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ABSTRACT

FFTLog is a set of fortran subroutines that compute the fast Fourier or Hankel (=
Fourier-Bessel) transform of a periodic sequence of logarithmically spaced points. FFT-
Log can be regarded as a natural analogue to the standard Fast Fourier Transform
(FFT), in the sense that, just as the normal FFT gives the exact (to machine precision)
Fourier transform of a linearly spaced periodic sequence, so also FFTLog gives the exact
Fourier or Hankel transform, of arbitrary order u, of a logarithmically spaced period-
ic sequence. FFTLog shares with the normal FFT the problems of ringing (response
to sudden steps) and aliasing (periodic folding of frequencies), but under appropriate
circumstances FFTLog may approximate the results of a continuous Fourier or Hankel
transform. The FFTLog algorithm was originally proposed by Talman (1978).

1 INTRODUCTION

This is a PostScript printable version of the webpage
http://casa.colorado.edu/~ajsh/FFTLog/ , from which
the FFTLog fortran code may be downloaded. That web-
page was adapted in turn from Appendix B of a paper by
Hamilton (2000). If you wish to refer to the present docu-
ment, please refer to Hamilton (2000) and/or to the website.

The FFTLog algorithm was originally proposed by Tal-
man (1978).

Consider the continuous Hankel (= Fourier-Bessel)
transform pair
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/ a(r) (kr)?J,(kr) kdr ,

a(r) = / a(k) (kr) " 4J,(kr)rdk . (1)
If the substitution
a(r)=A(r)r ¢ and a(k)= A(k)k? (2)

is made, then the Hankel transform pair (1) becomes equiv-
alent to the transform pair

A(k) = /°° A(r) Ju(kr) kdr ,

A(r) = / A(K) Jy (kr) rdk . (3)

Although the Hankel transform (1) with a power law bias
(kr)iq is thus equivalent in the continuous case to the un-
biased Hankel transform (3), the transforms are different
when they are discretized and made periodic; for if a(r) is
periodic, then A(r) = a(r) r? is not periodic. FFTLog eval-
uates discrete Hankel transforms (1) with arbitrary power
law bias.

Fourier sine and cosine transforms can be regarded as

special cases of Hankel transforms with p = £1/2, since

Ji2(x) = (2/mz)?sin(z)
J_1y2(x) = (2/7x)""” cos(x) . (4)

As first noted by Siegman (1977), if the product kr in
the Hankel transform is written as e™**'"" then the trans-
form becomes a convolution integral in the integration vari-
able Inr or In k. Convolution is equivalent to multiplication
in the corresponding Fourier transform space. Thus the Han-
kel transform can be computed numerically by the algorith-
m: FFT — multiply by a function — FFT back. This is the
idea behind a number of Fast Hankel Transform (FHT) algo-
rithms (Candel 1981; Anderson 1982; Hansen 1985; Fanning
1996) including FFTLog (Talman 1978).

An advantage of FFTLog, emphasized by Talman
(1978), is that the order p of the Bessel function may be
any arbitrary real number. In particular, FFTLog works for
1/2-integral p, so includes the cases of Fourier sine and co-
sine transforms, and spherical Hankel transforms involving
the spherical Bessel functions jx(z) = (7/22)"/?Jy11/2().

2 MOTIVATION AND EXAMPLE

FFTLog emerged from a problem in cosmology (Hamilton
2000). The problem required Fourier transforming a func-
tion that extended over many orders of magnitude, and was
‘smooth’ in logarithmic space. Actually, it was necessary to
transform whole matrices of such functions, so a fast trans-
form method was desirable.

In cosmology, fluctuations in the matter density of the
Universe are thought to have been laid down during an in-
flationary epoch in the first few moments following the Big
Bang (Turner 1997). Vacuum fluctuations in the field that
drives inflation should produce a Gaussian distribution of
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Figure 1. Cosmological power spectrum P(k) of matter fluctu-
ations predicted by the so-called ACDM model, a flat (2 = 1)
Universe dominated by a cosmological constant (24 = 0.7), and
Cold Dark Matter (Q,, = 0.3) including a sprinkling of baryons
(92 = 0.05). The ACDM power spectrum was computed from the
formulae of Eisenstein & Hu (1998), nonlinearly evolved accord-
ing to the formula of Peacock & Dodds (1996). The spectrum
is normalized to the amplitude of fluctuations observed by the
COBE satellite.

density fluctuations with a near scale-invariant power spec-
trum P(k) o k. That primordial spectrum was processed
prior to Recombination by the action of gravity modulated
by the pressure of radiation. Following Recombination, when
the Universe was about 300,000 years old, the matter power
spectrum was further processed by nonlinear gravitational
clustering, up to the present time.

