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ABSTRACT

FFTLog is a set of fortran subroutines that 
ompute the fast Fourier or Hankel (=

Fourier-Bessel) transform of a periodi
 sequen
e of logarithmi
ally spa
ed points. FFT-

Log 
an be regarded as a natural analogue to the standard Fast Fourier Transform

(FFT), in the sense that, just as the normal FFT gives the exa
t (to ma
hine pre
ision)

Fourier transform of a linearly spa
ed periodi
 sequen
e, so also FFTLog gives the exa
t

Fourier or Hankel transform, of arbitrary order �, of a logarithmi
ally spa
ed period-

i
 sequen
e. FFTLog shares with the normal FFT the problems of ringing (response

to sudden steps) and aliasing (periodi
 folding of frequen
ies), but under appropriate


ir
umstan
es FFTLog may approximate the results of a 
ontinuous Fourier or Hankel

transform. The FFTLog algorithm was originally proposed by Talman (1978).

1 INTRODUCTION

This is a PostS
ript printable version of the webpage

http:==
asa.
olorado.edu/�ajsh/FFTLog/ , from whi
h

the FFTLog fortran 
ode may be downloaded. That web-

page was adapted in turn from Appendix B of a paper by

Hamilton (2000). If you wish to refer to the present do
u-

ment, please refer to Hamilton (2000) and/or to the website.

The FFTLog algorithm was originally proposed by Tal-

man (1978).

Consider the 
ontinuous Hankel (= Fourier-Bessel)

transform pair

~a(k) =

Z

1

0

a(r) (kr)

q

J

�

(kr) k dr ;

a(r) =

Z

1

0

~a(k) (kr)

�q

J

�

(kr) r dk : (1)

If the substitution

a(r) = A(r) r

�q

and ~a(k) =

~

A(k) k

q

(2)

is made, then the Hankel transform pair (1) be
omes equiv-

alent to the transform pair

~

A(k) =

Z

1

0

A(r)J

�

(kr)k dr ;

A(r) =

Z

1

0

~

A(k) J

�

(kr) r dk : (3)

Although the Hankel transform (1) with a power law bias

(kr)

�q

is thus equivalent in the 
ontinuous 
ase to the un-

biased Hankel transform (3), the transforms are di�erent

when they are dis
retized and made periodi
; for if a(r) is

periodi
, then A(r) = a(r) r

q

is not periodi
. FFTLog eval-

uates dis
rete Hankel transforms (1) with arbitrary power

law bias.

Fourier sine and 
osine transforms 
an be regarded as

spe
ial 
ases of Hankel transforms with � = �1=2, sin
e

J

1=2

(x) = (2=�x)

1=2

sin(x) ;

J

�1=2

(x) = (2=�x)

1=2


os(x) : (4)

As �rst noted by Siegman (1977), if the produ
t kr in

the Hankel transform is written as e

ln k+ln r

, then the trans-

form be
omes a 
onvolution integral in the integration vari-

able ln r or ln k. Convolution is equivalent to multipli
ation

in the 
orresponding Fourier transform spa
e. Thus the Han-

kel transform 
an be 
omputed numeri
ally by the algorith-

m: FFT ! multiply by a fun
tion ! FFT ba
k. This is the

idea behind a number of Fast Hankel Transform (FHT) algo-

rithms (Candel 1981; Anderson 1982; Hansen 1985; Fanning

1996) in
luding FFTLog (Talman 1978).

An advantage of FFTLog, emphasized by Talman

(1978), is that the order � of the Bessel fun
tion may be

any arbitrary real number. In parti
ular, FFTLog works for

1=2-integral �, so in
ludes the 
ases of Fourier sine and 
o-

sine transforms, and spheri
al Hankel transforms involving

the spheri
al Bessel fun
tions j

�

(x) � (�=2x)

1=2

J

�+1=2

(x).

2 MOTIVATION AND EXAMPLE

FFTLog emerged from a problem in 
osmology (Hamilton

2000). The problem required Fourier transforming a fun
-

tion that extended over many orders of magnitude, and was

`smooth' in logarithmi
 spa
e. A
tually, it was ne
essary to

transform whole matri
es of su
h fun
tions, so a fast trans-

form method was desirable.

