Astronomical units

Distance: an astronomical unit (AU or au) is the mean distance between the Earth and the Sun (technically the radius of a circular orbit with same period as the Earth).

$$
1 \mathrm{au}=1.496 \times 10^{13} \mathrm{~cm}
$$

Angles: a circle has 360 degrees or $2 \square$ radians

$$
\begin{aligned}
1 \circ & =\frac{2 \square}{360} \text { radians }=0.01745 \ldots \text { radians } \\
1 \text { arcminute } & =\frac{1}{60} \text { degrees } \\
1 \text { arcsecond } & =\frac{1}{60} \text { arcminutes }=4.85 \square 10^{\square 6} \text { radians }
\end{aligned}
$$

Best resolution of optical telescopes (HST) is about 0.1".

A parsec (pc) is defined as the distance at which a `ruler’ of length 1 au subtends an angle of 1 arcsecond.

$$
\begin{gathered}
1 \mathrm{au} \frac{1^{\prime \prime}}{1 \mathrm{pc}} \\
1^{\prime \prime}=\frac{1 \mathrm{au}}{1 \mathrm{pc}} \square 1 \mathrm{pc}=\frac{1.496 \square 10^{13} \mathrm{~cm}}{4.85 \square 10^{D^{6}}}=3.086 \square 10^{18} \mathrm{~cm}
\end{gathered}
$$

$1 \mathrm{pc}=3.26$ light years - roughly the distance to the nearest stars. Convenient unit for stellar astronomy.
Sizes of galaxies usually measured in kpc (galaxy scales are 10-100 kpc).
Cosmological distances are 100s of Mpc to Gpc. Observable Universe is a few Gpc across.

Other common units are the Solar mass, Solar radius, and Solar luminosity:

$$
\begin{aligned}
M_{\text {sun }} & =1.99 \square 10^{33} \mathrm{~g} \\
R_{\text {sun }} & =6.96 \square 10^{10} \mathrm{~cm} \\
L_{\text {sun }} & =3.86 \square 10^{33} \mathrm{erg} \mathrm{~s}^{-1}=3.86 \square 10^{26} \mathrm{~W}
\end{aligned}
$$

Usually use nm as a measure of wavelength, but may show plots in Angstroms:

$$
1 \AA=10^{\square 10} \mathrm{~m}=0.1 \mathrm{~nm}
$$

1. Radiation processes

Q
Source

Intervening gas

a) How is radiation affected as it propagates to the observer?

- In general
- Use results to understand spectra of stars, nebulae.
b) Mechanisms that produce radiation:
- Transitions within atoms (or molecules)
- Acceleration of electrons in a plasma by electric or magnetic fields.

Basic properties of radiation

Electromagnetic radiation of frequency \square, wavelength \square in free space obeys:

$$
\Pi П=c \longleftarrow \text { speed of light }
$$

Individual photons have energy:

$$
E=h \Pi \quad \mathrm{~h}=\text { Planck's constant }
$$

Common to measure energies in electron volts, where:

$$
1 \mathrm{eV}=1.6 \square 10^{\square 12} \mathrm{erg}=1.6 \square 10^{\square 19} \mathrm{~J}
$$

In c.g.s. units:

$$
\begin{aligned}
& h=6.626 \square 10^{\square 27} \mathrm{erg} \mathrm{~s}^{2} \\
& c=3.0 \square 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}
\end{aligned}
$$

Simplification: astronomical objects are normally much larger than the wavelength of radiation they emit:

- Diffraction can be neglected
- Light rays travel to us along straight lines

Complexity: at one point, photons can be traveling in several different directions:

e.g. center of a star, photons are moving equally in all directions.
radiation from a star seen by a
$\bullet \longrightarrow$ distant observer is moving almost exactly radially
Full specification of radiation needs to say how much radiation is moving in each direction.

Flux

Consider a small area dA, exposed to radiation for a time dt . Energy passing through the area is F.dA.dt, where F is the energy flux (units erg s cm^{-2}).

Unless the radiation is isotropic (same in all directions), F will depend on orientation of dA.

Spherically symmetric steady source of luminosity L. Energy conservation:

$$
\begin{aligned}
L & =4 \square r^{2} F(r) \\
F(r) & =\frac{L}{4 \square r^{2}}
\end{aligned}
$$

Inverse square law.

As defined:

- L is the total luminosity emited at all wavelengths
- F is the energy flux likewise integrated over all wavelengths

Hence, L is called the bolometric luminosity (because a bolometer is a device that measures energy from all wavelengths).

`Spider-web’ bolometer - mostly used to detect microwave radiation.

Real detectors are sensitive to a limited range of wavelengths. Need to consider how the incident radiation is distributed over frequency.

Radio astronomers use this (logical) way of measuring fluxes, though for convenience they define:

$$
1 \text { Jansky }(\mathrm{Jy})=10^{\square 23} \mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}
$$

F_{\square} is often called the 'flux density' - to get the power received one just multiplies by the area and by the bandwidth of the receiver (or integrates if F_{\square} varies significantly in that range).

Apparent magnitudes

For historical reasons, fluxes in the optical and infra-red are instead measured in magnitudes:

$$
m=\square 2.5 \log _{10} F+\text { constant }
$$

If F is the total flux (all wavelengths), then m is the bolometric magnitude. Usually instead consider a range of wavelengths.

Basic properties of magnitudes:
Consider two stars, one of which is a hundred times fainter than the other in some waveband (say V).

$$
\begin{aligned}
m_{1} & =\square 2.5 \log F_{1}+\text { constant } \\
m_{2} & =\square 2.5 \log \left(0.01 F_{1}\right)+\text { constant } \\
& =\square 2.5 \log (0.01) \square 2.5 \log F_{1}+\text { constant } \\
& =5 \square 2.5 \log F_{1}+\text { constant } \\
& =5+m_{1}
\end{aligned}
$$

Source that is 100 times fainter in flux is five magnitudes fainter (larger number).

Faintest objects detectable with HST have magnitudes of around 28 in red / near infrared bands.

Common wavebands:

U (ultraviolet)	365 nm
B (blue)	440 nm
V (visible)	550 nm
R (red)	641 nm
K (infra-red)	$2.2 \square \mathrm{~m}$

These are the central wavelengths of each band, which extend $\sim 10 \%$ in wavelength to either side.

Zero-points (i.e. the constants in the equation for m_{v} etc) are defined such that the magnitude of a standard star (Vega) is zero in all wavebands.

Colors

The color of a star or other object is defined as the difference in the magnitude in each of two bandpasses:
e.g. the $(B-V)$ color is: $B-V=m_{B}-m_{V}$

Stars radiate roughly as blackbodies, so the color reflects surface temperature.

Vega has $T=9500 \mathrm{~K}$, by definition color is zero.

Which sense for hotter / cooler stars?

Color does not reflect temperature for objects with spectra very different from that of a blackbody.
Still can be useful - e.g. basis of most successful method for finding very distant (high redshift) galaxies:

Observed galaxy spectrum shifts to the right for source at higher redshift. Because spectrum has a sharp ‘break', flux in U band drops off sharply.

Absolute magnitude

The absolute magnitude is defined as the apparent magnitude a source would have if it were at a distance of 10 pc ($1 \mathrm{pc}=3.086 \times 10^{18} \mathrm{~cm}$).

Measure of the luminosity in some waveband.
Difference between the apparent magnitude m and the absolute magnitude M (any band) is a measure of the distance to the source:

$$
\underbrace{m \square M}=5 \log _{10}{ }_{\square 10 \mathrm{pc}}^{\square}
$$

Distance modulus

