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The pursuit of ever improving accuracy and precision in atomic clocks is inextricably linked

to discovery. With each new decade we gain deeper insight into nature, probing ever smaller energy

scales. In this thesis we report a body of research advancing our 1D strontium optical lattice clock

(Sr1) to the frontiers of accuracy, precision, and atomic coherence. We demonstrate a new record

for strontium clock fractional frequency inaccuracy of 2.0×10−18. We then leverage this in a series

of comparisons, first comparing Sr1 with the Al+ and Yb clocks at NIST to 18 digits of accuracy.

Intra-lab comparisons with the 3D Sr lattice clock demonstrate record low instability between two

independent clocks (3.5 × 10−17 at 1 s). High uptime characterization and steering of Si3 by the

Sr1 system further demonstrates a proof of principle all-optical timescale system.

To move into the unknown, we introduce the newest version of Sr1. Utilizing a large waist, in-

vacuum build up cavity we radically increase the homogeneity within the clock system. Operation

at shallow trap depths allows us to realize a Wannier-Stark optical lattice clock. By tuning the

delocalization of atomic wavefunctions we demonstrate the so called ‘magic depth’, where the

clock frequency is free of atomic interaction induced frequency shifts regardless of atom number.

Combining these advances in precision we demonstrate a fractional frequency uncertainty of 4.4×

10−18 at 1 s of operation and 8× 10−21 after 90 hours of operation, demonstrating nearly a factor

of 100 lower uncertainty than the previous record. These advances allow us to rapidly evaluate

gradients across our millimeter length atomic sample, resolving the gravitational redshift within a

single clock.
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1.1 The SI Base units and defining constants. The second is defined by taking the fixed

frequency for the cesium hyperfine transition ∆ν, the meter by defining the speed of

light c, the kilogram by defining Planck’s constant h, and so forth. All other units

are derived from these seven base units. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Accuracy and precision. The top row shows marks on a target, the bottom row

frequency versus time of an oscillator that should be at frequency ν0. Column a)

shows high accuracy and high precision, b) high accuracy and low precision, c) low

accuracy and high precision, and d) low accuracy and low precision. . . . . . . . . . 4

1.3 Strontium energy levels. Even (odd) parity levels shown in black (red). The strong

dipole transition (461 nm) serves for initial cooling and trapping of hot strontium

atoms. A weak decay channel from 1P1 to 1D2 (purple line) leads to population in

3P1 and 3P2 (green lines). While 3P1 decays to the ground state, 3P2 is metastable

and leads to significant loss. The addition of repumps at 679 and 707 nm ensures

cycling of metastable states back to the ground state, enhancing MOT operation and

enabling excited state readout. Narrow-line MOT operation at 689 nm is cycling and

enables efficient preparation of cold, dense samples of Sr. . . . . . . . . . . . . . . . 7
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1.4 Clock spectroscopy of nuclear spin states [112]. Traditional stretched state spec-

troscopy is shown in blue, where the |g,mF = ±9/2〉 ↔ |e,mF = ±9/2〉 transition

is probed. Recent clock operation has become limited by magnetic field noise, ne-

cessitating operation with the least magnetically sensitive transition in strontium,

|g,mF = ±5/2〉 ↔ |e,mF = ±3/2〉. In each sequence (assuming a perfect atomic

reference) 1/2 of the sum of the nuclear spin state transition frequencies corresponds

to laser noise while 1/2 of the difference corresponds to magnetic field noise. Dur-

ing spectroscopy the frequency of each nuclear spin transition is found by probing

both the left and right of the lineshape, providing a frequency correction based on

excitation fraction differences and the corresponding lineshape. . . . . . . . . . . . . 9
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2.1 Schematic view of the Sr1 clock. Ultrastable laser light is generated at 1542 nm
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(red, dotted line). The stability of this laser is then transferred via an Er:fiber comb
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698 nm (blue, dotted line). An acousto-optic modulator (AOM 1) is then used to

steer the cavity light into resonance with the Sr clock transition. The excitation

fraction after probing the clock transition is detected by collecting fluorescence from

both ground and excited state atoms. A frequency step applied to AOM 1 produces

an error signal for locking by alternately probing both sides of the | ± 9/2〉 stretched

state transitions. Frequency corrections to the average of the |±9/2〉 frequencies are

applied to AOM 2 such that the cavity-stabilized light is steered onto the transition

frequency of the Sr atom. In addition, frequency corrections to the difference of the

|±9/2〉 frequencies are applied to the AOM 1 frequency. An in-plane magnetic field,

B, providing a quantization axis for the atoms, is aligned to be collinear with both

the 1D optical lattice polarization, ε813, and the clock laser polarization, ε698. Out-

of-vacuum quadrant ring electrodes generate a DC electric field to cancel the ambient

field at the position of the atoms. Finally, a phase lock of the 813 nm trapping laser

to the Er:fiber comb stabilizes the frequency of the trapping light (green, dotted

line). The trapping light is delivered to the atoms through a high power optical fiber

and is intensity stabilized by actuating the RF power on AOM 3. . . . . . . . . . . . 14
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2.2 Systematic shifts. (a) Plot of the time record of the systematic shifts. Changes

in atom number, ambient temperature, or magnetic field all result in corrections

to the clock frequency, and their total magnitude is shown over a six hour data

campaign. The clock achieves 98.9% uptime over the course of this single comparison

day and slight gaps in the data indicate brief periods where the laser is not locked

to the atoms. (b) The same data is plotted as a fractional instability normalized

to the Sr clock frequency. The individual contributions of density shift (blue), BBR

(red) and second order Zeeman shift (yellow) are shown as the dashed curves. For

operation times up to 104 seconds, fluctuations in systematic offsets are bounded

below 4× 10−19. (c) Nonsynchronous comparison with the JILA 3D optical lattice

clock demonstrates that the beat between the two clocks averages below the quoted

total systematic uncertainty. All error bars are derived from a white noise model

and the black line is a white noise τ−1/2 fit to the single clock instability. . . . . . . 16
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2.3 Active Temperature Control. (a) The optical table is divided into independently

controlled sections (grey and white shaded regions) and isolated from the room tem-

perature by a laser curtain. Around the vacuum chamber is an additional black box.

Temperature sensors (TS) monitor each table half, allowing feedback (dotted lines)

for controlling the flow of cooling water through a water/air exchanger above each

table half. Commercial HEPA filters pull room air into the box. (b) The Sr1 vacuum

chamber is contained in a black box to protect it from stray light and ensure thermal

homogeneity. Heat sources that are temperature controlled are shown in red: Zee-

man window (ZW), Zeeman slower (ZS), and MOT coils (MC). Temperature control

of vacuum viewports is shown in blue: water temperature controlled copper tubes

around the top and bottom 6” CF flanges (CF) and thermoelectric cooler (TEC)

controlled 2.75” CF viewport faces (VF). The oven (not shown in the figure) is lo-

cated past the Zeeman slower. The nozzle (6 mm in diameter and 575◦ C) is the only

heated oven component visible to the atoms. (c) The temperature at the location

of the atomic sample is directly measured using a thin-film platinum resistance ther-

mometer (TFPRT) sensor and compared to a model derived from ray-tracing and

temperature sensors mounted on the chamber, verifying the stability afforded by our

extensive thermal control. The measurements shown are binned into 10 minute inter-

vals. (d) At several hours averaging times the TFPRT shows sub-mK level stability.

The difference between the TFPRT and model shows similar temperature stability,

providing verification that long-term fluctuations in the temperature experienced by

the atoms are accurately captured by the ray-tracing model. . . . . . . . . . . . . . . 17

2.4 Density shift evaluations. Density shift measurements were performed over four

weeks at the same trap conditions. The weighted mean of all measurements is shown

with a dashed, black line, with a reduced chi-squared of 1.07. . . . . . . . . . . . . . 25
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2.5 Scaling of the light shift with trap depth U (a) Density shift evaluated at

different trap depths, scaled to a shift with 1000 atoms. The dashed red line is a fit

to the data with the expected scaling of the shift as U5/4. (b) Lattice Stark shifts

measured relative to a trap depth of 45Er. Four different lattice frequencies are

shown: νL = 368.55452610 (blue), 368.55447610 (red), 368.55446610 (green), and

368.55442610 THz (gold). The three curves with dashed lines are independently fit

using the model in Eqn. 2.4, obtaining a weighted mean of their β∗’s. Using this

β∗, the red curve is then fit for α∗clock, fully characterizing our AC Stark shifts for

clock operation at the red curve. Vertical error bars are obtained from fits to the

Allan deviation of each evaluation, extrapolated to the total measurement time, and

scaled by the lever arm of the measurement. Horizontal error bars are uncertainties

on our determination of the trap depth, obtained from axial sideband scans. . . . . . 26

2.6 Evaluation of second order Zeeman coefficient. A history of evaluations of

the Sr second order Zeeman coefficient completed by the PTB [45], SYRTE [145],

and JILA [30, 17, 109] Sr OLCs. The dashed black line is a weighted mean of all six

measurements and the inset shows the three most recent evaluations. . . . . . . . . . 31

2.7 JILA fixed-point realizations. Data from the text(a) water ice melting point

and (b) gallium melting point realization. (c) Allan deviation of the gallium melt

curve (red) and the ice melt curve (blue), showing the capability of averaging down

to below 100 µK on each fixed-point in 104 seconds or less. . . . . . . . . . . . . . . 41
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2.8 Calibration of the in-vacuum probe. (a) Immersion error data in the water

bath comparison. We measure the difference between the high vacuum resistance

Rvac and the He back-filled case RHe as a function of axial gradient Tflange − Tbath.

The data is fit to a linear function, and the fitted offset at zero axial gradient is (0.3

± 0.4) mΩ. This can be converted to temperature by using the sensitivity of the

TFPRT of 2.57 Ohms/Kelvin. (b) Breakdown of uncertainties stemming from the

NIST calibration. The green is the systematic error in the immersion error offset

from panel (a). The cyan color is the maximum temperature gradient observed in

the bath. The blue and orange curves are the fit interpolation errors from the slope

and offset respectively. The red line is the quadrature sum of several minor errors

relating to the calibration. The black dashed line is the quadrature sum of the errors. 43

2.9 Model Error Colormap showing the standard deviation between simulated AC

Stark data (Eqn. 2.11) and a simple linear and quadratic fit to the data (Eqn. 2.4).

The average standard deviation is 3.3×10−19 which we take to be our model error. . 47
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3.2 Time record of ratio measurements. Frequency ratios were measured from November
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3.3 Example of daily ratio measurement. Uncertainties for each day are derived from

overlapping Allan deviations of the corresponding beat. Instabilities for network

elements are shown, all well below the measured instabilities of the atomic ratios. . 54
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Chapter 1

An Introduction to the Wonderful World Of Clocks

“The recent discoveries due to the Kinetic theory of gases and to Spectrum analysis
(especially when it is applied to the light of the heavenly bodies) indicate to us
natural standard pieces of matter such as atoms of hydrogen, or sodium, ready
made in infinite numbers, all absolutely alike in every physical property. The time
of vibration of a sodium particle corresponding to any one of its modes of vibration,
is known to be absolutely independent of its position in the universe, and it will
probably remain the same so long as the particle itself exists. The wavelength
for that particular ray, i.e. the space through which light is propagated in vacuo
during the time of one complete vibration of this period, gives a perfectly invariable
unit of length...” (Lord Kelvin [136])

Central to our modern world is an international definition of units - Le Systéme international

d’unités (SI). Consider your daily interactions with units that must be agreed upon for your life to

proceed smoothly. You wake up to an alarm on your phone, based on an international timescale

(the second). You buy food based on volume (the meter) or mass (the kilogram). Your electricity

bill is tied to amperes, the speed limit to meters per second, the brightness of your phone to lumens,

and your health to pascals. Like it or not, units define our lives!

The International Bureau of Weights and Measures (BIPM) is responsible for directly main-

taining and distributing the SI units. The base units of the SI are shown in Figure 1.1 - all other

units are derived from them. As of 2019, each base unit is now a defined quantity based on quantum

phenomena - our job as metrologists is to then realize these standards with the utmost precision.

Importantly, the more precisely we establish the base units the more precisely we realize the derived

units.

To illustrate this consider the SI unit of time, the second. It is defined by 9,192,631,770
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Figure 1.1: The SI Base units and defining constants. The second is defined by taking the fixed
frequency for the cesium hyperfine transition ∆ν, the meter by defining the speed of light c, the
kilogram by defining Planck’s constant h, and so forth. All other units are derived from these seven
base units.

oscillations of the ground-state hyperfine transition in cesium 133, an idea hearkening back to the

opening quote. The fractional uncertainty with which modern clocks define the second has reached

the low 10−16 level, the most accurate realization of any unit in the SI system. The meter, defined as

the length traveled by light in vacuum during 1
299792458 of a second, relies on our ability to measure

the second. Fortunately, the uncertainty in the second is several orders of magnitude smaller than

the uncertainty of our ability to determine the refractive index of the medium in which the meter is

realized. This illuminates a key motivation for continually improving clocks - we want the accuracy

of all units dependent on the second not to be limited by our best realizations. For now this remains

true, but improvement of the fractional frequency uncertainty of the world’s best cesium clocks has

stalled. This suggests we should reconsider the definition of the second, specifically the atomic

species and transitions.

So, what is an atomic clock in the simplest sense? Consider a standard clock. An oscillator

(pendulum) ticks, the ticks are counted, and the number of ticks readout. An atomic clock can

conceptually be broken down into similar pieces. Rather than a mechanical oscillator, our oscillator
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is a laser, where the frequency of the electric field provides the ticks. Of course a laser, being a

man-made device, is prone to drift so we require a reference. By shining the laser on carefully

controlled atoms, we may steer the laser to constantly be at the correct frequency to cause the

atoms to vibrate. Should those atoms be cesium (and the laser actually a microwave device) we

would be realizing the definition of the second! Finally, we need some way to take our corrected

laser and distribute its now highly accurate frequency across the electromagnetic spectrum, from

microwave to optical. This is the role of the frequency comb.

Atomic clocks based on optical transitions are the natural candidates for the redefinition of

the second. A key figure of merit for a clock is accuracy (Figure 1.2). We parameterize this by a

clock’s fractional frequency inaccuracy as given by ∆ν
ν where ν is the clock’s frequency (number

of ticks per second) and ∆ν the absolute uncertainty of the clock’s frequency. ∆ν is usually

comprised of two contributions: the statistical uncertainty of the clock (how well we know the

frequency after measuring for a period of time) and systematic uncertainty (our limited knowledge

of perturbations to the clock’s frequency). From the definition of fractional frequency inaccuracy

we may understand the advantage of optical clocks in comparison to traditional microwave clocks.

For the same absolute frequency inaccuracy, the fractional frequency inaccuracy is decreased by

nearly 5 orders of magnitude by moving the clock frequency from the microwave to the optical

domain!

Our discussion of ∆ν highlights the importance of the second key figure of merit for a clock

- precision (Figure 1.2). In atomic clocks the fundamental limit of precision is given by the so

called quantum projection noise (QPN)[68] - the inherent quantum noise arising from projecting

atoms in a superposition of ground and excited clock states into either ground or excited state upon

measurement. The fractional frequency instability of QPN scales as

σQPN ∝
S

ν0Tc

√
Tc + Td

Nm(Tc + Td)
, (1.1)

where S is a prefactor dependent on contrast and spectroscopy type (Rabi or Ramsey), Tc the clock
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Figure 1.2: Accuracy and precision. The top row shows marks on a target, the bottom row frequency
versus time of an oscillator that should be at frequency ν0. Column a) shows high accuracy and
high precision, b) high accuracy and low precision, c) low accuracy and high precision, and d) low
accuracy and low precision.

interrogation time, Td the time spent preparing the atoms for interrogation (atom preparation),

ν0 the clock frequency, N the number of atoms, and m the number of measurements of the clock

frequency. This emphasizes the importance of low instability for clocks - our knowlege of the clock

frequency only improves as 1/
√
m. Consider the most accurate clock to date - the Al+ clock with

fractional frequency inaccuracy of 9.4×10−19 [24]. With the Al+ instability slightly worse than

1 × 10−15 it would take more than 106 seconds to reach their reported accuracy! Clearly, for the

realistic ability to evaluate these state-of-the-art clocks precision is vital.

Optical lattice clocks (OLCs) are the only platform with sufficient precision to provide a

useful frequency reference at these levels of accuracy. Just like ion clocks, OLCs enjoy the benefits

of long lived clock states enabling extended interrogation times. In contrast with ion clocks, OLCs

can interrogate more than 10,000 atoms simultaneously, reducing the fundamental QPN limit of

the clocks by a factor of more than 100. The fundamental motivation of the work in this thesis is

the quest to push the 1D Sr OLC to uncertainties at the 10−19 level while simultaneously operating
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in a regime of high precision. Equation 1.1 tells us that the tools we have at our disposal are

extending laser interrogation times and increasing the number of atoms. In the chapters to come

we will discuss the research carried out during my graduate career that has culminated in a level

of precision capable of evaluating a clocks fractional frequency to 19 digits in 10 s. Critically,

this result was obtained in an operational regime fundamentally compatible with accuracy well

into the nineteenth decade, successfully wedding next generation accuracy and precision into one

experimental platform.

1.1 Why Do We Want Better Clocks?

Let us briefly address the question of why we want better clocks. First and foremost, we

want to redefine the second to an optical transition. Doing so will enable orders of magnitude

improvement in the accuracy of our realization of the second, ensuring that the second plays no

role in the uncertainty of derived units. Additionally, optical atomic clocks have orders of magnitude

lower fractional frequency instability, meaning a given level of precision can be attained in orders

of magnitude less time! Comparison to an ideal frequency standard should be accurate and rapid,

with statistics not limited by the standard. OLCs excel in both metrics.

Improved clocks will allow us to probe the fundamental assumption of the SI units - the

immutable nature of fundamental constants. Many beyond Standard Model theories do not guar-

antee the stability of our nicely defined units. By making better clocks, we can compare them and

test these assumptions, ruling out new theories or perhaps some day discovering new physics [123].

Such research requires different atomic species, or at the least different clock transitions within

one atom. Comparing two clocks drifting in the same way would reveal nothing, but comparing

transitions with differential sensitivity to fundamental constants can open the door to testing a

variety of new physics, such as changes in the fine structure constant.

An exciting, evolving frontier of clocks is space based applications. Centimeter scale accuracy

in an updated global navigation satellite system wouldn’t just improve navigation, but would allow

accurate mapping of the Earth’s geoid [99]. Deep space navigation is currently hampered by the



6

ability to send timing signals to distant space vehicles - integration of on-board, highly accurate

atomic clocks would remove this limitation. Improvement in clock precision may even some day

allow for space-based clocks to detect gravitational waves [77].

Beyond timescales and tests of fundamental constants, improved clocks will have valuable

roles in terrestrial applications. Comparison of such clocks on Earth will provide a critical tool for

relativistic geodesy at the sub-centimeter level [47]. Advanced communications networks, entangled

networks of clocks [78], improved very-long-baseline interferometry - the list goes on!

1.2 1D 87Sr Optical Lattice Clocks

This thesis discusses two generations of the Sr1 project at JILA, both using the 1D 87Sr optical

lattice clock (OLC) architecture. We will quickly review the operation of a 1D Sr OLC, referring

the extremely curious reader to detailed theses for further in depth discussion [21, 88, 146, 95, 25],

with experimental details of the new version discussed in Chapter 4.

Sr is in many ways the Goldilocks of the Alkaline-Earth elements. With atomic number 38, the

outermost valence electrons completely fill the 5s2 configuration, giving rise to the energy structure

shown in Figure 1.3. The two valence electrons may align their spins such that S=0 (singlet state

1S0) or S=1 (triplet states 3PJ). This has immediate relevance for creating a frequency standard

since dipole selection rules in LS coupling [39, 40, 63, 4] tell us that, for an E1 excitation, ∆S = 0.

This means in pure LS coupling transitions from 1S0 ⇔3PJ are forbidden.

Let’s turn our attention to the clock transition at 698 nm. This transition is also forbid-

den by the angular momentum triangle rule (J=06⇔J’=0), a significantly more rigorous rule than

∆S = 0 (check the linewidth of the 3P1 versus 3P0 transitions in bosonic strontium). So, our clock

transition is doubly-forbidden! How do we drive the clock transition? LS-coupling is an approxi-

mation, neglecting spin-orbit coupling (SOC). SOC weakly perturbs the 3P0 state, mixing in small

contributions of 1P1 and 3P1 [21]. Even with SOC mixing we can’t reliably probe the ultra-narrow

bosonic clock linewidth, so we must either 1) apply a large magnetic field to further induce the

clock transition or 2) work with the fermionic isotope. In fermionic strontium, 87Sr (I=9/2), the
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Figure 1.3: Strontium energy levels. Even (odd) parity levels shown in black (red). The strong
dipole transition (461 nm) serves for initial cooling and trapping of hot strontium atoms. A weak
decay channel from 1P1 to 1D2 (purple line) leads to population in 3P1 and 3P2 (green lines).
While 3P1 decays to the ground state, 3P2 is metastable and leads to significant loss. The addition
of repumps at 679 and 707 nm ensures cycling of metastable states back to the ground state,
enhancing MOT operation and enabling excited state readout. Narrow-line MOT operation at 689
nm is cycling and enables efficient preparation of cold, dense samples of Sr.

hyperfine interaction further perturbs LS coupling, creating an extremely narrow but usable clock

linewidth of 1.3 mHz which we use to form our frequency reference [21].

So, we have a doubly forbidden clock transition between two J=0 states, ensuring SU(N)

symmetry [12, 25] and suppressing vector related clock shifts. How do we leverage our clock

transition as a frequency reference? First we must prepare our atomic sample [21, 88], all within

ultra-high vacuum. A small piece of strontium is heated to around 400◦ C, causing the sample to

effuse strontium atoms. The atomic flux is collimated, cooled, and loaded into a magneto-optical

trap (MOT) first operating on the 461 nm transition and then a second MOT stage on the 689

nm transition (Figure 1.3). After the second MOT stage the ∼ µK atoms are loaded in an optical
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lattice where further cooling and nuclear spin-polarization may be performed. Atoms are tightly

confined to spatial dimensions much less than the wavelength of the lattice light, enabling Doppler-

free clock spectroscopy (the so called Lamb-Dicke regime [21, 88]). Critically, the lattice wavelength

is such that the ground and excited clock state polarizabilities are identical, preventing deleterious

frequency shifts to the clock transition.

Clock spectroscopy proceeds as in Figure 1.4 [88, 111, 112]. Every experiment corresponds

to loading atoms, preparing a single nuclear spin, probing the atoms with clock light, and finally

reading out the excitation fraction using the 461 nm transition. This is performed on the left and

right side of the Rabi lineshape for each nuclear spin transition. Excitation fractions are converted

to frequency corrections, which provide feedback to the clock laser. The average frequency of the two

nuclear spin transitions rejects vector shifts and is used for tracking the atomic frequency, while the

differential frequency between opposite nuclear spin states tracks vector frequency perturbations.

1.3 Thesis Outline

This dissertation discusses experiments probing the frontiers of accuracy, precision, and ap-

plications of atomic clocks. All work was performed as part of the Sr1 group at JILA (the 1D

strontium optical lattice clock experiment) in close collaboration with the full Ye Lab’s Sr team,

consisting of Sr2, Sr3, and Stable Lasers.

In Chapter 2 we present the current (2022) record accuracy evaluation for a strontium clock

and third most accurate clock demonstrated to date, documenting improvements from the previous

Sr1 fractional frequency inaccuracy of 5.3×10−17 [17] and Sr2 (1D) inaccuracy of 2.1× 10−18 [109]

to a new inaccuracy of 2.0 × 10−18 in 2019. We notably include an updated accounting of lattice

light shifts to account for corrections beyond the dipole approximation.

Chapter 3 gives a brief overview of the studies enabled by this accuracy evaluation. Our

advances in accuracy were motivated by our participation in an extensive clock comparison between

the Sr1 system and Al+ and Yb clocks at NIST. With Sr1’s improved accuracy and Sr2’s precision

expertise we were able to demonstrate record low instability inter-clock comparisons between the
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Figure 1.4: Clock spectroscopy of nuclear spin states [112]. Traditional stretched state spectroscopy
is shown in blue, where the |g,mF = ±9/2〉 ↔ |e,mF = ±9/2〉 transition is probed. Recent clock
operation has become limited by magnetic field noise, necessitating operation with the least mag-
netically sensitive transition in strontium, |g,mF = ±5/2〉 ↔ |e,mF = ±3/2〉. In each sequence
(assuming a perfect atomic reference) 1/2 of the sum of the nuclear spin state transition frequen-
cies corresponds to laser noise while 1/2 of the difference corresponds to magnetic field noise.
During spectroscopy the frequency of each nuclear spin transition is found by probing both the left
and right of the lineshape, providing a frequency correction based on excitation fraction differences
and the corresponding lineshape.

Sr1 and Sr2 clocks. Sr1 was further used to help characterize the labs newest clock laser, Si3,

enabling demonstrations of an all-optical timescale and searches for dark matter.

In Chapter 4 we switch gears, discussing the newest iteration of the Sr1 experiment. By
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utilizing a large waist in-vacuum build-up cavity for the optical lattice the atomic density is reduced

by nearly an order of magnitude, supporting advances in precision owing to large atom-number

operation. The ability to initially load and cool the atomic sample in a deep trap enables a new

regime of temperatures for the 1D lattice clock architecture, building on the lessons learned from

the 3D experiment [33].

Chapter 5 introduces the concept of the Wannier-Stark OLC [81]. Operation at depths near

10 lattice recoil energies results in the delocalization of atomic wavefunctions, enabling engineering

of atomic interactions. We demonstrate the ability to operate nearly free of atomic-interaction

induced frequency shifts by engineering on- and off-site atomic interactions to cancel, eliminating

the largest impediment to precision in the 1D clock platform.

Chapter 6 discusses advancements enabled by combining atomic coherence as demonstrated

in the 3D and tweezer platforms [33, 154] with the proven accuracy of the 1D platform [98, 19].

In-situ imaging of the atomic cloud [93] with differential systematic characterization allows us

to resolve the frequency gradient arising from the gravitational redshift across a millimeter scale

atomic sample. This observation is enabled by record precision, demonstrated by comparing two

regions of the cloud for nearly 90 hours allowing frequency resolution of 21 digits.

Finally, Chapter 7 revisits the fundamental limiting systematic of Chapter 2 - the lattice light

shift. We discuss the origin of higher order terms in the light shift and outline a possible plan of

attach for reducing their uncertainties.



Chapter 2

Record Accuracy For a Strontium Clock

The research in this chapter is reported in the publication: Bothwell et al., ‘JILA Sr1 optical

lattice clock with uncertainty of 2.0×10−18,’ Metrologia (2019) [19].

Atomic clocks based on optical transitions have led to rapid advances in clock accuracy. In

2010 the NIST Al+ clock was the first system to reach a fractional frequency inaccuracy below

1×10−17, evaluating the system to 8.6×10−18 [36]. The 1D version of Sr2 became the first OLC to

reach this milestone in 2014, achieving an inaccuracy of 6.4×10−18 [17]. A year later, in 2015, they

further reduced their inaccuracy to 2.1 × 10−18. Concurrently, Riken performed a comparison of

two cyrogenic 1D Sr OLCs with inaccuracies of 7.2× 10−18, solidifying Sr as the leading platform.

In 2018, the Yb OLC team at NIST similarly compared two clocks with inaccuracies of 1.4× 10−18

and differential inaccuracy below 1× 10−18 [98]. PTB’s Yb ion clocks have never been far behind,

evaluating a clock inaccuracy of 3.0 × 10−18 in 2016 [66] and further improving to 2.7 × 10−19 in

2019. Finally, NIST’s Al+ system reported the current record inaccuracy of 9.4 × 10−19 in 2019

[24].

While the leading clock platform for accuracy has been traded back and forth between ion

and OLC, OLCs are the superior platform for precision. The Yb OLC team at NIST demonstrated

fractional frequency instability below 1 × 10−16/
√
τ (τ being averaging time in seconds) in 2016.