In 
osmology, 
u
tuations in the matter density of the

Universe are thought to have been laid down during an in-


ationary epo
h in the �rst few moments following the Big

Bang (Turner 1997). Va
uum 
u
tuations in the �eld that

drives in
ation should produ
e a Gaussian distribution of
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Figure 1. Cosmologi
al power spe
trum P (k) of matter 
u
tu-

ations predi
ted by the so-
alled �CDM model, a 
at (
 = 1)

Universe dominated by a 
osmologi
al 
onstant (


�

= 0:7), and

Cold Dark Matter (


m

= 0:3) in
luding a sprinkling of baryons

(


b

= 0:05). The �CDM power spe
trum was 
omputed from the

formulae of Eisenstein & Hu (1998), nonlinearly evolved a

ord-

ing to the formula of Pea
o
k & Dodds (1996). The spe
trum

is normalized to the amplitude of 
u
tuations observed by the

COBE satellite.

density 
u
tuations with a near s
ale-invariant power spe
-

trum P (k) / k. That primordial spe
trum was pro
essed

prior to Re
ombination by the a
tion of gravity modulated

by the pressure of radiation. Following Re
ombination, when

the Universe was about 300,000 years old, the matter power

spe
trum was further pro
essed by nonlinear gravitational


lustering, up to the present time.

The 
osmologi
al power spe
trum P (k), a fun
tion of

wavenumber k, is the 3-dimensional Fourier transform of the


osmologi
al 
orrelation fun
tion �(r), a fun
tion of spatial

separation r. With the 
onventional normalization used by


osmologists,

P (k) =

Z

1

0

�(r)

sin(kr)

kr

4�r

2

dr ;

�(r) =

Z

1

0

P (k)

sin(kr)

kr

4�k

2

dk

(2�)

3

: (5)

Figures 1 and 2 show the 
osmologi
al power spe
trum P (k)

of matter 
u
tuations, and the 
orresponding 
orrelation

fun
tion �(r), predi
ted for a 
at (
 = 1) Cold Dark Matter

Universe dominated by a 
osmologi
al 
onstant (


�

= 0:7).

The power spe
trum here was 
omputed from the formulae

of Eisenstein & Hu (1998), nonlinearly evolved a

ording to

the formula of Pea
o
k & Dodds (1996).

In this parti
ular instan
e, FFTLog outperforms the

normal FFT on all 
ounts: it is more a

urate, with fewer

points, over a larger range, and it shows no signs of ring-

ing. This does not mean that FFTLog is always better than

FFT. Rather, FFTLog is well mat
hed to the problem at

hand: the 
osmologi
al power spe
trum extends over many

orders of magnitude in wavenumber k, and varies smoothly

in lnk.
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Figure 2. Cosmologi
al 
orrelation fun
tion �(r) 
orresponding

to the �CDM power spe
trum shown in Figure 1.

The top panel shows the 
orrelation fun
tions 
omputed with

FFTLog at two di�erent resolutions, plotted on top of ea
h other:

(red, low resolution) with 96 points over the range r = 10

�3

to

10

3

h

�1

Mp
, and (blue, high resolution) with 768 points over the

range r = 10

�6

to 10

6

h

�1

Mp
. The lines are dashed where the


orrelation fun
tion is negative, at separations r > 119h

�1

Mp
.

The low and high resolution 
urves are almost indistinguishable

ex
ept at r

>

�

200h

�1

Mp
, where the low resolution 
urve goes

to a 
onstant, while the high resolution 
urve de
lines as a power

law � r

�4

. The disagreement is 
aused by aliasing (see x8) of

small and large separations in the low resolution 
ase. Aliasing is

almost eliminated in the high resolution 
ase be
ause the range

r = 10

�6

to 10

6

h

�1

Mp
 over whi
h the transform was 
omputed

is mu
h broader than the range plotted. The straight dashed line

shows the 
anoni
al power law (r=5 h

�1

Mp
)

�1:8

for referen
e.

