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A B S T R A C T

We report a measurement of the real-space (not redshift-space) power spectrum of galaxies

over four and a half decades of wavenumber, 0.01 to 300 h Mpc21, from the IRAS Point

Source Catalog Redshift Survey (PSCz). Since estimates of power are highly correlated in the

non-linear regime, we also report results for the pre-whitened power spectrum, which is less

correlated. The inferred bias between optically selected APM and IRAS-selected PSCz

galaxies is about 1.15 at linear scales &0.3 h Mpc21, increasing to about 1.4 at non-linear

scales *1 h Mpc21. The non-linear power spectrum of PSCz shows a near power-law

behaviour to the smallest scales measured, with possible mild upward curvature in the broad

vicinity of k , 2 h Mpc21. Contrary to the prediction of unbiased dark matter models, there is

no prominent inflection at the linear to non-linear transition scale, and no turnover at the

transition to the virialized regime. The non-linear power spectrum of PSCz requires scale-

dependent bias: all Dark Matter models without scale-dependent bias are ruled out with high

confidence.
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1 I N T R O D U C T I O N

The power spectrum of galaxies can set powerful constraints on

cosmological parameters (Eisenstein, Hu & Tegmark 1999;

Tegmark, Zaldarriaga & Hamilton 2001). However, while the

cleanest information lies at large, linear scales, most of the data are

at smaller, non-linear scales. Potentially, there is much to be gained

by pushing to smaller scales.

The galaxy power spectrum is complicated by nonlinearity,

redshift distortions, and galaxy-to-mass bias. Even without bias,

non-linear redshift distortions pose a problem. Whereas linear

redshift distortions are well understood (Kaiser 1987; Hamilton

1998), non-linear redshift distortions are not (Hatton & Cole 1998,

1999). Non-linear redshift distortions are of considerable interest

in their own right (Davis, Miller & White 1997; Kepner, Summers

& Strauss 1997; Jing, Mo & Börner 1998; Landy, Szalay &

Broadhurst 1998; Strauss, Ostriker & Cen 1998; Baker, Davis &

Lin 2000), but they muddy interpretation of the power spectrum

observed in redshift space.

Fortunately, the effect of redshift distortions, linear or non-

linear, biased or not, can be practically eliminated. Because

redshift distortions displace galaxies only in the radial direction,

the power spectrum in directions transverse to the line of sight is

unaffected by redshift distortions. The fact that the angular

clustering of galaxies is unaffected by redshift distortions has been

used by many authors to deduce the real-space correlation function

or power spectrum (Groth & Peebles 1977; Davis & Peebles 1983;

Saunders, Rowan-Robinson & Lawrence 1992; Fisher et al. 1994a;

Loveday et al. 1995; Baugh 1996; Gaztañaga & Baugh 1998; Jing

et al. 1998; Ratcliffe et al. 1998; Dodelson & Gaztañaga 2000;

Guzzo et al. 2000; Eisenstein & Zaldarriaga 2001).

While large angular surveys, such as the Automatic Plate

Measuring (APM) survey (Maddox et al. 1990a; Maddox,

Efstathiou & Sutherland 1990b, 1996), or the Edinburgh/Durham

Southern Galaxy Catalogue (EDSGC) (Nichol, Collins & Lumsden

2001), might seem to offer the most natural data sets for measuring

the real-space power spectrum, redshift surveys contain additional

information – the redshifts of galaxies – that can be exploited to

great effect. That is, even if the redshift of a galaxy does not

determine its precise distance, it nevertheless constrains that

distance within narrow limits. The additional redshift information

allows the real-space power spectrum to be measured from a

redshift survey with accuracy comparable to that from an angular

survey many times larger (Section 3.2).

The goal of the present paper is to measure the real-space power

spectrum of the recently published IRAS Point Source Catalog

Redshift Survey (PSCz) (Saunders et al. 2000). Large volume and

careful attention to uniformity of selection make the PSCz the

finest publicly available redshift survey for this purpose.PE-mail: Andrew.Hamilton@colorado.edu; max@physics.upenn.edu
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The analysis is described in Sections 2 (linear) and 3 (non-

linear), and results are presented in Section 4. Section 5

summarizes the conclusions. Tables of measurements are collected

in Appendix C, and are also available from http://casa.colorado.

edu/,ajsh/pscz/.

2 A N A LY S I S – L I N E A R R E G I M E

At linear scales, k & 0:3 h Mpc21, we adopt the real-space power

spectrum of the PSCz survey measured by Hamilton, Tegmark &

Padmanabhan (2000, hereafter HTP). This measurement assumes

that density fluctuations are Gaussian, and that redshift distortions

conform to the linear model (Kaiser 1987). The linear

measurement yields three separate power spectra, the galaxy–

galaxy, galaxy–velocity, and velocity–velocity power spectra. In

the present paper we use only the galaxy–galaxy power spectrum,

which is the real-space power spectrum, redshift distortions having

been isolated into the other two power spectra.

The linear measurement can lay claim to being optimal when the

prior assumptions are true, but it becomes suboptimal, and

eventually fails, at non-linear scales. This is not merely because the

linear model of redshift distortions fails, as of course it does, non-

linear redshift distortions being dominated by fingers-of-God, not

by coherent infall toward large scale overdensities. More

fundamentally, the assumption of Gaussian density fluctuations

fails. In particular, the linear measurement seriously under-

estimates the variance of power in the non-linear regime, by a

factor ,ð1þ jÞ, where j is the correlation function.

Thus an entirely different strategy is called for at non-linear

scales.

3 A N A LY S I S – N O N - L I N E A R R E G I M E

At non-linear scales, k * 0:3 h Mpc21, a major simplifying

assumption can be made, that redshift distortions are plane-

parallel (the ‘distant observer’ approximation). The plane-parallel

approximation fails at large scales, so the non-linear method breaks

down at linear scales, just as the linear method breaks down at non-

linear scales.

3.1 Real power is transverse power

In the plane-parallel approximation, the redshift space power

spectrum P s(k’, kk) (the superscript s denotes quantities in redshift

space) at wavenumbers k’ and kk perpendicular and parallel to the

line of sight is the Fourier transform of the redshift space

correlation function j s(r’, rk) at redshift separations r’ and rk
perpendicular and parallel to the line of sight:

P sðk’; kkÞ ¼

ð
eik’ : r’þikkrkj sðr’; rkÞ d

2r’ drk: ð1Þ

Redshift distortions affect only separations rk in the line-of-sight

direction. Equation (1) shows that the redshift power spectrum in

the transverse direction, where kk ¼ 0, involves an integral of the

redshift space correlation function over the line-of-sight separation

rk. Since redshift distortions displace galaxies along the line of

sight, but neither create nor destroy them, the integral along the line

of sight is left unchanged by redshift distortions. It follows that the

redshift space power spectrum in the transverse direction is equal

to the real-space power spectrum

P sðk’ ¼ k; kk ¼ 0Þ ¼ PðkÞ: ð2Þ

Thus the problem of measuring the real-space power spectrum

reduces to that of measuring the redshift space power spectrum in

the transverse direction.

Fig. 1 shows a contour plot of the redshift space power spectrum

P s(k’, kk) of PSCz. The redshift power shown in Fig. 1 is measured

from the harmonics of the redshift space power spectrum, as

explained in detail in the remainder of this section. The non-linear

real-space power spectrum reported in this paper is equal to the

redshift space power spectrum along the transverse axis in Fig. 1.

3.2 Information from galaxy redshifts

Measuring real power from the redshift power at exactly kk ¼ 0, as

specified by equation (2), is liable to lead to a rather noisy estimate.

A more precise estimate of real power could be obtained by

‘averaging’ (in some sense) the values of redshift power in some

interval about kk ¼ 0.

Using redshift power at kk – 0 is equivalent to exploiting

information from galaxy redshifts. Suppose that velocity

dispersion (or perhaps some other influence) causes galaxy

Figure 1. Contour plot of the redshift space power spectrum P sðk’; kkÞ of the PSCz 0.6-Jy survey at non-linear scales. Power along the transverse (horizontal)

axis is unaffected by redshift distortions, and is therefore equal to the real-space power spectrum. Velocity dispersion suppresses power away from the

transverse axis. The plotted redshift power is constructed from the harmonics of redshift power, truncated at the k-dependent maximum harmonic given by

equations (13) and (14). The combination of FKP weightings (Sections 3.10 and 3.11) is such as to optimize the measurement of power along the transverse

axis. Thin, medium, and thick contours represent negative, positive, and zero values respectively. A colour version of this figure is available on Synergy, the on-

line version of Monthly Notices.
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distances to be known only to an accuracy of s. Then the observed

redshift power spectrum is the true power spectrum multiplied by a

window that looks like a two-dimensional sheet transverse to the

line of sight, a horizontal ridge of width Dkk , 1/s about kk ¼ 0. It

follows that redshift power within ,1/s of kk ¼ 0 provides

potentially useful information about real power.

If redshift information were discarded, then the uncertainty in

galaxy distances would increase to the depth ,R of the survey, and

the window through which the power spectrum is observed would

thin to Dkk , 1/R.

Thus with galaxy redshifts there is , R/s times as much

exploitable k-space as without. In the PSCz survey, the central two

quartiles in depth, containing half the galaxies, run from 50 to

150 h 21 Mpc. The effective uncertainty in the distance of a galaxy

without a redshift can be taken to be half this, R , 50 h 21 Mpc.

The velocity dispersion is s , 3 h 21 Mpc. Thus PSCz with

redshifts is in a sense comparable to a no-redshift survey some

50=3 , 16 times larger. The errors on the real-space power

spectrum of PSCz with redshifts might be expected to be roughly

ð50=3Þ1=2 , 4 times smaller than PSCz without redshifts. Evidently,

the gain in having redshift information may be considerable.

3.3 Distance indicator versus true distance

It is worth pointing out an important distinctive feature of a redshift

survey versus an angular or photometric survey. In a redshift survey,

the relation between the distance indicator – the redshift distance –

and the true distance is independent of depth (at least to the extent that

cosmological evolution of the power spectrum can be neglected). In

an angular or photometric survey, by contrast, the relation between

distance indicator – apparent brightness in the angular survey, or

photometric distance in the photometric survey – depends on depth.

The existence of a well-defined redshift space power spectrum

P s(k), as in equation (1), depends implicitly on the assumption that

the relation between redshift distance and true distance is

independent of depth.

3.4 Angular mask and selection function

We adopt the same angular mask and selection function as HTP.

The angular mask is the high-latitude mask of Saunders et al.

(2000) (hibpsczmask.dat, part of the PSCz package), which

leaves unmasked 9.0636 sr, or 72 per cent of the sky. Measurement

of the selection function is discussed below in Section 3.12. The

angular and radial cuts leave 12 446 galaxies in the survey.

3.5 Approximating non-linear redshift distortions by a finite

sum of harmonics

To exploit redshift information to best advantage, it is necessary to

have some model of non-linear redshift distortions. Since accurate

a priori models of non-linear redshift distortions are not available

(Hatton & Cole 1998, 1999) – especially if non-linear galaxy-to-

mass bias is taken into account – we resort to a semi-empirical

approach, motivated by a combination of theory and observation.

Our adopted solution is to measure the harmonics of the redshift

power spectrum, and to assume that non-linear redshift distortions

can be approximated by retaining only a finite number of

harmonics, the number of harmonics retained depending on k. The

procedure is analogous to the familiar one of smoothing an image

by eliminating high frequencies in Fourier space.

It is convenient to introduce the function f(k) defined to be the

ratio of redshift to real-space power spectra (cf. Landy et al. 1998)

f ðkÞ ;
P sðkÞ

PðkÞ
: ð3Þ

By construction, this ratio is unity in directions transverse to the

line of sight, f ðk’ ¼ k; kk ¼ 0Þ ¼ 1.

Fig. 2 shows a contour plot of the ratio f ðkÞ measured from the

PSCz survey. Naturally, this plot represents our final, best

measurement; however, preliminary versions of this plot

contributed to the decision about the best way to measure it. The

final version of the plot is consistent with the preliminary versions;

tweaking caused only minor adjustments in the contours, with no

significant systematic shifts.

In the linear regime, f ðkÞ is given by Kaiser’s (1987) famous

formula for plane-parallel redshift distortions,

f ðkÞ ¼ ð1þ bm 2Þ2; ð4Þ

where m ; kk/k is the cosine of the angle between the wavevector

k and the line of sight. Here f(k) is a fourth-order even polynomial

in m.

Figure 2. Contour plot of the ratio f ðkÞ ; P sðkÞ/PðkÞ of the redshift to real-space power spectrum. By construction, the ratio f(k ) equals one along the

horizontal axis, where kk ¼ 0. The width of the ridge along the horizontal axis is roughly equal to the inverse of the pairwise galaxy velocity dispersion,

Dkk , 1/s. If velocity dispersion were independent of scale, then the contours in this diagram would be horizontal. The pairwise velocity dispersion reaches a

maximum at k < 1:3 h Mpc21, where the contours crowd the horizontal axis most closely. Medium and thick contours represent positive and zero values

respectively. The white space to the top left of the diagram appears because the line-of-sight wavenumber kk (the vertical axis) must be less than or equal to the

total wavenumber k ¼ ðk2
’ þ k2

kÞ
1=2 (the horizontal axis); the boundary is shaped exponentially, because the plot is linear in kk but logarithmic in k. A colour

version of this figure is available on Synergy, the on-line version of Monthly Notices.
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In Eulerian second-order perturbation theory, f ðkÞ becomes an

eighth-order even polynomial in m, with coefficients that depend

on the absolute value k of the wavenumber (Scoccimarro,

Couchman & Frieman 1999).

The precise behaviour of f ðkÞ in the non-linear regime is

unknown. A simple and widely used empirical approximation is to

assume that the redshift correlation function j s(r) equals the real

correlation function j(r) modulated by a random pairwise velocity

distribution fv(vk) that is independent of pair separation (note that r

has units of velocity: 1 h 21 Mpc ¼ 100 km s21Þ

j sðr’; rkÞ ¼

ð1

21

jðr’; rk 2 vkÞf vðvkÞ dvk: ð5Þ

Most commonly, the one-dimensional pairwise velocity distri-

bution fv(vk) is taken to be an exponential

f vðvkÞ ¼ ð2
1=2sÞ21 expð221=2jvkj/sÞ ð6Þ

with one-dimensional pairwise velocity dispersion s. The

exponential pairwise velocity distribution was first proposed by

Peebles (1976), and has continued to receive support from

observations (Davis & Peebles 1983, CfA1; Fisher et al. 1994b,

1.2-Jy survey; Marzke et al. 1995, CfA2þ SSRS2; Landy et al.

1998, LCRS; Jing et al. 1998, LCRS) from N-body experiments

(Fisher et al. 1994b, fig. 5; Zurek et al. 1994, fig. 7), and from

theoretical arguments (Diaferio & Geller 1996; Sheth 1996;

Juszkiewicz, Fisher & Szapudi 1998; Seto & Yokoyama 1998).

If the pairwise velocity distribution fv(vk) were indeed

independent of scale, then f ðkÞ in equation (3) would equal the

one-dimensional Fourier transform of fv(vk),

f ðkÞ ¼

ð1

21

f vðvkÞ e
ikkvk dvk; ð7Þ

a function only of kk ¼ km. For the exponential pairwise velocity

distribution, equation (6), f ðkÞ would be a Lorentzian

f ðkÞ ¼
1

1þ 1
2
ðskkÞ

2
¼

1

1þ 1
2
ðskmÞ2

: ð8Þ

Equation (8) is a specific example of the general expectation that

f ðkÞ in the non-linear regime should be a smooth function, peaked

at kk ¼ 0, with width Dkk , 1/s.

Fig. 2 shows that in reality the pairwise velocity dispersion s is

not independent of scale. Rather, the velocity dispersion reaches a

maximum at k < 1:3 h Mpc21 (where the contours of f ðkÞ crowd

the horizontal axis most closely), and decreases to smaller scales

(larger k). This decrease in velocity dispersion to smaller scales is

qualitatively (though not necessarily quantitatively) consistent

with the expectation from the virial theorem that s 2 , r 2jðrÞ ,
kPðkÞ (Davis & Peebles 1977; Peebles 1980, Section 75), which

with PðkÞ,/k 21:5 (as found in Section 4) would predict s ,/ k 20:25.

Jing & Börner (2001) find in N-body simulations of CDM

variants that f(k) falls somewhat faster than the Lorentzian model,

equation (8), at large skm. They find that a better fit is

f ðkÞ ¼
ð1þ bm 2Þ2

1þ 1
2
ðskmÞ2 þ hðskmÞ4

; ð9Þ

with s a function of k, and h a fitting parameter.