A year later, the 3D lattice version of Sr2 compared two regions of their atomic cloud with an

instability of 3.1 × 10−17/
√
τ [33], a record held until the work presented in Chapter 6. A record

low instability comparison between Sr1 and Sr2 of 3.5× 10−17/
√
τ is reported in Chapter 3. These



12

advances in precision are critical for the ability to faithfully evaluate clock uncertainties of <

1× 10−18.

2.1 Introduction

The unprecedented levels of stability and accuracy of modern clocks has enabled their use

in a variety of applications ranging from the proposed redefinition of the SI second [86, 45, 13],

to searches for variations of fundamental constants [43, 144, 122, 74], and increased capabilities

for positioning, navigation, and timing applications [44]. However, in order to fully realize the

potential for these applications, controlling the temporal drift of systematic offsets poses a potential

barrier to control of the system at and below the 10−18 level. While it is possible to evaluate the

systematic uncertainty of optical clocks at this level, active control of all systematics is now urgently

needed [53, 65] to realize a robust optical frequency reference that maintains this level of uncertainty

over long time periods. A systematic shift can be measured to an extremely high precision but if

it varies significantly over time the clock frequency will appear to drift unless real-time frequency

corrections are applied. An alternative approach is to instead control the atom environment to

the level where the temporal variations of systematic effects are well within the clock’s uncertainty

budget and frequency post-corrections need not be applied. This is the guiding principle taken

in upgrading the JILA Sr1 optical lattice clock. Here, we demonstrate clock performance where

fluctuations in systematic offsets are routinely bounded below 4×10−19 for times up to 104 seconds.

In implementing these upgrades the systematic uncertainty of the Sr1 clock, last evaluated

at 5.3×10−17 in 2013 [17], has been improved by more than a factor of 20 to 2.0×10−18. This

surpasses the uncertainty record for a strontium optical lattice clock and places this clock among

the most accurate clocks in the world [109, 98, 24]. The active control of clock operating conditions,

including the thermal environment, allows the clock to run in a robust manner without needing

real-time frequency corrections to average to the level of its accuracy. In this paper, we detail the

control of each major systematic effect in JILA Sr1.
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2.2 Experimental Methods

The experimental sequence begins with a collimated atomic beam of Sr generated from a

effusive oven. Atoms of 87Sr in the beam undergo 2D transverse cooling and Zeeman slowing using

the broadband 461nm 1S0 - 1P1 transition (Γ = 2π × 32MHz). The slowed atoms are then loaded

into a magneto-optical trap (MOT) operating on the same transition, and cooled to mK-level

temperatures. After 100ms of loading, the atoms are transferred to a second narrow-linewidth

(Γ = 2π × 7.5kHz) MOT operating on the dipole-forbidden 1S0 - 3P1 line at 689nm, cooling the

atoms to a temperature of 3µK. The sample is then transferred to a one-dimensional, 813nm red-

detuned optical lattice, which exhibits minimal differential polarizability for the two clock states,

and is optically pumped into one of the |F = 9
2 ,mF = ±9

2〉 stretched states of the 1S0 manifold.

The lattice is initially loaded at a depth of 180Er to maximize the number of captured atoms and is

then adiabatically ramped down to a nominal operating depth of 45Er (where Er is the recoil energy

associated with the 813 nm trapping light) to minimize the effects of systematic shifts associated

with the trapping light.

With state preparation complete, clock spectroscopy is performed on the ∼ 1 mHz natural

linewidth, 698nm 1S0 - 3P0 transition using a narrow-linewidth ultrastable laser. A bias magnetic

field of 57 µT (570 mG) splits the |92 ,±
9
2〉 states by 556 Hz, and the clock transition is interrogated

with a 600 ms long π-pulse with polarization collinear with the quantization axis. After interroga-

tion with the clock laser, the resulting excitation fraction is measured by first detecting the ground

state population via fluorescence on the 461 nm transition, and then detecting the excited state

population by repumping atoms back to the ground state and again collecting fluorescence on the

461 nm transition. This procedure is performed for detunings from resonance of ±Γ
2 , one-half of

the Rabi linewidth, and the resulting difference in excitation fraction specifies the detuning of the

clock laser from resonance. By alternately probing the two stretched states, we reject fluctuations

in the first-order Zeeman shift arising from magnetic field noise, further details of which are offered

in [112].
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Figure 2.1: Schematic view of the Sr1 clock. Ultrastable laser light is generated at 1542 nm by
referencing a diode laser to a crystalline silicon optical cavity operating at 124 K (red, dotted line).
The stability of this laser is then transferred via an Er:fiber comb to an external-cavity diode laser
pre-stabilized by a 40 cm ULE cavity operating at 698 nm (blue, dotted line). An acousto-optic
modulator (AOM 1) is then used to steer the cavity light into resonance with the Sr clock transition.
The excitation fraction after probing the clock transition is detected by collecting fluorescence from
both ground and excited state atoms. A frequency step applied to AOM 1 produces an error signal
for locking by alternately probing both sides of the | ± 9/2〉 stretched state transitions. Frequency
corrections to the average of the | ± 9/2〉 frequencies are applied to AOM 2 such that the cavity-
stabilized light is steered onto the transition frequency of the Sr atom. In addition, frequency
corrections to the difference of the |± 9/2〉 frequencies are applied to the AOM 1 frequency. An in-
plane magnetic field, B, providing a quantization axis for the atoms, is aligned to be collinear with
both the 1D optical lattice polarization, ε813, and the clock laser polarization, ε698. Out-of-vacuum
quadrant ring electrodes generate a DC electric field to cancel the ambient field at the position of
the atoms. Finally, a phase lock of the 813 nm trapping laser to the Er:fiber comb stabilizes the
frequency of the trapping light (green, dotted line). The trapping light is delivered to the atoms
through a high power optical fiber and is intensity stabilized by actuating the RF power on AOM
3.
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As depicted in Fig. 2.1, the ultrastable laser used to probe the clock transition consists of

a pre-stabilized 698nm laser locked to a commercial Er:fiber comb which is phase-stabilized to a

master 124 K silicon cavity. A frequency step applied to an acousto-optic modulator (AOM 1 in

Fig. 2.1) alternately probes either side of the |92 ,±
9
2〉 transitions and generates an error signal. A

digital servo filter (PI2D) is applied to this error signal to apply frequency feedback to AOM 2 in

Fig. 2.1. This loop configuration has the effect of stabilizing both the light after the AOM 2 and

the frequency of each comb tooth to the spectroscopic precision and accuracy of clock operation.

Under typical operating conditions (i.e. sample preparation time of 570 ms, interrogation time of

600 ms, and an atom number of N = 1000) the clock achieves a stability of 4.8× 10−17/
√
τ [112].

2.3 Systematic Evaluation

Accurate determination of the unperturbed 87Sr clock transition frequency requires charac-

terization of all systematic effects which produce energy shifts between the 1S0 ground state and

the 3P0 metastable excited state. These effects range from the interaction of a single atom with

an external field to two-particle collisions and many-body effects. For each shift, the perturbing

effect is either directly measured - as in the case of the thermal electric field produced by room

temperature radiation - or the effect is inferred by modulation of the applied field and the corre-

sponding measurement of a frequency shift - as in the case of the lattice light shift. Subsequently,

the systematic shifts relative to the unperturbed atomic transition frequency can be extrapolated

to daily operating conditions using well-characterized theoretical models of each effect.

For shifts evaluated using the lock-in technique, the record-low clock instability demonstrated

in Ref. [112] allows the rapid determination of these systematic offsets - without the need to apply

a large lever arm - at the 1 × 10−18 level in less than one hour. However, the capability to

rapidly evaluate shifts does not preclude the need for applying real-time frequency corrections to

compensate for non-stationary systematics. A systematic offset can have temporal variations if its

source (e.g. atom number) or calibration (e.g. fluorescence to atom number conversion) fluctuates

throughout the day. In the following subsections, we show how, by active stabilization of the thermal



16

environment and careful control of the operating parameters, drifting systematic offsets can remain

below 4 × 10−19 fractional instability over six hours of operation (Figs. 2.2a, b). Consequently, a

frequency comparison of the Sr1 clock against a stable reference (the JILA 3D clock [33]), Fig. 2.2c,

can average well into the 10−19 decade without systematic effects impacting the clock stability.
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Figure 2.2: Systematic shifts. (a) Plot of the time record of the systematic shifts. Changes
in atom number, ambient temperature, or magnetic field all result in corrections to the clock
frequency, and their total magnitude is shown over a six hour data campaign. The clock achieves
98.9% uptime over the course of this single comparison day and slight gaps in the data indicate brief
periods where the laser is not locked to the atoms. (b) The same data is plotted as a fractional
instability normalized to the Sr clock frequency. The individual contributions of density shift
(blue), BBR (red) and second order Zeeman shift (yellow) are shown as the dashed curves. For
operation times up to 104 seconds, fluctuations in systematic offsets are bounded below 4× 10−19.
(c) Nonsynchronous comparison with the JILA 3D optical lattice clock demonstrates that the beat
between the two clocks averages below the quoted total systematic uncertainty. All error bars are
derived from a white noise model and the black line is a white noise τ−1/2 fit to the single clock
instability.

2.3.1 Blackbody Radiation

The frequency shift induced by blackbody radiation (BBR) is the largest systematic shift and

a dominant source of uncertainty in state-of-the-art optical lattice clocks. Aside from cryogenic

systems [139], the BBR-induced clock shift for strontium is approximately 5 × 10−15 at room

temperature. The BBR shift of a thermal electric field distribution characterized by a temperature,

T , may be expressed as:

∆νBBR(T ) = νstat

(
T

T0

)4

+ νdyn

[(
T

T0

)6

+O
(
T

T0

)8]
(2.1)
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Figure 2.3: Active Temperature Control. (a) The optical table is divided into independently
controlled sections (grey and white shaded regions) and isolated from the room temperature by
a laser curtain. Around the vacuum chamber is an additional black box. Temperature sensors
(TS) monitor each table half, allowing feedback (dotted lines) for controlling the flow of cooling
water through a water/air exchanger above each table half. Commercial HEPA filters pull room
air into the box. (b) The Sr1 vacuum chamber is contained in a black box to protect it from stray
light and ensure thermal homogeneity. Heat sources that are temperature controlled are shown in
red: Zeeman window (ZW), Zeeman slower (ZS), and MOT coils (MC). Temperature control of
vacuum viewports is shown in blue: water temperature controlled copper tubes around the top and
bottom 6” CF flanges (CF) and thermoelectric cooler (TEC) controlled 2.75” CF viewport faces
(VF). The oven (not shown in the figure) is located past the Zeeman slower. The nozzle (6 mm in
diameter and 575◦ C) is the only heated oven component visible to the atoms. (c) The temperature
at the location of the atomic sample is directly measured using a thin-film platinum resistance
thermometer (TFPRT) sensor and compared to a model derived from ray-tracing and temperature
sensors mounted on the chamber, verifying the stability afforded by our extensive thermal control.
The measurements shown are binned into 10 minute intervals. (d) At several hours averaging times
the TFPRT shows sub-mK level stability. The difference between the TFPRT and model shows
similar temperature stability, providing verification that long-term fluctuations in the temperature
experienced by the atoms are accurately captured by the ray-tracing model.



18

where νstat = −2.13023(6) Hz [100], νdyn = −148.7(7) mHz [109], and T0 = 300 K.

Characterizing the room temperature BBR shift at the low 10−18 level requires absolute

knowledge of the thermal environment of the atoms to within 50 mK. To date this challenging

technical requirement has been met using two approaches. In the JILA Sr2 clock, NIST-calibrated

in-vacuum sensors were used to directly measure the thermal environment of the atoms to an

uncertainty of 5 mK [109]. In the Yb OLC at NIST an in-vacuum radiation shield was charac-

terized using precision thermometry and thermal modeling [6]. Here we take components of both

approaches by actively stabilizing and monitoring the thermal enclosure of the atoms while also

utilizing in-vacuum thermometry.

Our primary objective is to create a frequency reference with low 10−18 level systematic

uncertainty that does not require point-by-point corrections to attain a similar instability. A

homogeneous thermal environment is essential for accurate and precise characterization of the sur-

roundings with a finite array of temperature sensors and for avoiding complications which arise

when evaluating the dynamic BBR correction of a non-thermal spectrum of the electric field driven

by temperature gradients [109]. Furthermore, actively maintaining a constant operating temper-

ature leads to a more stable and reproducible BBR shift that is crucial for post-correction-free

operation of the clock at the low 10−18 level.

For our evaluation of the BBR shift in Sr1, we utilized both a Monte-Carlo ray-tracing based

thermal model and an in-vacuum thermal probe to determine the temperature at the atoms in two

complementary ways. One method involves actively stabilizing and carefully measuring the thermal

environment around the vacuum chamber using 16 servo loops and over 30 sensors. The temperature

at the atoms can then be computed from this array of temperature monitors using a detailed thermal

model based on ray tracing as described in Appendix 2.5.1. We then verify the first approach by

installing a PT100 thermal sensor in-vacuum to directly measure the BBR environment. Excellent

agreement between the thermal model and the in-vacuum temperature measurement demonstrates

that our model accurately predicts changes in the temperature experienced by the atoms from

our external vacuum sensors readings at sub-mK levels. Our technical efforts focus on (1) active
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temperature stabilization of our system, (2) creating an array of accurate temperature sensors to

characterize the thermal boundary conditions, and (3) calibration of an in-vacuum temperature

probe. To this end, we improve the overall thermal homogeneity of JILA Sr1 by more than a factor

of 10, limiting thermal gradients across the chamber to less than 100 mK.

We construct a model of the temperature Ti at the location of the atoms, modeled by a

small spherical surface i, by mapping the measured temperatures on the surrounding surfaces of

the vacuum chamber to Ti by:

T 4
i =

∑
j

Fi→jT
4
j , (2.2)

where the index j enumerates the different surfaces of the vacuum chamber surrounding the atoms

and Fi→j is the exchange factor defined as the fraction of total energy emitted by surface i that is

absorbed by surface j directly or by reflection [103]. A description of our exchange factors is given

in Appendix 2.5.1. In the limit where the chamber temperature is nearly uniform, the uncertainty

in Ti can be expressed as

δTi ≈
∑
j

Fi→jδTj . (2.3)

This limit is important for understanding how to prioritize temperature control of the experimental

apparatus: surfaces with large exchange factors dominate the thermal environment of the atoms

and are subsequently the most important to control. A useful heuristic for identifying the largest

exchange factors, and therefore the most critical surfaces for thermal control, is to find the most

highly emissive surfaces in the vacuum system subtending the largest solid angles at the location

of the atoms. Often, and in our case, these surfaces are large vacuum windows.

To achieve the required temperature uniformity and stability, we began by stabilizing the

air temperature around the experimental apparatus (Fig. 2.3a). The optical table is partitioned

to isolate the vacuum chamber from the auxiliary laser systems and the entire table is surrounded

by curtains to isolate it from the room air temperature fluctuations. Around the vacuum chamber
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a black box is installed to provide additional thermal homogeneity and to block stray laser light.

The box is made of readily available black hardboard, black acrylic, and aluminum framing. Both

sides of the table are actively temperature stabilized by controlling their inlet air temperature. Our

chamber has several heat sources including the MOT coils, Zeeman slower, heated Zeeman window,

and oven (Fig. 2.3b). Each heat source is accompanied with water cooling such that the relative

heating/cooling rate allows us to actively control the steady-state temperature of each.

The equilibrium temperature at the atoms is determined from Eqns. 2.2 and 2.3, which are

dominated by the contributions from the fused silica viewports due to their high emissivity and large

solid angles with respect to the atomic sample. Therefore, stabilization and accurate measurement

of the viewport temperatures is of paramount importance. To stabilize their temperature, we fix

the thermal boundary conditions of all viewports (Fig. 2.3b). The stainless steel flanges of the

6” viewports are wrapped in copper tubing carrying temperature controlled water to stabilize the

temperature of the steel around the glass. A copper ring with two embedded temperature sensors

and lined with thermally conductive silicon matting is pressed against the outer edge of the glass

(leaving a small aperture in the middle for optical beams to pass through) to achieve thermal

homogeneity across the surface and allow direct monitoring of the glass temperature. All 2.75”

viewports are controlled using custom, TEC temperature controlled aluminum attachments backed

by water cooling.

This unique approach to active temperature control creates a stable thermal environment

where temperature-controlled viewports and flanges act as thermal reservoirs with boundary con-

ditions set by the servo setpoints. All setpoints for temperature control are set to 22◦C. To charac-

terize the homogeneity of this thermal environment, 30 witness sensors with accuracy of 50 mK were

placed around and on the chamber. Each viewport has an independent witness sensor, with the

larger 6” viewports each having two. With the data from this sensor array and a detailed 3D model

of the vacuum chamber as inputs to our thermal model, one can now compute the temperature

seen by the atoms using Eqn. 2.2.

Upon completion of clock operation, an in-vacuum thermal probe is inserted into the vacuum
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chamber in order to directly measure the temperature at the position of the atoms. Placement

of the probe at the position of the atoms is ensured by aligning the sensor to overlap with both

the clock and the Zeeman slowing laser beams and the temperature is measured under identical

run conditions to clock operation. This measurement allows for both the direct verification of the

thermal model connecting temperatures measured on the vacuum chamber to the temperature seen

by the atoms as well as the reduction of uncertainties associated with the emissivity of different

vacuum components. The in-vacuum thermal probe consists of a 60 cm evacuated glass tube with

a calibrated (±1.4 mK) PT100 sensor epoxied at the end. The sensor design and calibration details

can be found in Appendix 2.5.2. After installing the in-vacuum sensor, a small static offset of

19.1 mK was discovered between the temperature measured by the zero power resistance of the

probe and the temperature derived from the thermal model using parameters given in literature,

shown in Fig. 2.3c. This offset is attributed to a limited knowledge of material emissivities as

well as calibration uncertainties of the thermistors (50 mK) of the majority of the sensor array.

The in-vacuum probe measurement allows for the characterization of any static offset between

the thermal model and the directly measured temperatures. Active stabilization of the thermal

environment allows this offset to remain stable over clock operation where the thermal model

successfully captures all fluctuations in the temperature to better than 1 mK over >10,000 s of

averaging as indicated by the Allan deviation of the difference between the model and the measured

temperature shown in Fig. 2.3d. All parameters of the thermal model and a more detailed discussion

of the construction of the model can be found in Appendix 2.5.1.

The total temperature uncertainty quoted in Table 2.1 has contributions from the calibration

uncertainty of the in-vacuum sensor, immersion error, self heating, modification of the thermal

environment by the sensor (insertion error), and statistical error of the agreement between the

probe and thermal model. Immersion error in the Sr1 chamber was measured by changing the

base flange temperature and monitoring the in-vacuum sensor, giving a slope of (0.65 ± 0.62)

mK/K. During clock operation, this flange is controlled to 0.2 K, and so we assign the total

immersion error uncertainty to be the quadrature sum of the overall offset and the coefficient
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uncertainty, arriving at a 1.8 mK uncertainty. Insertion error is bounded to 1.5 mK from previous

work comparing the temperature measured at one thermistor to the temperature measured at

another as the position of the second is translated away from the chamber center [109]. The total

uncertainty in the temperature of blackbody radiation seen by the atoms is then evaluated to be

δT = 2.9 mK corresponding to an uncertainty of 2.0×10−19. Uncertainty in the combined static and

dynamic BBR coefficients accounts for the atomic response contribution to our BBR uncertainty,

at 1.49× 10−18.

Table 2.1: Atomic Temperature Uncertainty

Shift Correction (mK) Uncertainty (mK)

Sensor calibration 0 1.4
Self heating -1.4 0.3
Immersion error 0 1.8
Sensor - model 20.5 1.0
Insertion error 0 1.5
Total 19.1 2.9

2.3.2 Density Shift

The high-degree of stability demonstrated by Sr1 and more generally by optical lattice clocks

is due to the ability to interrogate thousands of atoms simultaneously and read-out the measured

clock frequency with high signal-to-noise at the limit set by quantum projection noise (QPN) [112].

However, the presence of multiple spin-polarized atoms per lattice site introduces systematic fre-

quency shifts due to p-wave interactions. The different triplet collision channels between ground

and excited atoms have been shown to have different scattering lengths which subsequently produce

density-dependent differential clock shifts. These effects have been studied and characterized in

87Sr [95, 155].

During clock operation, the gas is spin-polarized by optical pumping into either the |92 ,
9
2〉 or

the |92 ,−
9
2〉 ground hyperfine state before interrogation in order to suppress frequency shifts due

to s-wave collisions. However, s-wave interactions can still occur if impurity atoms remain present

after the optical pumping process. To mitigate this effect - and suppress temporal variation of this
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effect due to fluctuations in the efficiency of optical pumping - we perform clock spectroscopy on

impurity nuclear spin states and optimize the optical pumping process to reduce the population in

other nuclear spin states below the detection threshold of our system. In this regime, the dominant

density-dependent frequency shift is a collective p-wave interaction between identical fermions.

To reduce the QPN-limited clock stability to the low-10−17/
√
τ level, we initially prepare

more than 1000 atoms in the optical lattice. For these atom numbers in the deepest optical lattice

depths ∼180 Er, on-site densities are high enough that sub-percent-level changes in the trap depth

or atom distribution can produce variations of the shift at the 10−18 level. The effect of these

fluctuations is suppressed to the 10−19 level and below by lowering the lattice depth to 45 Er

thereby reducing the peak atomic density during clock interrogation. Vertical orientation of the

1D lattice ensures suppression of tunneling due to the difference in gravitational potential energy

between lattice sites.

In addition, fluctuations in the atomic density and the resulting density shift can be driven by

changes in the laser-cooling process which transfers the atoms from the narrow-line red MOT into

the lattice. This loading process is influenced by the relative frequency, intensity, polarization, and

alignment stability of the red MOT lasers. To control these processes, the lasers are stabilized to an

ultra-stable cavity to a linewidth of 1 Hz. Temperature stabilization of the experimental apparatus

- as discussed in the previous section - serves the dual purpose of stabilizing the alignment of

the red MOT and enables robust, alignment-free operation of the clock over many consecutive

months. After implementing these measures, we find both the sample temperature and the spatial

distribution of atoms in the lattice are insensitive to daily linewidth-level frequency drifts and

alignment drifts. Linear scaling of the temperature with the loading lattice depth indicates that

final temperatures in the lattice are dominated by the large AC Stark shift of the 813 nm lattice

on the 3P1 cooling transition. Since the lattice depth is actively stabilized, the atomic distribution

within the lattice remains static over time leading to a density shift with stability at the 10−19

level.

To measure and confirm this stability, the density-dependent shift is determined by modu-
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lating the atom number by varying the loading time of the blue MOT which then varies the atomic

density in the lattice. Care is taken to ensure that, at the highest atom numbers, the spectroscopic

lineshape remains Fourier-limited with high peak excitation fraction unblocked by a many-body

excitation gap [95]. A model of the density shift which is linearly dependent on atom number is

applied to extrapolate the measured shift to the atom number in the lattice on any particular ex-

perimental realization. To demonstrate the stability of the shift, repeated density shift evaluations

were performed at our nominal clock lattice depth of 45 Er over the course of several weeks, with

a weighted standard error of 3.9× 10−19 and χ2 = 1.07 for all these measurements (Fig. 2.4).

Finally, by verifying that the radial and axial trap frequencies in the lattice scale with trap

depth as expected for a thermal gas, we confirm the shift scaling of ∆νdensity ∝ U5/4 as reported

in [132]. Fig. 2.5a shows the result of this evaluation where each point has error bars evaluated to

the low 10−18 level. The data fits well to a model with the functional form: a+ bU5/4, where U is

the trap depth and a and b are fit parameters. Though we independently measure the density shift

for a particular lattice depth each day during clock operation, this scaling becomes highly useful

when evaluating shifts at several trap depths, as done during the AC Stark evaluation described in

the next section.

2.3.3 Lattice AC Stark

To eliminate Doppler shifts, the atoms are tightly confined in a one-dimensional optical lattice

to perform clock spectroscopy in the Lamb-Dicke limit. This confinement induces a differential AC

Stark shift between the ground and excited clock states. To minimize this effect, we operate our

lattice near the so-called magic frequency where the differential polarizability between the ground

and excited states is nearly zero.

To constrain the lattice Stark shift at the 10−18 level, recent work has highlighted the impor-

tance of accounting for higher-order effects such as hyperpolarizability and the magnetic dipole and

electric quadrupole terms [140, 117]. These manifest in light shifts scaling with nonlinear powers

in trap depth. Recent work [27] has demonstrated that, given a thermal scaling of axial and radial
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Figure 2.4: Density shift evaluations. Density shift measurements were performed over four
weeks at the same trap conditions. The weighted mean of all measurements is shown with a dashed,
black line, with a reduced chi-squared of 1.07.
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Figure 2.5: Scaling of the light shift with trap depth U (a) Density shift evaluated at different
trap depths, scaled to a shift with 1000 atoms. The dashed red line is a fit to the data with the
expected scaling of the shift as U5/4. (b) Lattice Stark shifts measured relative to a trap depth
of 45Er. Four different lattice frequencies are shown: νL = 368.55452610 (blue), 368.55447610
(red), 368.55446610 (green), and 368.55442610 THz (gold). The three curves with dashed lines are
independently fit using the model in Eqn. 2.4, obtaining a weighted mean of their β∗’s. Using this
β∗, the red curve is then fit for α∗clock, fully characterizing our AC Stark shifts for clock operation at
the red curve. Vertical error bars are obtained from fits to the Allan deviation of each evaluation,
extrapolated to the total measurement time, and scaled by the lever arm of the measurement.
Horizontal error bars are uncertainties on our determination of the trap depth, obtained from axial
sideband scans.
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modes with trap depth U , these nonlinear shifts can be greatly simplified to a linear and quadratic

term, expressed as:

νLS
ν
' α∗U + β∗U2. (2.4)

Eqn. 2.4 shows that characterization of the lattice light shift requires the measurement of

experiment-specific coefficients α∗ and β∗. A discussion of the uncertainty associated with the use

of this model in the Sr1 system can be found in Appendix 2.6. Note that α∗ and β∗ not only

depend on atomic coefficients, but also on the atomic distribution in both the radial and axial

directions. As such, care should be taken to evaluate these coefficients under reproducible sample

temperatures and lattice trapping frequencies.

To evaluate the lattice light shift a series of differential measurements of the light-induced

frequency shift between a series of lattice depths ranging from 34 Er to 141 Er and a reference

depth of 45 Er is performed. These measurements are repeated for four different lattice frequencies,

νL, encompassing both positive and negative detunings from the magic frequency. This enables

accurate determination of νL dependent α∗’s and a νL independent β∗. The resulting data is shown

in Fig. 2.5b. We perform this evaluation by relying on measurement precision as opposed to a

large measurement lever arm, enabling us to stay close to the clock operational trap depths and

atomic distributions. To remove trap depth dependent density shifts from the lattice light shift

evaluations, we perform a series of density shift measurements over a range of lattice depths to

which we fit a U5/4 model, shown in Fig. 2.5a. The residual uncertainty of the U5/4 model fit to

the density shift data in Fig. 2.5a is then propagated to the lattice light shift measurements and

added in quadrature with the statistical uncertainty of the measurement.

Lattice lights shifts are evaluated at four different lattice frequencies, shown by the four

different curves in Fig. 2.5b. The determination of the lattice light shift at the operational lattice

frequency proceeds in two steps. First, data from three different lattice frequencies (blue, green,

and yellow points) is used to determine the wavelength-independent quantity β∗ by least-squares
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fitting to the model in Eqn. 2.4. Taking the weighted mean and weighted standard error of the

mean of the three β∗ values from these fits results in β∗ = 1.93(20) × 10−21. Second, β∗ is then

used to fit α∗clock to the data taken at the operational lattice frequency (red points), resulting in

α∗clock = −5.61(22) × 10−19. The total AC Stark uncertainty is found in Tab. 2.2 and includes

uncertainties coming from α∗ and β∗ as well as additional contributions from a 2% uncertainty in

trap depth and a model uncertainty. In total, this procedure allows the evaluation of the lattice

light shift with a total uncertainty of 1.2× 10−18.

