that the first derivatives of the metric vanish at the point. The
spacetime distance squared ds? is a scalar, a quantity that is unchanged by the choice of coordinates.
Whereas in special relativity the Minkowski formula (1.32) for the spacetime distance As? held for finite
intervals Az™, in general relativity the metric formula (2.10) holds only for infinitesimal intervals d¢™.

General relativity requires, postulate (1), that two sets of coordinates are differentiably related, so locally
inertial intervals d§™ and coordinate intervals dz" are related by the Leibniz rule,

oE™
m o __ 1
dg™ = = da (2.11)
It follows that the scalar spacetime distance squared is
8 m a n
ds®> =n S dz'dx” | (2.12)

" dxr Oz

which can be written in terms of coordinate intervals dz as

ds® = g, dat'da” |, (2.13)

where g,,,, is the metric, a 4 x 4 symmetric matrix

B agm afn
Guv = Nmn Ozt Oz’ .

(2.14)

The metric is the essential mathematical object that converts an infinitesimal interval dz* to a proper
measurement of an interval of time or space.
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Figure 2.4 (Left) The tetrad vectors <, form an orthonormal basis of vectors tangent to a set of locally inertial
coordinates £™ at a point. (Right) The coordinate tangent vectors e,, are the basis of vectors tangent to the coordinates
at each point. The background square grid represents a locally inertial frame, the existence of which is asserted by
general relativity.

2.5 Timelike, spacelike, proper time, proper distance

General relativity inherits from special relativity the physical meaning of the scalar spacetime distance
squared ds? along an interval dz". The scalar spacetime distance squared can be negative, zero, or positive,
and accordingly timelike, lightlike, or spacelike:

timelike: ds? <0, dr =+/—ds? = interval of proper time ,
lightlike: ds® =0, (2.15)
spacelike: ds? >0, dl = +/ds? = interval of proper distance .

2.6 Orthonormal tetrad basis ~,,

You are familiar with the idea that in ordinary 3-dimensional Euclidean geometry it is often convenient to
treat vectors in an abstract coordinate-independent formalism. Thus for example a 3-vector is commonly
written as an abstract quantity r. The coordinates of the vector r may be {z,y,z} in some particular
coordinate system, but one recognizes that the vector » has a meaning, a magnitude and a direction, that is
independent of the coordinate system adopted. In an arbitrary Cartesian coordinate system, the Euclidean
3-vector r can be expressed

'r:Zfaawa::ﬁx—i—gy—l—ﬁz (2.16)

a

where &, = {&, g, £} are unit vectors along each of the coordinate axes. The unit vectors satisfy a Euclidean
metric

Bo &b = Oap - (2.17)

The same kind of abstract notation is useful in general relativity. Because the spacetime of general relativity
is only locally inertial, not globally inertial, vectors must be thought of as living not in the spacetime manifold
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itself, but rather in the tangent space of the manifold. The existence and structure of such a tangent space
follows from the postulate of the existence of locally inertial frames. Let £™ be a set of locally inertial
coordinates at a point of spacetime. Define the vectors =,,, called a tetrad, to be tangent to the locally
inertial coordinates at the point in question,

Y = {70, 71,72, Y3} (2.18)

as illustrated in the left panel of Figure 2.4. Each tetrad basis vector 7, is a 4-dimensional object, with
both magnitude and direction. The basis vectors ~,, are introduced so that vectors in spacetime can be
expressed in an abstract coordinate-independent fashion. The prototypical vector is an infinitesimal interval
d€™ of spacetime, which can be expressed in coordinate-independent fashion as the abstract vector interval
dx defined by

dr =y dE™ = 7o A€ + y1 dE! + Yo dE? + 3 dE” (2.19)
The interval d¢™ transforms under a Lorentz transformation of the locally inertial coordinates as a con-
travariant Lorentz vector. To make the abstract vector interval dx invariant under Lorentz transformation,

the basis vectors -, must transform as a covariant Lorentz vector.
The scalar length squared of the abstract vector interval dex is

ds? = dx - dr = ~,y, -y, AE™AET . (2.20)

Since this must reproduce the locally inertial metric (2.10), the scalar products of the tetrad vectors ~,,
must form the Minkowski metric

IYm - Yn = Nmn - (221)

A basis of tetrad vectors whose scalar products form the Minkowski metric is called orthonormal.
Tetrads are explored in depth in Chapter 11.

2.7 Basis of coordinate tangent vectors e,

In general relativity, coordinates can be chosen arbitrarily, subject to differentiability conditions. In an
arbitrary system of coordinates z*, the coordinate tangent vectors e, at each point,

ep, = {6(), €1, €, 63} ) (222)

are defined to satisfy
dr =e, dz" =, d™ . (2.23)

The letter e derives from the German word einheit, meaning unity. The relation (2.11) between coordinate
intervals dz" and locally inertial coordinate intervals d{™ implies that the coordinate tangent vectors e,
must be related to the orthonormal tetrad vectors «.,, by
o™
oxr

€, ="Ym (2.24)
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Like the tetrad axes 7,,, each coordinate tangent axis e, is a 4-dimensional vector object, with both mag-
nitude and direction, as illustrated in the right panel of Figure 2.4.
The scalar length squared of the abstract vector interval dx is

ds? =dr-dr =e, - e, dr"dz" , (2.25)

from which it follows that the scalar products of the coordinate tangent axes e, must equal the coordinate
metric g,,,,

~ 220

Like the orthonormal tetrad vectors <,,, the coordinate tangent vectors e, form a basis for the 4-
dimensional tangent space at each point. The tangent space has three basic mathematical properties. First,
the tangent space is a vector space, that is, it has the properties of linearity that define a vector space.
Second, the tangent space has an inner (or scalar) product, defined by the metric (2.26). That scalar product
is a consequence of the postulated locally inertial, or Lorentz, structure of spacetime, which asserts that the
metric is Minkowski 7,,, with respect to locally inertial coordinates £™. Third, vectors e, in the tangent
space can be differentiated with respect to coordinates z”, as will be elucidated in §2.9.3.

Some texts represent the tangent vectors e, with the notation 8,, on the grounds that e, transforms
like the coordinate derivatives 9, = 0/dz". This notation is not used in this book, to avoid the potential
confusion between 0, as a derivative and 9, as a vector.

2.8 4-vectors and tensors

2.8.1 Contravariant coordinate 4-vector

Under a general coordinate transformation

= (2.27)
a coordinate interval dz* transforms as
L 81‘/“ 1%
dz'" = B dz” . (2.28)

In general relativity, a coordinate 4-vector is defined to be a quantity A* = {A°, A', A%, A%} that trans-
forms under a coordinate transformation (2.27) like a coordinate interval

ox'*

e
A - 833’/

A" | (2.29)

Just because something has an index on it does not make it a 4-vector. The essential property of a con-
travariant coordinate 4-vector is that it transforms like a coordinate interval, equation (2.29).
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2.8.2 Abstract 4-vector

A 4-vector may be written in coordinate-independent fashion as
A=¢e,A". (2.30)

The quantity A is an abstract 4-vector. Although A is a 4-vector, it is by construction unchanged by a
coordinate transformation, and is therefore a coordinate scalar. See §2.8.7 for commentary on the distinction
between abstract and coordinate vectors.

2.8.3 Lowering and raising indices

Define g"” to be the inverse metric, satisfying

9u g#l/ = 5l>< = (231)

o O O =
o O = O
o = O O
_— o O O

The metric g, and its inverse g/ provide the means of lowering and raising coordinate indices. The
components of a coordinate 4-vector A* with raised index are called its contravariant components, while
those A,, with lowered indices are called its covariant components,

=0, 2
T 30

2.8.4 Dual basis e*

The contravariant dual basis elements e/ are defined by raising the indices of the covariant tangent basis
elements e,

puv

e'=g"e, . (2.34)

You can check that the dual vectors e/ transform as a contravariant coordinate 4-vector. The dot products
of the dual basis elements e” with each other are

el'-e’ =g". (2.35)
The dot products of the dual and tangent basis elements are

e'-e, =48 (2.36)
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2.8.5 Covariant coordinate 4-vector

Under a general coordinate transformation (2.27), the covariant components A, of a coordinate 4-vector
transform as

8:171/
ox'+
You can check that the transformation law (2.37) for the covariant components A,, is consistent with the
transformation law (2.29) for the contravariant components A*.

You can check that the tangent vectors e, transform as a covariant coordinate 4-vector.

A=A, (2.37)

2.8.6 Scalar product

If A# and B" are coordinate 4-vectors, then their scalar product is
A,B"=A'B, = g,,A"B" . (2.38)

This is a coordinate scalar, a quantity that remains invariant under general coordinate transformations.
The ability to form a scalar by contracting over paired indices, always one raised and one lowered, is what
makes the introduction of two species of vector, contravariant (raised index) and covariant (lowered index),
so advantageous.

In abstract vector formalism, the scalar product of two 4-vectors A = e, A" and B = e, B" is

A-B=e, e, A'B" =g,,A'B" . (2.39)

2.8.7 Comment on vector naming and notation

Different texts follow different conventions for naming and notating vectors and tensors.

This book follows the convention of calling both A* (with a dummy index ) and A = A*e, vectors.
Although A" and A are both vectors, they are mathematically different objects.

If the index on a vector indicates a specific coordinate, then the indexed vector is the component of the
vector; for example AY (or A') is the 2" (or time t) component of the coordinate 4-vector A*.

In this book, the different species of vector are distinguished by an adjective:

1. A coordinate vector A", identified by greek (brown) indices p, is one that changes in a prescribed
way under coordinate transformations. A coordinate transformation is one that changes the coordinates
of the spacetime without actually changing the spacetime or whatever lies in it.

2. An abstract vector A, identified by boldface, is the thing itself, and is unchanged by the choice of
coordinates. Since the abstract vector is unchanged by a coordinate transformation, it is a coordinate
scalar.

All the types of vector have the properties of linearity (additivity, multiplication by scalars) that identify
them mathematically as belonging to vector spaces. The important distinction between the types of vector
is how they behave under transformations.

In referring to both A" and A as vectors, this book follows the standard physics practice of mentally
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regarding A" and A as equivalent objects. You are familiar with the advantages of treating a vector in
3-dimensional Euclidean space either as an abstract vector A, or as a coordinate vector A,. Depending on
the problem, sometimes the abstract notation A is more convenient, and sometimes the coordinate notation
A, is more convenient. Sometimes it’s convenient to switch between the two in the middle of a calculation.
Likewise in general relativity it is convenient to have the flexibility to work in either coordinate or abstract
notation, whatever suits the problem of the moment.

2.8.8 Coordinate tensor

In general, a coordinate tensor A;j,é;_'_'

tions (2.27) as

is an object that transforms under general coordinate transforma-

, az'" dz"  0x° Ox7
TEN... __ Tp...
A = S T oo AT (2.40)

You can check that the metric tensor g, and its inverse g"* are indeed coordinate tensors, transforming
like (2.40).
The rank of a tensor is the number of indices of its expansion A%} in components. A scalar is a tensor

Uv...

of rank 0. A 4-vector is a tensor of rank 1. The metric and its inverse are tensors of rank 2. The rank of a

tensor with n contravariant (upstairs) and m covariant (downstairs) indices is sometimes written

2.9 Covariant derivatives

2.9.1 Derivative of a coordinate scalar

Suppose that & is a coordinate scalar. Then the coordinate derivative of ® is a coordinate 4-vector

0P
oxH

a coordinate tensor (2.41)

transforming like equation (2.37).
As a shorthand, the ordinary partial derivative is often denoted in the literature with a comma

0P
@ - (bvﬂ . (242)

For the most part this book does not use the comma notation.

2.9.2 Derivative of a coordinate 4-vector

The ordinary partial derivative of a contravariant coordinate 4-vector A" is not a tensor

OAH
ox”

not a coordinate tensor (2.43)
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Figure 2.5 The change e in the tangent vector eg over a small interval 6z! of spacetime is defined to be the difference
between the tangent vector eo(z! 4+ dx') at the shifted position 2! +x' and the tangent vector e(z') at the original
position z!, parallel-transported to the shifted position. The parallel-transported vector is shown as a dashed arrowed
line. The parallel transport is defined with respect to a locally inertial frame, shown as a background square grid.

because it does not transform like a coordinate tensor.
However, the 4-vector A = e, A", being by construction invariant under coordinate transformations, is a
coordinate scalar, and its partial derivative is a coordinate 4-vector

0A  Oe, A"
drv Oz
0A"  Oe,

=y T g A" a coordinate tensor . (2.44)

The last line of equation (2.44) assumes that it is legitimate to differentiate the tangent vectors e,, but
what does that mean? The partial derivatives of basis vectors e, are defined in the usual way by

de, _ fim e, (2", ...z’ +6x", .. 2%) —e,(a¥, .. ", . 10) . (2.45)

ox’ ~ szv—0 ox?

This definition relies on being able to compare the vectors e, (x) at some point = with the vectors e, (z+dz)
at another point z+dx a small distance away. The comparison between two vectors a small distance apart
is made possible by the existence of locally inertial frames. In a locally inertial frame, two vectors a small
distance apart can be compared by parallel-transporting one vector to the location of the other along
the small interval between them, that is, by transporting the vector without accelerating or precessing with
respect to the locally inertial frame. Thus the right hand side of equation (2.45) should be interpreted as
e, (z+dx) minus the value of e, (z) parallel-transported from position z to position z+dz along the small
interval dz between them, as illustrated in Figure 2.5.

The notion of the tangent space at a point on a manifold was introduced in §2.6. Parallel transport allows
the tangent spaces at neighbouring points to be adjoined in a well-defined fashion to form the tangent
manifold, whose dimension is twice that of the underlying spacetime. Coordinates for the tangent manifold
are provided by a combination {z,£™} of coordinates x* on the parent manifold and tangent space coor-
dinates £€™ extrapolated from a locally inertial frame about each point. The tangent space coordinates £
vary smoothly over the manifold provided that the locally inertial frames are chosen to vary smoothly.
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2.9.3 Coordinate connection coefficients
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The partial derivatives of the basis vectors e, that appear on the right hand side of equation (2.44) define
the coordinate connection coefficients I'”

N2

Oe,,

ax“

K
pr =k

=I" e.| not a coordinate tensor .

(2.46)

The definition (2.46) shows that the connection coefficients express how each tangent vector e, changes,

relative to parallel-transport, when shifted along an interval dx"”.

Expression (2.44) along with the definition (2.46) of the connection coefficients implies that

0A

DA

+1—w1 e. A

oxY = €u oxY pv =k

=e, (8‘4 + T8 AM

orv g

2.9.4 Covariant derivative of a contravariant 4-vector

) a coordinate tensor .

(2.47)

The expression in parentheses is a coordinate tensor, and defines the covariant derivative D, A" of the
contravariant coordinate 4-vector A"

As a shorthand, the covariant derivative is often denoted in the literature with a semi-colon

D, A"

dav 1

a coordinate tensor .

D A" = AL, .

For the most part this book does not use the semi-colon notation.

Similarly,

where D, A,. is the covariant derivative of the covariant coordinate 4-vector A,

0A
81‘11

2.9.5 Covariant derivative of a covariant coordinate 4-vector

=e"D, A, a coordinate tensor

D, A,

A,
833’/

- FﬁL/AP«

a coordinate tensor .

(2.48)

(2.49)

(2.50)

(2.51)



66 Fundamentals of General Relativity

2.9.6 Covariant derivative of a coordinate tensor

In general, the covariant derivative of a coordinate tensor is

) QAR ) . ) )
D A = Fre Lh AL+ T ARl 4 =T A — T A — (2.52)

with a positive I" term for each contravariant index, and a negative I" term for each covariant index.

Concept question 2.3. Does covariant differentiation commute with the metric? Answer. Yes,
essentially by construction. The covariant derivative of a tangent basis vector e,

LT (2.53)

am’u pr =K

vanishes by definition of the coordinate connections, equation (2.46). Consequently the covariant derivative of
the metric g, = e, - e, also vanishes. As a corollary, covariant differentiation commutes with the operations

Dl/e;l, =

of raising and lowering indices, and of contraction.

2.10 Torsion

2.10.1 No-torsion condition

The existence of locally inertial frames requires that it must be possible to arrange not only that the tangent
axes e, are orthonormal at a point, but also that they remain orthonormal to first order in a Taylor expansion
about the point. That is, it must be possible to choose the coordinates such that the tangent axes e, are
orthonormal, and unchanged to linear order:

e;l ey, = n/u/ 5 (254&)
Oe,,

=0. 2.54b

6]:1/ ( )

In view of the definition (2.46) of the connection coefficients, the second condition (2.54b) is equivalent to
the vanishing of all the connection coefficients:

I, =0. (2.55)

g

Under a general coordinate transformation z/ — 2'*, the tangent axes transform as e, = 0z'"/dz" e..

The 4 x 4 matrix 0x'" /0z* of partial derivatives provides 16 degrees of freedom in choosing the tangent axes
at a point. The 16 degrees of freedom are enough — more than enough — to accomplish the orthonormality
condition (2.54a), which is a symmetric 4 X 4 matrix equation with 10 degrees of freedom. The additional
16 — 10 = 6 degrees of freedom are Lorentz transformations, which rotate the tangent axes e,, but leave the
metric 7, unchanged.

Just as it is possible to reorient the tangent axes e, at a point by adjusting the matrix dz'*/0x/ of first
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partial derivatives of the coordinate transformation z* — x#, so also it is possible to reorient the derivatives
de,, /0z” of the tangent axes by adjusting the matrix 02z'"/dx"dz"” of second partial derivatives of the
coordinate transformation. The second partial derivatives comprise a set of 4 symmetric 4 x 4 matrices, for
a total of 4 x 10 = 40 degrees of freedom. However, there are 4 x 4 x 4 = 64 connection coefficients I';, ,
all of which the condition (2.55) requires to vanish. The matrix of second derivatives is thus 64 — 40 = 24
degrees of freedom short of being able to make all the connections vanish. The resolution of the problem
is that, as shown below, equation (2.58), there are 24 combinations of the connections that form a tensor,
the torsion tensor. If a tensor is zero in one frame, then it is automatically zero in any other frame. Thus
the requirement that all the connections vanish requires that the torsion tensor vanish. This requires, from
the expression (2.58) for the torsion tensor, the no-torsion condition that the connection coefficients are
symimetric in their last two indices

=17 1. (2.56)

g v

It should be emphasized that the condition of vanishing torsion is an assumption of general relativity, not
a mathematical necessity. It has been shown in this section that torsion vanishes if and only if spacetime is
locally flat, meaning that at any point coordinates can be found such that conditions (2.54) are true. The
assumption of local flatness is central to the idea of the principle of equivalence. But it is an assumption,
not a consequence, of the theory.

Concept question 2.4. Parallel transport when torsion is present. If torsion does not vanish, then
there is no locally inertial frame. What does parallel-transport mean in such a case? Answer. A general
coordinate transformation can always be found such that the connection coefficients I';, vanish along any
one direction v. Parallel-transport along that direction can be defined relative to such a frame. For any given
direction v, there are 16 second partial derivatives 9?z* /0z"dx", just enough to make vanish the 4 x 4 = 16

coefficients I'”

i

2.10.2 Torsion tensor

General relativity assumes no torsion, but it is possible to consider generalizations to theories with torsion.
The torsion tensor S”, is defined by the commutator of the covariant derivative acting on a scalar ®

[D,,D,\]® =S" 0%

2 g | 2 coordinate tensor . (2.57)

Note that the covariant derivative of a scalar is just the ordinary derivative, D\® = 9®/dz*. The expres-
sion (2.51) for the covariant derivatives shows that the torsion tensor is

St =T", —T%, | acoordinate tensor (2.58)

which is evidently antisymmetric in the indices k.
In Einstein-Cartan theory, the torsion tensor is related to the spin content of spacetime. Since this vanishes
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in empty space, Einstein-Cartan theory is indistinguishable from general relativity in experiments carried
out in vacuum. See §16.11 for more on Einstein-Cartan theory.

2.11 Connection coeflicients in terms of the metric

The connection coefficients have been defined, equation (2.46), as derivatives of the tangent basis vectors e,,.
However, the connection coefficients can be expressed purely in terms of the (first derivatives of the) metric,
without reference to the individual basis vectors. The partial derivatives of the metric are

gy, Oey - ey

ox” ox”
Oe Oe
— ey . K LB
- e ox” t e ox”

=e) - e, FZV —|— el‘ - e, FRV
=9k 1-\:1“/ + gyn ;u
= FA/UI + F/l)u/ , (259)

which is a sum of two connection coefficients. Here I'y,,, with all indices lowered is defined to be I with
the first index lowered by the metric,

|V (2.60)
Combining the metric derivatives in the following fashion yields an expression for a single connection,

89/\,u ag/\v . 89}41/
oxV OxH Ox?

= F)\,u,l/ + Fp,)\// + ]-—‘)\l/,u, + ]-—‘l/)\;l - ]-—‘;w/\ - 1—‘ll,u,/\
= 2FA;W - S)\;w - S;w/\ - Suu/\ ) (261)

with Sy, = g:xS);,, which shows that, in the presence of torsion,

1 3 n 6 v a "y 3
Dy = 3 ( =AY Pv_ T Sxuw + Suva + SuM) not a coordinate tensor . (2.62)

oxv Ozt oz

If torsion vanishes, as general relativity assumes, then

T — 1 ag}\/L ag)\u _ aguz/
I N P T P

not a coordinate tensor . (2.63)

This is the formula that allows connection coefficients to be calculated from the metric.

2.12 Torsion-free covariant derivative

Einstein’s principle of equivalence postulates that a locally inertial frame exists at each point of spacetime,
and this implies that torsion vanishes. However, torsion is of special interest as a generalization of general
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relativity because, as discussed in §2.19.2, the torsion tensor and the Riemann curvature tensor can be re-
garded as fields associated with local gauge groups of respectively displacements and Lorentz transformations.
Together displacements and Lorentz transformations form the Poincaré group of symmetries of spacetime.
Spinor (spin—%) fields inevitably generate torsion, Exercise 16.5, but torsion is local and non-propagating,
and cancels between oppositely aligned spins, so in practice is negligible in almost all circumstances, §16.11.

The torsion-free part of the covariant derivative is a covariant derivative even when torsion is present (that
is, it yields a tensor when acting on a tensor). The torsion-free covariant derivative is important, even when
torsion is present, for several reasons. Firstly, as will be discovered from an action principle in Chapter 4,
the covariant derivative that goes in the geodesic equation (2.88) is the torsion-free covariant derivative,
equation (2.90). Secondly, the torsion-free covariant curl defines the exterior derivative in the theory of
differential forms, §15.6. The exterior derivative has the property that it is inverse to integration over curved
hypersurfaces. Integration is central to various aspects of general relativity, such as the development of
Lagrangian and Hamiltonian mechanics. Thirdly, the Lie derivative, §7.34, is a covariant derivative defined
in terms of torsion-free covariant derivatives. Finally, Yang-Mills gauge symmetries, such as the U(1) gauge
symmetry of electromagnetism, require the gauge field to be defined in terms of the torsion-free covariant
derivative, in order to preserve the gauge symmetry.

When torsion is present and it is desirable to make the torsion part explicit, it is convenient to distinguish
torsion-free quantities with a ° overscript. The torsion-free part r auv Of the connection, also called the Levi-
Civita connection, is given by the right hand side of equation (2.63). When expressed in a coordinate
frame (as opposed to a tetrad frame, §11.15), the components of the torsion-free connections r A are also
called Christoffel symbols. Sometimes, the components r A With all indices lowered are called Christoffel
symbols of the first kind, while components f‘;\w with first index raised are called Christoffel symbols of the
second kind. There is no need to remember the jargon, but it is useful to know what it means if you meet it.

The torsion-full connection I'y,, is a sum of the torsion-free connection f‘AW and a tensor called the
contortion tensor (not contorsion!) K,

Ly = f,\,“, + K\, not a coordinate tensor . (2.64)
From equation (2.62), the contortion tensor K, is related to the torsion tensor Sy, by
Ko = 5 (Sxuw + Spon 4+ Suun) = = Suau + 25,0 a coordinate tensor . (2.65)
The contortion K, is antisymmetric in its first two indices,
Ky =—Kuw (2.66)

and thus like the torsion tensor S),, has 6 x 4 = 24 degrees of freedom. The torsion tensor Sy, can be
expressed in terms of the contortion tensor K, ,

S = K — Koy = — Kuux + 3 K[y a coordinate tensor . (2.67)

The torsion-full covariant derivative D, differs from the torsion-free covariant derivative B,, by the con-
tortion,

D, A" = D, A" + K" A" a coordinate tensor . (2.68)

uv
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In this book torsion will not be assumed automatically to vanish, and thus by default the symbol D, will
denote the torsion-full covariant derivative. When torsion is assumed to vanish, or when D, denotes the
torsion-free covariant derivative, it will be explicitly stated so.

Concept question 2.5. Can the metric be Minkowski in the presence of torsion? In §2.10.1 it was
argued that the postulate of the existence of locally inertial frames implies that torsion vanishes. The basis
of the argument was the proposition that derivatives of the tangent axes vanish, equation (2.54b). Impose
instead the weaker condition that the derivatives of the metric (i.e. scalar products of tangent axes) vanish,

an/, -

oxv
Can torsion be non-vanishing under this weaker condition? Answer. Yes. In fact torsion may exist even
in flat (Minkowski) space, where the metric is everywhere Minkowski, ¢, = 7,,. The condition (2.69) of
vanishing metric derivatives is equivalent to the vanishing of the torsion-free connections,

(2.69)

1 ag/\p,
2 OxV

Thus the condition (2.69) of vanishing metric derivatives imposes no condition on torsion.

= F(A/z)l/ = F(}\/[)Il + K(/\/J,)l/ = F()\/z)l/ =0. (270)

Exercise 2.6. Covariant curl and coordinate curl. Show that the covariant curl of a covariant vector
A)\ is
0A, 0A,.

DAy —D)A,=— — St A, 2.71
AN A o o + 04, (2.71)
Conclude that the coordinate curl of a vector equals its torsion-free covariant curl,
. . 0A, 0A,
D, A\ —D)A, = — — - 2.72
A AT D 9a (2.72)

Of course, if torsion vanishes as general relativity assumes, then the covariant curl is the torsion-free covariant
curl. Note that since both D, A, — D, A, on the left hand side and S, A, on the right hand side of
equation (2.71) are both tensors, it follows that the coordinate curl A, /dz" — A, /0z* is a tensor even in
the presence of torsion.

Exercise 2.7. Covariant divergence and coordinate divergence. Show that the covariant divergence
of a contravariant vector A" is

L1 oW=gAY)
DAt = =SV T S

where g = |g,,, | is the determinant of the metric matrix. Conclude that the torsion-free covariant divergence

Al (2.73)

is
. 1 G AN
D, A" = 1 oV=9Ah) (2.74)
V=g oz

Of course, if torsion vanishes as general relativity assumes, then the covariant divergence is the torsion-free
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covariant divergence. Note that since both the covariant divergence on the left hand side of equation (2.73)
and the torsion term on the right hand side of equation (2.73) are both tensors, the torsion-free covariant
divergence (2.74) is a tensor even in the presence of torsion.

Solution. The covariant divergence is

DA
DA = g + A" (2.75)

From equation (2.62),
v 1 vA 3gAV v
pr 5 Ol + S/u/
Oln|/—
_ Vgl g (2.76)

Ol uv ot

The second line of equations (2.76) follows because for any matrix M, the variation of the logarithm of its
determinant is

dIn|M|=In|M+éM|—1In|M|
=In|M (M4 5M)|

=In|l+ M '6M|
=In(1+Tr M~ *6M)
=Tr M~16M . (2.77)
The torsion-free covariant divergence is
a y 9Ar A y
D, A" = T + 17, A" (2.78)

where the torsion-free coordinate connection is

Y 1 1//\89)\1/ _ a1n|\/_g|
D =39 5or = —aui (2.79)

Concept question 2.8. If torsion does not vanish, does torsion-free covariant differentiation

commute with the metric? Answer. Yes. Unlike the torsion-full covariant derivative, Concept Ques-
tion 2.3, the torsion-free covariant derivative of the tangent basis vectors e, does mot vanish, but rather
depends on the contortion K” e,,

K

D,e.=D,e,. +K" e, =K"e,. (2.80)

K K

However, the torsion-free covariant derivative of the metric, that is, of scalar products of the tangent basis
vectors, does vanish,

o o

D/J,gh'i/\ = D/J,(eh", : 6)\) =K/ e, e+ KK/,eh: €y = K)\H,p, + Kh")\p =0 ) (281)

KL

thanks to the antisymmetry of the contortion tensor in its first two indices. As a corollary, torsion-free
covariant differentiation commutes with the operations of raising and lowering indices, and of contraction.
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2.13 Mathematical aside: What if there is no metric?

General relativity is a metric theory. Many of the structures introduced above can be defined mathematically
without a metric. For example, it is possible to define the tangent space of vectors with basis e,, and to
define a dual vector space with basis e* such that e* - e, = 6", equation (2.36). Elements of the dual vector
space are called covectors. Similarly it is possible to define connections and covariant derivatives without a
metric. However, this book follows general relativity in assuming that spacetime has a metric.

2.14 Coordinate 4-velocity

Consider a particle following a worldline

(7)), (2.82)

where 7 is the particle’s proper time. The proper time along any interval of the worldline is d7 = v/—ds?.
Define the coordinate 4-velocity u" by

,_ dxt .
ut = T a coordinate 4-vector . (2.83)

The magnitude squared of the 4-velocity is constant

. dot dz”  ds?
wyult = g“"?? =02 -1. (2.84)

The negative sign arises from the choice of metric signature: with the signature —+++ adopted here, there
is a — sign between ds? and d72. Equation (2.84) can be regarded as an integral of motion associated with
conservation of particle rest mass.