The above examples suggest the idea of approximating f ðkÞ as

an even-order polynomial in m ; kk/k, or equivalently as a finite

sum of even harmonics,

f ðkÞ ¼
X‘maxðkÞ

‘¼0

f ‘ðkÞP‘ðmÞ; ð10Þ

where P‘(m) denotes a Legendre polynomial, with maximum

harmonic ‘max(k) depending on wavenumber k. Of course, the

Lorentzian example, equation (8), is not a finite polynomial [nor

even a convergent Taylor series, if 1
2
ðskmÞ2 > 1�, but evidently it

could be approximated as such. The principal advantages of the

description in terms of harmonics are (1) its flexibility, and (2)

fitting to a linear combination of even harmonics (i.e., a polynomial

in m 2) is far easier than non-linear fitting to, for example, a rational

function of m 2.

A key question is how many harmonics to include in the sum

(10). Too many harmonics will yield an unnecessarily noisy

estimate; too few harmonics will fail to resolve the hill at m ¼ 0,

and will tend to bias the measurement low.

At linear scales, the maximum harmonic should be ‘maxðkÞ ¼ 4,

in accordance with Kaiser’s formula (4). At non-linear scales, it is

necessary to resolve radial wavenumbers comparable to the inverse

pairwise velocity dispersion, 1/s, in accordance with the

arguments in Section 3.2. Harmonics up to ‘ can resolve angles

,p/‘, hence radial wavenumbers Dkk , kp=‘. Thus resolving

Dkk , 1/s requires harmonics up to

‘maxðkÞ , psk: ð11Þ

If the velocity dispersion is s , 3 h 21 Mpc, then equation (11)

suggests ‘max , 10 at k , 1 h Mpc21. The linear and non-linear

estimates together thus suggest, provisionally,

‘maxðkÞ ¼ 4þ 6k; ð12Þ

with k measured in h Mpc21.

The maximum harmonic specified by equation (12) was our

original choice, and we carried out a complete set of measurements

with it. The preliminary measurements indicated that redshift

power was possibly slightly underresolved at k , 1 h Mpc21, but

overresolved at large k. This can be seen in Fig. 2, which shows that

the ridge of redshift power along the transverse axis reaches its

narrowest point at k < 1:3 h Mpc21, where Dkk < 0:33 h Mpc21,

but broadens out at larger k. The velocity dispersion s , 1=Dkk is

thus comparable to 3 h 21 Mpc at k , 1 h Mpc21, but is smaller at

large k. Consequently, the maximum harmonic ‘max of equation

(12), which provisionally presumed that s , 3 h 21 Mpc, is about

right at k , 1 h Mpc21 but unnecessarily large at large k. On the

basis of the preliminary measurements, we revised the choice of

maximum harmonic to (the nearest even integer to)

‘maxðkÞ ¼ 16k 1=2; ð13Þ

again with k measured in h Mpc21. The revised choice of

maximum harmonic ‘max(k) is slightly larger than the provisional

choice at k , 1 h Mpc21 (so as to be on the safe side), but smaller

at large k. The milder increase of maximum harmonic with

wavenumber, ‘max / k 1=2 instead of ‘max / k of equation (12),

reflects not only the fact that the velocity dispersion s decreases at

larger k, as seen in Fig. 2, but also that the statistical uncertainties

increase at larger k. More harmonics mean smaller systematic bias,

but larger statistical uncertainty. The choice (13) is intended to

make the statistical error as small as possible while ensuring that

the systematic bias is small compared to the statistical error. Note

that the non-linear measurements are limited to k > 0:1 h Mpc21,
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and that equation (13) gives ‘max ¼ 6 at the smallest wavenumber

of the non-linear range, k ¼ 0:1 h Mpc21.

Equation (13) is our adopted final choice of maximum harmonic

‘max(k). For other reasons, to be discussed in Section 3.7, we also

limit the maximum harmonic to

‘maxðkÞ < 72: ð14Þ

Numerical experiment, reported in Section 4.3, indicates that the

maximum harmonic specified by equations (13) and (14) is large

enough that any bias caused by using too few harmonics is small

compared to the statistical uncertainty. In practice, the measured

power spectrum proves satisfyingly robust against changes in the

choice of maximum harmonic, the changes being typically some

fraction of 1s, and random rather than systematic.

3.6 Measuring harmonics of band-powers

We measure harmonics of band-powers of the redshift space power

spectrum using essentially the same procedure as Hamilton (1995,

1998; hereafter H95, H98), which is a slightly refined version of

the method of Hamilton (1992, 1993; hereafter H92, H93).

A feature of this analysis is that, although it is the power

spectrum that is being measured, all the calculations are done in

real (redshift) space rather than in Fourier space. In measuring

redshift distortions, it is important to disentangle the true distortion

from the artificial distortion introduced by a non-uniform survey

window. In real (redshift) space, the observed galaxy density is the

product of the true density and the selection function. In Fourier

(redshift) space, this product becomes a convolution. Thus the

natural place to ‘deconvolve’ observations from the selection

function is real space, where deconvolution reduces to division,

and where the observations exist in the first place.

Let ~P
s

‘ð
~kÞ denote the ‘th harmonic of the redshift power

spectrum folded through some band-power window W(k̃, k) [the

tildes distinguish band-powers P̃ s and their characteristic

wavenumbers k̃ from the raw power spectrum P s(k); tildes are

tacitly dropped in Section 4 on results, even though the powers

reported there are in fact band-powers]:

~P
s

‘ð
~kÞ ¼

ð
Wð~k; kÞð2‘þ 1ÞP‘ðmÞP

sðkÞ d3k/ð2pÞ3: ð15Þ

The band-power windows W(k̃, k) will be chosen momentarily

(Section 3.7) to be strictly positive functions narrowly peaked

about a central wavenumber k̃, but for the moment equation (15) is

entirely general. The band-power ~P
s

‘ð
~kÞ, equation (15), can be

expressed as an integral over the redshift space correlation function

(H98, Section 5.2)

~P
s

‘ð
~kÞ ¼

ð
W‘ð~k; rÞð2‘þ 1ÞP‘ðmrÞj

sðrÞ d3r; ð16Þ

where W‘(k̃, r) is a spherical Bessel transform of W(k̃, k):

W‘ð~k; rÞ ¼ i‘
ð1

0

j‘ðkrÞWð~k; kÞ4pk 2 dk/ð2pÞ3: ð17Þ

Equation (16) is the basic equation that allows galaxy pair counts to

be converted directly into band-powers.

The redshift correlation function j sðr;mrÞ at separation r and

cosine angle mr ¼ ẑ · r̂ to the line of sight z is estimated by the H93

estimator (the hat on ĵ s in equation 18 is a reminder that it is an

estimate, not the true value):

1þ ĵ sðr;mrÞ ¼
kDDlkRRl

kDRl2
; ð18Þ

where, following the conventional notation of the literature, D

signifies data, and R signifies random background points (although

in practice all the background integrals here were done as integrals,

not as Monte Carlo integrals). The angle brackets k l in equation

(18) represent FKP-weighted (see Section 3.10) averages over

pairs at separation r and mr . The line of sight z is defined separately

for each pair as the angular bisector of the pair. To allow for the

1.5-arcmin angular resolution of IRAS, only pairs further apart than

1.5 arcmin are retained (see Section 3.10 for further discussion of

this important effect), and to ensure the validity of the plane-

parallel approximation, only pairs closer than 508 on the sky are

retained. Poisson sampling noise is removed by excluding self-

pairs (pairs consisting of a galaxy and itself).

We continue the tradition of H92–H98 in computing the angular

part of the pair integrals kDRl and kRRl analytically (H93,

appendix), which leaves a single numerical integral over the radial

direction. The procedure is faster and more accurate than Monte

Carlo methods, and eliminates the artificial problem of shot noise in

the background counts. We also continue the tradition of H92–H98

in explicitly subtracting the shot noise contribution to kDRl2 that

comes from the same galaxy contributing to D in both factors of

kDRl (Section 2c of H93), eliminating the small bias that arises if

that contribution is not subtracted.

3.7 Band-power windows

The resolution Dk with which the power spectrum can be measured

is limited by the characteristic size R of the survey to Dk , 1/R. At

linear scales this size, and indeed the detailed shape of the survey

volume, plays an essential role in constructing band-power

windows, but at non-linear scales there is greater freedom to

choose band-power windows more arbitrarily.

Following H95 and H98, we adopt band-power windows that are

power laws times a Gaussian, W , k n e2k 2

, suitably scaled and

normalized (see equation 19 below). The advantages of this choice

are: (1) the band-power windows are strictly positive, preserving

the intrinsic positivity of the power spectrum; (2) they vanish at

zero wavenumber (provided that n . 0Þ, so immunizing the

measurement of power against uncertainty in the mean density

(which makes a delta function contribution to power at zero

wavenumber); (3) they are analytically convenient, and (4) they

yield Gaussian convergence as a function of pair separation r in the

corresponding real space windows W‘(k̃,r), equation (20), for

harmonics ‘ < n, provided that n is chosen to be an even integer.

Amusingly, a power law times Gaussian, k n e2k 2

, is the lowest

energy eigenstate of a three-dimensional simple harmonic

oscillator with angular momentum n. Thus there is a least-squares

sense in which the band-power window yields a measurement of

the nth harmonic of the power spectrum at the smallest possible

wavenumber with the smallest possible pair separations (Tegmark

1995).

As a compromise between resolution and the size of error bars

(higher resolution means larger error bars), we choose band-

powers uniformly spaced at Dlog k ¼ 1=16, the same resolution as

adopted by HTP in the linear regime. The resolution of the band-

power windows k n e2k 2

, equation (19), increases with the

exponent n, the full-width at half-maximum (FWHM) going

approximately as Dlog k ,/ n 21=2. We choose n ¼ 72, which has a

FWHM of Dlog k < 1=12, slightly wider than the adopted band-

power spacing of Dlog k ¼ 1=16.

The maximum measurable harmonic at n ¼ 72 is ‘ ¼ 72, which

explains the limit (14). We also measured band-powers with
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exponents n ¼ 72 £ 4 ¼ 288, whose FWHM is 1/2 that of the

n ¼ 72 band-powers, and n ¼ 72 £ 9 ¼ 648, whose FWHM is 1/3

that of the n ¼ 72 band-powers. Since the higher resolution

measurements were consistent with the lower resolution n ¼ 72

measurement (see Section 4.5), with little sign of any systematic

offset caused by insufficient resolution, we choose to report as

standard the result from the lower resolution n ¼ 72 measurement,

which has slightly smaller error bars (after the higher resolution

measurements are rebinned in k to the lower resolution).

Suitably scaled, and normalized so
Ð

Wð~k; kÞ d3k/ð2pÞ3 ¼ 1, the

band-power windows are

Wð~k; kÞ
d3k

ð2pÞ3
;

2 e2q 2

q nþ2 dq

G½ðnþ 3Þ=2�
; q ;

ak

~k
: ð19Þ

The constant a is chosen so that the band power window W(k̃, k) is

centred at k < ~k. Following H95 and H98, we choose the constant

a ¼ G½ðnþ 3Þ=2�=G½ðnþ gÞ=2�}½1=ð32gÞ� so that the smoothed

monopole power at wavenumber k̃ is equal to the unsmoothed

monopole power at the same wavenumber, ~P
s

0ð
~kÞ ¼ Ps

0ð
~kÞ, for the

particular case where the power spectrum is a power law Ps
0ðkÞ /

k g23 [corresponding to jðrÞ / r 2g� of index g ¼ 1:5, that is, for

Ps
0ðkÞ / k 21:5. For the case n ¼ 72 in the window (19), this fixes

a ¼ 6:051.

The harmonics ~P
s

‘ð
~kÞ of the redshift power spectrum folded

through the window (19) are, according to equation (16), equal to

the harmonics of the redshift correlation function folded through

the corresponding windows W‘(k̃,r) given by equation (17):

W‘ð~k; rÞ ¼
i‘½ðn 2 ‘Þ=2�!

ð3=2Þðn/2Þ

s ‘e2s 2

L‘þð1=2Þ
ðn2‘Þ=2ðs

2Þ; s ;
~kr

2a
ð20Þ

[note that W0ð~k; 0Þ ¼ 1�, where Ll
n are Laguerre polynomials

(Abramowitz & Stegun 1964), and ð3=2Þðn/2Þ ¼ G½ðnþ 3Þ=2�=Gð3=2Þ

is a Pochhammer symbol.

Fig. 3 illustrates both the Fourier band-power window W(k̃, k),

equation (19), and a selection of its real space counterparts W‘(k̃, r),

equation (20), for the case n ¼ 72. The figure illustrates that

measuring higher harmonics of power requires finer resolution in

Fourier space, hence wider separations in real space. At small

separations r, the real space windows W‘(k̃, r) alternate between

being positive or negative, as ‘=2 is even or odd, thanks to the i‘

factor in equation (20).

One of the features of the k n e2k 2

band-power window is that it

vanishes at k ¼ 0. It follows that any constant contribution to the

correlation function j s, equivalent to a delta function contribution

to power at k ¼ 0, vanishes when folded through the windows

W‘(k̃, r) given by equation (20). Thus, in estimating ~P
s

‘ð
~kÞ by

equation (16), the j s factor in the integrand can be replaced by

1þ j s : it is unnecessary to subtract the 1 part of the estimator

1þ ĵ s of equation (18).

3.8 Covariance matrix

Reliable error bars on a measurement are as important as the

measurement itself. Indeed, if precise comparison to theoretical

models is to be made, then a full covariance matrix is essential

(Eisenstein & Zaldarriaga 2001; Tegmark et al. 2001).

There are essentially three ways to determine uncertainties,

differing in how much prior information they invoke.

The ideal situation is to know a priori what the covariance matrix

is, or to know its form as a function of a modest number of

parameters. Precisely this situation obtains for Gaussian fluctu-

ations in the linear regime. Unfortunately, notwithstanding

valuable progress (Scoccimarro & Frieman 1999; Szapudi,

Colombi & Bernardeau 1999), the covariance matrix of non-linear

power is not accurately known (in either real or redshift space), and

indeed the simplest model, based on the hierarchical model with

constant hierarchical amplitudes, is known to be inconsistent,

because it violates the Schwarz inequality (Scoccimarro,

Zaldarriaga & Hui 1999; Hamilton 2000, hereafter H00).

A second commonly used strategy is to estimate the covariance

from the scatter in measurements from ensembles of mock

catalogues constructed from N-body simulations to resemble the

survey as closely as possible (e.g. Fisher et al. 1993; Cole et al.

1998).

A third alternative is to measure the covariance directly from the

level of fluctuations observed in the survey itself (H93; Szapudi

2000), and here we follow this latter approach. The approach takes

full account of the correlated character of the fluctuations in a

survey. Although the method is expected to break down at scales

approaching the size of the survey, it should work well at the non-

linear scales addressed here.

H93’s method for measuring covariance works in essence as

follows (see Section 4 of H93 for intricate details). Let P̂ be a

quadratic estimator, some integral of products of pairs of galaxy

densities. For example, P̂ could be an estimate of ~P
s

‘ð
~kÞ, the ‘th

harmonic of some band-power in redshift space, equation (16).

Divide the survey into a reasonably large number of subvolumes.

Figure 3. Band-power windows for ~k ¼ 1 h Mpc21. The window marked k

is the scaled band-power window Wð~k; kÞk 3=2/ð2p2Þ with n ¼ 72, equation

(19), plotted as a function of the wavenumber k labelled on the lower axis.

The window is scaled with k 23=24pk 3/ð2pÞ3 ¼ k 3=2/ð2p2Þ to reveal more

clearly the effective shape of the window when a power spectrum / k 23/2

(as approximately the case in PSCz) is folded through it. The plotted scaled

window has the property that it yields 1 when integrated over either
R

d ln k

or
R

k 3/2 d ln k. The remaining windows, each marked with the associated

harmonic number ‘, are the corresponding windows W‘ð~k; rÞr
3=2ð2=pÞ1=2 in

real space, equation (20), plotted as a function of the separation r labelled

on the upper axis. Again, each window is scaled with ð2prÞ23=24pr 3 ¼

r 3=2ð2=pÞ1=2 to reveal more clearly the effective shape of the window when a

correlation function (2pr )23/2, corresponding to a power spectrum k 23/2, is

folded through it. The plotted scaled windows have the property that they

yield 1 when integrated over
R

d ln r, for all ‘. Changing the characteristic

wavenumber k̃ of the band-power shifts all windows sideways on this plot,

without changing their shape. A colour version of this figure is available on

Synergy, the on-line version of Monthly Notices.

Real space power of PSCz 511

q 2002 RAS, MNRAS 330, 506–530



Here we choose 22 angular regions, as shown in the inset to Fig. 4,

times 10 radial shells, each 0.2 dex wide, covering radial depths

from 100.625 to 102.625 h 21 Mpc (i.e., 4.2 to 420 h 21 Mpc). Imagine

attaching a weight wi to each of these 22 £ 10 ¼ 220 subvolumes.