To maintain this low uncertainty, we eliminate temporal variations of the lattice light shift.

To accomplish this, the trapping light is spectrally filtered and frequency stabilized. First, broad-

band amplified spontaneous emission (ASE) from the high power Ti:sapphire laser which generates

the trapping light is suppressed by reflecting the laser light off two volume Bragg gratings each

providing in excess of 30 dB of suppression of ASE power outside the ∼10 GHz wide passband. The

Ti:sapphire laser is then phase-locked to an Er:fiber frequency comb which is stabilized to a cryo-

genic silicon reference cavity [96]. As a result, the drift of the lattice frequency is limited to the low

and well characterized drift rate of the cavity (-7.4 Hz/day at 813 nm), which produces negligible

drift of the lattice Stark shift. With this stabilization scheme, measurement of the cavity frequency

by routine clock operation allows determination of the absolute lattice frequency at the sub-Hz

level. In addition, alignment of the lattice polarization to the bias magnetic field and alternately

probing the stretched states suppresses the vector contribution and sensitivity to fluctuations in

the tensor term. Fluctuations in the relative direction of the magnetic field and the polarization

axis are additionally suppressed by the active temperature control of the experimental apparatus

with residual background field fluctuations observed at the 100 nT (1 mG) level, corresponding to

a shift constrained below the 10−19 level. To suppress drifts in the lattice intensity, the laser power

is actively stabilized by monitoring the reflection of the incident light from the top surface of the

vacuum window. To ensure consistent overlap of the in-going and retroreflected lattice beams, a

small amount of power from the retroreflection which is transmitted back through the optical fiber

used for beam delivery is monitored to ensure stability of the lattice alignment. Finally, examining
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Eqn. 2.4, we see that the light shift is sensitive to fluctuations in the atomic distribution. As

covered in the discussion of the density shift, several steps were taken to ensure robustness of both

temperature and density and this is reflected in the high reproducibility of the density shift in

Fig. 2.4.

Table 2.2: Lattice light shift uncertainty contributions

Parameter Value (Uncertainty) Uncertainty (10−19)

α∗ -5.61(22) ×10−19 9.7
β∗ 1.93(20)×10−21 4.1
U(Er) 45.0(9) 3.5
Model 3.3
Total 11.6

2.3.4 DC Stark Shift

Stray DC electric fields or patch charges on vacuum viewports can induce a frequency shift

due to the differential DC polarizability (α0) between the two clock states. To directly measure this

effect with the atoms, a pair of ring electrodes are placed on the top and bottom viewports which

have the closest proximity to the atoms. Each ring consists of four copper quadrants which can

each be independently biased. By applying a large lever arm of ±100V to the correct combination

of electrodes a shift can be measured along any of the three Cartesian axes.

Due to the quadratic dependence of the shift on the total electric field, the magnitude of the

background field along each direction can be determined by performing a two-point measurement.

We measure ∆ν+, the frequency shift when a large field is applied along one direction and compared

to the reference case where both electrodes are grounded. The field direction is then reversed and the

frequency, ∆ν−, is recorded. The direction of the background field, along with its corresponding field

amplitude, can then be computed from these two measurements by noting that ∆ν± = −1
2α0(Ea±

Er)
2 for applied and residual fields Ea and Er. We observe a modest background field at the low

10−18 level in the vertical direction and no clearly resolvable field at the 10−20 level along the

horizontal axes. By applying (−4.2V, +4.2V) to the (top , bottom) electrodes, respectively, we
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cancel this background shift to an uncertainty of 2.5× 10−19.

2.3.5 Second Order Zeeman Shift

As described in Section 2, the Zeeman shift is cancelled to first order by averaging frequency

measurements of the mF = ±9
2 clock transitions. However, the Zeeman Hamiltonian contains a

term with a quadratic dependence on the magnetic field which is not suppressed by this technique.

The 57 µT (570 mG) bias field applied to resolve the hyperfine structure of the clock states induces

a second order Zeeman shift of ≈ 77 mHz. This shift is typically expressed as

∆νB,2 = ξ (∆νB,1)2 (2.5)

where ξ is the quadratic Zeeman coefficient for mF = ±9
2 and ∆νB,1 is the first-order Zeeman

splitting in Hz between the mF = ±9
2 transitions due to the applied bias field. Previous uncertainty

in the value of ξ introduced a sizeable term in our error budget, motivating a more precise evaluation

of the coefficient.

The determination of ξ is complicated by the fact that the observed splitting ∆ between the

mF = ±9
2 transitions also contains a contribution from the vector AC Stark shift δν ≈ 0.4 Hz.

In analogy with ∆νB,1, the vector AC Stark term is often thought of as arising from a synthetic

magnetic field. We evaluate ξ in the limit where the applied bias field is much larger than this

synthetic field so that changing the bias field magnitude does not significantly rotate the total

effective field vector. We validate that we are in the appropriate limit by measuring the lattice

vector shift directly in an AC Stark evaluation to determine the magnitude of the synthetic field. In

this limit, the second-order Zeeman shift can be expressed as ∆νB,2 = ξ(∆− δν)2. By performing

differential measurements of the clock transition frequency f0 at three different bias field values,

we may determine both ξ and δν from the following system of equations:
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f02 − f01 = ξ(∆2
2 −∆2

1)− 2ξδν(∆2 −∆1)

f03 − f02 = ξ(∆2
3 −∆2

2)− 2ξδν(∆3 −∆2)

(2.6)
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Figure 2.6: Evaluation of second order Zeeman coefficient. A history of evaluations of the Sr
second order Zeeman coefficient completed by the PTB [45], SYRTE [145], and JILA [30, 17, 109]
Sr OLCs. The dashed black line is a weighted mean of all six measurements and the inset shows
the three most recent evaluations.

This measurement is repeated at three different sets of bias field values all yielding consistent

measurements of ξ. We report the weighted mean of these three evaluations yielding a value of

ξ = −2.456(3) × 10−7 Hz−1. Fig. 2.6 shows this result along with historical evaluations showing

good agreement with previous measurements. Improved knowledge of this coefficient reduced the

uncertainty associated with the second-order Zeeman shift by a factor of 5 to 2× 10−19.

2.3.6 Background Gas Collisions

Two-body collisions between a cold 87Sr atom and a room temperature hydrogen molecule or

a hot Sr atom emitted by the atomic beam source have the potential to cause a systematic shift. In

an uncorrelated thermal gas, a high-energy collision which removes an initially trapped atom from
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the sample does not produce a systematic shift. However, atom-light coherence can be affected by

collisions with low momentum transfer that produce phase-shifts while leaving the atom trapped.

In the process of a collision, the ground and excited states shift differentially as a function of the

distance between the Sr atom and its collision partner. When an atom is placed in a superposition

of ground and excited states during clock interrogation, the integrated energy difference over the

time of the collision produces an undesirable phase shift which appears as a systematic frequency

shift varying linearly as a function of the background gas density.

Under ultrahigh vacuum conditions, this frequency shift can be well-approximated by consid-

ering collisions between 87Sr and hydrogen molecules [102]. The Sr1 vacuum chamber is stainless

steel and contains no getter pump, so the dominant background gas contribution is primarily molec-

ular hydrogen gas. The SYRTE collaboration recently measured a background gas collisional shift

of (−3.0 ± 0.3) × 10−17/τ for a hydrogen-limited vacuum lifetime τ [2]. For the Sr1 clock, the

lifetime of a dilute sample of 3P2 atoms trapped in the quadrupole field of the MOT is measured

to be 8.1(2) s after correcting for BBR-induced decay [152]. The measured lifetime of ground state

atoms trapped in the optical lattice is the same as the lifetime in the quadrupole trap [95] and

leads to a background gas collisional shift of (−3.7± 0.4)× 10−18.

In addition, two-body collisions with hot Sr atoms emitted from the atomic beam source may

also cause a frequency shift. To evaluate this possible systematic shift, an atomic beam shutter is

in place to block line of sight to the oven during clock interrogation. The oven flux is increased

above the normal operating condition by a factor of 21, and interleaved interrogation of the clock

frequency with and without the atomic beam shutter closed is performed. With this lever arm, no

significant shift is observed at a measurement precision of 1.0× 10−18, therefore bounding the shift

at normal operating conditions to below the 10−19 level. The shutter is not used for normal clock

operation due to intermittent failure of the shutter in the closed position. No difference in atom

number or lifetime in the trap is observed with the beam shutter closed versus open.
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2.3.7 Doppler Shift and AOM Phase Chirp

For narrow line spectroscopy, Doppler shifts between the clock laser and atoms trapped in

the optical lattice are eliminated by active optical path length stabilization [91]. Ideally, the surface

which serves as a reference for the laser phase for clock interrogation is the same as the surface

which serves as the phase reference for the optical lattice. However, when the clock laser intensity

is suddenly changed from zero to a finite value to drive the clock transition, the response of the

active stabilization loop experiences transient phase shifts which may impart systematic frequency

shifts.

Simultaneous laser phase stabilization and atomic spectroscopy is accomplished with two

AOMs – one before an optical fiber that is the actuator for path length stabilization, and a second

after the fiber that is the actuator for steering the laser frequency to the atomic resonance. In the

2013 systematic evaluation of the Sr1 clock the stabilization of the laser phase was accomplished

by retroreflecting the zeroth order of the second AOM from the mirror to which the optical lattice

is referenced while the first negative order was used for atomic spectroscopy. When the clock pulse

turns on, this stabilization method produces a differential path length change between the zeroth-

and first-diffracted orders due to thermal changes in the AOM crystal. In addition, both differential

path length changes driven by air currents between the two diffracted orders and reflections from

the tip of the optical fiber add phase noise above the level of the clock laser in the path length

stabilization servo.

To circumvent the problems associated with thermal effects in the AOM crystal, fiber tip

reflections, and differential path length noise, the path length stabilization scheme is revised such

that the first negative diffracted order from the AOM after the fiber is now used for both spec-

troscopy and path length stabilization – eliminating all differential optical path between the path

length stabilization light and the light used for atomic spectroscopy. Mounting a wedged beam

sampler to the back surface of the optical lattice retroreflector mirror allows 10% of the incident

clock light to be used for path length stabilization. Additionally, Rabi pulses are implemented by
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first turning on clock light at a large (1 MHz) detuning for 7 ms and then performing a 3.4 ms

ramp onto resonance. This method allows the clock intensity servo to settle before spectroscopy

and eliminates all thermally-induced differential path length transients in the AOM crystal. Fur-

thermore, phase transients in the path length stabilization in-loop error signal that arise when

operating the servo in a pulsed fashion now occur when the clock light is detuned and the atomic

sensitivity function is zero. Eliminating sensitivity to these transients removes a potential source of

systematic frequency offsets [46]. The fractional frequency shift due to the linear frequency ramp

to resonance is estimated with the Landau-Zener transition probability for the parameters above

and is calculated to be 2× 10−22 for a 600 ms pi-pulse.

2.3.8 Line Pulling

In addition to collisional shifts, off-resonant excitation of an impurity spin population can

produce a systematic line pulling frequency shift. The impurity spin population is determined by

performing clock spectroscopy on impurity spin states and detecting the number of atoms promoted

to the excited state. The total impurity spin population is determined to be less than 0.5%, limited

by the detection threshold of the fluorescence measurement. The line pulling effect is subsequently

bounded by taking the maximum population in the ±|5/2〉 and ±|7/2〉 states after dark-state optical

pumping and calculating their maximum contributions to the excitation fraction observed on the

±|9/2〉 transition. For a 600 ms pi-pulse and a 62 Hz splitting between the |9/2〉 and |7/2〉 clock

transitions, the maximum off-resonant excitation is given by the ratio of Clebsch-Gordon coefficients

squared and the off-resonant Rabi frequency: (0.49
0.82)× (π/0.6)2/((2π× 62)2 + (π/0.6)2) ≈ 1× 10−4.

Combining the upper bound of the atom number in impurity spin states (0.5%) with this excitation

fraction and converting to frequency units, an upper bound on the line pulling effect is set at the

6× 10−22 level.
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2.3.9 Servo Error

The servo error systematic arises from the linear frequency drift of the clock laser that serves

as a local oscillator, or from a drifting background magnetic field, producing a systematic bias of

the excitation fraction error away from the desired lock point. To minimize this effect, a PI2D

digital servo is used for locking the clock laser to the atomic transition. The servo loop is tuned by

optimizing the attack time of the lock error signal with respect to the steering control signal. As

a result, for a measurement time of 200000 seconds, a mean servo error of 4 × 10−20 is recorded,

which averages to an uncertainty of 2× 10−19.

2.3.10 Gravitational Redshift

The gravitational redshift of the clock transition does not effect the systematic uncertainty of

the local realization of the clock. However, for accurate comparison of a clock to any other frequency

reference the fact that each clock is generally realized at a different gravitational potential must be

taken into account as another source of systematic uncertainty. In the absence of another clock to

compare to in this work, the clock frequency can be reported relative to an agreed upon reference

frame, for example the International Terrestrial Reference Frame (ITRF). In Boulder, a precise

characterization of the geopotential of USGS marker Q407 found a clock shift of 179853(6)×10−16

relative to ITRF [115]. Local surveying in Boulder has evaluated the height of the JILA Sr1 in-lab

marker (S1B60V1) to be 9.7874(0.0025)m below Q407. Accounting for the atom’s height relative

to S1B60V1 and thus relative to Q407, we find a fractional shift of 178766.4(6.0)10−18 relative to

ITRF. Note that the uncertainty in the gravitational potential in Table 2.4 dominates over the

clock systematic uncertainty, and suggests that terrestrial all-optical timescales of the future will

be limited by the current knowledge of Earth’s gravitational potential.



36

Table 2.3: Sr1 systematic uncertainty

Systematic Shift (10−18) Uncertainty (10−18)

BBR (environment) -4974.1 0.2
BBR (atomic) 0 1.5
Density -12.3 0.4
Lattice AC Stark -21.3 1.2
DC Stark 0 0.3
Probe AC Stark 0 <0.1
1st order Zeeman 0 <0.1
2nd order Zeeman -176.9 0.2
2nd order Doppler 0 <0.1
Servo error 0 0.2
Line pulling 0 <0.1
Background gas -3.7 0.4
AOM phase chirp 0 <0.1
Total -5188.3 2.0

Table 2.4: Sr1 uncertainty relative to ITRF

Systematic Shift (10−18) Uncertainty (10−18)

Local systematic uncertainty -5188.3 2.0
Gravitational shift to ITRF surface 178766.4 6.0
Total shift to ITRF surface 173578.1 6.2
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2.4 Summary

In summary, we demonstrate a significant advance in the characterization of strontium optical

lattice clocks resulting in a low systematic uncertainty of 2.0× 10−18. In conjunction with its high

uptimes as well as the highly predictable frequency evolution of the cryogenic silicon cavity, such

a clock will be a core component of an optical timescale. Indeed, the JILA Sr1 clock has already

been used in an atom-cavity frequency intercomparison which highlights the long term stability

of cryogenic crystalline cavities for timescales applications [101] and the search for time-variation

of fundamental constants [123]. As illustrated in Fig. 2.2, fluctuations in systematic offsets are

bounded below 4 × 10−19 over 104 seconds of operation. We additionally detail a powerful new

technique to combat blackbody radiation shifts that provides a stable thermal environment in which

in-vacuum thermometry is only needed as calibration of sophisticated temperature modeling. As

clocks are pushed into the next decade of accuracy, the ability to remove the temporal variation

of systematics will be a highly powerful tool. With the main limitations to our uncertainty being

insufficient knowledge of atomic coefficients, this system sets the path for developing strontium

optical lattice clocks at the 10−19 level.

2.5 Thermal Environment Evaluation

2.5.1 Thermal Modeling

Radiative heat transfer between specular greybody radiators is a well-studied problem in a

variety of systems ranging from ovens to satellites [103]. To characterize the thermal radiation

experienced by the atoms we must understand the radiative contributions from each surface of the

vacuum chamber. We start by modeling the atoms as a small spherical surface, hereafter referred

to as the probe, in thermal equilibrium with the vacuum chamber. The temperature Ti of this
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surface, or equivalently of the radiation bathing the atoms, is given by

εiσT
4
i Ai =

∑
j

εjσAjFj→iT
4
j (2.7)

where j enumerates the surrounding vacuum chamber surfaces, εj is the surface’s emissivity, σ is

the Stefan-Boltzman constant, Aj the surface area, and Fj→i the exchange factor. The exchange

factor Fj→i is defined as the fraction of total energy emitted by surface j that is absorbed by surface

i, either directly or after reflection from any intermediate surfaces. In this language, Equation 2.7

is telling us that at thermal equilibrium, the total power radiated by our modeled atom surface

must be equal to the total incoming power from the surrounding vacuum chamber. Similarly, the

exchange factors in Equation 2.7 tell us what portion of radiated power from each surrounding

surface j is incident on the probe surface.

Using our understanding of the system’s behavior at thermal equilibrium we can simplify

Eqn. 2.7 significantly. First, energy conservation requires that
∑

j Fi→j = 1, meaning all emitted

energy must be absorbed by the surrounding surfaces. Second, reciprocity demands that εiAiFi→j =

εjAjFj→i [103]. This can be understood by considering all of the paths that emitted BBR (rays)

can propagate between surfaces i and j - whether the ray goes from i to j or j to i the paths

connecting the surfaces are the same. With these two conditions we can simplify Eqn. 2.7 as

T 4
i =

∑
j

Fi→jT
4
j . (2.8)

Note that the probe temperature no longer depends on the probe surface’s emissivity - consistent

with Kirchoff’s radiation law. Also note that the exchange factors now consider radiation propa-

gating from the probe surface. Once we have the exchange factors we then have the connection

between the array of sensors on our vacuum chamber and the temperature experienced by the

atoms.

Calculation of the exchange factors is performed using Monte Carlo ray tracing. This begins

with a 3D CAD replica of our vacuum system which is broken into several pieces to address the



39

different temperatures, emissivities, and reflective qualities (specular and diffusive) of each chamber

component. From the location of the atoms we propagate rays with random orientations to evenly

sample the 4π steradians around the atoms. For each ray we find the intersection of that ray with the

vacuum chamber boundary. Each surface has a probability to absorb (emissivity), diffusively reflect,

or specularly reflect the incident ray. If a ray is absorbed, the location and surface is recorded.

For reflected rays, the new ray direction is found and the process repeated until every ray has

been absorbed by a boundary surface. We perform this process for 50 million initial rays to ensure

sufficient ray intersections with all surfaces. Specifically, this ensures that the least intercepted

surface, the oven nozzle, absorbs more than 1000 rays for sufficient simulation convergence. From

this record we calculate what fraction of the total number of rays are absorbed by each surface.

This fraction yields the exchange factor for a given component of the vacuum chamber.

The emissivity and specular reflectivity values used in the ray tracing analysis are given

in Table 2.5 and Table 2.6 respectively. Uncertainties of these parameters may result in the small

static offset between the temperature determined by a ray-tracing model and the in-vacuum sensor;

however, using the calibrated sensor to account for this offset removes the need to propagate

uncertainties associated with both emissivities and reflectivities. Our calculated exchange factors

are given in Table 2.7. With these values we can evaluate the temperature at the atoms using

Eqn. 2.8. We find a stable offset between our model and the temperature measured with our

in-vacuum thermometer as illustrated in Fig. 2.3d.

Table 2.5: Emissivities of vacuum chamber components

Surface Emissivity

Viewports (glass) 0.91 [135]
Vacuum chamber (stainless steel) 0.08 [5, 148]
Sapphire 0.54 [150]
Oven nozzle 0.82 [119]
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Table 2.6: Specular steel reflectivities based on [11]

Component Specular Reflectivity

Polished Chamber 0.95
Other Steel Surfaces 0.1

Table 2.7: Vacuum chamber generalized exchange factors

Component Exchange Factor

Heated sapphire window 8.81× 10−4

2.75” CF viewport glass - extended flanges 1.47× 10−2

2.75” CF viewport glass - direct flanges 1.18× 10−1

6” CF viewport glass 5.39× 10−1

Glass cell 1.08× 10−3

Metal chamber, tubing, and slower 3.26× 10−1

Oven nozzle 2.15× 10−5

2.5.2 Temperature Sensor Calibration

In order to calculate the temperature at the atoms using Eqn. 2.8, an array of sensors to

monitor the temperature of various points on the vacuum chamber is required. This array is

composed of commercially available 50 kΩ negative temperature coefficient thermistors (US Sensor

PR503J2), specified by the manufacturer to be accurate to within 50 mK. Due to the relative

importance of the 6” CF viewports (exchange factor of 0.539) to the thermal model, the calibration

of the thermistors on these viewports is improved to a 13 mK uncertainty via comparison to a

thin-film platinum resistance thermometer (TFPRT) calibrated to fixed-point realizations of the

ice melting point and the gallium melting point.

Figs. 2.7a and 2.7b show typical melt curves and associated Allan deviations for both the

gallium ice and water ice phase transitions as measured by a TFPRT. The ITS-90 temperature scale

defines these melting plateaus to be at temperatures of 29.7646◦C (302.9146 K) and 0◦C (273.15

K), respectively, allowing for the calibration of the TFPRT - up to systematic uncertainties - at

these points. The 2 mK offset from 0◦C in our ice point cell is a consequence of performing our

calibration measurements at an elevation of 1650 m above sea level [61]. Dissolved air in water

serves to suppress the ice point temperature at sea level, where the ice melting point corresponds
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to 0◦C by definition. Upon applying this known correction, the dominant uncertainty at 22◦C is

then the unknown non-linearity of the TFPRT between the two fixed point temperatures. After

calibration of these crucial thermistors, this array of 50 kΩ thermistors is used as inputs to the

thermal model. Using these inputs in conjunction with literature values for the different emissivities

of the materials which compose the vacuum chamber, shown in Table 2.5, a real-time prediction

for the temperature seen by the atoms is generated.

Figure 2.7: JILA fixed-point realizations. Data from the text(a) water ice melting point and
(b) gallium melting point realization. (c) Allan deviation of the gallium melt curve (red) and the
ice melt curve (blue), showing the capability of averaging down to below 100 µK on each fixed-point
in 104 seconds or less.

As discussed in the main text, in order to evaluate the accuracy of the prediction generated

by the ray-tracing-based thermal model, a TFPRT is installed at the position of the atoms in the

vacuum chamber. This in-vacuum thermometer allows the characterization and removal of a static

offset between the thermal model and the measured temperature and also serves as verification

that the thermal model successfully captures all fluctuations in the temperature below the level of

1 mK. In order to achieve an accurate measure of the in-vacuum temperature from the TFPRT,
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the probe was hand-carried to NIST Gaithersburg for calibration in the Sensor Sciences Division

facilities. There, a water bath comparison calibration with Standard Platinum Resistance Ther-

mometers (SPRT) traceable to the ITS-90 temperature scale enabled the in-vacuum thermometer

to be calibrated to an uncertainty of 1.4 mK.

Fig. 2.8b shows the different contributions to the final sensor uncertainty. Immersion error is

the largest systematic effect, arising from heat flow between the room temperature environment and

the probe, producing a systematic temperature difference between the TFPRT and the bath. To

characterize this effect, a second TFPRT is mounted on the upper flange of the test chamber, which

lies just above the water line of the bath. To evaluate immersion errors in the water bath calibration,

two sets of measurements were undertaken, one under vacuum conditions (< 3 × 10−6 Torr), and

another under 30 Torr of back-filled helium. Figure 2.8a shows the measured difference in zero power

resistance for these two conditions as a function of the temperature gradient between the flange and

the bath, Tflange−Tbath. The immersion error is well-described by a linear function of temperature,

with a fitted Tflange − Tbath = 0 systematic offset of (0.3 ± 0.4) mΩ, which can be converted to

(0.69 ± 1.1) mK. Since the offset is consistent with zero, we simply take the standard uncertainty

of 1.1 mK as the immersion error contribution, plotted as the green line in Figure 2.8b. We also

include the bath homogeniety as the largest observed gradient as indicated by the two SPRT’s in

the bath of ± 0.5 mK, shown as the cyan line. The calibration coefficient uncertainties are shown as

the blue and orange curves. The red line shows the sum of all other minor errors, including SPRT

calibration, bridge nonlinearity, resistance standard and bath stability [134]. We also account for

the offset of 3.0 mK between ITS-90 and the definition of thermodynamic temperature, and it’s

corresponding uncertainty of 0.3 mK is included in the minor errors [134].

2.5.3 BBR Dynamic Shift Correction

The dynamic BBR shift is described by

∆νdynamic = νdyn

(
T

T0

)6

. (2.9)
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Figure 2.8: Calibration of the in-vacuum probe. (a) Immersion error data in the water bath
comparison. We measure the difference between the high vacuum resistance Rvac and the He back-
filled case RHe as a function of axial gradient Tflange − Tbath. The data is fit to a linear function,
and the fitted offset at zero axial gradient is (0.3 ± 0.4) mΩ. This can be converted to temperature
by using the sensitivity of the TFPRT of 2.57 Ohms/Kelvin. (b) Breakdown of uncertainties
stemming from the NIST calibration. The green is the systematic error in the immersion error
offset from panel (a). The cyan color is the maximum temperature gradient observed in the bath.
The blue and orange curves are the fit interpolation errors from the slope and offset respectively.
The red line is the quadrature sum of several minor errors relating to the calibration. The black
dashed line is the quadrature sum of the errors.
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Care must be taken since the often reported value of νdyn contains higher order terms in T (T 8 and

T 10) [124]. The reported coefficient νdyn therefore requires corrections for temperatures deviating

away from T0 = 300 K. For our temperature near 22◦C, we find we must correct our dynamic BBR

shift by an amount of 1.48× 10−18.

2.6 Lattice Light Shift Evaluation - Model Uncertainty

Optical lattice clocks have reached an accuracy level where higher order polarizability terms

require careful consideration. Two separate approaches have dealt with this to high accuracy. At

NIST, the Yb clock group [27] demonstrated that in a system where the spatial modes have certain

scalings with trap depth the lattice light shifts can be well characterized by a so-called thermal

model, containing effective terms that are linear (α∗) and quadratic (β∗) in U :

∆νAC = α∗U + β∗U2. (2.10)

The dipole polarizability αE1 and multipolarizability αQM are contained in α∗ while the hyperpo-

larizability β is contained in β∗. This approach is robust as it does not require explicit knowledge

of atomic coefficients or the axial and radial atomic mode numbers. A second approach is to work

on a microscopic model, where for a given radial temperature and axial mode occupation a light

shift can be calculated [140]. While a microscopic model offers the prospect of accuracy below the

10−18 level, it requires significantly more input information, a potential source of systematic errors

in reporting atomic coefficients. Recent work [107] has highlighted this importance by illustrating

that different methods of preparing the atomic sample can result in different measurement values

of β in Yb.

For determining the operational light shift in the Sr1 clock the thermal model is employed.

This avoids reliance on atomic coefficients and characterizes an experiment-specific light shift model.

The characterization in the main text discusses the results of the fitting of the thermal model to

the data. The limitation to this analysis is that it requires addressing model error - deviations
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from linear and quadratic behavior in light shifts that are described by the microscopic model.

To address the deviations from linear and quadratic scalings in the Sr1 light shifts we adopt the

approach in [27], writing the light shift as:

∆νAC

νclock
= −AnαE1U −BnαQMU − CnβU2 (2.11)

where An, Bn, and Cn are spatial averages given by

An =

〈
n

∣∣∣∣∣ exp
(
− 2(x2 + y2)

w2
0

)
cos2(kz)

∣∣∣∣∣n
〉

Bn =

〈
n

∣∣∣∣∣ exp
(
− 2(x2 + y2)

w2
0

)
sin2(kz)

∣∣∣∣∣n
〉

Cn =

〈
n

∣∣∣∣∣ exp
(
− 4(x2 + y2)

w2
0

)
cos4(kz)

∣∣∣∣∣n
〉
.