The cosmological power spectrum P(k), a function of
wavenumber k, is the 3-dimensional Fourier transform of the
cosmological correlation function £(r), a function of spatial
separation r. With the conventional normalization used by
cosmologists,

sin(kr) Arrdr
r )

P = [ ey

_ / P(k)sink(fr) 4E;I;:T)(ik . (5)
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Figures 1 and 2 show the cosmological power spectrum P(k)
of matter fluctuations, and the corresponding correlation
function £(r), predicted for a flat (2 = 1) Cold Dark Matter
Universe dominated by a cosmological constant (Qx = 0.7).
The power spectrum here was computed from the formulae
of Eisenstein & Hu (1998), nonlinearly evolved according to
the formula of Peacock & Dodds (1996).

In this particular instance, FFTLog outperforms the
normal FFT on all counts: it is more accurate, with fewer
points, over a larger range, and it shows no signs of ring-
ing. This does not mean that FFTLog is always better than
FFT. Rather, FFTLog is well matched to the problem at
hand: the cosmological power spectrum extends over many
orders of magnitude in wavenumber k, and varies smoothly
in Ink.
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Figure 2. Cosmological correlation function &(r) corresponding
to the ACDM power spectrum shown in Figure 1.

The top panel shows the correlation functions computed with
FFTLog at two different resolutions, plotted on top of each other:
(red, low resolution) with 96 points over the range r = 103 to
103 h=1Mpc, and (blue, high resolution) with 768 points over the
range r = 10~% to 106 h='Mpc. The lines are dashed where the
correlation function is negative, at separations r > 119 h~Mpc.
The low and high resolution curves are almost indistinguishable
except at r 2 200 h~Mpc, where the low resolution curve goes
to a constant, while the high resolution curve declines as a power
law ~ r~%. The disagreement is caused by aliasing (see §8) of
small and large separations in the low resolution case. Aliasing is
almost eliminated in the high resolution case because the range
r = 1076 to 109 h='Mpc over which the transform was computed
is much broader than the range plotted. The straight dashed line
shows the canonical power law (r/5h~'Mpc)~!-® for reference.
Both low and high resolution cases used an unbiased (¢ = 0)
transform, §7, and a low-ringing value of koro, §6 (actually the
choice of korp made little difference here).

The middle panel shows the ratio §low/§high of the low to high
resolution correlation functions.

The bottom panel of Figure 2 shows the ratio §FFT/§FFTLOg
of the correlation function {gppr computed with a normal FFT
(sine transform) with 1023 points over the range r = 0.125 to
128 h~Mpc, to the high resolution correlation function §FFTLog
computed with FFTLog. The FFT’d correlation function {ppT
rings at the +5 percent level.



3 NORMAL DISCRETE FOURIER
TRANSFORM

First, recall the essential properties of the standard dis-
crete Fourier transform of a periodic sequence of linearly
spaced points. Suppose that a(r) is a continuous, in general
complex-valued, function that is periodic with period R,

a(r+ R) =a(r) . (6)

Without loss of generality, take the fundamental interval to
be [—-R/2,R/2], centred at zero. Since a(r) is periodic, its
continuous Fourier transform contains only discrete Fourier
modes e2™ ™7/ R with integral wavenumbers m. Suppose fur-
ther that the function a(r) is ‘smooth’ in the specific sense
that it is some linear combination only of the N lowest fre-
quency Fourier modes, m = 0, £1, ..., £[N/2], where [N/2]
denotes the largest integer greater than or equal to N/2,

a(r) =Y e o2/ (7)

m

the outermost Fourier coefficients being equal, c_y/,» =
Cn/2, in the case of even N. The primed sum in equation (7)
signifies a sum over integral m from —[N/2] to [N/2], with
the proviso that for even N the outermost elements of the
sum receive only half weight:

, /21
Z Tn = Z WnTn (8)
n n=—[N/2]

with w, = 1 except that w_n s = wny2 = 1/2 if N is even.