2.15 Geodesic equation

Let u = e,u be the 4-velocity in coordinate-independent notation. The principle of equivalence (which
imposes vanishing torsion) implies that the geodesic equation, the equation of motion of a freely-falling
particle, is

du
—0l. 2.
= 0 (2.85)

Why? Because du/dr = 0 in the particle’s own free-fall frame, and the equation is coordinate-independent.
In the particle’s own free-fall frame, the particle’s 4-velocity is v = {1,0,0,0}, and the particle’s locally
inertial axes e, = {eg, e1, ez, es} are constant.
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What does the equation of motion look like in coordinate notation? The acceleration is
du  dz” du
dr ~ dr dxv
=u"e., D, u"

v 6u"" K L
=Uu €. (axl/ =+ Fl“’u/ )

du” K L,V
= €, ( dT +Ful/u/u ) .

The geodesic equation is then

du” .
pEay Ihufu” =0

Another way of writing the geodesic equation is
Du”
Dt
where D /Dt is the covariant proper time derivative

D _
Dr

=0,

uw’'D, .
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(2.86)

(2.87)

(2.88)

(2.89)

The above derivation of the geodesic equation invoked the principle of equivalence, which postulates that
locally inertial frames exist, and thus that torsion vanishes. What happens if torsion does not vanish? In
Chapter 4, equation (4.15), it will be shown from an action principle that in the presence of torsion, the
covariant derivative in the geodesic equation should simply be replaced by the torsion-free covariant derivative

D/Dr = u"’lQ),,,

o

Du”

DT

Thus the geodesic motion of particles is unaffected by the presence of torsion.

2.16 Coordinate 4-momentum

The coordinate 4-momentum of a particle of rest mass m is defined to be

dx#

p a coordinate 4-vector .
-

P =mut =m

The momentum squared is, from equation (2.84),

2 2

L ’
puptt = muu’t = —m

(2.90)

(2.91)

(2.92)

minus the square of the rest mass. Again, the minus sign arises from the choice —+-++ of metric signature.
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2.17 Affine parameter

For photons, the rest mass is zero, m = 0, but the 4-momentum p" remains finite. Define the affine
parameter \ by

T

A

a coordinate scalar (2.93)

m

which remains finite in the limit m — 0. The affine parameter A is unique up to an overall linear transfor-
mation (that is, aA + (3 is also an affine parameter, for constant « and (), because of the freedom in the
choice of mass m and the zero point of proper time 7. In terms of the affine parameter, the 4-momentum is

dxt
M= 2.94
N (2.94)
The geodesic equation is then in coordinate-independent notation
dp
— =0, 2.95
) (2.95)
or in component form
dp" :
— 417 p'p" =0, 2.96
o T Lwl'p (2.96)
which works for massless as well as massive particles.
Another way of writing this is
Dp”
=0 2.97
=0, (297)
where D/DA is the covariant affine derivative
D
— =9p'D, . 2.98
Dx =P (2.98)

In the presence of torsion, the connection in the geodesic equation (2.96) should be interpreted as the
torsion-free connection I',, and the covariant derivative in equations (2.97) and (2.98) are torsion-free

pvo

covariant derivatives.

2.18 Affine distance

The freedom in the overall scaling of the affine parameter can be removed by setting it equal to the proper
distance near the observer in the observer’s locally inertial rest frame. With the scaling fixed in this fashion,
the affine parameter is called the affine distance, so called because it provides a measure of distance along
null geodesics. When you look at a scene with your eyes, you are looking along null geodesics, and the natural
measure of distance to objects that you see is the affine distance (Hamilton and Polhemus, 2010).

In special relativity, the affine distance coincides with the perceived (e.g. binocular) distance to objects.
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Exercise 2.9. Gravitational redshift in a stationary metric. Let o/ = {¢,2®} constitute time ¢
and spatial coordinates z“ of a spacetime. The metric g, is said to be stationary if it is independent of
the coordinate ¢. A comoving observer in the spacetime is one that is at rest in the spatial coordinates,
dz®/dr = 0.

1. Argue that the coordinate 4-velocity u” = dx”/dr of a comoving observer in a stationary spacetime is

1
vV — Gt .

2. Argue that the proper energy E of a particle, massless or massive, with energy-momentum 4-vector p”
seen by a comoving observer with 4-velocity u”, equation (2.99), is

u’ ={7,0,0,0}, = (2.99)

E=—-u"p, . (2.100)

3. Consider a particle, massless or massive, that follows a geodesic between two comoving observers. Since
the metric is independent of the time coordinate ¢, the covariant momentum p; is a constant of motion,
equation (4.50). Argue that the ratio Eqyps/Fem of the observed to emitted energies between two comoving
observers is

Eobs _ Jobs

. 2.101
Eem Vem ( 0 )

4. Can comoving observers exist where g;; is positive?

Exercise 2.10. Gravitational redshift in Rindler space. Rindler space is Minkowski space expressed in
the coordinates of uniformly accelerating observers, called Rindler observers. Rindler observers are precisely
the observers in the right quadrant of the spacetime wheel, Figure 1.14.
1. Start with Minkowski space in a Cartesian coordinate system {t,z,y, z}. Define Rindler coordinates «, !
by

t=Isinha, z=Icosha. (2.102)
Show that the line-element in Rindler coordinates is
ds® = —1Pda® + dI* + dy* + d2* . (2.103)

2. A Rindler observer is a comoving observer in Rindler space, one who follows a worldline of constant [,
y, and z. Since Rindler spacetime is stationary, conclude that the ratio Eops/Fem of the observed to
emitted energies between two Rindler observers is, equation (2.101),

Eobs o lem

= . 2.104
Eem lobs ( )

3. Can Rindler space be considered equivalent to a spacetime containing a uniform gravitational field? Do
Rindler observers all accelerate at the same rate?
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Exercise 2.11. Gravitational redshift in a uniformly rotating space. Start with Minkowski space in
cylindrical coordinates {t,r, ¢, z},

ds® = — dt® + dr® + r2d¢? + dz* . (2.105)
Define a uniformly rotating azimuthal angle x by
X=¢—wt, (2.106)

which is constant for observers who are at rest in a system rotating uniformly at angular velocity w. The
line-element in uniformly rotating coordinates is

ds? = —dt® + dr? + r*(dx + wdt)? + dz? . (2.107)

1. A comoving observer in the uniformly rotating system follows a worldline at constant 7, x, and z. Since
the uniformly rotating spacetime is stationary, conclude that the ratio E,ps/FEem of the observed to
emitted energies between two comoving observers is, equation (2.101),

Eobs Yem
—lobs _ Jem 2.108
Eem Yobs ( )

where
1

Y= ﬁ ; V=Wwr. (2109)

2. What happens where v > 17

Concept question 2.12. Can Minkoswki space rotate? Exercise 2.11 considered Minkowski space in
rotating coordinates. Can Minkowski space rotate globally? Answer. No. General relativity allows arbitrary
choices of coordinates, including choices that allow physical objects to move through the coordinates faster
than light. However, the choice of coordinates does not affect physical observables in any way. The metric
encodes locally inertial frames, determining what intervals are timelike, lightlike, or spacelike (ds? less than,
equal to, or greater than zero). That locally inertial structure is independent of the choice of coordinates.
Objects cannot move through locally inertial frames than light. Thus Minkoswki spacetime does not rotate
globally, regardless of the choice of coordinates.

2.19 Riemann tensor

2.19.1 Riemann curvature tensor

The Riemann curvature tensor R,),, is defined by the commutator of the covariant derivative acting
on a 4-vector. In the presence of torsion,

[D.,Dx]A,=S8,D,A, + R.r.A” a coordinate tensor . (2.110)
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If torsion vanishes, as general relativity assumes, then the definition (2.110) reduces to

| [Dw, DAl A, = RinuwA” | a coordinate tensor . (2.111)

The expression (2.51) for the covariant derivative yields the following formula for the Riemann tensor in
terms of connection coefficients

8F/41/)\ aF/u/;«:

ozr oz

R = + v — T Tz | @ coordinate tensor . (2.112)

This is the formula that allows the Riemann tensor to be calculated from the connection coefficients. The
same formula (2.112) remains valid if torsion does not vanish, but the connection coefficients I'y,,,, themselves
are given by (2.62) in place of (2.63).

In flat (Minkowski) space, covariant derivatives reduce to partial derivatives, D, — 9/0z", and

0 0

[DH/?DA] — |:8,’E”" @

] =0 in flat space (2.113)

so that R, = 0 in flat space.

Exercise 2.13. Derivation of the Riemann tensor. Confirm expression (2.112) for the Riemann tensor.
This is an exercise that any serious student of general relativity should do. However, you might like to defer
this rite of passage to Chapter 11, where Exercises 11.3-11.6 take you through the derivation and properties
of the tetrad-frame Riemann tensor.

2.19.2 Commutator of the covariant derivative acting on a general tensor

The commutator of the covariant derivative is of fundamental importance because it defines what is meant
by the field in gauge theories.

It has seen above that the commutator of the covariant derivative acting on a scalar defined the torsion
tensor, equation (2.57), which general relativity assumes vanishes, while the commutator of the covariant
derivative acting on a vector defined the Riemann tensor, equation (2.111). Does the commutator of the
covariant derivative acting on a general tensor introduce any other distinct tensor? No: the torsion and
Riemann tensors completely define the action of the commutator of the covariant derivative on any tensor.
Acting on a general tensor, the commutator of the covariant derivative is

[DA,D,\] ATP — Sz)\D(TAﬂ'p.., + Rh‘)\/lgAﬂ_p“. +RH/\V<7A7rp... _ RH;)\gﬂAJp"' _ Rﬁ)\quﬂau. . (2114)

Q... ... ov... no. .. ... nv...

In more abstract notation, the commutator of the covariant derivative is the operator
[D,.,D)\] = S"\D,, + R,.» (2.115)

where the Riemann curvature operator R, is an operator whose action on any tensor is specified by equa-
tion (2.114). The action of the operator R, is analogous to that of the covariant derivative (2.52): there’s
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a positive R term for each covariant index, and a negative R term for each contravariant index. The action
of R,., on a scalar is zero, which reflects the fact that a scalar is unchanged by a Lorentz transformation.

The general expression (2.114) for the commutator of the covariant derivative reveals the meaning of the
torsion and Riemann tensors. The torsion and Riemann tensors describe respectively the displacement and the
Lorentz transformation experienced by an object when parallel-transported around a curve. Displacements
and Lorentz transformations together constitute the Poincaré group, the complete group of symmetries of
flat spacetime.

How can an object detect a displacement when parallel-transported around a curve? If you go around
a curve back to the same coordinate in spacetime where you began, won’t you necessarily be at the same
position? This is a question that goes to heart of the meaning of spacetime. To answer the question, you
have to consider how fundamental particles are able to detect position, orientation, and velocity. Classically,
particles may be structureless points, but quantum mechanically, particles possess frequency, wavelength,
spin, and (in the relativistic theory) boost, and presumably it is these properties that allow particles to
“measure” the properties of the spacetime in which they live. For example, a Dirac spinor (relativistic Spin—%
particle) Lorentz transforms under the fundamental (spin—%) representation of the Lorentz group, and is
thus endowed with precisely the properties that allow it to “measure” boost and rotation, §14.10. The Dirac
wave equation shows that a Dirac spinor propagating through spacetime varies as ~ e”+*" | whose phase
encodes the displacement of the Dirac spinor. Thus a Dirac spinor could potentially detect a displacement
through a change in its phase when parallel-transported around a curve back to the same point in spacetime.
Since a change in phase is indistinguishable from a spatial rotation about the spin axis of the Dirac spinor,
operationally torsion rotates particles, whence the name torsion.

2.19.3 No torsion

In the remainder of this Chapter, torsion will be assumed to vanish, as general relativity postulates. A
decomposition of the Riemann tensor into torsion-free and contortion parts is deferred to §11.18.

2.19.4 Symmetries of the Riemann tensor

In alocally inertial frame (necessarily, with vanishing torsion), the connection coefficients all vanish, I"y,,, = 0,
but their partial derivatives, which are proportional to second derivatives of the metric tensor, equation (2.63),
do not vanish. Thus in a locally inertial frame the Riemann tensor is

aF/LV}x 8F/II/H

oz~ Oz
1( 829;1,1/ 829;1)\ 8291/>\ 829/11/ 829/”: 8291/1{ >

RH,)\/I,V =

2\ Qxrdz | Qxrdrv Oxrdxt  dxrdrt Ox Oz + Oz Oz
1( a2.g/lk aQQI/A 329;m + 8291/h~ )

T2

dxrdz’  dxrdxt  Hx dxv | dx Ozt
You can check that the bottom line of equation (2.116):

(2.116)
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is antisymmetric in xk > A,
is antisymmetric in g < v,
is symmetric in K\ <> v,

-

has the property that the sum of the cyclic permutations of the last three (or first three, or indeed any
three) indices vanishes

Rre/\p,l/ + Rmu\u + Rh‘uz/)\ =0. (2117)

Actually, as shown in Exercise 11.6, the third, symmetric, symmetry is a consequence of the fourth, cyclic
symmetry. The first three of the four symmetries can be expressed compactly

Rh',)\;w = R([r';/\][uu]) ’ (2118)
in which [] denotes antisymmetrization and () symmetrization, as in
A[/{,/\] = % (Ars)\ - A/\r;) ’ A(h)\) = % (Ah:/\ + A)\h‘) . (2119)

The symmetries (2.118) imply that the Riemann tensor is a symmetric matrix of antisymmetric matrices. An
antisymmetric tensor is also known as a bivector, much more about which you can discover in Chapter 13
on the geometric algebra. An antisymmetric matrix, or bivector, in 4 dimensions has 6 degrees of freedom.
A symmetric matrix of bivectors is a 6 x 6 symmetric matrix, which has 21 degrees of freedom. The final,
cyclic symmetry of the Riemann tensor, equation (2.117), which can be abbreviated

RH[/\;U/] =0, (2120)

removes 1 further degree of freedom. Thus the Riemann tensor has a net 20 degrees of freedom.

Although the above symmetries were derived in a locally inertial frame, the fact that the Riemann tensor
is a tensor means that the symmetries hold in any frame. If you prefer, you can add back the products of
connection coefficients in equation (2.112), and check that the claimed symmetries remain.

Some of the symmetries of the Riemann tensor persist when torsion is present, and others do not. The
relation between symmetries of the Riemann tensor and torsion is deferred to Exercises 11.4-11.6.

2.20 Ricci tensor, Ricci scalar

The Ricci tensor R, and Ricci scalar R are the essentially unique contractions of the Riemann curvature
tensor. The Ricci tensor, the compressive part of the Riemann tensor, is

R, = g’\”R,{A“,, a coordinate tensor . (2.121)

If torsion vanishes as general relativity assumes, then the Ricci tensor is symmetric
Rh",/l, = R/I,K (2122)

and therefore has 10 independent components.
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The Ricci scalar is

R=g¢""R,, | a coordinate tensor (a scalar) . (2.123)

2.21 Einstein tensor

The Einstein tensor G, is defined by

Gy =Ry — %90 R| a coordinate tensor . (2.124)

For vanishing torsion, the symmetry of the Ricci and metric tensors imply that the Einstein tensor is likewise
symmetric

GHN = G/LN y (2125)

and thus has 10 independent components.

2.22 Bianchi identities

The Jacobi identity
[Dy, [Dx, Dyl + [Dy, [Dyy, Di]l 4 [Dyy, [Dy, DA]] = 0 (2.126)

implies the Bianchi identities which, for vanishing torsion, are
-DHR/\;U/Tr + D/\Rpfgyrr + D;LRH/\VW =0. (2127)

The torsion-free Bianchi identities can be written in shorthand

DRy, =0]. (2.128)

The Bianchi identities constitute a set of differential relations between the components of the Riemann
tensor, which are distinct from the algebraic symmetries of the Riemann tensor. There are 4 ways to pick
[xAn], and 6 ways to pick antisymmetric v7, giving 4 x 6 = 24 Bianchi identities, but 4 of the identities,
DRy, = 0, are implied by the cyclic symmetry (2.120), which is a consequence of vanishing torsion.
Thus there are 24 — 4 = 20 non-trivial torsion-free Bianchi identities on the 20 components of the torsion-free
Riemann tensor.

Exercise 2.14. Jacobi identity. Prove the Jacobi identity (2.126).
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2.23 Covariant conservation of the Einstein tensor

The most important consequence of the torsion-free Bianchi identities (2.128) is obtained from the double
contraction

gm/gkﬂ (DI{R)\/LIJTK' + D)\R/m‘,z/ﬂ' + D,uRK,AI/fr) = _DKRH,/I, - D/\RA/I + D/LR =0 ) (2129)
or equivalently
D"G,, =0, (2.130)

where G, is the Einstein tensor, equation (2.124). Equation (2.130) is a primary motivation for the form
of the Einstein equations, since it implies energy-momentum conservation, equation (2.132). It is worth
remarking that the derivation of the contracted Bianchi identities (3.7) holds in arbitrarily many spacetime
dimensions, so the factor of % multiplying the Ricci scalar R in the definition (2.124) of the Einstein tensor
holds in arbitrarily many spacetime dimensions, not just 4.

2.24 Einstein equations

Einstein’s equations are

Gy, =8nGT,, | a coordinate tensor equation . (2.131)

What motivates the form of Einstein’s equations?
1. The equation is generally covariant.

2. For vanishing torsion, the Bianchi identities (2.128) guarantee covariant conservation of the Einstein
tensor, equation (2.130), which in turn guarantees covariant conservation of energy-momentum,

. (2.132)

3. The Einstein tensor depends on the lowest (second) order derivatives of the metric tensor that do not
vanish in a locally inertial frame.
In Chapter 16, the Einstein equations will be derived from an action principle. Although Einstein derived his
equations from considerations of theoretical elegance, the real justification for them is that they reproduce
observation.

Einstein’s equations (2.131) constitute a complete set of gravitational equations, generalizing Poisson’s
equation of Newtonian gravity. However, Einstein’s equations by themselves do not constitute a closed set
of equations: in general, other equations, such as Maxwell’s equations of electromagnetism, and equations
describing the microphysics of the energy-momentum, must be adjoined to form a closed set.
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Exercise 2.15. Einstein tensor in 3 or more dimensions. What is the Einstein tensor in N > 3
spacetime dimensions?

Solution. The Einstein tensor must be covariantly conserved to ensure that its source, energy-momentum,
is covariantly conserved. The doubly-contracted Bianchi identities (3.7) hold as long as there are at least 3
spacetime dimensions. In N = 2 spacetime dimensions, there are zero Bianchi identities (2.128), since there
are zero ways of picking 3 distinct indices. Thus the expression (2.124) for the Einstein tensor holds in any
number N > 3 of spacetime dimensions. See §11.19 for general relativity in 2 spacetime dimensions.

2.25 Summary of the path from metric to the energy-momentum tensor

Start by defining the metric g, .

Compute the connection coefficients I'y ,,, from equation (2.63).

Compute the Riemann tensor R,»,, from equation (2.112).

Compute the Ricci tensor R,;, from equation (2.121), the Ricci scalar R from equation (2.123), and the
Einstein tensor G, from equation (2.124).

L=

5. The Einstein equations (2.131) then imply the energy-momentum tensor 7,.,.

The path from metric to energy-momentum tensor is straightforward to program on a computer, but
the results are typically messy and complicated, even for fairly simple spacetimes. Inverting the path to
recover the metric from a given energy-momentum content is typically highly non-trivial, the subject of a
vast literature.

The great majority of metrics g,, yield an energy-momentum tensor 7)., that cannot be achieved with
normal matter.

2.26 Energy-momentum tensor of a perfect fluid

The simplest non-trivial energy-momentum tensor is that of a perfect fluid. In this case T"" is taken to be
isotropic in the locally inertial rest frame of the fluid, taking the form

p 0 0 O
0 p 00
T = 2.133
0 0 p O ( )
0 0 0 p
where
p is the proper mass-energy density , (2.134)

p is the proper pressure .
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The expression (2.133) is valid only in the locally inertial rest frame of the fluid. An expression that is valid
in any frame is
™ = (p+pulu” +pgh” , (2.135)

where u* is the 4-velocity of the fluid. Equation (2.135) is valid because it is a tensor equation, and it is true
in the locally inertial rest frame, where u* = {1,0,0,0}.

2.27 Newtonian limit

The Newtonian limit is obtained in the limit of a weak gravitational field and non-relativistic (pressureless)
matter. In Cartesian coordinates, the metric in the Newtonian limit is (see Chapter 27)

ds* = — (14 2®)dt* + (1 — 20)(dx? + dy* + d2?) , (2.136)
in which
®(x,y,z) = Newtonian potential (2.137)

is a function only of the spatial coordinates x, y, z, not of time ¢.
For this metric, to first order in the potential ® the only non-vanishing component of the Einstein tensor
is the time-time component

Gy =2V%0 , (2.138)

where V2 = 92 /012 +0?/0y?+0? /02 is the usual 3-dimensional Laplacian operator. This component (2.138)
of the Einstein tensor plugged into Einstein’s equations (2.131) implies Poisson’s equation (2.4).

Exercise 2.16. Special and general relativistic corrections for clocks on satellites. The metric just
above the surface of the Earth is well-approximated by

ds® = — (14 2®)dt* + (1 — 2®)dr? + 12(d6? + sin?0 d¢?) |, (2.139)
where
o(r) = _GM (2.140)
T

is the familiar Newtonian gravitational potential.

1. Proper time. Consider an object at fixed radius r, moving along the equator § = 7/2 with constant
non-relativistic velocity r d¢/dt = v. Compare the proper time of this object with that at rest at infinity.
[Hint: Work to first order in the potential ®. Regard v? as first order in ®. Why is that reasonable?]

2. Orbits. Consider a satellite in orbit about the Earth. The conservation of energy E per unit mass,
angular momentum L per unit mass, and rest mass per unit mass are expressed by (§4.8)

w=-E, u=L, uu'=-1. (2.141)
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For equatorial orbits, § = /2, show that the radial component u” of the 4-velocity satisfies

W =2(AE-TU), (2.142)

where AF is the energy per unit mass of the particle excluding its rest mass energy,

AE=F-1, (2.143)
and the effective potential U is
L2
U=o+ — . 2.144
+5,3 (2.144)

[Hint: Neglect air resistance. Remember to work to first order in ®. Treat AE and L? as first order in
®. Why is that reasonable?]

3. Circular orbits. From the condition that the potential U be an extremum, find the circular orbital
velocity v = rd¢/dt of a satellite at radius 7.

4. Special and general relativistic corrections for satellites. Compare the proper time of a satellite
in circular orbit to that of a person at rest at infinity. Express your answer in the form

dTsatellite
dt

where fgr and fsg are the general relativistic and special relativistic corrections, and ®g is the dimen-

sionless gravitational potential at the surface of the Earth,
~ GMg

& C2R@ ’

— 1= -4 (fer + fsr) » (2.145)

(2.146)

What is the value of ®4 in milliseconds per year?

5. Special and general relativistic corrections for satellites vs. Earth observer. Compare the
proper time of a satellite in circular orbit to that of a person on Earth at one of the poles (so the person
has no motion from the Earth’s rotation). Express your answer in the form

deatellite . dTperson

dt dt

At what satellite radius 7, in units of Earth radius Rg, do the special and general relativistic corrections
cancel?

= —(I)@ (fGR + fSR) . (2.147)

6. Special and general relativistic corrections for ISS and GPS satellites. What are the corrections
(be careful to get the sign right!) in units of ®4, and in units of msyr—!, for (i) a satellite in low Earth
orbit, such as the International Space Station; (ii) a nearly geostationary satellite, such as a GPS
satellite? Google the numbers that you may need.

Exercise 2.17. Equations of motion in weak gravity. Take the metric to be the Newtonian met-
ric (2.136) with the Newtonian potential ®(x,y, z) a function only of the spatial coordinates x, y, z, not of
time ¢, equation (2.137).
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1. Confirm that the non-zero connection coefficients are (coefficients as below but with the last two indices

swapped are the same by the no-torsion condition I';;,, =T,

L « (e} ‘3 & a(b /<
F;a = Ftt = F;‘Sﬁ = _Fﬁa = _Faa = 65870 (O/ 7é ed =Y, Z) . (2148)
[Hint: Work to linear order in @.]
2. Consider a massive, non-relativistic particle moving with 4-velocity u" = daz*/dr = {u,u”, u¥,u*}.
Show that u,u" = —1 implies that

1
u' =1+ §u2 —-®, (2.149)
whereas
1
u = — (1 + §u2 + <1>) (2.150)

where u = [(u”)? + (u¥)? + (u”)?] 2 One of u' or u; is constant. Which one? [Hint: Work to linear
order in ®. Note that u? is of linear order in ®.]
3. Equation of motion of a massive particle. From the geodesic equation

duﬁ K L, V
I + I u'u” =0 (2.151)
show that
du® 0P
— = =2,Y, 2 . 2.152
= = a=uye (2152
Why is it legitimate to replace d7 by dt? Show further that
du! 0P
— = —-2u"— 2.153
dt Y Bga ( )
with implicit summation over o = x,vy,z. Does the result agree with what you would expect from

equation (2.149)?

4. For a massless particle, the proper time along a geodesic is zero, and the affine parameter A must be
used instead of the proper time. The 4-velocity of a massless particle can be defined to be (and really
this is just the 4-momentum p/ up to an arbitrary overall factor) v* = dz* /d\ = {v',v",v¥,v*}. Show
that v,v" = 0 implies that

vl = (120 , (2.154)

whereas

v =—v, (2.155)

where v = [(v7)? + (v¥)? + (v°)?] "2 One of v' or v, is constant. Which one?
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5. Equation of motion of a massless particle. From the geodesic equation

d'UH K L,V
o F e =0 (2.156)
show that the spatial components v = {v*,v¥,v*} satisty
d
% =20 x (vx V) | (2.157)

where boldface symbols represent 3D vectors, and in particular V® is the spatial 3D gradient V& =
0P /0x> = {0P/0x,0P /0y, 0P/0z}.

Interpret your answer, equation (2.157). In what ways does this equation for the acceleration of photons
differ from the equation governing the acceleration of massive particles? [Hint: Without loss of generality,
the affine parameter can be normalized so that the photon speed is one, v = 1, so that v is a unit vector
representing the direction of the photon.]

Consider an observer who happens to be at rest in the Newtonian metric, so that v* = u¥ = u* = 0.
Argue that the energy of a photon observed by this observer, relative to an observer at rest at zero
potential, is

—ufv, =1- . (2.158)

Does the observed photon have higher or lower energy in a deeper potential well?

Exercise 2.18. Deflection of light by the Sun.
1. Consider light that passes by a spherical mass M sufficiently far away that the potential ® is always

weak. The potential at distance r from the spherical mass can be approximated by the Newtonian
potential

GM
-

P = (2.159)

Approximate the unperturbed path of light past the mass as a straight line. The plan is to calculate
the deflection as a perturbation to the straight line (physicists call this the Born approximation). For
definiteness, take the light to be moving in the z-direction, offset by a constant amount y away from
the mass in the y-direction (so y is the impact parameter, or periapsis). Argue that equation (2.157)
becomes

dv? . dv? g OP
=" =— ) — . 2.160
" dr )" 5y (2.160)
Integrate this equation to show that
AvY 4GM
v (2.161)
/U,I, y

Argue that this equals the deflection angle Ag.

2. Calculate the predicted deflection angle A¢ in arcseconds for light that just grazes the limb of the Sun.
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Exercise 2.19. Shapiro time delay. The three classic tests of general relativity are the gravitational
redshift (Exercise 2.9), the gravitational bending of light around the Sun (Exercise 2.18), and the precession
of Mercury (Exercise 7.9). Shapiro (1964) pointed out a fourth test, that the round-trip time for a light
beam bounced off a planet or spacecraft would be lengthened slightly by the passage of the light through
the gravitational potential of the Sun. The experiment could be done with radio signals, since the Sun does
not overwhelm a radio signal passing near its limb. In Exercise 2.17 you showed that the time component of
the 4-velocity v* = dz"/dX of a massless particle moving through a weak gravitational potential ® is (units
c=1)

v = {;l;, zf} = {v',v} = {1 -29,v}, (2.162)

where v is a 3-vector of unit magnitude. Equation (2.162) implies that

dt
—=1-29 2.163
g , (2163

where dl = |dx| is the magnitude of the 3-vector interval de. The Shapiro time delay comes from the 2&
correction.

Figure 2.6 A person on Earth sends out a radio signal that passes by the Sun, bounces off the planet Venus, and
returns to Earth.

1. Time delay. The potential ® at distance r from the Sun is
~ GMg
—

b =

(2.164)
Assume that the path of the light can be well-approximated as a straight line, as illustrated in Figure 2.6.

Show that the round-trip time At is, with units of ¢ restored,

4GMg (TE + ZE)(TV + lv)
3 In 2 ,

2
At =—(lg+1v)+ (2.165)
c
where, as illustrated in Figure 2.6, rg and vy are the distances of Earth and Venus from the Sun, b is the
impact parameter, and /g and [y are the distances of Earth and Venus from the point of closest approach.
The first term in equation (2.165) is the Newtonian expectation, while the last term in equation (2.165)
is the Shapiro term.
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2. Shapiro time delay for the Earth-Venus-Sun system. Evaluate the Shapiro time delay, in mil-

liseconds, for the Earth-Venus-Sun system when the radio signal just grazes the limb of the Sun,
with b = Rg. [Hint: The Earth-Sun distance is 7g = 1.496 x 10*! m, while the Venus-Sun distance
is rv = 1.082 x 10 m.]

Change in the time delay as the planets orbit. Assume that Earth and Venus are in circular orbit
about the Sun (so rg and ry are constant). What are the derivatives dlg/db and dly /db, in terms of I,
Iy, and b? Deduce an expression for ¢ dAt/db. Identify which is the Newtonian contribution, and which
the Shapiro contribution. Among the terms in the Shapiro contribution, which one term dominates for
small impact parameters, where b < rg and b < rv?

