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Perturbation Theory

1. Time-Independent Perturbation

Suppose that the Hamiltonian H is the sum

H =
0

H + ε
1

H (1.1)

of a main part
0

H and a small perturbation ε
1

H, neither of which depend explicitly on time.

The aim below is to determine how an eigenfunction
0

φ(x) of the unperturbed Hamiltonian
0

H, and its corresponding energy
0

E, is perturbed into an eigenfunction φ(x) with energy

E as a result of the small perturbation
1

H. An unambiguous correspondence between an

unperturbed eigenfunction
0

φ and the perturbed eigenfunction φ can be established by imag-

ining turning on the perturbation
1

H very slowly, by increasing ε gradually from 0 to 1, and
watching the eigenfunction and its energy change continuously from the unperturbed to
perturbed values.

Expand the eigenfunction φ(x) and its energy E as series in powers of the parameter ε:

φ =
0

φ+ ε
1

φ+ ε2
2

φ+ ... (1.2)

E =
0

E + ε
1

E + ε2
2

E + ... . (1.3)

You may think of ε as some small parameter, which can be set to one at the end of the
calculation. The perturbed and unperturbed eigenfunctions must both be normalized to
one,

〈φ|φ〉 = 〈
0

φ|
0

φ〉 = 1 . (1.4)

The time-independent Schrödinger equation asserts

0 = (E −H)φ

=
( 0

E + ε
1

E + ε2
2

E + ...−
0

H − ε
1

H
)( 0

φ+ ε
1

φ+ ε2
2

φ+ ...
)

=
( 0

E −
0

H
) 0

φ

+ ε
[
(

0

E −
0

H
) 1

φ+
( 1

E −
1

H
) 0

φ
]

+ ε2
[
(

0

E −
0

H
) 2

φ+
( 1

E −
1

H
) 1

φ+
2

E
0

φ
]

+ ... . (1.5)

Since the entire expression (1.5) vanishes identically for all small ε, each coefficient of
the series expansion in ε must vanish separately, yielding successive approximations of
perturbation theory.

The zeroth order equation

0 =
( 0

E −
0

H
) 0

φ (1.6)

asserts as expected that
0

φ is an eigenfunction of the unperturbed Hamiltonian
0

H with energy
0

E.
1
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The first order perturbation equation

0 =
( 0

E −
0

H
) 1

φ+
( 1

E −
1

H
) 0

φ (1.7)

yields both the first order correction
1

E to the energy, and the first order correction
1

φ to

the wavefunction, as follows. To obtain the first order correction
1

E to the energy, multiply

equation (1.7) by
0

φ† and integrate over all space, giving

0 = 〈
0

φ|
0

E −
0

H|
1

φ〉+ 〈
0

φ|
1

E −
1

H|
0

φ〉 . (1.8)

The first term of (1.8) vanishes since 〈
0

φ|(
0

E −
0

H) = 0, and the second term then simplifies
to yield

1

E = 〈
0

φ|
1

H|
0

φ〉 . (1.9)

Equation (1.9) is the desired result for the first order perturbation
1

E to the energy.

To obtain the first order correction
1

φ to the wavefunction, expand
1

φ in terms of a complete

orthonormal set φj(x) of eigenfunctions of the unperturbed Hamiltonian
0

H, with energies
Ej :

1

φ(x) =
∑
j

1
cjφj(x) , (1.10)

for some constant coefficients
1
cj . Without loss of generality, the unperturbed wavefunction

0

φ can be taken to be the j = 0’th eigenfunction
0

φ(x) = φ0(x) ,
0

E = E0 . (1.11)

Multiplying equation (1.7) by φj for j 6= 0 and integrating over all space gives

0 = 〈φj |
0

E −
0

H|
1

φ〉+ 〈φj |
1

E −
1

H|
0

φ〉

=
1
cj(E0 − Ej)− 〈φj |

1

H|φ0〉 . (1.12)

Thus the first order coefficient
1
cj is

1
cj =

〈φj |
1

H|φ0〉
E0 − Ej

, (1.13)

provided that Ej 6= E0. Equation (1.13) is not valid for j = 0; for
1
c0, the normalization

condition (1.4) ensures that
1
c0 = 0. The first order perturbation

1

φ is therefore

1

φ =
∑
j 6=0

〈φj |
1

H|φ0〉
E0 − Ej

φj , (1.14)

where the summation is over all eigenfunctions φj except the unperturbed eigenfunction φ0.