The sampling theorem (e.g. Press et al. 1986 §12.1) as-
serts that, given a function a(r) satisfying equation (7), the
Fourier coefficients ¢, can be expressed in terms of the val-
ues a, = a(ry) of the function a(r) at the N discrete points
rn = nR/N for n = 0, £1, ..., £[N/2]. For even N, the
periodicity of a(r) ensures that a_y/» = apyy2. Specifically,
the sampling theorem asserts that the Fourier coefficients in
the expansion (7) satisfy

_ 1 ! —2ximn/N
Cm = ﬁz an € (9)
the discrete points a, themselves satisfying

i .
an = Z Cp @27/ N (10)
m

in accordance with equation (7).

Equations (9) and (10) constitute a discrete Fourier
transform pair relating two periodic, linearly spaced se-
quences ar and ¢y, of length N. The standard FFT evaluates
the discrete Fourier transform exactly (that is, to machine
precision).

4 DISCRETE HANKEL TRANSFORM

Now suppose that the function a(r), instead of being period-
ic in ordinary space r, is periodic in logarithmic space Inr,
with logarithmic period L,

a(re’) =a(r) . (11)

Take the fundamental interval to be [Inro—L/2,Inro+L/2],
centred at In7g. As in §3, the periodicity of a(r) implies that
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its Fourier transform with respect to Inr contains only dis-
crete Fourier modes e2™™!2("/70)/L with integral wavenum-
bers m. Suppose further, as in §3 eq. (7), that a(r) contains
only the N lowest frequency Fourier modes

/ .
a(,’,,) — Z Cm elemll\(r/ro)/L (12)

m

with c_n/2 = cny2 for even N. The sampling theorem as-
serts that the Fourier coefficients ¢,, are given by

1 ! —27imn
cmzﬁz an e 2 /N (13)

where a, = a(r,) are the values of the function a(r) at the
N discrete points rn, = roe™/N for n =0, 1, ..., +[N/2],

i .
an =3 eyt (14)

The continuous Hankel transform a(k), equation (1), of
a function a(r) of the form (12) is

a(k)zz'cm / e2mmInC/rO/ L (kY T (kr) kdr . (15)
m 0

The integrals on the right hand side of equation (15) can be
done analytically, in terms of

I[(p+1+4+2)/2]
Il(p+1—2)/2]

where I'(z) is the usual Gamma-function. Thus equa-
tion (15) reduces to

! .
d(k) — Z Com U ef2ﬂ1m1n(k:/k:0)/L (17)

m

U (z) = /mtm.]#(t) dt = 2° (16)

where u,, is

—2mim/L gy (q + QWL”") . (18)
Notice that u,, = %—_m, which ensures that a(k) is real if a(r)
is real. Equation (17) gives the (exact) continuous Hankel
transform a(k) of a function a(r) of the form (7). Like a(r),
the Hankel transform a(k) is periodic in logarithmic space
In k, with period L. The fundamental interval is [In ko — L/2,
In ko+L/2], centred at In ko, which may be chosen arbitrarily
(but see §6 below).

The sampling theorem requires that u_y/» = uy/» for
even N, which is not necessarily satisfied by equation (18).
However, at the discrete points k, = koe”L/N considered
by the sampling theorem, the contributions at m = +N/2
to the sum on the right hand side of equation (17) are
(=)"eny2(uny2 + uy/s)/2 = (=)"cn/2Reunss. Thus the e-
quality (17) remains true at the discrete points k, if uyy/»
are replaced by their real parts,

W (1, q) = (koro)

UtnN/2 — ReuN/2 . (19)

With the replacement (19), the sampling theorem asserts
that the coefficients ¢num in the sum (17) are determined
by the values a,, = a(ky) of the Hankel transform at the N
discrete points kn, = koe™/"N for n =0, +1, ..., £[N/2]

1 omi
Con oy, = NZ in e27r mn/N (20)
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’ .
an _ Z Con U e—2‘rr1mn/N . (21)

m

Putting together equations (13), (14), (20) and (21)
yields the discrete Hankel transform pair

!
in =Y am U (1,0) (22)

an = an vy (10) (23)

n

in which the forward discrete Hankel mode v (u, q) is the
discrete Fourier transform of wm,(u,q) given by equation-
s (18) and (19),

1 ! —27imn
R S (T L (24)

while the inverse discrete Hankel mode v, (u, q) is the dis-
crete Fourier transform of the reciprocal 1/u—m (1, q),

- 1 ! 1 —2mrimn/N
v, (1, q) = = —e . 25
o= 5 (25)

The Hankel transform matrices v;’,'H_n (#,q) and v, (1, q)
are mutually inverse

!
> vk ) Vi (1:0) = G (26)
1

where d,,, denotes the Kronecker delta. The forward and
inverse Hankel modes have the interesting property of being
self-similar; that is, Hankel modes v}, | (11, q) [or v, ;. (1, )]
with different indices m consist of the same periodic se-
quence v;} (i1, q) [or vy, (i, q)] eyclically shifted by m notches.