Relative sizes of Newtonian and Shapiro terms. From your results in part (c), calculate approx-

imately the relative sizes of the Newtonian and Shapiro contributions to the variation ¢dAt/db of the
time delay when the radio signal just grazes the limb of the Sun, b = Rg. Comment.

Exercise 2.20. Gravitational lensing. In Exercise 2.18 you found that, in the weak field limit, light
passing a spherical mass M at impact parameter y is deflected by angle

_4GM

A
¢ e

(2.166)

1. Lensing equation. Argue that the deflection angle A¢ is related to the angles o and g illustrated in

Im age
b
A¢ 5
Soufrce
------ ]
W
_______________ Ys
RIS
o= B |
Observer D, - -
DS

Figure 2.7 Lensing diagram.

the lensing diagram in Figure 2.7 by

aDg = 8Ds + A¢Dys . (2.167)
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Image

Source

Lens

2nd
image

Figure 2.8 The appearance of a source lensed by a point lens. The lens in this case is a black hole, whose physical size
is the filled circle, and whose apparent (lensed) size is the surrounding unfilled circle. However, any mass, not just a
black hole, will lens a background source.

Hence or otherwise obtain the “lensing equation” in the form commonly used by astronomers
2
@
B=a— 2 (2.168)
@

where

_ (4GM Dis \'?
“®=\"& Dips)

. Solutions. Equation (2.168) has two solutions for the apparent angles « in terms of 5. What are they?
Sketch both solutions on a lensing diagram similar to Figure 2.7.

. Magnification. Figure 2.8 illustrates the appearance of a finite-sized source lensed by a point gravita-
tional lens. If the source is far from the lens, then the source redshift is unchanged by the gravitational
lensing. But the distortion changes the apparent brightness of the source by a magnification u equal to
the ratio of the apparent area of the lensed source to that of the unlensed source. For a small source,
the ratio of areas is

(2.169)

_yadya

©oysdys
What is the magnification of a small source in terms of o and ag? When is the magnification largest?
. Einstein ring around the Sun? The case o = ag evidently corresponds to the case where the source
is exactly behind the lens, 8 = 0. In this case the lensed source appears as an “Einstein ring” of light
around the lens. Could there be an Einstein ring around the Sun, as seen from Earth?
. Einstein ring around Sgr A*. What is the maximum possible angular size of an Einstein ring around
the 4 x 10° Mg, black hole at the center of our Milky Way, 8 kpc away? Might this be observable?

(2.170)
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More on the coordinate approach

3.1 Weyl tensor

The trace-free, or tidal, part of the Riemann curvature tensor defines the Weyl tensor C.. ).,

Cirpw = R — % (gupPRow — g By + 900 Riy — gapRin) + é (9rp9rv — grvgru) R| a coordinate tensor .

(3.1)
The Weyl tensor is by construction trace-free, meaning that it vanishes on contraction of any two indices,
which is true with or without torsion.

If torsion vanishes as general relativity assumes, then the Weyl tensor has 10 independent components,
which together with the 10 components of the Ricci tensor account for the 20 distinct components of the
Riemann tensor. The Weyl tensor C»,, inherits the symmetries (2.118) of the Riemann tensor, which for
vanishing torsion are

CHA/J,I/ = C([h‘)x][/ul]) . (32)

Whereas the Einstein tensor G, necessarily vanishes in a region of spacetime where there is no energy-
momentum, 7}, = 0, the Weyl tensor does not. The Weyl tensor expresses the presence of tidal gravitational
forces, and of gravitational waves.

If torsion does not vanish, then the Weyl tensor has 20 independent components, which together with the
16 components of the Ricci tensor account for the 36 distinct components of the Riemann tensor with torsion.
The 6 antisymmetric components G|, of the Einstein tensor vanish if torsion vanishes, and likewise the 10
antisymmetric components C[(. ). of the Weyl tensor vanish if torsion vanishes. With or without torsion,
the 10 symmetric components C([.)..)) Of the Weyl tensor encode gravitational waves that propagate in
empty space.

Exercise 3.1. Weyl tensor in arbitrary dimensions. What is the Weyl tensor in N spacetime dimen-
sions?
Solution. The Weyl tensor is the trace-free part of the Riemann tensor. In N spacetime dimensions it is

90
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given by the same expression (3.1) but with different coefficients,

1 1
CH‘,)\/U/ = RN,/\/U/ — Xr o (gf;,/LR/\l/ - gr;l/R)\p, + g)\I/RN,/L - g/\;J,Rm/) +

N —2 ) (gh:/tg/\u - gm/gku,) R.

(N_1)(N -2
(3.3)

The Weyl tensor vanishes identically in N = 2 and 3 spacetime dimensions.

Exercise 3.2. Number of components of the Riemann, Ricci, and Weyl tensors in arbitrary
dimensions. How many components do the Riemann, Ricci, and Weyl tensors have in N spacetime dimen-
sions?

Solution. The number of components depends on the total number N of spacetime dimensions, regardless
of how many of those dimensions are timelike or spacelike. With torsion, the Riemann tensor is a matrix of
bivectors. If torsion vanishes, the cyclic symmetry (2.120) imposes ¢ N?(N—1)(N—2) conditions. Thus the
number of components components of the Riemann tensor with and without torsion is

Riemann torsion-full: ~ ($N(N — 1))2 , (3.4a)
Riemann torsion-free: L (N +1)N?*(N —1) . (3.4b)
The Ricci tensor is the trace-full part of the Riemann tensor. In N > 3 spacetime dimensions, the Ricci
tensor with torsion is a matrix of vectors, and without torsion is a symmetric matrix of vectors. Thus the
number of components of the Ricci tensor with and without torsion is
Ricci torsion-full:  N? | (3.5a)
Ricci torsion-free: (N +1)N . (3.5b)
The Weyl tensor is the trace-free part of the Riemann tensor. The number of Weyl components is the
difference between the number of Riemann and Ricci components, which with and without torsion is, in
N > 3 spacetime dimensions,
Weyl torsion-full: (N +1)N?*(N —3) , (3.6a)
Weyl torsion-free: 75(N + 2)(N + 1)N(N — 3) . (3.6b)
Equations (3.5) and (3.6) hold only for N > 3. For N = 2, the Riemann tensor has 1 component, the Ricci
tensor 1 component, and the Weyl tensor 0 components, equation (11.92).

3.2 Evolution equations for the Weyl tensor, and gravitational waves

This section shows how the evolution equations for the Weyl tensor resemble Maxwell’s equations for the
electromagnetic field, and how the Weyl tensor encodes gravitational waves. In this section, torsion is taken
to vanish, as general relativity assumes.

Contracted on one index, the torsion-free Bianchi identities (2.127) are

D[NR)\/L]VH = l)l‘s‘RA/u/C + D}\R/Ll/ - Dz/R)\I/ =0. (37)
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In 4-dimensional spacetime, there are 20 such independent contracted identities, consisting of 4 trace iden-
tities obtained by contracting over A\, and 16 trace-free identities. Since this is the same as the number of
independent torsion-free Bianchi identities, it follows that the contracted Bianchi identities (3.7) are equiva-
lent to the full set of Bianchi identities (2.128). An explicit expression for the Bianchi identities in terms of
the contracted Bianchi identities is, in 4-dimensions (in 5 or higher dimensions there are additional terms),

DRy, ;"™ = (18 (5[’;&6‘[[’56‘:] +96707,.0% ;])D[URPJ]T’” (4D spacetime) . (3.8)
If the Riemann tensor is separated into its trace (Ricci) and traceless (Weyl) parts, equation (3.1), then the
contracted Bianchi identities (3.7) become the Weyl evolution equations

DHCN)\/U/ = J/\/U/ 5 (39)
where J,,,,, is the Weyl current
J)x/l,l/ = % (D/JGAI/ - DI/G)\/L) - % (g)\uD/tG - gA/l,DI/G) . (3]‘0)

The Weyl evolution equations (3.9) can be regarded as the gravitational analogue of Maxwell’s equations of
electromagnetism.

The Weyl current Jy,, is a vector of bivectors, which would suggest that it has 4 x 6 = 24 components,
but it loses 4 of those components because of the cyclic identity (2.117), valid for vanishing torsion, which
implies the cyclic symmetry

Jpuw) =0 (3.11)

Thus the torsion-free Weyl current J),, has 20 independent components, in agreement with the above
assertion that there are 20 independent torsion-free contracted Bianchi identities. Since the Weyl tensor is
traceless, contracting the Weyl evolution equations (3.9) on Au yields zero on the left hand side, so that the
contracted Weyl current satisfies

J, =0 (3.12)

This doubly-contracted Bianchi identity, which is the same as equation (2.130), enforces conservation of
energy-momentum. Unlike the cyclic symmetry (3.11), which follows from the cyclic symmetry of the Rie-
mann tensor and is not a differential condition on the Riemann tensor, equations (3.12) constitute a non-
trivial set of 4 differential conditions on the Einstein tensor. Besides the algebraic relations (3.11) and (3.12),
the Weyl current satisfies 6 differential identities comprising the conservation law

Dy, =0 (3.13)

in view of equation (3.9) and the antisymmetry of C..»,, with respect to the indices xA. The Weyl current
conservation law (3.13) follows from the form (3.10) of the Weyl current, coupled with covariant conservation
of the Einstein tensor, equation (2.130), so does not impose any additional non-trivial conditions on the
Riemann tensor. The Weyl current conservation law (3.13) is the gravitational analogue of the conservation
law for electric current that follows from Maxwell’s equations.

Whereas the Einstein equations relating the Einstein tensor to the energy-momentum tensor are postulated
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equations of general relativity, the evolution equations (3.9) for the Weyl tensor, and the equations enforcing
covariant conservation of the Einstein tensor, follow mathematically from the Bianchi identities, and do not
represent, additional assumptions of the theory.

Exercise 3.3. Number of Bianchi identities. Confirm the counting of degrees of freedom.

Exercise 3.4. Wave equation for the Riemann and Weyl tensors. From the torsion-free Bianchi
identities (2.128) and (3.7), show that the torsion-free Riemann tensor satisfies the covariant wave equation

DRH}\}“/ = Dr;DuR)\V - DHDVR/\ﬂ + D/\DI/RH;L - D/\D;LRKI/ ) (314)
where [J is the D’Alembertian operator, the 4-dimensional wave operator
O0=D"D, . (3.15)

Show that contracting equation (3.14) with ¢ yields the identity OR,,, = OR,,. Conclude that the wave
equation (3.14) is non-trivial only for the trace-free part of the Riemann tensor, the Weyl tensor Ci ), .
Show that the wave equation for the Weyl tensor is

DCH)\;IV = (DKD,LL - %Q»W D)R)\z/ - (DI"\'DI/ - %grw D)R)\u
+ (D)\-DI/ - %g)\u D)Rfcp, - (D)\Du - %g)\u D)Ri{,l/
+ % (gﬁ,,u,gkz/ - gr;,l/g)\/l,)DR . (316)

Conclude that in a vacuum, where R,,, = 0,

OC, a0 =0 . (3.17)

3.3 Geodesic deviation

This section on geodesic deviation is included not because the equation of geodesic deviation is crucial to
everyday calculations in general relativity, but rather for two reasons. First, the equation offers insight into
the physical meaning of the Riemann tensor. Second, the derivation of the equation offers a fine illustration
of the fact that in general relativity, whenever you take differences at infinitesimally separated points in
space or time, you should always take covariant differences.

Consider two objects that are free-falling along two infinitesimally separated geodesics. In flat space the
acceleration between the two objects would be zero, but in curved space the curvature induces a finite
acceleration between the two objects. This is how an observer can measure curvature, at least in principle:
set up an ensemble of objects initially at rest a small distance away from the observer in the observer’s
locally inertial frame, and watch how the objects begin to move. The equation (3.24) that describes this
acceleration between objects an infinitesimal distance apart is called the equation of geodesic deviation.
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The covariant difference in the velocities of two objects an infinitesimal distance dx* apart is

= Sul (3.18)

In general relativity, the ordinary difference between vectors at two points a small interval apart is not
a physically meaningful thing, because the frames of reference at the two points are different. The only
physically meaningful difference is the covariant difference, which is the difference in the two vectors parallel-
transported across the gap between them. It is only this covariant difference that is independent of the frame
of reference. On the left hand side of equation (3.18), the proper time derivative must be the covariant proper
time derivative, D/D7 = u*D,. On the right hand side of equation (3.18), the difference in the 4-velocity
at two points 0z apart must be the covariant difference § = 2" D,;. Thus equation (3.18) means explicitly
the covariant equation

u D\ ox! = dx" D, ut . (3.19)

To derive the equation of geodesic deviation, first vary the geodesic equation Du, /D7 = 0 (the index f is
put downstairs so that the final equation (3.24) looks cosmetically better, but of course since everything is
covariant the 1 index could just as well be put upstairs everywhere):

Duy,

Dt

=0z"D, (uAD,\u,,,)

= du*Dyu,, + éx"u D, Dyu,, . (3.20)

0=9¢

On the second line, the covariant difference § between quantities a small distance dz” apart has been set
equal to dz"D,., while D/D7 has been set equal to the covariant time derivative u* D, along the geodesic.
On the last line, 62" D,.u” has been replaced by du. Next, consider the covariant acceleration of the interval
dx,,, which is the covariant proper time derivative of the covariant velocity difference du,,:

D25zu Déu,,
Dr2 _ Dr
=u'D, (0z"D,u,,)
=ou"D,u, + 533"u’\D,\DHuM . (3.21)

As in the previous equation (3.20), on the second line D/DT has been set equal to u* D, while § has been
set equal to 2" D,.. On the last line, u* D) dz" has been set equal to du”, equation (3.19). Subtracting (3.20)
from (3.21) gives

D?6x p
DTQH =z u/\[D,MD,Ju,L , (3.22)
or equivalently
D26z, ) :
Li + S,’jkéx“’uADl,uﬂ + R,{,\“,,,(Sx“’uku” =0. (3.23)

Dr2
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If torsion vanishes as general relativity assumes, then

D25x,L

S A V
+ R0z u v’ =0
Dr2 an

which is the desired equation of geodesic deviation.
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(3.24)
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Action principle for point particles

This Chapter describes the action principle for point particles in a prescribed gravitational field. The action
principle provides a powerful way to obtain equations of motion for particles in a given spacetime, such as
a black hole, or a cosmological spacetime. An action principle for the gravitational field itself is deferred to
Chapter 16, after development of the tetrad formalism in Chapter 11.

Hamilton’s principle of least action postulates that any dynamical system is characterized by a scalar
action S, which has the property that when the system evolves from one specified state to another, the path
by which it gets between the two states is such as to minimize the action. The action need not be a global
minimum, just a local minimum with respect to small variations in the path between fixed initial and final
states.

That nature appears to respect a principle of such simplicity and power is quite remarkable, and a deep
mystery. But it works, and in modern physics, the principle of least action has become a basic building block
with which physicists construct theories.

From a practical perspective, the principle of least action, in either Lagrangian or Hamiltonian form,
provides the most powerful way to solve equations of motion. For example, integrals of motion associated
with symmetries of the spacetime emerge automatically in the Lagrangian or Hamiltonian formalisms.

4.1 Principle of least action for point particles

The path of a point particle through spacetime is specified by its coordinates z*(\) as a function of some
arbitrary parameter A. In non-relativistic mechanics it is usual to take the parameter A to be the time ¢, and
the path of a particle through space is then specified by three spatial coordinates x*(¢). In relativity however
it is more natural to treat the time and space coordinates on an equal footing, and to regard the path of a
particle as being specified by four spacetime coordinates z*()\) as a function of an arbitrary parameter A, as
illustrated in Figure 4.1. The parameter A is simply a differentiable parameter that labels points along the
path, and has no physical significance (for example, it is not necessarily an affine parameter).

The path of a system of N point particles through spacetime is specified by 4N coordinates x*(\). The
action principle postulates that, for a system of N point particles, the action S is an integral of a Lagrangian

96
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A

v x

Figure 4.1 The action principle considers various paths through spacetime between fixed initial and final conditions,
and chooses that path that minimizes the action.

X

L(z",dx" /d)\) which is a function of the 4N coordinates z/(\) together with the 4NV velocities dz" /dX with
respect to the arbitrary parameter \. The action from an initial state at ); to a final state at A¢ is thus

At dzt
- Z . 4.1
s A L(x , dA) d\ (4.1)

The principle of least action demands that the actual path taken by the system between given initial and
final coordinates z{' and z{ is such as to minimize the action. Thus the variation §S of the action must be
zero under any change dz* in the path, subject to the constraint that the coordinates at the endpoints are
fixed, éz!' = 0 and dzf = 0,

A
/0L oL
= H —_— ® =Uu. 4.2
5S /A ( 527"+ g 7y O /d/\)> A\ =0 (4.2)
Linearity of the derivative,
d dzt  d(dzH)
— (" M = — 4.
o @) =T = (43)

shows that the change in the velocity along the path equals the velocity of the change, d(dz"/d\) =
d(dx*)/d). Integrating the second term in the integrand of equation (4.2) by parts yields

oL MoorMraL d oL
_ n 9% Nsatdr=0. 4.4
55 = ™ L + [ (G~ o) =0 4

The surface term in equation (4.4) vanishes, since by hypothesis the coordinates are held fixed at the
endpoints, so dz* = 0 at the endpoints. Therefore the integral in equation (4.4) must vanish. Indeed least
action requires the integral to vanish for all possible variations dx* in the path. The only way this can happen
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is that the integrand must be identically zero. The result is the Euler-Lagrange equations of motion

d OL oL

D o(dzrjdy) ~ aar O (4:5)

It might seem that the Euler-Lagrange equations (4.5) are inadequately specified, since they depend on
some arbitrary unknown parameter A. But in fact the Euler-Lagrange equations are the same regardless of
the choice of A. An example of the arbitrariness of A will be seen in §4.3. Since A can be chosen arbitrarily,
it is common to choose it in some convenient fashion. For a massive particle, A can be taken equal to the
proper time 7 of the particle. For a massless particle, whose proper time never progresses, A can be taken
equal to an affine parameter.

Concept question 4.1. Redundant time coordinates? How can it be possible to treat the time co-
ordinate ¢ for each particle as an independent coordinate? Isn’t the time coordinate ¢ the same for all NV
particles? Answer. Different particles follow different trajectories in spacetime. One is free to choose t()\)
to be a different function of the parameter A for each particle, in the same way that the spatial coordinate
2*(\) may be a different function for each particle.

4.2 Generalized momentum

The left hand side of the Euler-Lagrange equations of motion (4.5) involves the partial derivative of the
Lagrangian with respect to the velocity dz/ /dA. This quantity plays a fundamental role in the Hamiltonian
formulation of the action principle, §4.10, and is called the generalized momentum 7, conjugate to the
coordinate x",

oL

T, = B e ) (4.6)

4.3 Lagrangian for a test particle

According to the principle of equivalence, a test particle in a gravitating system moves along a geodesic, a
straight line relative to local free-falling frames. A geodesic is the shortest distance between two points. In
relativity this translates, for a massive particle, into the longest proper time between two points. The proper
time along any path is dr = v/ —ds2? = \/—gﬂ,/dac#dx". Thus the action S, of a test particle of constant rest
mass m in a gravitating system is

At At dxt dxv
m = — dr = — —gu————d\ . 4.
S, m/}\i T m//\i I I (4.7)
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The factor of rest mass m brings the action, which has units of angular momentum, to standard normalization.
The overall minus sign comes from the fact that the action is a minimum whereas the proper time is a
maximum along the path. The action principle requires that the Lagrangian L(z",dx" /d)\) be written as a
function of the coordinates z/* and velocities dz/ /dA, and it is seen that the integrand in the last expression
of equation (4.7) has the desired form, the metric g, being considered a given function of the coordinates.
Thus the Lagrangian L,, of a test particle of mass m is

/ dxt dxv
Lm = —m *g/u/ﬁﬁ . (48)

The partial derivatives that go in the Euler-Lagrange equations (4.5) are then

dl‘”
OL,, - —gm,ﬁ
O(dz"/dN) "/ =gu,(daT [dN)(da? [AN) |
199,y du” da”
OLm _ ., 2 0z~ d\ d\ (4.9b)
Ox* /=G p(dz™ [dN)(dzP [dX)

(4.9a)

The denominators in the expressions (4.9) for the partial derivatives of the Lagrangian are
/= 9rp(dz7 [dN)(dzr [dN) = dT/d). It was not legitimate to make this substitution before taking the partial
derivatives, since the Euler-Lagrange equations require that the Lagrangian be expressed in terms of x* and
dx' /d)\, but it is fine to make the substitution now that the partial derivatives have been obtained. The
partial derivatives (4.9) thus simplify to

oL,, da” dA
T . N — "1/77 - K 9 4'1
a(dzrjan) " an ar - (4.10a)
0L, 1 0g,, dz" da” dX dr
- = = - = er{ Hy” — 9 4.10b
oz 2" 0z dx dx dr st (4.10b)

in which u” = dz" /dr is the usual 4-velocity, and the derivative of the metric has been replaced by connections
in accordance with equation (2.59). The generalized momentum =, equation (4.6), of the test particle
coincides with its ordinary momentum p,.:

The resulting Euler-Lagrange equations of motion (4.5) are

dmuh‘ L,V
o ml v o

As remarked in §4.1, the choice of the arbitrary parameter A\ has no effect on the equations of motion. With
a factor of mdr/d\ cancelled, equation (4.12) becomes
du,,
dr

(4.12)

=T .ulu” . (4.13)
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Splitting the connection I',,,,; into its torsion-free part f‘,ﬂ,ﬂ and the contortion K, ., equation (2.64), gives

duy,

d - (f/LIJH + K,u,z/h",)uﬂuy = f‘um/ullulf ) (414)
T

where the last step follows from the symmetry of the torsion-free connection Io’,“,K in its last two indices,
and the antisymmetry of the contortion tensor K, in its first two indices. With or without torsion, equa-
tion (4.14) yields the torsion-free geodesic equation of motion,

o

Du,,

=0]. 4.1
Dr 0 (4.15)

Equation (4.15) shows that presence of torsion does not affect the geodesic motion of particles.

Concept question 4.2. Throw a clock up in the air.

1. This question is posed by Rovelli (2007). Standing on the surface of the Earth, you throw a clock up in
the air, and catch it. Which clock shows more time elapsed, the one you threw up in the air, or the one
on your wrist?

2. Suppose you throw the clock so hard that it goes around the Moon. Which clock shows more time
elapsed?

4.4 Massless test particle

The equation of motion for a massless test particle is obtained from that for a massive particle in the limit of
zero mass, m — 0. The proper time 7 along the path of a massless particle is zero, but an affine parameter
A = 7/m proportional to proper time can be defined, equation (2.93), which remains finite in the limit
m — 0. In terms of the affine parameter A\, the momentum p” of a particle can be written

- dz”
= M= 4.16
p= = (416)
and the equation of motion (4.15) becomes

Dp,
t 0, 4.17
DX (4.17)

which works for massless as well as massive particles.

The action for a test particle in terms of the affine parameter A defined by equation (2.93) is

S = —m2/ dX , (4.18)

which vanishes for m — 0. One might be worried that the action seemingly vanishes identically for a massless
particle. An alternative nice action is given below, equation (4.30), that vanishes in the massless limit only
after the equations of motion are imposed.
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Concept question 4.3. Conventional Lagrangian. In the conventional Lagrangian approach, the pa-
rameter \ is set equal to the time coordinate ¢, and the Lagrangian L(t, 2%, dx®/dt) of a system of N particles
is considered to be a function of the time ¢, the 3N spatial coordinates x“, and the 3N spatial velocities
dz®/dt. Compare the conventional and covariant Lagrangian approaches for a point particle. Answer. The
Euler-Lagrange equations in the conventional Lagrangian approach are

d oL oL

dt O(dx>/dt) Oz
For a point particle, the Euler-Lagrange equations (4.19) yield the spatial components of the geodesic equa-
tion of motion (4.17),

=0. (4.19)

Dp.,

DX
What about the time component of the geodesic equation of motion? The geodesic equation for the time
component is a consequence of the geodesic equations for the spatial components, coupled with conservation
of rest mass m,

=0. (4.20)

oDpy gﬁpopo _ 1 D(p°pa +m?) _  Dpa

DX 2 DA 2 DA Py =0 (4.21)

Put another way, the covariant Lagrangian approach applied to a point particle enforces conservation of the
rest mass m of the particle, a conservation law that the conventional Lagrangian approach simply assumes.
Invariance of the action with respect to reparametrization of A\ implies conservation of rest mass.

4.5 Effective Lagrangian for a test particle

A drawback of the test particle Lagrangian (4.8) is that it involves a square root. This proves to be problematic
for various reasons, among which is that it is an obstacle to deriving a satisfactory super-Hamiltonian, §4.12.
This section describes an alternative approach that gets rid of the square root, making the test particle
Lagrangian quadratic in velocities dz/ /d\, equation (4.25).

After equations of motion are imposed, the Lagrangian (4.8) for a test particle of constant rest mass m is

dr
L = —m2L 122
" (422)

If the parameter X is chosen such that dr/d) is constant,

dr

— = constant , 4.23
so that the Lagrangian L,, is constant after equations of motion are imposed, then the Euler-Lagrange
equations of motion (4.5) are unchanged if the Lagrangian is replaced by any function of it,

Ly = f(Lm) - (4.24)

m
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A convenient choice of alternative Lagrangian L/, also called an effective Lagrangian, is

L? 1 dz*dx”
L o=—m = —g 2 42
™ Tom? ~ 29N an (4.25)
For the effective Lagrangian (4.25), the partial derivatives (4.9) are
oL, dx”
_ P 4T 4.26
a(dzr/dN) 9™ ax (4.262)
oL, 10g,, dz' dz” dx¥ dx¥
=22 =T, — ) 4.26b
ox" 2 0z~ dA dA AN dA ( )
The Euler-Lagrange equations of motion (4.5) are then
d dz” dz* dz”
TV Ky =Tk . 4.27
X <9 X > HUETIN AN (427)

Equations (4.27) are valid subject to the condition (4.23), which asserts that d\ « dr. The constant of
proportionality does not affect the equations of motion (4.27), which thus reproduce the earlier equations of
motion in either of the forms (4.15) or (4.17).

If the test particle is moving in a prescribed gravitational field and there are no other fields, then the
equations of motion are unchanged by the normalization of the effective Lagrangian L/, . But if there are other
fields that affect the particle’s motion, such as an electromagnetic field, §4.7, then the effective Lagrangian
L, must be normalized correctly if it is to continue to recover the correct equations of motion. The correct
normalization is such that the generalized momentum of the test particle, defined by equation (4.26a), equal
its ordinary momentum p,,, in agreement with equation (4.11),

dx” dx”
KV =Pk = Grv 4.28
vy = P = G M (4.28)
This requires that the constant in equation (4.23) must equal the rest mass m,
dr
—=m. 4.29

This is just the definition of the affine parameter A, equation (2.93). Thus the X in the definition (4.25) of
the effective Lagrangian L/, should be interpreted as the affine parameter.

Notice that the value of the effective Lagrangian L after condition (4.29) is applied (after equations of
motion are imposed) is —m?/2, which is half the value of the original Lagrangian L,, (4.8).

4.6 Nice Lagrangian for a test particle

The effective Lagrangian (4.25) has the advantage that it does not involve a square root, but this advantage
was achieved at the expense of imposing the condition (4.29) ad hoc after the equations of motion are
derived. It is possible to retain the advantage of a Lagrangian quadratic in velocities, but get rid of the ad
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hoc condition, by modifying the Lagrangian so that the ad hoc condition essentially emerges as an equation
of motion. I call the resulting Lagrangian (4.31) the “nice” Lagrangian.

As seen in §4.1, the equations of motion are independent of the choice of the arbitrary parameter A
that labels the path of the particle between its fixed endpoints. The equations of motion are said to be
reparametrization independent. Introduce, therefore, a scale factor a(\), an arbitrary function of A,
that rescales the parameter A, and let the action for a test particle of mass m be

1 dx" dx 9
Sm/Q(glluaw\ad)\m > ad)\, (430)

with nice Lagrangian

(4.31)

a dzt dx” 9
Lm =3 (g“”ad/\ad)\ - )

Variation of the action (4.30) with respect to «* and dx* /d\ yields the Euler-Lagrange equations in the form

d dzx” dzt dz”
KU =Lk . 4.32
ad\ (g ad/\> AN adA (432)
Variation of the action (4.30) with respect to the parameter a gives
1 dz" dx”
0Sm= [ z | —9uw—r —m? ) dad\, 4.33
/2(9‘ adX ad m)“ (433)
and requiring that this be an extremum imposes
dz" dx 9
Wy Ty = —mT . 4.34
I gaxaax — " (4.34)
Equation (4.34) is equivalent to
d
adr = | (4.35)
m

where the sign has been taken positive without loss of generality. Substituting equation (4.35) into the
equations of motion (4.32) recovers the usual equations of motion (4.15).

Condition (4.35) substituted into the action (4.30) recovers the standard test particle action (4.7) with
the correct sign and normalization.

