APAS 5110. Internal Processes in Gases. Fall 1999.
Hydrogen Atom without Spin

1. SCHRODINGER EQUATION

Schrodinger’s equation describes the time evolution of the wavefunction 4 in nonrela-
tivistic quantum mechanics
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it = HY (1.1)

where H is a Hermitian operator called the Hamiltonian. Schrédinger’s equation is linear in
the wavefunction 1, so that the sum of any two solutions of the equation is also a solution.

The Hamiltonian operator H of a single particle of mass m is postulated to be the sum
of the kinetic energy operator p?/2m and the potential energy operator V'
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If the Hamiltonian H is not explicitly dependent on time, then it commutes with the

energy operator ihd /0t
.0
[zhat,H] ~0. (1.3)

According to the general principle, this means that there exist eigenfunctions (¢, ) which
are simultaneously eigenfunctions of the energy operator :hd/0t and of the Hamiltonian H,
with eigenvalue the energy E
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Equation (1.4) implies that the eigenfunction (¢, z) is separable into a factor e~ which
depends on time, and a factor ¢(x) which is independent of time

Ut x) = o(z), (1.5)

with £ = hw. Physically, the eigenfunction ¢ has a definite energy E: its energy is con-
served. This is an example of the general principle that a quantity is conserved if and only
if the corresponding operator commutes with the Hamiltonian.

The spatial eigenfunction ¢(x) in equation (1.5) satisfies the time-independent Schrodinger
equation

Ho=Ed . (1.6)

2. CONSERVATION OF PARTICLE PROBABILITY

The quantity ¥ satisfies a conservation law (2.3), and can be interpreted as the prob-
ability density of a particle in space. The conservation law follows from Schrodinger’s
1



equation (1.1) with the Hamiltonian (1.2), as follows:
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where v is the velocity operator

p__ho (2.2)

m mox

v

Note that, by the definition of Hermitian conjugate as a transpose, the Hermitian conjugate
operators such as p' and v in equations (2.1) and (2.4) operate to the left. Equation (2.1)
takes the form of a conservation law for the probability T
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where the probability current density 7 is
o1
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3. ONE-DIMENSIONAL MOTION

The Hamiltonian for one-dimensional motion of a particle of mass m moving in time-
independent potential V(x) is, equation (1.2),
2

H= ;Lm +V(2), (3.1)
where p = —ihd/0x is the momentum operator in one dimension. The time-independent
Schrodinger equation (1.6)

Hp=FE¢ (3.2)
then becomes an eigenvalue equation
2
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for the stationary states ¢(x) and the energy E.



4. MOTION IN A SPHERICALLY SYMMETRIC FIELD

The Hamiltonian for a single particle of mass m moving in a time-independent, spherically
symmetric, three-dimensional potential V' (r) is

p2
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The square p> = —h?V? of the momentum operator p = —ihV can be written as the sum
of radial and angular parts
L2
where the radial momentum operator p, is
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It is not hard to determine that the angular momentum operator L commutes with both
the radial operator 7 and its derivative r9/0r = r - 9/0r, and also with L2,

[L,r]=0, [L,r-p|=0, [L,L? =0, (4.5)

and thence to conclude that L commutes with all the terms of the spherically symmetric
Hamiltonian (4.1)

[L,H|=0. (4.6)
According to the general principle, this means that angular momentum (about the center of
mass) is conserved, a not unexpected conclusion for a spherically symmetric potential. Now
L does not commute with itself, so the three components of L are not separately conserved.
However, the square L? and component L, in some arbitrary direction 2 form a complete
set of commuting operators for angular momentum. Thus a complete set of commuting
operators for motion in a spherical symmetric potential is

H, L*, L., (4.7)
with eigenvalues
E, I(1+1)r*, mh. (4.8)

It follows that there exist wavefunctions which are products of a radial part R(r) and an
angular part Yy, (7)