FFTLog evaluates the forward and inverse discrete Han-
kel transforms given by equations (22), (23), exactly (to ma-
chine precision).

The reciprocal 1/u_m(p,q) in equation (25) is equal to
um (@, —q), according to equations (16) and (18),

s = =)

w0

except in the case m = £N/2 for even N, when the re-
placement (19) generally invalidates equation (27). Howev-
er, in the special case where uyy/2 are already real, then
equation (19) leaves w4 /2 unchanged, and equation (27)
remains valid also at m = +N/2. This special case is of
particular interest, and is discussed further in §6 below.

In the continuous case, the inverse Hankel transform is
equal to the forward transform with ¢ — —gq, equations (1).
In the discrete case this remains true for odd N, but it is
not generally true for even N (the usual choice) except in
the important special case discussed in §6.

In the general discrete case (i.e. if the condition [28]
in §6 is not satisfied), the inverse discrete Hankel mod-
e vy, (1, q), equation (25), differs from the forward Hankel
mode vl (i, —q), equation (24), only for even N and only
in the coefficient of the highest frequency Fourier compo-
nent, 1/u—_m (i, q) versus um(p, —q) for m = £N/2. To the
extent that the highest frequency Fourier coefficient ci /2
of a sequence a, is small, the difference between its inverse
discrete Hankel transform and its forward transform with
q — —q should be small.

(m # N/2) (27)

It is possible for the inverse discrete Hankel transform
to be singular, if u4 /o is purely imaginary, so that its real
part vanishes, making v, (u,q) singular. As discussed in §6,
this singularity can be avoided by choosing a low-ringing
value of koro, equation (30).

The forward (inverse) discrete Hankel transforms are
also singular at special values of p and ¢, namely where
u+1+4g¢ (or p+1—gq in the inverse case) vanishes, because
uwo(p, q) = Uu(q) is singular at these points. This singular-
ity reflects a real singularity in the corresponding continu-
ous Hankel transform (unlike the singularity of the previous
paragraph, which is an avoidable artefact of discreteness).
The singularity in uo leads to an additive infinite constant
in the discrete Hankel transform. In physical problems this
additive infinite constant may somehow cancel out (for ex-
ample, in the difference between two Hankel transforms).
FFTLog’s strategy in these singular cases is to evaluate the
discrete Hankel transform with the infinite constant set to
zero, and to issue a warning.

5 FFTLOG ALGORITHM

The FFTLog algorithm for taking the discrete Hankel trans-
form, equation (22), of a sequence a, of N logarithmically
spaced points is:

e FFT a, to obtain the Fourier coefficients ¢, equa-
tion (13);

e multiply by u.,, given by equations (18) and (19) to
obtain Cmum;

e FFT c¢pum back to obtain the discrete Hankel transfor-
m an, equation (21).

A variant of the algorithm is to sandwich the above op-
erations with power law biasing and unbiasing operations.
For example, one way to take the unbiased continuous Han-
kel transform A(k) of a function A(r), equation (3), is to
bias A(r) and A(k) with power laws, equation (2), and take
a biased Hankel transform, equation (1). The discrete equiv-
alent of this is:

e Bias A, with a power law to obtain a, = A,r,?, equa-
tion (2);

e FFT a, to obtain the Fourier coefficients ¢, equa-
tion (13);

e multiply by um, given by equations (18) and (19) to
obtain ¢ Um;

e FFT ¢,,u.m back to obtain the discrete Hankel transfor-
m d,, equation (21);

e Unbias d, with a power law to obtain 4, = @,k 7,
equation (2).

Although in the continuous limit the result would be iden-
tical to an unbiased Hankel transform, in the discrete case
the result differs. With a simple unbiased discrete Hankel
transform, it is the sequence A, that is taken to be period-
ic, whereas in the algorithm above it is not A, but rather
an that is periodic.

The inverse discrete Hankel transform is accomplished
by the same series of steps, except that ¢, is divided instead
of multiplied by .