4.7 Action for a charged test particle in an electromagnetic field

The equations of motion for a test particle of charge ¢ in a prescribed gravitational and electromagnetic
field can be obtained by adding to the test particle action S,, an interaction action S, that characterizes the
interaction between the charge and the electromagnetic field,

S =S8, +S,. (4.36)
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In flat (Minkowski) space, experiment shows that the required equation of motion is the classical Lorentz
force law (4.45). The Lorentz force law is recovered with the interaction action

Af Af dzt

Se=4¢ A, dxt =q A, ——d\, (4.37)

A A d\
where A, is the electromagnetic 4-vector potential. The interaction Lagrangian L, corresponding to the
action (4.37) is

dzt

dXx
If the electromagnetic potential A, is taken to be a prescribed function of the coordinates z* along the
path of the particle, then the Lagrangian L, (4.38) is a function of coordinates z* and velocities dx* /dA
as required by the action principle. The partial derivatives of the interaction Lagrangian L, with respect to
velocities and coordinates are

L,=qA (4.38)

0L, _
e jany ~ A e
m
OL,  0A,dz'  0A, ! dr . (4.39b)

oz~ Yoz ax ~ Yo" dx
The generalized momentum 7, equation (4.6), of the test particle of mass m and charge ¢ in the electro-
magnetic field of potential A, is, from equations (4.10a) and (4.39a),

O(Lm + Lg)

o = = mu, A, . 4.40
= Dlde jany (440)
Applied to the Lagrangian L = L,, + L4, the Euler-Lagrange equations (4.5) are
d . 04, ,\ dr
a (muh + th) = <mF/umtul u + Qﬁul ) a ) (441)
which rearranges to
dmu,
%’;u =ml v’ + qF, ut (4.42)
-

where the antisymmetric electromagnetic field tensor F),, is defined to be the torsion-free covariant curl of
the electromagnetic potential A4,

_ 04, O0A,
= oz Ozt
The definition (4.43) of the electromagnetic field holds even in the presence of torsion (see §16.5). Splitting
the connection in equation (4.42) into its torsion-free part and the contortion, as done previously in equa-
tion (4.14), yields the Lorentz force law for a test particle of mass m and charge ¢ moving in a prescribed

gravitational and electromagnetic field, with or without torsion,

F., (4.43)

S gF | (4.44)
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Equation (4.44), which involves the torsion-free covariant derivative D /D7, shows that the Lorentz force law
is unaffected by the presence of torsion.
In flat (Minkowski) space, the spatial components of equation (4.44) reduce to the classical special rela-
tivistic Lorentz force law
d
d—lt):q(E—i—'uxB). (4.45)
In equation (4.45), p is the 3-momentum and v is the 3-velocity, related to the 4-momentum and 4-velocity
by p* = {pt,p} = mu* = mut{1,v} (note that d/dt = (1/u’)d/dr). In flat space, the components of the
electric and magnetic fields E = {E,, E,, E.} and B = {B,, B,, B,} are related to the electromagnetic field
tensor Fy,, by (the signs in the expression (4.46) are arranged precisely so as to agree with the classical
law (4.45))

0 -E, —-E, —E, O E, E, E.
| B. o B. -B, wn | =Ex 0 B. =B,

Fon = E, -B. 0 B, |’ = -E, -B. 0 B, (4.46)
E. B, -B, 0 -E. B, -B, 0

If the electromagnetic 4-potential A™ is written in terrms of a classical electric potential ¢ and electric
3-vector potential A = {A,, Ay, A.},

A™ = {¢, A}, (4.47)

then in flat space equation (4.43) reduces to the traditional relations for the electric and magnetic fields E
and B in terms of the potentials ¢ and A,

0A

where V = {0/0z,0/0y,0/0z} is the spatial 3-gradient.

4.8 Symmetries and constants of motion

If a spacetime possesses a symmetry of some kind, then a test particle moving in that spacetime possesses
an associated constant of motion. The Lagrangian formalism makes it transparent how to relate symmetries
to constants of motion.

Suppose that the Lagrangian of a particle has some spacetime symmetry, such as time translation symme-
try, or spatial translation symmetry, or rotational symmetry. In a suitable coordinate system, the symmetry
is expressed by the condition that the Lagrangian L is independent of some coordinate, call it £. In the case
of time translation symmetry, for example, the coordinate would be a suitable time coordinate ¢. Coordinate
independence requires that the metric g,,,,, along with any other field, such as an electromagnetic field, that
may affect the particle’s motion, is independent of the coordinate £. Then the Euler-Lagrangian equations
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of motion (4.5) imply that the derivative of the covariant {-component s of the conjugate momentum of
the particle vanishes along the trajectory of the particle,

dﬂ'g - 8L -
> (4.49)

Thus the covariant momentum 7, is a constant of motion,

[ o] s

4.9 Conformal symmetries

Sometimes the Lagrangian possesses a weaker kind of symmetry, called conformal symmetry, in which
the Lagrangian L depends on a coordinate & only through an overall scaling of the Lagrangian,

L=¢*L, (4.51)

where the conformal Lagrangian L is independent of ¢. The factor e¢ is called a conformal factor. The
Euler-Lagrangian equation of motion (4.5) for the conformal coordinate & is then

dﬂ'g - 8L o
o o L (4.52)

As an example, consider a test particle moving in a spacetime with conformally symmetric metric
9uv = €2£§,W y (453)

where the conformal metric g, is independent of the coordinate £. The effective Lagrangian L], of the test
particle is given by equation (4.25). The equation of motion (4.52) becomes

dpe o1/ _ 2
I =2L, =—-m~. (4.54)

If the test particle is massive, m # 0, then equation (4.54) integrates to

pe = —mT|, (4.55)

where a constant of integration has been absorbed, without loss of generality, into a shift of the zero point
of the proper time 7 of the particle. If the test particle is massless, m = 0, then equation (4.54) implies that

pe = constant . (4.56)
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Exercise 4.4. Geodesics in Rindler space. The Rindler line-element (2.103) can be written
ds?* = e* (—do® + d&?) + dy® + d2* | (4.57)
where the Rindler coordinates o and ¢ are related to Minkowski coordinates ¢ and z by
t=eSsinhar, z=e"cosha . (4.58)

What are the constants of motion of a test particle? Integrate the Euler-Lagrange equations of motion.
Solution. The Rindler metric is independent of the coordinates «, y, and z. The three corresponding
constants of motion are

Pas Py, Pz- (459)
A fourth integral of motion follows from conservation of rest mass

pl/pl/ = _m2 . (460)

Figure 4.2 Rindler wedge of Minkowski space. Purple and blue lines are lines of constant Rindler time a and constant
Rindler spatial coordinate £ respectively. The grid of lines is equally spaced by 0.2 in each of a and £. The Rindler
coordinates o and &, each extending over the interval (—oo, 00), cover only the = > |t| quadrant of Minkowski space.
The fact that the Rindler metric is conformally Minkowski in « and ¢ (the line-element is proportional to — da? +d¢?,
equation (4.57)) shows up in the fact that small areal elements of the a—¢ grid are rhombi with null (45°) diagonals.
The straight black line is a representative geodesic. The solid dot marks the point where the geodesic goes through
{0, &0}. Open circles mark o = Foo, where the geodesic passes through the null boundaries ¢t = Fz of the Rindler
wedge.
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Equation (4.60) rearranges to give

d
% =pt=e S/ (etpa)? — 12, (4.61)
where p is the positive constant
Equation (4.61) integrates to give £ as a function of A,
2
26 = Lo _ 2\ (4.63)

I

where a constant of integration has been absorbed without loss of generality into a shift of the zero point of
the affine parameter A along the trajectory of the particle. The coordinate £ passes through its maximum
value & where A = 0, at which point

efo = Lo (4.64)
I
the sign coming from the fact that p, = gnap” = —e2do /d\ must be negative, since the particle must move

forward in Rindler time «. The trajectory is illustrated in Figure 4.2; the trajectory is of course a straight
line in the parent Minkowski space.
The evolution equation (4.63) for £(A) can be derived alternatively from the Euler-Lagrange equation for

£,
dpe 2
pe _ o 4.65
o= M (4.65)
The Euler-Lagrange equation (4.65) integrates to
pe = —1?X, (4.66)

where a constant of integration has again been absorbed into a shift of the zero point of the affine parameter
A (this choice is consistent with the previous one). Given that p; = geep® = €26d¢/d), equation (4.66)
integrates to yield the same result (4.63), the constant of integration being established by the rest-mass
relation (4.60).

The evolution of Rindler time « along the particle’s trajectory follows from integrating p, = goap™ =

—e?:da/d), which gives
1 eo 4 p

where «q is the value of o for A = 0, where £ takes its maximum &;. The Rindler time coordinate « varies
between limits Foo at u\ = Fe.
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4.10 (Super-)Hamiltonian

The Lagrangian approach characterizes the paths of particles through spacetime in terms of their 4N coor-
dinates z/* and corresponding velocities dz/ /d) along those paths. The Hamiltonian approach on the other
hand characterizes the paths of particles through spacetime in terms of 4N coordinates z* and the 4N gen-
eralized momenta 7, which are treated as independent from the coordinates. In the Hamiltonian approach,
the Hamiltonian H(z",7,) is considered to be a function of coordinates and generalized momenta, and
the action is minimized with respect to independent variations of those coordinates and momenta. In the
Hamiltonian approach, the coordinates and momenta are treated essentially on an equal footing.
The Hamiltonian H can be defined in terms of the Lagrangian L by

dxt

ax
Here, as previously in §4.1, the parameter A is to be regarded as an arbitrary parameter that labels the
path of the system through the 8 N-dimensional phase space of coordinates and momenta of the IV particles.
Misner, Thorne, and Wheeler (1973) call the Hamiltonian (4.68) the super-Hamiltonian, to distinguish
it from the conventional Hamiltonian, equation (4.74), where the parameter \ is taken equal to the time
coordinate t. Here however the super-Hamiltonian (4.68) is simply referred to as the Hamiltonian, for brevity.

In terms of the Hamiltonian (4.68), the action (4.1) is

A
f dx/l
= — —H . 4.
s /A (m = )d)\ (4.69)

In accordance with Hamilton’s principle of least action, the action must be varied with respect to the
coordinates and momenta along the path. The variation of the first term in the integrand of equation (4.69)
can be written

H=r, (4.68)

dz" dz#  dozt dz"  d dn,
5 <7rﬂ * ) = om, ° x T st (4.70)

- - R — _ - 5 »Y

) T e = O o (o) =
The middle term on the right hand side of equation (4.70) yields a surface term on integration. Thus the
variation of the action is

At d OH de"  OH
— 1A E _ ﬂ-N v _ 4.71
08 = [muda”]y; + A { < Y a;w) o ( dX am,) M“} > ()

which takes into account that the Hamiltonian is to be considered a function H(z",7,) of coordinates and

momenta. The principle of least action requires that the action is a minimum with respect to variations of
the coordinates and momenta along the paths of particles, the coordinates and momenta at the endpoints
Ai and A¢ of the integration being held fixed. Since the coordinates are fixed at the endpoints, dx* = 0, the
surface term in equation (4.71) vanishes. Minimization of the action with respect to arbitrary independent
variations of the coordinates and momenta then yields Hamilton’s equations of motion

de 0H  dm,  OH
= - . 4.72
d\  Om,  dA Ozt (4.72)
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4.11 Conventional Hamiltonian

The conventional Hamiltonian of classical mechanics is not the same as the super-Hamiltonian (4.68). In the
conventional approach, the parameter \ is set equal to the time coordinate ¢. The Lagrangian is taken to be
a function L(¢, z“, dz®/dt) of time ¢ and of the 3V spatial coordinates z and 3N spatial velocities dz®/dt.
The generalized momenta are defined to be, analogously to (4.6),

OL

3w ] (4.73)

T =

The conventional Hamitonian is taken to be a function H(t,z,m,) of time ¢ and of the 3N spatial coor-
dinates ® and corresponding 3N generalized momenta m,. The conventional Hamiltonian is related to the
conventional Lagrangian by

H=n,— — L. (4.74)

The conventional Hamilton’s equations are

dx® OH dm,, OH
dt  Om,  dt = Ox° (4.75)

The advantage of the super-Hamiltonian (4.68) over the conventional Hamiltonian (4.74) in general rela-
tivity will become apparent in the sections following.

4.12 Conventional Hamiltonian for a test particle

dxt dxv
e e (470

The corresponding test-particle Hamiltonian is supposedly given by equation (4.68). However, one runs into
a difficulty. The Hamiltonian is supposed to be expressed in terms of coordinates #* and momenta p,. But
the expression (4.68) for the Hamiltonian depends on the arbitrary parameter A\, whereas as seen in §4.3 the
coordinates x/* and momenta p,, are (before the least action principle is applied) independent of the choice
of \. For example, the square of the momentum (4.11) derived from the Lagrangian (4.8) is p,p" = —m?,
which is independent of the choice of A. There is no way to express the Hamiltonian in the prescribed form
without imposing some additional constraint on A. Two ways to achieve this are described in the next two
sections, §4.13 and §4.14.

A third approach is to revert to the conventional approach of fixing the arbitrary parameter \ equal to
coordinate time ¢. This choice eliminates the time coordinate and corresponding generalized momentum as

parameters to be determined by the least action principle. It also breaks manifest covariance, by singling out

The test-particle Lagrangian (4.8) is
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the time coordinate for special treatment. For simplicity, consider flat space, where the metric is Minkowski
Nmn- The Lagrangian (4.76) becomes

Ly, = —my/ —nmn%ddit =-my1—v2, (4.77)

where v = \/ngvev? is the magnitude of the 3-velocity v?,

_ da®

¢ = . 4.78
vt = — (4.78)
The generalized momentum 7, defined by (4.73) equals the ordinary momentum p,,
mug
Ty = Pg = ———— . 4.79
Pe= A (479
The Hamiltonian (4.74) is
m
H=pv* - L=—=. 4.80
P N (480)
Expressed in terms of the spatial momenta p,, the Hamiltonian is
H=+/p>+m?, (4.81)
where p = \/n%p,py is the magnitude of the 3-momentum p,. Hamilton’s equations (4.75) are
d a a d a
r__r W9, (4.82)

dt ,/p2+m2 ’ dt

The Hamiltonian (4.81) can be recognized as the energy of the particle, or minus the covariant time compo-
nent of the 4-momentum,

H=—p. (4.83)

A similar, more complicated, analysis in curved space leads to the same conclusion, that the conventional
Hamiltonian H is minus the covariant time component of the 4-momentum,

H = —pt . (4.84)

The expression for the Hamiltonian in terms of spatial coordinates % and momenta p, can be inferred from
conservation of rest mass,

9" pupy + m2=0. (4.85)

Explicitly, the conventional Hamiltonian is

1 , ,,
H=-p =5 {gmpa + \/ (9'*9"" — 9" 9" )paps — g"'m?| . (4.86)

In the presence of an electromagnetic field, replace the momenta p;, and p, in equation (4.86) by p, =
T, —qA,, and set the Hamiltonian equal to —m,

H = —7'['t . (4.87)
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The super-Hamiltonians (4.90) and (4.96) derived in the next two sections are more elegant than the
conventional Hamiltonian (4.86). All lead to the same equations of motion, but the super-Hamiltonian
exhibits general covariance more clearly.

4.13 Effective (super-)Hamiltonian for a test particle with electromagnetism
In the effective approach, the condition (4.29) on the parameter A is applied after equations of motion are
derived. The effective test-particle Lagrangian (4.25), coupled to electromagnetism, is

1, dotde” o dat
29X Tan T

where the metric g, and electromagnetic potential A, are considered to be given functions of the coordinates

L=Ly+L,= (4.88)

a'. The corresponding generalized momentum (4.6) is

14

x
Ty = g/wﬁ + un, . (489)
The (super-)Hamiltonian (4.68) expressed in terms of coordinates #* and momenta 7, as required is
1 vV
H= 59" (m, —qA) (T, —qAL) . (4.90)
Hamilton’s equations (4.72) are
dzt dp,,
=p" - =Tep"p” + qFup” 4.91
o =P o = D'+ aFp (4.91)
where p,, is defined by
p/1, = 7T/1, - qA;l, . (492)

The equations of motion (4.91) having been derived from the Hamiltonian (4.90), the parameter A is set
equal to the affine parameter in accordance with condition (4.29). In particular, the first of equations (4.91)
together with condition (4.29) implies that p* = mdz" /dr, as it should be. The equations of motion (4.91)
thus reproduce the equations (4.42) derived in Lagrangian approach. The value of the Hamiltonian (4.90)
after the equations of motion and condition (4.29) are imposed is constant,

m2

H=——. (4.93)

Recall that the super-Hamiltonian H is a scalar, associated with rest mass, to be distinguished from the
conventional Hamiltonian, which is the time component of a vector, associated with energy. The minus sign
in equation (4.93) is associated with the choice of metric signature —+++, where scalar products of timelike
quantities are negative. The negative Hamiltionian (4.93) signifies that the particle is propagating along a
timelike direction. If the particle is massless, m = 0, then the Hamiltonian is zero (after equations of motion
are imposed), signifying that the particle is propagating along a null direction.
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4.14 Nice (super-)Hamiltonian for a test particle with electromagnetism

The nice test-particle Lagrangian (4.31), coupled to electromagnetism, is

a dxt dx¥ dxt
L=-g,— —m? A, — . 4.94
2(9* adradx m)“‘dx (4.94)
The corresponding generalized momentum (4.6) is
dx”
Ty = Gguw—m +qA, . (4.95)

adA
The associated nice (super-)Hamiltonian (4.68) expressed in terms of coordinates =/ and momenta 7, as
required is

a L
H = 3 [g" (7, — qA,) (T, — qA,) +m?] . (4.96)

The nice Hamiltonian H, equation (4.96), depends on the auxiliary scale factor a as well as on z/* and 7,
and the action must be varied with respect to all of these to obtain all the equations of motion. Compared
to the variation (4.71), the variation of the action contains an additional term proportional to da:

A
A ' dr, OH . (dxt OH OH
88 = [mu0x]y! +/Ai {— ( d)’\ + o ol + | = = o, 5, — S Sa pd\ . (4.97)

Requiring that the variation (4.97) of the action vanish under arbitrary variations of the coordinates z* and
momenta 7, yields Hamilton’s equations (4.72), which here are

dzt o dp,.

adx P wdx T

Lep'p” + qF.up" (4.98)

with p,, defined by
Pu=m,—qA, . (4.99)
The condition (4.103) found below, substituted into the first of Hamilton’s equations (4.98), implies that p*

coincides with the usual ordinary momentum p" = mdz" /dr, as it should. Requiring that the variation (4.97)
of the action vanish under arbitrary variation of the parameter a yields the additional equation of motion

0H
da
The additional equation of motion (4.100) applied to the Hamiltonian (4.96) implies that

0. (4.100)

gﬂy(ﬂ-/t - un,)(Tru - qu/) = 7m2 . (4101)

From the first of the equations of motion (4.98) along with the definition (4.99), equation (4.101) is the same
as
dz" dx” 9

9uv
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which in turn is equivalent to

i —— , (4.103)
m

recovering equation (4.35) derived using the Lagrangian formalism. Inserting the condition (4.103) into
Hamilton’s equations (4.98) recovers the equations of motion (4.42) for a test particle in a prescribed gravi-
tational and electromagnetic field. The value of the Hamiltonian (4.96) after the equation of motion (4.101)
is imposed is zero,

H=0. (4.104)

4.15 Derivatives of the action

Besides being a scalar whose minimum value between fixed endpoints defines the path between those points,
the action S can also be treated as a function of its endpoints along the actual path. Along the actual path,
the equations of motion are satisfied, so the integral in the variation (4.4) or (4.71) of the action vanishes
identically. The surface term in the variation (4.4) or (4.71) then implies that 6.5 = m,dz". This means that
the partial derivatives of the action with respect to the coordinates are equal to the generalized momenta,

a8

This is the basis of the Hamilton-Jacobi method for solving equations of motion, §4.16.

By definition, the total derivative of the action S with respect to the arbitrary parameter A along the
actual path equals the Lagrangian L. In addition to being a function of the coordinates =/ along the actual
path, the action may also be an explicit function S(\,z*) of the parameter \. The total derivative of the
action along the path may thus be expressed

s _, 05 95 dat
P ) W TN

Comparing equation (4.106) to the definition (4.68) of the Hamiltonian shows that the partial derivative of
the action with respect to the parameter X\ is minus the Hamiltonian
as
N
In the conventional approach where the parameter A is fixed equal to the time coordinate ¢, equa-
tions (4.105) and (4.107) together show that

(4.106)

~H. (4.107)

95 _
ot

in agreement with equation (4.87). In the super-Hamiltonian approach, the Hamiltonian H is constant, equal

mo=—H, (4.108)

to —m?/2 in the effective approach, equation (4.93), and equal to zero in the nice approach, equation (4.104).
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Concept question 4.5. Action vanishes along a null geodesic, but its gradient does not. How can
it be that the gradient of the action p, = 0S/0z" is non-zero along a null geodesic, yet the variation of the

action dS = —mdr is identically zero along the same null geodesic? Answer. This has to do with the fact
that a vector can be finite yet null,

ds dat 0S ,

T e =T mu=—m? =0 form=0. (4.109)

4.16 Hamilton-Jacobi equation

The Hamilton-Jacobi equation provides a powerful way to solve equations of motion. The Hamilton-Jacobi
equation proves to be separable in the Kerr-Newman geometry for an ideal rotating black hole, Chapter 23.
The hypothesis that the Hamilton-Jacobi equation be separable provides one way to derive the Kerr-Newman
line-element, Chapter 22, and to discover other separable spacetimes.

The Hamilton-Jacobi equation is obtained by writing down the expression for the Hamiltonian H in terms
of coordinates z/* and generalized momenta 7, and replacing the Hamiltonian H by —05/d\ in accordance
with equation (4.107), and the generalized momenta 7, by 95/0z" in accordance with equation (4.105).

For the effective Hamiltonian (4.90), the resulting Hamilton-Jacobi equation is

oS 1 oS a8
— — = —gh¥ — _
ax — 29 < Bk qA,,> ( D qu) : (4.110)

whose left hand side is —m?/2, equation (4.93). For the nice Hamiltonian (4.96), the resulting Hamilton-

Jacobi equation is
as 1 aS as
_ — = | g _gA = _gA, 2 4.111
=57 (= aa,) (5 —aa) 42| | (a.11)

whose left hand side is zero, equation (4.104). The Hamilton-Jacobi equations (4.110) and (4.111) agree, as
they should. The Hamilton-Jacobi equation (4.110) or (4.111) is a partial differential equation for the action
S(A, z"). In spacetimes with sufficient symmetry, such as Kerr-Newman, the partial differential equation can
be solved by separation of variables. This will be done in §22.3.

4.17 Canonical transformations

The Lagrangian equations of motion (4.5) take the same form regardless of the choice of coordinates z* of
the underlying spacetime. This expresses general covariance: the form of the Lagrangian equations of motion
is unchanged by general coordinate transformations.

Coordinate transformations also preserve Hamilton’s equations of motion (4.72). But the Hamiltonian
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formalism allows a wider range of transformations that preserve the form of Hamilton’s equations. Transfor-
mations of the coordinates and momenta that preserve Hamilton’s equations are called canonical trans-
formations. The construction of canonical transformations is addressed in §4.17.1.

The wide range of possible canonical transformations means that the coordinates and momenta lose much
of their original meaning as actual spacetime coordinates and momenta of particles. For example, there is
a canonical transformation (4.117) that simply exchanges coordinates and their conjugate momenta. It is
common therefore to refer to general systems of coordinates and momenta that satisfy Hamilton’s equations
as generalized coordinates and generalized momenta, and to denote them by ¢” and p,,

¢, pu- (4.112)

4.17.1 Construction of canonical transformations

Consider a canonical transformation of coordinates and momenta

{¢",p.} = {d"(a,p), Pl.(¢,p)} - (4.113)

By definition of canonical transformation, both the original and transformed sets of coordinates and momenta
satisfy Hamilton’s equations.

For the equations of motion to take Hamiltonian form, the original and transformed actions S and S’ must
take the form

)\f >\f
S = / pudg" — Hd\, S = / p:quI“ — H'd\ . (4.114)
)\i i

One way for the original and transformed coordinates and momenta to yield equivalent equations of motion
is that the integrands of the actions differ by the total derivative dF of some function F,

dF =p,dq" —p, dg" — (H — H')dX . (4.115)

When the actions S and S’ are varied, the difference in the variations is the difference in the variation of F'
between the initial and final points A\; and A¢, which vanishes provided that whatever I’ depends on is held
fixed on the initial and final points,

85 — 388" = [0F]\' = 0. (4.116)

Because the variations of the actions are the same, the resulting equations of motion are equivalent. The
function F' is called the generator of the canonical transformation between the original and transformed
coordinates.

Given any function F'(\,¢,q'), equation (4.115) determines p,,, —p|,, and H — H' as partial derivatives of F'
with respect to ¢/, ¢'**, and \. For example, the function F' =} M q'"q" generates a canonical transformation
that simply trades coordinates and momenta,

oF

oF
/1 /
p# - aq#

=4, Pu= T ogn —q" . (4.117)

The generating function F'(A, g, ¢’) depends on ¢* and ¢’*. Other generating functions depending on either
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of ¢" or p,, and either of ¢’ or p/,, are obtained by subtracting p,¢" and/or adding p/,¢""

equation (4.115) can be rearranged as

to F. For example,

dG = p, dq" +¢" dp), — (H — H")dX , (4.118)

where G = F + p,¢"" is now some function G(,q,p’). For example, the function G(q,p") = >_, f*(q) p),,
in which f*(q) is some function of the coordinates ¢” but not of the momenta p,, generates the canonical
transformation

Z aprU , ac/; = f"(q) - (4.119)

/l,
5(1" ogq" ~ ap),

This is just a coordinate transformation ¢ — ¢'* = f#(q).
If the generator of a canonical transformation does not depend on the parameter A\, then the Hamiltonians
are the same in the original and transformed systems,

H(q",p,) =H'(¢",p),) - (4.120)

In the super-Hamiltonian approach, where the parameter X is arbitrary, the Hamiltonian is without loss of
generality independent of A, and there is no physical significance to canonical transformations generated by
functions that depend on A. The super-Hamiltonian H(g",p, ) is then a scalar, invariant with respect to
canonical transformations that do not depend explicitly on A. This contrasts with the conventional Hamil-
tonian approach, where the parameter A is set equal to the coordinate time ¢, and the conventional Ham-
iltonian is the time component of a 4-vector, which varies under canonical transformations generated by
functions that depend on time ¢.

4.17.2 Evolution is a canonical transformation

The evolution of the system from some initial hypersurface A = 0 to some final hypersurface A is itself a
canonical transformation. This is evident from the fact that Hamilton’s equations (4.72) hold for any value of
the parameter A, so in particular Hamilton’s equations are unchanged when initial coordinates and momenta
¢"(0) and p,,(0) are replaced by evolved values ¢/"(\) and p,(A),

q"(0) = ¢" =¢"(\), pu(0) = p, =pu(N) (4.121)

The action varies by the total derivative dS = p, d¢" — H dX along the actual path of the system, equa-
tion (4.106), so the initial and evolved actions differ by a total derivative, equation (4.115),

dF = p,,(0) dg"(0) — p,(\) dg" (\) — [H(0) — H(N)]dA = dS(0) — dS(}) . (4.122)

Thus the canonical transformation from an initial A = 0 to a final X is generated by the difference in the
actions along the actual path of the system,

F=8(0)—S(\) . (4.123)
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4.18 Symplectic structure

The generalized coordinates ¢" and momenta p,, of a dynamical system of particles have a geometrical struc-
ture that transcends the geometrical structure of the underlying spacetime manifold. For N coordinates g*
and N momenta p,,, the geometrical structure is a 2/N-dimensional manifold called a symplectic manifold.
A symplectic manifold is also called phase space, and the coordinates {¢",p,} of the manifold are called
phase-space coordinates.

A central property of a symplectic manifold is that the Hamiltonian dynamics define a scalar product with
antisymmetric symplectic metric w;;. Let 2 with i = 1, ...,2N denote the combined set of 2N generalized
coordinates and momenta {¢",p,},

{24, 2N NN Y =g LY, ) (4.124)
Hamilton’s equations (4.72) can be written

d2 . 0H
% =wo=, (4.125)

where w® is the antisymmetric symplectic metric (actually the inverse symplectic metric)

1 ifzi=g¢"and 27 =p, ,
WP =6iin,j—0ijan =4 —1 ifz'=p, and 27 =q¢", (4.126)
0 otherwise .

As a matrix, the symplectic metric w® is the 2N x 2N matrix

w9 = ( _01 (1) > , (4.127)

where 1 denotes the N x N unit matrix. Inverting the inverse symplectic metric w* yields the symplectic
metric w;;, which is the same matrix but flipped in sign,

sy =@ =@ == = (0 ) (4.125)

Let 2’* be another set of generalized coordinates and momenta satisfying Hamilton’s equations with the same
Hamiltonian H,
dz't i OH
=W - .
dX 0z
It is being assumed here that the Hamiltonian H does not depend explicitly on the parameter A. In the super-
Hamiltonian approach, there is no loss of generality in taking the Hamiltonian H to be independent of A,
since the parameter \ is arbitrary, without physical significance. The important point about equation (4.129)
is that the symplectic metric w? is the same regardless of the choice of phase-space coordinates. Under a
canonical transformation z* — z/*(z) of generalized coordinates and momenta, dz’*/d\ transforms as

dz'*  92'tdk 92 ,,0H 92 ,,027 OH
= — = W= = Wt
d\  0zF dx  09zF T 9z 9ZF 02 927

(4.129)

(4.130)
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Comparing equations (4.129) and (4.130) shows that the symplectic matrix w® is invariant under a canonical
transformation,

02,027
4= M 4.131
92k B2l ( )
Equation (4.131) can be expressed as the invariance under canonical transformations of
- 0 0 - 0 0
Ve —— =wY . 4.132
Y0202 Y 02 020 ( )
Equivalently,
wij dz'dz! = w;; dz'"dz" (4.133)

The invariance of the symplectic metric w;; under canonical transformations can be thought of as analogous
to the invariance of the Minkowski metric 7,,, under Lorentz transformations. But whereas the Minkowski
metric 7y,, is symmetric, the symplectic metric w;; is antisymmetric.

