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Degeneracy Pressure
An ordinary classical gas has 

† 

Pgas µT Æ 0 as T Æ 0

Simultaneously, the mean speed of particles in the gas
also goes to zero:

† 

v = 2kT m

Since the momentum is given by:

† 

px = mvx

py = mvy

pz = mvz

…if we plot the momenta of particles in a 3D space of px, py 
and pz then as T decreases the particles become concentrated
near the origin:
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At low enough temperatures / high enough densities, the 
concentration of particles with similar (low) momenta would
violate the Pauli exclusion principle:

No two electrons can occupy the same quantum state

i.e. have the same momentum, spin, and location.
To avoid violating the exclusion principle, electrons in a 
dense, cold gas must have larger momenta than we 
would predict classically. Since the pressure is given by:

† 

P =
1
3

vpn(p)dp
0

•

Ú
…where n(p)dp is the number of
particles with momentum between
p and p+dp

Larger momentum means higher pressure. This quantum
mechanical source of pressure is degeneracy pressure.
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Simplest case to consider is a gas of electrons (plus protons,
but we can ignore those for now) at zero temperature. In this
case all the quantum states are occupied up to some maximum
momentum, but no states with higher |p| are occupied:
fraction of the
available states
that are occupied

0

1

0
|p|

pF
px

py

pz

Since there are three components to the
momentum, number of different states with
absolute value of p between p and p + dp
is proportional to 4pp2dp



ASTR 3730: Fall 2003

Using the quantum mechanical result for how close together
quantum states can be (e.g. textbook Chapter 3), find that
the number of electrons, per unit volume, with momenta in 
the interval between p and p+dp is:

† 

ne(p)dp =
2
h3 4pp2dp    p £ pF

= 0                   p > pF

Total number of electrons per unit volume is obtained by
integrating over all possible momenta:

† 

ne = ne(p)dp
0

•

Ú =
8p
h3 p2dp

0

pF

Ú =
8ppF

3

3h3

Rearranging this expression gives the maximum (or Fermi)
momentum:

† 

pF =
3h3ne

8p
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Calculating the pressure
Use the formula previously derived (c.f. textbook 3.1) to 
calculate the pressure of a degenerate gas of electrons:

† 

P =
1
3

vpn(p)dp
0

•

Ú

For non-relativistic electrons,
v = p / me, where me is the 
electron mass

† 

ne(p)dp =
2
h3 4pp2dp    p £ pF

= 0                   p > pF

Result:

† 

Pdeg =
8p

15meh
3 pF

5 =
h2

20me

3
p
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Degeneracy pressure:

† 

Pdeg = K1r
5 3

• Scales with density as r5/3 provided that the electrons
remain non-relativistic (speeds v << c)

• Does not depend upon temperature for low enough T
• Depends upon composition via the relation between 

ne and r

As r (and ne) becomes larger, pF = mev increases. When v ~ c,
assumption that electrons are non-relativistic breaks down.
Since v can never exceed c, pressure we have calculated is
an overestimate for this case. If we replace v by c in the 
pressure integral, get instead:

† 

Pdeg = K2r
4 3

equation of state for relativistic degenerate matter, 
which applies at high density. This is a `softer’ equation
of state, since P rises more slowly with increasing
density than for the non-relativistic case.
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When do the different pressures matter?
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Different types of star occupy different portions of the plane:
• Solar-type stars - ideal gas throughout
• Massive stars - radiation pressure
• White dwarfs - non-relativistic degeneracy pressure

Relativistic degeneracy implies an unstable equation of state,
so no stable stars in that part of the plane.

Important 
diagram!


