Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

1. For the equilibrium, \(\text{N}_2\text{O}_4(g) \leftrightarrow 2 \text{NO}_2(g) \), the degree of dissociation, \(\alpha_e \), at 298 K is 0.201 at 1.00 bar total pressure. Calculate (a) \(\Delta_r G \), (2) \(K \), and (3) the standard Gibbs energy change, \(\Delta_r G^\circ \) at 298 K.

\[
\text{N}_2\text{O}_4(g) \rightleftharpoons 2\text{NO}_2(g)
\]

Amount at equilibrium

\[
\begin{array}{cc}
(1 - \alpha)n & 2\alpha n \\
\end{array}
\]

Mole fraction

\[
\begin{array}{cc}
\frac{1 - \alpha}{1 + \alpha} & \frac{2\alpha}{1 + \alpha} \\
\end{array}
\]

Partial pressure

\[
\begin{array}{cc}
\frac{(1 - \alpha)P}{1 + \alpha} & \frac{2\alpha P}{1 + \alpha} \\
\end{array}
\]

Assuming that the gases are perfect, \(\alpha_j = \frac{p_j}{p^\circ} \)

\[
K = \frac{(p_{\text{NO}_2}/p^\circ)^2}{(p_{\text{N}_2\text{O}_4}/p^\circ)} = \frac{4\alpha^2 p}{(1 - \alpha^2)p^\circ}
\]

For \(p = p^\circ \), \(K = \frac{4\alpha^2}{1 - \alpha^2} \)

(a) \(\Delta_r G = 0 \) at equilibrium

(b) \(\alpha = 0.201 \quad K = \frac{4(0.201)^2}{1 - 0.201^2} = 0.16841 \)

(c) \(\Delta_r G^\circ = -RT \ln K = -(8.314 \text{ J K}^{-1} \text{ mol}^{-1}) \times (298 \text{ K}) \times \ln(0.16841) \)

\[= 4.41 \text{ kJ mol}^{-1} \]

6.3 (a) (copied for your convenience)
The standard Gibbs energy of the reaction \(\text{N}_2 (g) + 3\text{H}_2 (g) \rightarrow 2\text{NH}_3 (g) \) is \(-32.9 \text{ kJ mol}^{-1}\) at 298 K. What is the value of \(\Delta_r G \) when \(Q = (a) 0.10, (b) 1.0, (c) 10.0 \) and \((d) 100.0 \)?

Estimate (by interpolation) the value of \(K \) from the values that you calculated above. What is the actual value of \(K \)?

Use tables to find \(\Delta_r G^\circ \)

Then \(\Delta_r G = \Delta_r G^\circ + RT \ln(Q) \). Find \(\Delta_r G \) for each \(Q \).

Make plot of \(\Delta_r G \) as a function of \(Q \). Since \(\Delta_r G = 0 \) when \(Q = K \), use this plot to **estimate** the value of \(Q \) when \(\Delta_r G = 0 \). This is \(K, \sim 6 \times 10^5 \).

3. At 2257 K and \(P = 1.0 \text{ Bar} \) total pressure, water is 1.77 % dissociated at equilibrium by way of the reaction \(2\text{H}_2\text{O} (g) \leftrightarrow 2\text{H}_2 (g) + \text{O}_2 (g) \). Calculate \(K \).

Draw up an equilibrium table. Let \(\alpha = 0.0177 \) be the fraction dissociated at equilibrium.

\[
\begin{align*}
2 \text{H}_2\text{O}(g) & \rightleftharpoons 2 \text{H}_2(g) + \text{O}_2(g) \quad T = 2257 \text{ K}, \quad P = 1 \text{ bar} = p^*, \quad \alpha = 0.0177 \text{ at equilibrium} \\
\text{We draw up the following equilibrium table (Example 6.2).} \\
\begin{array}{cccc}
\text{Amount at} & \text{H}_2\text{O}(g) & \text{H}_2(g) & \text{O}_2(g) \\
\text{equilibrium} & (1-\alpha)n & \alpha n & \frac{1}{2} \alpha n \\
\text{Mole fraction} & \frac{1-\alpha}{1+\frac{1}{2} \alpha} & \frac{\alpha}{1+\frac{1}{2} \alpha} & \frac{\frac{1}{2} \alpha}{1+\frac{1}{2} \alpha} \\
\text{Partial pressure} & \frac{(1-\alpha)p}{1+\frac{1}{2} \alpha} & \frac{\alpha p}{1+\frac{1}{2} \alpha} & \frac{\frac{1}{2} \alpha p}{1+\frac{1}{2} \alpha}
\end{array}
\end{align*}
\]