4.19 Symplectic scalar product and Poisson brackets

Let f(2%) and g(2%) be two functions of phase-space coordinates z*. Their tangent vectors in the phase space
are 0f /92" and 0g/0z". The symplectic scalar product of the tangent vectors defines the Poisson bracket
of the two functions f and g,

; 0f 09 _ Of 09  Of Oy

_ 9 _ B . 4.134
[frgl=w 921827~ g" Bp,  Op, g (4.134)

The invariance (4.132) of the symplectic metric implies that the Poisson bracket is a scalar, invariant under
canonical transformations of the phase-space coordinates z'. The Poisson bracket is antisymmetric thanks
to the antisymmetry of the symplectic metric w®,

[f. 9l =—lg. f] . (4.135)

4.19.1 Poisson brackets of phase-space coordinates

The Poisson brackets of the phase-space coordinates and momenta themselves satisfy
[2%, 29] = w¥ . (4.136)
Explicitly in terms of the generalized coordinates and momenta ¢” and p,,,
l¢"p] =06}, la",a"]=0, I[pu,p]=0. (4.137)

Reinterpreting equations (4.137) as operator equations provides a path from classical to quantum mechanics.
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4.20 (Super-)Hamiltonian as a generator of evolution

The Poisson bracket of a function f(2?) with the Hamiltonian H is
_ O0f OH 0f OH

H| = — = . 4.1
VAl = 5 ap. ~ Bpy 0 (4.138)
Inserting Hamilton’s equations (4.72) implies
m
[f, H] = OF da” \ OF dbu _ 4 (4.139)

dg" AN Op, dx X

That is, the evolution of a function f(¢",p, ) of generalized coordinates and momenta is its Poisson bracket
with the Hamiltonian H,
df
o
Equation (4.140) shows that the (super-)Hamiltonian defined by equation (4.68) can be interpreted as gen-
erating the evolution of the system.

The same derivation holds in the conventional case where A is taken to be time ¢, but generically the
function f(t,q¢“, p.) and conventional Hamiltonian H (¢, ¢",p,) must be allowed to be explicit functions of
time ¢ as well as of generalized spatial coordinates and momenta ¢“ and p,. Equation (4.140) becomes in
the conventional case

[f.H] . (4.140)

af _of
V9 . (4.141)

4.21 Infinitesimal canonical transformations

A canonical transformation generated by G = ¢* pjly is the identity transformation, since it leaves the coordi-
nates and momenta unchanged. Consider a canonical transformation with generator infinitesimally shifted
from the identity transformation, with € an infinitesimal parameter,

G = q“’p;l +eg(q,p’) - (4.142)
The resulting canonical transformation is, from equation (4.119),
oG dg oG dg
I M _ o
-9 P A . 4.143
o, q" +e o, P = ggr =Put €50 (4.143)
Because ¢ is infinitesimal, the term e dg/ Bp;t can be replaced by € 9g/0p,, to linear order, yielding
9g 9g
T —J J— L, — € —— . 4.144
e, PP G0 (4.144)

Equations (4.144) imply that the changes dp,, and §¢" in the coordinates and momenta under an infinitesimal
canonical transformation (4.142) is their Poisson bracket with g,

6p/1, =€ [p/u g} ’ 5(]” =€ [qll7g] . (4145)
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As a particular example, the evolution of the system under an infinitesimal change §\ in the parameter A
is, in accordance with the evolutionary equation (4.140), generated by a canonical transformation with g in
equation (4.142) set equal to the Hamiltonian H,

dp, = d\[p,, H, 0¢" =3d\[¢" H]. (4.146)

4.22 Constancy of phase-space volume under canonical transformations

The invariance of the symplectic metric under canonical transformations implies the invariance of phase-space
volume under canonical transformations.
The volume V of a region of 2/N-dimensional phase space is

V= /dV = /dz"...dz” = /dq‘...dq“’ dp:...dpn | (4.147)

integrated over the region. Under a canonical transformation 2z — 2/*(z) of phase-space coordinates, the
phase-space volume element dV transforms by the Jacobian of the transformation, which is the determinant

02" /027|,

8 1%
dv’ = ‘ a;‘ v . (4.148)
But equation (4.131) implies that
i 02" |02
so the Jacobian must be 1 in absolute magnitude,
8Z/i
‘aza' =41 . (4.150)

If the canonical transformation can be obtained by a continuous transformation from the identity, then the
Jacobian must equal 1. As a particular case, the Jacobian equals 1 for the canonical transformation generated
by evolution, §4.22.1, since evolution is continuous from initial to final conditions.

4.22.1 Constancy of phase-space volume under evolution

Since evolution is a canonical transformation, §4.17.2 and §4.21, phase-space volume V is preserved under
evolution of the system. Each phase-space point inside the volume V' evolves according to the equations
of motion. As the system of points evolves, the region distorts, but the magnitude of the volume V of the
region remains constant. The constancy of phase-space volume as it evolves was proved explicitly in 1871 by
Boltzmann, who later referred to the result as “Liouville’s theorem” since the proof was based in part on a
mathematical theorem proved by Liouville (see Nolte, 2010).
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4.23 Poisson algebra of integrals of motion

A function f(z%) of the generalized coordinates and momenta is said to be an integral of motion if it is

constant as the system evolves. In view of equation (4.140), a function f(z*) is an integral of motion if and
only if its Poisson brackets with the Hamiltonian vanishes,

[f,H]=0. (4.151)

As a particular example, the antisymmetry of the Poisson bracket implies that the Poisson bracket of the
Hamiltonian with itself is zero,

[H,H] =0, (4.152)

so the Hamiltonian H is itself a constant of motion. The super-Hamiltonian H is a constant of motion in
general, while the conventional Hamiltonian H is constant provided that it does not depend explicitly on
time ¢.

Suppose that f(z%) and g(2?) are both integrals of motion. Then their Poisson brackets with each other is
also an integral of motion,

[[fagLH]:_ [[Q,H],f]—[[H,f],g]:O, (4153)

the first equality of which expresses the Jacobi identity, and the last equality of which follows because the
Poisson bracket of each of f and g with the Hamiltonian H vanishes. The Poisson bracket of two integrals
of motion f and g may or may not yield a further distinct integral of motion. A set of linearly independent
integrals of motion whose Poisson brackets close forms a Lie algebra is called a Poisson algebra.

Concept question 4.6. How many integrals of motion can there be? How many distinct integrals
of motion can there be in a dynamical system described by N coordinates and N momenta? A distinct
integral of motion is one that cannot be expressed as a function of the other integrals of motion (this is more
stringent than the condition that the integrals be linearly independent). Answer. The dynamical motion of
the system is described by a 1-dimensional line in a 2/NV-dimensional phase-space manifold consisting of the N
coordinates and N momenta. Any constant of motion f(z/,7,) defines a (2N—1)-dimensional submanifold
of the phase-space manifold. A 1-dimensional line can be the intersection of no more than 2/N—1 distinct
such submanifolds, so there can be at most 2/N—1 distinct constants of motion. In the super-Hamiltonian
formulation, the phase space of a single particle in 4 spacetime dimensions is 8-dimensional, and there are
at most 7 distinct integrals of motion. A particle moving along a straight line in Minkowski space provides
an example of a system with a full set of 7 integrals of motion: 4 integrals constitute the covariant energy-
momentum 4-vector p,,, and a further 3 integrals of motion comprise ¢ — vt = x%(0) where v® = p®/pY is
the velocity, and 2™ (0) is the origin of the line at ¢ = 0. In the conventional Hamiltonian formulation, the
phase space of a single particle is 6-dimensional, and there are at most 5 distinct integrals of motion. The
apparent discrepancy in the number of integrals occurs because in the super-Hamiltonian formalism the time
t and time component 7; of the generalized momentum are treated as distinct variables whose equations
of motion are determined by Hamilton’s equations, whereas in the conventional Hamiltonian formalism the
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arbitrary parameter A is set equal to the time t, which is therefore no longer an independent variable, and
the generalized momentum 7;, which equals minus the conventional Hamiltonian H, equation (4.108), is
eliminated as an independent variable by re-expressing it in terms of the spatial coordinates and momenta.
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Concept Questions

What evidence do astronomers currently accept as indicating the presence of a black hole in a system?

. Why can astronomers measure the masses of supermassive black holes only in relatively nearby galaxies?

To what extent (with what accuracy) are real black holes in our Universe described by the no-hair
theorem?

Does the no-hair theorem apply inside a black hole?

Black holes lose their hair on a light-crossing time. How long is a light-crossing time for a typical
stellar-sized or supermassive astronomical black hole?

Relativists say that the metric is g,,, but they also say that the metric is ds? = G dztdz”. How can
both statements be correct?

The Schwarzschild geometry is said to describe the geometry of spacetime outside the surface of the
Sun or Earth. But the Schwarzschild geometry supposedly describes non-rotating masses, whereas the
Sun and Earth are rotating. If the Sun or Earth collapsed to a black hole conserving their mass M and
angular momentum L, roughly what would the spin a/M = L/M? of the black hole be relative to the
maximal spin a/M = 1 of a Kerr black hole?

What happens at the horizon of a black hole?

As cold matter becomes denser, it goes through the stages of being solid/liquid like a planet, then
electron degenerate like a white dwarf, then neutron degenerate like a neutron star, then finally it
collapses to a black hole. Why could there not be a denser state of matter, denser than a neutron star,
that brings a star to rest inside its horizon?

How can an observer determine whether they are “at rest” in the Schwarzschild geometry?

An observer outside the horizon of a black hole never sees anything pass through the horizon, even to
the end of the Universe. Does the black hole then ever actually collapse, if no one ever sees it do so?
If nothing can ever get out of a black hole, how does its gravity get out?

Why did Einstein believe that black holes could not exist in nature?

In what sense is a rotating black hole “stationary” but not “static”?

What is a white hole? Do they exist?

Could the expanding Universe be a white hole?

Could the Universe be the interior of a black hole?

124



18.
19.
20.

21.

22.

23.
24.

25.
26.
27.
28.
29.
30.
31.
32.

33.

34.

35.

36.
37.

38.
39.
40.
41.

Concept Questions 125

You know the Schwarzschild metric for a black hole. What is the corresponding metric for a white hole?
What is the best kind of black hole to fall into if you want to avoid being tidally torn apart?

Why do astronomers often assume that the inner edge of an accretion disk around a black hole occurs
at the innermost stable orbit?

A collapsing star of uniform density has the geometry of a collapsing Friedmann-Lemaitre-Robertson-
Walker cosmology. If a spatially flat FLRW cosmology corresponds to a star that starts from zero velocity
at infinity, then to what do open or closed FLRW cosmologies correspond?

Your friend falls into a black hole, and you watch her image freeze and redshift at the horizon. A shell
of matter falls on to the black hole, increasing the mass of the black hole. What happens to the image
of your friend? Does it disappear, or does it remain on the horizon?

Is the singularity of a Reissner-Nordstrom black hole gravitationally attractive or repulsive?

If you are a charged particle, which dominates near the singularity of the Reissner-Nordstrom geometry,
the electrical attraction/repulsion or the gravitational attraction/repulsion?

Is a white hole gravitationally attractive or repulsive?

What happens if you fall into a white hole?

Which way does time go in Parallel Universes in the Reissner-Nordstrém geometry?

What does it mean that geodesics inside a black hole can have negative energy?

Can geodesics have negative energy outside a black hole? How about inside the ergosphere?
Physically, what causes mass inflation?

Is mass inflation likely to occur inside real astronomical black holes?

What happens at the X point, where the outgoing and ingoing inner horizons of the Reissner-Nordstrém
geometry intersect?

Can a particle like an electron or proton, whose charge far exceeds its mass (in geometric units), be
modelled as Reissner-Nordstrom black hole?

Does it makes sense that a person might be at rest in the Kerr-Newman geometry? How would the
Boyer-Lindquist coordinates of such a person vary along their worldline?

In identifying M as the mass and a the angular momentum per unit mass of the black hole in the
Boyer-Lindquist metric, why is it sufficient to consider the behaviour of the metric at r — oco?

Does space move faster than light inside the ergosphere?

If space moves faster than light inside the ergosphere, why is the outer boundary of the ergosphere not
a horizon?

Do closed timelike curves make sense?

What does Carter’s fourth integral of motion Q signify physically?

What is special about a principal null congruence?

Evaluated in the locally inertial frame of a principal null congruence, the spin-0 component of the Weyl
scalar of the Kerr geometry is C' = —M /(r—ia cos #), which looks like the Weyl scalar C = —M /73 of the
Schwarzschild geometry but with radius r replaced by the complex radius r —ia cos 8. Is there something
deep here? Can the Kerr geometry be constructed from the Schwarzschild geometry by complexifying
the radial coordinate 77
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What’s important?

Astronomical evidence suggests that stellar-sized and supermassive black holes exist ubiquitously in
nature.

The no-hair theorem, and when and why it applies.

The physical picture of black holes as regions of spacetime where space is falling faster than light.

A physical understanding of how the metric of a black hole relates to its physical properties.

Penrose (conformal) diagrams. In particular, the Penrose diagrams of the various kinds of vacuum black
hole: Schwarzschild, Reissner-Nordstrom, Kerr-Newman.

What really happens inside black holes. Collapse of a star. Mass inflation instability.
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Observational Evidence for Black Holes

It is beyond the intended scope of this book to discuss the extensive and rapidly evolving observational
evidence for black holes in any detail. However, it is useful to summarize a few facts.

1. Observational evidence supports the idea that black holes occur ubiquitously in nature. They are not
observed directly, but reveal themselves through their effects on their surroundings. Two kinds of black
hole are observed: stellar-sized black holes in x-ray binary systems, mostly in our own Milky Way galaxy,
and supermassive black holes in Active Galactic Nuclei (AGN) found at the centres of our own and other
galaxies.

2. The primary evidence that astronomers accept as indicating the presence of a black hole is a lot of mass
compacted into a tiny space.

a.

In an x-ray binary system, if the mass of the compact object exceeds 3 M, the maximum theoretical
mass of a neutron star, then the object is considered to be a black hole. Many hundreds of x-ray
binary systems are known in our Milky Way galaxy, but only tens of these have measured masses,
and in about 20 the measured mass indicates a black hole (McClintock et al., 2011).

Several tens of thousands of AGN have been catalogued, identified either in the radio, optical,
or x-rays. But only in nearby galaxies can the mass of a supermassive black hole be measured
directly. This is because it is only in nearby galaxies that the velocities of gas or stars can be
measured sufficiently close to the nuclear centre to distinguish a regime where the velocity becomes
constant, so that the mass can be attribute to an unresolved central point as opposed to a continuous
distribution of stars. The masses of about 40 supermassive black holes have been measured in this
way (Kormendy and Gebhardt, 2001). The masses range from the 4 x 10° M, mass of the black hole
at the centre of the Milky Way (Ghez et al., 2008; Gillessen et al., 2009) to the 6.6 + 0.4 x 10° M,
mass of the black hole at the centre of the M87 galaxy at the centre of the Virgo cluster at the
centre of the Local Supercluster of galaxies (Gebhardt et al., 2011; Akiyama et al., 2019).

3. Secondary evidences for the presence of a black hole are:

a.

b.
c.
d.

high luminosity;

non-stellar spectrum, extending from radio to gamma-rays;
rapid variability.

relativistic jets.
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6.

Observational Fvidence for Black Holes

MS87*  April 11, 2017
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Figure 5.1 The supermassive black hole in the M87 galaxy imaged by the Event Horizon Telescope (Akiyama et al.,
2019).

Jets in AGN are often one-sided, and a few that are bright enough to be resolved at high angular
resolution show superluminal motion. Both evidences indicate that jets are commonly relativistic, moving
at close to the speed of light. There are a few cases of jets in x-ray binary systems, sometimes called
microquasars.

. Stellar-sized black holes are thought to be created in supernovae as the result of the core-collapse of

stars more massive than about 25 Mg, (this number depends in part on uncertain computer simulations).
Supermassive black holes are probably created initially in the same way, but they then grow by accretion
of gas funnelled to the centre of the galaxy. The growth rates inferred from AGN luminosities are
consistent with this picture.

. Long gamma-ray bursts (lasting more than about 2 seconds) are associated observationally with su-

pernovae. It is thought that in such bursts we are seeing the formation of a black hole. As the black
hole gulps down the huge quantity of material needed to make it, it regurgitates a relativistic jet that
punches through the envelope of the star. If the jet happens to be pointed in our direction, then we see
it relativistically beamed as a gamma-ray burst.

Astronomical black holes present the only realistic prospect for testing general relativity in the strong
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field regime, since such fields cannot be reproduced in the laboratory. At the present time the obser-
vational tests of general relativity from astronomical black holes are at best tentative. One test is the
redshifting of 7 keV iron lines in a small number of AGN, notably MCG-6-30-15, which can be interpreted
as being emitted by matter falling on to a rotating (Kerr) black hole.

. The first direct detection of gravitational waves was with the Laser Interferometer Gravitational wave
Observatory (LIGO) on 14 September 2015 (Abbott et al., 2016). The wave-form was consistent with
the merger of two black holes of masses 29 and 36 M.

. Before gravitational waves were detected directly, their existence was inferred from the gradual speed-
ing up of the orbit of the Hulse-Taylor binary, which consists of two neutron stars, one of which,
PSR1913+16, is a pulsar. The parameters of the orbit have been measured with exquisite precision, and
the rate of orbital speed-up is in good agreement with the energy loss by quadrupole gravitational wave
emission predicted by general relativity.
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Ideal Black Holes

6.1 Definition of a black hole

What is a black hole? Doubtless you have heard the standard definition: It is a region whose gravity is so
strong that not even light can escape.

But why can light not escape from a black hole? A standard answer, which John Michell (1784) would
have found familiar, is that the escape velocity exceeds the speed of light. But that answer brings to mind
a Newtonian picture of light going up, turning around, and coming back down, that is altogether different
from what general relativity actually predicts.

Figure 6.1 The fish upstream can make way against the current, but the fish downstream is swept to the bottom of
the waterfall (Art by Wildrose Hamilton). This painting appeared on the cover of the June 2008 issue of the American
Journal of Physics (Hamilton and Lisle, 2008). A similar depiction appeared in Susskind (2003).
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A better definition of a black hole is that it is a

region where space is falling faster than light.

Inside the horizon, light emitted outwards is carried inward by the faster-than-light inflow of space, like a
fish trying but failing to swim up a waterfall, Figure 6.1.

The definition may seem jarring. If space has no substance, how can it fall faster than light? It means that
inside the horizon any locally inertial frame is compelled to fall to smaller radius as its proper time goes by.
This fundamental fact is true regardless of the choice of coordinates.

A similar concept of space moving arises in cosmology. Astronomers observe that the Universe is expand-
ing. Cosmologists find it convenient to conceptualize the expansion by saying that space itself is expanding.
For example, the picture that space expands makes it more straightforward, both conceptually and mathe-
matically, to deal with regions of spacetime beyond the horizon, the surface of infinite redshift, of an observer.

6.2 Ideal black hole

The simplest kind of black hole, an ideal black hole, is one that is stationary, and electrovac outside its
singularity. Electrovac means that the energy-momentum tensor 7}, is zero except for the contribution
from a stationary electromagnetic field. The most important ideal black holes are those that extend to
asymptotically flat empty space (Minkowski space) at infinity. There are ideal black hole solutions that do
not asymptote to flat empty space, but most of these have little relevance to reality. The most important
ideal black hole solutions that are not flat at infinity are those containing a non-zero cosmological constant.

The next several chapters deal with ideal black holes in asymptotically flat space. The importance of ideal
black holes stems from the no-hair theorem, discussed in the next section. The no-hair theorem has the
consequence that, except during their initial collapse, or during a merger, real astronomical black holes are
accurately described as ideal outside their horizons.

6.3 No-hair theorem

I will state and justify the no-hair theorem, but I will not prove it mathematically, since the proof is technical.

The no-hair theorem states that a stationary black hole in asymptotically flat space is characterized by
just three quantities:

1. Mass M;

2. Electric charge Q;

3. Spin, usually parameterized by the angular momentum a per unit mass.

The mechanism by which a black hole loses its hair is gravitational radiation. When initially formed,
whether from the collapse of a massive star or from the merger of two black holes, a black hole will form a
complicated, oscillating region of spacetime. But over the course of several light crossing times, the oscillations
lose energy by gravitational radiation, and damp out, leaving a stationary black hole.
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Real astronomical black holes are not isolated, and continue to accrete (cosmic microwave background
photons, if nothing else). However, the timescale (a light crossing time) for oscillations to damp out by
gravitational radiation is usually far shorter than the timescale for accretion, so in practice real black holes
are extremely well described by no-hair solutions almost all of their lives.

The physical reason that the no-hair theorem applies is that space is falling faster than light inside the
horizon. Consequently, unlike a star, no energy can bubble up from below to replace the energy lost by
gravitational radiation. The loss of energy by gravitational radiation brings the black hole to a state where it
can no longer radiate gravitational energy. The properties of a no-hair black hole are characterized entirely
by conserved quantities.

As a corollary, the no-hair theorem does not apply from the inner horizon of a black hole inward, because
space ceases to fall superluminally inside the inner horizon.

If there exist other absolutely conserved quantities, such as magnetic charge (magnetic monopoles), or
various supersymmetric charges in theories where supersymmetry is not broken, then the black hole will also
be characterized by those quantities.

Black holes are expected not to conserve quantities such as baryon or lepton number that are thought not
to be absolutely conserved, even though they appear to be conserved in low energy physics.

It is legitimate to think of the process of reaching a stationary state as analogous to reaching a condition
of thermodynamic equilibrium, in which a macroscopic system is described by a small number of parameters
associated with the conserved quantities of the system.
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Schwarzschild Black Hole

The Schwarzschild geometry was discovered by Karl Schwarzschild in late 1915 at essentially the same
time that Einstein was arriving at his final version of the General Theory of Relativity. Schwarzschild
was Director of the Astrophysical Observatory in Potsdam, perhaps the foremost astronomical position in
Germany. Despite his position, he joined the German army at the outbreak of World War 1, and was serving
on the front at the time of his discovery. Sadly, Schwarzschild contracted a rare skin disease on the front.
Returning to Berlin, he died in May 1916 at the age of 42.

The realisation that the Schwarzschild geometry describes a collapsed object, a black hole, was not under-
stood by Einstein and his contemporaries. Understanding did not emerge until many decades later, in the
late 1950s. Thorne (1994) gives a delightful popular account of the history.

7.1 Schwarzschild metric

The Schwarzschild metric was discovered first by Karl Schwarzschild (1916b), and then independently
by Johannes Droste (1916). In a polar coordinate system {¢,r,0, ¢}, and in geometric units ¢ = G = 1, the
Schwarzschild metric is

2M oM\ !
ds* = — (1 - > dt* + (1 - > dr® 4+ r2do* |, (7.1)
r r
where do? (this is the Landau & Lifshitz notation) is the metric of a unit 2-sphere,
do* = db* + sin®0 do? . (7.2)

With units restored, the time-time component g;; of the Schwarzschild metric is

g = — (1 _ oM ) . (7.3)

cr
The Schwarzschild geometry describes the simplest kind of black hole: a black hole with mass M, but no
electric charge, and no spin.
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The geometry describes not only a black hole, but also any empty space surrounding a spherically sym-
metric mass. Thus the Schwarzschild geometry describes to a good approximation the spacetimes outside
the surfaces of the Sun and the Earth.

Comparison with the spherically symmetric Newtonian metric

ds® = — (1 +2®)dt* + (1 — 2®)(dr* + r?do?) (7.4)
with Newtonian potential
O(r)y=—— (7.5)

establishes that the M in the Schwarzschild metric is to be interpreted as the mass of the black hole
(Exercise 7.1).

The Schwarzschild geometry is asymptotically flat, because the metric tends to the Minkowski metric in
polar coordinates at large radius

ds®* = —dt* + dr® +r*do®* asr — 0o . (7.6)

Exercise 7.1. Schwarzschild metric in isotropic form. The Schwarzschild metric (7.1) does not have
the same form as the spherically symmetric Newtonian metric (7.4). By a suitable transformation of the
radial coordinate r, bring the Schwarzschild metric (7.1) to the isotropic form

2
dst = - (%) dt* + (14 M/2R)" (dR? + R?do?) . (7.7)

What is the relation between R and r? Hence conclude that the identification (7.5) is correct, and therefore
that M is indeed the mass of the black hole. Is the isotropic form (7.7) of the Schwarzschild metric valid
inside the horizon?

7.2 Stationary, static

The Schwarzschild geometry is stationary. A spacetime is said to be stationary if and only if there exists
a timelike coordinate ¢ such that the metric is independent of ¢. In other words, the spacetime possesses
time translation symmetry: the metric is unchanged by a time translation ¢ — t + ¢, where ¢y is some
constant. Evidently the Schwarzschild metric (7.1) is independent of the timelike coordinate ¢, and is therefore
stationary, time translation symmetric.

As will be found below, §7.6, the Schwarzschild time coordinate ¢ is timelike outside the horizon, but
spacelike inside. Some authors therefore refer to the spacetime inside the horizon of a stationary black hole
as being homogeneous. However, I think it is less confusing to refer to time translation symmetry, which is
a single symmetry of the spacetime, by a single name, stationarity, everywhere in the spacetime.

The Schwarzschild geometry is also static. A spacetime is static if and only if in addition to being
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stationary with respect to a time coordinate t, spatial coordinates can be chosen that do not change along
the direction of the tangent vector e;. This requires that the tangent vector e; be orthogonal to all the spatial
tangent vectors e,

e e, =¢g,=0. (7.8)

The Kerr geometry for a rotating black hole is an example of a geometry that is stationary but not static. If
time ¢ and azimuthal ¢ coordinates are coordinates associated with time and azimuthal symmetry, then the
scalar product e; - e, of their tangent vectors in the Kerr geometry is a non-vanishing scalar, §9.3. Physically,
in a static geometry, a system of static observers, those who are at rest in static spatial coordinates, see each
other to remain at rest as time passes. In a non-static geometry, no such system of static observers exists.

The Gullstrand-Painlevé metric for the Schwarzschild geometry, discussed in §7.12, is an example of a
metric that is stationary, since the metric coefficients are independent of the free-fall time tg, but not explicitly
static. Observers at rest with respect to Gullstrand-Painlevé spatial coordinates fall into the black hole, and
do not see each other as remaining at rest as time goes by. The Schwarzschild geometry is nevertheless static
because there exist coordinates, the Schwarzschild coordinates, with respect to which the metric is explicitly
static, g = 0. The Schwarzschild time coordinate ¢ is thus identified as a special one: it is the unique time
coordinate with respect to which the Schwarzschild geometry is manifestly static.

7.3 Spherically symmetric

The Schwarzschild geometry is also spherically symmetric. This is evident from the fact that the angular
part 72do? of the metric is the metric of a 2-sphere of radius r. This can be seen as follows. Consider the
metric of ordinary flat 3-dimensional Euclidean space in Cartesian coordinates {z,y, z}:

ds® = da® + dy® + d2* . (7.9)

Convert to polar coordinates {r, 8, ¢}, defined so that

x =rsinfcos¢ , (7.10a)
y=rsinfsing , (7.10b)
z=rcosf . (7.10c)

Substituting equations (7.10a) into the Euclidean metric (7.9) gives
ds® = dr? + r2(d#* + sin®0 d¢?) . (7.11)
Restricting to a surface r» = constant of constant radius then gives the metric of a 2-sphere of radius r
ds® = r2(d6* + sin?6 d¢?) (7.12)

as claimed.
The radius r in Schwarzschild coordinates is the circumferential radius, defined such that the proper
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circumference of the 2-sphere measured by observers at rest in Schwarzschild coordinates is 2zr. This is a
coordinate-invariant definition of the meaning of r, which implies that r is a scalar.

7.4 Energy-momentum tensor

It is straightforward (especially if you use a computer algebraic manipulation program) to follow the cookbook
summarized in §2.25 to check that the Einstein tensor that follows from the Schwarzschild metric (7.1) is
zero. Einstein’s equations then imply that the Schwarzschild geometry has zero energy-momentum tensor.

If the Schwarzschild geometry is empty, should not the spacetime be flat, the Minkowski spacetime? There
are two answers to this question. Firstly, the Schwarzschild geometry describes the geometry of empty space
around a static spherically symmetric mass, such as the Sun or Earth. The geometry inside the spherically
symmetric mass is described by some other metric, which connects continuously and differentiably (but not
necessarily doubly differentiably, if the spherical object has an abrupt surface) to the Schwarzschild metric.

The second answer is that the Schwarzschild geometry describes the geometry of a collapsed object, a
black hole, which is singular at zero radius, r = 0, but is otherwise empty of energy-momentum.

Exercise 7.2. Derivation of the Schwarzschild metric. There are neater and more insightful ways
to derive it, but the Schwarzschild metric can be derived by turning a mathematical crank without the
need for deeper conceptual understanding. Start with the assumption that the metric of a static, spherically
symmetric object can be written in polar coordinates {¢,r,0, ¢} as

ds® = — A(r) di® + B(r) dr? + r2(d6* + sin®0 d¢?) , (7.13)

where A(r) and B(r) are some to-be-determined functions of radius r. Write down the components of the
metric g,,,, and deduce its inverse g"”. Compute all the components of the coordinate connections Iy,
equation (2.63). Of the 40 distinct connections, 9 should be non-vanishing. Compute all the components of
the Riemann tensor R,.»,., equation (2.112). There should be 6 distinct non-zero components. Compute all
the components of the Ricci tensor R,,,, equation (2.121). There should be 4 distinct non-zero components.
Now impose that the spacetime be empty, that is, the energy-momentum tensor is zero. Einstein’s equations
then demand that the Ricci tensor vanishes identically. Use the requirement that ¢''R;, — ¢""R,, = 0 to
show that AB = 1. Then use g"*R;; = 0 to derive the functional form of A. Finally, use the Newtonian limit
—gu =~ 1420 with & = —GM/r, valid at large radius r, to fix A.