The 1
e2

beam radius is given by w0, the lattice wavenumber by k, and |n〉 = |nx, ny, nz〉 where ni

is spatial coordinate i’s mode number. To address gravitational sag resulting from the θ = 19◦

tilt with respect to vertical in the lattice, the component of gravity (g) along x̂ is included by

substituting x→ x−mg sin(θ)/ω2
r where ωr is the radial trapping frequency.

The gravitational tilt lifts the radial degeneracy so An, Bn, and Cn are broken into orthogonal

bases such that An = AnxAnyAnz, Bn = BnxBnyBnz, and Cn = CnxCnyCnz, expanding each to
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fourth order. The system is then described by following series of equations:

γ =
g2 sin2(θ)

w2
0ω

4
r

(2.12a)

Anx = 1−
√

2

w0k
√
U

(nx + 1/2)(1− 6γ) +
3

2k2w2
0U

(n2
x + nx + 1/2)− 2γ + 2γ2 (2.12b)

Bnx = Anx (2.12c)

Cnx = 1− 2
√

2

w0k
√
U

(nx + 1/2)(1− 6γ) +
3

k2w2
0U

(n2
x + nx + 1/2)− 4γ + 4γ2 (2.12d)

Any = 1−
√

2

w0k
√
U

(ny + 1/2) +
3

2k2w2
0U

(n2
y + ny + 1/2) (2.12e)

Bny = Any (2.12f)

Cny = 1− 2
√

2

w0k
√
U

(ny + 1/2) +
3

k2w2
0U

(n2
y + ny + 1/2) (2.12g)

Anz = 1− (nz + 1/2)√
U

+
(n2
z + nz + 1/2)

2U
(2.12h)

Bnz =
(nz + 1/2)√

U
− (n2

z + nz + 1/2)

2U
(2.12i)

Cnz = 1− 2(nz + 1/2)√
U

+
5(n2

z + nz + 1/2)

2U
. (2.12j)

In the above equations U is the trap depth in units of the photon recoil energy Er.

To quantify the model error, Eqn. 2.11 is utilized with input data from measured ni values

and αQM from [140]. The axial and radial mode occupation numbers are derived from carrier

sideband asymmetry measurements, radial trapping frequencies, and transverse clock spectroscopy

[14]. The final two inputs for the model, αE1 and β, are evaluated at each point in a two dimensional

space of input parameters spanned by plausible values of αE1 and β. Limits on these parameters

are chosen to encompass the full range of αE1 values from the four curves in Fig. 2.5b. Similarly,

the range for β is chosen to encompass the weighted mean of values from published literature

[109, 145, 140] to one which is consistent with what is observed in Fig. 2.5b. For each pair of

αE1 and β in this two dimensional space of values, Eqn. 2.4 is used to simulate lattice light shifts

over the range of trap depths used in the experimental data. The thermal model from Eqn. 2.4 is

then fit to this simulated data. For each set of simulated and fitted curves, the mean and standard
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deviation of the difference between the two models is calculated. All mean differences are below

1 × 10−19, ensuring that the standard deviation of the differences is not overlooking a constant

offset between curves. The resulting average of all standard deviation values shown in Fig. 2.9 is

3.3 × 10−19. This number is thus interpreted as the model error. We note that use of the theory

value for αQM [117] provides a lower estimate of model uncertainty.

We additionally investigate the effect of a running wave in our system arising from reflectivity

on the viewports. We find that the only nonlinear and nonquadratic additional term provides a

negligible 2× 10−20 level effect.

Figure 2.9: Model Error Colormap showing the standard deviation between simulated AC Stark
data (Eqn. 2.11) and a simple linear and quadratic fit to the data (Eqn. 2.4). The average standard
deviation is 3.3×10−19 which we take to be our model error.



Chapter 3

Comparisons and Demonstrations

In 2017, we decided to perform clock comparisons between JILA and NIST. At the time,

the original JILA Sr2 system with uncertainty of 2.1 × 10−18 had been dismantled and replaced

with the 3D lattice clock. The Sr1 system, having been evaluated in 2014 to an uncertainty of

5.3 × 10−17, was chosen to participate in the frequency comparisons. This motivated the upgrade

and systematic reevaluation of the original Sr1 clock as described in Chapter 2, achieving a record

low uncertainty of 2.0× 10−18 for a strontium optical lattice clock and third lowest uncertainty for

any atomic clock to date. This prepared the Sr1 system to perform clock comparisons with the two

most accurate clocks in the world - the Yb OLC and Al+ ion clock at NIST. An immediate benefit

of systematically characterizing and comparing a state-of-the-art clock is the ability to bootstrap

additional research. Sr1 served as a vetted reference for record precision inter-clock comparisons

between Sr1 and Sr2 as well as a high up-time reference for an all-optical timescale. This chapter

summarizes these results, motivating the idea that accuracy and precision go hand in hand. In the

language of quantum information, coherence follows careful quantum state control.

3.1 Towards the Redefinition of the Second

As metrologists a primary objective in the coming decade is to redefine the second to an

optical transition. The accuracy and precision of today’s best optical clocks are now orders of

magnitude better than that of microwave clocks [98, 24, 19, 126, 33, 93, 154], encouraging discussion

about how such a redefinition may be done. In 2018 a CIPM working group established a set of
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potential criteria for such a redefinition, summarized below [121].

(1) A minimum of three different optical clocks (different labs or species) have validated frac-

tional frequency uncertainties two orders of magnitude lower than the best Cs clocks.

(2) A minimum of three independent measurements of at least one frequency standard from

(1) between different institutes at a level of ∆ν/ν < 5× 10−18.

(3) Three independent measurements of any frequency standard from (1) compared with three

independent Cs primary clocks, with uncertainty limited by the Cs clocks.

(4) Candidate frequency standards regularly contribute to international timescales.

These criteria are designed to ensure that a frequency standard is reproducible, consistent

with the current Cs definition, and capable of operating as a timescale. An additional criteria was

listed in [121]: (5) sufficient frequency ratio measurements between different frequency standards at

the level of ∆ν/ν < 5×10−18. This criteria is essential to ensure closure relationships. A frequency

closure relationship between clocks a,b, and c is defined as

C =

(
νa
νb

)(
νb
νc

)(
νc
νa

)
, (3.1)

where the level at which one measures 1 provides demonstration of the validity of the standards.

Due to the large number of optical secondary frequency standards being considered for a new

primary frequency standard, (5) is meant to ensure a smooth transition to a new definition that

does not void other standards or lead to inconsistent frequencies at the 5× 10−18 level.

Criteria (5) is in some sense a political necessity. Today there are numerous optical standards

in development, with no standard so far ahead that a redefinition should clearly favor it. Which

frequency standard should be chosen? Should a system based on ratios or multiple transitions

be used? These are the questions CIPM must debate in the coming decade. Before transportable

clocks regularly begin comparing at the 10−18 level, such discussions are speculative. Let us instead

focus on fulfilling these criteria. In Chapter 2 we fulfilled (1), let’s discuss the progress towards (5).
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3.2 The Boulder Atomic Clock Optical Network

The Boulder Atomic Clock Optical Network (BACON) is an extensive collaboration com-

prised of members from both the National Institute of Standards (NIST) and JILA. NIST has

two major research clocks (Yb and Al+), state of the art optical frequency combs (OFCs), and

a UTC traceable maser network (Figure 3.1). JILA contains Si3 (critical for connecting the fiber

and free-space links), Sr1, Sr2, and the JILA frequency comb. This provides a unique opportunity

owing to three of these systems being the three most accurate clocks in the world [98, 24, 19], all

within several kilometers. This establishes Boulder as a premier location for high accuracy clock

comparisons between three different next-generation frequency standards.

Clock comparisons compare clock frequencies through an optical comb, allowing frequency

ratios to be measured. This is critical since the absolute frequency of any of the three BACON clocks

would be limited by the realization of the Cs standard, but the ratios of the three clock frequencies

can be realized with precision below the accuracy limits of three clocks. To compare Sr to the NIST

based clocks, 1542 nm light (from the Si3 clock laser system) is transmitted through a 3.6 km fiber

link through the ‘Boulder Research and Administration Network’ (Figure 3.1). This is a shorter

version of similar fiber networks between other national labs, such as in Europe. NIST’s expertise

provided an additional novel connection between clocks - a free-space link [18]. Using optical two-

way time-frequency transfer (O-TWTFT) techniques, signals from optical frequency combs at two

locations (NIST and Duane tower at CU) are sent both directions in the link, allowing calibration

of common-mode noise from air turbulence. The NIST O-TWTFT OFC is locked to Yb, while the

JILA O-TWTFT OFC is locked to Sr, enabling the Yb/Sr ratio to be compared through free-space

in addition to fiber, a first for optical comparisons [38].

The systematic tables of the three clocks (and combs) are well described in [38], with the Sr

clock being slightly worse than reported in [19]. This is owing to incomplete upgrades/characterizations

performed for the accuracy paper, published in 2019, from the ratio data as taken in 2018 for Sr.

For the clock comparison, we briefly review the differences. The density shift uncertainty was larger
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Figure 3.1: Overview of the Boulder Atomic Clock Optical Network (BACON). Network locations
at NIST (JILA) are shown in the left (right) of the image. The two institutes are linked both by
a 3.6 km fiber link as well as free-space link. NIST is home to the Al+ ion clock, Yb OLC, and
OFCs used for measuring the 3 clock ratios. The Sr clock is located at JILA.
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than in [19], owing to a less stable system as well as higher operational trap depth, increasing the

density shift per atom. This higher operational trap depth (and uncertainty in daily depth) resulted

in a larger uncertainty in the lattice light shifts for Sr1. Thermal conditions were not as stable

during the clock comparison, necessitating a modest increase in BBR uncertainty dependent upon

the thermal stability during the course of each measurement. Additional temperature uncertainty

for aging thermistors (relative to the calibration performed in [19]) was included. Finally, the probe

chirp systematic was larger owing to traditional zeroth order retro-reflection, causing an abrupt

thermal shock upon Rabi excitation [109].

Over the course of Fall 2017 through Spring 2018 the three clocks were compared. Sr1 was

found to have an uncontrolled density shift systematic that prevented inclusion of the Fall 2017

data. The results for each day’s clock comparison are shown in Figure 3.2. An example of the data

analysis for instability is shown in Figure 3.3.

Analysis of the data shown in Figure 3.2 presented a significant hurdle. Datasets were non-

overlapping owing to the downtime of the various clocks. Standard reduced chi-squared analysis

presented issues. The Yb/Sr ratio was over scattered, owing to the ability of the lattice clocks

to average below their combined uncertainties each day. Meanwhile the Al/Sr ratio was signifi-

cantly under scattered, an abnormal situation in clock comparisons. To resolve these challenges, a

comprehensive Bayesian framework was developed as detailed in [38]. The framework incorporates

a fluctuating dark uncertainty, accounting for under reported or unaccounted systematic errors

with the assumption of a normal distribution about zero. This allows a Bayesian estimate of the

likelihood of observing the measured ratios for a given statistical uncertainty. The results and

corresponding uncertainties are:

νAl+/νY b = 2.162887127516663703(13),

νAl+/νSr = 2.611701431781463025(21),

νY b/νSr = 1.2075070393433378482(82).

(3.2)

The result of the collaboration was the measurement of three ratios with fractional uncer-
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Figure 3.2: Time record of ratio measurements. Frequency ratios were measured from Novem-
ber 2017 to June 2018. Results are shown as fractional offsets from the reported values. Left
error bars represent pure statistical uncertainty, whereas error bars on the right include systematic
uncertainties added in quadrature to statistical uncertainties.
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tainties of 8 × 10−18 or lower. While this fell just fell of the goal of (5), it represented a massive

step forward from the previous best ratio measurement of 5× 10−17 of Yb and Sr in 2015 [108].

3.3 Absolute Frequency

Clock comparison data campaigns provide a wealth of data that can be analyzed for purposes

beyond frequency ratios (see the dark matter bounds in [38]). Data taken during the comparison, as

measured by NIST’s OFCs, links the frequency of each clock to International Atomic Time (TAI),

providing a SI traceable absolute frequency measurement of each clock [83, 82]. This absolute

frequency calibration work linked the Sr1 clock to Cs through TAI, fulfilling criteria (3). The Sr

frequency was found to be [83]

νSr = 429, 228, 004, 229, 873.19(0.15) Hz. (3.3)

3.4 Intra-lab Stability

Concurrent with the clock comparison was a major effort by the Stable Lasers team to bring

the next-generation cavity system online. In December of 2017, the 21 cm silicon cavity sytem

(Si3) became the Ye Lab’s newest workhorse. Utilizing a custom commercial comb, the previous

laser system dubbed ‘MJM’ at 698 nm is steered at low frequencies to the Si3 system at 1542 nm

[129]. Not only did this radically improve clock precision within the lab, but the 1542 nm light

facilitated clock comparisons through the BRAN link owing to the ultra-low loss in the telecom

C-band. Throughout the clock comparison, Sr1 not only compared frequencies with NIST, but

also served to characterize the long-term stability of the new Si3 system, allowing upgrades such

as improved thermal shielding and intensity servos. An example of exemplary Si3 stability data is

shown in Figure 3.4.

As the clock comparison finished during the summer of 2018, a major focus became a demon-

stration of the enhanced stability afforded by the Si3 system. An additional goal was to verify the

fractional frequency stability measured via the Sr2 self-synchronous imaging technique (3× 10−17
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Figure 3.4: Si3 stability. Long-term stability data of Si3 as measured by the Sr1 system showing
nearly thermal noise limited stability of just under 4× 10−17 from 10 to 10,000 seconds.
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at 1 s [33, 93]). Critical to this work was combining the vetted accuracy and long term stability of

the Sr1 system with the record precision expertise of the Sr2 team.
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Figure 3.5: Sr1/Sr2 synchronous comparison. Each clock operated with 600 ms π-pulses and 570
ms deadtime, triggering the clock pulse at the same time. The redline corresponds to a fractional
frequency instability of 3.5 × 10−17/

√
τ , consistent with the expected QPN contribution of each

clock.

Initial comparisons between Sr1 and Sr2 uncovered several issues. On both systems, fiber

noise cancellation was not conducive to stability at < 10−16 at 1 s, owing to the differential air

path between retro-reflected zeroth order beams and the diffracted clock beam used for clock

interrogation. An updated technique, where the clock laser is turned on with a MHz detuning and

then swept to resonance, allowed direct retro-reflection of the clock beam used for interrogating the

atoms, minimizing differential path noise between FNC and atoms. On Sr1, magnetic field noise

was found to limit clock stability, requiring a dedicated effort to find several noisy culprits, most

notably a Thor-Labs shutter with moving magnets. Sr2 had similar magnetic field issues, but opted

to use the least magnetically sensitive clock transition (see Chapter 1). Finally, Sr2 upgraded their

thermal control to prevent flickering from an uncontrolled thermal environment.



58

With these upgrades, Sr1 and Sr2 were able to compare both asynchronously and syn-

chronously (Figure 3.5). The asynchronous comparison, sensitive to laser noise, was consistent

with the Si3 noise model as developed from 3-corner hat comparison with the MJM and Si4 laser

systems [112]. The synchronous fractional frequency instability (3.5× 10−17/
√
τ) set a new record

for instability between independent clocks, capable of resolving a gravitational redshift of 1 cm in

15 minutes. This improved stability importantly allows fulfillment of the majority of the criteria

discussed for the reevaluation of the second in less than 100 s.

3.5 Towards Optical Timescales

Dissemination of current timescales is based on well developed microwave technology linked

to Cs standards. While impressive, the accuracy and precision are far off the levels promised by

optical clocks. Just as the best clocks now operate in the optical domain, future timescales will also

require all-optical operation to avoid degradation of the accuracy and precision of future primary

optical frequency standards. Such advances will also benefit microwave stability thanks to the

technology of the frequency comb [106].

The development and maturation of cryogenic, crystalline silicon cavity based lasers over

the last 10 years [75, 97] has opened the possibility for proof-of-principle demonstrations of all-

optical timekeeping. With the consistent, high-uptime operation of Sr1 a long-term record of Si3’s

frequency and drift rate began to develop. Spurred on by datasets like that shown in Figure 3.4,

we realized that Si3 was essentially an ‘optical’ MASER, with sufficiently well behaved frequency

drifts that it could serve as the frequency flywheel for periods where an optical clock isn’t running.

To demonstrate the use of silicon cavities as tools for all-optical timescales, the Sr1 clock was

operated nearly daily over a 34 day interval, with 25% uptime. By tracking the Si3 frequency both

with Sr1 as well as a TAI referenced maser array at NIST (AT1), we were able to compare Si3’s

performance against the current US civilian timescale. As shown in Figure 3.6, Si3 outperforms

AT1 at timescales under 105 s, suggesting daily corrections to Si3 using Sr1 should outperform Cs

steered MASER arrays.
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Figure 3.6: Si3 stability. Si3 was compared against Sr1 and NIST’s AT1 MASER array. For
timescale below 105 Sr resolves Si3 instability well below the current timescale. Around 105 Si3
stability sufficiently degrades such that it becomes comparable to AT1.
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From Sr1 and AT1, the performance of a Si3 based timescale can be modeled and compared

to MASER based timescales (see [101] for details). As shown in Figure 3.7, Si3 steered by even 1

hour of Sr1 per day outperforms all MASER based timescales, even with Sr1 steering the MASERs.

Importantly, fractional frequency uncertainties below 1× 10−17 become realizable within 1 year of

averaging with an optical timescale. A few additional observations from Figure 3.7 are apparent.

Daily interrogation results in a significant bump in the Allan deviation at the day timescale. Con-

sidering the nature of the Sr1 machine at the time of this data, obvious gains could come from

increased uptime. A dedicated effort to automate relocking of lasers and improve several exper-

imental weaknesses could extend Sr uptime significantly and would be well within the realm of

a national lab’s expertise. An advantage of Si based timescales would be the ability to instantly

improve timescale performance with continued advances in optical clock precision, accuracy, and

reliability.
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Figure 3.7: Modeled fractional frequency stability of different potential timescales. Si3 steered
daily by Sr1, even for one hour, outperforms MASER based timescales. Both Si3 models support
fractional frequency uncertainties below 1× 10−17 at less than one year of averaging.
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3.6 Searches For Ultralight Dark Matter

Figure 3.8: Comparison of α sensitivity of the Sr clock transition, Si3 cavity frequency, and H
Maser frequency.

The integration of Sr1 into the BACON network provided a unique opportunity to place

bounds on the existence of ultralight dark matter owing to varying α sensitivities between Sr1,

Si3, and the hydrogen masers at NIST (Figure 3.8). Hypothetically, ultralight dark matter may

couple to the fine structure constant α, causing variation in α as a function of time. By performing

frequency comparisons of references with energies scaling to different powers of α, oscillations in

the frequency record at Compton frequency corresponding to the dark matter candidate mass can

be searched for. While our search yielded a result consistent with no detection, it established a

further impact of continued development and operation of clock networks.



Chapter 4

The New Sr1 Wannier-Stark Optical Lattice Clock

Let’s briefly set the stage for the remainder of this thesis. The last two chapters discussed

the original workhorse of Jun’s Sr group - the old Sr1 machine. The machine had been used for

early MOT studies [151, 87], some of the original absolute frequency measurements of the 87Sr

clock transition [31] , demonstrations of SU(N) symmetry [155], and increasingly impressive clock

comparisons [90, 16, 112, 38]. Unfortunately the machine was showing its age, from poorly AR

coated viewports to challenging magnetic field stabilization issues. Meanwhile clock precision was

advancing in the 3D lattice machine (Sr2) and the lab’s dream of spin squeezing was growing more

vivid (Sr3).

In the spring of 2019 a successful pitch was made by T. Bothwell to separate what was

dubbed ‘SrE’ (spin squeezing, accuracy, near zero deadtime) into a rebuilt Sr1 and new Sr3 project

(a dedicated spin-squeezing machine). By rebuilding Sr1 separately, the lab would have a high-

uptime, accuracy focused machine. Chapter 3 made clear how vital such a machine is for a large

clock group. Let’s outline some of the key design goals of a newly rebuilt Sr1.

(1) High uptime. A clock that runs robustly and ideally continuously provides a constant

reference, be it for a timescale or one of the other 5 Sr projects in JILA. It also accelerates

the data taking rate, making both adviser and students happy.

(2) Improved vacuum lifetime. The old Sr1 machine had a vacuum lifetime of 8 seconds,

limiting interrogation times and increasing the background gas collision systematic.
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(3) Vertical lattice. Sr1 had run for years with a lattice tilted with respect to gravity at

18◦, leading to an inability to operate at < 25 Erec before atoms were lost. This creates

problems for Raman scattering and lattice light shifts. Exploration of shallow trap depths

was a longstanding goal.

(4) 813 nm build-up cavity inside vacuum. The retro-reflected lattice setup in Sr1 was a

major hindrance to clock operation. Alignment drifts required regular correction, limiting

uptime and operational stability. To reduce atomic interactions with a reasonable trap

waist, a high power Ti:sapphire laser system was required which regularly broke leading

to weeks of unpredictable downtime every year. A build-up cavity enables a solid state

diode based lattice system, provides geometrical stability to the system, and supports a

significantly larger trap waist for reduction of atomic interactions. To enable reasonable

finesse for power enhancement and ensure a pristine wavefront the cavity must be in-

vacuum.

(5) Improved thermal stability. The original Sr1 had numerous heat sources, from poorly

cooled MOT coils to the Zeeman slower. These presented a challenge both in terms of char-

acterizing the BBR environment of the atoms as well as placing demands on environmental

control in order to robustly operate the machine. Incorporation of temperature monitoring

and stability during construction would be beneficial.

(6) Increased atom-light interaction times. There was no physical reason that suggested

the 1D architecture should be limited to the 600 ms pulses used for the Sr1/Sr2 comparisons.

We had tried longer pulses, but Rabi spectroscopy at the second timescale was unreliable in

the Sr1 machine. An important clue however, was the increase in contrast and interrogation

times when we switched to larger trap waists for Chapter 2, enabling reduced atomic

densities.

To accomplish these goals Sr1 was rebuilt. Let’s introduce the new system.
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4.1 The New Sr1 System

Figure 4.1: Post bake Sr1 system. The system is supported by black anodized aluminum supports.
To the left is the AOSense atomic beam system (circled in red) for providing a steady stream of
cooled strontium into the MOT. Center is the Kimball Physics 6” Spherical Octagon, with the 6”
CF viewport facing the camera. All viewports were mounted using silver coated threaded studs,
washers, and nuts for use in mounting important clock hardware. The large white G7 piece (blue
arrow) mounted to the raw aluminum legs is the MOT coil that required construction and mounting
before baking. Optics on the table were used to check the cavity alignment post bake.

At the heart of the system is the original Sr1 Kimball Physics 6” spherical octagon (Figure

4.1). The chamber is oriented with a pair of 2.75” CF flanges coaxial with gravity and the 6” CF

flanges perpendicular. This allows incorporation of the in-vacuum build-up cavity into the groove

grabbers on the 2.75” axis and improved imaging and conductance through the 6” CF flanges.

Vacuum quality is significantly improved compared to the previous Sr1 system [95]. Vacuum

conductance through a pipe scales as (diameter)3, giving a factor of 10 improvement in the new

design by pumping through the 6” versus 2.75” CF flange. The ion pump is upgraded from a 40

L/s to 150 L/s Starcell design for enhanced pumping of noble gases. The addition of two 400 L/s
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non-evaporable getters provides pumping for getterable gases (particularly H).

The chamber is supported by milled aluminum pieces (Figure 4.1). The ion pump is supported

by a solid block of aluminum. All pieces are coated black to prevent light scattering. Compliance

between supports and chamber is ensured through the use of Viton, providing additional dampening.

Figure 4.2: Image of clock retro box without cover. The assembly is attached to the threaded rods
of the bottom 2 3/4” viewport, ensuring a rigid connection between chamber (lattice retro) and
box (clock retro). Lattice light (green arrows) is introduced to the cavity from above, with leakage
below used for intensity stabilization. Clock light (red arrows) comes from the table and is partially
reflected by a wedged mirror in the Thor Labs mirror mount enabling fiber noise cancellation nearly
to the viewport. A slot enables various neutral density filters for clock power attenuation. A high
quality dichroic beamsplitter separates lattice light (813 nm) from clock light (698 nm).

Magnetic fields are controlled by the Anti-Helmholtz (AH or MOT) coils and 3 pairs of

Helmholtz (bias) coils. A particular nuance in this design is the necessity to build and install the

AH coil in the middle of the system before before baking the chamber. The AH coils are built using

G7, a commercial composite built of glass fabric and temperature resistant resin, allowing baking
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Figure 4.3: Installed mezzanines around the Sr1 chamber. Red arrows show installed bias coils.
The copper attachment within the front MOT coil assembly contains the Bx bias coil, with water
cooling lines for temperature control. The top mezzanine supports optics for the 813 nm lattice
system while cavity transmission optics, clock optics, and MOT optics are on the table.
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up to 200◦ C. The MOT coils are constructed out of hollow core copper tubing with temperature

resistant insulation potted in a temperature resistant epoxy. The coils are supported by hollow,

square aluminum pieces filled with lead shot. All components of the MOT coil assembly can be

baked up to 200◦ C. After baking, the second MOT coil was installed. The bias coils are mounted

to the MOT coil assembly as shown in Figure 4.3. The bias coils were wound in place (using equal

lengths of wire to ensure equal numbers of turns) and then potted to provide structural robustness.

The Bx bias (axis through the 6” CF flanges of the main chamber) is built into 6” copper pieces

used for temperature control of the chamber. More details of temperature control will be specified

in the following sections.

A major improvement in the rebuild of Sr1 is the removal of degrees of freedom. Threaded

rods were used for the mounting of all viewports, enabling attachment of system pieces directly the

chamber (Figures 4.2 and 4.9). This was a valuable lesson learned during the work to modernize the

Sr1 system for the clock comparison (Chapter 3) - if it can be adjusted it can drift. Each MOT axis

incorporates a temperature control apparatus (itself attached to the threaded rods) threaded using

standard Thor Labs SM threads. This enables MOT waveplates, retros, and irises for alignment

to be attached to the chamber with excellent precision. Since initial construction and optimization

(1.5 years ago), none of these have been touched.

One final improvement in the new system is the use of mezzanines around the chamber for

optics (Figure 4.3), eliminating the prevalence of periscopes prone to drift in the previous machine.

Each mezzanine is a standard 24”×48” honeycomb breadboard. Legs are black coated aluminum

tubing filled with lead shot for vibration dampening [32]. Note - it is important to use non-magnetic

steel or aluminum. We found during the studies of Chaper 6 that we had magnetically charged the

original Thor Labs breadboard next to the 6” imaging window. Exchange of this breadboard to an

aluminum version reduced the background magnetic field gradient across the atomic sample nearly

an order of magnitude.
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Figure 4.4: Cavity mirror pictures. Top left: Top mirror assembly, with bottom stainless steel
plate for mounting to groove grabbers, mirror glued to grounded copper piece, and piezo sandwiched
between copper and steel. This ensures charges from applied voltages to the piezo do not charge
the mirror. Top right: Groove grabber cavity mirror support structure inside 2 3/4” CF flange.
Bottom left: Installed top mirror assembly. Bottom right: Picture of Faraday shielding cage
between atoms and mirror.



69

4.1.1 The Build-Up Cavity

At the heart of the new Sr1 system is the in-vacuum build-up cavity for the lattice laser 1 .

The basic design criteria are:

(1) Vertical mounting. We want the lattice to be parallel to gravity, enabling the lowest

operational trap depth possible without atom loss. This is critical for reduction of both

Raman scattering and lattice light shifts.

(2) High quality 698 nm AR coating. We need quality clock spectroscopy, meaning no

significant standing wave at 698 nm.

