Nuclear processes in stars

Mass of nuclei with several protons and / or neutrons does not exactly equal mass of the constituents - slightly smaller because of the **binding energy** of the nucleus.

Since binding energy differs for different nuclei, can release or absorb energy when nuclei either fuse or fission.

Example:

\[^4_1 \text{H} + ^4_2 \text{He} \]

4 protons, each of mass 1.0081 atomic mass units: 4.0324 amu

mass of helium nucleus: 4.0039 amu

Mass difference: 0.0285 amu = 4.7 x 10^{-26} g

\[\boxed{E} = \boxed{Mc^2} = 4.3 \boxed{10^{15}} \text{ erg} = 27 \text{ MeV} \]
General calculation: define the binding energy of a nucleus as the energy required to break it up into constituent protons and neutrons.

Suppose nucleus has:
- Proton number Z
- Atomic mass number A (number of protons + neutrons)
- Mass M_{nuc}

Binding energy: $E_B = \left[(A - Z)m_n + Zm_p - M_{nuc} \right]c^2$

Most useful quantity for considering which nuclear reactions yield energy is the binding energy *per nucleon* - defined as:

$$f = \frac{E_B}{A}$$
Plot of f vs A largely determines which elements can be formed in different stars/

Most bound nucleus is iron 56: $A < 56$ fusion releases energy, $A > 56$ fusion requires energy.

Yield for fusion of hydrogen to ^{56}Fe: ~ 8.5 MeV per nucleon
Most of this is already obtained in forming helium (6.6 MeV)

Drawn curve as smooth - actually fluctuates for small A - He is more tightly bound than `expected’.
Energetics of fusion reactions

Nuclei are positively charged - repel each other.
If charges on the nuclei are $Z_1 e$ and $Z_2 e$, then at distance d the electrostatic energy is:

$$E = \frac{Z_1 Z_2 e^2}{d}$$

If the nuclei approach sufficiently closely, short range nuclear forces (attractive) dominate and allow fusion to take place.

Nuclear material has roughly constant density, so `close enough’ means within a distance:

$$r_0 \leq 1.44 \times 10^{-13} A^{1/3} \text{ cm}$$

atomic mass number
Schematically:

At $r = r_0$, height of the Coulomb barrier is:

$$E = \frac{Z_1Z_2e^2}{r_0} \sim Z_1Z_2 \text{ MeV}$$

i.e. of the order of 1 MeV for two protons…
For Solar core conditions $T = 1.5 \times 10^7$ K
Thermal energy of particles $= kT = 1300$ eV $= 10^{-3}$ MeV

Classically, there are zero particles in a thermal distribution with enough energy to surmount the Coulomb barrier and fuse.

Quantum mechanically, lower energy particles have a very small but non-zero probability of tunnelling through the barrier:

Probability of finding particle $\sim |Y|^2$ - if barrier is not too wide then non-zero wavefunction allows some probability of tunnelling...
Probability of tunnelling depends upon the energy of the particles, their mass, and the charge:

\[P \propto E^{1/2} e^{-Z_1 Z_2 e^2 / \hbar E^{1/2}} \]

- \(P \) increases rapidly with \(E \)
- \(P \) decreases with \(Z_1 Z_2 \) - lightest nuclei can fuse more easily than heavy ones
- Higher energies / temperatures needed to fuse heavier nuclei, so different nuclei burn in well-separated phases during stellar evolution.
Competition: most energetic nuclei most likely to fuse, but very few of them in a thermal distribution of particle speeds:

Narrow range of energies around the Gamov peak where significant numbers of particles in the plasma are able to fuse. Energy is \gg typical thermal energy, so fusion is slow.
Nuclear reactions in the Sun

Almost all reactions involve collisions of only two nuclei. So making helium from four protons involves a sequence of steps. In the Sun, this sequence is called the proton-proton chain:

Step 1 \[^{1}\text{H} + ^{1}\text{H} \rightarrow ^{2}\text{H} + \text{e}^+ + \nu_e \]

deuteron - one proton + one neutron electron neutrino positron

This is the critical reaction in the proton-proton chain. It is slow because forming a deuteron from two protons requires transforming a proton into a neutron - this involves the weak nuclear force so it is slow…
Beyond this point, several possibilities. Simplest:

Step 2 \[^2\text{H} + ^1\text{H} \rightarrow ^3\text{He} + \square \]

Step 3 \[^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + ^1\text{H} + ^1\text{H} \]

Results of this chain of reactions:
- Form one \(^4\text{He}\) nucleus from 4 protons
- Inject energy into the gas via energetic particles: one positron, one photon, two protons
- Produce one electron neutrino, which will escape the star without being absorbed.

Energy yield is \(~10^{-5}\) erg per proton, so \(~4 \times 10^{38}\) reactions per second needed to yield \(L_{\text{sun}}\). About 0.65 billion tonnes of hydrogen fusing per second.