7.5 Birkhoff’s theorem

Birkhoff’s theorem, whose proof is deferred to Chapter 20, Exercise 20.2, states that the geometry of
empty space surrounding a spherically symmetric matter distribution is the Schwarzschild geometry. That
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is, if the metric is of the form
ds* = A(t,r)dt* + B(t,r)dtdr + C(t,r) dr® + D(t,r) do* , (7.14)

where the metric coefficients A, B, C, and D are allowed to be arbitrary functions of ¢ and r, and if the
energy momentum tensor vanishes, 7, = 0, outside some value of the circumferential radius ' defined by
r’?2 = D, then the geometry is necessarily Schwarzschild outside that radius.

This means that if a mass undergoes spherically symmetric pulsations, then those pulsations do not affect
the geometry of the surrounding spacetime. This reflects the fact that there are no spherically symmetric
gravitational waves.

7.6 Horizon

The horizon of the Schwarzschild geometry lies at the Schwarzschild radius r = 7

_2GM

Ts ’
02

(7.15)

where units of ¢ and G have been momentarily restored. Where does this come from? The Schwarzschild
metric shows that the scalar spacetime distance squared ds? along an interval at rest in Schwarzschild
coordinates, dr = df = d¢ = 0, is timelike, lightlike, or spacelike depending on whether the radius is greater
than, equal to, or less than the Schwarzschild radius rs:

. <0 ifr>ry,
d52:—<1——s) dt? =0 ifr=r,, (7.16)
" >0 ifr<rg.

Since the worldline of a massive observer must be timelike, it follows that a massive observer can remain at
rest only outside the horizon, r > r,. An object at rest at the horizon, r = ry, follows a null geodesic, which
is to say it is a possible worldline of a massless particle, a photon. Inside the horizon, r < 7, neither massive
nor massless objects can remain at rest. To remain at rest, a particle inside the horizon would have to go
faster than light.

A full treatment of what is going on requires solving the geodesic equation in the Schwarzschild geometry,
but the results may be anticipated already at this point. In effect, space is falling into the black hole. Outside
the horizon, space is falling less than the speed of light; at the horizon space is falling at the speed of light;
and inside the horizon, space is falling faster than light, carrying everything with it. This is why light cannot
escape from a black hole: inside the horizon, space falls inward faster than light, carrying light inward even if
that light is pointed radially outward. The statement that space is falling superluminally inside the horizon
of a black hole is a coordinate-invariant statement: massive or massless particles are carried inward whatever
their state of motion and whatever the coordinate system.

Whereas an interval of coordinate time ¢ switches from timelike outside the horizon to spacelike inside the
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horizon, an interval of coordinate radius r does the opposite: it switches from spacelike to timelike:

-1 >0 ifr>r,,
ds* = (1——8) dr? =00 ifr=r,, (7.17)
<0 ifr<r,.

It appears then that the Schwarzschild time and radial coordinates swap roles inside the horizon. Inside the
horizon, the radial coordinate becomes timelike, meaning that it becomes a possible worldline of a massive
observer. That is, a trajectory at fixed ¢ and decreasing r is a possible worldline. Again this reflects the fact
that space is falling faster than light inside the horizon. A person inside the horizon is inevitably compelled,
as their proper time goes by, to move to smaller radial coordinate r.

Concept question 7.3. Going forwards or backwards in time inside the horizon. Inside the horizon,
can a person can go forwards or backwards in Schwarzschild time ¢t? What does that mean?

7.7 Proper time

The proper time experienced by an observer at rest in Schwarzschild coordinates, dr = df = d¢ = 0, is

dr = \/—ds? = (1 - 5)1/2 dt . (7.18)

r

For an observer at rest at infinity, » — oo, the proper time is the same as the coordinate time,
dr = dt asr—oo. (7.19)

Among other things, this implies that the Schwarzschild time coordinate t is a scalar: not only is it the
unique coordinate with respect to which the metric is manifestly static, but it coincides with the proper time
of observers at rest at infinity. This coordinate-invariant definition of Schwarzschild time ¢ implies that it is
a scalar.

At finite radii outside the horizon, r > r,, the proper time dr is less than the Schwarzschild time dt, so
the clocks of observers at rest run slower at smaller than at larger radii.

At the horizon, r = r,, the proper time d7 of an observer at rest goes to zero,

dr -0 as r—r,. (7.20)

This reflects the fact that an object at rest at the horizon is following a null geodesic, and as such experiences
zero proper time.
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7.8 Redshift

An observer at rest at infinity looking through a telescope at an emitter at rest at radius r sees the emitter
redshifted by a factor

1 = — = = 1 - =
T2 )\em Vobs dTem r

>\0bs Vem _ dTObS _ ( T3>71/2 . (721)

This is an example of the universally valid statement that photons are good clocks: the redshift factor is given
by the rate at which the emitter’s clock appears to tick relative to the observer’s own clock. Equation (7.21)
is an example of the general formula (2.101) for the redshift between two comoving (= rest) observers in a
stationary spacetime.

It should be emphasized that the redshift factor (7.21) is valid only for an observer and an emitter at rest
in the Schwarzschild geometry. If the observer and emitter are not at rest, then additional special relativistic
factors will fold into the redshift.

The redshift goes to infinity for an emitter at the horizon

14z—00 as r—rs. (7.22)

Here the redshift tends to infinity regardless of the motion of the observer or emitter. An observer watching
an emitter fall through the horizon will see the emitter appear to freeze at the horizon, becoming ever slower
and more redshifted. Physically, photons emitted vertically upward at the horizon by an infaller remain at
the horizon for ever, taking an infinite time to get out to the outside observer.

7.9 “Schwarzschild singularity”

The apparent singularity in the Schwarzschild metric at the horizon r, is not a real singularity, because it
can be removed by a change of coordinates, such as to Gullstrand-Painlevé coordinates, equation (7.27).
Einstein, and other influential physicists such as Eddington, failed to appreciate this. Einstein thought that
the “Schwarzschild singularity” at » = r; marked the physical boundary of the Schwarzschild spacetime.
After all, an outside observer watching stuff fall in never sees anything beyond that boundary.

Schwarzschild’s choice of coordinates was certainly a natural one. It was natural to search for static
solutions, and his time coordinate ¢ is the only one with respect to which the metric is manifestly static.
The problem is that physically there can be no static observers inside the horizon: they must necessarily fall
inward as time passes. The fact that Schwarzschild’s coordinate system shows an apparent singularity at the
horizon reflects the fact that the assumption of a static spacetime necessarily breaks down at the horizon,
where space is falling at the speed of light.

Does stuff “actually” fall in, even though no outside observer ever sees it happen? The answer is yes: when
a black hole forms, it does actually collapse, and when an observer falls through the horizon, they really do
fall through the horizon. The reason that an outside observer sees everything freeze at the horizon is simply
a light travel time effect: it takes an infinite time for light to lift off the horizon and make it to the outside
world.
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7.10 Weyl tensor

For Schwarzschild, the Einstein tensor vanishes identically (because the spacetime is by assumption empty of
energy-momentum). The only part of the Riemann curvature tensor that does not vanish is the Weyl tensor.
The non-vanishing Weyl tensor says that gravitational tidal forces are present, even though the spacetime
is empty of energy-momentum. Non-vanishing gravitational tidal forces are the signature that spacetime is
curved.

The covariant (all indices down) components C,.,,,,, of the coordinate-frame Weyl tensor of the Schwarz-
schild geometry, computed from equation (3.1), appear at first sight to be a mess (go ahead, compute them).
However, the mess is an artefact of looking at the tensor through the distorting lens of the coordinate basis
vectors e,,, which are not orthonormal. After tetrads, Chapter 11, it will be found that the 10 components
of the Weyl tensor, the tidal part of the Riemann tensor, can be decomposed in any locally inertial frame
into 5 complex components of spin 0, +1, and 4+2. In a locally inertial frame whose radial direction coincides
with the radial direction of the Schwarzschild metric, all components of the Weyl tensor of the Schwarzschild
geometry vanish except the real spin-0 component. Spin 0 means that the Weyl tensor is unchanged under
a spatial rotation about the radial direction (and it is also unchanged by a Lorentz boost in the radial di-
rection). This spin-0 component is a coordinate-invariant scalar, the Weyl scalar C. The fact that the Weyl
tensor of the Schwarzschild geometry has only a single independent non-vanishing component is plausible
from the fact that the non-zero components of the coordinate-frame Weyl tensor written with two indices
up and two indices down are (no implicit summation over repeated indices)

~ 10" = 0%y = Oy = Oy = Ol = Oy = C (7.23)
where C' is the Weyl scalar,
M

The trick of writing the 4-index Weyl tensor with 2 indices up and 2 indices down, in order to reveal a simple
pattern, works in a simple spacetime like Schwarzschild, but fails in more complicated spacetimes.

7.11 Singularity
The Weyl scalar, equation (7.24), goes to infinity at zero radius,

C—o00 as r—0. (7.25)

The diverging Weyl tensor implies that the tidal force diverges at zero radius, signalling that there is a
genuine singularity at zero radius in the Schwarzschild geometry.
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dorizon dorizon

Visible

Visible

Figure 7.1 (Left) The light (yellow) shaded region shows the region visible to an infaller (blue) who falls radially to
the singularity of a Schwarzschild black hole; the dark (grey) shaded region shows the region that remains invisible
to the infaller. The invisible region has the shape of a cardioid, equation (7.62). If another infaller (purple) falls along
a different radial direction, the two infallers not only fail to meet at the singularity, they lose causal contact with
each other already some distance from the singularity. Since the two infallers fall to two causally disconnected places,
the singularity cannot be a point. (Right) Same, showing the shortest causal path (red) joining the two infallers
asymptotically near the singularity. The shortest causal path is a pair of light rays that start at the starred point,
move in opposite azimuthal directions, and reach the infallers asymptotically near the singularity. The shortest causal
path remains non-zero even though the spatial distance between the infallers tends to zero. Compare to Figure 23.2
for a Kerr black hole.

Concept question 7.4. Is the singularity of a Schwarzschild black hole a point? Is the singularity
at the centre of the Schwarzschild geometry a point? Answer. No. Familiar experience in 3-dimensional
space would suggest the answer is yes, but that conception is misleading. In the first place, general relativity
fails at singularities: the locally inertial description of spacetime fails, and general relativity cannot continue
worldlines of infallers beyond a singularity. Therefore singularities are not part of the spacetime described by
general relativity. Presumably some other physical theory takes over at singularities, but what that theory
is remains equivocal at the present time. In the second place, infallers who fall into a Schwarzschild black
hole at different angular positions do not approach each other as they approach the singularity. Rather,
the diverging tidal force near the singularity funnels each infaller along radially converging lines, effectively
keeping the infallers isolated from each other. Moreover, the future lightcones of infallers who fall in at the
same time ¢ but at different angular positions cease to intersect once they are close enough to the singularity.
Thus the infallers not only fail to touch each other, they cease even to be able to communicate with each other
as they approach the singularity, as illustrated in Figure 7.1. The reader may object that the Schwarzschild
metric shows that the proper angular distance between two observers separated by angle ¢ is r d¢, which
goes to zero at the singularity » — 0. This objection fails because infallers approaching the singularity cease
to be able to measure angular distances, since angularly separated points cease to be causally accessible to
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the infaller. The region accessible to an infaller is cusp-like near the singularity. See Exercises 7.10 and 7.11
for a more quantitative treatment of this problem.

Concept question 7.5. Separation between infallers who fall in at different times. Consider two
infallers who free-fall radially into the black hole at the same angular position, but at different times ¢. What
is the proper spatial radial separation between the two observers at the instants they hit the singularity, at
r — 07 Answer. Infinity. At the same angular position, df = d¢, the proper radial separation is

dl =Vds? = %—1dt—>oo asr—0. (7.26)

7.12 Gullstrand-Painlevé metric

An alternative metric for the Schwarzschild geometry was discovered independently by Allvar Gullstrand and
Paul Painlevé in 1921 (Gullstrand, 1922; Painlevé, 1921). (Gullstrand has priority because his paper, though
published in 1922, was submitted in May 1921, whereas Painlevé’s paper was a write-up of a presentation
to L’Académie des Sciences in Paris in October 1921). After tetrads, it will become clear that the standard
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Figure 7.2 The Gullstrand-Painlevé metric for the Schwarzschild geometry encodes locally inertial frames (tetrads)
that free-fall radially into the black hole at the Newtonian escape velocity 3, equation (7.28). The infall velocity is
less than the speed of light outside the horizon, equal to the speed of light at the horizon, and faster than light inside
the horizon. The infall velocity tends to infinity at the central singularity.
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way in which metrics are written encodes not only metric but also a tetrad. The Gullstrand-Painlevé line-
element (7.27) encodes a tetrad that represents locally inertial frames free-falling radially into the black hole
at the Newtonian escape velocity, Figure 7.2, although at the time no one, including Einstein, Gullstrand,
and Painlevé, understood this. Unlike Schwarzschild coordinates, there is no singularity at the horizon
in Gullstrand-Painlevé coordinates. It is striking that the mathematics was known long before physical
understanding emerged.

The Gullstrand-Painlevé metric is

ds* = —dt? + (dr — Bdtg)? + r’do*|. (7.27)

Here 3 is the Newtonian escape velocity (with a minus sign because space is falling inward),

p=- (2GM>1/2 ; (7.28)

r

and tg is the proper time experienced by an object that free falls radially inward from zero velocity at infinity.
The free fall time tg is related to the Schwarzschild time coordinate ¢ by

B

dtg = dt —
ff -5

which integrates to

dr (7.29)
te =t +7s (2\/7“/7"54— In FV:;:: ) . (7.30)

The time axis e;, in Gullstrand-Painlevé coordinates is not orthogonal to the radial axis e,, but rather is
tilted along the radial axis, e, - €, = gi,,r = —0.
The proper time of a person at rest in Gullstrand-Painlevé coordinates, dr = df = d¢ = 0, is

dr = dtg\/1— 32 . (7.31)

The horizon occurs where this proper time vanishes, which happens when the infall velocity § is the speed
of light

Bl=1. (7.32)

According to equation (7.28), this happens at r = r,, which is the Schwarzschild radius, as it should be.

Exercise 7.6. Geodesics in the Schwarzschild geometry. The Schwarzschild metric is
1
A(r)

ds® = — A(r)dt* + dr® + 12 (d6? + sin®0 d¢?) , (7.33)

where A(r) is the horizon function

A(r)=1- 2. (7.34)
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. Constants of motion. Argue that, without loss of generality, the trajectory of a freely falling particle

may be taken to lie in the equatorial plane, § = w/2. Argue that, for a massive particle, conservation of
energy per unit rest mass F, angular momentum per unit rest mass L, and rest mass per unit rest mass
implies that the 4-velocity u” = dx" /dr satisfies

w=—E, (7.352)
uut = —1. (7.35¢)

. Effective potential. Show that the radial component u" of the 4-velocity satisfies

u =+ (B2 -U)"* (7.36)
where U is the effective potential

U= (1 + fj) A (7.37)

Proper time in radial free-fall. What is the proper time 7 for an observer to free-fall from radius
r to the singularity at zero radius, for the particular case of an observer who falls radially from rest
at infinity. [Hint: What are the energy E and angular momentum L for an observer who falls radially
starting from rest at infinity?]
Proper time in radial free-fall — numbers. Evaluate the proper time, in seconds, to fall from the
horizon to the singularity in the case of a black hole with the mass 4 x 10 M, of the black hole at the
centre of our Galaxy, the Milky Way.
Circular orbits. Circular orbits occur where the effective potential U is an extremum. Find the radii
at which this occurs, as a function of angular momentum L. Solutions exist only if the absolute value
|L| of the angular momentum exceeds a certain critical value L.. What is this critical value L.?
Graph. Graph the effective potential U for values of L (i) less than, (ii) equal to, (iii) greater than the
critical value L.. Describe physically, in words, what the possible orbital trajectories are for the various
cases. [Hint: For cases (i) and (iii), values near the critical value L. show the distinction most clearly.]
Range of orbits. Identify the ranges of radii over which circular orbits are: (i) stable, (ii) unstable, (iii)
non-existent. [Hint: Stability depends on whether the extremum of the effective potential is a minimum
or a maximum. Which is which? You will find it helps to consider U as a function of 1/r rather than r.]
Angular momentum and energy in circular orbit. Show that the angular momentum per unit
mass for a circular orbit at radius r satisfies

r

i =—7" (7.38)
(r/M —3)"
and hence show also that the energy per unit mass in the circular orbit is
—2M
E=—"" (7.39)

[r(r— Z’)M)]l/2
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9. Drop in orbit. There is a certain circular orbit that has the same energy as a massive particle at rest
at infinity. This is useful for starship captains to know, because it is possible to drop into this orbit
using only a small amount of energy. What is the radius of the orbit? Is it stable or unstable?

10. Orbital period. Show that the orbital period t, as measured by an observer at rest at infinity, of a
particle in circular orbit at radius r is given by Kepler’s 3rd law (remarkably, Kepler’s 3rd law remains
true even in the fully general relativistic case, as long as t is taken to be the time measured at infinity),

GMt*

G T . (7.40)

[Hint: Argue that the azimuthal angle ¢ evolves according to d¢/dt = u®/u' = LA/(Er?).

Exercise 7.7. Null geodesics in the Schwarzschild geometry. The orbit equations (7.35) would appear
to break down for photons, which have zero mass, hence infinite energy per unit mass E, and infinite angular
momentum per unit mass L. Another way of looking at this is that photons follow null geodesics, dr = 0, so
that 7, which does not change, is not a very useful time coordinate for expressing the equations of motion
of photons. The difficulty is cured by introducing an affine parameter, equation (2.93), which functions as a
good scalar coordinate along null geodesics.

1. Constants of motion. For a massless particle, the 4-velocity v* = dz* /d\, normalized to unit energy

at infinity, satisfies

v=—1, (7.41a)
vy =J (7.41b)
v =0, (7.41c)

where J = L/FE is the photon’s angular momentum per unit energy.
2. Effective potential. Show that the radial component v" of the photon 4-velocity satisfies

=+ (1-V)V? (7.42)
where V is the effective potential

V="A. (7.43)

3. Photon sphere. Circular orbits occur where the effective potential V' is a minimum (stable orbit) or a
maximum (unstable orbit). At what radius can photons orbit in circles? Is the orbit stable or unstable?
4. Photon energy. The photon energy —uv;, equation (7.41a), is normalized to one as measured by an
observer at rest at infinity. Show that the energy of the photon measured by an observer on a trajectory
with energy F per unit mass and angular momentum per unit mass L, relative to unit energy at infinity,

. E 1 L2 J? L-J
Wobs = u/,v‘ = — Z + A\/<E2 - (1 + ’}“2> A> <1 — T‘QA) + 7‘2 5 (744:)

where the 4 sign is the sign of v"v", which is positive or negative as the observer and photon are moving
radially in the same or opposite directions.
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Exercise 7.8. Geodesics in the Schwarzschild geometry in 3 or more dimensions. Standard general
relativity breaks down in N = 2 spacetime dimensions, §11.19, and there are no black holes in N = 2
spacetime dimensions in the closest approximation to general relativity, Exercise 11.9 (there are however
black holes in N = 2 spacetime dimensions in extensions of general relativity). The Schwarzschild metric in
N > 3 spacetime dimensions is

1

ds? = — A(r)dt* + NG dr? +r?do? | (7.45)
where do? is the metric of a unit N—2 sphere, and A(r) is the horizon function
2M

What happens when N = 37 What happens when N > 57 Argue that equations (7.35)—(7.37) hold, with A
in the effective potential U, equation (7.37), being given by equation (7.46).

Solution. For N = 3, the horizon function 7.46 is constant A = 1 — 2M. For N = 3, a coordinate
transformation to coordinates ' = tv/A and 7’ = r/+/A brings the Schwarzschild line-element (7.45) to

ds? = —dt’? + dr'"* +r"*Ado? (7.47)

which is the metric of a cone, with angle 27rv/A around a circumference. The spacetime looks flat except for
a conical vertex at v’ = 0. A mass M bends geodesics around it, but there are no bound orbits.

The condition for a circular orbit is that the effective potential be an extremum, dU/dr = 0. The boundary
between stable and unstable circular orbits occurs when the potential is a double extremum, dU/dr =
d?>U/dr? = 0. The boundary between stable and unstable circular orbits occurs at

Te (N_ 1)1/(N_3) Lc (N— 1)(5_N)/[2(N_3)]

5—N

T's

4
AN , (7.49)

T'S
which has real finite solutions only for 2 < N < 4. For N = 2, equations (7.48) do not apply. For N = 3,
equations (7.48) give r./rs = e and L./rs = e (where e is the exponential); but these values are really valid
not for N = 3, but rather for values of N infinitesimally close to but not equal to 3.

For N > 5, there are no stable circular orbits. For N > 5, the only circular orbits are unstable, which
occur for L > 1if N=5o0r L > 0if N > 6. Besides unstable circular orbits, there are unbound geodesics,
and geodesics that fall into the black hole. The case NV = 4 is the only dimension for which stable circular
orbits exist.

Exercise 7.9. General relativistic precession of Mercury.
1. Conclude from Exercise 7.6 that the 4-velocity u* = dx*/dr of a massive particle on a geodesic in the
equatorial plane of the Schwarzschild geometry satisfies

E L > L2 \1Y?
ul = A u? = 20 u" = |:E'2 - (1+ ?“QA)] . (7.49)
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2. Letting « = 1/r, show that

L dx
o= / — (7.50)
(B2 — 1) + 2Mx — L2a? + 2ML247]

[Hint: This is a straightforward application of equations (7.49). Do not try to solve this integral; leave
it as given above.]

3. Suppose that the orbit varies between a known periapsis r_ and apoapsis r. Define z_ = 1/r_ and
x4 = 1/r; (note that r— < ry so x_ > x4 ). Argue that equation (7.50) must take the form
dx
0] :/ 77 (7.51)
(2 — 24)(2- — 2)(a — 2Mx)]"
where
a=1-2M(z_+z4). (7.52)

[Hint: This is not hard, but there are two things to do. First, you have to argue that, given the assumption
that the orbit is a bounded stable orbit, there must be 3 real roots to the cubic, which must be ordered
as 0 < 7y < x_ < a/2M < oco. Second, you should compare the coefficients of x® and 22 in the cubic
in the integrands of (7.50) and (7.51)].

4. By the transformation

=24+ (r_- —24)y (7.53)
bring the integral (7.51) to the form
dy
¢ = / ) (7.54)
w1~ v)(a —pw)]"
where
p=2M(z_ —zy), gq=1-2M(z_ +2z4) . (7.55)

5. Argue that the angle ¢ integrated around a full period, from apoapsis at y = 0 to periapsis at y = 1
and back, is

4
¢ = W K(p/q) . (7.56)
where K (m) is the complete elliptic integral of the first kind, one definition of which is

1/t dy

K(m) = / — (7.57)
o [y(1—y)(1—my)]
6. The Taylor series expansion of the complete elliptic integral is
T m
K(m) =2 (1 mn ) . .

(m) 5 + 1 + (7.58)

Argue that to linear order in mass M, the angle around a full period is

p=2m+3rM(z_ +xzy) . (7.59)
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7. Calculate the predicted precession of the perihelion of the orbit of Mercury, expressing your answer in
arcseconds per century. Google the perihelion and aphelion distances of Mercury, and its orbital period.

Exercise 7.10. A body cannot remain rigid as it approaches the Schwarzschild singularity. You
have already found from Exercise 7.6 that the azimuthal angle ¢ at radius r of a particle of rest mass m on
a geodesic with energy F and azimuthal angular momentum L in the equatorial plane of the Schwarzschild
geometry satisfies

Ldr

= / V(B2 —m2)rt — L2r2A .

(7.60)

1. Define J = L/FE to be the angular momentum per unit energy. Argue that for photons, which are

massless,
Jdr
= | ——— . 7.61
¢ /\/r4—J27"2A (7.61)

2. Argue that inside the horizon (A < 0) the largest possible rate of change d¢/dr of the azimuthal angle
¢ with respect to radius r occurs for J — oc.

Horizon

Figure 7.3 The arrowed lines, which are initially parallel, represent the worldtube of a body that remains as rigid as
possible (having constant cross-sectional radius h) as it falls to the singularity at the centre of a Schwarzschild black
hole. (The blow-up at right shows some details.) The dashed (purple) line shows geodesics with the maximum possible
angular motion inside the horizon, namely null geodesics with infinite angular momentum per unit energy, J = oo.
Since the walls of the infalling body cannot exceed the speed of light, their horizontal motion near the singularity is
bounded by that of J = co null geodesics, as illustrated. The diagram gives the impression that the different (left and
right) sides of the worldtube encounter each other at the singularity, but this is false. The left side of the tube can
send a signal to the right side only as long as the two sides are connected by a J = oo null geodesic. The dashed line,
marked with filled dots where the signal is emitted by the left side and observed by the right side, is the last such
geodesic connecting the two sides: inside this dashed line the left side can no longer influence causally the right side.
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3. Show that a null geodesic with J = oo in a Schwarzschild black hole satisfies
r=rysin®(¢/2) . (7.62)

Equation (7.62) is the equation of a cardioid, illustrated by the dashed purple lines in Figure 7.3.
4. Parameterize the J = oo null geodesic satisfying equation (7.62) by {z,y} = {r cos ¢, r sin ¢}. Show that

% — tan (30/2) . (7.63)

Sketch the situation geometrically. Conclude that the radius h of a cylinder whose centre falls radially
must satisfy h < rsin(¢/2) in order that the walls of the cylinder not exceed the speed of light.
Equivalently, conclude that a cylinder of radius A can remain rigid only down to a radius r satisfying

h<r3/2/pl2 (7.64)

5. Do the parts of a body that falls into a Schwarzschild black hole encounter each other at the singularity?
Solution. See Figure 7.3. The answer to part 5 is no, parts of a body that fall into a Schwarzschild black hole
do not encounter each other at the singularity. Indeed, as illustrated in Figure 7.3, parts of a body cease to
be in causal contact (cease to be able to influence each other) once they are close enough to the singularity.
From the perspective of an infaller inside the horizon, the closest they ever see any point an angle ¢ away is
at the edge of their past light cone, along the J = oo null geodesic.

Exercise 7.11. Causal distance between infallers near the singularity. The proper distance between
two infallers who fall along different radial directions goes to zero at the singularity, but the causal distance
between the two, the shortest causal path joining them, does not go to zero. The shortest causal path is the
red line illustrated in the right panel of Figure 7.1, a pair of null geodesics each with the maximum possible
angular momentum, J = co. A measure of distance along a null geodesic is the affine distance A. Calculate
the affine distance along the shortest causal path between infallers approaching the singularity.

Solution. Normalized to a frame at rest at infinity, the affine distance A along a null geodesic is obtained
by integrating d¢/d)\ = r?/J, equation (7.41b), or equivalently dr/d\ = v" from equation (7.42), giving

1 dr
)\:*/T2d 2/7. 7.65
J ¢ V1= J2A/r? ( )
Normalized to the frame of an observer, the affine distance Agpg is
Aobs - wobs>\ 5 (766)

where wops is the observed energy (7.44) of the photon relative to that at infinity. The observed affine distance
to an object coincides with proper distance to it measured by the observer in their immediate locally inertial
vicinity. The shortest causal path joining infallers near the singularity is realised by a pair of photons emitted
in opposite directions with maximum angular momentum, J = oo, from a point half way (in angle) between
the infallers, illustrated by the red line in the right panel of Figure 7.1. The causal path has two symmetrically
equal parts, each following the path of a cardioid, equation (7.62). If the angular separation between the two
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infallers near the singularity is 2¢, then the observed affine distance along the shortest causal path is 2\gps,
twice the affine distance along each individual null segment,

¢ 2 ro 2
Aobs = LOJ‘)S / r? dg = Lebsls / sin?(¢/2) do = L‘[D]STS (3¢ — Lsing + & sin2¢) . (7.67)
0 0

The ¢-dependent factor in parentheses on the right hand side of equations (7.67) is ~ 8—10(;55 at small sep-

arations ¢. The observed energy wops depends on the position and motion of the observer. Radially-falling

observers (L = 0) near the singularity watching J = oo null geodesics see photon energy, from equation (7.44),
J

obs — ) 7.68
“ob Tobs ( )

so the factor on the right hand side of the expression (7.67) for the observed affine distance is

WobaT's _ Ta_ (7.69)
J Tobs ’
which diverges at the singularity, rops — 0. The divergence is a symptom of the failure of general relativity,
the cessation of the existence of locally inertial frames, at the singularity. Notwithstanding the divergence,
the robust conclusion is that the causal distance between two infallers does not go to zero at the singular
surface.

Exercise 7.12. Maximum transverse velocity of a light signal inside the horizon. Again consider
two infallers who free-fall radially along radial paths at different angular positions. The maximum transverse
velocity with which they can send signals to each other is, once again, along J = oo null geodesics. Show

that this maximum transverse velocity is
r
=,/1-—. (7.70)
J=00 T's

The maximum transverse velocity is always less than the speed of light, but tends to the speed of light at
the singularity.

rdé
dtg

Solution. The relation between the radius r and angle ¢ along a J = oo null geodesic is given by equa-
tion (7.62). The relation between radius r and proper time tg for a radial free-faller follows from dr/dtg =
in the Gullstrand-Painlevé metric (7.27).

7.13 Embedding diagram

An embedding diagram is a visual aid to understanding geometry. It is a depiction of a lower dimensional
geometry in a higher dimension. A classic example is the illustration of the geometry of a 2-sphere embedded
in 3-dimensional space, Figure 2.2.
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Figure 7.4 Embedding diagram of the Schwarzschild geometry. The 2-dimensional surface represents the 3-dimensional
Schwarzschild geometry at a fixed instant of Schwarzschild time ¢. Each circle represents a sphere, of proper circumfer-
ence 27r, as measured by observers at rest in the geometry. The proper radial distance measured by observers at rest
is stretched in the radial direction, as shown in the diagram. The stretching is infinite at the horizon, so the spatial
geometry there looks like a vertical cliff. Radial lines in the Schwarzschild geometry are spacelike outside the horizon,
but timelike inside the horizon.