Equation (1.14) is the desired equation for the first order perturbation
1

φ to the wavefunction.
What if some of the eigenfunctions are degenerate in energy with the unperturbed eigen-

function φ0? In that case, if
0

φj , with
0

φ0 = φ0, form a set of eigenfunctions of
0

H with
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degenerate eigenvalues,
0

H
0

φj = E0

0

φj , then the unperturbed set of eigenfunctions should be
chosen so that the perturbed energy matrix is diagonal, as can always be done:

〈
0

φj |
1

H|
0

φi〉 =
1

Ejδji . (1.15)

In particular, 〈
0

φj |
1

H|φ0〉 = 0 for j 6= 0. In equation (1.14) for the perturbed wavefunction
1

φ, the sum should then exclude the degenerate eigenfunctions
0

φj with Ej = E0.
Higher order corrections to the energy and wavefunction can be derived in basically the

same way, by multiplying the n’th order perturbation equation by
0

φ for energy, and by φj
with j 6= 0 for the wavefunction, and integrating over all space. Higher order perturbations
are of most interest when the first order perturbation vanishes, as for example in the case of
the Stark effect, which is the perturbation to the energy levels of an atom when a uniform
external electric field is applied.

The second order perturbation
2

E to the energy is thus obtained from, equation (1.5),

0 = 〈
0

φ|
0

E −
0

H|
2

φ〉+ 〈
0

φ|
1

E −
1

H|
1

φ〉+ 〈
0

φ|
2

E|
0

φ〉

= −
∑
j

1
cj〈φ0|

1

H|φj〉+
2

E , (1.16)

which with expressions (1.13) for
1
cj gives

2

E =
∑
j 6=0

∣∣〈φj | 1H| 0φ〉∣∣2
E0 − Ej

. (1.17)

Equation (1.17) gives the second order perturbation
2

E to the energy.

2. Time-Dependent Perturbation

Consider a situation where the Hamiltonian H is the sum

H =
0

H + ε
1

H(t) (2.1)

of a main part
0

H which is independent of time, plus a small perturbation ε
1

H(t) which may

depend on time. Suppose that at time t = 0 the wavefunction is in a definite eigenstate
0

ψ of
the unperturbed Hamiltonian. The aim below is to discover how the wavefunction ψ(t,x)

evolves out of this eigenstate as the result of application of the perturbation
1

H(t).
Expand the wavefunction ψ(t,x) as a series in powers of the parameter ε:

ψ =
0

ψ + ε
1

ψ + ε2
2

ψ + ... . (2.2)
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Schrödinger’s equation asserts

0 =
(
i~∂/∂t−H

)
ψ

=
(
i~∂/∂t−

0

H − ε
1

H
)( 0

ψ + ε
1

ψ + ε2
2

ψ + ...
)

=
(
i~∂/∂t−

0

H
) 0

ψ

+ ε
[
(i~∂/∂t−

0

H)
1

ψ −
1

H
0

ψ
]

+ ε2
[
(i~∂/∂t−

0

H)
2

ψ −
1

H
1

ψ
]

+ ... . (2.3)

Since the entire expression vanishes identically, each coefficient of the series expansion in
ε must vanish separately, yielding successive approximations of perturbation theory. The

zeroth order equation shows that the unperturbed wavefunction
0

ψ must be a solution of the
unperturbed Schrödinger equation,(

i~∂/∂t−
0

H
) 0

ψ = 0 , (2.4)

as was to be expected. The next order gives the first order perturbation
1

ψ to the wavefunc-

tion in terms of the unperturbed wavefunction
0

ψ,(
i~∂/∂t−

0

H
) 1

ψ =
1

H
0

ψ , (2.5)

and subsequent terms yield successively higher perturbations
n

ψ to the wavefunction in terms

of the previous perturbation
n−1

ψ (
i~∂/∂t−

0

H
) n

ψ =
1

H
n−1

ψ . (2.6)