(3) Large build-up factor. For lattice light shift evaluations trap depth operation over 500

Er is desirable. Commercial diodes offer around 500 mW of power at 813 nm and would

be a far more robust solution for the optical lattice than a commercial Ti:sapphire system

(and much cheaper!). Finally a large build-up factor would enable a larger trapping waist.

(4) A large waist. The previous sytem used a 80 micron waist. Increasing this by a factor

of three would increase trapping volume by nearly a factor of 10, reducing the density

shift systematic significantly. Furthermore, a large waist corresponds to a large Rayleigh

range, which when combined with a modest finesse (near 1000) ensures homogeneous lattice

trapping conditions throughout the atomic sample.

(5) Faraday shielding. Patch charges may build up on the cavity mirrors, and the piezo for

cavity stabilization may provide additional fields [85]. The atoms require shielding from

these electric field sources to avoid deleterious DC Stark shifts.

To address (1) the cavity mirrors are mounted using Kimball Physics groove grabbers in the

2 3/4” CF flanges oriented along gravity (Figure 4.4). By using the precisely machined, one-piece

1 Special shout-out to John Robinson and Eric Oelker. The robust, well designed in-vacuum build-up cavity is
the heart of the new Sr1 system and would not be the same without their cavity expertise. John led the design,
in-vacuum construction, and initial testing. Eric put together the locking infrastructure and careful mode-matching
solution. John’s original notes are the starting motivation for this section.
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vacuum chamber as the cavity spacer we gain a robust, stable lattice that forms the physical basis

for our experiments.

Mounting the cavity within the groove grabbers set the spacing between mirrors to ∼ 15 cm.

The waist for a symmetric resonator in vacuum is given by [105]

ω2
0 =

λ

π

√
dR

2
− d2

2
(4.1)

where λ is the cavity wavelength, d the cavity length, and R the radius of curvature of the mirrors.

For standard mirrors and our dimensions we settled on R = 1 m, giving ω0 ≈ 260 micron, a 3x

increase compared to the lattice from Chapter 2. This corresponds to a Rayleigh range of zr =

26 cm. Measurements of the free spectral range of the cavity (νFSR = c/2d) performed

after completion gave a cavity length of d = 16.9 cm, corresponding to a waist of 262

µm.

To ensure sufficient power enhancement of the cavity for deep trap depths while using a diode

laser system, an over-coupled design was chosen. The power enhancement factor is given by [128]

Icirc
Iinc

≈ 4δ1

(δ1 + δ2)2
(4.2)

where δi = ln(1/Ri) with Ri being the reflectivity of mirror i. Equation 4.2 assumes ideal mirrors

with no loss besides transmission. The corresponding finesse for the coefficient of reflection ri =
√
Ri

is given by [105]

F =
π
√
r1r2

1− r1r2
. (4.3)

np.

To optimize power buildup while ensuring sufficient transmission through the low loss mirror

for intensity control mirrors were chosen to have a transmission of T1 = 1 − R1 = 6000 ppm and

T2 = 1−R2 = 100 ppm, corresponding to B = 643 and F = 1027.
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4.1.1.1 Finesse Measurement

To measure the finesse of the cavity recall that the average time light remains inside the

cavity is given by t0 = 2πc/dF where c is the speed of light, d the standing wave resonator length,

and F the finesse. For reasonably high finesse, t0 is found by quickly turning off the light incident

on the cavity and measuring the exponential decay of transmitted power P as a function of time t,

as given by [105]

P (t) = P0e
−t/t0 = P0e

−(2πc/dF )t. (4.4)

The results of a post-bakeout finesse measurement are shown in Figure 4.5. The finesse

was found to be F = 1020(60), with the uncertainty due to the pulling of the fit based on initial

cuts of data points. The associated decay time constant (Figure 4.5) is quite fast for an AOM,

requiring exclusion of datapoints at the onset of extinction of the ingoing cavity light. The results

are consistent with the designed mirror specifications previously listed.

4.1.1.2 Birefringence Measurement

For rejection and/or control of differential AC Stark shifts to the ground and excited clock

state (lattice light shifts) it is usually ideal to operate with linear polarization for the lattice light.

Circular polarization introduces several complications, most notably by altering the tensor shift of

the lattice. A small mixture of non-circular polarization acts a fictitious magnetic field, changing

the alignment of lattice polarization relative to the quantization axis set by a bias field. This

perturbation is given by [127]

∆νvt = −γvt|~ε · ~εB|2ξ cos θU2
0 . (4.5)

Here γvt = 11 µHz/E2
r for a 1 G field. ~ε describes the lattice polarization and ~εB the unit vector of

the bias field. θ describes the angle between the lattice light wavevector and bias field and U0 the

trap depth. ξ is the ellipticity of the lattice light.
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Figure 4.5: Cavity ring-down measurement. Transmitted intensity through the cavity is measured
on a PD. The light is extinguished by an acousto-optic modulator (AOM) and the decaying expo-
nential fit, finding a decay time constant of 183 ns. From this decay and measured cavity length a
finesse of F = 1020(60) is found, with the large uncertainty arising from the sensitivity of the fit
to the number of data points cut before fitting.

Equation 4.5 tells us that we have a scaling with U2
0 , the same as the hyperpolarizability

coefficient. We would therefore like to make sure that our ellipticity 1) is such that evaluations of

the hyperpolarizability coefficient will not be polluted and 2) provides no meaningful contribution

on our path towards accuracy at the 19th digit.

The ellipticity parameter is given by

ξ =

√
Pmin
Pmax

(4.6)

where Pmin (Pmax) is the minimum (maximum) power transmitted through a rotated polarizer after

the optic in question. To ensure pure polarization before entering the cavity (including viewports),

a polarizer was placed before the chamber. A polarizer placed on the opposite side was rotated 360◦

to probe the transmitted light, noting the minimum and maximum power through the polarizer. the

measurement was repeated a second time after rotating the initial clean-up polarizer 45◦ to bound
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a worst-case ellipticity should the cavity be probed off the eigen-axis of birefringence. We bounded

the extinction ratio to 3.2×10−5 (ξ = 5.7×10−3), likely limited by the achievable extinction ratios

of the given polarizers.

For our system, even with applied fields as small as 200 mG, we anticipate ∆νvt contributing

at < 1/100 of the level of hyperpolarizability.
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Figure 4.6: Comparison of hyperpolarizability and birefringence induced flock shifts as a function
of trap depth as bounded by worst case ellipticity. Results are reported for mF=±9/2.

4.1.2 DC Stark Plates

In the early days of Sr OLC research, SYRTE was a major proponent of in-vacuum build-up

cavities [29]. Unfortunately they found large DC Stark induced systematic shifts (10−13 level), hin-

dering accuracy and requiring extensive work to cancel [85]. Care must be taken when attempting

to cancel a DC electric field across an atomic sample as the DC Stark shift is quadratic (Chapter 2),
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meaning a global measurement of the DC Stark shift (and elimination) may still be contaminated

by a gradient, resulting in a residual shift.

Figure 4.7: DC Stark plate construction. Top left: Example of a quadrant plate split in half,
showing groove grabber assembly for both assembling all four quadrants together and mounting to
the chamber. Note the use of alumina to electrically isolate each quadrant. Top right, bottom
left: Picture of the plates installed into the Kimball Physics chamber, showing wiring. Bottom
right: Assembly for routing quadrant plate wires around 2 3/4” CF port.

To avoid the above issues, it is always best to begin with as close to zero DC Stark shift

as possible. From the previous Sr1 machine we know that viewports don’t spontaneously develop

patch charges - one must polarize them. To avoid patch charges from the cavity and residual fields

from the cavity piezo, the atoms are shielded from each mirror assembly by a grounded copper

Faraday shield. The shield of copper is 5 mm thick with an ID of 6 mm, matching the piezo ID.

COMSOL simulations showed that the design would provide sufficient attenuation of any reasonable
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patch charges and fields from the piezo.

In the previous machine, quadrant plates for applying an electric field across the atoms

enabled probing and elimination of DC Stark shifts in all three spatial dimensions. A constant

worry was the the issue of developing charges around the chamber from application of large electric

fields near dielectrics (we did temporarily create a background field but it dissipated quickly [25]).

To avoid this issue in the previous machine the applied fields were regularly switched during the

sequence (atom preparation period), enabling a nearly zero time average for the applied field. In

the new machine we incorporated bias plates inside the vacuum chamber. By reducing the distance

between the plates we readily increase the strength of applied field. By building the plates in

vacuum, worries about charging dielectrics is removed.

The DC Stark bias plates in the new system are shown in Figure 4.7. They are built into the

6” CF flange groove grabbers of the Kimball Physics chamber, with each side having an assembly

of 4 copper plates. They are electrically isolated from each other by the use of alumina spacers.

Each plate has a separate electrical connection out of the chamber, allowing each quadrant to be

controlled separately. The wires pass though a grounded braid to eliminate bias fields from the

wires themselves.

For initial DC Stark evaluations we applied voltages of ±80 V to the X, Y, and Z directions.

Recall X is the axis of the 6” CF flanges and Z the axis of the cavity. Figure 4.8 shows the results

for X, with no statistically meaningful field found at the 2 × 10−19 level. Y and Z additionally

showed no statistically meaningful field found at the 2× 10−19 level. After installation of imaging,

DC Stark gradients were also not found at any meaningful level for accuracy purposes (Chapter 6).

4.1.3 Temperature Control

Extensive temperature control of the new system was installed during construction, eliminat-

ing the need for painful installation of a thermistor array after the full rebuild. Baseline thermal

control is ensured by utilizing temperature controlled air pulled through a HEPA filter unit onto

both the chamber and laser side of the table (portioned for light control and independent temper-



76

Figure 4.8: DC Stark evaluation along X. On the left is the Allan deviation of the evaluated
background shift for voltages biases of ±80 V applied to each plate (160 V difference). A back-
ground shift of 6(23)× 10−20 was found, consistent with zero. The right plot shows a histogram of
background shifts.

ature control), as in Chapter 2. MOT coil temperatures are controlled by a powerful recirculating

chiller, itself water chilled ensuring removal of heat from the lab. Each MOT coil, while electrically

connected, is split into two in regards to water connections allowing significantly improved cooling

compared to the previous Sr1 design. The blue MOT is additionally operated with <1/2 of the

gradient of the previous machine, further reducing the heatload.

50 mK interchangeable thermistors (PR503J2) for monitoring the chamber and air temper-

atures were mounted after baking using thermally conductive epoxy. Building on the lesson of

Chapter 2, each viewport has a dedicated temperature control apparatus installed, providing both

temperature control and an insulating air pocket over the airport for improved homogeneity (Figure

4.9). The pieces are constructed of copper to provide maximum thermal homogeneity to minimize

any temperature gradients.

A major improvement to the new machine is the elimination of heatloads present in the

previous design. The AOSense atomic beam system uses permanent magnets, eliminating current

controlled bias coils - a large negative of the previous machines Zeeman slower design. The AOSense

system furthermore steers the atomic beam around a corner, eliminating line of sight between heated

Zeeman window and atoms. The camera used for imaging is water cooled. The summation of these

improvements and controls is a stable, robust system. Alignment is robust over the timescale of
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Figure 4.9: Temperature control/optics mounting pieces for the 2 3/4” CF flanges (viewports). Top
left: The main control piece is a copper cylinder wrapped with hollow copper tubing soldered
in place. The tubing allows temperature controlled water to flow around the piece, stabilizing
the temperature. Holes for mounting to the chamber (bottom left), top piece installation (top
right), and thermistor installation are included. Bottom right: An installed assembly including
Thor Labs SM2 lens tube for mounting of MOT optics is shown. Jack screws enable fine alignment
of the retros but are not needed thanks to the Kimball Physics chamber and careful machining of
copper pieces. A thin layer of high thermal-conductivity paste is used between the piece shown
in the top left and the vacuum chamber, ensuring good thermal conduct and compliance for any
slight imperfections.

many months, radically reducing the maintenance required in the previous version. Examples of

the temperature control stability on the chamber (viewports) are shown in Figure 4.10 (4.11).
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Figure 4.10: Chamber temperatures from 8/14/21. Monitoring thermistors are mounted to the
chamber.
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4.1.4 Expansion Port

Figure 4.1 shows the expansion port present on the Sr1 system. An MDC gate valve was

installed for use in the next accuracy evaluation (10−19 level). The plan is to add a custom chamber

for installation of an in-situ thermometer for probing the temperature (BBR) at the atoms. A 30

cm linear push-pull device will be used to insert/retract the probe. The expansion chamber will

include additional pumping (25 L/s ion pump and 50 L/s NEG) as well as a residual gas analyzer

to document the composition of the vacuum chamber gas load for the background gas systematic.

4.2 Experimental Operation

The Sr1 system largely follows the operation described in [21, 88, 95, 25].

Standard blue MOT operation proceeds for ∼ 100 ms, though at a lower gradient (∼ 20

G/cm) compared to the old machine (50 G/cm). At the end of the blue MOT sequence the MOT

gradient is ramped to ∼ 6 G/cm over 10 ms and the blue intensity is reduced, leading to a colder,

less compressed blue MOT. The magnetic gradient is then set to ∼ 3 G/cm for the broadband

(BB) and single frequency (SF) red MOT operation. With atoms < 10 µK loaded into the 300

Er optical lattice an additional cooling stage is performed. Atoms are simultaneously nuclear spin

polarized, doppler cooled (< 1µK, Figure 4.12), and axially cooled (nz ≈ 0, Figure 4.13). This is

enabled by reducing the intensity of the cooling light provided by the 9/2 to 11/2 cooling laser by

> 10, 000.

After cooling, the lattice is adiabatically ramped to the operational trap depth. Depending

on the experiment, a series of rapid clock laser pulses is used to change the nuclear spin state of the

polarized sample. Standard clock spectroscopy [21, 88] proceeds, after which the lattice is ramped

back to 300 Er and the excitation fraction is readout by fluorescence spectroscopy. Imaging photons

are collected on both a standard PMT for center of mass clock locking as well as an Andor iXon

camera for in-situ imaging [93].



80

−50 −25 0 25 50
Detuning (kHz)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ex
cit

at
io

n 
Fr

ac
tio

n

790.0 nK

166.0 nK

Figure 4.12: Doppler scans after initial loading and cooling at 300 Er (purple curve) and after
ramping to an operational trap depth (15 Er shown in green).

4.3 Imaging

Standard fluorescence imaging is used in the system. The calibrated camera pixel size (in-

cluding imaging system) is evaluated to be 6 micron based on free-fall time of flight measurements

[25].

Important for in-situ imaging is the consistent scattering rate of imaging photons across the

atomic sample. In the Sr1 system, the density shift systematic leads to inconsistent scattering rates

creating erroneous frequency shift corrections. To avoid this, we shape the probe beam to have an

aspect ratio of nearly 3 to 1, with the long axis matched to the millimeter atomic sample (Chapter

6). The scattering rate throughout the atomic sample is consistent at the 1% level (Figure 4.14).



81

−100 −50 0 50 100
Detuning (kHz)

0.0

0.1

0.2

0.3

0.4

0.5
Ex

cit
at

io
n 

Fr
ac

tio
n

300 Erec

10 Erec
a)

No Axial Cooling
Axial Cooling
Adiabatic Ramp

−120 −100 −80
Detuning (kHz)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ex
cit

at
io

n 
Fr

ac
tio

n

b) Red Sideband @ 300 Er

80 100 120
Detuning (kHz)

0.000

0.025

0.050

0.075

0.100

0.125

0.150
Ex

cit
at

io
n 

Fr
ac

tio
n

c) Blue Sideband @ 300 Er

Figure 4.13: Axial clock scans. a) Axial scans at 300 Er and after adiabatically ramping to
10 Er with atoms prepared in the excited clock state. The green line has been offset by 0.5
from an excitation fraction of 1.0 for plotting. Note the near absence of red sideband indicating
nz ≈ 0. Additionally note the spiky structure within the sideband structure - these correspond to
spectroscopy of varying nz states in the purple curve, now resolved thanks to the < 1 µK radial
temperatures at 300 Er. b) Enhanced view of the red sideband. c) Enhanced view of the blue
sideband.
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Figure 4.14: Calibration of fluorescence probe scattering rate throughout the atomic sample. To
evaluate the scattering rate per pixel, a series of atom pictures is taking with varying probe power,
allowing calculation of the saturation parameter (ratio of intensity to saturation intensity), and
therefore maximum scattering rate.

4.4 Vacuum Lifetime

The vacuum lifetime leads to an atom loss mechanism, potentially increasing QPN at long

interrogation times through reduction of maximum atom number. Background gas collisions also

lead to a systematic shift of the clock frequency.

Evaluation of the vacuum lifetime is readily performed by lifetime measurements of 3P2 atoms

trapped in the AH magnetic field. Loading a blue MOT without repumps over the course of several

seconds loads a significant population into magnetically trapped 3P2 states. With a magnetically

trapped population, the lasers may be extinguished for a varied period of time. After holding, the

atoms are repumped and the population is measured via fluorescence. The atomic population (N)

as a function of hold time is then fit to the following equation

N(t) = N0 exp(−t× (1/τ + 1/τBBR)) + C, (4.7)

where N0 is the initial population, t is the varied hold time, τ the vacuum lifetime, and C an
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offset. τBBR = 104 s is the lifetime of the 3P2 state at room temperature [152]. Figure 4.15 shows

the vacuum lifetime as evaluated at a variety of oven temperatures of the AOSense oven. It was

found that as the oven pressure was increased the vacuum pressured degraded. We find for an oven

temperature of 375◦ τ = 27 s, just shy of a factor of four improvement compared to the previous

system despite the addition of significant in-vacuum hardware.
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Figure 4.15: Vacuum lifetime versus oven temperature. The trend is well reproduced by a linear
fit of slope -0.167 s/◦C and offset of 89.8 s at 0◦C.



Chapter 5

Wannier-Stark States, a Spin Model, and the ‘Magic Depth’

The study of atomic interactions within optical lattice clocks has a rich history, with dedicated

experimental and theory collaboration critical for developing the spin model characterizing the

interactions [94, 95, 118]. The ability to understand the atomic interactions in our system using

the spin model has not only benefited clock evaluations, but enabled studies of SU(N) symmetry

[155] and synthetic gauge fields [76, 26].

In this chapter we explore atomic interactions in a Wannier-Stark (WS) ladder [143]. We

begin by reviewing the calculation of the WS wavefunctions, illuminating the origin of a new s-wave

interaction in the clock. We briefly connect this work with our earlier spin-orbit coupling (SOC)

studies, emphasizing the power of analyzing our system utilizing the tools of solid state physics

[81, 67]. With then turn our attention to the spin model, qualitatively discussing the effect of

atomic interactions on Rabi spectroscopy. With this understanding we finally discuss the ‘magic

depth’ operation in the Sr1 system [1], demonstrating an operational regime where precision and

accuracy are combined as demonstrated by Chapter 6.

5.1 Bloch, Wannier, and Wannier-Stark Wavefunctions

The physics of independent electrons moving in a lattice is well known [3, 49], providing an

excellent basis for the study of atoms in an optical lattice. We begin with the Hamiltonian for a
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single particle in a periodic potential, given by

H =
~p 2

2m
+ V (~r) (5.1)

where ~p is the momentum operator, m the particle’s mass, V the potential, and ~r the position

operator. Consider the case of a constant potential. In this situation H is invariant under any

translation. As ~p is the generator of translation, this means

[H, ~p ] = 0, (5.2)

and thus eigenstates of ~p (plane waves) are eigenstates of H. Now instead consider a periodic

potential

V (~r + ~a ) = V (~r), (5.3)

where ~a corresponds to a primitive lattice vector (in the 1D Sr clock, λ/2). The Hamiltonian is

now only invariant under translation by a primitive lattice vector (T~aj ). Bloch’s theorem [49] tells

us that the general solution to Equation 5.1 with a potential of the form of Equation 5.3 is given

by

ψ~q (~r) = ei~q·~r/~u~q(~r) (5.4)

where ~q is crystal (lattice) quasimomentum, being a good quantum number for the Hamiltonian

under study. Note the solid state literature typically uses crystal momentum ~k = ~q/~, but here we

use ~q to both be consistent with the ultracold community and avoid additional use of the letter ‘k’.

The translational symmetry of the potential is carried by u~q(~r):

u~q(~r + ~aj) = u~q(~r). (5.5)
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To proceed, consider the result of the momentum operator applied to Equation 5.4:

~pψ~q(~r) = ei~q·~r/~(~q + ~p)u~q(~r). (5.6)

We may then find the modified Schrodinger equation to be

H~qun~q =

[
1

2m
(~p+ ~q)2 + V (~r)

]
un~q

= En~q un~q
(5.7)

where En~q is the eigen-energy and n is the so called ‘band index’ arising from restricting our

solutions to the first Brillouin zone [49].

Let us now consider the 1D problem, denoting 1D position z, anticipating connection to our

1D optical lattice. Thanks to the Bloch theorem both our optical potential and functions un~q have

the same periodicity, allowing us to write both as a discrete Fourier sum [54]:

V (z) =
∑
b

Vbe
i2bkz and un,~q =

∑
l

c
(n,q)
l ei2lkz. (5.8)

It follows that

V (z)un~q =
∑
b

∑
l

Vbe
i2(b+l)kzcn,ql

= −V0

∑
l

cn,ql

(
ei2(l+1)kz + ei2(l−1)kz

) (5.9)

where we exploit the expansion of the potential,

V (z) = −V0 cos(kz)2

= −1

4
V0

(
e2ikz + e−2ikz + 2

)
.

(5.10)

Similarly, we expand the kinetic energy term,
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1

2m
(p+ q)2un~q =

1

2m

∑
l

(p+ q)2e2ilkzc
(n,q)
l

=
1

2m

∑
l

(2~kl + q)2e2ilkzc
(n,q)
l .

(5.11)

With these in hand, we may finally rewrite Equation 5.7 as

∑
l

[
(~k)2

2m

(
2l +

q

~k

)2

c
(n,q)
l − V0

4
[c

(n,q)
l−1 + c

(n,q)
l+1 ]− Enc(n+q)

l

]
e2iklz = 0. (5.12)

Equation 5.12 may be written as an infinite square matrix of dimension l × l, though for

calculations l is typically truncated to around 20 lattice sites. The truncated, tridiagonal matrix is

of the form [54]:

∑
l

Hl,l′ · c
(n,q)
l = Enq c

(n,q)
l and Hl,l′ =



(2l + q/~k)2Erec if l = l′

−V0/4 if |l − l′| = 1

0 else.

(5.13)

For 5 lattice sites the Hamiltonian matrix takes the form



(−4 + q/~k)2 −V0
4 0 0 0

−V0
4 (−2 + q/~k)2 −V0

4 0 0

0 −V0
4 (q/~k)2 −V0

4 0

0 0 −V0
4 (2 + q/~k)2 −V0

4

0 0 0 −V0
4 (4 + q/~k)2


.

which when diagonalized gives the eigenergies and Fourier coefficients c
(n,q)
l . The corresponding

Bloch states can then be readily found using the evaluated coefficients and Equation 5.8. Solving

for the eigenergies of different bands allows calculation of the tunneling rate (J) as the width of

each band corresponds to 4J . Energy solutions and Bloch wavefunctions are shown in Figures 5.1

and 5.2, respectively.
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Figure 5.1: Bloch band structures of optical lattices for varying trap depths. Each plot shows
energy versus quasimomentum for the first Brillouin zone. Purple, green, and yellow correspond
to the ground, first, and second bands respectively. Note the decreasing bandwidth as trap depth
increases, corresponding to decreased tunneling energy.
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Figure 5.2: Wavefunctions (ψ) and probability densities (|ψ|2) for Bloch wavefunctions of trap
depths 8 and 20 Er. The real part of the wavefunction is plotted.
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As shown in Figure 5.1, the bandwidth decreases with increasing trap depth, analogous to

the Lamb-Dicke regime in the spectroscopy community [80, 89]. As trap depth increases, eventually

J << Ω where Ω is the Rabi frequency. In the language of atoms trapped in an optical lattice, this

corresponds to the atomic wavefunctions becoming increasingly localized. Wavefunctions in this

regime may be treated at harmonic oscillators, or building on the Bloch states, Wannier states.

The Wannier function for band n on site i in the 1D lattice is given by [49, 54]

w(z − zi) = N−1/2
∑
q

e−iqzi/~ψnq (z). (5.14)

See Figure 5.3 for examples.

In clocks, tunneling broadens lineshapes and leads to detrimental systematics. This may be

avoided by operation at deep trap depths, or better yet, by providing an energetic offset between

lattice sites to suppress tunneling. This is a well known problem in solid state physics with the

following Hamiltonian:

H =
~p 2

2m
+ V (~r) + F~r, (5.15)

the solutions of which are the well known Wannier-Stark (WS) states [51]. The Hamiltonian is

readily realized in a lattice clock by orienting the lattice along gravity [81]. In the Tight-Binding

approximation, the WS state for lattice site l may be found to be [50]

|Ψn,l〉 =
∑
m

Jm−l
(

∆n

2dF

)
|m〉 ,

=
∑
m

Jm−l
(

4J0

Mgλlat

)
|m〉 .

(5.16)

Note the second line is valid for the ground band of the lattice. Here the WS state of lattice site

m is given by |m〉, Ji is the Bessel function of the first kind for order i, ∆n is the bandwidth of the

band n, d the distance of the lattice spacing, and F the applied force as given in Equation 5.15.

This simplifies to the second line for the Sr1 system where M is the mass of the Sr atom, g gravity,
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λlat = 813 nm, and J0 ≈ (4/
√
π)E

1/4
r V

3/4
0 exp

[
−2
√
V0/Er)

]
(valid for the ground band)[34, 1].

Numerical results are plotted in Figure 5.4.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
z ( lat)

|
|2

m=0
m=-1
m=1
Vlat

Figure 5.3: Example Wannier state probability distributions as a function of lattice position at a
trap depth of 3 Er. m gives the lattice index for each plotted Wannier function. The optical lattice
potential is plotted in black for reference.

5.2 Spin-orbit Coupling

The solid state tools used in the previous section for calculating wavefunctions provide a

powerful analytical tool for the study of atomic clocks. Historically, the mature field of ion clocks

enabled rapid progress in optical lattice clocks using the framework of ions in harmonic traps
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Figure 5.4: Wannier-Stark state probability distributions for a variety of trap depths. All states
are centered at m = 0, making clear the increasing off-site contributions as trap depth is decreased.
This delocalization of the wavefunction provides the ability to tune the overlap of wavefunctions
between lattice sites, creating a tunable channel for s-wave interactions.
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[80, 89]. In contrast, studies of many-body physics in the 1D lattice clock [95, 155, 25] and the

development and study of the 3D lattice clock [33, 52] exemplify the importance of the solid state

approach. A great example of this is the Sr2 proposal paper discussing increased lattice constants

for operation of shallow trap depths without motional dephasing [67].
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Figure 5.5: Spin-orbit coupling in a horizontal 1D lattice. Left: Ground Bloch bands for 10 Er
for both ground (g) and excited (e) clock states with the energy of the clock photon subtracted.
The excited band has been shifted by the momentum of the clock photon. Due to this, the energy
difference between e and g depends on quasimomentum, coupling spin to momentum (SOC). Right:
A histogram of energy difference with evenly sampled quasimomentum. The turning points of the
energy difference in the left plot correspond to an increased number of quasimomentum points at
large detunings - the Van Hove Singularities.

To exemplify this point further we briefly review the origins of spin-orbit coupling (SOC) in

the Sr1 system with a horizontal (perpendicular to gravity) lattice [76, 25]. We return to the Bloch

bands of Figure 5.1. Immediately we note that the energy associated with a particle is dependent

on its quasimomentum. In a magic trap (the same potential for ground and excited clock state) the

bands are the same, but we must account for the change in quasimomentum from absorption of a

clock photon (Figure 5.5). We find that this intricately links the energy for the |g〉 to |e〉 transition

to the particles quasimomentum - giving rise to SOC in a neutral atom system (and connecting to
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the field of synthetic gauge fields [84]).