Both low and high resolution 
ases used an unbiased (q = 0)

transform, x7, and a low-ringing value of k

0

r

0

, x6 (a
tually the


hoi
e of k

0

r

0

made little di�eren
e here).

The middle panel shows the ratio �

low

=�

high

of the low to high

resolution 
orrelation fun
tions.

The bottom panel of Figure 2 shows the ratio �

FFT

=�

FFTLog

of the 
orrelation fun
tion �

FFT


omputed with a normal FFT

(sine transform) with 1023 points over the range r = 0:125 to

128h

�1

Mp
, to the high resolution 
orrelation fun
tion �

FFTLog


omputed with FFTLog. The FFT'd 
orrelation fun
tion �

FFT

rings at the �5 per
ent level.
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3 NORMAL DISCRETE FOURIER

TRANSFORM

First, re
all the essential properties of the standard dis-


rete Fourier transform of a periodi
 sequen
e of linearly

spa
ed points. Suppose that a(r) is a 
ontinuous, in general


omplex-valued, fun
tion that is periodi
 with period R,

a(r +R) = a(r) : (6)

Without loss of generality, take the fundamental interval to

be [�R=2; R=2℄, 
entred at zero. Sin
e a(r) is periodi
, its


ontinuous Fourier transform 
ontains only dis
rete Fourier

modes e

2�imr=R

with integral wavenumbers m. Suppose fur-

ther that the fun
tion a(r) is `smooth' in the spe
i�
 sense

that it is some linear 
ombination only of the N lowest fre-

quen
y Fourier modes, m = 0, �1, :::, �[N=2℄, where [N=2℄

denotes the largest integer greater than or equal to N=2,

a(r) =

X

m

0




m

e

2�imr=R

(7)

the outermost Fourier 
oeÆ
ients being equal, 


�N=2

=




N=2

, in the 
ase of even N . The primed sum in equation (7)

signi�es a sum over integral m from �[N=2℄ to [N=2℄, with

the proviso that for even N the outermost elements of the

sum re
eive only half weight:

X

n

0

x

n

�

[N=2℄

X

n=�[N=2℄

w

n

x

n

(8)

with w

n

= 1 ex
ept that w

�N=2

= w

N=2

= 1=2 if N is even.

The sampling theorem (e.g. Press et al. 1986 x12.1) as-

serts that, given a fun
tion a(r) satisfying equation (7), the

Fourier 
oeÆ
ients 


m


an be expressed in terms of the val-

ues a

n

� a(r

n

) of the fun
tion a(r) at the N dis
rete points

r

n

= nR=N for n = 0, �1, :::, �[N=2℄. For even N , the

periodi
ity of a(r) ensures that a

�N=2

= a

N=2

. Spe
i�
ally,

the sampling theorem asserts that the Fourier 
oeÆ
ients in

the expansion (7) satisfy




m

=

1

N

X

n

0

a

n

e

�2�imn=N

(9)

the dis
rete points a

n

themselves satisfying

a

n

=

X

m

0




m

e

2�imn=N

(10)

in a

ordan
e with equation (7).

Equations (9) and (10) 
onstitute a dis
rete Fourier

transform pair relating two periodi
, linearly spa
ed se-

quen
es a

n

and 


m

of lengthN . The standard FFT evaluates

the dis
rete Fourier transform exa
tly (that is, to ma
hine

pre
ision).

4 DISCRETE HANKEL TRANSFORM

Now suppose that the fun
tion a(r), instead of being period-

i
 in ordinary spa
e r, is periodi
 in logarithmi
 spa
e ln r,

with logarithmi
 period L,

a(re

L

) = a(r) : (11)