As each of these weights is varied, the estimated value P̂ changes.

Note that the estimator P̂ is being supposed subject to an overall

normalization condition such that it remains an unbiased estimate

of the thing being estimated, as the weights wi are varied; in other

words, only the relative weights wi really matter. Define the

fluctuation DP̂i in P̂ attributable to subvolume i by

DP̂i ¼
1

2
wi

›P̂

›wi

; ð21Þ

where the important factor 1/2 arises because P̂ depends

quadratically on galaxy density. Then (H93) the variance of P̂ is

given by a sum over pairs ij of subvolumes

kDP̂ 2l ¼
ij

X
DP̂iDP̂j: ð22Þ

The fluctuations DP̂i are subject to a ‘pair-integral constraint’ that

their sum over all subvolumes should be zero,
P

iDP̂i ¼ 0. This

follows from the fact that changing all the weights wi by the same

constant factor leaves the estimate P̂ unchanged. If all pairs ij of

subvolumes were included in the sum on the right-hand side

of equation (22), then the variance kDP̂ 2l would be zero, because

of the integral constraint
P

iDP̂i ¼ 0. Consider instead including in

the sum only pairs ij of subvolumes closer than some given

separation. Characteristically, as this maximum separation

between subvolumes increases, the sum on the right-hand side of

equation (22) increases, reaches a maximum, and then declines to

exactly zero when all pairs of subvolumes are included. We follow

H93’s proposal of approximating the variance kDP̂ 2l by its

maximum value attained as the maximum separation between

subvolumes is increased. This approximation reflects on the one

hand the idea that it is nearby regions that are most correlated, and

on the other hand the desire to include as much of the correlation

between nearby regions as possible.

As discussed by H93, the pair-integral constraint means that the

variance kDP̂ 2l is inevitably underestimated at scales approaching

the size of the survey. However, this effect should be minor at the

non-linear scales addressed here. Conversely, there may be some

tendency to overestimate the variance, because noise is liable to

make the measured maximum in the variance fluctuate above the

true maximum.

The covariance between P̂ and another any quadratic estimator

P̂’ is given by a generalization of equation (22),

kDP̂DP̂0l ¼
ij

X
DP̂iDP̂0j: ð23Þ

Again, if all pairs ij of subvolumes were included in the sum on the

right-hand side of equation (23), then the covariance would be

zero, because of the integral constraint
P

iDP̂i ¼ 0. In this case the

strategy of approximating the covariance by the maximum value

attained, as pairs ij of greater and greater separation are included in

the sum, fails. The strategy fails partly because covariances need

not be positive, and partly because choosing covariances to be large

is not necessarily a conservative approach – whereas increasing

variances always reduces information content, increasing covari-

ances can actually increase information content, because two

highly correlated quantities contain information about each other.

Here we estimate the covariance kDP̂DP̂0l as the average of

the sums
P

ijDP̂iDP̂0j evaluated at the two places where the

variances
P

ijDP̂iP̂j and
P

ijDP̂
i
0 P̂j reach a maximum.

3.9 Pre-whitened power

The term ‘pre-whitening’ comes from signal-processing, and refers

to the operation of transforming a signal in such a way that the

noise becomes white, or constant (Blackman & Tukey 1959,

Section 11). The notion of pre-whitening the power spectrum of

galaxies as a means of narrowing the covariance of estimates of

power at non-linear scales was proposed by H00. Whereas at linear

scales the covariance of estimates of power is (nearly) diagonal, at

non-linear scales the covariance of estimates of power is broadly

correlated over different wavenumbers, as emphasized by Meiksin

& White (1999); Scoccimarro et al. (1999), and as illustrated in

Section 4.7 of the present paper.

H00 showed empirically that pre-whitening the power

spectrum narrowed the covariance of power in a broad range of

models. As will be seen in Section 4.7, the measured covariance

Figure 4. The 12 871 galaxies of the PSCz 0.6-Jy survey with the high-latitude angular mask (hibpsczmask.dat in the PSCz package). The map is a

Hammer–Aitoff projection, in Galactic coordinates, with the Galactic Centre at the centre. Larger points signify closer galaxies [area / 1/(redshift distance)],

as exampled. The inset shows the 22 angular regions used in the error analysis; the boundaries of the angular regions are lines of constant ecliptic longitude and

latitude. A colour version of this figure is available on Synergy, the on-line version of Monthly Notices.
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of pre-whitened power in PSCz is indeed narrower than the

covariance of power itself.

The pre-whitened power spectrum is defined to be the Fourier

transform, XðkÞ ¼
Ð1

0
eik:rXðrÞ d3r, of the pre-whitened correlation

function X(r) defined by (H00, Section 5.1)

XðrÞ ;
2jðrÞ

1þ ½1þ jðrÞ�1=2
: ð24Þ

Differentiating equation (24) gives, to lowest order,

DXðrÞ ¼
DjðrÞ

½1þ jðrÞ�1=2
ð25Þ

so that the covariance of estimates X̂(r) of the pre-whitened

correlation function is (for small errors)

kDX̂ðrÞDX̂ðr0Þl ¼ ½1þ jðrÞ�21=2kDĵðrÞDĵðr0Þl½1þ jðr0Þ�21=2 ð26Þ

[note that kĵ(r)l ¼ j(r), if ĵ(r) is an unbiased estimator]. Since the

shot noise contribution to kDĵ(r)Dĵ(r0)l, i.e., the contribution that

comes from the covariance between a pair of galaxies and itself, is

in real space a diagonal matrix proportional to 1þ jðrÞ (H00,

equation 38), it follows that the pre-whitened covariance, equation

(26), has the property that the shot noise contribution to

kDX̂(r)DX̂(r0)l is proportional to the unit matrix.

The covariance of estimates DX̂(k) of pre-whitened power is

given by the Fourier transform of equation (26),

kDX̂ðkÞDX̂ðk0Þl ¼ H21=2kDP̂ðkÞDP̂ðk0ÞlH21=2; ð27Þ

where H is the Fourier transform of the matrix which in real space

is diagonal with diagonal entries 1þ jðrÞ. The shot noise (self-

pair) contribution to kDX̂(k)DX̂(k0)l is again proportional to the unit

matrix, since the unit matrix remains the unit matrix in any

representation.

Some numerical issues concerning pre-whitening are discussed

in Section 4.2 of H00, and as an aid to the reader, Appendix A

contains practical instructions on how to pre-whiten a power

spectrum numerically.

One slightly subtle issue is that the power spectrum is estimated

in discrete band-powers, not as a continuous function of

wavenumber. Our policy is to adhere to the definition (24) of the

pre-whitened correlation function

X̂ðrÞ ;
2ĵðrÞ

1þ ½1þ ĵðrÞ�1=2
; ð28Þ

with ĵ(r) in both numerator and denominator being understood to

be band-estimates, Fourier transforms of the band-powers.

3.10 FKP weightings

In a seminal paper, Feldman, Kaiser & Peacock (1994, hereafter

FKP) showed that at wavelengths large enough to be Gaussian, but

still small compared to the scale of the survey, the optimal

weighting of pairs ij of volume elements for measuring the power

spectrum P(k) at wavenumber k is

�nðriÞ�nðrjÞ

½1þ �nðriÞPðkÞ�½1þ �nðrjÞPðkÞ�
: ð29Þ

The FKP weighting goes over to equal weighting of volumes where

the selection function n̄(r) is large, and equal weighting of galaxies

where the selection function is small, which makes physical sense.

The FKP weighting is often referred to as ‘minimum variance’

(or more cautiously, ‘near minimum variance’), yet the range of

scales over which it is strictly valid is limited (even non-existent).

Of course, it is commonly, and correctly, argued in defence of the

more general use of the FKP weighting that because the variance

changes quadratically about its minimum, a near minimum

variance weighting should give a result not much worse than the

true minimum variance.

The simplicity of the FKP weighting, equation (29), springs

from the fact that, for Gaussian fluctuations, the covariance matrix

kDP̂(k)DP̂(k0)l of estimates of power (including the shot noise

contribution) is diagonal (for Gaussian fluctuations, at wavelengths

small compared to the survey). Thus the inverse covariance matrix,

which determines the optimal weighting of pairs, is similarly

diagonal. The eigenvalues of the inverse covariance constitute the

FKP weights, equation (29). By contrast, the covariance of

estimates of the correlation function j(r), for example, is not

diagonal, and the optimal weighting of pairs is, strictly, a

complicated matrix.

At non-linear scales the covariance of power ceases to be

diagonal, and the FKP weighting ceases to be optimal. However,

H00 showed that a weighting similar to the FKP weighting is valid

for the pre-whitened power spectrum (Section 3.9) to the extent

that the covariance of pre-whitened power is indeed (nearly)

diagonal. The more general weighting differs from FKP in that

P(k) in the denominator of the weighting is replaced by an ‘FKP

constant’ J, whose value is model-dependent, but of order ,1–3

times the (unprewhitened) power P(k) (H00, fig. 11):

�nðriÞ�nðrjÞ

½1þ �nðriÞJ�½1þ �nðrjÞJ�
: ð30Þ

The strategy of the present paper is to measure band-powers using

FKP weightings, equation (30), with five values of the FKP

constant, J ¼ 0, 10, 102, 103 and 104 h 23 Mpc3, and then

(cautiously) compress (Section 3.11) the five measurements into

a single best estimate of the band-power.

In accordance with the above arguments, we compress not the

band-powers themselves, but rather the pre-whitened band-powers.

In other words, to form the best estimate of the band-power, we first

pre-whiten (Section 3.9) the five FKP-weighted estimates, which

we then combine into a best estimate of pre-whitened power, which

we then unprewhiten.

Why choose five particular values of the FKP constant, rather

than follow H00 and adopt, at each wavenumber k, a single FKP

constant J equal to 1–3 times the power P(k)? The reasons are both

practical and philosophical. The practical reason is as follows. We

wish to make an estimate of the pre-whitened power in which the

estimate ĵ(r) in the denominator of equation (28) is the same as the

ĵ(r) in the numerator, at every separation r. However, the best

choice of FKP constant J varies with k, which has the consequence

that the best estimate of pre-whitened power involves estimates of

(unprewhitened) power at many Js. An alternative procedure that

naturally suggests itself might be to measure the power spectrum

with a fixed J, pre-whiten it, and call that the best estimate of pre-

whitened power at a particular k. However, the pre-whitened power

from the latter procedure does not satisfy the desideratum that the

estimates ĵ(r) in the numerator and denominator of equation (28)

are the same. Our view is that it is better to impose the a priori

requirement that the ĵ(r) in the numerator and denominator be the

same, than to discard that information. Given that it is necessary to

measure the (unprewhitened) power P(k) at many Js, for each

wavenumber k, one is also faced with the necessity of measuring

the covariances between powers with different Js and different ks.

However, limitations of computer power then constrain one to
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using just a handful of Js. This is the practical reason behind the

procedure adopted here.

The philosophical reason for measuring the power by

compressing estimates from a handful of Js, rather than adopting

at each k a single FKP constant J equal to 1–3 times the power

P(k), is that the factor of 1–3 depends on the assumed model for

the behaviour of higher order correlations, and there is no

assurance that the PSCz data conform to the model. Indeed the

model adopted by H00 – the hierarchical model with constant

hierarchical amplitudes – is certainly wrong at some level, because

the resulting covariances of power violate the Schwarz inequality

unless the 4-point star amplitude is equal to minus the 4-point

snake amplitude, Rb ¼ 2Ra, contrary to observation (Scoccimarro,

Zaldarriaga & Hui 1999, Section 3.3; H00). Our preference is

therefore to allow the PSCz data to ‘choose’ the best weighting.

3.11 Cautious Fisher compression

At this point, the data consist of five FKP weightings of each of 37

harmonics (even harmonics up to ‘max ¼ 72Þ of band-powers at

each of 57 wavenumbers ðk ¼ 0:1 to 316 h Mpc21, logarithmically

spaced at Dlog k ¼ 1=16Þ, a total of 5 £ 37 £ 57 ¼ 10545

quantities. Along with the data are their fluctuations, equation

(21), with respect to each of 220 volume elements, a total of

10545 £ 220 ¼ 2319900 fluctuations. The 10545 £ 10545 covari-

ance matrix of the data is constructed (or at least constructible)

from the fluctuations as described in Section 3.8 (in effect, the

fluctuations provide a convenient way to store in abbreviated form

the variances and covariances between all 10 545 quantities).

In principle, the Fisher matrix formalism (see Tegmark, Taylor

& Heavens 1997 for a review) allows one to take the 10 545 data

and use their Fisher matrix – their inverse covariance – to

compress them optimally into 57 measurements of real-space

power. Unfortunately, errors in the measured covariance matrix

thwart so idealistic an enterprise. We relegate this moral tale of

failed ambition to its rightful place, an appendix (see Appendix B).

A symptom of the difficulty with the covariance matrix is that a

good fraction of its eigenvalues are negative, whereas in reality the

covariance matrix should be positive definite, with all positive

eigenvalues.

If the only problem were negative eigenvalues, then it would be

easy to solve by Singular Value Decomposition. The more serious

problem is that the covariance matrix contains positive

eigenvalues, some of which are evidently spuriously small. A

small positive eigenvalue can signify either that a quantity is

accurately measured, or else that there is some highly correlated set

of quantities. Clearly, one wants to retain a well-measured

quantity; on the other hand, one might be inclined to discard some

component of a set of highly correlated quantities.

The problem is not that the covariance matrix is particularly badly

measured. In fact, the level of fluctuations in the measured covari-

ances, such as can be seen in Fig. 15, suggests that the covariances

are typically accurate to ,20 per cent. Moreover, there is general

consistency with errors measured (HTP) by the linear method.

Abandoning any grand compression scheme (Appendix B), we

revert to a simpler program, to compress the five FKP-weighted

estimates of each band-power into one.

We first form an estimate P̂(k̃) of the real-space power at each

FKP weighting and each wavenumber from the redshift space

power in the transverse direction, m ¼ 0, including only harmonics

of redshift power up to ‘max(k) given by equations (13) and (14)

[the hat on P̂
s

‘ð
~kÞ in the following equation is a reminder that it is an

estimate, not the true value, of the band-power harmonic ~P
s

‘ð
~kÞ,

equation 15]:

P̂ð~kÞ ¼
X‘maxðkÞ

‘¼0

P̂
s

‘ð
~kÞP‘ðm ¼ 0Þ: ð31Þ

We compute the 5 £ 5 covariance matrix of the five FKP-weighted

estimates P̂(k̃) from the fluctuations DP̂ð~kÞ; equation (21), as

described in Section 3.8. The resulting covariance matrix is

consistent with that computed less directly (hence presumably less

accurately) via the covariance matrix of harmonics.

We then pre-whiten (Section 3.9) each of the five FKP-weighted

estimates P̂(k̃), and pre-whiten their covariance matrix correspond-

ingly. Since pre-whitening requires knowledge of the full power

spectrum, we start by compressing the five estimates without pre-

whitening, derive the best estimate power, use that to pre-whiten,

rederive the best estimate power, and iterate to convergence. If X̂i

denotes the ith of five estimates of pre-whitened power, then the

overall best estimate X̂ is that which minimizes x 2:

x 2 ¼
ij

X
ðX̂i 2 X̂ÞC21

ij ðX̂j 2 X̂Þ; ð32Þ

where C ij ; kDX̂iDX̂jl is the 5 £ 5 covariance matrix of estimates of

pre-whitened power. The minimum x 2 solution of equation (32) is

X̂ ¼
i

X
wiX̂i; wi ¼

j

X
C21

ij

kl

X
C21

kl

: ð33Þ

Typically, the covariance matrix Cij contains some small (some-

times negative) eigenvalues, indicating that the five estimates are

highly correlated – not a particularly surprising result. However,

x 2 minimization typically responds to the high correlation by

assigning one estimate a large positive weight, and another an

almost cancelling large negative weight. Such behaviour is clearly

spurious, an artefact of errors in the covariance matrix having

random ill effects on small eigenvalues.

We solve the problem by requiring that the weights that go into

the best estimate, equation (33), all be positive, wi > 0. We do this

in a dumb way: we find the minimum x 2 solution for each of the

25 2 1 ¼ 31 non-trivial ways in which each of the five weights is

free or fixed at 0, and choose that positive weighting that has the

smallest x 2. Typically two or three of the five estimates have non-

zero weights in the best estimate. The other estimates, having zero

weight, are in effect discarded, the least informative way of using

those data.

The weightings for the full set of band-powers show a plausible

and expected pattern. Band-powers at larger scales, where P(k) is

large, prefer weightings with larger FKP constants J, while band-

powers at smaller scales prefer smaller J.

