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Hydrogen Atom without Spin

1. Schrödinger Equation

Schrödinger’s equation describes the time evolution of the wavefunction ψ in nonrela-
tivistic quantum mechanics

i~
∂

∂t
ψ = Hψ , (1.1)

where H is a Hermitian operator called the Hamiltonian. Schrödinger’s equation is linear in
the wavefunction ψ, so that the sum of any two solutions of the equation is also a solution.

The Hamiltonian operator H of a single particle of mass m is postulated to be the sum
of the kinetic energy operator p2/2m and the potential energy operator V

H =
p2

2m
+ V = − ~2

2m
∇2 + V . (1.2)

If the Hamiltonian H is not explicitly dependent on time, then it commutes with the
energy operator i~∂/∂t [

i~
∂

∂t
,H

]
= 0 . (1.3)

According to the general principle, this means that there exist eigenfunctions ψ(t,x) which
are simultaneously eigenfunctions of the energy operator i~∂/∂t and of the Hamiltonian H,
with eigenvalue the energy E

i~
∂ψ

∂t
= Eψ = Hψ . (1.4)

Equation (1.4) implies that the eigenfunction ψ(t,x) is separable into a factor e−iωt which
depends on time, and a factor φ(x) which is independent of time

ψ(t,x) = e−iωtφ(x) , (1.5)

with E = ~ω. Physically, the eigenfunction ψ has a definite energy E: its energy is con-
served. This is an example of the general principle that a quantity is conserved if and only
if the corresponding operator commutes with the Hamiltonian.

The spatial eigenfunction φ(x) in equation (1.5) satisfies the time-independent Schrödinger
equation

Hφ = Eφ . (1.6)

2. Conservation of Particle Probability

The quantity ψ†ψ satisfies a conservation law (2.3), and can be interpreted as the prob-
ability density of a particle in space. The conservation law follows from Schrödinger’s
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equation (1.1) with the Hamiltonian (1.2), as follows:

∂

∂t
ψ†ψ = ψ†

∂ψ

∂t
+
∂ψ†

∂t
ψ

=
1

i~

[
ψ†(Hψ)− (Hψ)†ψ

]
=

1

i~

{
ψ†
[(

p2

2m
+ V

)
ψ

]
−
[(

p2

2m
+ V

)
ψ

]†
ψ

}

=
i~
2m

[
ψ†(∇2ψ)− (∇2ψ†)ψ

]
=

i~
2m
∇ ·
[
ψ†(∇ψ)− (∇ψ†)ψ

]
= −∇ ·

[
ψ†
( p

2m
ψ
)

+

(
ψ†

p†

2m

)
ψ

]
= −∇.1

2

[
ψ†(vψ) + (ψ†v†)ψ

]
, (2.1)

where v is the velocity operator

v ≡ p

m
= − i~

m

∂

∂x
. (2.2)

Note that, by the definition of Hermitian conjugate as a transpose, the Hermitian conjugate
operators such as p† and v† in equations (2.1) and (2.4) operate to the left. Equation (2.1)
takes the form of a conservation law for the probability ψ†ψ

∂

∂t
ψ†ψ +∇ · j = 0 , (2.3)

where the probability current density j is

j =
1

2
(ψ†vψ + ψ†v†ψ) . (2.4)

3. One-Dimensional Motion

The Hamiltonian for one-dimensional motion of a particle of mass m moving in time-
independent potential V (x) is, equation (1.2),

H =
p2

2m
+ V (x) , (3.1)

where p = −i~∂/∂x is the momentum operator in one dimension. The time-independent
Schrödinger equation (1.6)

Hφ = Eφ (3.2)

then becomes an eigenvalue equation

∂2φ

∂x2
− 2m

~2
[V (x)− E]φ = 0 (3.3)

for the stationary states φ(x) and the energy E.
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4. Motion in a Spherically Symmetric Field

The Hamiltonian for a single particle of mass m moving in a time-independent, spherically
symmetric, three-dimensional potential V (r) is

H =
p2

2m
+ V (r) . (4.1)

The square p2 = −~2∇2 of the momentum operator p ≡ −i~∇ can be written as the sum
of radial and angular parts

p2 = p2
r +

L2

r2
, (4.2)

where the radial momentum operator pr is

pr ≡ −i~
1

r

∂

∂r
r , (4.3)

with square

p2
r = −~2

(
∂2

∂r2
+

2

r

∂

∂r

)
= −~2

r2

∂

∂r
r2 ∂

∂r
. (4.4)

It is not hard to determine that the angular momentum operator L commutes with both
the radial operator r and its derivative r∂/∂r = r · ∂/∂r, and also with L2,

[L, r] = 0 , [L, r · p] = 0 , [L, L2] = 0 , (4.5)

and thence to conclude that L commutes with all the terms of the spherically symmetric
Hamiltonian (4.1)