The FFTLog code is built on top of the NCAR suite of
FFT routines (Swarztrauber 1979), and a modified version



of an implementation of the complex Gamma-function from
the gamerf package by Ooura (1996).

FFTLog includes driver routines for the specific cases
of the Fourier sine and cosine transforms.

6 LOW-RINGING CONDITION ON koro

The central values Inro and In ko of the periodic intervals
in Inr and In k may be chosen arbitrarily. However, ringing
of the discrete Hankel transform may be reduced, for either
even or odd N, if the product koro is chosen in such a way
that the boundary points of the sequence u,, equation (18),
are equal

u_N/2 = ’ILN/2 . (28)

Recall that the general procedure, for even N, was to replace
14 /2 by their real part, equation (19). The condition (28)
requires that u, /o are already real. The condition (28) re-
duces ringing because it makes the periodic sequence wun,
fold smoothly across the period boundary at m = £N/2.

In addition to reducing ringing, the condition (28)
means that equation (27) remains true also at m = £N/2,
so is true for all m. In this case the inverse Hankel mod-
e v, (1, q), equation (25), is equal to the forward Hankel
mode v;} (i, —q) with q of the opposite sign

_ 1 ! —27imn
Vn (k@) = v5 (1, —q) = NZ Ui (1, —q) € 27N (29)

In other words, if condition (28) is satisfied, then the in-
verse discrete Hankel transform equals the forward discrete
Hankel transform with ¢ — —¢q. This is like the continuous
Hankel transform, equations (1), where the inverse transfor-
m equals the forward transform with ¢ — —q.

The periodicity condition (28) on u4y/» translates, for
real p and ¢, into a condition on koro

In(koro) = % {% Arg [Uﬂ (q ¥ %)] ¥ integer} (30)

where Argz = Imlnz denotes the argument of a complex
number, and integer is any integer. In other words, to reduce
ringing, it may help to choose koro so as to satisfy the con-
dition (30). This is not too much of a restriction, since L/N
is the logarithmic spacing between points (= one notch), so
the low-ringing condition (30) allows koro to be chosen to
lie within half a notch [= L/(2N)] of whatever number one
chooses, for example within half a notch of koro = 1.

The low-ringing condition (30) is a condition on the
phasing of the discrete points rn and kn at which the dis-
crete Hankel transform is specified. The condition is analo-
gous to, albeit more complicated than, the condition on the
usual FFT that discrete frequencies be phased so that their
wavenumbers are integers, equation (7).

FFTLog can be set to use automatically the low-ringing
value of koro nearest to any input value of koro.

Note that the low-ringing value of korp from condi-
tion (30) differs for different y, ¢, and L/N. For example, the
sine transform (p = 1/2) and cosine transform (u = —1/2)
have different low-ringing values of koro.

How else does the choice of koro affect the Hankel trans-
form? Increasing the value of In(koro) by one notch L/N
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cyclically shifts the discrete Hankel transform a,, equa-
tion (21), by one notch to the left, @, — @n—1. In other
words, changing In(koro) by an integral number of notches
shifts the origin of the transform, but leaves the transform
otherwise unchanged, as might have been expected.

In practice, since in most cases one is probably using the
discrete Hankel transform as an approximation to the con-
tinuous transform, one would probably want to use koro ~ 1
(or 2, or 7, according to taste).

7 UNITARY UNBIASED HANKEL
TRANSFORM

The discrete Hankel transform with both low-ringing koro
and no power law bias, ¢ = 0, is of particular interest be-
cause it is unitary, like the Fourier transform. Indeed, being
also real, the low-ringing unbiased Hankel transform is or-
thogonal, i.e. self-inverse, like the Fourier sine and cosine
transforms. This is like the continuous unbiased (¢ = 0)
Hankel transform, equations (1), which is self-inverse.

The discrete Hankel modes vy (pt,0) = v}, (1, 0) =
Vrin (12, 0) in the low-ringing unbiased (¢ = 0) case are pe-
riodic, orthonormal, and self-similar, equation (26),

Z Um+1 (/Ja 0) Ul+n(/J’7 0) = Jm" . (31)
l

Like any orthogonal transformation, the low-ringing un-
biased (¢ = 0) Hankel transform commutes with the opera-
tions of matrix multiplication, inversion, and diagonalization
(for non-low-ringing or biased Hankel transforms, g # 0, the
operations do not commute). That is, the Hankel transform
of the product of two matrices is equal to the product of
their Hankel transforms, and so on.