Finally, having obtained the best estimate pre-whitened power X̂,

we unprewhiten to obtain the best estimate power P̂. As commented

above, several iterations are needed to ensure that the power

spectrum used in (un)pre-whitening is the same as the best estimate.

The main effect of pre-whitening before compressing, as

opposed to compressing powers directly, is to prefer smaller FKP

constants J. The consequences of this preference are commented

on in Section 4.5.

3.12 Selection function

Since HTP give only a brief description of the measurement of the

selection function, we offer more details here. We adopt three
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simplifying assumptions commonly made in measuring the

selection function of a flux-limited galaxy survey (see, e.g., the

reviews by Binggeli, Sandage & Tammann 1988; Willmer 1997;

Tresse 1999): (1) that the luminosity function is independent of

position; (2) that the survey is complete to the specified flux limit,

and (3) that distances and galaxy fluxes are measured with

negligible error. Undoubtedly all of these assumptions fail at some

level.

If the above three assumptions are taken to be true, then there is a

unique exact solution (modulo an overall normalization factor), a

solution for the luminosity function and radial density distribution

of galaxies that exactly reproduces the observed distribution of

luminosities and distances. The exact solution is given by Lynden-

Bell’s (1971) C 2 method, which coincides with Turner’s (1979)

method in the limit of infinitesimal bins, and with Efstathiou, Ellis

& Peterson’s (1988) stepwise maximum-likelihood method in the

limit of infinitesimal steps. The exact solution is a sum of delta

functions: the luminosity function is a sum of delta functions at the

observed luminosities of the galaxies, and the galaxy density is a

sum of delta functions at the observed distances of the galaxies.

This is perhaps not too surprising, given that the observations –

galaxies – are themselves described as delta functions in

luminosity and distance. The resulting selection function, the

integral of the luminosity function, is a step-function, with a step at

the limiting distance of each galaxy in the survey. In practice, we

evaluate the selection function using Turner’s method adapted to

the case of infinitesimal bins; the algorithm has the merit of being

exceedingly fast.

Fig. 5 shows the resulting exact solution for the selection

function and the inferred galaxy density.

The selection function so computed is ‘exact’ only to the extent

that the prior assumptions are valid. Clearly, the ‘exact’ selection

function, being a step-function, does not incorporate the Bayesian

prejudice that the selection function is likely to be smooth. For this

reason it is usual to fit the selection function to a smooth analytic

function. We use the maximum-likelihood method of Sandage,

Tammann & Yahil (1979), and fit the selection function n̄(r) to a

function whose form is inspired by the Schechter (1976) function,

but with enough free parameters to yield a good fit, also shown in

Fig. 5:

log10ð�nÞ ¼ 20:646 log10ðr100Þ

2
1:86þ 1:836r100 þ 0:3811r2

100 þ 0:02074r3
100

1þ 0:2073r100 þ 0:08386r2
100

;

ð34Þ

where r100 is the comoving depth in units of 100 h 21 Mpc. The

assumed redshift–distance relation is that of a flat LCDM model

with Vm ¼ 0:3, VL ¼ 0:7, in which comoving distance r (in

velocity units) is related to redshift z by

r ¼
c

3V1=6
L V1=3

m

½BðVLðzÞ; 1=6; 1=3Þ2 BðVL; 1=6; 1=3Þ�; ð35Þ

where c is the speed of light, Bðx; a; bÞ ;
Ð x

0
t a21ð1 2 tÞb21 dt is the

incomplete beta function, and VLðzÞ ¼ VL/½VL þVmð1þ zÞ3� is

the density of vacuum energy as a function of redshift.

Measurement of the selection function as described above

determines its shape, but not the overall normalization (Binggeli

et al. 1988). The normalization factor is measured here as one of

the parameters of the linear method of HTP. The fitting function

(34) is thus maximum likelihood not only with respect to the shape,

but also with respect to the normalization. The measured

normalization depends mainly on the amplitude of the ‘mean

mode’ (the mode whose angular shape is the cut monopole, and

whose radial shape is that of the selection function), but it self-

consistently incorporates information from the amplitudes of all

other linear modes.

A difficulty one encounters in implementing a maximum-

likelihood fit to the selection function, per Sandage et al. (1979), is

that there are many spurious non-smooth solutions that wiggle

fiercely and look awful, but nevertheless have formally greater

likelihood than the desired smooth solutions. This strange

behaviour can be traced to the fact that the ‘exact’ solution for

the luminosity function and galaxy density is a sum of delta

functions. Formally, the ‘exact’ step-function solution has infinitely

greater likelihood than any smooth solution. Increasing the number

of parameters in the fitting function increases the tendency for the

Figure 5. (Upper panel) Selection function of the PSCz 0.6-Jy survey as a

function of comoving depth r. The selection function is multiplied by r 2 in

order to reduce its range and hence to bring out more detail. The thin solid

line is the ‘exact’ selection function, from Lynden-Bell’s (1971) C 2

method; the upper solid line assumes that galaxies evolve with luminosity

/ð1þ zÞ3:4, while the lower solid line assumes no luminosity evolution.

The ‘exact’ selection function is actually a step function with a step at the

limiting distance of each galaxy, but the steps are so fine (there are 12 867 of

them) that the lines look almost continuous. The dashed line is the smooth

analytic fit to the selection function with evolution, equation (34), adopted

by HTP and here. The fit lies almost on top of the ‘exact’ solution. For

comparison, the dotted line is the fit suggested by Saunders et al. (2000).

(Lower panel) Ratio of the observed galaxy number density to the fitted

selection function at radial depth r in the PSCz survey, averaged in depth

bins 0.025 dex wide (this plot appears also in HTP). The lower line assumes

that galaxies evolve with luminosity /ð1þ zÞ3:4, while the upper line

assumes no luminosity evolution. The dotted line corresponds to the fit

suggested by Saunders et al. (2000). The unshaded region from radial depth

100:625 h 21 Mpc < 4:2 h 21 Mpc to 102:625 h 21 Mpc < 420 h 21 Mpc is the

region retained for analysis in this paper. A colour version of this figure is

available on Synergy, the on-line version of Monthly Notices.
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maximum-likelihood solution to slide off into a spurious non-

smooth solution. To reduce this instability, we start by carrying out

a simplified least-squares fit to the ‘exact’ selection function, since

least-squares quickly finds an approximate fit without serious

problems of stability. The resulting approximate values of the

parameters of the fit provide the starting point from which to search

for the maximum-likelihood solution. Even so, the maximum-

likelihood fitting becomes unstable with too many parameters. The

adopted fit (34) contains seven free parameters, and formally all of

these are significant; for example, increasing the number of

parameters from 5 to 7 increases the log-likelihood by DlnL ¼ 7.

However, we could not increase the number of parameters beyond

this without the solution veering into instability. We interpret this

behaviour as suggesting that, among functions of its form, equation

(34) almost exhausts the possibilities for finding a better smooth fit.

As found by Saunders et al. (1990) in the case of the QDOT

survey (the 1-in-6 precursor to PSCz), measurement of the

selection function yields evidence for what appears to be strong

evolution, in the sense that galaxies used to be more numerous, or

more luminous, than they are now. We choose to model evolution

by pure luminosity evolution, which is mathematically indis-

tinguishable from a spectral K-correction. Specifically, we adopt a

luminosity-cum-spectral correction of the form K ¼ ð1þ zÞk in the

relation F ¼ KL/½4pð1þ zÞ2r 2� between the observed flux F,

luminosity L, redshift z, and comoving distance r of a galaxy. Fig. 5

shows the observed number density of galaxies, divided by the

measured selection function, both with evolution, k ¼ 3:4, and

without, k ¼ 0. The figure shows that, in the absence of an

evolutionary correction, the galaxy density appears to increase

substantially with redshift. The large degree of evolution is

consistent with that reported in QDOT by Saunders et al. (1990).

Actually, a canonical IRAS galaxy spectrum dL/dn/ n22

(Saunders et al. 1990) would predict a spectral K-correction with

k ¼ 21. In that case, the actual luminosity evolution would be one

power steeper than indicated in Fig. 5.

The best-fitting value of the evolutionary exponent k increases

systematically as the flux limit is decreased, from 1 at 1.2 Jy, to 2.9

at 0.75 Jy, to 3.4 at 0.60 Jy. This suggests the possibility that at least

part of the effect may be caused not by evolution, but rather by

Malmquist bias, in which the increasing number of galaxies at

fainter fluxes, combined with random flux errors at the flux limit of

the survey, cause galaxies to fluctuate preferentially into rather than

out of the survey. Malmquist bias is expected to be most marked in

more distant regions of the survey, where the selection function is

steepest.

Since galaxies which randomly fluctuate into the sample should

be clustered in the same way as galaxies which correctly belong to

the sample, Malmquist bias should not bias measurement of the

power spectrum, so long as the bias is homogeneous over the sky.

As discussed in Section 4.4 of Saunders et al. (2000), Malmquist

bias in the PSCz survey is probably inhomogeneous at some level,

notably because flux errors are higher in the 2HCON regions of the

survey than in the 3HCON regions. However, if inhomogeneous

Malmquist bias were important, then it should show up as an

excess of angular power over radial power at the largest scales. The

investigations of HTP reveal no strong excess of angular power at

large scales in the redshift distortions either of the correlation

function, fig. 2 of HTP, or of the power spectrum, fig. 4 of HTP. We

tentatively conclude that inhomogeneous Malmquist bias is not a

major problem in the PSCz survey.

Besides evolution, Fig. 5 also suggests growing incompleteness

at the greatest depths. This may be presumed to be the incom-

pleteness at high redshift described in Section 4.2 of Saunders et al.

(2000), associated with the policy not to pursue redshifts of

galaxies optically fainter than bJ ¼ 19:5m. Since this incomplete-

ness is greater in regions of higher optical extinction, and is

systematic rather than random over the sky (fig. 4 of Saunders et al.

2000), we choose to cut the survey at 102:625 h 21 Mpc <
420 h 21 Mpc; as previously did HTP. However, whereas HTP set

the lower depth limit at 1 h 21 Mpc, here we choose the slightly

more conservative lower limit of 100:625 h 21 Mpc < 4:2 h 21 Mpc;

about a correlation length, to reduce ‘local bias’ resulting from the

fact that we, sitting in a galaxy, the Milky Way, are not at a random

location.

The angular and radial cuts leave 12 446 galaxies (out of an

original 14 677 galaxies with redshifts) in the survey.

4 R E S U LT S

4.1 Real space power spectrum

Fig. 6 shows the real-space power spectrum of the PSCz 0.6-Jy

survey with the high-latitude angular mask. The values at linear

scales are from HTP, while those at non-linear scales are measured

as described in Section 3. The plotted values are tabulated in Tables

C1 and C2.

At linear scales Fig. 6 shows both correlated and decorrelated

Figure 6. Real space galaxy–galaxy power spectrum measured from the

PSCz 0.6-Jy survey with the high-latitude angular mask. To the left of the

vertical dashed line is the linear measurement from Hamilton et al. (2000),

while to the right is the non-linear measurement from the present paper. The

solid line is the correlated power spectrum. In the linear regime (left of

the vertical dashed line), the shaded region is the 1s uncertainty in the

correlated power spectrum, and points with error bars constitute the

decorrelated power spectrum (Hamilton & Tegmark 2000). Each point of

the decorrelated linear power spectrum is uncorrelated with all other points.

It is not possible to decorrelate the non-linear power spectrum, so in the

non-linear regime (right of the vertical dashed line), points with error bars

are the errors in the correlated power spectrum. The dashed lines are the flat

LCDM concordance model power spectrum from Tegmark et al. (2001),

with parameters as indicated. The lower dashed line is the linear model

power spectrum, the upper dashed line the model power spectrum

nonlinearly evolved according to the prescription of Peacock & Dodds

(1996). A colour version of this figure is available on Synergy, the on-line

version of Monthly Notices.
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power spectra, as measured by HTP, tabulated separately in Tables

C1 and C2. The correlated power spectrum is the one that emerges

most directly from the data, and in essence represents the power

spectrum smoothed through the Fourier transform of the optimally

weighted survey window. The errors in the correlated power

spectrum are correlated. The decorrelated power spectrum is

partially deconvolved in such a way that estimates of power at

different wavenumbers are uncorrelated with each other (Hamilton

& Tegmark 2000). The decorrelated power spectrum is to be

preferred, if one wants to compare a model power spectrum to the

PSCz data at linear scales.

At non-linear scales the power spectrum cannot be decorrelated

sensibly (unless it is first pre-whitened – see Section 4.7), so

Table C2 lists the decorrelated power only at linear scales. If one

attempted to decorrelate the non-linear power spectrum into a set

of uncorrelated band-powers, then the band-power windows would

be so broad, with almost cancelling positive and negative parts, that

it would be hard to interpret the band-powers as representing the

power spectrum in any meaningful way.

Integration over the (decorrelated) power spectrum yields an rms

fluctuation

sr ;
ð1

0

3j1ðkrÞ

kr

� �2

PðkÞ
4pk 2dk

ð2pÞ3

( )1=2

ð36Þ

in r ¼ 8 h 21 Mpc radius spheres of

s8 ¼ 0:80 ^ 0:05: ð37Þ

Fig. 6 also shows the concordance model power spectrum of

Tegmark et al. (2001), nonlinearly evolved by the method of

Peacock & Dodds (1996). Although the concordance model fits

well at linear scales, it evidently fails dismally at non-linear scales.

In fact all dark matter (DM) models with constant galaxy-to-

mass bias – to be precise, all DM models in the Eisenstein & Hu

(1998, 1999) suites, nonlinearly evolved by the method of Peacock

& Dodds (1996), and all the cold+hot DM models of Ma (1998a,b),

all arbitrarily normalized – fail at non-linear scales, with high

confidence.

The concordance model illustrated in Fig. 6 shows two

characteristic features of all DM power spectra: an inflection

(Gaztañaga & Juszkiewicz 2001) at the linear to non-linear

transition scale (here k , 0:3 h Mpc21Þ, and a turnover at the

transition between the non-linear collapse and virialized regimes

(in the model at k , 3 h Mpc21Þ. Instead, the observed PSCz power

spectrum shows a near power-law behaviour PðkÞ , k 21:5 over

virtually the entire observed range. The power law is not exact:

visually there appears to be a mild upward curvature of power in

the broad vicinity of k , 2 h Mpc21. However, there is no

prominent non-linear inflection, as there is in APM (Gaztañaga &

Baugh 1998; Gaztañaga & Juszkiewicz 2001).

These conclusions are essentially the same as those previously

arrived at by Peacock (1997) and Jenkins et al. (1998).

While the disagreement between theory and observation may

presage a drastic failure of DM models, or of the Peacock–Dodds

or Ma transformations, it seems more likely that scale-dependent

galaxy-to-mass bias is responsible.

To make theory and observation agree requires antibias at

intermediate scales, and positive bias at small scales, as can be seen

in Fig. 6. Remarkably, precisely this type of behaviour is repro-

duced in some N-body experiments (Colı́n et al. 1999; Kravtsov &

Klypin 1999; Benson et al. 2000), and there is already vigorous

theoretical effort to understand it in terms of the way galaxies

populate DM haloes (Ma & Fry 2000a,b; Peacock & Smith 2000;

Seljak 2000, 2001; Scoccimarro et al. 2001).

We admit some frustration over our failure, documented in

Section 3.11 and Appendix B, to measure a positive definite

covariance matrix for the non-linear power spectrum. Without such

a matrix, and given the broad covariance of power in the non-linear

regime, it is impossible to assess rigorously the statistical

significance of the tentative mild upward curvature of power near

k , 2 h Mpc21. If the off-diagonal elements of the covariance

matrix are simply discarded – an inadmissible procedure, but no

better option presents itself – then the best single-power-law fit

over the range k ¼ 0:05–300 h Mpc21 is (with k measured in

h Mpc21)

PðkÞ < 150k 21:46 h 23 Mpc3; ð38Þ

with x 2 ¼ 25 for 59 nominal degrees of freedom. The low x 2

per degree of freedom is indicative of the high degree of correlation

of the non-linear estimates of power, not of the excellence of the

fit. The best fit to a sum of two power laws over k ¼

0:05–300 h Mpc21 is (with k measured in h Mpc21)

PðkÞ < ð72k 21:72 þ 74k 21:28Þ h 23 Mpc3; ð39Þ

with x 2 ¼ 19 for 57 nominal degrees of freedom. The reduction of

x 2 by 6 for two additional parameters can by no means be

construed as implying that the upward curvature of power is

statistically significant, but there is a possibility that it may be

statistically significant. The exponents 21.72 and 21.28 in the

two-power-law fit, equation (39), may exaggerate slightly the

asymptotic slopes of the power spectrum at large and small scales:

the best-fitting exponents to single power laws at large,

k ¼ 0:05–2 h Mpc21, and small, k ¼ 2–300 h Mpc21, scales are

21.53 and 21.37 respectively.

