1. Earth metric
The metric just above the surface of the Earth is well-approximated by
\[ds^2 = - (1 + 2\Phi) dt^2 + (1 - 2\Phi) dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) , \]
where
\[\Phi(r) = - \frac{GM}{r} \]
is the familiar Newtonian gravitational potential.

(a) Proper time
Consider an object at fixed radius \(r \), moving along the equator \(\theta = \pi/2 \) with constant non-relativistic velocity \(r \frac{d\phi}{dt} = v \). Compare the proper time of this object with that at rest at infinity. [Hint: Work to first order in the potential \(\Phi \). Regard \(v^2 \) as first order in \(\Phi \). Why is that reasonable?]

(b) Orbits
Consider a satellite in orbit about the Earth. The conservation of energy \(E \) per unit mass, angular momentum \(L \) per unit mass, and rest mass per unit mass are expressed by
\[u_t = -E , \quad u_\phi = L , \quad u_\mu u^\mu = -1 . \]
For equatorial orbits, \(\theta = \pi/2 \), show that the radial component \(u^r \) of the 4-velocity satisfies
\[u^r = \sqrt{2(\Delta E - U)} , \]
where \(\Delta E \) is the energy per unit mass of the particle excluding its rest mass energy,
\[\Delta E = E - 1 , \]
and the effective potential \(U \) is
\[U = \Phi + \frac{L^2}{2r^2} . \]
[Hint: Neglect air resistance. Remember to work to first order in \(\Phi \). Treat \(\Delta E \) and \(L^2 \) as first order in \(\Phi \). Why is that reasonable?]

(c) Circular orbits
From the condition that the potential \(U \) be an extremum, find the circular orbital velocity \(v = r \frac{d\phi}{dt} \) of a satellite at radius \(r \).

(d) Special and general relativistic corrections for satellites
Compare the proper time of a satellite in circular orbit to that of a person at rest at infinity. Express your answer in the form
\[\frac{d\tau_{\text{satellite}}}{dt} - 1 = -\Phi_\oplus (f_{\text{GR}} + f_{\text{SR}}) , \]
where f_{GR} and f_{SR} are the general relativistic and special relativistic corrections, and Φ_\oplus is the dimensionless gravitational potential at the surface of the Earth,

$$\Phi_\oplus = -\frac{GM_\oplus}{c^2 R_\oplus}.$$ \hspace{1cm} (1.8)

What is the value of Φ_\oplus in milliseconds per year?

(e) Special and general relativistic corrections for satellites vs. Earth observer

Compare the proper time of a satellite in circular orbit to that of a person on Earth at one of the poles (so the person has no motion from the Earth’s rotation). Express your answer in the form

$$\frac{d\tau_{\text{satellite}}}{dt} - \frac{d\tau_{\text{person}}}{dt} = -\Phi_\oplus (f_{GR} + f_{SR}) .$$ \hspace{1cm} (1.9)

At what satellite radius r, in units of Earth radius R_\oplus, do the special and general relativistic corrections cancel?

(f) Special and general relativistic corrections for ISS and GPS satellites

What are the corrections (be careful to get the sign right!) in units of Φ_\oplus, and in units of ms yr$^{-1}$, for (i) a satellite in low Earth orbit, such as the International Space Station; (ii) a nearly geostationary satellite, such as a GPS satellite? Google the numbers that you may need.