\[
K = \left(\prod \text{q}_j^a \right)_{\text{equilibrium}} = \left(\prod (p_j/p^*)^{\alpha_j} \right)_{\text{equilibrium}} \tag{6.13}
\]

(Perfect gas assumption)

\[
= \frac{(p_{\text{H}_2} p^*)^2(p_{\text{O}_2} p^*)^2}{(p_{\text{H}_2}\text{O}^*)^2} = \frac{p_{\text{H}_2} p_{\text{O}_2}}{p_{\text{H}_2}\text{O}^*} = \left(\frac{\alpha p}{1+\frac{1}{2} \alpha} \right)^2 \left(\frac{\frac{1}{2} \alpha p}{1+\frac{1}{2} \alpha} \right)^2 \left(\frac{(1-\alpha)p}{1+\frac{1}{2} \alpha} \right)^2 \
\]

\[
= \frac{p}{2p^*} \left(\frac{\alpha^3}{(1-\alpha)^2(1+\frac{1}{2} \alpha)^2} \right) = \frac{1}{2} \left(\frac{(0.0177)^3}{(1-0.0177)^2(1+\frac{1}{2} \times 0.0177)} \right) = 2.85 \times 10^{-5}
\]
4. At 25°C, the density of a 50 per cent by mass ethanol–water solution is 0.914 g cm\(^{-3}\). Given that the partial molar volume of water in the solution is 17.4 cm\(^3\) mol\(^{-1}\), calculate the partial molar volume of the ethanol.

Let A denote water and B ethanol. The total volume of the solution is

\[V = n_A V_A + n_B V_B. \]

We are given \(V_A\), we need to determine \(n_A\) and \(n_B\) in order to solve for \(V_B\).

Assume we have 100 cm\(^3\) of solution; then the mass of solution is

\[m = d \times V = (0.914 \text{ g cm}^{-3}) \times (100 \text{ cm}^3) = 91.4 \text{ g} \]

of which 45.7 g is water and 45.7 g ethanol.

\[
100 \text{ cm}^3 = \left(\frac{45.7 \text{ g}}{18.02 \text{ g mol}^{-1}} \right) \times (17.4 \text{ cm}^3 \text{ mol}^{-1}) + \left(\frac{45.7 \text{ g}}{46.07 \text{ g mol}^{-1}} \right) \times V_B
\]

\[= 44.13 \text{ cm}^3 + 0.9920 \text{ mol} \times V_B, \]

\[V_B = \frac{55.87 \text{ cm}^3}{0.9920 \text{ mol}} = \frac{56.3 \text{ cm}^3 \text{ mol}^{-1}}{\text{.}} \]

Let A denote water and B ethanol. The total volume of the solution is

\[V = n_A V_A + n_B V_B. \]

We are given \(V_A\), we need to determine \(n_A\) and \(n_B\) in order to solve for \(V_B\).

Assume we have 100 cm\(^3\) of solution; then the mass of solution is

\[m = d \times V = (0.914 \text{ g cm}^{-3}) \times (100 \text{ cm}^3) = 91.4 \text{ g} \]

of which 45.7 g is water and 45.7 g ethanol.

\[
100 \text{ cm}^3 = \left(\frac{45.7 \text{ g}}{18.02 \text{ g mol}^{-1}} \right) \times (17.4 \text{ cm}^3 \text{ mol}^{-1}) + \left(\frac{45.7 \text{ g}}{46.07 \text{ g mol}^{-1}} \right) \times V_B
\]

\[= 44.13 \text{ cm}^3 + 0.9920 \text{ mol} \times V_B, \]

\[V_B = \frac{55.87 \text{ cm}^3}{0.9920 \text{ mol}} = \frac{56.3 \text{ cm}^3 \text{ mol}^{-1}}{\text{.}} \]