APAS 5110. Internal Processes in Gases. Fall 1999.
Transition Probabilities and Selection Rules

1. CORRESPONDENCE BETWEEN CLASSICAL AND QUANTUM MECHANICAL TRANSITION
RATES

According to the correspondence principle between classical and quantum mechanics (e.g.
Landau and Lifshitz, Quantum Mechanics, §48), if A is a classically time-varying quantity,
then there is a correspondence between its Fourier components A, and the matrix elements
of the quantum mechanical operator between two energy eigenstates ¥y, = ¢, (x)e Lt and
Yy = ¢y(x)e” Ut differing in energy by w = wy — wr,

Au = (orlAvldv) - (1.1)

Equation (1.1) is used to obtain the quantum mechanical transition probabilities (2.11),
(3.5), and (4.3) given below.

2. ELECTRIC DIPOLE

Start from the classical nonrelativistic formula for electric dipole radiation (e.g. Ry-
bicki & Lightman (1979) Radiative Processes in Astrophysics, eq. (3.23b); Weinberg (1995)
Quantum Theory of Fields Vol. 1, eq. (1.2.19); note Weinberg uses Heaviside rather than
Gaussian units for charge e)

dE 2 .
— = d? 2.1
dt 3¢ (2.1)
where
d= Z qr (2.2)
charges ¢

is the electric dipole moment. The Fourier expansion of the dipole moment d is

d=> d,e™", (2.3)

so the Fourier expansion of d is

d= Z —w?d, et (2.4)

and the Fourier expansion of d? is
32 = Z —wd, et . Z _w/deleiw’t ) (2.5)

w w’!
The thing which is really of interest is the dipole radiation rate averaged over time, or
averaged over a period if the motion is periodic. Averaged over time, the periodic terms
in equation (2.5) disappear, leaving only the constant terms, which are those satisfying
w=—w: o
P =) wd, d,=2> wid, d.,. (2.6)
w w>0
Since the dipole moment d is real, it satisfies
d_,=d . (2.7)
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Hence equation (2.6) reduces to

#2=23"wld,? . (2.8)

w>0

Thus equation (2.1) for the classical dipole radiation rate, averaged over time, becomes

aE dt
w>0

To make the transition to quantum mechanics, according to the general prescription (1.1),
the Fourier coefficient d,, must be replaced by the matrix element (¢ |d|¢r), where ¢y and
¢r, represent initial (Upper) and final (Lower) spatial wave functions differing in energy by
wy —wr, = w. The quantum mechanical equivalent of equation (2.9) is therefore

dE

4LL)4 2
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Equation (2.10) gives the mean energy loss per unit time by electric dipole transitions out
of an initial state ¢y to a set of final states ¢r. The spontaneous transition probability,
or Einstein A coefficient, or simply A-value, for electric dipole transitions is obtained by
dividing the energy loss rate (2.10) by the transition energy fuw (this is Rybicki & Lightman,
eq. (10.28a)),

43

337, (orld|du)|* . (2.11)

Ay (electric dipole) = Z
L

Note that the spontaneous transition probability is of order a? (the fine-structure constant
1/137 cubed) in atomic units e = m, = h. The probability depends on nuclear charge Z
approximately as Ay ~ Z4, sincew ~ Z2 and d ~r ~ Z71.

For a single electron, the electric dipole moment is

d=—er . (2.12)

The radial vector operator r can be written as the product » = r# of the radial operator r
and the dipole operator 7, which is the unit vector in the = direction. The matrix elements
of the dipole operator 7 are given in the notes on Angular Momentum. From these matrix
elements follow the electric dipole selection rules for a single electron:

(1) AL=+1, AM =0,+1;

(2) AS=0, AMg =0.
The second rule follows because the radial operator acts only on the spatial part of the wave
function, not the spin. The first rule implies that parity must change, which is also evident
from the fact that r has odd parity (it changes sign under coordinate inversion). These
selection rules reflect the fact that electric dipole photons have unit angular momentum and
odd parity.