Figure 7.4 shows an embedding diagram of the spatial Schwarzschild geometry at a fixed instant of Schwarz-
schild time ¢. To the polar coordinates r, 8, ¢ of the 3D Schwarzschild spatial geometry, adjoin a fourth spatial
coordinate w. The metric of 4D Euclidean space in the coordinates w, r, 8, ¢, is

di* = dw? + dr? + r?do* . (7.71)

The spatial Schwarzschild geometry is represented by a 3D surface embedded in the 4D Euclidean geometry,
such that the proper distance dl in the radial direction satisfies equation (7.17), that is

dr?

B 1—rg/r

di? = dw? +dr* . (7.72)

Equation (7.72) rearranges to

d
dw = —— (7.73)

rjrs—1"
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.
w—2,/g—1. (7.74)

The embedded Schwarzschild surface has the shape of a square root, infinitely steep at the horizon r = ry,
as illustrated by Figure 7.4.

Inside the horizon, proper radial distances change to being timelike, di?* < 0, equation (7.17). Here the
Schwarzschild geometry at fixed Schwarzschild time ¢ (which is a spacelike coordinate inside the horizon)
can be embedded in a 4D Minkowski space in which the fourth coordinate w is timelike,

which integrates to

di* = — dw? + dr? + r?do® . (7.75)

The embedded surface inside the horizon satisfies

[T
= —2 1 _ — .
w . (7.76)

with a minus sign chosen so that the coordinate w is negative inside the horizon, whereas it is positive
outside the horizon. The two embeddings (7.74) and (7.76) can be patched together at the horizon (though
not doubly differentiably), as illustrated in Figure 7.4.

It should be emphasized that the embedding diagram of the Schwarzschild geometry at fixed Schwarzschild
time ¢ has a limited physical meaning. Fixing the time ¢ means choosing a certain hypersurface through the
geometry. Other choices of hypersurface will yield different embedding diagrams. For example, the Gullstrand-
Painlevé metric (7.27) is spatially flat at fixed free-fall time tg, so in that case the embedding diagram would
simply illustrate flat space, with no funny business at the horizon.

7.14 Schwarzschild spacetime diagram

In general relativity as in special relativity, a spacetime diagram is a plot of space versus time.

Figure 7.5 shows a spacetime diagram of the Schwarzschild geometry. In this diagram, Schwarzschild time
t increases vertically upward, while circumferential radius r increases horizontally.

The more or less diagonal lines in Figure 7.5 are outgoing and infalling radial null geodesics. The radial
null geodesics are not at 45°, as they would be in a special relativistic spacetime diagram. In Schwarzschild
coordinates, light rays that fall radially (df = d¢ = 0) inward or outward follow null geodesics

2_ (1 _Ts 2 s\ o
ds® = (1 . ) dt* + (1 . ) drc=0. (7.77)
Radial null geodesics thus follow

Tox(1-), (7.78)

in which the + sign is 4+ for outgoing, — for infalling rays. Equation (7.78) shows that dr/dt — 0 as
r — 15, suggesting that null rays, whether infalling or outgoing, never cross the horizon. In the Schwarzschild
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Figure 7.5 Spacetime diagram of the Schwarzschild geometry, in Schwarzschild coordinates. The horizontal axis is the
circumferential radius r, while the vertical axis is Schwarzschild time ¢. The horizon (pink) is at one Schwarzschild
radius, r = rs. The singularity (cyan) is at zero radius, » = 0. The more or less diagonal lines (black) are outgoing
and infalling null geodesics. The outgoing and infalling null geodesics appear not to cross the horizon, but this is an

artefact of the Schwarzschild coordinate system.
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spacetime diagram 7.5, null geodesics asymptote to the horizon, but never actually cross it. This feature of
Schwarzschild coordinates was first noticed by Droste (1916), and contributed to the historical misconception
that black holes stopped at their horizons. The failure of geodesics to cross the horizon is an artefact of
Schwarzschild’s choice of coordinates, which are adapted to observers at rest, whereas no locally inertial

frame can remain at rest at the horizon.

7.15 Gullstrand-Painlevé spacetime diagram

Figure 7.6 shows a spacetime diagram of the Schwarzschild geometry in Gullstrand-Painlevé coordinates g
and r in place of Schwarzschild coordinates ¢ and r. As the spacetime diagram shows, in Gullstrand-Painlevé
coordinates infalling light rays cross the horizon. Unfortunately, neither Gullstrand nor Painlevé, nor anyone
else at that time, grasped the physical significance of their metric.
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Figure 7.6 Gullstrand-Painlevé, or free-fall, spacetime diagram, in units rs = ¢ = 1. In this spacetime diagram the
time coordinate is the Gullstrand-Painlevé time tg, which is the proper time of observers who free-fall radially from
zero velocity at infinity. The radial coordinate r is the circumferential radius, and the horizon and singularity are at
r =715 and 7 = 0, as in the Schwarzschild spacetime diagram, Figure 7.5. In contrast to the spacetime diagram in
Schwarzschild coordinates, in Gullstrand-Painlevé coordinates infalling light rays do cross the horizon.

7.16 Eddington-Finkelstein spacetime diagram

In 1958, David Finkelstein (1958) carried out an elementary transformation of the time coordinate which
seemed to show that infalling light rays could indeed pass through the horizon. It turned out that Eddington
had already discovered the transformation in 1924 (Eddington, 1924), though at that time the physical
implications were not grasped. Again, it is striking that the mathematics was in place long before physical
understanding emerged.

In Schwarzschild coordinates, radially outgoing or infalling light rays follow equation (7.78). Equation (7.78)
integrates to

t=+x(r+rslnjr—ry) , (7.79)

which shows that Schwarzschild time ¢ approaches +oo logarithmically as null rays approach the horizon.
Finkelstein defined his time coordinate tg by

tp =t+rslnjr—ry, (7.80)
which has the property that infalling null rays follow

tr + r = constant . (7.81)
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Figure 7.7 Finkelstein spacetime diagram, in units rs = ¢ = 1. Here the time coordinate is taken to be the Finkelstein
time coordinate tg, equation (7.80). The Finkelstein time coordinate ¢g is constructed so that radially infalling light
rays are at 45°.

In other words, on a spacetime diagram in Finkelstein coordinates, Figure 7.7, radially infalling light rays
move at 45°, the same as in a special relativistic spacetime diagram.

7.17 Kruskal-Szekeres spacetime diagram

After Finkelstein had transformed coordinates so that radially infalling light rays moved at 45° in a spacetime

diagram, it was natural to look for coordinates in which outgoing as well as infalling light rays are at 45°.

Kruskal and Szekeres independently provided such a transformation in 1960 (Kruskal, 1960; Szekeres, 1960).
Define the tortoise, or Regge-Wheeler (Regge and Wheeler, 1957), coordinate r* by

. dr _

Then radially infalling and outgoing null rays follow

r* +t = constant infalling ,
(7.83)
r* —t = constant outgoing .

In a spacetime diagram in coordinates ¢ and r*, infalling and outgoing light rays are indeed at 45°. Unfor-
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Figure 7.8 Kruskal-Szekeres spacetime diagram, in units rs = ¢ = 1. Kruskal-Szekeres coordinates are arranged such
that not only infalling, but also outgoing null rays move at 45° on the spacetime diagram. The Kruskal-Szekeres
spacetime diagram reveals the causal structure of the Schwarzschild geometry. The singularity (cyan) at » = 0, at
the upper edge of the spacetime diagram, is revealed to be a spacelike surface. Besides the usual horizon (pink),
there is an antihorizon (red), which was not apparent in Schwarzschild or Finkelstein coordinates. In the Kruskal-
Szekeres spacetime diagram, lines of constant circumferential radius r (blue) are hyperboloids, while lines of constant
Schwarzschild time ¢ (violet) are straight lines passing through the origin, the same as in the spacetime wheel,
Figure 1.14, or as in Rindler space. Contours of constant Schwarzschild time ¢ (violet) are spaced uniformly at
intervals of 1 (in units rs = ¢ = 1), and similarly infalling and outgoing null rays (black) are spaced uniformly by 1,
while lines of constant circumferential radius r (blue) are drawn spaced uniformly by 1/4.

tunately the metric in these coordinates is still singular at the horizon r = 2M:
2M
ds* = (1 - ) (= dt? + dr*?) + r’do® . (7.84)
T

The singularity at the horizon can be eliminated by the following transformation into Kruskal-Szekeres

coordinates tx and rg:
r* 4+t
TK+tK:2MeXp( +>,

M (7.85)

r*—t
—tg = +2M —_—
TK K exp ( M ) )
where the + sign in the last equation is + outside the horizon, — inside the horizon. The Kruskal-Szekeres
metric is

SM
ds* = Te_T/QM (= dti + dri) +r?do* | (7.86)
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Figure 7.9 From left to right, the Finkelstein spacetime diagram, Figure 7.7, morphs into the Kruskal-Szekeres space-
time diagram, Figure 7.8. The morph illustrates how the antihorizon, or past horizon (red), emerges from the depths
of t = —oo. Like the horizon, the antihorizon is a null surface, thus appearing at 45° in the Kruskal-Szekeres spacetime

diagram.

which is non-singular at the horizon. The Schwarzschild radial coordinate r, which appears in the factors
(8M/r)e~"/?M and r? in the Kruskal metric, is to be understood as an implicit function of the Kruskal
coordinates tx and rg.

7.18 Antihorizon

The Kruskal-Szekeres spacetime diagram reveals a new feature that was not apparent in Schwarzschild or
Finkelstein coordinates. Dredged from the depths of ¢ = —oco appears a null line rx + tx = 0, Figure 7.9.
The null line is at radius 7 = 2M, but it does not correspond to the horizon that a person might fall into.
The null line is called the antihorizon.

7.19 Analytically extended Schwarzschild geometry

The Schwarzschild geometry is analytic, and there is a unique analytic continuation of the geometry through
the antihorizon. The extended geometry consists of two copies of the Schwarzschild geometry, glued along
their antihorizons, as illustrated in the embedding diagram in Figure 7.10. The embedding diagram 7.10
gives the impression of a static wormhole, but this is an artefact of everything being frozen at the horizon
in Schwarzschild coordinates.

Figure 7.11 shows the Kruskal spacetime diagram of the analytically extended Schwarzschild geometry,
Whereas the original Schwarzschild geometry showed an asymptotically flat region and a black hole region
separated by a horizon, the complete analytically extended Schwarzschild geometry shows two asymptotically
flat regions, together with a black hole and a white hole. Relativists typically label the regions I, II, III, and
IV, but I like to call them by name: “Universe,” “Black Hole,” “Parallel Universe,” and “White Hole.”

The white hole is a time-reversed version of the black hole. Whereas space falls inward faster than light
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Figure 7.10 Embedding diagram of the analytically extended Schwarzschild geometry. The analytically extended
geometry is constructed by gluing together two copies of the Schwarzschild geometry along the antihorizon. The
extended geometry contains a Universe, a Parallel Universe, a Black Hole, and a White Hole.
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Figure 7.11 Analytically extended Kruskal-Szekeres spacetime diagram, in units rs = ¢ = 1. The analytically extended
horizon and antihorizon (crossing pink/red lines at 45°) divide the spacetime into 4 regions, a Universe region at right,
a Black Hole region bounded by the singularity at top, a Parallel Universe region at left, and a White Hole region
bounded by a singularity at bottom. The White Hole is a time-reversed version of the Black Hole.



7.19 Analytically extended Schwarzschild geometry 159

inside the black hole, space falls outward faster than light inside the white hole. In the Gullstrand-Painlevé
metric (7.27), the velocity 8 = 4(2M/r)'/? is negative for the black hole, positive for the white hole.

The Kruskal diagram shows that the universe and the parallel universe are connected, but only by spacelike
lines. This spacelike connection is called the Einstein-Rosen bridge, and constitutes a wormhole connecting
the two universes. Because the connection is spacelike, it is impossible for a traveller to pass through this
wormhole. The wormhole is said to be non-traversable.

Figure 7.12 illustrates a sequence of embedding diagrams for spatial slices of the analytically extended
Schwarzschild geometry. Although two travellers, one from the universe and one from the parallel universe,
cannot travel to each other’s universe, they can meet, but only inside the black hole. Inside the black hole,
they can talk to each other, and they can see light from each other’s universe. Sadly, the enlightenment is
only temporary, because they are doomed soon to hit the central singularity.

Figure 7.12 Sequence of embedding diagrams of spatial slices of the analytically extended Schwarzschild geometry,
progressing in time from left to right. Two white holes merge, form an Einstein-Rosen bridge, then fall apart into
two black holes. The wormhole formed by the Einstein-Rosen bridge is non-traversable. The (yellow) arrows indicate
the direction in which an object can cross the horizon. At left, travellers in the two universes cannot fall into their
respective white holes, because objects can cross the white hole horizons (red) only in the outward direction. The
horizons cross in the middle diagram, without the arrows changing direction. After this point, travellers in the two
universes can fall through their respective black hole horizons (pink) into the Einstein-Rosen bridge, and temporarily
meet up with each other. Unfortunately, having fallen through the black hole horizons, they cannot exit, and are
doomed to hit the singularity. The insets at top show the adopted spatial slicings on the Kruskal spacetime diagram.
The adopted slicings are engineered to give the embedding diagrams an appealing look, and have no fundamental
significance.
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Figure 7.13 Penrose spacetime diagram, in units rs = ¢ = 1. The Penrose coordinates tp and rp here are defined
by equations (7.87) and (7.88). Lines of constant Schwarzschild time ¢ (violet), and infalling and outgoing null lines
(black) are spaced uniformly at intervals of 1 (units rs = ¢ = 1), while lines of constant circumferential radius r (blue)
are spaced uniformly in the tortoise coordinate r*, equation (7.82), so that the intersections of ¢ and r lines are also
intersections of infalling and outgoing null lines.

It should be emphasized that the white hole and the wormhole in the Schwarzschild geometry are a
mathematical construction with as far as anyone knows no relevance to reality. Nevertheless it is intriguing
that such bizarre objects emerge already in the simplest general relativistic solution for a black hole.

7.20 Penrose diagrams

Roger Penrose, as so often, had a novel take on the business of spacetime diagrams (Penrose, 2011). Penrose
conceived that the primary purpose of a spacetime diagram should be to portray the causal structure of
the spacetime, and that the specific choice of coordinates was largely irrelevant. After all, general relativity
allows arbitrary choices of coordinates.

In addition to requiring that light rays be at 45°, Penrose wanted to bring regions at infinity (in time or
space) to a finite position on the spacetime diagram, so that the entire spacetime could be seen at once. Such
diagrams are called Penrose diagrams, or conformal diagrams.

Penrose diagrams are bona-fide spacetime diagrams. Penrose time and space coordinates ¢tp and rp can
be defined by any conformal transformation of Kruskal-Szekeres coordinates

rp £tp = f(rg £ tx) (7.87)
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Figure 7.14 From left to right, the Kruskal-Szekeres spacetime diagram, Figure 7.8, morphs into the Penrose spacetime
diagram, Figure 7.13.
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Figure 7.15 Penrose spacetime diagram of the analytically extended Schwarzschild geometry. This is the analytically
extended version of Figure 7.13.

for which f(z) is finite as z — +o0o. The transformation (7.87) brings spatial and temporal infinity to finite
values of the coordinates, while keeping infalling and outgoing light rays at 45° in the spacetime diagram.
It is common to draw a Penrose diagram with the singularity horizontal, which can be accomplished by
choosing the function f(z) to be odd, f(—z) = —f(z). Figure 7.13 shows a spacetime diagram in Penrose
coordinates with f(z) set to

fz)= %atanz . (7.88)



162 Schwarzschild Black Hole

) ) future
Singularity infinity

Black Hole

past
infinity

Figure 7.16 Penrose diagram of the Schwarzschild geometry, labelled with the Universe and Black Hole regions, and
their various boundaries. The (blue) line at less than 45° from vertical is a possible trajectory of a person who falls
through the horizon from the Universe into the Black Hole. Once inside the horizon, the infaller cannot avoid the
Singularity.

Figure 7.14 illustrates a morph of the Kruskal-Szekeres spacetime diagram, Figure 7.8, into the Penrose
spacetime diagram, Figure 7.13.
Figure 7.15 illustrates the Penrose diagram of the analytically extended Schwarzschild geometry.

7.21 Penrose diagrams as guides to spacetime

In the literature, Penrose diagrams are usually sketched, not calculated, the aim being to convey a conceptual
understanding of the spacetime without obsessing over detail.

Figure 7.16 shows a Penrose diagram of the Schwarzschild geometry, with the Universe and Black Hole
regions, and the various boundaries of the diagram, marked. The 45° edges of the Penrose diagram at infinite
radius, r = oo, are called past and future null infinity, often designated in the mathematical literature
by Z, and Z_ (commonly pronounced scri-plus and scri-minus, scri being short for script-I). The corners of
the Penrose diagram in the infinite past or future are called past and future infinity, often designated 7_
and i, while the corner at infinite radius is called spatial infinity, often designated ig.

The Schwarzschild geometry, being asymptotically flat (Minkowski), has no boundary at infinity. Thus
the boundary at infinity in the Penrose diagram is not part of the spacetime manifold. However, a worldline
that extends into the indefinite past converges towards past infinity, while a worldline that extends into the
indefinite future outside the black hole converges towards future infinity.

A Penrose diagram is an indispensable guide to finding your way around a complicated spacetime such
as a black hole. However, a Penrose diagram can be deceiving, because the conformal mapping distorts
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Figure 7.17 Penrose diagram of the analytically extended Schwarzschild geometry.

the spacetime. Most of the physical spacetime in the Penrose diagram of the Schwarzschild geometry is
compressed to the corners of the diagram, to past, future, and spatial infinity, and to the top left point at
the intersection of the antihorizon with the singularity.

Figure 7.17 shows the Penrose diagram of the analytically extended Schwarzschild geometry, with the four
regions, Universe, Black Hole, Parallel Universe, and White Hole marked. Again, relativists typically call
these regions I, II, ITI, and IV, but I like to give them names. I've also given names to the various horizons.
The names are unconventional, but reasonable.

Concept question 7.13. Penrose diagram of Minkowski space. Draw a Penrose diagram of Minkowski
space.

7.22 Future and past horizons

Hawking and Ellis (1973) define the future horizon of the worldline of an observer to be the boundary of
the past lightcone of the continuation of the worldline into the indefinite future. Likewise the past horizon
of the worldline of an observer is the boundary of the future lightcone of the continuation of the worldline
into the indefinite past. The definition of future and past horizons is observer-dependent.

The horizon of a Schwarzschild black hole is a future horizon for observers who remain at a finite distance
outside the black hole for ever. The antihorizon of a Schwarzschild black hole is a past horizon for observers
who remained a finite distance outside the black hole in the indefinite past.

The causal diamond of an observer is the part of spacetime bounded by the observer’s past and future
horizons. The causal diamond is the region of spacetime to which the observer can, at some point on their
worldline, send a signal, and from which the observer can, at some other point on their worldline, receive a
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signal. For example, the Universe region of the Penrose diagram 7.16 is the causal diamond of an observer
who starts at past infinity and ends at future infinity, without falling into the black hole.

7.23 Oppenheimer-Snyder collapse to a black hole

Realistic collapse of a star to a black hole is not expected to produce a white hole or parallel universe.

The simplest model of a collapsing star is a spherical ball of uniform density and zero pressure which free
falls from zero velocity at infinity, a problem first solved by Oppenheimer and Snyder (1939). In this simple
model, the interior of the star is described by a collapsing Friedmann-Lemaitre-Robertson-Walker metric
(see Chapter 10), while the exterior is described by the Schwarzschild solution. The assumption that the star
collapses from zero velocity at infinity implies that the FLRW geometry is spatially flat, the simplest case.
To continue the geometry between Schwarzschild and FLRW geometries, it is neatest to use the Gullstrand-
Painlevé metric, with the Gullstrand-Painlevé infall velocity S at the edge of the star set equal to minus r
times the Hubble parameter of the collapsing FLRW metric, —rH = —r dlna/dt. Section 20.15 describes a
systematic approach to solving the Oppenheimer-Snyder problem.

Figure 7.18 shows the star collapse as seen by an outside observer at rest at a radius of 10 Schwarzschild
radii. The Figure is correctly ray-traced, taking into account the different travel times of light from the
various parts of the star to the observer. The collapsing star appears to freeze at the horizon, taking on the
appearance of a Schwarzschild black hole.

When Oppenheimer & Snyder first did their calculation, the result seemed paradoxical. An outsider saw
the collapsing star freeze at its horizon and never get further, even to the end of time. Yet an observer who
collapsed with the star would find themself falling uneventfully through the horizon to the central singularity
in a finite proper time. How could these two perspectives be reconciled?

The solution is that the freezing at the horizon is an illusion. As pictured in Figure 7.2, space is falling at
the speed of light at the horizon. Light emitted outward at the horizon just hangs there, barrelling at the
speed of light through space that is falling at the speed of light. It takes an infinite time for light to lift off
the horizon and make it to the outside world. The star really did collapse, but the infinite light travel time
from the horizon gives the illusion that the star freezes at the horizon.

That radially outgoing light rays at the horizon remain on the horizon is apparent in the Penrose diagram,
which shows the horizon as a null line, at 45°.

7.24 Apparent horizon

Since light can escape from the surface or interior of the collapsing star as long as it is even slightly larger
than its Schwarzschild radius, it is possible to take the view that the horizon comes instantaneously into
being at the moment that the star collapses through its Schwarzschild radius. This definition of the horizon is
called the apparent horizon. More generally, the apparent horizon is a null surface on which the congruence
of light rays that form the surface are neither diverging nor converging. In spherically symmetric spacetimes,
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Figure 7.18 Three frames in the collapse of a uniform density, pressureless, spherical star from zero velocity at infinity
(Oppenheimer and Snyder, 1939), as seen by an outside observer at rest at a radius of 10 Schwarzschild radii. The
frames are spaced by 10 units of Schwarzschild time (¢ = rs = 1). The star is made transparent, so you can see inside.
Two layers are shown, one at the surface of the star, the other at half its radius. The centre of the star is shown as
a dot. The frames are accurately ray-traced, and include the effect of the different light travel times from different
parts of the star to the observer. As time goes by, from left to right, the collapsing star appears to freeze at the
horizon, taking on the appearance of a Schwarzschild black hole. The different layers of the star appear to merge into
one. The radius of the nearest point on the surface at the time of emission is 3.72, 1.50, and 1.01 Schwarzschild radii
respectively.

an apparent horizon is a place where radially moving null geodesics remain at rest in circumferential radius
r?
dr

=0 (7.89)

7.25 True horizon

An alternative definition of the horizon is to take it to be the boundary between outgoing null rays that
fall into the black hole versus those that go to infinity. In any evolving situation, this definition of the
horizon, which is called the true horizon, or absolute horizon, depends formally on what happens in the
indefinite future, but in a slowly evolving system the absolute horizon can be located with some precision
without knowing the future. The true horizon is part of the future horizon of an observer who remains at a
finite distance outside the black hole into the indefinite future.

Figure 7.19 shows Finkelstein, Kruskal, and Penrose spacetime diagrams of the Oppenheimer-Snyder col-
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lapse of a star to a Schwarzschild black hole. The diagrams show the freely-falling surface of the collapsing
star, and the formation of the true horizon and of the singularity. The true horizon of the collapsing star
forms before the star has collapsed, and grows to meet the apparent horizon as the star falls through its
Schwarzschild radius. The central singularity forms slightly before the star has collapsed to zero radius. The
formation of the singularity is marked by the fact that light rays emitted at zero radius cease to be able to
move outward. In other words, the singularity forms when space starts to fall into it faster than light.

7.26 Penrose diagrams of Oppenheimer-Snyder collapse

Figure 7.20 shows a sequence of Penrose diagrams of Oppenheimer-Snyder collapse, progressing in time from
left to right. The diagrams are drawn from the perspective of an observer before collapse on the left, to
that of an observer after collapse on the right. The diagrams illustrate that, even though a Penrose diagram
supposedly encompasses all of the spacetime, it crams most of the spacetime into a few boundary points, and
the appearance of the diagram can vary dramatically depending on what part of the spacetime the diagram

Circumferential radius r Kruskal radial coordinate ry Penrose radial coordinate rp

Figure 7.19 Finkelstein, Kruskal-Szekeres, and Penrose spacetime diagrams of the Oppenheimer-Snyder of a pressure-
less, spherical star. The thick (red) line is the surface of the collapsing star. The geometry outside the surface of the
star is Schwarzschild, and the spacetime diagrams there look like those shown previously, Figures 7.7, 7.8, and 7.13.
The geometry inside the surface of the star is that of a uniform density, pressureless Friedmann-Lemaitre-Robertson-
Walker universe. The lines of constant time (purple) are lines of constant Schwarzschild time outside the star’s surface,
and lines of constant FLRW time inside the star’s surface. Lines of constant circumferential radius r (blue) are spaced
uniformly in the tortoise coordinate r*, equation (7.82), so before collapse appear bunched around the radius r = rs
that after collapse becomes the horizon radius. The thick (pink) line at 45° in the Kruskal and Penrose diagrams is the
true, or absolute, horizon, which divides the spacetime into a region where light rays are trapped, eventually falling
to zero radius, and a region where light rays can escape to infinity. A singularity (cyan) forms when outgoing light
rays can no longer escape from zero radius, which happens slightly before the surface of the collapsing star reaches
zero radius.
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centres. In Figure 7.20, the Penrose diagram looks like Minkowski well before collapse, and like Schwarzschild
well after collapse.

The Penrose diagrams in Figure 7.20 are drawn in the Penrose coordinates defined by equations (7.87)
with the function f(z) given by equation (7.88). Requiring the singularity to be horizontal, as is conventional,
imposes that f(z) be odd. Since other choices of f(z) could be made, the shapes of the Penrose diagrams
are not unique. However, other choices of smooth, monotonic, odd f(z) give diagrams quite similar to those
shown. In particular, as long as the singularity is chosen to be horizontal, it is impossible to arrange that
the left edge of the diagram, defined by the centre of the collapsing star at » = 0, be vertical.

In the evolving Penrose diagram of Figure 7.20, spacetime appears to flow out of future infinity, the point
at the top right of the diagram, down into past infinity, the point at the bottom of the diagram. Inside the
horizon, as Schwarzschild time ¢ goes by, spacetime appears to flow to the left, to the top left corner of the
spacetime diagram. An infaller inside the horizon must of course follow a worldline at less than 45° from
vertical. However, infallers who fall in at different times fall to different places on the spacelike singularity.
From the perspective of an outside observer, infallers who fell in long ago are crammed to the top left corner
of the Penrose diagram.

7.27 Illusory horizon

The simple Oppenheimer-Snyder model of stellar collapse shows that the antihorizon of the complete Schwarz-
schild geometry is replaced by the surface of the collapsing star, and that beyond the star’s surface is not
a parallel universe and a white hole, but merely the interior of the star, and the distant Universe glimpsed
through the star’s interior.

As time goes by, the surface of the collapsing star becomes dimmer and more redshifted, taking on the

Figure 7.20 Sequence of Penrose diagrams illustrating the Oppenheimer-Snyder collapse of a pressureless, spherical
star to a Schwarzschild black hole, progressing in time of collapse from left to right. On the left, the collapse is to
the future of an observer at the centre of the diagram; on the right, the collapse is to the past of an observer at the
centre of the diagram. The diagrams are at times —16, —4, 0, 4, and 16 Schwarzschild time units (¢ = rs = 1) relative
to the middle diagram. On the left the Penrose diagram resembles that of Minkowski space, while on the right the
diagram resembles that of the Schwarzschild geometry. These Penrose diagrams are spacetime diagrams calculated in
the Penrose coordinates defined by equations (7.87) and (7.88).
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appearance of the Schwarzschild antihorizon, Figure 7.18. The name illusory horizon for the exponentially
dimming and redshifting surface was coined by Hamilton and Polhemus (2010). Figure 7.21 shows a Penrose
diagram of a spherical collapsed star, with the true and illusory horizons marked. The Penrose diagram is
just the limit of the sequence of the diagrams in Figure 7.20 from the perspective of an observer for whom the
star collapsed long ago. The Penrose diagram 7.21 looks identical to the Penrose diagram of a Schwarzschild
black hole, Figure 7.13, except that the antihorizon is replaced by the illusory horizon.

Unlike the antihorizon, the illusory horizon is not a future or past horizon, as defined by Hawking and Ellis
(1973). As the Penrose diagrams 7.20 show, the illusory horizon is neither the boundary of the past lightcone
of the future development of the worldline of any observer, nor the boundary of the future lightcone of the
past development of the worldline of any observer.