Clock spectroscopy of such a system serves as a probe of the density of states (DOS). This is

readily understood by connecting clock detuning to quasimomentum and excitation fraction to the

DOS at that quasimomentum. Clock spectroscopy of the SOC Sr1 system revealed sharp features

in the lineshape (Figures 5.5 and 5.6), an observation of Van Hove singularities [142, 49].

Figure 5.6: Fractional excitation versus detuning for varying depths in the horizontal lattice [76].
As the trap depth decreases, the carrier clearly broadens and shows the emergence of Van Hove
singularities.

5.3 The Spin-Model

We now turn our attention for the remainder of the chapter to a qualitative discussion of

the spin model using the Bloch sphere. The reader is referred to the extensive literature for a full

treatment [94, 95, 118]. We begin by reviewing the effect of monochromatic radiation on a two-level
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Figure 5.7: A π-pulse on the Bloch sphere. A resonant monochromatic field (laser) applies a field
along x̂ (black arrow). A spin initially at |g〉 (red arrow) then begins to precess around the bloch
sphere (blue dots), ending at |e〉 (blue arrow) for a π pulse.
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atom using the Bloch sphere picture. The Bloch vector Û on the Bloch sphere evolves as

d~U

dt
= ~Ω × ~U (5.17)

where ~Ω = (Ω1, 0, 0) for monochromatic radiation (our laser) with no detuning. Recall that this is

analagous to a spin in a magnetic field, which we will connect to the spin model. An example of

a π pulse is given in Figure 5.7, illustrating the single particle physics of resonantly addressing a

ground state atom with a π pulse.

We now want to understand how this picture changes with atomic interactions. We begin by

taking advantage of the fact that the Hamiltonian describing the spin model (atomic interactions)

in our system has been mapped to the XXZ Heisenberg spin model (we will call this the XXZ model

to avoid confusion) given by [48]:

HXXZ = −J
N∑
n=1

[SxnS
x
n+1 + SynS

y
n+1 + ∆SznS

z
n+1]− 2h

N∑
n=1

Szn,

= −J
N∑
n=1

Sn · Sn+1 − J(∆− 1)
N∑
n=1

SznS
z
n+1 − 2h

N∑
n=1

Szn.

(5.18)

Here n denotes the index of a spin, h is a magnetic field, J the strength of spin-spin interactions,

and Sαn = 1
2σ

α
n with σα being the Pauli matrices. In the Sr system this will be a large, collective

spin with S = NL/2 (NL being the number of atoms on site L). ∆ sets the strength of the

anisotropy of the spin-spin interaction. This is a 1D spin system with a longitudinal field that can

exhibit ferromagnetic, paramagnetic, and anti-ferromagnetic order depending on ∆ and h [48]. The

magnitude of ∆ relative to J sets whether the spin-spin interactions are dominated by radial or

longitudinal interactions (x̂ and ŷ versus ẑ on the Boch sphere).

Notice that in Equation 5.18 the second line is written such that the first summation corre-

sponds to an isotropic spin-spin term. This is a critical for our understanding of atomic interactions

with clock spectroscopy. We wish to understand the effect of Equation 5.18 on the evolution of a

collection of atoms exposed to a π pulse (Figure 5.7). Assuming conservation of total spin S and
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a mean-field picture, the isotropic spin-spin interaction does not affect the evolution of the system

meaning we are concerned only with the second and third summations in Equation 5.18 with con-

tributions along ẑ. In our Bloch sphere picture this may be understood as a fictitious longitudinal

magnetic field. In the spin model for the clock, it has been shown that in the mean field treatment

of our system that we have a fictitious magnetic field [95, 94, 34, 1]

Bz(N) = NC + 2χ〈Sz〉 (5.19)

where N is the number of atoms on a lattice site and 〈Sz〉 the expectation value of Sz =
∑N

j=1 S
j
z .

For a pulse area of θ, 〈Sz〉 = −N/2 cos(θ) [95]. C and χ are non-trivial interaction parameters. In

the presence of spin-orbit coupling χ is defined by a mixture of s- and p-wave two-body interactions

(only p-wave in the absence of SOC) while C is dominated by p-wave interactions. The addition

of this effective magnetic field serves to perturb the axis the spin of our clock precesses about.

Also note the dependence of Equation 5.19 on N - each lattice site with a different atom number

will experience a different Bz and therefore different detuning, a lineshape broadening mechanism

limiting coherence times.

To qualitatively understand this we can modify ~Ω from Equation 5.17 to be ~Ω ∝ (Ω1, 0, Bz(N)).

We may then numerically model a π pulse as before, but with the addition of the effective magnetic

field arising from interactions. For a resonant pulse, the addition of atomic interactions serves to

tip the axis preccessed about, leading to reduced rotations in ẑ, as shown in Figure 5.8.

Figure 5.8 motivates the traditional approach to solving the density shift - make Bz smaller!

This can be done by 1) operating with less atoms and/or 2) reducing density through larger trapping

volumes or lower trap depths, reducing χ and C.

5.4 The ‘Magic Depth’

The rebuilt Sr1 system immediately allowed shallow trap depth operation below 10 Er. As we

began to explore frequency gradients throughout our system using imaging techniques we also began
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Figure 5.8: π pulses with atomic interactions, with the spin starting in |g〉 (red arrow). Ωx = 1
(black arrow), χ=0, and C=0.1. Left: π-pulse evolution for N = 10. The magenta arrow shows Ω
while the green dots and arrow show the evolution of the spin for a resonant π-pulse. Right: Same
as left, but for N =0,10, and 20 corresponding to blue, green, and cyan arrows. For a system of
traps with differing atom number each site’s collective spin will evolve differently.
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to track the density shift per atom per lattice site ∆νatom. Originally operating from |e〉 → |g〉 we

continued to explore shallower depths, maintaining high pulse fidelity even for multi-second pulses.

Naturally we continued to go shallower, reducing Raman scattering, lattice light shifts, and the

density shift.

Measurements of ∆νatom versus trap depth are shown in Figure 5.9. To our disappointment

(both for |e〉 → |g〉 and |g〉 → |e〉) ∆νatom diverged at shallow depths. Initially we took just the

|e〉 → |g〉 curve, choosing to operate at the minima of |∆νatom|.
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Figure 5.9: Density shift per atom per site in fractional frequency units versus trap depth. At large
depths both curves follow the U5/4 scaling of Chapter 2, but deviate rapidly at shallow depths.

Fortunately we have the information we need in this chapter to understand Figure 5.9. As we

have established lowering trap depth is a good way to reduce p-wave interactions between atoms

(and residual s-wave interactions from nuclear spin impurities). However, as we continue decreasing

the trap depth the atomic wavefunctions delocalize (Figure 5.4), enabling WS states centered on

different lattice sites to appreciably overlap. This introduces a s-wave component that actually
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increases relative to the p-wave contribution as trap depth continues to decrease.

Why do the curves in Figure 5.9 diverge different ways? The qualitative argument comes

from Equation 5.19. The expectation value 〈Sz〉 goes from -1 to 1, so starting in |g〉 versus |e〉 and

performing a π pulse changes the sign. Thus when χ >> C the density shift diverges with opposite

signs.

Most importantly, Figure 5.9 informs us of a different approach to reducing Equation 5.19.

Tuning the trap depth to where ∆νatom = 0 for the |g〉 → |e〉 curve of Figure 5.9 corresponds to

zero fictitious magnetic field

0 = NC + 2χ〈Sz〉,

= N [C − χ cos(θ)].

(5.20)

We see that we can cancel the interaction parameters by tuning a combination of pulse depth to

adjust the cosine contribution or trap depth to adjust C and χ. In our case, rather than tune the

pulse area we adjust the trap depth to find this zero crossing. We call this the ‘magic depth’ as

the density shift vanishes regardless of atom number - it is an experiment specific condition. An

example evaluation is shown in Figure 5.10. With the ‘magic depth’ we now have the ability to

combine the accuracy of the 1D system with previously unheard of precision.
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Figure 5.10: ‘Magic depth’ operation at 12 Er. Over a 10 hour measurement the fractional density
shift was found to be 5.0 (2.8)×10−21 per atom per lattice site.



Chapter 6

Resolving the gravitational redshift within a millimeter atomic sample

The research in this chapter is reported in the publication: Bothwell et al., ‘Resolving the

gravitational redshift within a millimeter atomic sample,’ arXiv (2021) [20].

Modern atomic clocks embody Arthur Schawlow’s motto to ‘never measure anything but

frequency.’ This deceptively simple principle, fueled by the innovative development of laser science

and quantum technologies based on ultracold matter, has led to dramatic progress in clock perfor-

mance. Recently, clock measurement precision reached the mid-19th digit in one hour [33, 112], and

three atomic species achieved systematic uncertainties corresponding to an error equivalent to less

than 1 s over the lifetime of the Universe [109, 98, 24, 19]. Central to this success in neutral atom

clocks is the ability to maintain extended quantum coherence times while using large ensembles of

atoms [33, 112, 93]. The pace of progress has yet to slow. Continued improvement in measurement

precision and accuracy arising from the confluence of metrology and quantum information science

[116, 73, 78, 154] promises discoveries in fundamental physics [123, 74, 38, 77].

Clocks fundamentally connect space and time, providing exquisite tests of the theory of gen-

eral relativity. Hafele and Keating took cesium-beam atomic clocks aboard commercial airliners

in 1971, observing differences between flight-based and ground-based clocks consistent with special

and general relativity [58]. More recently, RIKEN researchers compared two strontium optical lat-

tice clocks (OLCs) separated by 450 m in the Tokyo Skytree, resulting in the most precise terrestrial

redshift measurement to date [133]. Proposed satellite-based measurements [79, 137] will provide

orders of magnitude improvement to current bounds on gravitational redshifts [?]. Concurrently,
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Figure 6.1: Experimental system and quantum state control. a, A millimeter length sample of
100,000 87Sr atoms are trapped in a 1D optical lattice formed within an in-vacuum cavity. The
longitudinal axis of the cavity, z, is oriented along gravity. We probe atoms along the 1S0 �

3P0

transition using a clock laser locked to an ultrastable crystalline silicon cavity [112, 97]. b, Rabi
spectroscopy with a 3.1 s pulse time. Open purple circles indicate data with a corresponding Rabi
fit in green. c, Neighboring lattice sites are detuned by gravity, creating a Wannier-Stark ladder.
Clock spectroscopy probes the overlap of Wannier-Stark states between lattice sites that are m
sites away with Rabi frequency Ωm. d, Rabi spectroscopy probes Wannier-Stark state transitions,
revealing wavefunction delocalization of up to 5 lattice sites. The number of lattice sites is indicated
above each transition, with blue(red) denoting Wannier-Stark transitions to higher(lower) lattice
sites.
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clocks are anticipated to begin playing important roles for relativistic geodesy [56]. In 2010 Chou

et al. [35] demonstrated the precision of their Al+ clocks by measuring the gravitational redshift

resulting from lifting one clock vertically by 30 cm in 40 hours. With a decade of advancements,

today’s leading clocks are poised to enable geodetic surveys of elevation at the sub-centimeter level

on Earth, a result unobtainable with other current techniques [138].

Atomic clocks strive to simultaneously optimize measurement precision and systematic un-

certainty. For traditional OLCs operated with one-dimensional (1D) optical lattices, achieving low

instability has involved the use of high atom numbers at trap depths sufficiently large to suppress

tunneling between neighboring lattice sites. While impressive performance has been achieved,¬

effects arising from atomic interactions and AC Stark shifts associated with the trapping light

challenge advancements in OLCs. Here we report a new operational regime for 1D OLCs, both

resolving the gravitational redshift across our atomic sample and synchronously measuring a frac-

tional frequency uncertainty of 7.6× 10−21 between two uncorrelated regions. Our system employs

100,000 87Sr atoms at 100 nK loaded into a shallow, large waist optical lattice, reducing both AC

Stark and density shifts. Motivated by our earlier work on spin-orbit coupled lattice clocks [76, 26],

we engineer atomic interactions by operating at a ‘magic’ trap depth, effectively removing colli-

sional frequency shifts. These advances enable record optical atomic coherence (37 s) and expected

single clock stability (3.1×10−18 at 1 s) using macroscopic samples, paving the way toward lifetime

limited OLC operation.

Central to our experiment is an in-vacuum optical cavity (Fig. 1a and Methods) for power

enhancement of the optical lattice. The cavity (finesse 1100) ensures wavefront homogeneity of our

1D lattice while the large beam waist (260 µm) reduces the atomic density by an order of magnitude

compared to our previous system [19]. We begin each experiment by trapping fermionic 87Sr atoms

into the 1D lattice at a trap depth of 300 lattice photon recoil energies (Er), loading a millimeter

scale atomic sample (Fig. 1a). Atoms are simultaneously cooled and polarized into a single nuclear

spin before the lattice is adiabatically ramped to an operational depth operational depth of 12 Er

and prepare atoms into a single nuclear spin. Clock interrogation proceeds by probing the ultra-
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narrow 1S0 (g) � 3P0 (e) transition with the resulting excitation fraction measured by fluorescence

spectroscopy. Scattered photons are collected on a camera, enabling in-situ measurement with 6

µm resolution, corresponding to ∼15 lattice sites (Fig. 1a).

Quantum state control has been vital to recent advances in atom-atom and atom-light co-

herence times in 3D OLCs and tweezer clocks [33, 93, 154]. Improved quantum state control is

demonstrated through precision spectroscopy of the Wannier-Stark states of the OLC [149, 81].

The 1D lattice oriented along gravity has the degeneracy of neighboring lattice sites lifted by the

gravitational potential energy. In the limit of shallow lattice depths, this creates a set of delocalized

states. By ramping the lattice depth to 6 Er, much lower than in traditional 1D lattice operations

[109, 98, 19], clock spectroscopy probes this delocalization (Fig. 1d). The ability to engineer the

extent of atomic wavefunctions through the adjustment of trap depth creates an opportunity to

control the balance of on-site p-wave versus neighboring-site s-wave atomic interactions. We utilize

this tunability by operating at a ‘magic’ trap depth [1], where the frequency shifts arising from on-

site and off-site atomic interactions cancel, enabling a reduction of the collisional frequency shifts

by more than three orders of magnitude compared our previous work [19].

Extended atomic coherence times are critical for both accuracy and precision. An aspirational

milestone for clock measurement precision is the ability to coherently interrogate atomic samples

up to the excited state’s natural lifetime. To evaluate the limits of our clock’s atomic coherence,

we perform Ramsey spectroscopy to measure the decay of fringe contrast as a function of the free-

evolution time. By comparing two uncorrelated regions within our atomic sample, we determine

the contrast and relative phase difference between the two sub-ensembles (Fig. 2). The contrast

decays exponentially with a time constant of 37 s (quality factor of 3.6×1016), corresponding to an

additional decoherence time of 53 s relative to the 3P0 natural lifetime (118 s [104]). This represents

the longest optical atomic coherence time measured in any spectroscopy system to date.

We utilize Rabi spectroscopy in conjunction with in-situ imaging to microscopically probe

clock transition frequencies along the entire vertically oriented atomic ensemble. With a standard

interleaved probing sequence using the |g,mF = ±5/2〉 to |e,mF = ±3/2〉 transitions for minimal
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Figure 6.2: Atomic coherence. We use Ramsey spectroscopy with a randomly sampled phase
for the second pulse to determine the coherence time of our system [93]. a, We measure the
excitation fraction across the cloud, shown in purple for a single measurement, and calculate the
average excitation fractions in regions p1 and p2, separated by 2 pixels. b, Parametric plots of
the excitation fraction of p1 versus p2 in purple for 6 s, 30 s and 50 s dark time demonstrate a
phase shift between the two regions and contrast decay. Using a maximum likelihood estimator, we
extract the phase and contrast for each dark time with the fit, shown in green. c, Contrast decay
as a function of time in green is fit with an exponential decay in gold, giving an atomic coherence
decay time of 36.5(0.7) s and a corresponding quality factor of 3.6× 1016. After accounting for the
finite radiative decay contribution, we infer an additional decoherence time constant of 52.8(1.5) s.
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magnetic sensitivity, we reject the first order Zeeman shifts and vector AC Stark shifts. The in-situ

imaging of atoms in the lattice allows measurement of unprocessed frequencies across the entire

atomic sample (Fig. 1a and Methods). The dominant differential perturbations arise from atom-

atom interactions (residual density shift contributions after we operate at the ‘magic’ trap depth)

and magnetic field gradients giving rise to pixel-specific second order Zeeman shifts. Using the

total camera counts and mF -dependent frequency splitting, we correct the density and second order

Zeeman shift at each pixel. These corrections result in the processed frequencies per pixel shown in

Fig. 3a, with error bars representing the quadrature sum of statistical uncertainties from the center

frequency, the density shift correction, and the second order Zeeman shift correction. Additional

systematics are described in the Methods. This approach demonstrates an efficient method for

rapid and accurate evaluation of various systematic effects throughout a single atomic ensemble.

Unlike traditional 1D OLCs where systematic uncertainties are quoted as global parameters, we

now microscopically characterize these effects.

This new microscopic in-situ imaging allows determination of the gravitational redshift within

a single atomic sample, probing an uncharacterized fundamental clock systematic. Two identical

clocks on the surface of a planet separated by a vertical distance h will differ in frequency (δf) as

given by

δf

f
=
ah

c2
, (6.1)

with f the clock frequency, c the speed of light, and a the gravitational acceleration. The gravita-

tional redshift at Earth’s surface corresponds to a fractional frequency gradient of−1.09×10−19/mm

in the coordinate system of Fig. 1a. Measurement of a vertical gradient across the atomic sample

consistent with the gravitational redshift provides an exquisite verification of an individual atomic

clock’s frequency control.

Our intra-cloud frequency map (Fig. 3a) allows us to evaluate gradients across the atomic

sample. Over 10 days we performed 14 measurements (ranging in duration from 1-17 hours) to
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Figure 6.3: Evaluating frequency gradients. a, For each measurement we construct a microscopic
frequency map across the sample, with raw frequencies shown in green. The second order Zeeman
correction is shown as a dashed gold line. Processed frequencies shown in purple include both
density shift corrections and second order Zeeman corrections, with uncertainties arising from
the quadrature sum of statistical, density shift correction, and second order Zeeman correction
uncertainties. To this we fit a linear function, shown in black. b, Over the course of 10 days, we
completed 14 measurements. For each measurement, we create a corrected frequency map and fit
a linear slope as in a. This slope is plotted for each measurement, as well as a weighted mean
(black) with associated statistical uncertainty (dashed black) and total uncertainty as reported in
this chapter’s table (dotted black). The expected gravitational gradient is shown in red. All data is
taken with Rabi spectroscopy using a 3.1 s π-pulse time except for 08/13 which used a 3.0 s pulse
time. The reduced chi-square statistic is 3.0, indicating a small underestimation of error variances
entirely consistent with the additional systematic uncertainties in Table 1.



109

search for the gravitational redshift across our sample. For each dataset we fit a linear slope and

offset, reporting the slope in Fig. 3b. From this measurement campaign we find the weighted mean

(standard error of the weighted mean) of the frequency gradient in our system to be −1.00(12) ×

10−19/mm. We evaluate additional differential systematics (see Methods) and find a final frequency

gradient of −9.8(2.3)× 10−20/mm, consistent with the predicted redshift.
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Figure 6.4: In-situ synchronous clock comparison. a, The cloud is separated as in Fig. 2a. The
gravitational redshift leads to the higher clock(blue) ticking faster than the lower one(red). The
length scale is in millimeters. b, Allan deviation of the frequency difference between the two regions
in a over 92 hours. Purple points show fractional frequency instability fit by the solid green line,
with the quantum projection noise limit indicated by the dashed black line. We attribute the
excess instability of the measurement relative to QPN to detection noise. The expected single
atomic region instability is shown in gold.

The ability to resolve the gravitational redshift within our system suggests a level of fre-

quency control beyond previous clock demonstrations, vital for the continued advancement of clock
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accuracy and precision. Previous fractional frequency comparisons [154] have reached uncertainties

as low as 4.2 × 10−19. Similarly, we perform a synchronous comparison between two uncorrelated

regions of our atomic cloud (Fig. 4a). By binning ∼100 pixels per region, we substantially reduce

instability caused by quantum projection noise [89]. Analyzing the frequency difference between

regions from 92 hours of data, we find a fractional frequency instability of 4.4× 10−18/
√
τ (τ is the

averaging time in seconds), resulting in a fractional frequency uncertainty of 7.6 × 10−21 for full

measurement time, nearly two orders of magnitude lower than the previous record. From this mea-

surement we infer a single region instability of 3.1 × 10−18/
√
τ . Dividing the fractional frequency

difference by the spatial separation between each region’s center of mass gives a frequency gradient

of −1.30(18)× 10−19/mm. Correcting for additional systematics as before results in a gradient of

−1.28(27)× 10−19/mm, again fully consistent with the predicted redshift.

In conclusion, we have established a new paradigm for atomic clocks. The vastly improved

atomic coherence and frequency homogeneity throughout our sample allow us to resolve the grav-

itational redshift at the submillimeter scale, observing for the first time the frequency gradient

from gravity within a single sample. We demonstrate a synchronous clock comparison between two

uncorrelated regions with a fractional frequency uncertainty of 7.6 × 10−21, advancing precision

by nearly two orders of magnitude. These results suggest that there are no fundamental limita-

tions to inter-clock comparisons reaching frequency uncertainties at the 10−21 level, offering new

opportunities for tests of fundamental physics.

6.1 Methods

6.1.1 In-Vacuum Cavity

Central to our system is an in-vacuum lattice buildup cavity oriented along gravity (Fig.

1a). Two mirrors with radius of curvature of 1 m are separated by ∼17 cm, achieving a mode

waist of 260 µm. Our over-coupled cavity has a finesse at the lattice wavelength (813 nm) of 1100

and a power buildup factor of 700 (ratio of circulating to input intensity). This enables lattice
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depths in excess of 500 Er (lattice photon recoil energy) using a diode-based laser system. The

dimensional stability of the cavity combined with the simplified diode laser system enables robust

operation compared with our previous Ti:Sapphire retro-reflected design [19]. The cavity mirrors

are anti-reflection coated at the clock wavelength of 698 nm.

One cavity mirror is mounted to a piezo for length stabilization while the other mirror is

rigidly mounted for phase reference for the clock laser. Grounded copper shields between atoms

and mirrors prevent DC Stark induced shifts due to charge buildup on the mirrors and piezo [29, 85].

Each shield (5 mm thick) has a centered hole of 6 mm diameter to accommodate the optical lattice

beam, with shielding performance verified through evaluation of the DC Stark shift systematic.

6.1.2 Atomic Sample Preparation

87Sr atoms are cooled and loaded into a 300 Er optical lattice using standard two stage

magneto-optical trapping techniques [19]. Once trapped, atoms are simultaneously nuclear spin

polarized, axially sideband cooled, and radially doppler cooled into a single nuclear spin state at

temperatures of 800 nK. The lattice is then adiabatically ramped to the operational trap depth of

12 Er, where a series of pulses addressing the clock transition prepares atoms into |g,mF = ±5/2〉.

Clock spectroscopy is performed by interrogating the |g,mF = ±5/2〉 to |e,mF = ±3/2〉 transition,

the most magnetically insensitive 87Sr clock transition [112].

6.1.3 Imaging

The clock excitation fraction is read out using standard fluorescence spectroscopy techniques

[33, 93, 80]. Photons are collected on both a photo-multiplier tube for global readout and electron

multiplying charge coupled device camera for an in-situ readout of clock frequency. Camera readout

is performed in full vertical binning mode, averaging the radial dimension of the lattice. This

provides 1D in-situ imaging for all synchronous evaluations.

We use a 25 µs fluorescence probe with an intensity of I/Isat ∼ 20 (Isat being the saturation

intensity), ensuring uniform scattering across the atomic sample. Before imaging, the optical
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lattice is ramped back to 300 Er to decrease imaging aberration resulting from the extended radial

dimension at 12 Er.

6.1.4 Analysis

Standard clock lock techniques and analysis are used [112, 93, 89], with differences in excita-

tion fraction converted to frequency differences using Rabi lineshapes. Each dataset is composed of

a series of clock locks, tracking the center of mass frequency of the atomic sample. A clock lock is

four measurements probing alternating sides of the Rabi lineshape for opposite nuclear spin tran-

sitions. Frequency corrections based on excitation fraction become ambiguous when the excitation

fraction measured is consistent with the Rabi lineshape at multiple detunings. To avoid erro-

neous frequency corrections, we remove clock locks with excitation fractions above (below) .903×C

(.116×C), where C is the Rabi contrast. From each clock lock, a pixel specific center frequency fi

and frequency splitting between opposite mF states ∆i are calculated, creating an in-situ frequency

map of the 1D atomic sample. This allows rejection of vector shifts on a pixel-by-pixel basis and

probes the magnetic field induced splitting of mF transitions. The atom weighted mean frequency

is subtracted from every lock cycle to reject common mode laser noise.

For each dataset we approximate the atomic profile with a Gaussian fit, identifying a center

pixel and associated Gaussian width (σ). All analysis is performed within the central region of

±1.5σ which demonstrates the lowest frequency instability. Identifying a center pixel for data

processing ensures rejection of any day-to-day drift in the position of the cloud due to varying

magnetic fields modifying MOT operation on the narrow line transition. The density shift coefficient

(see Density Shift section) is derived from the average center frequency per pixel. Using this

coefficient, we correct fi and ∆i for the density shift. second order Zeeman corrections using these

updated frequencies are then applied.

Gradient analysis is based on the processed center frequencies per pixel. A linear fit to

the frequencies as a function of pixel is performed using least squares, with uncertainty per pixel

arising from the quadrature sum of statistical frequency uncertainty, statistical second order Zeeman
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uncertainty, and density shift correction uncertainty.

For the two-clock comparison (Fig. 4b), all data from 8/14-8/22 was taken with the same

duty cycle and π-pulse time (3.1 s). Data was processed relative to a fit center pixel as discussed

and concatenated. Two equal regions extend from the center of the sample to a width of ±1.5σ ,

with two empty pixels between regions to ensure uncorrelated samples. Each region is processed

for the atom weighted mean frequency, enabling a synchronous frequency comparison between two

independent clocks.

6.1.5 Atomic Coherence

We use a Ramsey sequence to measure the atomic coherence. We prepare a sample in the

|g,mF = +5/2〉 state and apply a π/2 pulse along the |g,mF = +5/2〉 to |e,mF = +3/2〉 transition.

After waiting for a variable dark time, we apply a second π/2 pulse with a random phase relative

to the first. We then measure the excitation fraction.

Two regions, p1 and p2, are identified using the same technique as in the synchronous in-

stability measurement. For each experimental sequence, we find the average excitation fraction in

p1 and p2. A mean frequency shift across the sample primarily due to a magnetic field gradient

creates a differential phase as a function of time between p1 and p2. We create a parametric plot

of the average excitation in p1 and p2 for each dark time and use a maximum likelihood estimator

to fit an ellipse to each dataset, calculating phase and contrast [154, 93]. To estimate uncertainty

in the contrast for each dark time a bootstrapping technique is used [93]. Fitting the contrast as a

function of dark time with a single exponential returns an effective atomic coherence time.

6.1.6 Systematics

6.1.6.1 Imaging

We calibrate our pixel size using standard time of flight methods: we observe an atomic

sample in freefall for varying times to determine an effective pixel size along the direction of gravity.

Immediately after our 10-day data campaign we measured our effective pixel size to be 6.04 µm.
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Due to thermal drift of our system, the pixel size can vary by up to 0.5 µm/pixel over months

which we take as the calibration uncertainty.

Spatial correlations may limit imaging resolution. We measure these correlations by placing

atoms into a superposition of clock states. Any measured spatial correlation is due to the imaging

procedure. In our system we find no correlations between neighboring pixels [93]. The optical

resolution of our imaging lens is specified at 2 µm.