4.2 Power at the smallest scales

How reliable are the measurements of power at the smallest scales,

k < 300 h Mpc21 Such scales correspond to separations of the

order of a galaxy size, p/k < 10 h 21 kpc.

Beyond the minimum depth of 100:625 h 21 Mpc < 4:2 h 21 Mpc

considered in this paper, there are seven distinct pairs of galaxies

with transverse separations closer than 10 h 21 kpc (and redshift

separations small enough that they are probably physically

associated), mostly near the plane of the Local Supercluster. There

are a further 34 distinct pairs with transverse separations in the

interval 10–30 h 21 kpc, variously distributed over the sky (three of

the 34 pairs actually live in three distinct triple systems). The

number of close pairs, though not large, appears to be enough to

provide a statistically significant sample.

An important systematic effect arises from IRAS’s ,1.5-arcmin

angular resolution, which is expected to lead to a deficiency of

galaxy pairs at small angular separations. IRAS scanned roughly

along lines of constant ecliptic longitude (see, e.g., http://www.

ipac.caltech.edu/Outreach/Gallery/IRAS/allsky.html), and the

angular resolution for a single scan was typically ,1.5-arcmin

in-scan by ,4.75-arcmin cross-scan (Section 2.3 of Saunders et al.

2000). As described in the IRAS Explanatory Supplement

(Beichman et al. 1988, Section V.H), the resolution of the Point

Source Catalog (PSC) was improved by combining several scans at

neighbouring longitudes. The selection rules for the PSC impose an

absolute lower limit on pair separation of 0.5-arcmin in-scan by

1.5-arcmin cross-scan, although this limit is occasionally violated
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because of variations in processing. In the PSCz sample considered

in this paper, there are in practice five distinct pairs closer than

1.5-arcmin, though none closer than 0.75-arcmin.

Fig. 7 shows the distribution of close pairs relative to a frame

aligned with local ecliptic coordinates. The figure shows that the

effective resolution in the cross-scan direction is substantially

higher than the 4.75-arcmin single-beam resolution, indicating that

the PSC strategy of combining scans from neighbouring longitudes

was particularly effective in the cross-scan direction. Indeed, the

figure suggests that the resolution in the cross-scan (horizontal)

direction is if anything slightly higher than the resolution in the in-

scan (vertical) direction. We have also checked the distribution of

close pairs on the sky, and find no tendency for close pairs to lie

preferentially near the ecliptic poles, where scans cross, and where

the angular resolution might be expected to be high in all

directions.

Given the evidence of Fig. 7, we assume that the IRAS beam is

effectively isotropic, with an angular resolution of 1.5-arcmin.

Independent of any a priori knowledge about the IRAS beam, the

fact that there is a deficiency of close pairs in PSCz can be

demonstrated by looking at the distribution of pairs as a function of

depth. If the sample were complete, then the distribution of pairs

with depth would be independent of pair separation, at least at pair

separations small compared to the scale of the survey. Specifically,

the expected number of pairs in some prescribed volume V of

the survey is, at pair separations small compared to the scale of the

survey,

expected number of pairs ¼ C
gals i

X
�nðriÞ; ð40Þ

where the sum is over all galaxies i in the volume V, the quantity

n̄(ri) is the selection function at the position ri of galaxy i, and

C ¼
Ð
½1þ jðrÞ� d3r is an integral over pair separations in the

interval of interest. The distribution of pairs with depth is

determined entirely by the factor
P

in̄(ri), which is independent of

pair separation, the factor C being a constant for any specified

interval of pair separations.

For the sample used in this paper, the PSCz high-latitude sample

at comoving depths 4:2–420 h 21 Mpc, formula (40) predicts that

the 10, 25, 50 (median), 75, and 90 percentile depths of close pairs

should be 7.5, 11, 19, 36, and 56 h 21 Mpc respectively. By

comparison, the median and maximum depths of the seven pairs

with transverse separation <10 h 21 kpc are 8 and 19 h 21 Mpc,

indicating a significant deficiency of pairs, with of order 30 to 50

per cent completeness, while the median and maximum depths of

the 34 pairs with transverse separations 10–30 h 21 kpc are 18

and 56 h 21 Mpc, consistent with little or no deficiency, of order 90

per cent completeness.

The distribution of close pairs with depth is consistent with the

hypothesis that there is a cut-off at ,1.5 arcmin. This angular

separation corresponds to transverse separations of 8 and

25 h 21 kpc at the 50 and 90 percentile depths 19 and

56 h 21 Mpc of the survey. Thus, if pairs closer than 1.5 arcmin

are missing, then pairs at transverse separation 8 h 21 kpc should be

50 per cent complete, and pairs at transverse separation 25 h 21 kpc

should be 90 per cent complete. These levels of completeness are

consistent with those inferred for observed pairs in the

<10 h 21 kpc and 10–30 h 21 kpc ranges of separation.

We choose to deal with the incompleteness by imposing a sharp

lower limit of 1.5 arcmin in the angular separation of pairs, in both

real and ‘background’ pair counts. Fig. 8 compares the power

spectra measured with and without the 1.5-arcmin cut-off. At the

smallest scales, the power spectrum without the cut-off is

systematically lower than the canonical power spectrum with the

cut-off.

We caution that there is expected to be at least some

incompleteness in pairs at angular separations ,1.5–5 arcmin, so

our estimate of the power spectrum at the smallest scales may be

systematically underestimated. We hesitate to attempt to correct

for this residual incompleteness, given the uncertainty in IRAS’s

effective beam.

Whether the small-scale power spectrum of PSCz galaxies is

Figure 7. The distribution of the 446 distinct pairs closer than 10 arcmin on

the sky, relative to a frame aligned with local ecliptic coordinates l,b whose

origin is the barycentre of each pair. Ecliptic north is up, ecliptic east to the

left. The distribution has parity symmetry through the origin (equivalently,

it has 1808 rotation symmetry about the origin). The rectangle at the centre

illustrates IRAS’s 1.5-arcmin in-scan £ 4.75 arcmin cross-scan beam. The

effective angular resolution is higher, particularly in the cross-scan

(horizontal) direction, thanks to the PSC strategy of combining several

scans at neighbouring longitudes. A colour version of this figure is available

on Synergy, the on-line version of Monthly Notices.

Figure 8. IRAS’s 1.5-arcmin angular resolution leads to a deficiency of

pairs closer than 1.5 arcmin on the sky. Points with error bars constitute the

standard power spectrum from Fig. 6, which takes this effect into account.

The solid line shows how the power spectrum is systematically depressed

on the smallest scales if the exclusion of close pairs is not taken into

account. A colour version of this figure is available on Synergy, the on-line

version of Monthly Notices.
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systematically underestimated or not, it demonstrates dramati-

cally that the power spectrum continues to small scales, with no

hint of any turnover such as expected in the matter power

spectrum.

4.3 Comparison of methods

Fig. 9 compares the power spectrum measured by the linear and

non-linear methods separately, demonstrating good agreement

between the two methods where they overlap, around

k , 0:3 h Mpc21. This agreement constitutes a powerful end-to-

end test of both methods, since they involve completely different

approximations and computational approaches.

Quantitative comparison is complicated by the fact that the

band-power windows have somewhat different shapes for the linear

and non-linear methods. Moreover, the non-linear method assumes

a weaker prior, since it allows higher harmonics of redshift power,

so the errors on the non-linear estimates might be expected to be

slightly larger where both methods work well. However, the

agreement is encouraging despite these differences. For example,

the results for the two band-powers adjacent to the linear-non-

linear boundary are as follows. For the band-power centred at

k ¼ 0:317 h Mpc21, the linear and non-linear methods yield PðkÞ ¼

917 ^ 109 h 23 Mpc3 and PðkÞ ¼ 908 ^ 190 h 23 Mpc3 respect-

ively, a 1 per cent mismatch in power and a 74 per cent larger error

for the non-linear case. Similarly, for the band-power centred at

k ¼ 0:365 h Mpc21, the linear and non-linear methods yield PðkÞ ¼

674 ^ 85 h 23 Mpc3 and PðkÞ ¼ 702 ^ 102 h 23 Mpc3 respectively,

a 4 per cent mismatch in power and a 20 per cent larger error for the

non-linear case. Tightening the non-linear prior by reducing the

maximum number ‘max of harmonics, equation (13), reduces the

error bars in the non-linear case, bringing them into closer

agreement with the linear method.

At linear scales the non-linear method breaks down, in part

because the plane-parallel approximation breaks down, but also

because the band-power window we have used at non-linear scales,

,k n e2k 2

with n ¼ 72, which has a FWHM of Dlog k < 1=12,

becomes too narrow in low-wavenumber band-powers to be

resolved by the survey. We assess the problem quantitatively by

introducing an explicit maximum pair separation of

<270 h 21 Mpc, and computing the neglected contribution to

monopole power from separations exceeding the limit. The

neglected contribution increases with exponential rapidity at large

scales, from a fractional correction of ,10210 to the band-power at

<0.3 h Mpc21, to ,1023 at <0.2 h Mpc21, to overwhelmingly

dominant at <0.1 h Mpc21. This explains why the power computed

by the non-linear method is plotted only at k * 0:2 h Mpc21 in

Fig. 9.

At non-linear scales the linear method breaks down, in part

because both the assumption of Gaussian density fluctuations and

the linear model of redshift distortions fail, but also because the

number 4096 of Karhunen–Loève modes used by HTP is, by

design, sufficient to achieve good coverage of k-space only up to

k & 0:3 h Mpc21. At larger wavenumbers the coverage of k-space

becomes increasingly sparse. This explains why the power

computed by the linear method appears to become noisier at

k * 0:5 h Mpc21, and why it is plotted only to k & 0:9 h Mpc21 in

Fig. 9.

Fig. 9 also compares the power spectrum measured by the non-

linear method using two different band-power windows, ,k n e2k 2

with n ¼ 72 and n ¼ 288. The high resolution band-powers,

n ¼ 288, have resolution Dlog k < 1=24 FWHM twice that of the

low-resolution band-powers, n ¼ 72. Evidently the two sets of

band-powers yield results in good agreement. We also experi-

mented with n ¼ 648, which has 3 times the resolution of n ¼ 72;

again the results were in good agreement.

We also computed a power spectrum using the non-linear

method with n ¼ 72 but with twice as many harmonics,

‘max ¼ 32ðk/1 h Mpc21Þ1=2, as the adopted maximum, equation

(13). The power spectrum agrees well with the original

calculation, but we choose to omit it from Fig. 9 to avoid

confusing the plot.

The maximum harmonic measurable with a band-power

,k n e2k 2

is ‘ ¼ n. The concern with the low-resolution band-

powers, n ¼ 72, is that at large wavenumbers there are not

enough harmonics to resolve the expected hill in the redshift

power at m ¼ 0, the all-important place where redshift power

equals real power. In fact equation (13) would suggest that, in

order to resolve redshift power satisfactorily, harmonics ‘ . 72

are required at k * 20 h Mpc21, with ‘ < 284 required at

k ¼ 316 h Mpc21. One might anticipate that too few harmonics

would tend to smooth out the hill, hence bias the estimate of real

power systematically low. However, Fig. 9 shows little sign that

the lower resolution band-powers with n ¼ 72 are biased low

compared to the higher resolution band-powers with n ¼ 288.

Some bias surely remains, but it is apparently small compared to

the statistical uncertainty. Since the low-resolution band-powers

have smaller error bars than the high-resolution band-powers

binned to the same resolution, we prefer the low-resolution n ¼

72 band-powers at all non-linear scales.

4.4 Comparison to APM

To date the best published measurement of the real space galaxy

Figure 9. Power spectrum of PSCz measured by different methods. Solid

line at large scales k & 1 h Mpc21 is the correlated power spectrum

measured by the linear method, and the shaded area its 1s limits. Points

with error bars constitute the power spectrum measured by the non-linear

method through band-power windows ,k n e2k 2

with n ¼ 72. Solid line at

small scales k * 10 h Mpc21 is the power through band-power windows

with n ¼ 72 £ 4 ¼ 288. The resolution of the n ¼ 288 power spectrum is

Dlog k < 1=24 FWHM, twice that of the n ¼ 72 power spectrum. For both

n ¼ 72 and n ¼ 288, the adopted maximum harmonic ‘max(k ) is given by

equation (13), with the additional constraint that ‘ < 72 for n ¼ 72. Thus

the n ¼ 288 power spectrum uses more harmonics at k * 20 h Mpc21. A

colour version of this figure is available on Synergy, the on-line version of

Monthly Notices.
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power spectrum is that of the APM survey1 (Baugh & Efstathiou

1993, 1994; Maddox et al. 1996; Gaztañaga & Baugh 1998, table 2;

Dodelson & Gaztañaga 2000; Eisenstein & Zaldarriaga 2001).

As discussed by Baugh & Efstathiou (1993) and Eisenstein &

Zaldarriaga (2001), the APM survey has a median depth in redshift

of z < 0:11, and transforming the power spectrum to zero redshift

depends on cosmology. The main effect is that the redshift–

distance relation is different in different cosmologies. The canoni-

cal APM power spectrum quoted by Baugh & Efstathiou, Gaztañaga

& Baugh and Eisenstein & Zaldarriaga assumes a flat matter-

dominated cosmology, Vm ¼ 1. In a LCDM cosmology, Vm ¼ 0:3,

VL ¼ 0:7 (as assumed for the redshift–distance relation in our PSCz

measurements), the power spectrum would be ,20 per cent higher.

Following Peacock (1997), we renormalize the APM power

spectrum upward by a factor of 1.25, which according to Peacock

brings it into agreement with the real space correlation function of

the APM-Stromlo survey (Loveday et al. 1995).

Fig. 10 compares the real-space power spectrum of PSCz to that

of APM data. The relative bias between APM and PSCz, defined as

the square root of the ratio of their power spectra, reveals a

suggestively simple pattern. At linear scales k & 0:3 h Mpc21 the

relative bias is approximately constant, bAPM/bPSCz < 1:15. At

transition scales k , 0:3–1:5 h Mpc21 the APM to PSCz bias

increases, settling down at non-linear scales k * 1:5 h Mpc21 to

another constant, bAPM/bPSCz < 1:4.

Intriguingly, the APM to PSCz bias would have been close to

unity at linear scales if we had not renormalized the APM power

spectrum by Peacock’s factor of 1.25. However, we are persuaded

that it is correct to renormalize.

The fact that APM to PSCz bias is consistent with being constant

at linear scales is an encouraging confirmation of the prediction of

local bias models, that bias at large, linear scales should be scale-

independent (Coles 1993; Fry & Gaztañaga 1993; Scherrer &

Weinberg 1998; Coles, Melott & Munshi 1999; Heavens,

Matarrese & Verde 1998). Scale-independence of bias at linear

scales is also a feature of N-body experiments (Colı́n et al. 1999;

Kravtsov & Klypin 1999; Benson et al. 2000; Narayanan, Berlind

& Weinberg 2000).

4.5 Power spectra from individual FKP weightings

Fig. 11 compares the power spectra measured from the five

individual FKP pair-weightings (Section 3.10), with FKP constants

Figure 10. Comparison of the real-space power spectra of the PSCz and

APM (Gaztañaga & Baugh 1998) surveys. The APM power has been

renormalized upward by a factor of 1.25 (see text). Shaded region is the 1s

uncertainty in the correlated power spectrum of PSCz. The lower panel

shows the ratio bAPM/bPSCz of the APM to PSCz bias, the square root of the

ratio of their power spectra. The APM to PSCz bias is bAPM/bPSCz < 1:15 at

linear scales, k & 0:3h Mpc21, increasing to bAPM/bPSCz < 1:4 at non-linear

scales, k * 1:5h Mpc21. Compare this figure to fig. 2 of Peacock (1997). A

colour version of this figure is available on Synergy, the on-line version of

Monthly Notices.

Figure 11. (Upper panel) Power spectra measured with fixed FKP

constants. (Lower panel) Corresponding bias, the square root of the ratio of

the power spectrum to the standard power spectrum of PSCz plotted in Fig. 6

and tabulated in Table C1. The shaded region represents the 1s uncertainty

in the standard power spectrum. The different curves correspond to FKP

constants J ¼ 0 (solid), 10 (dot-dashed), 102 (long dashed), 103 (short

dashed), and 104 h 23 Mpc3 (dotted). Larger FKP constants J give relatively

more weight to more distant parts of the survey, i.e., to more luminous

galaxies. The curve with the largest FKP constant, J ¼ 104 h 23 Mpc3

(dotted), is plotted only up to k < 4 h Mpc21, since its noisy criss-crossing

confuses the plot at larger k. A selection of 1s error bars is shown in the

lower panel. A colour version of this figure is available on Synergy, the on-

line version of Monthly Notices.

