Chemical evolution

Observation of spiral and irregular galaxies show that the fraction of heavy elements varies with the fraction of the total mass which is in the form of gas:

ASTR 3830: Spring 2004

Simplest model to understand these observations is the **one-zone** model (Sparke & Gallagher 4.3).

Consider the history of an annulus of a spiral galaxy at some radius R. Make several simplifying assumptions:

- No material (gas, stars) enters or leaves the annulus
- Initially the annulus contains only gas, with no heavy elements (i.e. just hydrogen, helium)
- As stars are formed, massive stars explode `instantaneously' as supernovae, returning enriched gas to the ISM
- Turbulent motions keep the gas well mixed, so it has a single well-defined composition

How does the metal fraction of the gas evolve with time?

ASTR 3830: Spring 2004

Let mass of interstellar gas in annulus be M_{g} Mass of heavy elements in gas M_{h}

Define **metallicity**:
$$Z = \frac{M_h}{M_g}$$

Suppose the mass of stars at this time is M_s Imagine forming new stars, with mass \square ' M_s

Of these:

- Stars with mass M > 8 Solar masses explode rapidly as supernovae, returning metals to the ISM
- Lower mass stars, with mass □M_s, remain

The mass of heavy elements produced by this episode of star formation is $p \square M_s$, defining the **yield** p.

Total change in the mass of heavy elements due to star formation is then:

Corresponding change in metallicity is:

By conservation of mass:

$$\square M_{s} = \square \square M_{g}$$

Combining the two previous equations get:

$$\Box Z = \Box p \frac{\Box M_g}{M_g}$$

Can write this as a differential equation:

$$\frac{dM_g}{dZ} = \Box \frac{M_g}{p}$$

If p is a constant (ie does not vary between subsequent generations of stars), then this integrates immediately to give:

$$Z(t) = \prod_{g} p \ln \frac{1}{M_g(t)}$$
 Gas mass over total mass

(using assumption that Z(t=0) was zero). Relation of this form is very roughly what is observed in some galaxies.

ASTR 3830: Spring 2004