Lattice tilt from gravity will modify the measured gradient. We find the lattice tilt in the

imaging plane to be 0.11(0.06) degrees, providing an uncertainty orders of magnitude smaller than

the pixel size uncertainty. We are insensitive to lattice tilt out of the imaging plane.

6.1.6.2 Zeeman Shifts

First order Zeeman shifts are rejected by probing opposite nuclear spin states [112]. The

second order Zeeman shift is given by

∆νB,22 = ξ(∆νB,1)2, (6.2)

where ∆νB,1 is the splitting between opposite spin states and ξ the corresponding second order

Zeeman shift coefficient. For stretched spin state operation (mF = ±9/2), ξ = −2.456(3) × 10−7

Hz−1. Using known atomic coefficients [22] we find the second order Zeeman coefficient for the

|g,mF = +5/2〉 to |e,mF = +3/2〉 transition to be ξop = −1.23(8)×10−4 Hz−1, with the uncertainty

arising from limited knowledge of atomic coefficients.

The second Order Zeeman corrections are made for every clock lock (analogous to the in-

situ density shift corrections). For a typical day (8/13) the average second order Zeeman gradient

is −7.0 × 10−20/mm, corresponding to a splitting between opposite nuclear spin states of 12.7

mHz/mm (0.291 mG/mm). We include an error of 4× 10−21/mm in the below table to account for

the atomic uncertainty in the shift coefficient.
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6.1.6.3 DC Stark

Electric fields perturb the clock frequency via the DC Stark effect. We evaluate gradients

arising from this shift by using in-vacuum quadrant electrodes to apply bias electric fields in all

three dimensions. We find a DC Stark gradient of 3(2)× 10−21/mm.

6.1.6.4 Black Body Radiation Shift

The dominant frequency perturbation to room temperature neutral atom clocks is black body

radiation (BBR). Similar to our previous work [19], we homogenize this shift by carefully controlling

the thermal surroundings of our vacuum chamber. Attached to the vacuum chamber are additional

temperature control loops, with each vacuum viewport having a dedicated temperature control

system. This ensures our dominant BBR contribution – high emissivity glass viewports – are all

the same temperature to within 100 mK.

To bound possible BBR gradients, we introduce a 1 K gradient between the top and bottom

of the chamber along the cavity axis by raising either the top or bottom viewports by 1 K. We

compare these two cases and find no statistically significant changes in the frequency gradient across

the entire sample. Accounting for uncertainty in linear frequency fits for each case, we estimate an

uncertainty of 3× 10−21/mm. This finding is supported with a basic thermal model of the vacuum

chamber.

6.1.6.5 Density Shift

Atomic interactions during Rabi spectroscopy lead to clock frequency shifts as a function

of atomic density [95]. For each gradient measurement, we evaluate the density shift coefficient

χdens by fitting the average frequency f per pixel versus average camera counts per pixel N to an

equation of the form

f(N) = χdensN +B. (6.3)
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Here B is an arbitrary offset. Once χdens is known, we remove the density shift at each pixel.

Residual density shift corrections may lead to error in our linear gradient. To bound this

effect, we compare the density shift coefficient and gradient from our data run with a separate

dataset at 8 Er. With the trap depth at 8 Er we found a linear gradient of s= −1.08× 10−18/mm

and a density shift coefficient of χ8 = −1.39 × 10−6 Hz/count. During our data run we had an

average density shift coefficient of χop = −2.43× 10−8 Hz/count. We bound the uncertainty in our

gradient from density shift as σden,unc = |s× χop/χ8| = 1.7× 10−20/mm.

6.1.6.6 Lattice Light Shifts

Lattice light shifts arise from differential AC Stark shifts between the ground and excited

clock states. An approximate microscopic model of the lattice light shift (νLS) in our system is

given by [140]

hνLS(u, δL) ≈
(

∆αE1

δν
−∆αQM

)
u1/2

2
−
[
δαE1

δν
δL

]
u, (6.4)

where u is the trap depth in units of Erec, ∆αE1 the differential electric dipole polarizability, ∆αQM

the differential multi-polarizability, and δL = (νL− νE1) the detuning between lattice frequency νL

and effective magic frequency νE1. Our model has no dependence on the longitudinal vibrational

quanta since we are in the ground vibrational band. We neglect higher order corrections from

hyperpolarizability due to our operation at depths <60 Er. At our temperatures thermal averaging

of the trap depth is a higher order correction (< 5%) that is also neglected.

We model the linear differential lattice light shift across the atomic cloud as

δhνLS(u, δL)

δz
≈
[

( δα
E1

δν )

4u1/2
− δαE1

δν
δL

]
δu

δz
(6.5)

where z is the coordinate corresponding to the axis of the cavity along gravity. To evaluate our

differential lattice light shift at our operational depth we need δL and δu
δz . We modulate our lattice

between two trap depths (u1 = 14 Er, u2 = 56 Er) and find our detuning from scalar magic
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frequency to be δL=7.4(0.6) MHz. To evaluate δu
δz at our operational depth (uop) we measure the

linear gradient across the atomic cloud at δL + 250 MHz and δL− 250 MHz, the difference given by

δhνLS(uop, δL+250MHz)

δz
− δhνLS(uop, δL−250MHz)

δz
≈
[

1

4u
1/2
op

− 1

]
δαE1

δν
δ500

δuop
δz

, (6.6)

where δ500 = 500 MHz. We find (δuop/δz)=0.0383/mm, which when combined with δL = 7.4 MHz,

gives us a fractional frequency gradient of −5 × 10−21/mm. Accounting for error in our lattice

detuning and linear gradient gives us an uncertainty of 1× 10−21/mm.

6.1.6.7 Other Systematics

For a 3.1 s π-pulse the probe AC Stark shift7 is -3(2)×10−21. A frequency scan of the

|g,mF = −5/2〉 to |e,mF = −3/2〉 transition limits the variation of excitation fraction across the

atomic sample to 1% or below, bounding any possible probe AC Stark gradient across the sample

to < 1× 10−22.

6.1.6.8 Known Redshift

The gravitational acceleration (rounding to 4 digits) within our lab was evaluated by a USGS

survey to be a=-9.796 m/s2.
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Systematic Slope (10−20/mm) Uncertainty (10−20/mm)

Gradient -10.0 1.2
BBR 0 0.3

Density - 1.7
Lattice light shift -0.5 0.1

DC Stark 0.3 0.2
Pixel Calibration 0 0.8

Second Order Zeeman - 0.4
Other 0 < 0.1

Corrected Gradient -9.8 2.3

Known Redshift -10.9 <0.1

Table 6.1: Gradient Systematic Budget. Fractional frequency gradients and corresponding uncer-
tainties. Fractional frequencies denoted with ‘-‘ are corrected on a pixel-by-pixel basis during initial
data processing (Fig. 3a). The corrected gradient has known systematics removed with uncertainty
given by the quadrature sum of all correction uncertainties.



Chapter 7

Lattice Light Shifts

While the proposal of trapped ion clocks came as early as 1982 [41], the development of the

neutral atom frequency standards came significantly later. In the late 1990’s, the quantum optics

community was beginning to wrestle with the issue of far off resonant traps (FORTs) providing

deleterious AC Stark shifts for different electronic states [153]. In tandem, interest was growing in

the use of forbidden transitions (specifically 1S0 →3P1 transitions) for frequency references. Out of

these ideas came the proposal to trap strontium atoms in a 1D lattice at the ‘magic wavelength’,

where the perturbation to ground and excited clock states (now 1S0 →3P0) were equal. This

allowed Doppler-free confinement of neutral atoms without differential lattice induced AC Stark

shifts (lattice light shifts). The idea would be expanded to other Alkaline-Earth and Alkaline-Earth

like atoms, with an initial flurry and race amongst national labs to establish new atoms.

Ultimately the idea of a ‘magic wavelength’, as with all physics, is an imperfect approximation

to the world around us. While the magic wavelength condition may be satisfied in the dipole

approximation, higher order perturbations lead to an over-confined problem - for a thermal sample,

insufficient degrees of freedom exist to ensure each atom experiences no differential AC Stark

shift from the lattice. Magnetic dipole and electric quadrapole terms, as well as higher order

intensity terms (hyperpolarizability) lead to challenging trapping requirements in order to achieve

inaccuracy at the 10−18 level. In the 1D clock, evaluation of atomic wavefunctions is necessary to

properly account for the average potential experienced by the atoms and corresponding light shifts.

Unfortunately, this is far more complicated than previous linear light shift models [109].
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The newest version of Sr1 has been built with the goal of studying lattice light shifts. From

the beginning, the Sr1 system was designed to utilize shallow trap depths (∼ 10 Er), effectively

eliminating hyperpolarizability contributions. This places Sr1 in the position to carefully study

lattice light shifts scaling as
√
u and u (u being trap depth in units of Er). Towards this we will

first review the origins of the lattice light shift, referencing the work of [28, 107]. We will then

discuss possible approaches towards lattice light shift evaluations in the Sr1 system.

7.1 AC Stark Shift From Electric Dipole Interaction - π Transitions

We begin our discussion of the lattice light shift by first focusing on the AC Stark effect arising

from the differential electric dipole (E1) polarizability between the ground and excited state. The

corresponding clock shift in frequency for ∆mF = 0 transitions is given by [147]

∆νE1 = (∆κs + ∆κvmF ξ ~ek · ~eB + ∆κtβ)U0. (7.1)

Here we have used irreducible tensors to explicitly give the scalar, vector, and tensor shift con-

tributions as ∆κs, ∆κv, and ∆κt respectively. ~ek and ~eB are the unit vectors along the lattice

propagation wavevector and quantization axis (as defined by an external bias field) respectively. ξ

is the degree of circularity and is given by ξ ~ek = i~ε × ~ε∗ where ~ε is the complex polarization unit

vector. Finally β = (3|~ε · ~eB|2 − 1)[3m2
F − F (F + 1)].

From Equation 7.1 we connect with the traditional approach of operating the 1D optical lat-

tice clock. Consider the vector shift contribution. We ensure excellent rejection of this perturbation

three ways. First, during clock operation we probe opposite mF states, where the average frequency

of the two rejects the vector shift. Second, we use linearly polarized light (ξ ≈ 0). Third, we operate

with the bias field as close to perpendicular to the lattice wavevector as possible (~ek · ~eB ≈ 0).

Note that Equation 7.1 must be modified for σ transitions owing to different mF values

between ground and excited clock states [127].
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7.2 Atom-Light Hamiltonian

A goal of this chapter is to elucidate the origins of the various lattice light shift terms. We

first consider a single electron in an atom, with the atom’s center of mass at the origin. We begin

with the standard Hamiltonian for an electron interacting with radiation [64, 37, 23, 141],

Ĥ =
1

2me

(
p̂+ eA

)2
+ V. (7.2)

Here me is the reduced electron mass, p̂ = −i~∇ is the momentum operator, A the vector potential,

and V the Coloumb potential experienced by the electron due to the the atomic nucleus and other

electrons. Expanding the square we can rewrite this as

Ĥ = Ĥ0 + Ŵ1 + Ŵ2 (7.3)

where

Ĥ0 =
p̂2

2me
+ V,

Ŵ1 =
e

m
A · p̂

Ŵ2 =
q2

2m
A2.

(7.4)

Ĥ0 is the field-free portion of the Hamiltonian (and basis used for calculating the perturbations

of the Ŵ terms). Ŵ1 is the perturbation that corresponds to first order in A. The A2 term is

incredibly weak (and a two photon term) - we will discuss this later and instead focus our attention

on Ŵ1. Using the Coloumb gauge (∇ ·A = 0), we then have

∇ ·
(
AΨ

)
= A ·

(
∇Ψ

)
+
(
∇ ·A

)
Ψ (7.5)

= A ·
(
∇Ψ

)
. (7.6)

To proceed we will consider a plane wave interacting with the electron, with vector potential,

electric field, and magnetic field given by
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A(r, t) =
A0

2

(
εei(k·r−ωt) + ε∗e−i(k·r−ωt)

)
E(r, t) =

iE0

2

(
εei(k·r−ωt) − ε∗e−i(k·r−ωt)

)
B(r, t) =

iB0

2

k

k
×
(
εei(k·r−ωt) − ε∗e−i(k·r−ωt)

) (7.7)

where we recall E(r, t) = − ∂
∂tA(r, t) and B(r, t) = ∇×A(r, t). ε specifies the polarization of the

plane wave. Following the notation of [64] we can write Ŵ1 in terms of the transition operator D̂.

Ŵ1 =
eE0

2

(
D̂e−iωt − D̂∗e+iωt

)
(7.8)

where

D̂ =
eik·r

ωme
p̂ · ε

=
1

ωme

(
1 + ik · r + ...

)
p̂ · ε

=
p̂ · ε
ωme

+
i

ωme

(
k · r

)(
p̂ · ε

)
= D̂E1 + D̂QM .

(7.9)

The electron orbit is much smaller than the wavelength of the optical light we are considering,

meaning k · r << 1. To this end we break D̂ into D̂E1 and D̂QM which correspond to dipole (E1)

and electric quadrupole (E2)/magnetic dipole (M1) transitions respectively.

Our goal is to now explore the matrix elements corresponding to transitions between states.

These will in turn be used to give us our oscillator strength and polarizability for use in AC Stark

calculations.

7.2.1 Matrix Elements of D̂E1

We define the dipole transition matrix element between two states |i〉 and |j〉 as DE1,ij .
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DE1,ij = 〈j| p̂ · ε
ωijme

|i〉

= 〈j| p̂ |i〉 · ε

ωijme

= 〈j| me

i~
[
r, Ĥ0

]
|i〉 · ε

ωijme

= −i 〈j| r |i〉 · ε

(7.10)

We have used the Heisenberg equations of motion to handle p̂. Also note since we are calculating

the dipole transition matrix elements we are interested in the case of resonance radiation currently,

setting ω = ωij . This is the usual dipole transition, with a dipole moment coupling to the electric

field.

7.2.2 Matrix Elements of D̂QM

Just like for E1, we define the multipolar (QM) transition matrix element between two states

|i〉 and |j〉 as DQM,ij .

DQM,ij = i 〈j|
(
k · r

)(
p̂ · ε

)
mωij

|i〉 (7.11)

Note this is not a perfect notation since as we will see the QM term is composed of two different

transition types, each with their own selection rules: the M1 transition and E2 transition.

A scalar quadruple product has the following relation in 3D Euclidean space:

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c). (7.12)

allowing us to rearrange (using the commutativity of p̂ and ε).

(k · r)(p̂ · ε) = (k × ε) · (r × p̂) + (k · p̂)(ε · r). (7.13)

We now focus on each part separately.
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7.2.2.1 M1 Transition Elements

We define the transition matrix element for M1 transitions as

DM1,ij = i 〈j| (k × ε) · (r × p̂)

mωij
|i〉 . (7.14)

We immediately note that L̂ = (r×p̂). Since we have neglected spin to this point in the calculation,

we substitute L̂→ L̂+ 2Ŝ [23]. Additionally, for a plane wave note that (k× ε) = kB0
B0

(B0 being

the magnetic field of the plane wave). We can then rewrite Equation 7.14 as

DM1,ij =
ik

meωij
〈j| B0

B0
·
(
L̂+ 2Ŝ

)
|i〉 . (7.15)

This makes it clear that the M1 transition matrix elements couple to the magnetic field.

7.2.2.2 E2 Transition Elements

We define the transition matrix element for E2 transitions as

DE2,ij = i 〈j| (k · p̂)(ε · r)

mωij
|i〉 (7.16)

Accounting for all possible options in cartesian coordinates this can be rewritten as

DE2,ij =
i

mωij

∑
mn

kmεn 〈j| p̂mrn |i〉 . (7.17)

We stop here and note that for a situation like our lattice with a plane wave propagating along ẑ

and polarization parallel to x̂, we get

DE2,ij =
i

mωij
k 〈j| p̂zx |i〉 . (7.18)

For our 1D lattice setup, this then corresponds to taking the gradient of the electric dipole operator.

We then see that while the E2 transition couples to the electric field, it does so to the gradient.
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For completion, we can rearrange the Equation 7.17 to bring it in line with the form often

quoted in the literature. Recalling operator algebra, we note that p̂mrnψ = (pnrn)ψ + rn(pmψ).

Using this to rewrite Equation 7.17 and recalling ime
~ [H0, r] = p, we find

DE2,ij =
∑
mn

kmεn 〈j| rmrn |i〉 . (7.19)

7.2.3 Quick Notes on Order of Magnitudes

7.2.3.1 Order of Magnitude: E1 vs QM

In our derivation we found the QM transitions by including the next order expansion term

k · r. We can estimate the ratio RQM/E1 of the QM to E1 transition matrix elements as

RQM/E1 = kr

≈ 2π

λ
a0

≈ 10−3

(7.20)

where λ = 813 nm. Since the AC Stark shift corresponds to these transition matrix elements

squared, that means the QM terms are nearly order ≈ 10−6 relative to the E1 terms. This is a

pedagogical argument that is consistent with the 10−6 value found in the literature [7].

Importantly, this tells us we are safe to ignore the next order expansion term corresponding

to (k · r)2, since for depths of ∼ 10 Er the lattice light shift from the QM term is around 1× 10−18

meaning the next term is a shift at the 1× 10−24 level or below.

7.2.3.2 Dropping the A2 Term

It is standard to drop the A2 term in the atom-light Hamiltonian. To see why we can ignore

A2, we can estimate the ratio RA2 of eA to p̂.
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RA2 =
eA

p

≈ eE0/ω

~

≈ ~Ω

~ω

≈ 10−8

(7.21)

We find this estimate assuming a Rabi frequency of 10 MHz and optical frequency of 1×1015. Even

compared to the M1/E2 term coming from k · r, RA2 is negligible and safe to ignore.

Finally, note that A2 has no atomic part and thus cannot lead to transitions [141].

7.3 AC Stark Shift From E1, M1, and E2

In the previous section we explored the origin of the E1, M1, and E2 transitions matrix

elements, essential for calculating oscillator strengths between atomic transitions. Now we are

interested in the question of the perturbation on the atomic energy levels arising from off-resonant

radiation - the AC Stark effect. Recall that this is a second order perturbation in field, corresponding

to intensity.

The AC Stark shift is given by [64]

∆EAC = −α(ω)

4
E2

0

= −α(ω)

2

I

ε0c

= − e2I

2ε0cme

∑
j 6=i

foptji

ω2
ji − ω2

(7.22)

where I in the intensity of the radiation, given by E2
0 = 2I

ε0c
. α is the polarizability. foptji is given by

[64]

foptji =
2Wji

Eh

∣∣∣∣Dji

a0

∣∣∣∣2, (7.23)
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where Eh is the Hartree energy and Wji = Ej − Ei. Finally combining all the relevant Dji

contributions we arrive at the AC Stark shift using the matrix elements we have calculated.

∆EAC =
e2I

Ehε0cme

∑
j 6=i

Wji

ω2
ji − ω2

∣∣∣∣Dji

a0

∣∣∣∣2
=

e2I

Ehε0cme

∑
j 6=i

Wji

ω2
ji − ω2

(∣∣∣∣DE1,ji

a0

∣∣∣∣2 +

∣∣∣∣DM1,ji

a0

∣∣∣∣2 +

∣∣∣∣DE2,ji

a0

∣∣∣∣2)
(7.24)

Typically for the dipole approximation one only considers DE1,ji, but it is clear that we have M1

and E2 contributions as well.

Recall the electric field for a standing wave along z (we’ll discuss the transverse confinement

in the following sections):

E(z, t) = 2E0ε cos(kz) cos(ωt). (7.25)

We now need to account for the spatial position of our atoms along z, carefully considering how each

polarizablity term couples. Considering the strength of E1 relative to the other terms, the atoms

are trapped at the potential maxima to excellent approximation. Thus, our spatial distribution is

defined by the E1 polarizability which couples to the potential corresponding to electric field (∝

cos2(kz)). The M1 polarizability, dependent on the magnetic field, and E2 polarizability, dependent

on the gradient of the electric field, are both ∝ sin2(kz). Since the M1 and E2 have the same spatial

dependence in our lattice, we combine them into one QM polarizability term. Finally, we consider

the next order perturbation corresponding to 4 photon transitions. Since this is dominated by the

E1 terms (and fourth order in field), the hyperpolarizability is then ∝ cos4 kz. Combining all of

this we arrive at the functional form for the lattice light shift in our 1D system for either the ground

|g〉 or excited |e〉 clock state.

UACg(e)(I) = −αE1
g(e)I cos2 kz − αqmg(e)I sin2 kz − βg(e)I2 cos4 kz (7.26)

where αE1
g(e) is the dipole polarizability, αQMg(e) is the multipolarizability corresponding to M1 and

E2, and βg(e) is the hyperpolarizability. Note that additional corrections for radial dimensions are
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discussed next. In the 1D clock system, this corresponds to modifying the intensity terms by a a

Gaussian.

With Equation 7.26 we now have the general form of the lattice light induced AC Stark shift

essential for deriving lattice light shift models [107, 7].

7.4 Harmonic Model

It is important to have a model for our lattice light shift study that is readily understood by

physicists using standard analysis techniques. As such we will first approximate our optical lattice

as a harmonic trap. Such an approach is not new and has undergone theoretical development in

[114, 71, 28]. For the reader who wishes to jump ahead, we will be deriving Equation 2 in [28], which

is what we will call the harmonic model. This section will detail exactly how to arrive at this

equation used in the aforementioned references, ensuring we can connect upcoming experimental

analysis with the results of Chapter 2 as well as the work of the NIST and Riken clock groups.

We first write the 1D optical potential Ulat(ρ, z) as

Ulat(ρ, z) ≈ −U0e
−κ2ρ2 cos2(kz), (7.27)

where κ =
√

2
ω0

. We use cylindrical coordinates, with z the axial direction and ρ describing the radial

direction. We assume radial symmetry and a lattice waist ω0. We rewrite Equation 7.26 using the

spatial form of the potential given in Equation 7.27. Recall that we are using g(e) to denote the

ground(excited) clock state. Also recall that we are still only describing the potential - we haven’t

included atomic wavefunctions or spatial expectation values.

UACg(e)(I) = −αE1
g(e)I(ρ, z) cos2 kz − αqmg(e)I(ρ, z) sin2 kz − βg(e)I(ρ, z)2 cos4 kz

= −αE1
g(e)I0e

−κ2ρ2 cos2 kz − αqmg(e)I0e
−κ2ρ2 sin2 kz − βg(e)I2

0e
−2κ2ρ2 cos4 kz

(7.28)

Here I0 is the peak intensity. We then expand in powers of z and ρ (see Appendix A.2), collecting

terms of equal powers.



129

UACg(e)(I) = −αE1
g(e)I0 − βg(e)I2

0

+ k2z2(αg(e)I0 + 2βg(e)I
2
0 )

− k4z4

3
(αg(e)I0 + 5βg(e)I

2
0 )

+ κ2ρ2(αE1
g(e)I0 + 2βg(e)I

2
0 )

− κ4ρ4

2
(αE1

g(e)I0 + 4βg(e)I
2
0 )

− κ2k2ρ2z2(αg(e)I0 + 4βg(e)I
2
0 )

(7.29)

Note that αg(e) = αE1
g(e)−α

QM
g(e) . For a discussion of the coupling of radial/axial terms (z and ρ) see

[14, 15, 7].

From Equation 7.29 we first perform standard normal mode analysis to find the radial and

axial trapping frequencies. We first find the axial trapping frequency ωz.

mω2
z =

∂2Ulat(ρ = 0, z)

∂z2

∣∣∣∣
z=0

= 2k2(αI0 + 2βI2
0 )

(7.30)

Similarly, we find the radial trapping frequency ωρ.

mω2
ρ =

∂2Ulat(ρ, z = 0)

∂ρ2

∣∣∣∣
ρ=0

= 2κ2(αE1I0 + 2βI2
0 )

(7.31)

Notice that the two are quite similar but with the switch of κ for k and αE1 for α. The normal

mode analysis for the radial direction is performed at z = 0, the node of the αqm term. Hence for

purely radial terms αqm contributions are not present.

Now we wish to perform first order perturbation theory and find the motional energies asso-

ciated with this potential. To make this clear, we write the Hamiltonian for this system.
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Ĥg(e) = Ĥharm
g(e) + Ĥ ′g(e)

Ĥharm
g(e) =

p̂2

2m
+

1

2
m

(
ω2
z,g(e)z

2 + ω2
r,g(e)ρ

2

)
Ĥ ′g(e) = −αE1

g(e)I0 − βg(e)I2
0

− k4z4

3

(mω2
z,g(e)

2k2
+ 3βg(e)I

2
0

)
− κ4ρ4

2

(mω2
ρ,g(e)

2κ2
+ 2βg(e)I

2
0

)
− κ2k2ρ2z2(

mω2
z,g(e)

2k2
+ 2βg(e)I

2
0

)

(7.32)

For the harmonic oscillator we know the energies. For Ĥ ′ we use first order perturbation

theory operating on the harmonic basis.

Eg(e) = Eharmg(e) + E′g(e)

Eg(e) = ~ωz,g(e)(nz +
1

2
) + ~ωρ,g(e)(nρ + 1)

E′g(e) = −αE1
g(e)I0 − βg(e)I2

0

− 3~2k4

2m2ω2
ρ,g(e)

(
n2
z + nz +

1

2

)(mω2
z,g(e)

2k2
+ 3βg(e)I

2
0

)

− ~2κ4

m2ω2
ρ,g(e)

(
4

3
n2
ρ +

8

3
nρ + 2

)(mω2
ρ,g(e)

2κ2
+ 2βg(e)I

2
0

)

− ~2κ2k2

m2ωρ,g(e)ωz,g(e)

(
nρ + 1

)(
nz +

1

2

)
(
mω2

z,g(e)

2k2
+ 2βg(e)I

2
0

)

(7.33)

In the interest of being pedagogical, we ever so slightly rewrite the perturbed energy to make clear

the clock state dependent terms.
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E′g(e) = −αE1
g(e)I0 − βg(e)I2

0

− k2Erec
m

(
n2
z + nz +

1

2

)(
m

2k2
+ 3

βg(e)

ω2
ρ,g(e)

I2
0

)
− ~2κ4

2m2

(
4

3
n2
ρ +

8

3
nρ + 2

)(
m

2κ2
+ 2

βg(e)

ω2
ρ,g(e)

I2
0

)
− 2κ2Erec

m

(
nρ + 1

)(
nz +

1

2

)
(
mωz,g(e)

2k2ωρ,g(e)
+ 2

βg(e)

ωρ,g(e)ωz,g(e)
I2

0

)
(7.34)

We have now written the energies associated with motional quanta in our trap, using first

order perturbation theory, for the ground(excited) clock state. We will assume in our analysis that

the harmonic quantum numbers (nz and nρ) do not change. This is true assuming single particle

physics and no radial/axial coupling. We now wish to find the lattice light shift in our system

coming from the difference in trapping conditions between the excited and ground clock state.

We will use ∆αE1 = αE1
e − αE1

g , ∆β = βe − βg, ∆αQM = αQMe − αQMg , ∆ωz = ωz,e − ωz,g, and

∆ωρ = ωρ,e − ωρ,g.

∆E = Ee − Eg

∆E = ~∆ωz(nz +
1

2
) + ~∆ωρ(nρ + 1)

−∆αE1I0 −∆βI2
0

− 3I2
0k

2Erec
m

(
n2
z + nz +

1

2

)(
βe
ω2
z,e

− βg
ω2
z,g

)
− 2I2

0κ
4Erec

mk2

(
4

3
n2
ρ +

8

3
nρ + 2

)(
βe
ω2
ρ,e

− βg
ω2
ρ,g

)
− κ2Erec

k2

(
nρ + 1

)(
nz +

1

2

)(
ωz,e
ωρ,e
− ωz,g
ωρ,g

)
− 4I2

0κ
2Erec
m

(
nρ + 1

)(
nz +

1

2

)(
βe

ωρ,eωz,e
− βg
ωρ,gωz,g

)

(7.35)

According to [71], near the magic wavelength the dipole polarizablity αE1 is about 106 times

larger than the higher order polarizabilities as well as ∆αE1. Additionally, αE1
e = ∆αE1 + αE1

g .

