Observational determinations of CMB anisotropy

Results from the WMAP satellite 1st year data

2003 data

ASTR 3830: Spring 2004
Compilation of all available data by Max Tegmark includes WMAP and some ground based / balloon experiments sensitive to smaller angular scales:

- **Peak at degree scales**
- **Plateau at large scales**
- **Decline toward very small scales**

Want to understand physical origin of each of these features
Most of the anisotropy power spectrum reflects fluctuations in the density at the time of recombination:

Consider a slight overdensity collapsing during the radiation dominated phase. Photons escaping at recombination:
- Escape from a hotter, denser region
- Are redshifted escaping from a deeper potential well
- Have a Doppler shift due to relative velocity
How this works in detail depends upon the scale of the fluctuations:

Largest scales (low l)

On the largest scales, perturbations have not had time to collapse significantly prior to recombination. At low l, directly see the fluctuations generated at an earlier epoch.

Intermediate scales (~degree)

Overdensities start to collapse, but increased pressure causes them to bounce - leading to oscillations.
Maxima and minima of these oscillations lead to the strongest signals in the microwave background:

- Doppler peaks
- First peak (compression) occurs at degree scales

Small scales

Recombination is not instantaneous.
Photons will `leak’ out of small over / under-densities during the process - damping very small scale fluctuations.

Exponential suppression of anisotropy at the smallest scales.
Dependence on cosmology

1. Is the Universe flat, open, or closed?

Doppler peaks define a physical scale at recombination
Angular scale this corresponds to depends upon the
geometry of the Universe:

Blue curve: effect of changing the geometry

Open universe - position of the peaks is shifted to
smaller angular scales (i.e. larger multipole l)

Animations from Wayne Hu

ASTR 3830: Spring 2004
Observed position of the first peak is at:

\[l = 220 \quad \square_{total} = 1.02 \pm 0.02 \]

i.e. the Universe is flat (or very close to being flat)

What does this imply about the cosmological constant?

Directly: almost nothing - CMB anisotropy is mainly sensitive to the total energy density, not to the individual contributions from matter and cosmological constant.

Indirectly: estimate (by other means) that the total matter density is perhaps \(\square_m = 0.3 \) (mostly dark matter). Need `something else’ to make up the inferred value of \(\square_{total} = 1 \). A cosmological constant with \(\square_L \sim 0.7 \) as deduced from SN is consistent with this.
2. Baryon content of the Universe

Increasing the fraction of baryons:
• Increases the amplitude of the Doppler peaks
• Changes the relative strength of the peaks - odd peaks (due to compressions) become stronger relative to the even peaks (due to rarefactions)
WMAP results give:

$$
\Omega_{baryons} h^2 = 0.024 \pm 0.001
$$

Hubble constant in units of $100 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Estimates based on nucleosynthesis and the measured abundance of deuterium give a range:

$$
\Omega_{baryons} h^2 = 0.021 \pm 0.025
$$

Good consistency between two independent measurements of the baryon abundance.
Full power spectrum from WMAP and other experiments is consistent with the predictions of ΛCDM (i.e. the family of cosmological models that include dark matter plus a cosmological constant):

Simplest such models have 6 free parameters:

- Being able to fit the data is a genuine success!
- Parameters are mostly well constrained by the data
Adding in other cosmological information e.g. from the supernovae measurements, further constrains the model:

Important information provided by:

- Microwave background (WMAP, eventually Planck)
- Type 1a Supernovae
- Nucleosynthesis
- Lyman-\(\alpha\) forest, galaxy clustering (2dF, Sloan Digital Sky Survey), weak gravitational lensing

\textit{ASTR 3830: Spring 2004}
Summary:

- The Universe is flat, and will expand forever
- Ordinary matter (stars, gas, dark baryons) is negligible
- **Cold dark matter** and **dark energy** dominate the evolution of the Universe, and currently make roughly equal contributions to the total energy density

Suggests that the Universe at the time of recombination is now very well understood - we know the initial conditions that eventually gave rise to galaxies, stars, quasars etc…

Discuss on Wednesday where the initial conditions (may) have come from…