1 The APM power spectrum in the present paper is taken from table 2 of

Gaztañaga & Baugh (1998), who state that their tabulated numbers are

essentially the same as those of Baugh & Efstathiou (1993). Eisenstein &

Zaldarriaga (2001) have critiqued the error bars of Baugh & Efstathiou

(1993, 1994), and to a lesser extent those of Dodelson & Gaztañaga (2000),

as overly optimistic, mainly because of the neglect of covariances.

Unfortunately, Eisenstein & Zaldarriaga limit their analysis to

k & 0:8 h Mpc21, so in the present paper we choose to quote the Gaztañaga

& Baugh power spectrum. The Eisenstein & Zaldarriaga power spectrum

has factor of 2 larger error bars, and scatters about more, than the Gaztañaga

& Baugh spectrum, but the two measurements are otherwise consistent with

each other.
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J ¼ 0, 10, 102, 103 and 104 h 23 Mpc3, equation (30). To show

more detail, the lower panel of Fig. 11 shows the bias of the power

spectra, defined here to be the square root of the ratio of the power

spectrum to the standard power spectrum of PSCz plotted in Fig. 6

and tabulated in Table C1. Fig. 11 demonstrates that there is a

general consistency between the power spectra measured with

different pair-weightings.

Larger FKP constants J give greater effective weight to more

distant regions of the survey, hence to more luminous galaxies.

Fig. 11 gives weak indication that power spectra measured with

larger FKP constants have higher bias over the range ,2–

20 h Mpc21, which in turn suggests weakly that IRAS-luminous

galaxies may be more clustered than less luminous galaxies at

these scales. If this is correct, then it would suggest that the power

spectrum of the more luminous IRAS galaxies may be similar to the

power spectrum of APM galaxies, Fig. 10.

One should be careful not to overinterpret Fig. 11. The fact that

measurements for J ¼ 102 and 103 h 23 Mpc3 appear system-

atically high, at the 1–2s level, over the range k , 3–10 h Mpc21,

might suggest that the difference is statistically significant.

However, the power spectrum is highly correlated over this range,

as seen in Fig. 15 below, and the significance is more marginal than

it appears.

Fig. 11 also gives some suggestion that power spectra with larger

FKP constants J may switch to being biased low at smaller scales,

k * 20 h Mpc21. However, as is evident from the errors bars in the

lower panel of Fig. 11, the noise is really too great to tell.

As discussed in Section 3.11, instead of compressing the five

FKP-weighted estimates of each band-power directly, we first pre-

whiten the power, then compress, then unprewhiten, since in theory

it is better to apply an FKP-like weighting to an almost

uncorrelated measure like the pre-whitened power (H00). The

general effect of pre-whitening before compressing is to prefer

smaller FKP constants J, i.e., to give relatively more weight to

nearer, less luminous galaxies. Fig. 12 shows the power spectra

measured both with and without pre-whitening before com-

pression. The consequence on the power spectrum is for the most

part small. The most noticeable effect is what might be expected on

the basis of Fig. 11: pre-whitening before compressing decreases

power by ,10 per cent over the range k , 3–10 h Mpc21.

Perhaps the greatest concern over luminosity-dependent bias is

that it could bias the estimation of cosmological parameters. If

more luminous galaxies are more clustered, then estimates of

power at large scales, which depend more on distant, luminous

galaxies, would be biased upward, giving the power spectrum a

false red tilt. Encouragingly, Fig. 11 shows no evidence of

significant luminosity bias at scales k & 1 h Mpc21. Although

these measurements are restricted to the non-linear regime, they do

suggest that luminosity bias is probably not a major effect on the

cosmological parameter analysis of Tegmark et al. (2001), which

used PSCz data only at linear scales k , 0:3 h Mpc21.

Three recent studies, by Beisbart & Kerscher (2000), Szapudi

et al. (2000) and Hawkins et al. (2001), have found no evidence of

significant difference between the clustering of luminous and faint

galaxies in the PSCz survey. Our results, while not constituting a

formal study of differential biasing with luminosity, are consistent

with the conclusions of these authors.

4.6 Real space correlation function

The correlation function j(r) remains one of the most popular

statistics for characterizing large-scale structure (Peebles 1980).

Fig. 13 shows the real space correlation function of PSCz,

obtained as the Fourier transform of the real-space power spectrum

shown in Fig. 6. The covariance properties of the correlation

function j(r) are less than ideal, since there are broad correlations

between estimates at different pair separations r. We make no

attempt at a rigorous treatment of errors, and instead simply show

in Fig. 13 the envelope defined by the Fourier transforms of the

correlated power spectrum and its ^1s extremes.

Figure 12. Comparison of measured non-linear power spectra with and

without pre-whitening before FKP compression. The points with error bars

are the standard power spectrum from Fig. 6, in which the five FKP-

weighted estimates of each band-power are first pre-whitened, then

compressed, then unprewhitened. The solid line is the power spectrum

obtained from compressing the five FKP-weighted estimates directly,

without the pre-whiten–unprewhiten cycle. The two power spectra are in

good agreement. A colour version of this figure is available on Synergy, the

on-line version of Monthly Notices.

Figure 13. Real space correlation function j(r) of PSCz, obtained by

Fourier transforming the real-space power spectrum. The line is dashed

where it is negative, at pair separations <50–250 h 21 Mpc. The shaded

region is not the 1s uncertainty in j(r), but rather the envelope defined by

the Fourier transforms of the correlated power spectrum and its ^1s

extremes. The dashed line is a power law ðr/4:27 h 21 MpcÞ21:55. A colour

version of this figure is available on Synergy, the on-line version of Monthly

Notices.
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Table C3 tabulates the correlation function j(r), the Fourier

transform of the correlated power P(k) from Table C1, and the

correlation functions j2(r) and j+(r) which are the Fourier

transforms of the ^1s extremes PðkÞ^ DPðkÞ of the correlated

power from Table C1. Notice that j2 is not always less than j+, and

that j2 and j+ do not necessarily encompass the central value j.

We Fourier transform the power spectrum to the correlation

function using the fast, logarithmically spaced Fourier–Hankel

method of Talman (1978), as implemented in the FFTLOG code

described in appendix B of H00, and available at http://casa.

colorado.edu/,ajsh/FFTLog/. Besides being able to cover a

broader range of scales, the logarithmic FFT has the advantage that

it does not suffer from the serious problem of ringing that afflicts

the normal FFT when applied to cosmological power spectra (H00,

fig. 12).

To avoid artefacts arising from the periodicity in log space

assumed by FFTLOG, we padded the power spectrum with a power

law at each end to quadruple (double would have sufficed) the

logarithmic interval, PðkÞ / k to k ¼ 1029 h Mpc21, and PðkÞ /

k 21:4 to k ¼ 109 h Mpc21. We then applied the most straight-

forward version of the FFTLOG transform, i.e., no power-law bias

ðq ¼ 0Þ, and a low-ringing value of kr. Finally, we retained only the

central part of the correlation function j(r), from r ¼ 0:01 to

300 h 21 Mpc.

A by-eye fit of the resulting correlation function to a power-law

yields jðrÞ < ðr/r0Þ
2g with correlation length r0 ¼ 4:27 h 21 Mpc

and index g ¼ 1:55 over the range r ¼ 0:01–20 h 21 Mpc. The fit is

illustrated in Fig. 13. The correlation function is a factor <1.2

higher than, but has about the same slope as, the correlation

function measured by Saunders et al. (1992), who found r0 ¼

3:79 ^ 0:14 h 21 Mpc and g ¼ 1:57 ^ 0:03 over pair separations

r ¼ 0:1–20 h 21 Mpc from a power-law fit to the projected cross-

correlation function between the QDOT survey (the 1-in-6

precursor to PSCz) and its parent QIGC angular catalogue. Our

power-law fit is also higher, but slightly shallower, than that of

Fisher et al. (1994a), who inferred r0 ¼ 3:76þ0:20
20:23 h 21 Mpc and

g ¼ 1:66þ0:12
20:09 over r ¼ 1–20 h 21 Mpc from a power-law fit to the

projected correlation function of the IRAS 1.2-Jy survey.

Fitting by eye is not satisfactory, but as in the case of the power

spectrum, discussed at the end of Section 4.1, our attempt to carry

out rigorous fits is thwarted by the fact that the covariance matrix

measured at non-linear scales is not positive definite (see Section

3.11 and Appendix B). The best that we have been able to do in

terms of rigorous fitting at non-linear scales is discussed in the

following subsection, on the pre-whitened power spectrum.

4.7 Pre-whitened power spectrum

Non-linear evolution induces broad correlations between estimates

of power at different wavenumbers (Meiksin & White 1999;

Scoccimarro, Zaldarriaga & Hui 1999; H00). In effect, non-linear

evolution blurs whatever information may have been present in the

linear power spectrum, such as baryonic wiggles (Meiksin, White

& Peacock 1999).

H00 showed that pre-whitening (Section 3.9) the non-linear

power spectrum – transforming the power in such a way that the

shot noise contribution to the covariance is proportional to the unit

matrix – appears empirically to narrow the covariance of power

substantially. The extent to which the pre-whitened non-linear

power spectrum may be a better carrier of information than the

non-linear power itself remains to be explored, but whatever the

case, the pre-whitened power spectrum is less correlated, and

therefore should offer better control of errors in fitting to

cosmological models.

Fig. 14 shows the pre-whitened power spectrum of PSCz, and

Table C4 tabulates the corresponding values. Fig. 14 also shows the

linear (not non-linear) concordance model power spectrum from

Fig. 6. As remarked by H00, the pre-whitened non-linear power

spectrum appears intriguingly similar to the underlying linear

power spectrum, for realistic power spectra. It is not clear whether

the similarity has some physical cause, or whether it is merely

coincidental.

At linear scales, the pre-whitened power plotted in Fig. 14 has

been explicitly decorrelated (Hamilton & Tegmark 2000), so that

each point is uncorrelated with every other. The (unprewhitened)

power spectrum shown in Fig. 14 is the one that, when pre-

whitened, yields the plotted decorrelated pre-whitened spectrum.

The (unprewhitened) power in Fig. 14 is not the same as either the

correlated or uncorrelated powers shown in Fig. 6; rather, it is that

power which becomes decorrelated after being pre-whitened.

We also tried decorrelating the pre-whitened power at non-linear

scales, but the measured pre-whitened covariance matrix proved

too noisy to admit believable decorrelation band-powers (Section

3.11). While the pre-whitened powers at non-linear scales are

therefore somewhat correlated, it would be not unreasonable to

treat them as being uncorrelated, or nearly so, in fitting to

theoretical models.

With the points treated as uncorrelated, a power-law fit to

the pre-whitened power spectrum at non-linear scales, k ¼

0:3–300 h Mpc21; yields

XðkÞ ¼ ð18:0 ^ 0:7Þðk/1:7 h Mpc21Þ22:16^0:04 h 23 Mpc3; ð41Þ

with x 2 ¼ 34:8 for 46 degrees of freedom. The pivot point k ¼

1:7 h Mpc21 of the fit in equation (41) is chosen so that the error

bars on the amplitude and exponent of the fit are essentially

uncorrelated. The x 2 per degree of freedom of 35=46 is closer to

one than the 25=59 for the power-law fit to the power spectrum

Figure 14. Points with error bars constitute the pre-whitened power

spectrum of PSCz. At linear scales, the points have been explicitly

decorrelated. At non-linear scales, the points are somewhat correlated, but

less so than the (unprewhitened) power spectrum, as illustrated in Fig. 15.

The solid line is the power spectrum which, when pre-whitened, equals the

plotted pre-whitened power spectrum. The dashed line is the linear (not

non-linear) concordance model power spectrum from Fig. 6. A colour

version of this figure is available on Synergy, the on-line version of Monthly

Notices.
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reported in Section 4.1, but the x 2 remains lower than expected for

uncorrelated points, suggesting that there remains some residual

correlation in the estimates of pre-whitened power.

The fitted non-linear slope 22:16 ^ 0:04 of the pre-whitened

power would predict that the pre-whitened correlation function

would have a non-linear slope of 3þ ð22:16 ^ 0:04Þ ¼ 0:84 ^

0:04: According to the defining equation (24), the (unprewhitened)

correlation function would then have a non-linear slope of

g ¼ 2 £ ð0:84 ^ 0:04Þ ¼ 1:68 ^ 0:08. This is slightly steeper than

the by-eye slope of g < 1:55 fitted to the correlation function in

Section 4.6. Similarly, the non-linear slope of the pre-whitened

power would predict that the power spectrum would have a non-

linear slope of ð1:68 ^ 0:08Þ2 3 ¼ 21:32 ^ 0:08, somewhat

shallower than the slope 21.46 fitted directly to the power

spectrum, equation (38). However, as discussed in Section 4.1,

there is some suggestion that the power spectrum flattens to smaller

scales, and the shallower slope predicted by the pre-whitened

power spectrum is consistent with such a flattening.

Fig. 15 shows the correlations between estimates of power, and

between estimates of pre-whitened power, measured in the PSCz

survey. The plotted quantity is the correlation coefficient

Ckk0 /ðC
1=2
kk C1=2

k0k0 Þ, which the Schwarz inequality implies must lie

between 21 (perfect anti-correlation) and 1 (perfect correlation).

The covariances Ckk0 of power estimates are measured from the

fluctuations in the PSCz data themselves (Section 3.8), and are

essentially free from prior assumption. The measurements properly

take into account the correlation between different subregions of

the survey.

Fig. 15 confirms that pre-whitening the power spectrum narrows

its covariance. However, the narrowing is not as good as found in

analytic models by H00, and we confess some disappointment at

the result. One unexpected feature of the covariance plotted in

Fig. 15 is that the power at k0 ¼ 32 h Mpc21 appears somewhat

anti-correlated with power at ,5 h Mpc21. We have no explanation

for this.

5 C O N C L U S I O N S

5.1 What we have done

The paper combines two separate measurements at linear and non-

linear scales to yield a measurement of the real-space power

spectrum of the IRAS PSCz 0.6-Jy survey (Saunders et al. 2000)

over four and a half decades of wavenumber. The linear

measurement (HTP) assumes Gaussian fluctuations and that

redshift distortions conform to the linear model, while the non-

linear measurement assumes the plane-parallel approximation, and

infers the real-space power spectrum from the redshift space power

spectrum in the transverse direction. The measurements are

tabulated in Appendix C.

At non-linear scales the power spectrum is broadly correlated

over different wavenumbers, which not only blurs the information

content of the power spectrum, but also complicates rigorous

comparison to cosmological models. We therefore also report a

measurement of the pre-whitened power spectrum of PSCz, which

is less correlated than the (non-linear) power spectrum itself. To

assist the reader, Appendix A contains practical instructions on

how to pre-whiten a power spectrum.

5.2 Methodology

We have shown how to exploit galaxy redshifts to measure the

real-space power spectrum with accuracy comparable to that

attainable from an angular survey many times larger.

We have successfully applied H00’s proposal to reduce the

degree of correlation of the non-linear power spectrum by pre-

whitening it. Statistical uncertainties in the covariance matrix of

power estimates prevented complete decorrelation of the pre-

whitened non-linear power spectrum. More reliable models,

coupled with more precise measurements, of non-linear covariance

could permit full decorrelation in future analyses.

By combining separate methods at linear and non-linear scales,

the present work completes the two-pronged program envisaged by

Tegmark et al. (1998). The fact that there is a range of scales where

the two methods overlap and agree well suggests that this two-

pronged approach should be fruitful for ongoing projects such as

the 2dF Survey and the Sloan Digital Sky Survey.

5.3 What the results show

The relative bias between optically selected APM galaxies and

IRAS-selected PSCz galaxies is consistent with being constant at

linear scales, with bAPM/bPSCz < 1:15. The relative bias then rises

to a second plateau bAPM/bPSCz < 1:4 at non-linear scales

k * 1:5 h Mpc21. This is essentially the same behaviour as found

by Peacock (1997).

All dark matter (DM) models predict an inflection in the matter

Figure 15. Correlation coefficient Ckk0 /ðC
1=2
kk C1=2

k0k0 Þ of estimates of power

(thin line) and of pre-whitened power (thick line) in the PSCz survey. The

six plots are the correlation coefficients between the power at k0 ¼ 0:32, 1,

3.2, 10, 32, and 100 h Mpc21, as labelled, and the power at other

wavenumbers k, as specified on the horizontal axis. By construction, the

correlation coefficient is unity at k ¼ k0. The Schwarz inequality requires

that the correlation coefficient lie between 1 (perfect correlation) and 21

(perfect anti-correlation). The covariance of pre-whitened power is near

diagonal both at large, linear scales, where fluctuations are near-Gaussian,

and at small, highly non-linear scales, where shot noise dominates. At

intermediate scales, notably at k0 ¼ 3:2 and 10 h Mpc21, the power is highly

correlated, whereas the pre-whitened power is less so. A colour version of

this figure is available on Synergy, the on-line version of Monthly Notices.
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power spectrum at the transition between the linear and non-linear

regimes at k , 0:3 h Mpc21, and a turnover at the transition from

non-linear collapse to the virialized regime at k , 3 h Mpc21. The

PSCz galaxy power spectrum shows neither of these features, but

instead displays a near-power-law behaviour to the smallest scales

measured, with a possible mild upward curvature in the broad

vicinity of k , 2 h Mpc21. Short of a drastic revision of the current

rather successful cosmological paradigm, the PSCz non-linear

power spectrum requires scale-dependent galaxy-to-mass bias: all

DM models without scale-dependent bias are ruled out with high

confidence.