Now let

ψj(t,x) = e−iωjtφj(x) (2.7)

denote a complete orthonormal set of eigenfunctions of the unperturbed Hamiltonian
0

H,
with eigenvalues the energies

Ej = ~ωj . (2.8)

Without loss of generality, the unperturbed wavefunction
0

ψ can be taken to be the j = 0’th
eigenfunction

0

ψ = ψ0 = e−iω0tφ0(x) . (2.9)

The n’th order perturbation
n

ψ can be expanded in terms of the complete set of eigenfunctions

of
0

H
n

ψ(t,x) =
∑
j

n
cj(t)ψj(t,x) (2.10)

for some amplitudes
n
cj(t). Since ψj are eigenfunctions of

0

H, if follows that (i~∂/∂t−
0

H)ψj =

0, so that the left hand side of the perturbation equation (2.6) reduces to (i~∂/∂t−
0

H)
n

ψ =
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i~
∑

j(d
n
cj/dt)ψj . Thus the n’th order perturbation equation (2.6) becomes

i~
∑
j

d
n
cj
dt
ψj =

1

H
n−1

ψ . (2.11)

Multiplying both sides of equation (2.11) by ψ†j and integrating over all space yields

d
n
cj
dt

=
1

i~

∫
ψ†j

1

H
n−1

ψ d3x =
1

i~
〈ψj |

1

H|
n−1

ψ 〉 . (2.12)

The evolution of the amplitudes
n
cj follows from integrating equation (2.12) with respect to

time:
n
cj(t) =

1

i~

∫ t

0
〈ψj |

1

H|
n−1

ψ 〉 dt . (2.13)

In particular, the amplitudes
1
cj of the first order perturbation are

1
cj(t) =

1

i~

∫ t

0
〈ψj |

1

H|ψ0〉 dt =
1

i~

∫ t

0
〈φj |

1

H|φ0〉 eiωj0t dt , (2.14)

where
ωj0 ≡ ωj − ω0 = (Ej − E0)/~ . (2.15)

3. Periodically Varying Perturbation

Although equation (2.14) is perfectly valid for a general time-varying perturbation
1

H(t),
it is of particular interest to consider in more detail the case of a periodically varying per-
turbation, with angular frequency ω say. For example, atoms absorbing or emitting photons
of energy E = ~ω can be treated as being subject to a periodically varying electromagnetic

field of frequency ω. Since
1

H must be Hermitian,
1

H† =
1

H, the perturbation must take the
form

1

H(t) = V e−iωt + V †eiωt , (3.1)

where V is a time-independent operator, and V † is its Hermitian conjugate. The frequency
ω can be taken to be positive, ω > 0, without loss of generality. Below it will become
evident that the negative frequency (∝ e−iωt) term of equation (3.1) represents absorption
of a quantum of energy with E = ~ω, a transition from a lower to a higher energy state,
while the positive frequency term, which looks like a time-reversed version of the negative
frequency term, represents emission, a transition from a higher to lower energy state.

Consider first just the negative frequency V e−iωt absorption term. The amplitudes
1
cj

of the first order perturbed wavefunction, equation (2.14), are, for the negative frequency
perturbation,

1
cj(t) =

1

i~

∫ t

0
〈φj |V |φ0〉 ei(ωj0−ω)t dt , (3.2)

where ωj0 ≡ ωj − ω0 is the frequency difference between state j and the unperturbed state
0. Equation (3.2) integrates to give the absorption amplitude

1
cj(t) =

1

~
〈φj |V |φ0〉

1− ei(ωj0−ω)t

ωj0 − ω
. (3.3)
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The probability of being in state j at time t is the absolute value squared of the amplitude
1
cj , the absorption probability∣∣1cj(t)∣∣2 =

1

~2
∣∣〈φj |V |φ0〉∣∣2 (sin [(ωj0 − ω)t/2]

(ωj0 − ω)/2

)2

. (3.4)