For a system of electrons, which all have the same charge —e, the electric dipole moment

d=-¢ > . (2.13)

electrons



Since the dipole operator again has odd parity, again the parity must change in an electric
dipole transition. And again, since the dipole operator acts only on the spatial part of the
wave function, spin is conserved. The other rules for change in the angular momentum
are easiest to infer from the fact that the departing electric dipole photon has unit angular
momentum. The selection rules for electric dipole radiation from many electron atoms are,
then:

1) Parity must change;

2) AJ =0,+1;

3) AMy =0,+1;

4) J =0 < 0 is not allowed;

5) Only one electron changes its nl state; An = any, Al = 1;
6) AL =0,=£1;

7) L =0 <> 0 is not allowed;

(8) AS =0;

where J = L + S is the total orbital plus spin angular momentum. The electric dipole
selection rules 1-4 follow from the assertion that the departing photon has unit angular
momentum and odd parity — it is an electric dipole photon. The rules 1-4 remain inviolate
even when LS coupling is a poor approximation. The rules 5-8 are valid insofar as LS
coupling is obeyed (i.e. L and S are good quantum numbers), which is true to the extent
that the electrons are nonrelativistic. In heavier atoms, if terms are designated by their
dominant LS components, then rules 5-8 may appear to break down because of transitions
occurring through non-dominant components. In astronomy and space science, special at-
tention attaches to transitions in which only rule 8, AS = 0, is violated. Such transitions
are called semi-forbidden. Otherwise, all transitions violating any of the electric dipole
selection rules are called forbidden. Semi-forbidden transitions are electric dipole transi-
tions, and the violation of the AS = 0 rules occurs through configuration mixing caused by
relativistic effects. For example, the CIIT] 1909 A line.
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3. MAGNETIC DIPOLE

Magnetic dipole and electric quadrupole transition probabilities can be derived in a sim-
ilar way from the classical formulae. Generally, one only considers these transition proba-
bilities when the electric dipole transition probability vanishes, that is, for forbidden lines.
At the low density of interplanetary or interstellar space, forbidden lines arising from tran-
sitions within the ground electronic configurations of multi-electron atoms, which are all
parity forbidden, are of great importance. At the high densities of laboratory vacua such
lines are collisionally deexcited, but in space collisions are so infrequent that even forbidden
lines have time to radiate. The classical magnetic dipole radiation rate is

dE 2

ak 4 . 1
o =35 (3.1)

where

= Z qr X v (3.2)

charges q
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is the magnetic dipole moment. The magnetic dipole transition probability is then
Apg(magnetic dipole) = 3™ 2 (6, [l ? (3.3)
ur(mag p = . 360 LIKI9U)| - .

The magnetic dipole transition probability is of order Z%a® in atomic units, down by a
factor Z2a? from the electric dipole probability.
For a system of nonrelativistic electrons, the magnetic moment p is

—e

w= P (L+2S) . (3.4)
The minus sign in equation (3.4) is because electrons have a negative charge —e, and I've
added in the spin contribution S to the magnetic moment. Classically the spin S is absent,
but it has to be included quantum mechanically. The factor of 2 in front of S comes
from the nonrelativistic limit of the Dirac equation, which is the relativistic equivalent of
Schridinger’s equation for spin § particles (see the notes on Spin in Atoms). Bunging (3.4)
into (3.3) gives the magnetic dipole transition probability

e2w?

3m2ch {(¢L|L + 28 |¢u) | (3.5)

Ay (magnetic dipole) = Z
I3

(don’t confuse L for Lower with L for angular momentum).

The selection rules for magnetic dipole transitions follow from equation (3.5): only transi-
tions between states in which the matrix elements of either L or S are nonzero are magnetic-
dipole allowed. The matrix elements of L, which are also those of S, are given in the notes
on Angular Momentum. Since L and S both have even parity (they remain unchanged
under coordinate inversion), the wave functions ¢; and ¢y must have the same parity.
Since L and S act only on the angular part of the wave function, not the radial part, the n
quantum numbers are unchanged. Since L? commutes with L and S, the magnitude of the
total orbital angular momentum is unchanged. Likewise since S? commutes with L and S,
the magnitude of the total spin angular momentum is unchanged. The remaining selection
rules follow most straightforwardly from the requirement that the departing photon has
unit angular momentum. The magnetic dipole selection rules are, then:

1) Parity is unchanged;
2) AJ =0, £1;
3) AMy; =0, +1;
4) AJ = 0 together with AM; = 0 is not allowed; in particular, J = 0 <> 0 is not
allowed;
(5) No change in electronic configuration;
(6) AL =0;
(7) AS =0.
Rules 1-4 follow from the magnetic dipole nature of the photon, and are always valid. Rules

