Components of the Milky Way

Sun and Solar System lie in a spiral galaxy - most common type in relatively isolated parts of the Universe.

Bulge + supermassive black hole

Disk of ____ gas and stars

Spiral arms where stars are formed

Halo - not visible here, containing stars but dominated by dark matter. Extends out beyond the optical extent of the galaxy.

ASTR 3730: Fall 2003

From our vantage - out in the disk, easiest to see the structure in the Milky Way in the infra-red.

Map in Galactic co-ordinates. Infra-red radiation is not strongly absorbed by dust, so looking here at cool stars throughout the Milky Way.

ASTR 3730: Fall 2003

Milky Way in different wavebands

Optical

Radio at 408 MHz

Radio at 21cm (atomic hydrogen)

Infra-red

X-rays

Gamma-rays

Star Formation

Gas in the Milky Way exists in different phases:

- **Molecular gas** (T = 10 100 K)
- Atomic hydrogen (neutral gas, called H I)
- Ionized gas (called H II)

Most of the gas is in atomic form, but stars form out of the molecular material:

- Giant molecular cloud forms a whole cluster of stars, may have mass of $10^6 \, \mathrm{M}_{\mathrm{sun}}$, size ~10 pc = 3 x $10^{19} \, \mathrm{cm}$
- Molecular cloud core of a few Solar masses, perhaps
 0.1 pc in size, forms one or (normally) a few stars.

Estimate the characteristic time scales for these structures.

Molecular clouds

The Orion Nebula and Trapezium Cluster (VLT ANTU + ISAAC)

Nearby regions of star formation:

- TW Hydrae small region
- Taurus no massive stars
- Orion nearest region with massive as well as low-mass stars

ESO PR Photo 03a/01 (15 January 2001)

C European Southern Observatory

The 'Angular Momentum Problem' of Star Formation

If angular momentum is conserved during collapse, cores of molecular clouds have far more angular momentum than a single star - even rotating at breakup:

Binary formation is probable **Disk** formation is inevitable

HST image of a protoplanetary disk and jet around a young star

Jet velocities are a few hundred km/s from protostars.

c.f. escape velocity:

$$v_{esc} = \sqrt{\frac{2GM_*}{R_*}}$$

$$\square 440 \boxed{\frac{M_*}{M}} \boxed{\frac{1}{2R}} \boxed{\frac{R_*}{R_*}} \boxed{\frac{1}{2R}} \boxed{\frac{1}{2R}}$$
 km/s

Jets are probably launched from close to the star - most likely from the inner regions of the disk.

How fast are jets from black holes?

Stars on the Main Sequence

Gravitational binding energy of a star of mass M, radius R is ~ GM² / R. Energy is liberated as protostars (and brown dwarfs and giant planets) contract.

Eventually, central temperature becomes high enough for fusion of H -> He. Contraction ceases - main sequence phase.

Estimate the main-sequence lifetime:

- Fusion of H to He yields $\Box = 6 \times 10^{18} \text{ erg / g}$
- Solar mass is $M_{sun} = 2 \times 10^{33} \text{ g}$
- Solar luminosity is $L_{sun} = 3.9 \times 10^{33} \text{ erg} / \text{s}$
- Mass fraction of hydrogen in the Sun X = 0.7
- Stars leave the main sequence before all the hydrogen is exhausted - fraction consumed □ = 0.1.

Main sequence lifetime is estimated to be:

$$t_{ms} \prod \frac{\square XM_{sun}}{L_{sun}} = 7 \prod 10^9 \boxed{\frac{\square}{0.1}} \text{yr}$$

Empirically, more massive stars are more luminous. Very roughly:

$$L M^{3.5}$$

$$t_{ms} M^{\square 2.5}$$

Conclude: massive stars are short lived, but for most stars hydrogen burning lifetime is long compared to formation time scale.

Masses of stars span ~ 3 orders of magnitude:

 $M < 13~M_{Jupiter} \sim 10^{-2}~M_{sun}$: no significant nuclear fusion at all 'Planetary mass objects' $13~M_{J} < M < 0.08~M_{sun}$: deuterium fusion but no fusion of ordinary hydrogen - brown dwarfs $M \sim 100~M_{sun}$: very rough upper limit set by radiation pressure

On main sequence, mass largely sets the luminosity, radius and surface temperature. Stars form one-parameter family - c.f. the **Hertzprung-Russell** diagram.

Post-main-sequence evolution

Once hydrogen burning has finished, evolution speeds up because further nuclear reactions yield much less energy:

- H -> He: yields 6 x 10^{18} erg / g (of pure hydrogen)
- He -> C: yields 6 x 10^{17} erg / g (of pure helium)

Complicated evolution gives:

Outflows from a massive star nearing end of its lifetime

PRC96-23a · ST Scl OPO · June 10, 1996
J. Morse (U. CO), K. Davidson, (U. MN), NASA

Stellar remnants are normally dim and hard to observe - know of only a handful of isolated neutron stars and ~zero isolated stellar mass black holes, though Galactic population 10⁸ - 10⁹.

Exception: compact objects in mass transfer binaries:

Powered by mass accretion:

$$L = /\dot{M}c^2$$

□~ 0.1 possible for neutron stars and black holes - large luminosity, strong X-ray sources.