An object similar to the illusory horizon, the stretched horizon, was introduced by Susskind, Thorlacius,
and Uglum (1993). The stretched horizon was conceived as the place where, from the perspective of an outside
observer, Hawking radiation comes from, and the place where, from the perspective of an outside observer,
the interior quantum states of a black hole reside. The stretched horizon was argued to be located on a
spacelike surface one Planck area above the true horizon. However, the restriction to an outside observer is
too limiting, and the notion that the stretched horizon lives literally just above the true horizon has been
a source of confusion in the theoretical physics literature. If you go down to the true horizon, you do not

singularity . . future
formed singularity infinity

spatial
infinity

past
infinity

Figure 7.21 Penrose diagram of a collapsed spherical star at late times. The Penrose diagram looks essentially identical
to the Penrose diagram 7.16 of the Schwarzschild geometry, except that the antihorizon is replaced by the illusory
horizon. The wiggly lines show the paths of outgoing light rays from the illusory horizon, and ingoing light rays from
the true horizon, as seen by an infaller who falls through the true horizon. An infaller looking directly towards the
black hole sees the illusory horizon ahead of them, whether they are outside or inside the true horizon. The true
horizon becomes visible to an infaller only after they have fallen through it. Once inside, the infaller sees the true
horizon behind them, in the direction away from the black hole.
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Figure 7.22 Six frames from a visualization of the view seen by an observer who free-falls into a Schwarzschild black
hole. The infaller is on a geodesic with energy per unit mass £ = 1, and angular momentum per unit mass L = 1.96 .
From left to right and top to bottom, the observer is at radii 3.008, 1.501, 0.987, 0.508, 0.102, and 0.0132 Schwarzschild
radii. The illusory horizon is painted with a dark red grid, while the true horizon is painted with a grid coloured with
an appropriately red- or blue-shifted blackbody colour. The schematic map at the lower left of each frame shows
the trajectory (white line) of the observer through regions of stable circular orbits (green), unstable circular orbits
(yellow), no circular orbits (orange), the horizon (red line), and inside the horizon (red). The clock at the lower right
of each frame shows the proper time left to hit the singularity, in seconds, scaled to the mass 4 x 106 Mg of the Milky
Way’s supermassive black hole (Ghez et al., 2005; Eisenhauer et al., 2005). The background is Axel Mellinger’s Milky
Way (Mellinger, 2009) (with permission).
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encounter the putative stretched horizon. The stretched horizon is an illusion, a mirage. Better call it the
illusory horizon.

Figure 7.22 shows six frames from a visualization (Hamilton and Polhemus, 2010) of the appearance of a
Schwarzschild black hole and its true and illusory horizons as perceived by an observer who free-falls through
the true horizon. The illusory horizon, the exponentially redshifting image of the long-ago collapsed star, is
painted with a dark red grid, as befits its dimmed, redshifted appearance. The true horizon is painted with
blackbody colours blueshifted or redshifted according to the shift that the infalling observer would see on
an emitter free-falling radially through the true horizon from zero velocity at infinity. When an infaller falls
through the true horizon, they do not catch up with the illusory horizon, the image of the collapsed star,
which remains ahead of them. The visualization gives the impression that the illusory horizon is a finite
distance ahead of the infaller, and this impression is correct: the affine distance between the illusory horizon
and an infaller at the true horizon is finite, not zero. Calculation of what an infaller sees involves working in
the locally inertial frame (tetrad) of the infaller, so is deferred until after tetrads.

An infaller does not encounter the illusory horizon at the true horizon, but, as illustrated by the visual-
ization 7.22; they do have the impression of encountering the illusory horizon at the singularity. The affine
distance between the infaller and the illusory horizon tends to zero at the singularity.

7.28 Collapse of a shell of matter on to a black hole

The antihorizon of a Schwarzschild black hole is located at the horizon radius, one Schwarzschild radius.
Where is the illusory horizon located? From the perspective of an observer watching a spherical black hole
that collapsed from a star long ago, the illusory horizon appears to be located at (exponentially close to) the
antihorizon of the Schwarzschild black hole of the same mass.

What happens to the illusory horizon if the black hole accretes mass, and grows larger? Figure 7.23
shows three frames in the collapse of a thin spherical shell of pressureless matter on to a pre-existing black
hole, Exercise 20.6. The shell collapses from zero velocity at infinity. As usual in this book, the frames are
accurately ray-traced. The shell of matter here has the same mass as the pre-existing black hole, so the
black hole doubles in mass as the shell collapses on to it. The visualization shows that the illusory horizon of
the pre-existing black hole expands to meet the infalling shell of matter. The apparent expansion is caused
by gravitational lensing of the pre-existing black hole by the shell. As time goes by, the shell appears to
merge with the horizon of the pre-existing black hole. The merged shell and expanded horizon take on the
appearance of the antihorizon of a Schwarzschild black hole of twice the original mass.

Figure 7.24 shows a Finkelstein spacetime diagram of the collapse of the shell of matter on to the black
hole. The initial black hole has half the mass of the final black hole. The initial apparent horizon at 0.5r,,
half the Schwarzschild radius of the final black hole, follows a null geodesic until the infalling shell hits it.
The shell deflects the null geodesic, which falls to the central singularity. The true horizon follows a null
geodesic that joins continuously with the apparent horizon of the final black hole.
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Figure 7.23 Three frames in the collapse of a thin spherical shell of matter on to a pre-existing Schwarzschild black
hole, as seen by an outside observer at rest at a radius of 10 Schwarzschild radii (Schwarzschild radius of the final
black hole). The frames are spaced by 10 units of Schwarzschild time (¢ = rs = 1). The shell has the same mass as
the original black hole, so the black hole doubles in mass from beginning to end. During the collapse, the horizon of
the pre-existing black hole appears to expand outward, in due course reaching the size of the new black hole. The
expansion of the image of the pre-existing black hole is caused by gravitational lensing by the shell.

Concept question 7.14. Penrose diagram of a thin spherical shell collapsing on to a Schwarz-
schild black hole. Sketch a Penrose diagram of a thin spherical shell collapsing on to a pre-existing Schwarz-
schild black hole. Where are the apparent and true horizons? Answer. The Penrose diagram looks essentially
the same as Figure 7.13 (differing in that lines of constant time and radius are different inside the shell).
The apparent horizon before collapse follows an outgoing null (45°) line that hits the singularity inside the
true horizon, consistent with the Finkelstein diagram 7.24.

7.29 The illusory horizon and black hole thermodynamics

As will be discussed later in this book, the illusory horizon plays a central role in the thermodynamics of
black holes. The illusory horizon is the source of Hawking radiation, for observers both outside and inside
the true horizon. If, as proposed by Susskind, Thorlacius, and Uglum (1993), there is a holographic mapping
between the interior quantum states of a black hole and its horizon, then that holographic mapping must be
to the illusory horizon, for observers both outside and inside the true horizon.
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Figure 7.24 Finkelstein spacetime diagram of a thin spherical shell of matter collapsing on to a pre-existing Schwarz-
schild black hole, in units r of the Schwarzschild radius of the final black hole. The mass of the (red) shell equals that
of the pre-existing black hole, so the black hole doubles in mass as a result of accreting the shell. Whereas the apparent
horizon jumps discontinuously from 0.5rs to 1rs at the shell boundary, the true horizon increases continuously. The
mathematics governing a thin spherical shell is addressed in Exercise 20.6.

7.30 Rindler space and Rindler horizons

Rindler space is Minkowski space expressed in the coordinates of, and as experienced by, a system of uniformly
accelerating observers, called Rindler observers. A Rindler observer who accelerates uniformly in their own
frame with proper acceleration 1/1, passing through position {¢, 2} = {0,1}, follows a worldline in Minkowski
space

{t,z} = [ {sinh o, cosh a’} (7.90)

with fixed [ and varying «. The Rindler observer’s worldline follows a point on the rim of the rotating space-
time wheel, §1.8.2. The Rindler line-element is the Minkowski line-element expressed in Rindler coordinates
{a,1,y, 2}, Exercise 2.10,

ds? = —2da® + dI* + dy* + d2* . (7.91)

Despite the fact that Rindler spacetime is Minkowski spacetime in disguise, it nevertheless resembles Schwarz-
schild spacetime in that, from the perspective of Rindler observers, Rindler space contains horizons. Moreover
Rindler observers are expected to see Hawking radiation, which in this context is called Unruh (1976) radi-
ation.

Figure 7.25 shows a Rindler diagram, a spacetime time diagram of Minkowski space, drawn in standard
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Figure 7.25 Rindler diagram, which is a Minkowski spacetime diagram showing lines of constant Rindler coordinates
a and [, equations (7.90) and (7.92). The Rindler lines are uniformly spaced by 0.2 in « and Inl. The spacetime
diagram resembles that of the analytically extended Schwarzschild geometry in Kruskal coordinates, Figure 7.11. The
null lines passing through the origin constitute future (line from lower left to upper right) and past (line from lower
right to upper left) horizons for Rindler observers in the right quadrant.

Minkowski coordinates t and x, showing lines of constant Rindler coordinates v and [. The Rindler spacelike
coordinate [ is positive in the right quadrant, negative in the left quadrant. The Rindler coordinate vanishes,
I = 0, at the boundaries of the right and left quadrants, which form the null lines at 45° passing through
the origin in the Rindler diagram 7.25. The Rindler metric (7.91) has a coordinate singularity at [ = 0. In
the upper and lower quadrants, the Rindler coordinate [ switches from being spacelike to timelike (dI? < 0).
Rindler coordinates in the upper and lower quadrants are defined by

{t,z} = l{cosha,sinha} , (7.92)

where the timelike coordinate [ is positive in the upper quadrant, negative in the lower quadrant.

The null (45°) lines passing through the origin in Figure 7.25 are future and past horizons for Rindler
observers in the right quadrant of the Rindler diagram. A Rindler observer following a worldline (7.90) in
the right quadrant never gets to see the part of spacetime to the future of the null surface x = ¢, which
therefore constitutes a future horizon for the Rindler observer. The same Rindler observer can never send a
signal into the part of spacetime to the past of the null surface x = —¢, which therefore constitutes a past
horizon, an antihorizon, for the Rindler observer.

The Rindler diagram 7.25 resembles the Kruskal diagram 7.11 of the analytically extended Schwarzschild
geometry, albeit without singularities. The Minkowski coordinates ¢t and x are analogues of the Kruskal
coordinates tx and rgk, while the Rindler coordinates o and [ are analogues of the Schwarzschild coordinates
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t and r. The Schwarzschild and Rindler time coordinates ¢ and « are both Killing coordinates, §7.32. Lines
of constant Schwarzschild and Rindler time ¢ and « follow straight lines in the corresponding Kruskal and
Rindler diagrams, Figures 7.11 and 7.25. The Schwarzschild and Rindler spatial coordinates r and [ are
spacelike in the right and left quadrants, timelike in the upper and lower quadrants.

7.30.1 Penrose diagram of Rindler space

Figure 7.26 is a Penrose diagram of Rindler space. This is just a Penrose diagram of Minkowski space showing
lines of constant Rindler coordinates v and [. Penrose time and space coordinates tp and zp can be defined
by any conformal transformation

tp + Irp = f(t + I) (793)

for which f(z) is finite at z — Fo0o0. The Rindler lines acquire a symmetrical appearance on the Penrose
diagram provided that the conformal function f(z) is chosen to satisfy f(z) + f(—z) = constant. For the
Penrose diagram in Figure 7.26, the conformal function f(z) is

F(2) = sign(z) + %atan (Z'Zl> . (7.94)
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Figure 7.26 Penrose diagram of Rindler space. This is the Penrose diagram of Minkowski space corresponding to
the Rindler diagram 7.25. The Penrose coordinates tp and zp are related to Minkowski coordinates ¢t and x by
equations (7.93). The Rindler lines are uniformly spaced by 0.4 in « and Inl. The Penrose diagram resembles that of
the analytically extended Schwarzschild geometry, Figure 7.15, but without singularities.
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The choice (7.94) is inspired by the form (10.181) of the coordinates that gives the Penrose diagram of de
Sitter space a symmetrical appearance. The Penrose diagram 7.26 resembles that of the analytically extended
Schwarzschild geometry, Figure 7.15, but without singularities.

Concept question 7.15. Spherical Rindler space. The Rindler line-element (7.91) is plane-parallel,
with all the Rindler observers accelerating in the z-direction. Would not a better analogue of a spherical
black hole be the spherically symmetric Rindler line-element

ds* = —rd do® + drg +r?do? , (7.95)

where all Rindler observers accelerate in the radial direction with {¢,7} = rg{sinh o, cosha}? Answer. The
spherical Rindler line-element (7.95) is indeed a viable line-element. However, it does not provide a better
analogue of a spherical black hole because the past and future horizons of a Rindler observer accelerating
in, say, the z-direction are flat surfaces at  + ¢ = 0, not spherical surfaces at » £¢ = 0.
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Figure 7.27 Minkowski spacetime diagram, showing worldlines of observers who start at rest, then begin accelerating
uniformly, as Rindler observers, at t = 0. At ¢ < 0, the lines are lines of constant Minkowski time and space t and z,
while at ¢ > 0, the lines are lines of constant Rindler time and space « and [, equations (7.90) and (7.92). The Rindler
lines are uniformly spaced by 0.2 in « and Inl. The null line starting at the origin {¢,z} = {0,0} extending upward
at 45° from vertical is a future horizon for the Rindler observers.



176 Schwarzschild Black Hole

7.31 Rindler observers who start at rest, then accelerate

Rindler space provides an analogue of the analytically extended Schwarzschild geometry. But a spherical
black hole formed from the collapse of a star is not described by the analytically extended geometry. Rather,
the analytic extension through the antihorizon is replaced by the interior of the collapsed star.

A Rindler analogue of a black hole that forms from the collapse of a star is obtained by considering a
system of Rindler observers who are initially at rest, and begin accelerating only at some time ¢ = 0. The
situation is illustrated in the spacetime diagram shown in Figure 7.27. This diagram is similar to the Rindler
diagram 7.25, except that the Rindler observers start accelerating at ¢ = 0 instead of having been accelerating
into the indefinite past. Just as a black hole formed from the collapse of a star has a future horizon but no
past horizon, so also the Rindler space of Rindler observers who start at rest contains a future horizon but
no past horizon.

Despite having no past horizon, a Rindler observer who starts from rest sees an illusory horizon form,
Figure 7.28, in much the same way that an observer watching a star collapse to a black hole sees an illu-
sory horizon form, Figure 7.18. The illusory horizon is the exponentially dimming and redshifting image of
Minkowski space around the Rindler observer. Figure 7.28 shows three frames in the appearance of a portion
of Minkowski space as seen by an Rindler observer watching rearward. As time goes by, Minkowski space
appears to compress and freeze toward a surface, the illusory horizon. The Rindler observer sees the illu-
sory horizon dim and redshift exponentially. Exercise 7.16 quantifies the appearance of the Rindler illusory
horizon, which forms a hyperbola around the Rindler observer, with the Rindler observer at its focus.

o

Figure 7.28 Three frames in the appearance of Minkowski space as seen by a uniformly accelerating observer, a Rindler
observer. Minkowski space is represented by a unit box at rest, centred at the origin. The box is drawn as a 5 x5 x 5
lattice. The Rindler observer starts at rest at unit distance from the origin, and watches rearward while accelerating
at unit acceleration away from the box. The field of view is 120° across the horizontal. The frames increase in time
from left to right, and are at 0, 2, and 4 units of proper time after the Rindler observer begins accelerating. As time
goes by, the lattice appears to freeze towards a two-dimensional surface, the illusory Rindler horizon.
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7.31.1 Penrose diagram of Rindler observers who start at rest, then accelerate

Figure 7.29 shows a sequence of Penrose diagrams drawn from the perspective of Rindler observers who start
at rest and begin to accelerate at time ¢ = 0, as in the spacetime diagram 7.27. These Penrose diagrams are
calculated, not sketched, with Penrose coordinates given by equations (7.93). The left edge of each diagram
is the surface at = 0. This sequence resembles the sequence of Penrose diagrams of Oppenheimer-Snyder
collapse of a star to a black hole, Figure 7.20, except that there is no singularity.

At left, before the observers start to accelerate, the Penrose diagram looks like that of Minkowski space.
The Rindler portion of the spacetime (the part above the green line) is crammed along the top right edge of
the Penrose diagram. At right, after the Rindler observers have started to accelerate, the Penrose diagram
is tilted by the Lorentz boost of the Minkowski space. The Minkowski portion of the spacetime (the part
below the green line) crams towards the bottom right edge of the diagram.

Aren’t the Penrose diagrams in Figure 7.29 misleading because they omit the spacetime to the left of
the diagrams, at = < 07 Since Rindler observers are confined to the right quadrant of Rindler space, they
never get to see the region beyond their future horizon. Therefore there is no loss of generality to draw
the Minkowski spacetime diagram 7.27 with reflection symmetry about 2 = 0. Applied to the Penrose
diagrams 7.29, reflection symmetry means that light that passes that passes from x < 0 to = > 0 can be
considered to “bounce” at 45° off the left edge of the diagram at x = 0. Whatever the case, as seen in

Figure 7.29 Sequence of Penrose diagrams of the Minkowski space shown in Figure 7.27, progressing in time from left
to right. The left edge of each diagram is the surface at * = 0. The diagrams at left are in the frames of observers
who are at rest relative to each other. In the middle diagram, the observers start to accelerate as Rindler observers.
The diagrams at right are in the frames of the Rindler observers, which become progressively more Lorentz boosted
compared to the rest frame. The diagrams are at times —8, —2, 0, 2, and 8 units of proper time of the observer who is
initially at rest at unit distance (z = 1 in Figure 7.27) from the origin. The Rindler lines are uniformly spaced by 0.4
in o and In!. This sequence of Penrose diagrams resembles that of the Oppenheimer-Snyder collapse of a star shown
in Figure 7.20.
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Exercise 7.16, light emitted from = < 0 appears to a Rindler observer asymptotically to dim, redshift, and
freeze at the observer’s illusory horizon.

Exercise 7.16. Rindler illusory horizon. The purpose of this problem is to figure out the appearance
to a Rindler observer of their illusory horizon. For simplicity, choose time units such that the Rindler
observer accelerates with unit acceleration. The coordinates {z,y, z} are spatial coordinates in Minkowski
space. Starting from rest on the z-axis at position = 1, the Rindler observer accelerates in the positive
z-direction, reaching position x = xg in the rest frame. After a sufficiently long Rindler proper time «, the
position zy = cosh « is large.
1. Shape. Show that points {z,y, z} that are close to the origin, in the sense of satisfying |z| < z¢ and
Vy? + 22 < x0, appear to a Rindler observer to freeze towards a time-independent surface {l,y, z}, the
illusory horizon, satisfying

=1 +22-1). (7.96)

The Rindler observer sees their illusory horizon as a parabola with themself at the focus, the origin.

2. Redshift. Show further that the Rindler observer sees points on the illusory horizon redshifting expo-

nentially, at rate e®.
Solution.

1. Shape. In the Minkowski rest frame, a spatial point {z,y, z} relative to an observer at {x¢, 0,0} is at
position {z—xg,y, z}. If the observer is moving at velocity v in the z-direction, then according to the
rules of 4-dimensional perspective, §1.13.2, the point appears in the observer’s frame to lie at position
{l,y,z} with transverse coordinates y, z unchanged, and [ given by

I =7(z —m0) + 70/ (z —20)2 + % + 22, (7.97)

where v = 1/v/1 — v? is the Lorentz gamma factor. Points near the origin, with |x| < xg, are behind the
observer, satisfying  — ¢ < 0. Thus equation (7.97) factors to

I =~(x — x0) [1—11\/1 (y2 + 22) /(w—xo)ﬂ , (7.98)

which rearranges to

Yz —zo)[1 —v? — v*(y? + 2%)/(x — 20)?]

| =
1+ 021+ (y2 + 22)/(z — x0)2
o 1 z—z 112(y2 +22)’Y
1401+ (2 +22) /(@ — o) [ v z— o } (7.99)

For a Rindler observer, the position xg is just equal to the Lorentz gamma factor, xg = cosha = ~.
Under the conditions zg = v > 1, along with xo > |z| and 2 > \/y? + 22, equation (7.99) reduces to

I~ —1+1°+2%), (7.100)

yielding equation (7.96) as claimed.
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2. Redshift. According to the rules of 4-dimensional perspective, §1.13.2, the redshift factor, the ratio
Eom/Eops of emitted to observed photon energies from a point, equals the ratio of the emitted to
observed distances to the point,

E... a2+ 2t o2
em _ V(@ —m) +y? 422 (7.101)

Eobs 1/ 12 + y2 + 22
A point {l,y,z} on the Rindler observer’s illusory horizon appears fixed to the observer, I satisfying
equation (7.100). The only quantity on the right hand side of equation (7.101) that various with the

Rindler observer’s time « is xg. Under the conditions zg = cosha > 1, along with 29 > |z| and
2o > \/y? + 22, the redshift factor satisfies

Eem
Eobs

X wo L e . (7.102)

The redshift factor of a point on the Rindler observer’s illusory horizon thus increases exponentially
with Rindler time o.

Exercise 7.17. Area of the Rindler horizon. What is the area of a Rindler observer’s horizon?

Solution. The area of the Rindler horizon is the area of the spatial y—z plane orthogonal to the Rindler
observer’s boost plane t—x. For a Rindler observer who starts accelerating at a finite time, the illusory horizon
after a acceleration times is well-formed only over a region of size 1/42 + 22 < e® about the origin. Thus the

area of the illusory Rindler horizon is of order ~ 2.

7.32 Killing vectors

The Schwarzschild metric presents an opportunity to introduce the concept of Killing vectors (after Wil-
helm Killing, not because the vectors kill things, though the latter is true), which are associated with
symmetries of the spacetime. The flow through spacetime of the Killing vectors associate with a symmetry
is called the Killing vector field. A coordinate that is constant along the flow lines of a Killing vector field
is called a Killing coordinate.

7.32.1 Time translation symmetry

The time translation invariance of the Schwarzschild geometry is evident from the fact that the metric is
independent of the Schwarzschild time coordinate t. Equivalently, the partial time derivative /9t of the
Schwarzschild metric is zero. The associated Killing vector £ at each point of the spacetime is then defined
by

e d 2 (7.103)
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so that in Schwarzschild coordinates {¢,r,0, ¢}

¢ ={1,0,0,0} . (7.104)
In coordinate-independent notation, the Killing vector is

E=e,l'=¢€ . (7.105)

The Schwarzschild time coordinate ¢ is a Killing coordinate.

This may seem like overkill — couldn’t one just say that the metric is independent of time ¢ and be done
with it? The answer is that symmetries are not always evident from the metric, as will be seen in the next
section 7.32.2.

Because the Killing vector e; is the unique timelike Killing vector of the Schwarzschild geometry, it has
a definite meaning independent of the coordinate system. It follows that its scalar product with itself is a
coordinate-independent scalar

§ul' =ei-er =gy =— (1 - W) . (7.106)

r

In curved spacetimes, it is important to be able to identify scalars, which have a physical meaning independent
of the choice of coordinates.

7.32.2 Spherical symmetry

The azimuthal rotational symmetry of the Schwarzschild metric is evident from the fact that the metric is
independent of the azimuthal coordinate ¢, implying that ¢ is a Killing coordinate. The associated Killing

S

Figure 7.30 The Killing vector field associated with rotation of a 2-sphere about an axis.
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vector at each point of the spacetime is
e, (7.107)

with components {0, 0,0, 1} in Schwarzschild coordinates {t, r, 6, ¢}. Figure 7.30 illustrates the Killing vector
field corresponding to the azimuthal rotational symmetry.

The Schwarzschild metric is fully spherically symmetric, not just azimuthally symmetric. Since the 3D
rotation group O(3) is 3-dimensional, it is to be expected that there are three Killing vectors. You may
recognize from quantum mechanics that 9/0¢ is (modulo factors of ¢ and /) the z-component of the angular
momentum operator L = {L,,L,, L.} in a coordinate system where the azimuthal axis is the z-axis. The 3
components of the angular momentum operator are given by:

0 0 0 0

1L, =Yy, —za—y = —Sinqb% —cot@cosqba—q5 , (7.108a)
1L —z——x——cosgzﬁg—cotﬂsingzﬁ2 (7.108b)
Y T ox 0z 00 a¢ '
0 0 0
L. =2— —y=— = — . 7.108
Ty Y or T B (7.108¢)
The 3 rotational Killing vectors are correspondingly:
rotation about z-axis: —singey —cotfcospe, , (7.109a)
rotation about y-axis: cos¢ey —cotfsinge, , (7.109b)
rotation about z-axis: e, . (7.109c¢)

The 3 Killing vectors span the 2-dimensional surface of the unit sphere, and are therefore not linearly
independent. Specifically, they satisfy

2L, +yLy+z2L.=0. (7.110)

Note that although a linear combination of Killing vectors with constant coefficients is a Killing vector, a
linear combination with non-constant coefficients is not necessarily a Killing vector.

You can check that the action of the z and y rotational Killing vectors on the metric does not kill the
metric. For example, iL,g4s = 272 cos ¢ sin 0 cos @ does not vanish. This example shows that a more powerful
and general condition, described in the next section 7.32.3, is needed to establish whether a quantity is or is
not a Killing vector.

Because spherical symmetry does not define a unique azimuthal axis e, its scalar product with itself
€) €p = Gpp = —r2sin?# is not a coordinate-invariant scalar. However, the sum of the scalar products of
the 3 rotational Killing vectors is rotationally invariant, and is therefore a coordinate-invariant scalar

(— singey —cotOcospe,)® + (cospey — cotOsinpe,)? + e = gop + (cot?0 + 1)gys = —2r* . (7.111)

This shows that the circumferential radius r is a scalar, as you would expect.
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7.32.3 Killing equation

As seen in the previous section, a Killing vector does not always kill the metric in a given coordinate system.
This is not really surprising given the arbitrariness of coordinates in general relativity. What is true is that
a quantity is a Killing vector if and only if there exists a coordinate system (possibly in patches) such that
the Killing vector kills the metric in that system.

Suppose that in some coordinate system the metric is independent of the coordinate ¢. Then the covariant
¢-momentum p, of a particle along a geodesic is a constant of motion, equation (4.50),

py = constant . (7_112)
Equivalently

¢"p, = constant , (7.113)
where £” is the associated Killing vector, whose only non-zero component is £€? = 1 in this particular

coordinate system. The converse is also true: if £€”p, = constant along all geodesics, then £” is a Killing
vector. The constancy of £”p, along all geodesics is equivalent to the condition that its affine derivative
vanish along all geodesics

dg"p,
=0. 7.114
- (7.114)
But this is equivalent to
0= pl’ﬁu (fypu) = p“pyﬁufv = %p“py(ﬁu'gu + Eufu) ) (7-115)

the ° atop ﬁ“ serving as a reminder that this is the torsion-free covariant derivative, §2.12. The second
equality of equations (7.115) follows from the geodesic equation, p* ﬁup,/ = 0, and the last equality is true
because of the symmetry of p#p” in 1 <> v. A necessary and sufficient condition for equation (7.115) to be
true for all geodesics is that

ﬁ(ufu) =01, (7]_]_6)

which is Killing’s equation. This equation is the desired necessary and sufficient condition for £” to be
a Killing vector. It is a generally covariant equation, valid in any coordinate system. Equation (7.116) can
also be written as the statement that the Lie derivative of the metric, equation (7.154), along the Killing
direction £” vanishes,

E&g/u/ =0. (7].].7)

7.32.4 Conformal Killing vector

Sometimes a spacetime has a weaker conformal symmetry in which, instead of the metric being indepen-
dent of a coordinate (in some system of coordinates), the metric depends on a coordinate ¢ only through an
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overall scaling, g,  €2?, equation (4.53). In that case the covariant momentum p, is constant only along
null geodesics, equation (4.56),

pe = constant along null geodesics . (7.118)

The associated conformal Killing vector £”, satisfying equation (7.113), is the vector whose only non-zero
component is £ = 1 in a coordinate system where ¢ is one of the coordinates. Equation (7.115) is modified
to

0= plupu(b(ﬂgu) - %g/u/lo)h‘,gn) 5 (7].].9)

which holds because p'p”g,,, = 0 for null geodesics. A necessary and sufficient for equation (7.119) to hold
for all null geodesics is the conformal Killing equation

b(/l,gll) - iguuﬁnfw =0 ) (7120)

the left hand side of which is the trace-free part of lo)(ﬂfl,). The factor of } in equations (7.119) and (7.120)
is for 4 spacetime dimensions (where g"”g,, = 1); the factor should be replaced by 1/N in N spacetime
dimensions.

7.33 Killing tensors

Some symmetries are expressed by Killing tensors £"” rather than Killing vectors. Whereas for a Killing
vector, £”p,, is a constant of motion along geodesics, equation (7.113), for a Killing tensor

"p p, = constant . 7.121
l

A Killing tensor £* is symmetric without loss of generality. The metric g, is itself a Killing tensor in any
spacetime, since

nz

9" pupy = —m? = constant . (7.122)

The condition of the constancy of £"p,p, along geodesics is equivalent to the condition that its affine
derivative vanishes along all geodesics, analogously to equation (7.114). A necessary and sufficient condition
for this to be true is Killing’s equation

D(Nf;w) =0, (7123)
where the parentheses denote symmetrization over all indices.

A conformal Killing tensor is one that satisfies equation (7.121) only along null geodesics. The corre-
sponding Killing equation is the trace-free part of equation (7.123).
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7.34 Lie derivative

It was remarked above that Killing’s equation (7.116) can be recast as the statement that the Lie derivative
of the metric along the Killing vector vanishes, equation (7.117). This section presents an exposition of the
Lie derivative.

The Lie derivative of a coordinate tensor, whose mathematical form is derived in §§7.34.2-7.34.6, is
physically minus the rate of change of the coordinate tensor with respect to a prescribed change in the
coordinates, equation (7.124). The change in coordinates should be understood as leaving the spacetime
itself and physical quantities within it unchanged.

Let the coordinates z* be changed by an infinitesimal amount € with a prescribed shape £#(x) as a function
of spacetime,

zh — 2t =t + el . (7.124)

The Lie derivative of a coordinate tensor A" is defined such that the change in the coordinate tensor

K.
under the coordinate transformation (7.124) is given by € times minus its Lie derivative, denoted LgAﬁﬁ;:j,

AN,)\...(:L‘> N A/h’?)\..(m) — AH)\A..(x) _ €£5AK)\..A ) (7125)

Q... M., U, nu...

Equivalently,

AHA“‘ 7A/f{)\..
LA™ = lim () W...(I). (7.126)

uv... 50 €

The reason for the minus sign in the definition (7.125) of the Lie derivative is that, as will be seen below,
equation (7.151), the principal term in the expansion of the Lie derivative of a tensor A in terms of ordinary
derivatives is just its directed derivative along the direction £”,

ROAL
ox"
As its name suggests, the Lie derivative acts like a derivative: it is linear, and it satisfies the Leibniz rule.
The Lie derivative is also a covariant derivative: the Li