Take the fundamental interval to be [ln r

0

�L=2; ln r

0

+L=2℄,


entred at ln r

0

. As in x3, the periodi
ity of a(r) implies that

its Fourier transform with respe
t to ln r 
ontains only dis-


rete Fourier modes e

2�im ln(r=r

0

)=L

with integral wavenum-

bers m. Suppose further, as in x3 eq. (7), that a(r) 
ontains

only the N lowest frequen
y Fourier modes

a(r) =

X

m

0




m

e

2�im ln(r=r

0

)=L

(12)

with 


�N=2

= 


N=2

for even N . The sampling theorem as-

serts that the Fourier 
oeÆ
ients 


m

are given by




m

=

1

N

X

n

0

a

n

e

�2�imn=N

(13)

where a

n

� a(r

n

) are the values of the fun
tion a(r) at the

N dis
rete points r

n

= r

0

e

nL=N

for n = 0, �1, :::, �[N=2℄,

a

n

=

X

m

0




m

e

2�imn=N

: (14)

The 
ontinuous Hankel transform ~a(k), equation (1), of

a fun
tion a(r) of the form (12) is

~a(k) =

X

m

0




m

Z

1

0

e

2�im ln(r=r

0

)=L

(kr)

q

J

�

(kr)k dr : (15)

The integrals on the right hand side of equation (15) 
an be

done analyti
ally, in terms of

U

�

(x) �

Z

1

0

t

x

J

�

(t) dt = 2

x

�[(�+ 1 + x)=2℄

�[(�+ 1� x)=2℄

(16)

where �(z) is the usual Gamma-fun
tion. Thus equa-

tion (15) redu
es to

~a(k) =

X

m

0




m

u

m

e

�2�im ln(k=k

0

)=L

(17)

where u

m

is

u

m

(�; q) � (k

0

r

0

)

�2�im=L

U

�

�

q +

2�im

L

�

: (18)

Noti
e that u

�

m

= u

�m

, whi
h ensures that ~a(k) is real if a(r)

is real. Equation (17) gives the (exa
t) 
ontinuous Hankel

transform ~a(k) of a fun
tion a(r) of the form (7). Like a(r),

the Hankel transform ~a(k) is periodi
 in logarithmi
 spa
e

ln k, with period L. The fundamental interval is [ln k

0

�L=2;

ln k

0

+L=2℄, 
entred at lnk

0

, whi
h may be 
hosen arbitrarily

(but see x6 below).

The sampling theorem requires that u

�N=2

= u

N=2

for

even N , whi
h is not ne
essarily satis�ed by equation (18).

However, at the dis
rete points k

n

= k

0

e

nL=N


onsidered

by the sampling theorem, the 
ontributions at m = �N=2

to the sum on the right hand side of equation (17) are

(�)

n




N=2

(u

N=2

+ u

�

N=2

)=2 = (�)

n




N=2

Reu

N=2

. Thus the e-

quality (17) remains true at the dis
rete points k

n

if u

�N=2

are repla
ed by their real parts,

u

�N=2

! Reu

N=2

: (19)

With the repla
ement (19), the sampling theorem asserts

that the 
oeÆ
ients 


m

u

m

in the sum (17) are determined

by the values ~a

n

� ~a(k

n

) of the Hankel transform at the N

dis
rete points k

n

= k

0

e

nL=N

for n = 0, �1, :::, �[N=2℄




m

u

m

=

1

N

X

n

0

~a

n

e

2�imn=N

(20)
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~a

n

=

X

m

0




m

u

m

e

�2�imn=N

: (21)

Putting together equations (13), (14), (20) and (21)

yields the dis
rete Hankel transform pair

~a

n

=

X

m

0

a

m

v

+

m+n

(�; q) (22)

a

m

=

X

n

0

~a

n

v

�

m+n

(�; q) (23)

in whi
h the forward dis
rete Hankel mode v

+

n

(�; q) is the

dis
rete Fourier transform of u

m

(�; q) given by equation-

s (18) and (19),

v

+

n

(�; q) =

1

N

X

m

0

u

m

(�; q) e

�2�imn=N

(24)

while the inverse dis
rete Hankel mode v

�

n

(�; q) is the dis-


rete Fourier transform of the re
ipro
al 1=u

�m

(�; q),

v

�

n

(�; q) =

1

N

X

m

0

1

u

�m

(�; q)

e

�2�imn=N

: (25)