We caution that it is possible that we have underestimated the

PSCz power spectrum systematically at the smallest scales,

k * 100 h 21 Mpc, because IRAS’s ,1.5-arcmin resolution causes

it to miss pairs at the smallest angular separations. We have

attempted to remove most of the systematic by imposing a lower

cut-off of 1.5 arcmin in angular separation, but it is possible that a

small residual systematic remains.

The measured non-linear power spectrum of PSCz clearly

contains valuable information about galaxy-to-mass bias, and it

will be a challenge for N-body experiments to reproduce, and for

theories to explain, the observed power spectra of both

IRAS-selected and optically selected galaxies (White et al. 1987;

Colı́n et al. 1999; Kravtsov & Klypin 1999; Benson et al. 2000; Ma

& Fry 2000a,b; Narayanan et al. 2000; Peacock & Smith 2000;

Seljak 2000, 2001; Scoccimarro et al. 2001). Because of the wide

lever arm in wavenumber, it is possible that even fairly rudimentary

models of non-linear bias may allow interesting constraints to be

placed on certain cosmological parameters, for instance on the

primordial scalar spectral index n, or on deviations from power-law

behaviour in the primordial spectrum.

If the DM paradigm is correct, then the fact that the observed

power spectrum of PSCz galaxies is close to a power law over four

orders of magnitude in wavenumber results from a cosmic

conspiracy where the funny features in the non-linear matter power

spectrum are accurately cancelled by scale-dependent bias. It

remains to be seen whether this is merely a cosmic coincidence or a

hint of interesting underlying physics.
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Fry J. N., Gaztañaga E., 1993, ApJ, 413, 447
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Gaztañaga E., Juszkiewicz R., 2001, ApJ, 558, L1 (astro-ph/0107402)

Groth E. J., Peebles P. J. E., 1977, ApJ, 217, 385

Guzzo L. et al., 2000, A&A, 355, 1

Hamilton A. J. S., 1992, ApJ, 385, L5 (H92)

Hamilton A. J. S., 1993, ApJ, 417, 19 (H93)

Hamilton A. J. S., 1995, in Maurogordato S., Balkowski C., Tao C., Trân

Thanh Vân J., eds, Clustering in the Universe, Proc. XXXth Rencontres

de Moriond. Editions Frontières 143 (H95)

Hamilton A. J. S., 1998, in Hamilton D., ed., The Evolving Universe.

Kluwer, Dordrecht 185 (astro-ph/9708102) (H98)

Hamilton A. J. S., 2000, MNRAS, 312, 257 (H00)

Hamilton A. J. S., Tegmark M., 2000, MNRAS, 312, 285

Hamilton A. J. S., Tegmark M., Padmanabhan N., 2000, MNRAS, 317, L23

(HTP)

Hatton S. J., Cole S., 1998, MNRAS, 296, 10

Hatton S. J., Cole S., 1999, MNRAS, 310, 1137

Hawkins E., Maddox S., Branchini E., Saunders W., 2001, MNRAS, 325,

589

Heavens A. F., Matarrese S., Verde L., 1998, MNRAS, 301, 797

Jenkins A. et al., 1998, ApJ, 499, 20 (The Virgo consortium)

Jing Y. P., Börner G., 2001, ApJ, 547, 545

Jing Y. P., Mo H. J., Börner G., 1998, ApJ, 494, 1

Juszkiewicz R., Fisher K. B., Szapudi I., 1998, ApJ, 504, 1

Kaiser N., 1987, MNRAS, 227, 1

Kepner J., Summers F., Strauss M., 1997, New Astron., 2, 165

Kravtsov A. V., Klypin A. A., 1999, ApJ, 520, 437

Landy S. D., Szalay A. S., Broadhurst T. J., 1998, ApJ, 494, L133

Lynden-Bell D., 1971, MNRAS, 155, 95

Ma C.-P., 1998a, ApJ, 508, L5

Ma C.-P., Ann N. Y., 1998b, Acad. Sci., 848, 75

Ma C.-P., Fry J. N., 2000a, ApJ, 531, L87

Ma C.-P., Fry J. N., 2000b, ApJ, 543, 503

Loveday J., Maddox S. J., Efstathiou G., Peterson B. A., 1995, ApJ, 442,

457

Maddox S. J., Sutherland W., Efstathiou G., Loveday J., 1990a, MNRAS,

243, 692

Maddox S. J., Efstathiou G., Sutherland W. J., 1990b, MNRAS, 246, 433

Maddox S. J., Efstathiou G., Sutherland W. J., 1996, MNRAS, 283, 1227

Marzke R. O., Geller M. J., da Costa L. N., Huchra J. P., 1995, AJ, 110, 477

524 A. J. S. Hamilton and M. Tegmark

q 2002 RAS, MNRAS 330, 506–530



Meiksin A., White M., 1999, MNRAS, 308, 1179

Meiksin A., White M., Peacock J. A., 1999, MNRAS, 304, 851

Narayanan V. K., Berlind A., Weinberg D. H., 2000, ApJ, 528, 1

Nichol R. C., Collins C. A., Lumsden S. L., 2001, ApJS, submitted (astro-

ph/0008184)

Peacock J. A., 1997, MNRAS, 284, 885

Peacock J. A., Dodds S. J., 1996, MNRAS, 280, L19

Peacock J. S., Smith R. E., 2000, MNRAS, 318, 1144

Peebles P. J. E., 1976, Ap&SS, 45, 3

Peebles P. J. E., 1980, The Large Scale Structure of the Universe. Princeton

Univ. Press, Princeton

Ratcliffe A., Shanks T., Fong R., Parker Q. A., 1998, MNRAS, 296, 191

Sandage A., Tammann G. A., Yahil A., 1979, ApJ, 232, 352

Saunders W., Rowan-Robinson M., Lawrence A., Efstathiou G., Kaiser N.,

Ellis R. S., Frenk C. S., 1990, MNRAS, 242, 318

Saunders W., Rowan-Robinson M., Lawrence A., 1992, MNRAS, 258, 134

Saunders W. et al., 2000, MNRAS, 317, 55, (PSCz, available at http://

www-astro.physics.ox.ac.uk/,wjs/pscz.html)

Schechter P., 1976, ApJ, 203, 297

Scherrer R. J., Weinberg D. H., 1998, ApJ, 504, 607

Scoccimarro R., Frieman J. A., 1999, ApJ, 520, 35

Scoccimarro R., Couchman H. M. P., Frieman J. A., 1999, ApJ, 517, 531

Scoccimarro R., Zaldarriaga M., Hui L., 1999, ApJ, 527, 1

Scoccimarro R., Sheth R. K., Hui L., Jain B., 2001, ApJ, 546, 20

Seljak U., 2000, MNRAS, 318, 203

Seljak U., 2001, MNRAS, 325, 1359

Seto N., Yokoyama J., 1998, ApJ, 492, 421

Sheth R. K., 1996, MNRAS, 279, 1310

Strauss M. A., Ostriker J. P., Cen R., 1998, ApJ, 494, 20

Szapudi I., 2000, The Onset of Non-linearity, Proc. 15th Florida Workshop

in Non-linear Astronomy and Physics, in press (astro-ph/0008224)

Szapudi I., Colombi S., Bernardeau F., 1999, MNRAS, 310, 428

Szapudi I., Branchini E., Frenk C. S., Maddox S., Saunders W., 2000,

MNRAS, 318, 45

Talman J. D., 1978, J. Comp. Phys., 29, 35

Tegmark M., 1995, ApJ, 455, 429

Tegmark M., Taylor A. N., Heavens A. F., 1997, ApJ, 480, 22

Tegmark M., Hamilton A. J. S., Strauss M. A., Vogeley M. S., Szalay A. S.,

1998, ApJ, 499, 555

Tegmark M., Zaldarriaga M., Hamilton A. J. S., 2001, Phys. Rev. D, 63,

43007
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A P P E N D I X A : H OW T O P R E - W H I T E N T H E

P OW E R S P E C T R U M

This appendix offers some practical hints on how to pre-whiten a

power spectrum numerically. We have had success with two

different methods, described below. The first method uses a

logarithmic Fast Fourier Transform technique to go from Fourier

space to real space and back again, while the second uses a matrix

method that works entirely in Fourier space. The two methods can

provide a useful numerical check on each other.

A1 How to pre-whiten power: Fourier method

The method is:

(1) Fourier transform the power spectrum P(k) to obtain the

correlation function j(r);

(2) transform the correlation function j(r) to the pre-whitened

correlation function X(r) in accordance with equation (24), and

(3) Fourier transform the pre-whitened correlation function X(r)

back to obtain the pre-whitened power spectrum X(k).

We strongly recommend using the logarithmic FFT (Talman 1978;

H00, appendix B), since the normal FFT suffers from serious

ringing when applied to realistic cosmological power spectra (see

fig. 12 of H00). Whereas the normal FFT works on linearly spaced

points, the logarithmic FFT, which we have implemented in a code

FFTLOG available at http://casa.colorado.edu/,ajsh/FFTLog/,

works on logarithmically spaced points, easily covering ranges

of orders of magnitude in wavenumber or pair separation with

modest numbers of points.

The logarithmic FFT assumes that the function (times some

power law) is periodic in the log. To reduce artefacts arising from

periodicity, we recommend padding the power spectrum at large

and small scales (for example, with a power law/k at large scales

and a power law / k n with n , 21:5 to 23 at small scales) to

double the logarithmic range of interest, and then retaining only the

central half of the transformed sequence.

The FFTLOG code contains some options. We recommend the

simplest choices, a zero bias exponent q ¼ 0, and a low-ringing

value of the relative phasing kr of the k and r logarithmic

sequences.

Warning (cf. H00, Section 4.1): to avoid artefacts of ringing and

aliasing, the Fourier method should not be applied over a narrow

range of wavenumbers without padding.

A2 How to pre-whiten power: matrix method

If for some reason the Fourier method of Section A1 is

inconvenient, then the matrix method offers an alternative. The

method is:

(1) construct the Fourier space version of the matrix, which in

real space is diagonal with diagonal entries 2={1þ ½1þ jðrÞ�1=2},

and

(2) apply this matrix to the power spectrum P(k).

Fig. A1 illustrates that the pre-whitening matrix in Fourier space

looks essentially like a high-pass filter, which passes high-frequency

Figure A1. Representative rows (or columns, since it is symmetric) of the

pre-whitening matrix, equation (A5), in Fourier space, appropriately

discretized. At linear scales the pre-whitening matrix goes over to the unit

matrix. At non-linear scales the pre-whitening matrix looks like a high-pass

filter. There is a sharp peak along the diagonal, superimposed on a valley

that is deepest immediately adjacent to the diagonal. The amplitude of the

diagonal peak appears to decline at larger wavenumbers because, in the

discretized matrix, the peak is being cancelled by a deeper valley. A colour

version of this figure is available on Synergy, the on-line version of Monthly

Notices.
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oscillations in the power, while reducing any smoothly varying

component.

Let A(ra,rb) denote the matrix which is diagonal in real space

with diagonal entries j(r) (H00, equation 58):

Aðra; rbÞ ¼ d3Dðra 2 rbÞjðraÞ: ðA1Þ

Here d3Dðra 2 rbÞ is the unit matrix in real space, a three-

dimensional delta function in pair separation r, satisfyingÐ
d3DðrÞ4pr 2 dr ¼ 1. In the Fourier representation the matrix

A(ra,rb) transforms to (H00, equation 59):

Aðka; kbÞ ¼
1

2kakb

ðkaþkb

jka2kbj

PðkÞk dk: ðA2Þ

To allow it to be manipulated numerically, the continuous matrix

A(ka, kb) must be discretized. To ensure that matrix operations

(matrix multiplication, inversion, diagonalization, etc.) work in the

usual way, discretization must be done in such a way that the inner

product in continuous Fourier space,
Ð

d3k/ð2pÞ3, translates into

ordinary summation in the discrete space (H00, Section 2.3). This

leads to the discretization algorithm: for each index, a, on a vector,

matrix, or tensor, multiply by the square root of the Fourier volume

element, DV1=2
a . Thus A(ka, kb) should be discretized by

multiplying it by (DVaDVb)1/2:

Aab ¼ Aðka; kbÞðDVaDVbÞ
1=2 ðA3Þ

(no implicit summation). If, for example, points in k-space are

logarithmically spaced with spacing Dln k, then the Fourier volume

element is

DVa ¼ 4pk3
aDln k/ð2pÞ3: ðA4Þ

From the discretized matrix Aab, construct the pre-whitening

matrix

2½1þ ð1þ AÞ1=2�
21

ab : ðA5Þ

This involves the operations: (1) add the unit matrix 1ab to Aab; (2)

take the square root of the resulting matrix, ð1þ AÞ1=2ab , via an

intermediate diagonalization; (3) add the unit matrix, to form

1ab þ ð1þ AÞ1=2ab ; (4) invert, to get ½1þ ð1þ AÞ1=2�
21

ab ; (5)

multiply by 2.

Note that 1þ jðrÞ is necessarily positive, being an expectation

value of products of positive densities in real space. Thus the

matrix 1þ A is necessarily positive definite, with all positive

eigenvalues, and its square root ð1þ AÞ1=2 is therefore always well-

defined.

Multiplying the power spectrum by the pre-whitening matrix

given by equation (A5) yields the pre-whitened power spectrum.

To make this work properly, the continuous power spectrum P(ka)

must first be discretized into a vector Pa:

Pa ¼ PðkaÞDV1=2
a ðA6Þ

(no implicit summation). The discretized pre-whitened power Xa is

the matrix product of the pre-whitening matrix, equation (A5), with

the discretized power Pa, equation (A6):

Xa ¼ 2½1þ ð1þ AÞ1=2�
21

abPb ðA7Þ

(implicit summation over b). Finally, undiscretize

XðkaÞ ¼ XaDV21=2
a ðA8Þ

(no implicit summation) to obtain the pre-whitened power

spectrum X(ka).

The above prescription describes how to pre-whiten the power

spectrum by applying the pre-whitening matrix 2½1þ ð1þ AÞ1=2�21:

This matrix is not the same as the matrix H ¼ ð1þ AÞ21=2 that pre-

whitens the covariance of power, equation (27). Consult equations

(24)–(26) to see why this distinction arises. The pre-whitening

matrix H can be constructed in a manner similar to the pre-

whitening matrix 2½1þ ð1þ AÞ1=2�21.

Bug alert: be careful to discretize correctly.

A P P E N D I X B : A ( FA I L E D ) AT T E M P T AT

F I S H E R C O M P R E S S I O N

This appendix gives an illustrative example of the difficulties

encountered when one tries to compress data (Section 3.11) using a

covariance matrix which, being estimated from the data, contains

statistical errors. The example is that of a single band-power, with a

single FKP weighting, and the aim is to compress the measured

even harmonics of the band-power down to a smaller number of

harmonics.

There are 37 measured even harmonics, up to ‘ ¼ 72. Assume,

according to the prior, equation (13), that only even harmonics up

to ‘ < ‘max are non-zero. The aim is then to compress the 37

harmonics down to ð‘max/2Þ þ 1 even harmonics, in optimal

fashion.

Let P̂‘ (with hats) denote the measured amplitudes of the

harmonics of the band-power, and let C‘m ¼ kDP̂‘DP̂ml denote

their covariance matrix, in the present case also measured from the

data (Section 3.8). Let P‘ (without hats) represent the ‘parameters’

of the likelihood, the true amplitudes of the harmonics. If the

harmonics were uncorrelated with each other, then the measured

amplitudes P̂‘ of the even harmonics up to ‘ < ‘max would provide

the best estimates of P‘. However, in reality the harmonics are

correlated, so measurements of higher harmonics can, in principle,

inform values of lower harmonics.

