Stellar masses

Possible ways to measure M:

Stellar spectrum: details of the spectrum depend upon the surface gravity:

 $g = \frac{GM}{R^2}$

...e.g. at fixed R the density will vary with M, and density determines amount of collisional broadening of the lines. In practice, g and M are not well enough determined for this to work well.

Binary stars: main source of stellar masses. Binary stars are common - most useful binaries for mass determinations are ones where we see motion of both stars.

Types of binary star

c.f. Carroll, Chapter 7

Visual binary: can resolve each of the stars in the binary individually. If close enough, can see motion around the orbits.

Eclipsing binary: binary where the orbital plane is almost perpendicular to the line of sight to the observer.

YY Sagittarii from Lacy (1993)

Spectroscopic binary: see periodic Doppler shifts in the positions of spectral lines from one or both components in the binary.

Measure P, line of sight v for each star.

Kepler's Law: consider for simplicity circular orbits

Stars mass: M_1 and M_2 , orbital radii a_1 and a_2

In orbit around the center of mass (CM) of the system

From definition of center of mass: $M_1a_1 = M_2a_2$

Let total separation: $a = a_1 + a_2$

Then:
$$a_2 = \frac{M_1}{M_1 + M_2} a$$

Apply Newton's law of gravity and condition for circular motion to M₂:

Visual binary: see each orbit so know immediately a₂ / a₁:

If we know distance, then angular separation + d gives a, which with period P determines sum of masses $M_1 + M_2$

Enough information to get both M₁ and M₂...

Spectroscopic binaries

Consider spectroscopic binaries with circular orbits - often a good approximation because tides in close binaries tend to circularize the orbits.

Velocities are constant around the orbit:

$$Pv_1 = 2 \square a_1$$

$$Pv_1 = 2 \square a_1$$

$$Pv_2 = 2 \square a_2$$

But... don't observe v_1 and v_2 - only the component of those velocities along our line of sight:

Maximum component of velocity along the line of sight is:

$$v_{r1} = v_1 \cos(90 \square i) = v_1 \sin i$$

$$v_{r2} = v_2 \sin i$$
i is the

Radial velocities are the observables

i is the inclination angle of the binary system

Example for:

•
$$i = 90^{\circ}$$

•
$$i = 60^{\circ}$$

•
$$i = 30^{\circ}$$

Ratio of maximum observed radial velocities is:

$$\frac{v_{r2}}{v_{r1}} = \frac{v_2 \sin i}{v_1 \sin i} = \frac{2 \Box a_2 / P}{2 \Box a_1 / P} = \frac{a_2}{a_1} = \frac{M_1}{M_2}$$

Ratio of masses can be found if we see spectral lines from both stars (a `double-lined' spectroscopic binary), without knowing the inclination.

To find the sum of the masses, note: $a = a_1 + a_2 = \frac{P}{2 \square} (v_1 + v_2)$

Use Kepler's law again:
$$P^2 = \frac{4 \Box^2 a^3}{G(M_1 + M_2)} = \frac{P^3 (v_1 + v_2)^3}{2 \Box G(M_1 + M_2)}$$

$$M_1 + M_2 = \frac{P}{2 / G} (v_1 + v_2)^3$$

Replace v_1 and v_2 with the observable radial velocities:

$$M_1 + M_2 = \frac{P}{2/G} \frac{(v_{r1} + v_{r2})^3}{\sin^3 i}$$

So... can determine sum of masses (and hence the individual masses M_1 and M_2) only if the inclination can be determined.

Requires that the stars are also eclipsing:

- Detailed shape of lightcurve gives i
- Obviously must be close to i = 90° to see eclipses!

Rare binaries are main source of information on stellar masses...