The Hankel transform matri
es v

+

m+n

(�; q) and v

�

m+n

(�; q)

are mutually inverse

X

l

0

v

+

m+l

(�; q) v

�

l+n

(�; q) = Æ

mn

(26)

where Æ

mn

denotes the Krone
ker delta. The forward and

inverse Hankel modes have the interesting property of being

self-similar; that is, Hankel modes v

+

m+n

(�; q) [or v

�

m+n

(�; q)℄

with di�erent indi
es m 
onsist of the same periodi
 se-

quen
e v

+

n

(�; q) [or v

�

n

(�; q)℄ 
y
li
ally shifted bym not
hes.

FFTLog evaluates the forward and inverse dis
rete Han-

kel transforms given by equations (22), (23), exa
tly (to ma-


hine pre
ision).

The re
ipro
al 1=u

�m

(�; q) in equation (25) is equal to

u

m

(�;�q), a

ording to equations (16) and (18),

1

u

�m

(�; q)

= u

m

(�;�q) (m 6= N=2) (27)

ex
ept in the 
ase m = �N=2 for even N , when the re-

pla
ement (19) generally invalidates equation (27). Howev-

er, in the spe
ial 
ase where u

�N=2

are already real, then

equation (19) leaves u

�N=2

un
hanged, and equation (27)

remains valid also at m = �N=2. This spe
ial 
ase is of

parti
ular interest, and is dis
ussed further in x6 below.

In the 
ontinuous 
ase, the inverse Hankel transform is

equal to the forward transform with q ! �q, equations (1).

In the dis
rete 
ase this remains true for odd N , but it is

not generally true for even N (the usual 
hoi
e) ex
ept in

the important spe
ial 
ase dis
ussed in x6.

In the general dis
rete 
ase (i.e. if the 
ondition [28℄

in x6 is not satis�ed), the inverse dis
rete Hankel mod-

e v

�

n

(�; q), equation (25), di�ers from the forward Hankel

mode v

+

n

(�;�q), equation (24), only for even N and only

in the 
oeÆ
ient of the highest frequen
y Fourier 
ompo-

nent, 1=u

�m

(�; q) versus u

m

(�;�q) for m = �N=2. To the

extent that the highest frequen
y Fourier 
oeÆ
ient 


�N=2

of a sequen
e a

n

is small, the di�eren
e between its inverse

dis
rete Hankel transform and its forward transform with

q ! �q should be small.

It is possible for the inverse dis
rete Hankel transform

to be singular, if u

�N=2

is purely imaginary, so that its real

part vanishes, making v

�

n

(�; q) singular. As dis
ussed in x6,

this singularity 
an be avoided by 
hoosing a low-ringing

value of k

0

r

0

, equation (30).

The forward (inverse) dis
rete Hankel transforms are

also singular at spe
ial values of � and q, namely where

�+1+ q (or �+1� q in the inverse 
ase) vanishes, be
ause

u

0

(�; q) = U

�

(q) is singular at these points. This singular-

ity re
e
ts a real singularity in the 
orresponding 
ontinu-

ous Hankel transform (unlike the singularity of the previous

paragraph, whi
h is an avoidable artefa
t of dis
reteness).

The singularity in u

0

leads to an additive in�nite 
onstant

in the dis
rete Hankel transform. In physi
al problems this

additive in�nite 
onstant may somehow 
an
el out (for ex-

ample, in the di�eren
e between two Hankel transforms).

FFTLog's strategy in these singular 
ases is to evaluate the

dis
rete Hankel transform with the in�nite 
onstant set to

zero, and to issue a warning.

5 FFTLOG ALGORITHM

The FFTLog algorithm for taking the dis
rete Hankel trans-

form, equation (22), of a sequen
e a

n

of N logarithmi
ally

spa
ed points is:

� FFT a

n

to obtain the Fourier 
oeÆ
ients 


m

, equa-

tion (13);

� multiply by u

m

given by equations (18) and (19) to

obtain 


m

u

m

;

� FFT 


m

u

m

ba
k to obtain the dis
rete Hankel transfor-

m ~a

n

, equation (21).