¢(r) = R(r)Yim(7) - (4.9)
The radial part R(r) satisfies the eigenvalue equation
1 o I+ 1)h?
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or equivalently

_|__—[V(r)—E]]R:O. (4.11)



With the substitution
R(r) =x(r)/r, (4.12)
the radial equation (4.11) becomes
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X (+)+m

T T
which looks like the Schrodinger equation for one-dimensional motion of a particle, equa-
tion (3.1), in an effective potential

[V(r)—El|x=0, (4.13)
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The effective potential Veg(r) is the sum of the potential V() with a repulsive centrifugal
potential proportional to 1/r2. For bound state wavefunctions, unit normalization of the
wavefunction [ ¢T¢d3r =1 is accomplished by

/0 |R|*r?dr :/0 IX|?dr=1. (4.15)

5. THE Two-Bobpy PROBLEM

+V(r). (4.14)

The problem of two nonrelativistic particles, masses mi and msy, interacting through a
potential energy V' (r) which depends only on the separation r between the two particles can
be reduced, as in classical mechanics, to the problem of a single particle of reduced mass
m = mimg/(mi +mgy) moving in a spherically symmetric potential V' (r). The two-particle
Schrédinger equation is

Ho(r1,m2) = E¢(r1,72) , (5.1)
with Hamiltonian
Pl P
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where p;, = —ihd/0r; are the respective momenta of the two particles. In terms of the
separation vector r and center of mass vector R,
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the Hamiltonian (5.2) becomes
P2 p2
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where P = —ihd/OR and p = —ih0d/0r represent the momenta of the motion of the

center of mass and of the relative motion of the particles, and M = mq + mg and m =
mima/(m1 + mg) are the total and reduced mass. The Hamiltonian (5.4) is the sum of a
part P2/(2M) which describes the free motion of the center of mass as a particle of mass
M, and a part p?/(2m) + V (r) which is equivalent to one-dimensional motion of a particle
of mass m in a spherically symmetric field V(7).

It is apparent that P commutes with the Hamiltonian

[PaH]:()’ (5.5)



so that the momentum of the center of mass is conserved, as might be expected. The
two-particle wavefunction can be written as the product

¢(T17 TQ) = d)free(R)QS(r) (56)

of a wavefunction ¢gec(R) which describes the free motion of the center of mass, with a
wavefunction ¢(r) which descibes the relative motion of the particles.

6. CouLoMB UNITS AND ATOMIC UNITS

The attractive Coulomb potential is

C
Vir)=——, (6.1)
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where C' is some constant. A hydrogenic, or H-like, atom is an atom having a single
electron orbiting a nucleus of charge Z. In the nonrelativistic approximation, the potential

V(r) of a hydrogenic atom is the Coulomb potential (6.1) with
C=Ze*. (6.2)

Schrodinger’s equation for a particle mass m moving in the spherically symmetric Coulomb
potential (6.1) is characterized by three dimensional constants, which are m, A, and C. In
the hydrogenic atom, these constants are the reduced mass m = mem;/(me + m;), h, and
Ze?. If the nuclear mass m; is large compared to the electronic mass me, then m ~ me
to a good approximation, but this is not invariably the case — for example, positronium,
in which a positron and electron temporarily form a bound state, has a reduced mass
m = me/2.

Units of mass, length and time in which m = h = C' = 1 are called Coulomb units,
while units in which m, = h = e = 1 are called atomic units, often abbreviated a.u.