All else being equal (which it may not be), given a choice
between applying an unbiased (¢ = 0) or biased (¢ # 0)
Hankel transform, and between a low-ringing koro, equa-
tion (30), or otherwise, one would be inclined to choose the
low-ringing unbiased transform, because of its orthogonality

property.

8 RINGING AND ALIASING

FFTLog suffers from the same problems of ringing (response
to sudden steps) and aliasing (periodic folding of frequen-
cies) as the normal FFT.

Usually one is interested in the discrete Fourier or Han-
kel transform not for its own sake, but rather as an approx-
imation to the continuous transform. The usual procedure
would be to apply the discrete transform to a finite segmen-
t of the function a(r) to be transformed. For FFTLog, the
procedure can be regarded as involving two steps: truncat-
ing the function to a finite logarithmic interval, which causes
ringing of the transform; followed by periodic replication of
the function in logarithmic space, which causes aliasing.

Figure 3 illustrates these steps for the unbiased (q = 0)
Hankel transform, equation (1), of order p = —1/2 of a
function that is Gaussian in the log

a(r) = exp[—(Inr)?/2] . (32)
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Figure 3. Illustrating the ringing and aliasing that occurs when
the continuous Hankel transform of a function is approximated
by the discrete Hankel transform of a finite segment of the func-
tion. Lines are dashed where values are negative. The function
a(r) is shown to the left, and its corresponding Hankel transform
a(k) to the right. The panels from top to bottom are: (top) the
original function a(r) and its Hankel transform a(k); (middle)
the truncated function a(r) and its Hankel transform a(k), which
rings at high frequencies k; and (bottom) the truncated, period-
ically replicated function a(r) and its corresponding periodically
replicated Hankel transform a(k), which is aliased. Vertical lines
demarcate periodic intervals.

Truncation of the function a(r) leads to ringing of its
transform a(k) at high frequencies k, as seen in the middle
right panel of Figure 3. The oscillations at large &k are actu-
ally uniformly spaced in k, but appear bunched up because
of the logarithmic plotting.

Periodic replication means taking a sum of copies shift-
ed by integral periods. From the definition (1) of the con-
tinuous Hankel transform, it can be seen that periodical-
ly replicating a function a(r) in logarithmic space Inr and
then taking its continuous Hankel transform is equivalent
to Hankel transforming the function a(r) and then period-
ically replicating the transform a(k) in Ink. But truncat-
ing a function does not truncate its transform. So whereas
a truncated, periodically replicated function a(r) contains
contributions from only one period at each point r, the pe-
riodically replicated transform contains overlapping contri-
butions from many periods at each point k. This is aliasing.
In Figure 3 aliasing is visible as an enhancement of the peri-
odically replicated transform a(k) on the high k side of the
periodic interval.

Ringing and aliasing can be reduced by taking suitable
precautions.

The ringing that results from taking the discrete trans-
form of a finite segment of a function can be reduced by
arranging that the function folds smoothly from large to s-
mall scales. It may help to bias the function with a power
law before transforming it, as in the second algorithm in §5.
It may also help to use a low-ringing value of koro, §6.

Aliasing can be reduced by enlarging the periodic inter-
val. Aliasing can be eliminated (to machine precision) if the
interval can be enlarged to the point where the transform
a(k) goes sensibly to zero at the boundaries of the period.
Note that it is not sufficient to enlarge the interval to the
point where a(r) is sensibly zero at the period boundaries:
what is important is that the transform a(k) goes to zero at
the boundaries.

9 TROUBLESHOOTING

FFTLog does not work well with my function. What should
I do?

e Diagnose the problem. Is there ringing and aliasing?
Read §8. Is your function ‘smooth’ (contains only low fre-
quencies) in logarithmic space? If not, then FFTLog may
not be appropriate to your problem.

e Use a low-ringing value of koro, §6.

e Experiment with different values of the bias index q.

e Enlarge the periodic interval over which you specify y-
our function. Extrapolate your function sensibly: padding
with zeros may not be enough.

e Increase the resolution, by reducing the logarithmic s-
pacing of points. If your function is adequately ‘smooth’,
then increasing the resolution should, eventually, have no
effect. If continuing to increase the resolution continues to
have an effect, then your function is not ‘smooth’.

e Use another code.
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