A variant of the algorithm is to sandwi
h the above op-

erations with power law biasing and unbiasing operations.

For example, one way to take the unbiased 
ontinuous Han-

kel transform

~

A(k) of a fun
tion A(r), equation (3), is to

bias A(r) and

~

A(k) with power laws, equation (2), and take

a biased Hankel transform, equation (1). The dis
rete equiv-

alent of this is:

� Bias A

n

with a power law to obtain a

n

= A

n

r

�q

n

, equa-

tion (2);

� FFT a

n

to obtain the Fourier 
oeÆ
ients 


m

, equa-

tion (13);

� multiply by u

m

given by equations (18) and (19) to

obtain 


m

u

m

;

� FFT 


m

u

m

ba
k to obtain the dis
rete Hankel transfor-

m ~a

n

, equation (21);

� Unbias ~a

n

with a power law to obtain

~

A

n

= ~a

n

k

�q

n

,

equation (2).

Although in the 
ontinuous limit the result would be iden-

ti
al to an unbiased Hankel transform, in the dis
rete 
ase

the result di�ers. With a simple unbiased dis
rete Hankel

transform, it is the sequen
e A

n

that is taken to be period-

i
, whereas in the algorithm above it is not A

n

but rather

a

n

that is periodi
.

The inverse dis
rete Hankel transform is a

omplished

by the same series of steps, ex
ept that 


m

is divided instead

of multiplied by u

m

.

The FFTLog 
ode is built on top of the NCAR suite of

FFT routines (Swarztrauber 1979), and a modi�ed version
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of an implementation of the 
omplex Gamma-fun
tion from

the gamerf pa
kage by Ooura (1996).

FFTLog in
ludes driver routines for the spe
i�
 
ases

of the Fourier sine and 
osine transforms.

6 LOW-RINGING CONDITION ON k

0

r

0

The 
entral values ln r

0

and ln k

0

of the periodi
 intervals

in ln r and ln k may be 
hosen arbitrarily. However, ringing

of the dis
rete Hankel transform may be redu
ed, for either

even or odd N , if the produ
t k

0

r

0

is 
hosen in su
h a way

that the boundary points of the sequen
e u

m

, equation (18),

are equal

u

�N=2

= u

N=2

: (28)

Re
all that the general pro
edure, for evenN , was to repla
e

u

�N=2

by their real part, equation (19). The 
ondition (28)

requires that u

�N=2

are already real. The 
ondition (28) re-

du
es ringing be
ause it makes the periodi
 sequen
e u

m

fold smoothly a
ross the period boundary at m = �N=2.

In addition to redu
ing ringing, the 
ondition (28)

means that equation (27) remains true also at m = �N=2,

so is true for all m. In this 
ase the inverse Hankel mod-

e v

�

n

(�; q), equation (25), is equal to the forward Hankel

mode v

+

n

(�;�q) with q of the opposite sign

v

�

n

(�; q) = v

+

n

(�;�q) =

1

N

X

m

0

u

m

(�;�q) e

�2�imn=N

: (29)

In other words, if 
ondition (28) is satis�ed, then the in-

verse dis
rete Hankel transform equals the forward dis
rete

Hankel transform with q ! �q. This is like the 
ontinuous

Hankel transform, equations (1), where the inverse transfor-

m equals the forward transform with q ! �q.

The periodi
ity 
ondition (28) on u

�N=2

translates, for

real � and q, into a 
ondition on k

0

r

0

ln(k

0

r

0

) =

L

N

n

1

�

Arg

h

U

�

�

q +

�iN

L

�i

+ integer

o

(30)

where Argz � Im ln z denotes the argument of a 
omplex

number, and integer is any integer. In other words, to redu
e

ringing, it may help to 
hoose k

0

r

0

so as to satisfy the 
on-

dition (30). This is not too mu
h of a restri
tion, sin
e L=N

is the logarithmi
 spa
ing between points (= one not
h), so

the low-ringing 
ondition (30) allows k

0

r

0

to be 
hosen to

lie within half a not
h [= L=(2N)℄ of whatever number one


hooses, for example within half a not
h of k

0

r

0

= 1.