For perturbation theory to be applicable, the probabilities |1cj |2 should be small for small
times t, so the relevant regime of equation (3.4) is for large times t. As time t becomes

large, the factor
(
sin [(ωj0 − ω)t/2] /(ωj0 − ω)/2

)2
in equation (3.4), regarded as a function

of ωj0 − ω, becomes sharply peaked about ωj0 − ω = 0, tending to infinity at ωj0 − ω = 0,
and falling off sharply away from ωj0 − ω = 0. In the limit as t goes to infinity, the factor
tends to a Dirac delta-function(

sin [(ωj0 − ω)t/2]

(ωj0 − ω)/2

)2

→ 2πtδ(ωj0 − ω) = 2π~tδ(Ej0 − E) (t→∞) , (3.5)

where the coefficient of the delta-function follows from
∫∞
−∞ sin2 xx−2dx = π. Equation (3.5)

substituted in (3.4) shows that the absorption probability |1cj |2 grows linearly with time t
at large times t. The probability divided by the time t can be interpreted as the transition
probability P (j ← 0) per unit time out of state 0 into state j

P (j ← 0) ≡ |
1
cj(t)|2

t
=

2π

~
|〈φj |V |φ0〉|2 δ(Ej0 − E) . (3.6)

The Dirac delta-function δ(Ej0 − E) in the transition probability (3.6) represents energy
conservation: the energy E = ~ω of the transition equals the energy difference Ej0 ≡ Ej−E0

between the states. The fact that the delta-function is achieved only asymptotically as t→
∞, according to equation (3.5), reflects the uncertainty principle: exact energy conservation
applies only in the limit of long times. Since the frequency ω is being assumed to be
positive, the final state j has energy above the initial state 0, and the transition described
by equation (3.6) then evidently represents absorption of a quantum E = ~ω of energy.

The delta-function in the transition probability (3.6) enforces energy conservation, but
it is evident that this can only work if the final state j has just the right energy. On closer
examination, one realizes the replacement (3.5) of the expression in square brackets in (3.4)
by a delta-function is valid only if there is a continuum of final states j that are smoothly
distributed over an interval of energy broad compared to the width of the delta-function.
Thus the transition probability per unit time (3.6) should properly be integrated over the
number dNj of final states j

P (j ← 0) =
2π

~

∫
|〈φj |V |φ0〉|2 δ(Ej0 − E) dNj

=
2π

~
|〈φj |V |φ0〉|2

dNj

dE
, (3.7)

where dNj/dE is the density of final states at the energy Ej satisfying energy conservation
Ej0 = E. Equation (3.7) is called Fermi’s Golden Rule. In general, when considering
transitions from one set of states to another set, one should average over initial states and
sum over final states.
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According to the Hermitian property (3.1) of the perturbation Hamiltonian
1

H, there
should also be a positive frequency part of the perturbation. Repeating the above analysis,
one concludes that the positive frequency part must correspond to a downward transition,
with emission of a quantum E = ~ω of energy. In the case considered above, the eigenstate
j lay above the eigenstate 0 by Ej0 = E in energy, so the transition must be from the upper
state j to the lower state 0. Thus the probability per unit time for a transition from j to 0
is

P (0← j) =
2π

~
|〈φj |V |φ0〉|2

dN0

dE
, (3.8)

which is the same as equation (3.7) apart from the factor for the density of final states.
To obtain the number of transitions per unit time which occur in an actual case, the

transition probability P (j ← 0) of equation (3.7) should be multiplied by the number of
particles in state j, and likewise the inverse transition probability P (0← j) of equation (3.8)
should be multiplied by the number of particles in state 0.

4. Scattering Matrix

A standard problem in quantum mechanics is to calculate the probability that a particle
with some initial wavefunction ψi(t,x) will be scattered into some final wavefunction ψf(t,x)
as the result of scattering off some (possibly time-dependent) potential V . If the potential
V is suitably weak, then this problem can be treated as a standard application of time-
dependent perturbation theory, §2. However, it is helpful to explore the problem in a little
more detail by deriving an exact expression for the scattering matrix Sfi, equation (4.9).
This expression reduces to the perturbation theory result (2.14) in the case of a weak
potential.