5-8 are exact for H-like ions, but can break down in heavier ions because of mixing of LS
terms.
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4. ELECTRIC QUADRUPOLE

The classical electric quadrupole radiation rate is

dE 1 .9
= - 4.1
dt  180c5 D, (4.1)
where D2 means D”D” (implicit summation over i,j = 1,2, 3), and
Dij = Z q’l“2(3’lqifj — 5”) (42)
charges g

is the (3-dimensional) electric quadrupole moment tensor. The electric quadrupole transi-
tion probability is then

Wb

Ay (electric quadrupole) = Z 90T (o1 Dijlov))? (4.3)

L

which is of order Z%a® in atomic units, the same as the magnetic dipole transition proba-
bility.

You can check that, in a single electron atom, the matrix elements are nonzero only
for AL = 2, AM = 0,%1,+2. Parity is conserved, since D;; has even parity, and spin is
conserved, because D;; acts only on spatial coordinates. These rules reflect the fact that the
emitted electric quadrupole photon has angular momentum 2 and even parity. The electric
quadrupole selection rules are:

(1) Parity is unchanged;
) AJ =0, %1, £2;
) AMj; =0,+1,+2;
) J=0+0, 0< 1, 1/2+ 1/2 are not allowed;
) Either zero or one electron changes its nl state; An = any, Al = 0, +2;
) AL =0,+1,+2;
) L=0+0, 0+ 1 are not allowed;
) AS =0.
Rules 1-4 define what is meant by an electric quadrupole transition. Rules 5-8 are exact for
H-like atoms, but can break down in heavier atoms because of mixing of LS terms.

5. Two-PHOTON TRANSITIONS
Since photons must have an angular momentum of at least one, the selection rule
J =0+ 0 isnot allowed (5.1)
is absolute. Furthermore, in H-like ions, the selection rule
L =0+ 0 isnot allowed (5.2)

is also absolute since there is no violation of LS coupling for single electrons. Thus for
example the 15> — 152515, transition in He-like ions, and the 1s — 2s transition in H-like
ions, are absolutely forbidden. However, the 2s levels of both He-like and H-like ions can
decay by the emission of two photons, and in fact two-photon emission is the dominant
mode of radiative decay from these levels.
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FiGURE 1. Grotrian diagram of the n = 1 and 2 configurations of He I. He I
has two electrons, whose spins combine to yield a singlet with total spin 0,
and a triplet with total spin 1. Transitions between spin singlets (left) and
spin triplets (right) are sufficiently slow that the two kinds of He I behave
almost as distinct species, dubbed “parahelium” and “orthohelium”.

Classically, two-photon emission is represented by emission of two photons in quick suc-
cession. If P is the classical probability per unit time of emission of a photon, then the
probability of emitting two photons in a time At is the probability of emitting a photon in
a time t, times the probability of emitting a photon in a time At — ¢, integrated over all
times t from zero to At:

At 1
P? / t(At —t) dt = 6P2At? : (5.3)
0
The rate per unit time for two-photon emission is then 1/At of equation (5.1), which is
1
6P2At : (5.4)

which tends to zero as At — 0. Equation (5.1) shows that the rate for simultaneous emission
of two photons vanishes in the classical limit. In quantum mechanics, however, Heisenberg’s
uncertainty principle prevents At from being specified more accurately than AtAE ~ h.
Thus the two-photon emission rate is finite in quantum mechanics. The most probable case
is the emission of two electric dipole photons. With At ~ h/AFE ~ 1/w, the two-photon



rate is approximately P2 Jw. Since in atomic units Pgipole ~ Z*a3 and w ~ Z2, the two

dipole
photon emission probability for 1s — 2s is of order Z%a® in atomic units, down by a factor
Z%a? from single allowed electric dipole photon emission probabilities. A more detailed
analysis yields, for the probability dA(2-photon) of spontaneous emission of two photons,

with one photon in an angular frequency interval dw;:
dAy 1, (2-photon) (5.5)

2
4w 4w 1 dwi
= d d + (1< 2) —,
> (son) (308) |2 oy erleblonsdiion) + (160 2) 5
where the summation is over all intermediate states I. If the upper state is 2s, the interme-
diate states I must be p-states, by the dipole selection rules: 2p, 3p, ... . The intermediate
states include continuum as well as discrete states. Energy conservation requires that the

sum of the two photon energies be equal to the transition energy hw,

w1 twr =w. (5.6)