If the usual simplifying assumption is made that the

measurements P̂‘ are Gaussianly distributed with fixed covariance

matrix C‘m, then maximizing the likelihood L/ e2x 2/2 is

equivalent to minimizing x 2,

x 2 ¼
‘m

X
ðP̂‘ 2 D‘P‘ÞC

21
‘mðP̂m 2 DmPmÞ; ðB1Þ

where D‘ ¼ 1 or 0 as ‘ < ‘max or ‘ . ‘max. The minimum x 2

solution of equation (B1) is

P‘ ¼
mn

X
F21

‘mDmC21
mn P̂n; ðB2Þ

where F‘m is the Fisher matrix of the parameters P‘:

F‘m ¼ D‘C21
‘mDm: ðB3Þ

Equations (B2) and (B3) constitute a simple example of Fisher

compression, which in effect reduces here to inverse-variance

weighting. Examination of equation (B2) shows [since the first

ð‘max/2Þ þ 1 columns of DmC21
mn (no implicit summation) are just

equal to the Fisher matrix Fmn] that the ‘improved’ estimate P‘ is

equal to the measured amplitude P̂‘ plus some linear combination

of high-order harmonics P̂m with m . ‘max. This makes physical

sense: if, according to the prior, the higher order harmonics P̂m with

m . ‘max are all zero, then adding judicious combinations of them

to the lower order harmonics can in principle yield more accurate

estimates of the latter.
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Table C1. Correlated power spectrum.

k k2 k+ P(k ) DP(k ) k k2 k+ P(k ) DP(k ) k k2 k+ P(k ) DP(k )
(h Mpc21) (h 23 Mpc3) (h Mpc21) (h 23 Mpc3) (h Mpc21) (h 23 Mpc3)

0.0210 0.0153 0.0269 7200. 15800. 0.487 0.441 0.536 388. 56. 13.3 12.1 14.7 4.41 0.94
0.0239 0.0176 0.0298 15500. 11400. 0.562 0.510 0.619 327. 40. 15.4 14.0 16.9 3.62 0.83
0.0267 0.0203 0.0325 19400. 9860. 0.649 0.588 0.715 288. 24. 17.8 16.1 19.6 2.52 0.96
0.0293 0.0228 0.0355 18900. 8300. 0.750 0.679 0.825 258. 28. 20.5 18.6 22.6 2.08 0.72
0.0329 0.0257 0.0403 12500. 6510. 0.866 0.785 0.953 187. 21. 23.7 21.5 26.1 1.72 0.42
0.0376 0.0292 0.0467 9610. 5260. 1.00 0.906 1.10 149. 18. 27.4 24.8 30.1 1.50 0.36
0.0431 0.0350 0.0518 14400. 4970. 1.15 1.05 1.27 124. 12. 31.6 28.7 34.8 1.27 0.38
0.0490 0.0406 0.0583 15600. 4300. 1.33 1.21 1.47 98.5 9.5 36.5 33.1 40.2 0.805 0.307
0.0560 0.0467 0.0666 10200. 3420. 1.54 1.40 1.69 69.0 8.3 42.2 38.2 46.4 0.579 0.276
0.0646 0.0536 0.0776 8060. 2480. 1.78 1.61 1.96 62.0 5.4 48.7 44.1 53.6 0.579 0.263
0.0748 0.0626 0.0888 8430. 1920. 2.05 1.86 2.26 46.4 5.6 56.2 51.0 61.9 0.563 0.259
0.0862 0.0728 0.101 7180. 1460. 2.37 2.15 2.61 39.4 5.4 64.9 58.8 71.5 0.421 0.255
0.0998 0.0831 0.119 5110. 927. 2.74 2.48 3.01 30.9 4.8 75.0 67.9 82.5 0.280 0.238
0.116 0.0973 0.137 4590. 703. 3.16 2.87 3.48 25.2 5.2 86.6 78.5 95.3 0.210 0.197
0.134 0.113 0.158 3140. 538. 3.65 3.31 4.02 23.3 4.6 100. 90.6 110. 0.217 0.172
0.155 0.131 0.182 2860. 425. 4.22 3.82 4.64 17.4 3.7 115. 105. 127. 0.154 0.144
0.179 0.151 0.210 2440. 321. 4.87 4.41 5.36 11.6 3.4 133. 121. 147. 0.146 0.135
0.207 0.175 0.240 1710. 233. 5.62 5.10 6.19 11.1 3.2 154. 140. 169. 0.113 0.111
0.239 0.198 0.286 936. 136. 6.49 5.88 7.15 9.74 2.70 178. 161. 196. 0.068 0.093
0.276 0.231 0.329 877. 115. 7.50 6.79 8.25 7.80 2.12 205. 186. 226. 0.091 0.082
0.317 0.268 0.375 917. 109. 8.66 7.85 9.53 6.60 2.11 237. 215. 261. 0.085 0.063
0.365 0.331 0.402 702. 102. 10.0 9.06 11.0 5.13 1.85 274. 248. 301. 0.066 0.053
0.422 0.382 0.464 546. 72. 11.5 10.5 12.7 4.54 1.28 316. 287. 348. 0.031 0.047

k is the median wavenumber of the band-power window, and k2 and k+ the wavenumbers where the band-power window falls to half its maximum. At linear scales, k , 0:33h Mpc21, the median and half-maximum
points are those of the scaled and discretized band-power windows as defined in Hamilton & Tegmark (2000). At non-linear scales, k . 0:33h Mpc21, the band-powers have the power law times Gaussian form
detailed in Section 3.7. P(k ) is the estimated power in the band-power, and DP(k ) its 1s uncertainty.
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Equations (B2) and (B3) are the theory. The reality is different.

Consider what happens as one adds harmonics into the mix, one

at a time, starting with just the harmonics with ‘ < ‘max. The

initial situation poses no problem: one is estimating harmonics up

to ‘ < ‘max using estimates of harmonics up to ‘ < ‘max, and not

surprisingly the best estimates are the measured values, P‘ ¼ P̂‘.

Now add a harmonic, the one with ‘ ¼ ‘max þ 2. In most cases this

works fine: the best estimate P‘ of each harmonic acquires a small

admixture of the new harmonic P̂‘max
þ2, in accordance with

equation (B2), and the variance of the best estimate P‘ decreases

by a small amount. As more and more harmonics are folded into

the mix, the variance creeps down. So far so good. Sooner or later,

however, the Fisher matrix hits a negative eigenvalue. Although the

negative eigenvalue does not necessarily cause immediate havoc, it

is a sign of doom impending. Within a few more harmonics, the

variance of the ‘best estimate’ has plummeted, even reaching

negative values. Naturally one is skeptical that a negative

eigenvalue could improve the estimate so.

So how about the idea of stopping one step before the first

negative eigenvalue appears? At first sight this seems to work

fine, and one is encouraged to take the next step of computing

the estimated real power P̂ðm ¼ 0Þ ¼
P‘max

‘¼0P‘P‘ðm ¼ 0Þ from

the appropriate linear combination of best-fitting harmonics P‘

with Legendre polynomials P‘(m). Typically, the variance of the

best estimate of real power is about half the variance of the

initial, pre-compression estimate. In a few cases the variance is

reduced by as much as a factor of 4, apparently a serious

improvement.

Unfortunately, the resulting ‘best-fitting’ real power spectrum

does not live up to the advertising, scattering about unbelievably.

Table C2. Decorrelated linear power spectrum.

k k2 k+ P(k ) DP(k ) k k2 k+ P(k ) DP(k )
(h Mpc21) (h 23 Mpc3) (h Mpc21) (h 23 Mpc3)

0.0137 0.0097 0.0171 133000. 920000. 0.0747 0.0670 0.0833 10600. 3400.
0.0175 0.0130 0.0219 20200. 54200. 0.0863 0.0783 0.0947 6490. 2520.
0.0214 0.0165 0.0264 211100. 21300. 0.0998 0.0902 0.110 4630. 1750.
0.0249 0.0200 0.0297 36600. 21400. 0.115 0.106 0.126 5930. 1270.
0.0280 0.0232 0.0330 36600. 16600. 0.133 0.123 0.144 2400. 970.
0.0319 0.0268 0.0376 5580. 13200. 0.154 0.143 0.165 2990. 750.
0.0366 0.0308 0.0434 8250. 10800. 0.178 0.166 0.190 2980. 570.
0.0422 0.0365 0.0492 11700. 9100. 0.205 0.192 0.219 1650. 410.
0.0485 0.0423 0.0561 19400. 7600. 0.237 0.221 0.254 963. 266.
0.0560 0.0491 0.0635 10400. 6000. 0.274 0.257 0.292 929. 211.
0.0646 0.0569 0.0731 4680. 4550. 0.316 0.298 0.335 927. 189.

See footnote to Table B1. When fitting to theoretical models at linear scales, this decorrelated power spectrum is to be
preferred over the correlated power spectrum of Table B1, since the decorrelated estimates can be treated as
uncorrelated.

Table C3. Correlation function.

r j j2 j+ r j j2 j+ r j j2 j+

(h 21 Mpc) (h 21 Mpc) (h 21 Mpc)

0.00961 16200. 2980. 26000. 0.351 31.9 25.1 38.7 12.8 0.191 0.144 0.238
0.0111 12500. 2890. 19800. 0.405 32.6 25.1 40.0 14.8 0.149 0.107 0.191
0.0128 9130. 2790. 14500. 0.468 31.1 26.9 35.3 17.1 0.127 0.0886 0.165
0.0148 6320. 2670. 10300. 0.541 24.4 24.7 24.0 19.7 0.106 0.0751 0.138
0.0171 4240. 2520. 7130. 0.624 19.8 19.1 20.6 22.8 0.0670 0.0441 0.0899
0.0197 3070. 2360. 5100. 0.721 13.4 11.2 15.6 26.3 0.0387 0.0196 0.0576
0.0228 2810. 2170. 4150. 0.833 11.5 10.1 12.9 30.4 0.0180 4.8723 0.0310
0.0263 3070. 1950. 3890. 0.961 11.2 10.7 11.7 35.1 0.0154 4.1123 0.0267
0.0304 3070. 1720. 3570. 1.11 8.18 7.60 8.76 40.5 0.0154 6.3623 0.0245
0.0351 2260. 1480. 2650. 1.28 6.12 5.54 6.70 46.8 0.0104 4.3323 0.0164
0.0405 1170. 1250. 1510. 1.48 5.01 4.31 5.71 54.1 21.3223 25.0023 2.3423

0.0468 931. 1030. 1150. 1.71 4.19 3.77 4.62 62.4 21.0123 23.0623 1.0223

0.0541 1160. 841. 1270. 1.97 3.67 3.23 4.12 72.1 8.8324 23.2624 2.0923

0.0624 841. 660. 974. 2.28 3.15 2.67 3.63 83.3 24.0624 28.9724 8.925

0.0721 577. 486. 687. 2.63 2.11 1.77 2.45 96.1 21.1223 21.3723 28.6324

0.0833 364. 336. 447. 3.04 1.67 1.41 1.92 111. 29.8224 29.2724 21.0323

0.0961 435. 250. 562. 3.51 1.53 1.32 1.74 128. 25.9724 23.7324 28.1324

0.111 278. 219. 370. 4.05 1.09 0.905 1.28 148. 24.9124 22.4724 27.3424

0.128 282. 207. 343. 4.68 0.853 0.709 0.996 171. 6.0524 8.1724 3.8724

0.148 198. 155. 247. 5.41 0.736 0.609 0.864 197. 25.8724 22.9924 28.8124

0.171 90.0 58.0 120. 6.24 0.592 0.474 0.709 228. 25.9124 24.4124 27.4124

0.197 91.5 63.7 120. 7.21 0.501 0.408 0.593 263. 2.2324 2.2224 2.2724

0.228 86.5 70.1 103. 8.33 0.409 0.327 0.490 304. 3.3124 2.6524 3.9524

0.263 76.6 65.2 88.2 9.61 0.319 0.250 0.389 351. 21.5324 21.8424 21.2524

0.304 45.3 38.3 52.3 11.1 0.286 0.235 0.337

r is the pair separation, j the correlation function. j2 and j+ are not 1s limits, but rather they are the Fourier transforms of the ^1s extremes
PðkÞ^ DPðkÞ of the correlated power from Table B1. Notice that j2 is not always less than j+, and that j2 and j+ do not necessarily encompass the
central value j.

528 A. J. S. Hamilton and M. Tegmark

q 2002 RAS, MNRAS 330, 506–530



Table C4. Prewhitened power spectrum

k k2 k+ P(k ) DP(k ) k k2 k+ P(k ) DP(k ) k k2 k+ P(k ) DP(k )
(h Mpc21) (h 23 Mpc3) (h Mpc21) (h 23 Mpc3) (h Mpc21) (h 23 Mpc3)

0.0183 0.0130 0.0220 16900. 49000. 0.487 0.441 0.536 212. 47. 13.3 12.1 14.7 0.342 0.071
0.0219 0.0165 0.0264 29780. 19800. 0.562 0.510 0.619 171. 35. 15.4 14.0 16.9 0.245 0.061
0.0254 0.0200 0.0298 34700. 20000. 0.649 0.588 0.715 149. 17. 17.8 16.1 19.6 0.0847 0.0784
0.0284 0.0232 0.0330 34300. 15400. 0.750 0.679 0.825 135. 19. 20.5 18.6 22.6 0.0762 0.0556
0.0324 0.0268 0.0377 5570. 12000. 0.866 0.785 0.953 83.3 12.6 23.7 21.5 26.1 0.0562 0.0254
0.0372 0.0308 0.0435 7980. 9870. 1.00 0.906 1.10 59.0 11.3 27.4 24.8 30.1 0.0552 0.0239
0.0427 0.0365 0.0492 11300. 8400. 1.15 1.05 1.27 47.4 6.6 31.6 28.7 34.8 0.0549 0.0254
0.0490 0.0423 0.0563 18300. 6940. 1.33 1.21 1.47 34.7 5.1 36.5 33.1 40.2 0.0127 0.0164
0.0565 0.0490 0.0637 9780. 5420. 1.54 1.40 1.69 17.1 3.3 42.2 38.2 46.4 1.6923 0.0116
0.0653 0.0567 0.0734 4550. 4000. 1.78 1.61 1.96 18.1 2.1 48.7 44.1 53.6 0.0117 8.123

0.0754 0.0668 0.0836 9640. 2990. 2.05 1.86 2.26 10.3 2.2 56.2 51.0 61.9 0.0157 8.723

0.0871 0.0781 0.0950 5880. 2130. 2.37 2.15 2.61 9.08 1.65 64.9 58.8 71.5 8.7223 5.9823

0.101 0.0897 0.110 4020. 1380. 2.74 2.48 3.01 5.79 1.40 75.0 67.9 82.5 2.4823 5.5923

0.116 0.105 0.126 4930. 984. 3.16 2.87 3.48 4.06 1.23 86.6 78.5 95.3 9.7324 3.2023

0.134 0.122 0.145 2120. 725. 3.65 3.31 4.02 4.73 0.97 100. 90.6 110. 3.8323 2.9223

0.155 0.142 0.167 2500. 554. 4.22 3.82 4.64 2.74 0.60 115. 105. 127. 8.9224 1.7823

0.178 0.165 0.192 2400. 409. 4.87 4.41 5.36 0.661 0.443 133. 121. 147. 1.9223 1.8023

0.206 0.190 0.220 1330. 276. 5.62 5.10 6.19 1.23 0.36 154. 140. 169. 1.1223 1.3423

0.238 0.216 0.258 682. 137. 6.49 5.88 7.15 1.12 0.29 178. 161. 196. 23.0624 1.1223

0.274 0.253 0.299 628. 106. 7.50 6.79 8.25 0.683 0.182 205. 186. 226. 9.5324 8.8524

0.316 0.295 0.341 671. 109. 8.66 7.85 9.53 0.576 0.193 237. 215. 261. 8.1024 5.1424

0.365 0.331 0.402 459. 92. 10.0 9.06 11.0 0.279 0.172 274. 248. 301. 6.3624 4.5124

0.422 0.382 0.464 348. 63. 11.5 10.5 12.7 0.255 0.098 316. 287. 348. 5.26 3.7424

See footnote to Table B1. At linear scales k , 0:33h Mpc21 the estimates of pre-whitened power have been decorrelated. At non-linear scales k . 0:33h Mpc21 inaccuracies in the covariance matrix prevent full
decorrelation, but it would not be unreasonable to treat the estimates of pre-whitened power as uncorrelated or nearly so.
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Closer examination reveals the problem. The powers with the

greatest claimed reduction in variance are the ones with the greatest

admixtures of higher order harmonics. Peering yet closer, one finds

that not only for these powers, but for all the others as well, the

greatest reduction in variance occurs when some higher order

harmonic is mixed in with unusually high weight. The behaviour is

clearly spurious, an artefact of the compression ferreting out

harmonic combinations that random errors in the covariance matrix

have made appear artificially good.

The problem appears generic: wherever the reduction in

variance is greatest, it is least believable. So ends our tale of

failed ambition.

A P P E N D I X C : TA B L E S

Tables C1–C4 list the correlated power spectrum, the decorrelated

power spectrum, the correlation function, and the pre-whitened

power spectrum.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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