The low-ringing 
ondition (30) is a 
ondition on the

phasing of the dis
rete points rn and kn at whi
h the dis-


rete Hankel transform is spe
i�ed. The 
ondition is analo-

gous to, albeit more 
ompli
ated than, the 
ondition on the

usual FFT that dis
rete frequen
ies be phased so that their

wavenumbers are integers, equation (7).

FFTLog 
an be set to use automati
ally the low-ringing

value of k

0

r

0

nearest to any input value of k

0

r

0

.

Note that the low-ringing value of k

0

r

0

from 
ondi-

tion (30) di�ers for di�erent �, q, and L=N . For example, the

sine transform (� = 1=2) and 
osine transform (� = �1=2)

have di�erent low-ringing values of k

0

r

0

.

How else does the 
hoi
e of k

0

r

0

a�e
t the Hankel trans-

form? In
reasing the value of ln(k

0

r

0

) by one not
h L=N


y
li
ally shifts the dis
rete Hankel transform ~a

n

, equa-

tion (21), by one not
h to the left, ~a

n

! ~a

n�1

. In other

words, 
hanging ln(k

0

r

0

) by an integral number of not
hes

shifts the origin of the transform, but leaves the transform

otherwise un
hanged, as might have been expe
ted.

In pra
ti
e, sin
e in most 
ases one is probably using the

dis
rete Hankel transform as an approximation to the 
on-

tinuous transform, one would probably want to use k

0

r

0

� 1

(or 2, or �, a

ording to taste).

7 UNITARY UNBIASED HANKEL

TRANSFORM

The dis
rete Hankel transform with both low-ringing k

0

r

0

and no power law bias, q = 0, is of parti
ular interest be-


ause it is unitary, like the Fourier transform. Indeed, being

also real, the low-ringing unbiased Hankel transform is or-

thogonal, i.e. self-inverse, like the Fourier sine and 
osine

transforms. This is like the 
ontinuous unbiased (q = 0)

Hankel transform, equations (1), whi
h is self-inverse.

The dis
rete Hankel modes v

m+n

(�; 0) = v

+

m+n

(�; 0) =

v

�

m+n

(�; 0) in the low-ringing unbiased (q = 0) 
ase are pe-

riodi
, orthonormal, and self-similar, equation (26),

X

l

0

v

m+l

(�; 0) v

l+n

(�; 0) = Æ

mn

: (31)

Like any orthogonal transformation, the low-ringing un-

biased (q = 0) Hankel transform 
ommutes with the opera-

tions of matrix multipli
ation, inversion, and diagonalization

(for non-low-ringing or biased Hankel transforms, q 6= 0, the

operations do not 
ommute). That is, the Hankel transform

of the produ
t of two matri
es is equal to the produ
t of

their Hankel transforms, and so on.

All else being equal (whi
h it may not be), given a 
hoi
e

between applying an unbiased (q = 0) or biased (q 6= 0)

Hankel transform, and between a low-ringing k

0

r

0

, equa-

tion (30), or otherwise, one would be in
lined to 
hoose the

low-ringing unbiased transform, be
ause of its orthogonality

property.

8 RINGING AND ALIASING

FFTLog su�ers from the same problems of ringing (response

to sudden steps) and aliasing (periodi
 folding of frequen-


ies) as the normal FFT.

Usually one is interested in the dis
rete Fourier or Han-

kel transform not for its own sake, but rather as an approx-

imation to the 
ontinuous transform. The usual pro
edure

would be to apply the dis
rete transform to a �nite segmen-

t of the fun
tion a(r) to be transformed. For FFTLog, the

pro
edure 
an be regarded as involving two steps: trun
at-

ing the fun
tion to a �nite logarithmi
 interval, whi
h 
auses

ringing of the transform; followed by periodi
 repli
ation of

the fun
tion in logarithmi
 spa
e, whi
h 
auses aliasing.

