Extraterrestrial Life: Lecture \#6

What are the requirements for the Earth (or another planet) to be habitable?

- liquid water on surface
- atmosphere
- plate tectonics / volcanism
- magnetic field
-...

Liquid water is important because:

- solvent for organic molecules
- allows transport of chemicals within cells
- involved in many biologically important chemical reactions

Other solvents (ammonia, methane etc) exist in liquid form on planets but are much less promising for life

Normal atmospheric pressure: liquid water requires:

$$
0^{\circ} \mathrm{C}(273 \mathrm{~K})<T<100^{\circ} \mathrm{C}(373 \mathrm{~K})
$$

...require planets with surface temperatures in this range

Extraterrestrial Life: Spring 2008

Solar constant

The flux of energy is the amount of energy that passes through unit area ($1 \mathrm{~m}^{2}$) in one second
Measured in units of watts $/ \mathrm{m}^{2}$
Solar flux declines with distance as $1 / \mathrm{d}^{2}$:

The fraction of the incident flux that is reflected is called the albedo of the planet: $0<A<1$
The fraction that is absorbed is ($1-\mathrm{A}$)

First consider the reflected component of sunlight

Fraction of total Solar luminosity that is reflected is:

$$
\begin{aligned}
f & =\frac{\text { flux } \times \text { area of Earth as seen from Sun } \times A}{\text { solar luminosity }} \\
& =\frac{1380 \mathrm{watts} / \mathrm{m}^{2} \times \pi R_{E}^{2} \times A}{3.9 \times 10^{26} \mathrm{watts}}
\end{aligned}
$$

Earth radius is $R_{E}=6.4 \times 10^{6} \mathrm{~m}$

$\mathrm{f}=1.4 \times 10^{-10}$

Seen from another star, Earth is ~ 10 billion times dimmer than the Sun

Extraterrestrial Life: Spring 2008

How much energy is absorbed?

$P=$ flux $\times \pi R_{E}^{2} \times(1-A)$
 $=1380 \times \pi \times\left(6.4 \times 10^{6}\right)^{2} \times(1-0.3)$ watts $=1.24 \times 10^{17}$ watts

c.f. total world electricity consumption $\sim 5 \times 10^{12}$ watts

Note: total forcing due to greenhouse gases is about 2 watts / m^{2} - i.e. a few tenths of a percent of the total Solar flux... this is why climate change is a complex scientific problem

Thermal radiation emitted by the Earth is:

area of the Earth's surface in m^{2}
power (watts / m²) emitted by thermal radiation at a temperature T
σ is a constant called the Stefan-Boltzmann constant, it equals 5.67×10^{-8} watts per m^{2} per K^{4}

Setting the emission equal to the energy absorbed from sunlight determines the equilibrium temperature of the Earth

Find that predict T ~ 260K - a bit too cold! But we have ignored the influence of the atmosphere in blocking some of the outgoing radiation...

What does the surface temperature depend on:

$$
T^{4} \propto \frac{L(1-A)}{d^{2}}
$$

- distance to the star
- luminosity of the star
- properties of the atmosphere and surface

Extraterrestrial Life: Spring 2008

The continuously habitable zone is the range of radii for which liquid water is possible throughout a planet's lifetime

Obviously narrower than the instantaneous habitable zone - possibly much narrower..

Means that stars whose luminosity changes relatively quickly are unpromising hosts for life-bearing planets

What about planets on elliptical orbits that dip in and out of the habitable zone?

- surface temperature adjusts to the Solar forcing on a timescale $\ll 1$ year (e.g. seasons!)
- temperature underground, or in the oceans, adjusts much more slowly
- planets with non-circular orbits can't be ruled out immediately