We thus expand and keep terms to first order in differential polarizablity parameters. From here

on out I will use αE1 ≈ αE1
g . We first find ∆ωz and ∆ωρ.
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~∆ωz(nz +
1

2
) =

√
ErecI0

αE1

(
nz +

1

2

)
(∆αE1 −∆αQM + 2∆βI0)

~∆ωρ(nρ + 1) =
κ

k

√
ErecI0

αE1

(
nρ + 1

)
(∆αE1 + 2∆βI0)

(7.36)

We similarly solve for the two lines containing n2
z and n2

ρ.

3I2
0k

2Erec
m

(
n2
z + nz +

1

2

)(
βe
ω2
z,e

− βg
ω2
z,g

)
=

3

2
(n2
z + nz +

1

2
)∆β

I0Erec
αE1

2I2
0κ

4Erec
mk2

(
4

3
n2
ρ +

8

3
nρ + 2

)(
βe
ω2
ρ,e

− βg
ω2
ρ,g

)
=

8

3k2ω2
0

(n2
ρ + 2nρ +

3

2
)∆β

I0Erec
αE1

(7.37)

We finish by finding the mixed nz and nρ terms.

κ2Erec
k2

(
nρ + 1

)(
nz +

1

2

)(
ωz,e
ωρ,e
− ωz,g
ωρ,g

)
=
Erec
αE1

∆αqm√
2kω0

4I2
0κ

2Erec
m

(
nρ + 1

)(
nz +

1

2

)(
βe

ωρ,eωz,e
− βg
ωρ,gωz,g

)
= 4

∆β√
2kω0

I0Erec
αE1

(7.38)

Finally, we redefine our polarizabilities to simplify our formula [140].

α̃E1 = ∆αE1Erec/α
E1

α̃qm = ∆αqmErec/α
E1

β̃ = ∆β(Erec/α
E1)2

u = I0α
E1/Erec

(7.39)

Combining all of the above, we arrive at the harmonic model [28], with each line expressing a

different power dependency on u, the trap depth in units of Erec.

∆E = n5α̃
qmu0

+ [(n1 + n2)α̃E1 − n1α̃
QM ]u1/2

− [α̃E1 + (n3 + n4 + 4n5)β̃]u

+ [2β̃(n1 + n2)]u3/2

− β̃u2

(7.40)



133

As in [28] n1 = (nz+1/2), n2 = [
√

2/(kω0)](nρ+1), n3 = 3/2(n2
z+nz+1/2), n4 = [8/(3k2ω2

0)](n2
ρ+

2nρ + 3/2), and n5 = 1/(
√

2kω0)(nz + 1/2)(nρ + 1).

7.4.0.1 Radial Treatment of the Riken Model

If a Taylor expansion for ρ in Equation 7.28 is not performed one arrives at the Riken

model [140, 107]. To account for the radial distribution in the optical trap Ushijima et al. utilize

an effective trap depth. For a harmonic trap the radial spatial distribution can be described by

a temperature dependent Gaussian. They calculate the average trap depth experienced by the

thermal distribution and use this in place of an expansion in ρ. Unfortunately, this means they

treat the radial dimension as a purely harmonic trap, excluding a quartic correction. As kz and κρ

are a similar magnitude this may be a poor approximation.

In Nemitz et al. [107] they recognize the shortcoming of this approach for samples that aren’t

sufficiently cold. They instead note that the axial trapping frequency is a probe of the trap depth

experienced by an atom at a particular radial position. They perform axial sideband spectroscopy

and numerically fit the sidebands for a range of axial trapping frequencies, giving them a numerical

estimate of trap depths. This is a clever idea, but worryingly they only query the sidebands for

ms timescales to avoid fitting issues that they associate with dephasing effects. Their fitting of the

axial sidebands relies on the work done by Blatt [14] which we know does not fully capture the

broadening of the sidebands. It is unclear at what level the approach employed by Nemitz et al. is

accurate.

Recent theory work has sought to evaluate the error associated with these techniques [7]. It

is important to emphasize as well that lattice light shift evaluations are still routinely performed

at significantly deeper depths than actual clock operation. While useful for evaluation of atomic

coefficients, it is worrying that no depths near clock operation are used, raising question about

model extrapolation to operational depth. This is a driving motivation behind the previous and

future Sr1 evaluations where we evaluate over a range of trap depths including the operational trap

depth. An additional benefit of the new Sr1 system is significantly colder radial temperatures in
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comparison with the original Sr1 system as well as other 1D OLCs.

7.5 BO+WKB Model

A challenge in the analysis of the atomic spatial wavefunctions of the 1D OLC system is

the treatment of radial and axial modes. Beyond the harmonic approximation the longitudinal and

radial degrees of freedom become coupled. Here we give a brief overview of the BO+WKB model,

described extensively in [7], expanding as necessary. The first premise of the BO+WKB model is

to invoke a Born-Oppenheimer approximation in our system. Consider our new Sr1 system, with

a waist of ω0 ≈ 260 microns. In this system, the ratio of the radial trapping frequency νr to axial

trapping frequency νz is νr
νz
< 1

1000 . We thus first model the atom to be at a fixed radial position ρ

and solve the corresponding eigenvalue equation,

[
− ~2

2m

∂2

∂z2
+ Ulat(ρ, z)

]
Znz(ρ, z) = Unz(ρ)Znz(ρ, z), (7.41)

where Unz reprsents the nz eigenvalue and Znz the nz eigenfunction. As mentioned, we wish to

solve for Znz as a function of ρ owing to the vastly different timescales of axial versus radial motion.

To proceed we rewrite Equation 7.27.

Ulat(r, z) ≈ −U0e
−κ2ρ2 cos2(kz)

≈ −U0e
−κ2ρ2

(
1 + cos(2kz)

2

) (7.42)

The second line of Equation 7.42, upon inserting into Equation 7.41, can be rearranged to match

the form of Mathieu’s differential equation,

d2y

dx2
+ (a− 2q cos 2x)y = 0, (7.43)

with known solutions. From Mathieu’s functions, we can impose the additional physical constraint

that tunneling is forbidden on the timescales considered, and are then motivated to normalize

the Mathieu functions to a single lattice site ( |z| ≤ π
2k where k is the lattice wavenumber).
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Renormalizing the Mathieu functions and utilizing a few of their properties, we arrive at the

eigenfunctions and eigenvalues

Znz(ρ, z) =

√
2k

π
senz+1

(
kz +

π

2
,
D(ρ)

4

)
,

Unz(ρ) = ER

[
bnz+1

(
D(ρ)

4

)
− D(ρ)

2

]
,

(7.44)

where senz+1 and bnz+1 are the even Mathieu functions and their characteristic values. D(ρ) =

(U0/ER)e−κ
2ρ2 where U0 is the trap depth and ER is the recoil energy. The eigenvalues Unz(ρ) are

then inserted into the radial eigenvalue equation,

[
− ~2

2m

d2

dρ2
+ Unz(ρ) +

~2

2m

l2 − 1/4

ρ2

]
Rnρlnz(ρ) = EnρlnzRnρlnz(ρ), (7.45)

where l specifies the z component of angular momentum (units of ~). The eigenvalues are given by

Enρlnz and the eigenfunctions by Rnρlnz(ρ). nρ is the radial quantum number.

As Equation 7.45 has no known general solution, Beloy et al. utilize a WKB approximation

[7]. They introduce the WKB phase for energy E < 0 (corresponding to trapped states) as

φlnz(E) =

√
2m

~2

∫
R

√
E − Unz(ρ)− ~2

2m

l2

ρ2
dρ (7.46)

where R denotes taking the integral over real values. Associated with the WKB phase is the

condition

φlnz(Enρlnz) = π

(
nρ +

1

2

)
. (7.47)

Our goal is not to numerically solve for the eigenergies, but rather the density of states (DOS)

associated with the radial modes. We identify the density of states of nρ for a given nz and l as

equal to
φ′lnz (E)

π , with the prime denoting the derivative. Integrating over all l we arrive at the
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density of states for a single value of nz:

Gnz(E) =
1

2

√
2m

~2

∫ ∫
R

1√
E − Unz(ρ)− ~2

2m
l2

ρ2

dρdl. (7.48)

Following the integration procedures outlined in [7] we find that

Gnz(E) =
1

4

2m

~2

[
Rnz(E)

]2
. (7.49)

Rnz(E) is the inverse function of Unz(ρ). Hence Rnz(Unz(ρ)) = ρ. This relates the DOS to the

known eigenvalues Unz(ρ) that we found earlier, leading a numerically tractable method for finding

the DOS.

7.6 Evaluating the Atomic Motional Distribution in the Harmonic Model

Earlier we derived the lattice light shift harmonic model. We now outline a method for

evaluating the three input parameters u, nz, and nρ in the harmonic model but now accounting for

the coupling of ρ and z. This amounts to refining the work done in [14].

To extract information about our trap we will focus on sideband spectroscopy in our optical

lattice. Recalling that to excellent approximation our trapping conditions are given by the dipole

polarizablity αE1, we rewrite Equation 7.29.

UAC(I) ≈ −U0 + k2z2U0 −
k4z4

3
U0 + κ2ρ2U0 −

κ4ρ4

2
U0 − κ2k2ρ2z2U0 (7.50)

Here U0 ≈ αE1I0. Following our approach in deriving the harmonic model and using Appendices

A.1 and A.2, we find the energies EE1 for our optical trap,

EE1(U0, nz, nρ) ≈ −U0 + ~ωz(nz +
1

2
) + ~ωρ(nρ + 1)− Erec

2
(n2
z + nz +

1

2
)

− Erec
2

ω2
ρ

ω2
z

(
4

3
n2
ρ +

8

3
nρ + 2)− Erec

ωρ
ωz

(nρ + 1)(nz +
1

2
).

(7.51)
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Seeking to be consistent with Equation G1 of [7], we note that only accounting for the dipole

polarizability (Appendix A.1) ωz = 2/~
√
U0Erec, ωρ = 2κ/~k

√
U0Erec, and ωz/ωρ = κ/k. We find

EE1(U0, nz, nρ) ≈ −U0 + 2
√
U0Erec(nz +

1

2
) + 2

√
U0Erec(κ/k)(nρ + 1)− Erec

2
(n2
z + nz +

1

2
)

− Erec
2κ2

3k2
(n2
ρ + 2nρ + 3/2)− Erec

κ

k
(nρ + 1)(nz +

1

2
)

(7.52)

This is consistent with Equation G1 of [7], except they exclude the radial/axial coupling term. This

is done to maintain our usual notion of axial/radial temperature in the calculation of expectation

values.

We identify the radial and axial energies which we will need for calculating thermal expecta-

tions.

Ez(U0, nz) ≈ ~ωz(nz +
1

2
)− Erec

2
(n2
z + nz +

1

2
)

Eρ(U0, nρ) = ~ωρ(nρ + 1)− Erec
2

ω2
ρ

ω2
z

(
4

3
n2
ρ +

8

3
nρ + 2)

(7.53)

Full modeling of sideband spectra in our system remains an open question, with this sec-

tion serving to highlight one approach. The probing Rabi frequency, probe time, variation in

Rabi frequencies owing to varying Lamb-Dicke parameters with varying trap depth, and more all

serve to complicate the single particle physics we are discussing. Early attempts at modeling this

system were met with modest at best modeling/experiment agreement in the new system. The

low temperatures that enabled resolution of individual nz states precludes the more readily mod-

eled blurred sidebands of [14]. With the improvement of axial cooling demonstrated in the new

system (〈nz = 0〉), a degree of freedom is removed from modeling which should allow better model-

ing/experiment agreement. The realization of 100 nK radial temperatures at ∼ 10 Er trap depths

(as directly measured via transverse Doppler spectroscopy with the clock laser) will further enhance

model agreement. Such work will be critical for the upcoming lattice light shift evaluation.
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7.7 Lattice Light Shift Evaluation in the Wannier-Stark Optical Lattice

clock

5 10 15 20 25 30
Depth (Er)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ex
pe

ct
at

io
n 

Va
lu

e

a) Expectation Values Vs Depths

cos2(kz)
sin2(kz)
cos4(kz)

5 10 15 20 25 30
Depth (Er)

2

3

4

5

6

Fr
ac

tio
na

l S
hi

ft

1e 18b) QM Shift Vs Depths

Figure 7.1: Wannnier-Stark ground band calculations. a) Expectation values calculated for numer-
ically evaluated WS states in 1D. Notice the rapid increase in 〈sin2(kz)〉 at decreasing trap depths
- this is the origin of the nonlinear ∆αQM behavior. b Lattice light shift contribution from ∆αQM

versus trap depth. Combined with a) we notice both the nonlinear behavior and small magnitude
of the shift. For self-comparison stabilities and systematic control resolution of the ∆αQM shifts
presents a formidable challenge.

Shallow trap depth provides a range of benefits for clock operation, reducing lattice light

shifts, Raman scattering, density shift systematics, heating, and more. Naturally, a consequence of

shallow trap operation is less tightly confined particles in the axial direction, leading to particles

deviating further and further from the anti-node of the lattice light. This results in significant

non-linear behavior in the M1/E2 perturbations at shallow depths, readily describable using the

Wannier-Stark basis discussed in Chapter 5.

In Chapter 5 we derived the Wannier-Stark (WS) states for the 1D optical lattice. Let us
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now use those to discuss lattice light shift evaluations in the WS OLC. For our discussion we will

explicitly focus on an operational trap depth of uop = 12 Er, corresponding to the magic depth

introduced in Chapter 5 where the density shift is ≈ 0.

Ignoring radial degrees of freedom we may write the lattice light shift term in the 1D lattice

as

∆hνLS = −∆αE1 cos2(kz)u−∆αQM sin2(kz)u− cos4(kz)∆βu2. (7.54)

Let’s consider the Wannnier-Stark states in the position basis z corresponding to the lattice position:

|ψWS(u)〉. Following Chapter 5, we calculate the wavefunctions at various depths for the ground

band. With the wavefunctions in hand we readily calculate the expectation values 〈cos2(kz)〉,

〈sin2(kz)〉, and 〈cos4(kz)〉 with the results shown in Figure 7.1. We see the increasing expectation

value of 〈sin2(kz)〉 at shallower depths. Figure 7.1 additionally shows the ∆αQM fractional shift

versus trap depth, clearly showing the
√
u scaling discussed in the harmonic model.

When OLCs operated with fractional inaccuracies just below 10−17, linear models were used

for lattice light evaluations. Operating between two trap depths, ∆αE1 was tuned (via the lattice

frequency) to eliminate any differential shift - the so called ‘magic wavelength’ regime. However,

the higher order light shift terms discussed in this chapter have forced experimentalists to move

beyond the linear model for accuracy at the 10−18 level.

Considering ∆αQM , there are two operational regimes worth discussing at the magic depth.

For accuracy, it is preferable to operate at an inflection point of the light shift (δνLS/δu ≈ 0).

Making the lattice light shift first order insensitive to changes in trap depth ensures robustness

against fluctuations in experimental conditions. Alternatively, the experimentalist may wish for the

most homogeneous trapping conditions possible (for instance for quantum information purposes).

In this case one would tune ∆αE1 such that νLS ≈ 0. Both situations may be modeled as discussed

earlier, numerically finding the correct ∆αE1 for each. The results are shown in Figure 7.2. Note

even in the second case, a 10% variation in trap depth still manifests itself at the 10−19 level.
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Figure 7.2: Operational regimes at the magic depth (u = 12 Er). a) For accuracy, operation at
the inflection point provides a robust lattice light shift against imperfect experimental conditions.
Varying temperatures and atomic wavefunctions modify effective trap depths. Operating in this
regime provides the prospect of lattice light shift stability of ≈ 1 × 10−19 over a wide range of
trap depths. For this simulation the inflection point was found for ∆αE1 ≈ −0.09∆αQM . b) For
atomic coherence and quantum information uses, operating with the minimal lattice light shift can
be ideal. For ∆αE1 ≈ −0.18∆αQM the lattice light shift goes to zero at the operational depth.
Notice the increased slope compared to a). Both regimes are impacted by a mistake in ∆αQM

equally. Both simulations include hyperpolarizability contributions at the level of 1.5× 10−19.
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Figure 7.2 demonstrates the power of the inflection point. At trap depths of u = 12 ± 6 Er

the lattice light shift varies at the 1 × 10−19 level, suggesting stability of the lattice light shift at

the operational depth of Sr1 supports accuracy evaluations well into the 19th decade. While the

inflection point location is robust to small mistakes in ∆αQM , the value of the light

shift at the trap depth is not and needs to be evaluated.

Evaluation of the atomic parameter ∆αQM is challenging. Consider a traditional lattice shift

evaluation as done in Chapter 2, where the trap depth is modulated. Such an evaluation performed

at even shallow depths where the radio of M1/E2 to E1 shifts is best is incredibly challenging

owning to the minuscule magnitude of light shifts (Figure 7.1). Evaluating to uncertainties below

1× 10−18 per comparison lacks the sensitivity for resolving ∆αQM for trap depths between 6 and

30 Er.

One way to gain sensitivity to ∆αQM is to operate in a regime where comparison between

two different depths results in different contributions from ∆αQM while the ∆αE1 contribution

remain the same - in effect orthogonalizing the two. Considering the ∆αE1 contributions are nearly

linear in trap depth, this evaluation method corresponds to changing both high (uH) and low trap

depth (uL) but maintaining nearly the same difference in trap depth (∆u = uH − uL). The results

of such an evaluation are shown in Figure 7.3.

7.7.0.1 Transparency Beam

Even with a careful attempt to decouple ∆αQM and ∆αE1, the evaluation technique of Figure

7.3 resulted in a poor evaluation of ∆αQM . Considering the complications of the density shift at

these depths, this raises serious concerns for the viability of such a study. Nonetheless, the inflection

point of Figure 7.2 shows us that given knowledge of ∆αQM we are well on the way to the next

accuracy goal of 5× 10−19. In Chapter 6 we showed a level of precision and intra-cloud frequency

control sufficient to resolve the gravitational redshift across the atomic sample. How can we use

this to aid our evaluation?

One technique would be to use a transparency beam [131]. Application of a laser at 688 nm
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Figure 7.3: ∆αQM lattice light shift evaluation. To gain greater sensitivity to ∆αQM , varying both
high and low trap depths enables nearly constant ∆αE1 lattice light shift contributions with varying
∆αQM contributions. We explore this by simulating data for ∆αE1 = −∆αQM . For a high depth of
40 Er we compare to a low depth of 4 Er for a ∆u = 36 Er. As the high depth is increased, the low
depth is also increased nearly equally (maintaining ∆u), allowing the ∆αE1 contribution to remain
nearly constant in each differential evaluation while the ∆αQM contribution varies, providing a
degree of organizational between the two. For the shown data, with uncertainties of 1 × 10−18, a
modest uncertainty of δ∆αQM = ∆αQM/2 is achieved.

slightly detuned from the 3P1 to 3S1 transition shifts the 3P1 state sufficiently far that laser cooling

light at 689 nm is no longer resonant. Applying such a beam to a region of the 1D lattice could

be used to to allow one region of the trap to remain at the single frequency MOT temperature

while a second region can be cooled much further as discussed in Chapter 4. Such a technique
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allows 1) modulation of temperature in a thermal manner and 2) the ability to compare the two

synchronously. This would move the self comparison stability from 1×10−16/
√
τ to < 1×10−17/

√
τ ,

allowing high precision evaluation of shifts at shallow depths where density shifts are tamable.



Chapter 8

Conclusions and Outlook

The work presented in this thesis details an extended exploration of the frontiers of atomic

clocks. To summarize, we discussed:

(1) Record low fractional frequency inaccuracy of 2.0 × 10−18 for a Sr OLC and third lowest

inaccuracy to date.

(2) First clock ratios between different species with 18 digits of accuracy.

(3) Record low instability comparisons between two independent clocks (3.5× 10−17/
√
τ).

(4) Record low intra-clock instability (4.4× 10−18/
√
τ).

(5) Evaluation of a differential frequency uncertainty to 21 digits (previous record was 19

digits).

(6) First ever observation of the gravitational redshift within a single atomic clock.

(7) Demonstration of 1D OLC operation free of atomic-interaction induced frequency shifts.

Paving the way for these results was work performed by numerous colleagues, from clock

evaluations [109, 98] to breakthroughs in atomic coherence times [33, 93] to collaboration with

theorists [76, 26, 1, 34]. Perhaps most vital is the work towards making ultrastable lasers ever more

stable [112].
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The breakthroughs in precision described in Chapter 6 are only the beginning. Camera noise,

not QPN, dominates the readout noise at the current number of atoms (100,000). Improved laser

coherence times will immediately enable longer clock interrogation times, further decreasing QPN.

Finally, improvements to lattice lifetime will ensure high atom number operation as pulse times

move to 10 s and beyond.

Atomic coherence times as reported in Chapter 6 are likely under reported, warranting careful

study. Reducing or eliminating the atomic interaction induced dephasing present in the current

Ramsey coherence measurements may allow for a deeper understanding of the limits of atomic

coherence in the new Sr1 system. A steered Si3 combined with Sr1 may already be an exciting

platform for pushing the limits of light-matter interactions.

8.1 Towards Accuracy

A major goal of this thesis thesis is advancing the Sr1 system towards the 19th decade of

accuracy. Let’s discuss ideal projected systematics (Table 8.1) compared to Chapter 2.

The environmental BBR uncertainty was limited by thermometer calibration and will not be

a source of improvement in the reevaluation. As discussed in Chapter 4, an expansion port is ready

for installation of a calibrated in-situ temperature sensor, enabling the opportunity reevaluate the

calibration over time. The atomic BBR uncertainty has in principle a factor of ∼ 5 improvement

available by further evaluation of the 3D1 lifetime [111]. The use of the 6” viewport will readily aid

in photon collection, greatly increasing the signal to noise ratio of the measurement as compared

to the previous Sr2 evaluations [109, 111].

Many systematics are already sufficient for the next evaluation. As discussed in Chapters 5

and 6 the density shift systematic is removed at the level of Table 8.1. DC Stark is statistically

consistent with zero and electrodes enable removal of any residual field. Operation of the system

with multi-second pulses further reduces the probe AC Stark effect as well as enables operation

with smaller bias fields while still reducing line pulling. This serves to further reduce the 2nd

order Zeeman coefficient. Servo error can in principle be reduced but for now we will assume
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Table 8.1: Sr1 systematic uncertainty from 2019 and new Sr1 projected uncertainty. ?s denote
optimal evaluations that are not guaranteed.

Systematic Shift (10−18) Uncertainty (10−18) Projected Uncertainty (10−18)

BBR (environment) -4974.1 0.2 0.2
BBR (atomic) 0 1.5 0.3?
Density -12.3 0.4 <0.1
Lattice AC Stark -21.3 1.2 0.2?
DC Stark 0 0.3 <0.1
Probe AC Stark 0 <0.1 <0.1
1st order Zeeman 0 <0.1 <0.1
2nd order Zeeman -176.9 0.2 <0.1
2nd order Doppler 0 <0.1 <0.1
Servo error 0 0.2 0.2
Line pulling 0 <0.1 <0.1
Background gas -3.7 0.4 0.1
AOM phase chirp 0 <0.1 <0.1
Total -5188.3 2.0 0.5?

no improvement. The upgraded vacuum enables 27 second lifetimes for 375◦C oven temperature

operation, reducing the background gas systematic.

Finally, the lattice AC Stark shift (lattice light shift) will be the other major limiting factor.

Uncertainty will be dominated by the ∆αQM contribution. Assuming we match the Riken mea-

surement uncertainty of 5% (currently in contention with theory), this will lead to an uncertainty

of ∼ 2× 10−19 at the magic depth. As a result, the new Sr1 system should fundamentally be able

to approach a fractional frequency inaccuracy of 5× 10−19 (Table 8.1). Cheers!
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[96] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M.
Robinson, J. Ye, F. Riehle, and U. Sterr. 1.5µm lasers with sub-10 mHz linewidth. Phys.
Rev. Lett., 118:263202, 2017.
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Appendix A

Useful Derivations

A.1 Optical lattice Trap Frequencies

We write down the trapping potential in our optical lattice as

Ulat(r, z) ≈ −U0e
−2r2/ω2

0 cos2(kz) (A.1)

where U0 is the peak trap depth, r is the radial position (assuming radial symmetry), ω0 is the

trap waist, k is the lattice wavenumber, and z the axial position along the lattice.

Using normal mode analysis we can then find the axial trapping frequency ωz as

mω2
z =

∂2Ulat(r = 0, z)

∂z2

∣∣∣∣
z=0

= 2k2U0

(A.2)

and radial trapping frequency ωρ as

mω2
ρ =

∂2Ulat(r, z = 0)

∂r2

∣∣∣∣
r=0

=
4U0

ω2
0

.

(A.3)

Recall that we will usually write our trap depth as u in units recoil energy Er = ~2k2
2m . We

then find the form of ωz that we will use in our model.

ωz =
~k2√u
m

(A.4)
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A.2 Harmonic Oscillator Expectation Values

We begin by identifying the position operator x̂ in the harmonic basis [55]:

x̂ =

√
~

2mωz

(
a† + a

)
(A.5)

where a(a†) are the standard lowering (raising) operator, m is the mass of the oscillator, and ωz is

the oscillation frequency. In the harmonic basis we then find the following relations.

〈n| x̂2 |n〉 =
~

mωx

(
nx +

1

2

)
〈n| x̂4 |n〉 =

3~2

2m2ω2
x

(
n2
x + nx +

1

2

)
〈n| x̂6 |n〉 =

5~3

8m3ω3
x

(
4n3

x + 6n2
x + 8nx + 3

)
〈n| x̂8 |n〉 =

35~4

16m4ω4
x

(
2n4

x + 4n3
x + 10n2

x + 8nx + 3
)

(A.6)

Application of these relations to the axial dimension z is straightforward. Now consider the

radial dimension ρ, identifying the radial expectation number nρ = nx + ny. We start with the ρ2

term. We will assume a 2D isotropic harmonic oscillator, with radial frequency ωρ.

〈n| ρ̂2 |n〉 = 〈n| x̂2 + ŷ2 |n〉

=
~

mωρ

(
nρ + 1)

(A.7)

The expectation for ρ4 is more tricky owing to the degeneracy of nρ. We start by expanding

in powers of x and y.

〈n| ρ̂4 |n〉 = 〈n| x̂4 + ŷ4 + 2x̂2ŷ2 |n〉

=
3~2

2m2ω2
ρ

(
n2
x + nx + n2

y + ny + 1
)

+
2~2

m2ω2
ρ

(
nx +

1

2

)(
ny +

1

2

)
=

~2

2m2ω2
ρ

(
2n2

x − 2nxnρ + 3n2
ρ + 5nρ + 4

) (A.8)
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Notice on the last line we have rewritten ny = nρ − nx. To resolve the aforementioned degeneracy

of nρ, we take an average over the possible values of nx.

〈n| ρ̂4 |n〉 = 〈n| x̂4 + ŷ4 + 2x̂2ŷ2 |n〉

=
~2

2m2ω2
ρ

1

(nρ + 1)

nρ∑
nx=0

(
2n2

x − 2nxnρ + 3n2
ρ + 5nρ + 4

)

=
~2

m2ω2
ρ

(
4

3
n2
ρ +

8

3
nρ + 2

) (A.9)

This is key for reproducing the harmonic model in [28], but is only detailed in [7].

A.3 Expansions

For small x.

cos2(x) = 1− x2 +
x4

3
− 2x6

45
+

x8

315

cos4(x) = 1− 2x2 +
5x4

3
− 34x6

45
+

13x8

63

sin2(x) = x2 − x4

3
+

2x6

45
− x8

315

ex = 1 + x+
x2

2
+
x3

6

e−a
2x2 = 1− a2x2 +

a4x4

2
− a6x6

6

e−2a2x2 = 1− 2a2x2 + 2a4x4 − 4a6x6

3

(A.10)
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