Figure 3 illustrates these steps for the unbiased (q = 0)

Hankel transform, equation (1), of order � = �1=2 of a

fun
tion that is Gaussian in the log

a(r) = exp[�(ln r)

2

=2℄ : (32)
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Figure 3. Illustrating the ringing and aliasing that o

urs when

the 
ontinuous Hankel transform of a fun
tion is approximated

by the dis
rete Hankel transform of a �nite segment of the fun
-

tion. Lines are dashed where values are negative. The fun
tion

a(r) is shown to the left, and its 
orresponding Hankel transform

~a(k) to the right. The panels from top to bottom are: (top) the

original fun
tion a(r) and its Hankel transform ~a(k); (middle)

the trun
ated fun
tion a(r) and its Hankel transform ~a(k), whi
h

rings at high frequen
ies k; and (bottom) the trun
ated, period-

i
ally repli
ated fun
tion a(r) and its 
orresponding periodi
ally

repli
ated Hankel transform ~a(k), whi
h is aliased. Verti
al lines

demar
ate periodi
 intervals.

Trun
ation of the fun
tion a(r) leads to ringing of its

transform ~a(k) at high frequen
ies k, as seen in the middle

right panel of Figure 3. The os
illations at large k are a
tu-

ally uniformly spa
ed in k, but appear bun
hed up be
ause

of the logarithmi
 plotting.

Periodi
 repli
ation means taking a sum of 
opies shift-

ed by integral periods. From the de�nition (1) of the 
on-

tinuous Hankel transform, it 
an be seen that periodi
al-

ly repli
ating a fun
tion a(r) in logarithmi
 spa
e ln r and

then taking its 
ontinuous Hankel transform is equivalent

to Hankel transforming the fun
tion a(r) and then period-

i
ally repli
ating the transform ~a(k) in ln k. But trun
at-

ing a fun
tion does not trun
ate its transform. So whereas

a trun
ated, periodi
ally repli
ated fun
tion a(r) 
ontains


ontributions from only one period at ea
h point r, the pe-

riodi
ally repli
ated transform 
ontains overlapping 
ontri-

butions from many periods at ea
h point k. This is aliasing.

In Figure 3 aliasing is visible as an enhan
ement of the peri-

odi
ally repli
ated transform ~a(k) on the high k side of the

periodi
 interval.

Ringing and aliasing 
an be redu
ed by taking suitable

pre
autions.

The ringing that results from taking the dis
rete trans-

form of a �nite segment of a fun
tion 
an be redu
ed by

arranging that the fun
tion folds smoothly from large to s-

mall s
ales. It may help to bias the fun
tion with a power

law before transforming it, as in the se
ond algorithm in x5.

It may also help to use a low-ringing value of k

0

r

0

, x6.

Aliasing 
an be redu
ed by enlarging the periodi
 inter-

val. Aliasing 
an be eliminated (to ma
hine pre
ision) if the

interval 
an be enlarged to the point where the transform

~a(k) goes sensibly to zero at the boundaries of the period.

Note that it is not suÆ
ient to enlarge the interval to the

point where a(r) is sensibly zero at the period boundaries:

what is important is that the transform ~a(k) goes to zero at

the boundaries.

9 TROUBLESHOOTING

FFTLog does not work well with my fun
tion. What should

I do?

� Diagnose the problem. Is there ringing and aliasing?

Read x8. Is your fun
tion `smooth' (
ontains only low fre-

quen
ies) in logarithmi
 spa
e? If not, then FFTLog may

not be appropriate to your problem.

� Use a low-ringing value of k

0

r

0

, x6.

� Experiment with di�erent values of the bias index q.

� Enlarge the periodi
 interval over whi
h you spe
ify y-

our fun
tion. Extrapolate your fun
tion sensibly: padding

with zeros may not be enough.

� In
rease the resolution, by redu
ing the logarithmi
 s-

pa
ing of points. If your fun
tion is adequately `smooth',

then in
reasing the resolution should, eventually, have no

e�e
t. If 
ontinuing to in
rease the resolution 
ontinues to

have an e�e
t, then your fun
tion is not `smooth'.

� Use another 
ode.
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