In the commonest case, the potential V is supposed to be localized in space (or time), so
that the initial and final wavefunctions ψi and ψf can be taken to be eigenfunctions of the
free Hamiltonian. The perturbation theory result for the scattering amplitude in this case
is called the Born approximation. Here the Hamiltonian is split into a sum of the free
Hamiltonian p2/2m and the (possibly time-dependent) potential V :

H =
0

H +
1

H , (4.1)

with
0

H =
p2

2m
,

1

H = V . (4.2)

The eigenfunctions ψk of the free Hamiltonian,

i~
∂ψk

∂t
=

0

Hψk = Eψk , (4.3)

are free wavefunctions ψk = (2π)−3/2e−iωt+ik.x with eigenvalues E = ~ω = (~k)2/2m.
It is also possible to consider more complicated situations. In scattering off charged ions,

for example, the potential V falls off rather slowly, as 1/r, at long range. In this case a better

perturbation approximation is to incorporate the long range part of the potential into
0

H,
and to take the initial and final wavefunctions ψi and ψf to be Coulomb wavefunctions. The
perturbation theory result for the scattering amplitude in this case is called the Coulomb-
Born approximation.
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Suppose that Ψ(t,x) is the exact solution for the particle wavefunction

i~
∂

∂t
Ψ = HΨ (4.4)

subject to the boundary condition that

Ψ(t,x)→ ψi(t,x) (4.5)

as t→ −∞ (to apply this boundary condition strictly, one needs to consider wave packets
of large but finite spatial extent formed out of superpositions of plane waves of nearly equal
momenta). At time t, the amplitude for the particle to be in the state ψf is

〈ψf |Ψ〉 =

∫
ψ†f (t,x) Ψ(t,x) d3x . (4.6)

The boundary condition on Ψ can be stated as

lim
t→−∞

∫
ψ†f (t,x) Ψ(t,x) d3x = δfi . (4.7)

The scattering matrix (or S-matrix) Sfi is defined to be the scattering amplitude (4.6) in
the limit t→∞,

Sfi ≡ lim
t→∞

∫
ψ†f (t,x) Ψ(t,x) d3x . (4.8)

Thus the scattering matrix Sfi is given by

Sfi − δfi =

[∫
ψ†f (t,x) Ψ(t,x) d3x

]∞
t=−∞

=

∫ ∞
−∞

∂

∂t

(∫
ψ†f Ψ d3x

)
dt

=

∫ ∞
−∞

∫ (
ψ†f
∂Ψ

∂t
+
∂ψ†f
∂t

Ψ

)
d3x dt

=

∫ ∞
−∞

∫
1

i~
(
ψ†fHΨ− ψ†f

0

HΨ
)
d3x dt

=
1

i~

∫ ∞
−∞

∫
ψ†f

1

HΨ d3x dt . (4.9)

Equation (4.9) says that the scattering matrix is

Sfi = δfi +
1

i~

∫ ∞
−∞

∫
ψ†f

1

HΨ d3x dt . (4.10)

The probability that the particle will be scattered from the initial state ψi into the final
state ψf is the square of the scattering matrix

probability (f ← i) = |Sfi|2 . (4.11)

If the scattering potential
1

H is sufficiently weak, then the incident wavefunction Ψ is
hardly affected, and one can approximate Ψ ≈ ψi. This leads to the first order perturbation
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expression for the scattering matrix

Sfi(perturbation theory) = δfi +
1

i~

∫ ∞
−∞

∫
ψ†f

1

Hψi d
3x dt . (4.12)

Equation (4.12) is the same as equation (2.14), with the initial wavefunction being taken
to be ψi at t→ −∞ instead of ψ0 at t = 0, and the final wavefunction being taken to be ψf

at t → ∞ instead of ψj at time t. If the initial and final wavefunctions ψi and ψf are free
wavefunctions, then equation (4.12) is the Born approximation.

The expression (4.12) for the perturbative scattering amplitude is notable because it
involves an integral not only over all space but also over all time. Such scattering amplitudes
are a precursor of the Feynman diagrams of relativistic quantum field theory, where space
and time appear in a manifestly Lorentz covariant fashion.


