ASTR / GEOL 3300

Extraterrestrial Life

Instructor: Phil Armitage
TA: Emily Knowles

- How did life originate?
- Is there life elsewhere in the Universe?

Scientific study of the (many) issues related to these grand questions: astrobiology

Extraterrestrial Life: Spring 2008

Overview

How can we define "life"?
"The quality which people, animals and plants have when they are not dead..." (Collins English dictionary)
"Dead: A person, animal or plant that is dead is no longer living..."

NASA Exobiology program definition:
"Life is a self-sustaining chemical system capable of undergoing Darwinian evolution"

First in situ Mars landers: 1976 (Viking)
First extrasolar planet around a Solar-like star found: 1995

```
Today }221\mathrm{ planets (mostly massive) known
outside the Solar System
```


How did life originate?

Until surprisingly recently - common theory was that of spontaneous generation... life arises from non-living matter whenever conditions are favorable.

Disproved by experiments by Pasteur (1864): life does not arise spontaneously in closed, sterilized containers.

Life arises from pre-existing life - question of its ultimate origin is meaningful.

First extrasolar planet around a Solar like star found: 1995

What is extraterrestrial life?
Life (extant or fossil) beyond the Earth
In the case of Mars / Earth, extraterrestrial life could (in principle) have single point of origin

Discovering life that had an independent origin would be most exciting

Extraterrestrial life may or may not resemble life on Earth, certainly need not be intelligent

Properties of life on Earth

As sole example, life on Earth is template for understanding

- requires water, energy and source of nutrients - working definition of "habitability"
- probably arose very early in Earth's history (3-3.8 billion years ago vs Earth age of 4.6 billion yr)
- has evolved via natural selection
- now appears very diverse (plants, microbes, humans) and permeates almost all terrestrial environments

But... all life on Earth is amazingly similar:

- based on same set of chemicals:

DNA, RNA, proteins..

- transmits genetic information
- occurs within structures - cells

All existing life on Earth had a
common ancestor

+ viruses, prions...

Problem of the origin of life

Hypothesis: origin of life must have involved "living" organisms with a simpler biochemistry than any present (identified?) on Earth today

What were they?

Mars: liquid water likely to have been present for an undetermined period in Martian history, and possibly is present today

Life on extrasolar planets?

Sun is one of ~ 100 billion $\left(10^{11}\right)$ stars in the Milky Way galaxy

Around 10^{11} galaxies in the Universe - enormous number of stars that might host habitable worlds

Extraterrestrial life in the Solar System

Plumes of water ice from Enceladus, possibly indicating liquid subsurface water?

Liquid water is unlikely to exist on any other bodies in the Solar System

Life on extrasolar planets?

Surveys of nearby stars show $5-10 \%$ host detectable planets - mostly massive planets due to observational limitations

Abundance of Earth-like, potentially habitable planets is unknown - probably these are very common too

> How can we detect these planets? How to search for life on them?

Is intelligent extraterrestrial life common?

Fermi paradox:

- Sun is 4.6 billion years old - much younger than many other stars in the Milky Way (~ 10 billion years old)
- After ~few thousand years of modern civilization, we can communicate with other stars, and can conceive of sending a probe to nearby systems
- If intelligent life is common, many civilizations must be millions (billions!) of years more advanced than us, so why aren't they here already?