[L, H] = 0 . (4.6)

According to the general principle, this means that angular momentum (about the center of
mass) is conserved, a not unexpected conclusion for a spherically symmetric potential. Now
L does not commute with itself, so the three components of L are not separately conserved.
However, the square L2 and component Lz in some arbitrary direction ẑ form a complete
set of commuting operators for angular momentum. Thus a complete set of commuting
operators for motion in a spherical symmetric potential is

H , L2 , Lz , (4.7)

with eigenvalues

E , l(l + 1)~2 , m~ . (4.8)

It follows that there exist wavefunctions which are products of a radial part R(r) and an
angular part Ylm(r̂)

φ(r) = R(r)Ylm(r̂) . (4.9)

The radial part R(r) satisfies the eigenvalue equation[
1

2m

(
p2
r +

l(l + 1)~2

r2

)
+ V (r)− E

]
R(r) = 0 , (4.10)

or equivalently [
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
− 2m

~2
[V (r)− E]

]
R = 0 . (4.11)
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With the substitution

R(r) = χ(r)/r , (4.12)

the radial equation (4.11) becomes

d2χ

dr2
−
[
l(l + 1)

r2
+

2m

~2
[V (r)− E]

]
χ = 0 , (4.13)

which looks like the Schrödinger equation for one-dimensional motion of a particle, equa-
tion (3.1), in an effective potential

Veff(r) =
l(l + 1)~2

2mr2
+ V (r) . (4.14)

The effective potential Veff(r) is the sum of the potential V (r) with a repulsive centrifugal
potential proportional to 1/r2. For bound state wavefunctions, unit normalization of the
wavefunction

∫
φ†φd3r = 1 is accomplished by∫ ∞

0
|R|2r2dr =

∫ ∞
0
|χ|2 dr = 1 . (4.15)

5. The Two-Body Problem

The problem of two nonrelativistic particles, masses m1 and m2, interacting through a
potential energy V (r) which depends only on the separation r between the two particles can
be reduced, as in classical mechanics, to the problem of a single particle of reduced mass
m = m1m2/(m1 +m2) moving in a spherically symmetric potential V (r). The two-particle
Schrödinger equation is

Hφ(r1, r2) = Eφ(r1, r2) , (5.1)

with Hamiltonian

H =
p2

1

2m1
+

p2
2

2m2
+ V (r) , (5.2)

where pi ≡ −i~∂/∂ri are the respective momenta of the two particles. In terms of the
separation vector r and center of mass vector R,

r ≡ r2 − r1 , R ≡ m1r1 +m2r2

m1 +m2
, (5.3)

the Hamiltonian (5.2) becomes

H =
P 2

2M
+

p2

2m
+ V (r) , (5.4)

where P ≡ −i~∂/∂R and p ≡ −i~∂/∂r represent the momenta of the motion of the
center of mass and of the relative motion of the particles, and M ≡ m1 + m2 and m ≡
m1m2/(m1 + m2) are the total and reduced mass. The Hamiltonian (5.4) is the sum of a
part P 2/(2M) which describes the free motion of the center of mass as a particle of mass
M , and a part p2/(2m) + V (r) which is equivalent to one-dimensional motion of a particle
of mass m in a spherically symmetric field V (r).

It is apparent that P commutes with the Hamiltonian

[P , H] = 0 , (5.5)
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so that the momentum of the center of mass is conserved, as might be expected. The
two-particle wavefunction can be written as the product

φ(r1, r2) = φfree(R)φ(r) (5.6)

of a wavefunction φfree(R) which describes the free motion of the center of mass, with a
wavefunction φ(r) which descibes the relative motion of the particles.

6. Coulomb Units and Atomic Units

The attractive Coulomb potential is

V (r) = −C
r
, (6.1)

where C is some constant. A hydrogenic, or H-like, atom is an atom having a single
electron orbiting a nucleus of charge Z. In the nonrelativistic approximation, the potential
V (r) of a hydrogenic atom is the Coulomb potential (6.1) with

C = Ze2 . (6.2)

Schrödinger’s equation for a particle mass m moving in the spherically symmetric Coulomb
potential (6.1) is characterized by three dimensional constants, which are m, ~, and C. In
the hydrogenic atom, these constants are the reduced mass m = memi/(me + mi), ~, and
Ze2. If the nuclear mass mi is large compared to the electronic mass me, then m ≈ me

to a good approximation, but this is not invariably the case — for example, positronium,
in which a positron and electron temporarily form a bound state, has a reduced mass
m = me/2.

Units of mass, length and time in which m = ~ = C = 1 are called Coulomb units,
while units in which me = ~ = e = 1 are called atomic units, often abbreviated a.u.