Property Coulomb Unit Atomic Unit Value of a.u.
Mass m me 9.1093897(54) x 10~ ® gm
h? h?
Length —_— ag = 0.529177249(24) x 1078 cm
mC mee?
B3 3
Time — — 241888434 x 10717
mC? m6264
Velocity % % 918769142 x 108 cms™!
mC? mee?
Energy 5 3 4.3597482(26) x 10~ erg
Angular momentum h h 1.054 572 66(63) x 10~%7 ergs

The atomic unit of length ag is called the Bohr radius. A Rydberg is half an atomic
unit of energy,

mee?

onz

1 Rydberg = 1/2 a.u. = 2.1798741(13) x 10~ erg = 13.605698 1(40) eV , (6.3)



and is equal, modulo relativistic correction effects, to the ionization energy of H. The
Coulomb unit of velocity in a hydrogenic atom, call it vatom, can be written

VA 2
Vatom = Te = Zac (6.4)
where « is the dimensionless fine-structure constant
2
e 1
a=_— (6.5)

he  137.0359895(61) °

Thus the characteristic velocities of electrons in hydrogenic atoms, vatom =~ Zc/137, are
nonrelativistic for small Z, justifying a nonrelativistic treatment to lowest order. Relativistic
effects become increasingly important as Z increases.

7. COULOMB, OR HYDROGENIC, WAVEFUNCTIONS

Since the Coulomb potential (6.1) is spherically symmetric, the wavefunctions of particles
orbiting in such a potential can be separated into radial and angular parts

o(r) = R(r)Yim(7) . (7.1)

In Coulomb units m = h = C = 1, the radial part R(r) of the Coulomb wavefunction
satisfies, equation (4.12),

2
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The substitutions

2r 1 —2/9 1
z=—, E:_ﬁ’ R = e * 2zl (x) (7.3)
transform equation (7.2) into
xd—2+(2l+2—x)i+(n—l—1) w=0 (7.4)
dz? dx Y '

which looks like Kummer’s differential equation. The solutions which remain well-behaved
at infinity (they do not blow up exponentially) are Kummer functions

w(z) x M(—n+1+1,214+1,x) . (7.5)

Kummer functions M (a, b, x), also known as confluent hypergeometric functions ; Fi(a, b, z),
are defined by the series expansion
a a(a+1) 22

M(a,b,x) = 1Fi(a,b,x) =14+ —x +

AT R (7.6)

which converges for all finite (complex, in general) x, provided that b is not zero or a negative
integer (unless a is zero or a negative integer, in which case b may be a negative integer less
than a). If a is zero or a negative integer, then the series (7.6) terminates, and the Kummer
functions reduce to polynomials. Up to a normalization constant and a fiddling around of



the indices, Kummer functions are also the same as associated Laguerre functions !

(Abramowitz & Stegun 1972)

Fv+A+1)
Fv+1)I'(A+1)
If v is zero or a positive integer, the associated Laguerre functions become the associated
Laguerre polynomials.

For bound states, those with negative energy F, the radial Coulomb wavefunctions are,
normalized per (4.15),

Ly(x) =

M(—v,A+1,2) . (7.7)

Ry(x) = Cnle*x/leLilfll_l(a:) , (7.8)

with normalization constants

Cnl =

2 [(nll)!rﬂ | 79)

n2 | (n+1)!
The radial wavefunctions converge exponentially at infinity provided that n — [ — 1 is zero
or a positive integer (otherwise, the radial wavefunctions diverge exponentially), so that the
radial quantum number n can take values

n=1I0+1,142,... . (7.10)

The associated Laguerre polynomials L) (x) can be evaluated using the stable recurrence
relation

A+D)(w+ D)+ ALY ) = (A - DA +1) — v+ A+ D] Ly(z) — (A — 1)z L) i (2)

(7.11)

starting from
=0, 2»'=1. (7.12)
The bound-state Coulomb wavefunctions can be extended into the continuum regime of
unbound states by taking n = —i/k to be imaginary. Thus the continuum Coulomb wave-

functions are proportional to Kummer functions of imaginary argument. Their numerical
evaluation is more complicated than the bound wavefunctions.

ISome authors use other notations. Landau & Lifshitz (1977) Quantum Mechanics and Shu (1991) use
generalized Laguerre functions L) (roman symbol L) related to the associated Laguerre functions L)
(italic symbol L) here by

Loa(z) = (=)' T(w+ A+ 1)L (x) .



