## **Dynamics of elliptical galaxies**

Galaxies that appear elliptical on the sky may be intrinsically oblate, prolate, or triaxial, depending upon their symmetries:



For an individual galaxy, can't determine from an image what the intrinsic shape of the galaxy is.

Orbits of stars differ substantially in different types.

# **Orbits in elliptical galaxies**

Classification of stellar orbits in elliptical galaxies is much more complicated than for disk galaxies. Most important distinction is between **axisymmetric galaxies** (prolate or oblate) and **triaxial galaxies**.

In an axisymmetric galaxy, there is a plane, perpendicular to the symmetry axis, in which gravitational force is central.



No azimuthal force, so component of angular momentum about symmetry axis (say, z-axis) is conserved

$$L_z = m(\mathbf{r} \times \mathbf{v})_z$$

Only stars with  $L_z=0$  can reach center, other stars must avoid the center.

### **Orbits in elliptical galaxies**

Triaxial potential: energy is conserved but not L<sub>z</sub>

Simple example is the potential:

$$\Phi(\mathbf{x}) = \frac{1}{2} \left[ \omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2 \right]$$

...which is the potential inside a uniform density ellipsoid.  $\omega_x$  etc are constants. Star in this potential follows harmonic motion in each of the x,y,z directions *independently*.

Unless  $\omega_x$ ,  $\omega_y$  and  $\omega_z$  are rational multiples of each other (eg 1:2:7) orbits never close - star completely fills in a rectangular volume of space in the galaxy.

Example of a **box orbit**.

### **Orbits in elliptical galaxies**

#### Numerical examples of orbits from Josh Barnes





#### z-tube orbit

Orbit loops around the minor axis - only orbit family in oblate potential

#### box orbit

Main orbit family in triaxial potentials - note orbit does not avoid the center

## **Fine structure in elliptical galaxies**

Contours of constant surface brightness often depart slightly from true ellipses.

<u>Twists:</u> major axis of the isophotes changes angle going from the center of the galaxy to the edge. This can be interpreted as a projection effect of a triaxial galaxy in which the ellipticity changes with radius:



## **Fine structure in elliptical galaxies**

Surface brightness distribution can also depart slightly from ellipses:



Normally subtle distortions Luminous ellipticals are often boxy, midsized ellipticals disky

Could classify ellipticals based on their degree of boxiness / disky-ness - S0s would then be continuation of a trend to increasing disky-ness.

#### **Faber-Jackson relation**

Analog of the Tully-Fisher relation for spiral galaxies. Instead of the peak rotation speed  $V_{max}$ , measure the velocity dispersion along the line of sight  $\sigma$ . This is correlated with the total luminosity:

$$L_V = 2 \times 10^{10} \left( \frac{\sigma}{200 \text{ kms}^{-1}} \right)^4 L_{sun}$$

Can be used as a (not very precise) distance indicator.

## **Fundamental plane**

Recall that for an elliptical galaxy we can define an *effective radius*  $R_e$  - radius of a circle which contains half of the total light in the galaxy. Measure three apparently independent properties;

- The effective radius  $R_e$
- $\bullet$  The central velocity dispersion  $\sigma$
- The surface brightness at the effective radius  $I_e = I(R_e)$

Plot these quantities in three dimensions - find that the points all lie close to a single plane!

Called the **fundamental plane**.

#### **Fundamental plane**



Plots show edge-on views of the fundamental plane for observed elliptical galaxies in a galaxy cluster.

### Approximately:

 $R_e \propto \sigma^{1.24} I_e^{-0.82}$ 

Measure the quantities on the right hand side, then compare apparent size with R<sub>e</sub> to get distance

Origin of the fundamental plane unknown...