Solar neutrinos

Overall result of the proton-proton (p-p) chain of reactions:

$$4 \times p \rightarrow {}^{4}_{2}\text{He} + 2e^{+} + 2v_{e}$$

+28 MeV of energy shared between the reaction products.

Note that this reaction conserves:

- Charge (+4 in electron units on both sides)
- **Baryon number** (4 protons / 2 neutrons + 2 protons)
- Lepton number (zero on left-hand side / 2 electron neutrinos + 2 positrons `anti-electrons' on right-hand side)

Electron neutrino produced in this reaction can have a range of energies (E = 0 - 0.42 MeV), but always a small fraction of the total energy release. Note: experiments at CERN in the 1980s established that there are exactly three families of `electron-like' particles (leptons):

Particle	Associated neutrino
Electron	${oldsymbol{ u}}_e$
Muon	${oldsymbol{ u}}_{\mu}$
Tau lepton	${oldsymbol{ u}}_{ au}$

Lepton number is conserved within each family. So if we start with zero electrons, must form pairs of particle + antiparticle (e.g. electron + positron, or positron + neutrino + something else to conserve charge).

In the Sun, energy is too low to create muons or tau leptons. Hence, p-p fusion reactions yield **only** positrons plus electron neutrinos. What happens to the neutrinos? Cross-section for scattering of ~MeV neutrinos off matter is $\sigma \sim 10^{-44}$ cm². Mean free path is:

...where n is the density of particles. If we estimate $\rho = 100$ g cm⁻³, then n ~ 2ρ / m_H which gives n ~ 10^{26} cm⁻³.

$$l \sim 10^{18} \text{ cm} \sim \frac{1}{3} \text{ pc}$$

 $l = \frac{1}{2}$

On

The neutrinos escape the Sun without being scattered or absorbed.

Since we get 2 neutrinos for each 28 MeV of energy, can use observed Solar luminosity to calculate neutrino flux at Earth:

Neutrino flux =
$$\frac{2L_{sun}}{28 \text{ MeV}} \times \frac{1}{4\pi d^2}$$

units of **particles** per second per cm²

Neutrino flux =
$$\frac{2 \times 3.9 \times 10^{33} \text{ erg s}^{-1}}{28 \times 1.6 \times 10^{-6} \text{ erg}} \times \frac{1}{4\pi (1.5 \times 10^{13} \text{ cm})^2}$$

= $6 \times 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$

Detecting these neutrinos on Earth would:

- confirm or falsify that these reactions were taking place in the Sun
- provide a direct window into the Solar core

But, **very difficult**: Interaction rate = Flux × target area

Target area = number of particles x cross-section: $\sim \frac{M\sigma}{m_H}$...where M is the mass of the detector.

Taking M = 1000 kg, $\sigma = 10^{-44}$ cm², rate is ~10⁻⁴ s⁻¹ if we can detect 100% of the neutrinos. Need a large volume of detecting medium.

Neutrinos from the main p-p chain are of very low energy. Less important reactions (energetically) yield a smaller flux of higher energy neutrinos:

$$p + e^{-} + p \rightarrow^{2} H + v_{e}$$
 `pep' - 1.4 MeV neutrino
³He + p \rightarrow^{4} He + e^{+} + v_{e} 0 - 18.8 MeV

$$e^{-} + {}^{7}Be \rightarrow {}^{7}Li + v_{e}$$
 0.383, 0.861 MeV
⁸B \rightarrow {}^{8}Be + e^{+} + v_{e} 0 - 15 MeV

Can't calculate the flux of these neutrinos just from knowing the Solar luminosity. Relative rates of these reactions (compared to normal p-p chain) depend sensitively on the core temperature.

Can be calculated accurately using a model of the Sun + nuclear physics.

Prediction of the Solar neutrino flux

ASTR 3730: Fall 2003

Two methods for detecting neutrinos:

1) Absorption by a nucleon

 Reverse process from the nuclear reaction that formed the neutrino in the Sun. Yields a charged lepton, plus a different nucleus from the original one, either of which may be detected.

2) Scattering off an electron

 Neutrino gives up some of its energy to an electron, which is subsequently detected (for these energies, detection is usually via Cherenkov radiation)

Cherenkov radiation

Speed of light in a medium (e.g. water) is less than the speed of light in vacuum - therefore possible for an energetic particle to move at v > speed of light.

Moving charged particle excites molecules, which emit light when they decay back to their ground states. For $v_{particle} > v_{light}$, light is emitted in a cone around the direction of travel:

Visible in nuclear reactors.

ASTR 3730: Fall 2003

Homestake mine detector

First attempt to detect Solar neutrinos began in the 1960s:

Detector is a large tank containing 600 tons of C_2CI_4 , situated at 1500m depth in a mine in South Dakota.

Neutrinos interact with the chlorine to produce a radioactive isotope of argon:

$$v_e + {}^{37}\text{Cl} \rightarrow e^- + {}^{37}\text{Ar}$$

+ an electron which is not observed.

ASTR 3730: Fall 2003

Argon is periodically removed from the tank by bubbling helium through the liquid. Then:

- Argon is separated from the helium
- Placed in a proportional counter
- Wait to see the radioactive argon decay:

 $e^{-} + {}^{37}\text{Ar} \rightarrow {}^{37}\text{Cl} + v_e + \text{additional electrons}$

By adding non-radioactive argon as well, efficiency of extracting the radioactive isotope is measured - around 95% - almost all the chlorine atoms that undergo a reaction with neutrinos are able to be removed and measured!

Solar neutrino problem

Results from the experiment - note units of atoms per day...

Express results in `SNU' (Solar Neutrino Units).

1 SNU = 1 interaction per 10^{36} target atoms per s

Average result: 2.6 ± 0.3 SNU

Theoretical predictions is: 7.6 ± 1.0 SNU

...for this experiment, i.e. discrepant by roughly a factor of three.

Reaction on chlorine requires a neutrino with energy greater than about 0.8 MeV - so not measuring the full spectrum of neutrinos from the Sun here...

Actually miss **all** of the p-p neutrinos - only measure the rarer types...

Existence of this deficit was subsequently confirmed by two further experiments:

SAGE- Soviet-American Gallium ExperimentMeasured: $v_e + {}^{71}Ga \rightarrow e^- + {}^{71}Ge$ SAGE was
some p-p in
Very difficuResult: 67 ± 10 SNUVery difficuTheory:129 SNUVery difficu

SAGE was sensitive to some p-p neutrinos Very difficult experiment...

Super Kamiokande

Measure: $v_e + e^- \rightarrow v_e + e^-$

look for Cherenkov radiation from high energy electron in water

Threshold of around 5 MeV Measure: 0.5 SNU Theory: 1.0 SNU