Property Coulomb Unit Atomic Unit Value of a.u.
Mass m me 9.109 389 7(54)× 10−28 gm

Length
~2

mC
a0 ≡

~2

mee2
0.529 177 249(24)× 10−8 cm

Time
~3

mC2

~3

mee4
2.418 884 34× 10−17 s

Velocity
C

~
e2

~
2.187 691 42× 108 cm s−1

Energy
mC2

~2

mee
4

~2
4.359 748 2(26)× 10−11 erg

Angular momentum ~ ~ 1.054 572 66(63)× 10−27 erg s

The atomic unit of length a0 is called the Bohr radius. A Rydberg is half an atomic
unit of energy,

1 Rydberg = 1/2 a.u. =
mee

4

2~2
= 2.179 874 1(13)× 10−11 erg = 13.605 698 1(40) eV , (6.3)
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and is equal, modulo relativistic correction effects, to the ionization energy of H. The
Coulomb unit of velocity in a hydrogenic atom, call it vatom, can be written

vatom ≡
Ze2

~
= Zαc , (6.4)

where α is the dimensionless fine-structure constant

α ≡ e2

~c
=

1

137.035 989 5(61)
. (6.5)

Thus the characteristic velocities of electrons in hydrogenic atoms, vatom ≈ Zc/137, are
nonrelativistic for small Z, justifying a nonrelativistic treatment to lowest order. Relativistic
effects become increasingly important as Z increases.

7. Coulomb, or hydrogenic, Wavefunctions

Since the Coulomb potential (6.1) is spherically symmetric, the wavefunctions of particles
orbiting in such a potential can be separated into radial and angular parts

φ(r) = R(r)Ylm(r̂) . (7.1)

In Coulomb units m = ~ = C = 1, the radial part R(r) of the Coulomb wavefunction
satisfies, equation (4.12),[

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+

2

r
+ 2E

]
R = 0 . (7.2)

The substitutions

x =
2r

n
, E = − 1

2n2
, R = e−x/2xlw(x) (7.3)

transform equation (7.2) into[
x
d2

dx2
+ (2l + 2− x)

d

dx
+ (n− l − 1)

]
w = 0 , (7.4)

which looks like Kummer’s differential equation. The solutions which remain well-behaved
at infinity (they do not blow up exponentially) are Kummer functions

w(x) ∝M(−n+ l + 1, 2l + 1, x) . (7.5)

Kummer functionsM(a, b, x), also known as confluent hypergeometric functions 1F1(a, b, x),
are defined by the series expansion

M(a, b, x) = 1F1(a, b, x) = 1 +
a

b
x+

a(a+ 1)

b(b+ 1)

x2

2!
+ ... , (7.6)

which converges for all finite (complex, in general) x, provided that b is not zero or a negative
integer (unless a is zero or a negative integer, in which case b may be a negative integer less
than a). If a is zero or a negative integer, then the series (7.6) terminates, and the Kummer
functions reduce to polynomials. Up to a normalization constant and a fiddling around of
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the indices, Kummer functions are also the same as associated Laguerre functions 1

(Abramowitz & Stegun 1972)

Lλν (x) =
Γ(ν + λ+ 1)

Γ(ν + 1)Γ(λ+ 1)
M(−ν, λ+ 1, x) . (7.7)

If ν is zero or a positive integer, the associated Laguerre functions become the associated
Laguerre polynomials.

For bound states, those with negative energy E, the radial Coulomb wavefunctions are,
normalized per (4.15),

Rnl(x) = Cnle
−x/2xlL2l+1

n−l−1(x) , (7.8)

with normalization constants

Cnl =
2

n2

[
(n− l − 1)!

(n+ l)!

]1/2

. (7.9)

The radial wavefunctions converge exponentially at infinity provided that n− l − 1 is zero
or a positive integer (otherwise, the radial wavefunctions diverge exponentially), so that the
radial quantum number n can take values

n = l+1, l+2, ... . (7.10)

The associated Laguerre polynomials Lλν (x) can be evaluated using the stable recurrence
relation

(λ+ 1)(ν+ 1)(ν+λ)Lλ−2
ν+1(x) = λ [(λ− 1)(λ+ 1)− (2ν + λ+ 1)x]Lλν (x)− (λ− 1)x2Lλ+2

ν−1(x)
(7.11)

starting from
L2n+1
−1 = 0 , L2n−1

0 = 1 . (7.12)

The bound-state Coulomb wavefunctions can be extended into the continuum regime of
unbound states by taking n = −i/k to be imaginary. Thus the continuum Coulomb wave-
functions are proportional to Kummer functions of imaginary argument. Their numerical
evaluation is more complicated than the bound wavefunctions.

1Some authors use other notations. Landau & Lifshitz (1977) Quantum Mechanics and Shu (1991) use
generalized Laguerre functions Lλ

ν (roman symbol L) related to the associated Laguerre functions Lλ
ν

(italic symbol L) here by

Lλ
ν+λ(x) = (−)λΓ(ν + λ+ 1)Lλ

ν (x) .


