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Optical atomic clocks with high precision allow minute frequency shifts to be measured

in short timescales. Low instability requires an atomic frequency reference with a high quality

factor that is prepared in the minimal amount of time. The advent of the Fermi-degenerate three-

dimensional (3D) optical lattice clock demonstrated that significant advances in precision metrology

can be made by incorporating ultracold quantum gases. This thesis focuses on improving the

precision of Fermi-degenerate clocks beyond their initial record demonstration by optimizing the

preparation, characterization, and scattering properties of degenerate Fermi gases (DFGs). We

first demonstrate that the SU(N)-symmetric nuclear spin degree of freedom in 87Sr can be used

as a tool to enhance cooling to quantum degeneracy. This allows us to rapidly prepare a DFG,

evaporating to temperatures of 0.2 times the Fermi temperature in only 600 ms. With this and

a new spin-polarizing method, we can prepare a spin-polarized degenerate gas in under 3 s. We

also systematically study the thermodynamics of the gas, measuring up to a 20% reduction of the

compressibility due to repulsive SU(N) interactions. We next explore how the natural lifetime of

an atomic state can be increased by embedding excitations within a degenerate Fermi gas. With

a light scattering experiment, we angularly resolve the suppression of the photon scattering rate

and measure up to a factor of two reduction near the absorption direction, where the momentum

transfer from the light is reduced. Our results agree with semiclassical calculations across a range

of temperatures and Fermi energies. Finally, we discuss an experiment that attempts to directly

measure an increase in the natural lifetime of a narrow-linewidth transition. This Pauli blocking

mechanism provides a means to quantum engineer devices with decoherence rates below what

nature would provide alone.
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4.2 a, Timing diagram showing stages of the experimental sequence. The times are
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resolution of the sampling grid. c, Combined optical and gravitational potential af-

ter application of the TenS4 laser. The beam creates a spin-dependent modification

of the potential, and only atoms in spin state mF = +9/2 (purple line) are supported

against gravity. Atoms in mF = −9/2 and −7/2 are removed through optical pump-
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4.6 a, Density profile of a Fermi-degenerate gas after 10 ms time-of-flight with 10 spin

states and T/TF = 0.07. b, Residuals after fitting the cloud to a Maxwell-Boltzmann

distribution. Color bars in each subplot correspond to the number of atoms per

1.37 µm2. c, Radially averaged fit of the density profile given in a to a Maxwell-

Boltzmann distribution and a Fermi-Dirac distribution. The thermal distribution

has larger residuals than the Fermi-Dirac fit. . . . . . . . . . . . . . . . . . . . . . . 111
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tainty of ±0.02T/TF . Fitting the data instead to a non-interacting ideal Fermi

gas gives T/TF = 0.13 (blue dashed line), showing an interaction-induced suppres-

sion of ∼20%. The difference between the interacting and non-interacting fits is

much less than the scatter in the data, highlighting the indistinguishability between

interacting and non-interacting systems by measuring density fluctuations alone at

the given signal-to-noise ratio. The total density fluctuations are 25% of that of the

thermal gas. A thermal cloud (purple triangles) reproduces Poisson statistics with

∆Ñ2/Ñ = 1 (purple dot-dashed line). Each data point is obtained by looking at the

atom number variation and mean in a subregion of the cloud for a series of images. 114
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4.8 a, b, c, Line-of-sight integrated atomic density for 0.5 ms, 3.5 ms, and 8.5 ms time-of-

flight (ttof ) expansion times. The colorbar’s unit corresponds to the number of atoms

per 1.37 µm2. d, Aspect ratio of a cloud of cold atoms with N = 10 nuclear spin states

released from an optical dipole trap for variable expansion times (red circles). After

∼3 ms, the aspect ratio passes through unity (black dashed line), a clear signature

of interactions in the gas. At long times, the sample approaches an aspect ratio of
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d - f, the expected aspect ratio is shown for N = 10 (red dashed line), N = 7 (purple

dotted line), N = 4 (green dash-dotted line), and N = 1 (blue solid line) nuclear spin

states. e, Aspect ratio versus initial trap asymmetry of a degenerate gas for N = 10

(red circles) and N = 1 (blue squares) spin states after time-of-flight expansion for

15.5 ms. f, Aspect ratio versus temperature. Data is shown with roughly the same
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a mean-field interaction and an additional collisional term. Neglecting the collisional

term fails to explain the results (gray dashed line). All error bars represent the s.e.m.

and are smaller than the marker size. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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4.9 a,b,c, Line-of-sight integrated atomic density n(x, z) after time-of-flight for a single

shot of the experimental data, non-interacting theory, and interacting theory, respec-

tively. The colorbar’s units represent the number of atoms per 1.37 µm2. Images

are shown with an initial trap asymmetry of νz/νr = 1.8 and T/TF = 0.17. d,e,f,

The anisotropy of the cloud, defined as n(x, z)−n(z, x), is shown in the second row,

where lobes are clearly visible for clouds with interactions. To improve the signal-to-

noise ratio the experimental image is first symmetrized by reflection along the x and

z-axes. g,h,i, If the anisotropy is integrated along one direction, peaks symmetric

to the center of the gas appear for the interacting distribution that are sensitive to

temperature, while the non-interacting signal shows a different signature that dis-

plays only weak temperature dependence. Here, the red lines show the integrated

anisotropy of the images in (d-f), while the blue dashed lines in (h) and (i) show the

integrated profile for a 50% higher temperature. . . . . . . . . . . . . . . . . . . . . 120
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5.1 Light scattering on atoms embedded inside a Fermi sea.

(A) Indistinguishable fermions obey the Pauli exclusion principle. If the thermal

energy kBT is sufficiently low they fill almost all available harmonic oscillator states

up to the Fermi energy EF with near-unity occupation. An excited atom (orange)

acquires a recoil energy ER when returning to its internal ground state (blue). (B) In

momentum space, the atoms form a Fermi sea occupying most states up to the Fermi

momentum ~kF . Light scattering with re-emission along α and total momentum

transfer ~k can happen only if the final momentum state is not occupied by another

ground state fermion. A detector covering a solid angle dα registers the emitted

photon. (C) Pauli blocking leads to a characteristic angular distribution of scattered

photons in the deeply degenerate regime (here T/TF = 0.1). For EF ∼ ER (left

sphere) scattering is preferentially suppressed in a small cone around the forward

direction, while EF >> ER (right sphere) causes strong suppression for all scattering

angles α. The suppression factor specifies the scattering rate relative to a non-Pauli-

blocked sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
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5.2 Experimental Setup.

(A) Off-resonant probe light excites 87Sr atoms inside a Fermi sea. Spontaneously re-

emitted photons are collected simultaneously along two imaging axes under angles

of 24◦ and 72◦, with their numerical apertures (NA) shown respectively. Small

scattering angles correspond to a small momentum transfer with k/kF < 1, whereas

the transversal observation detects photons from scattering events with k/kF > 1.

The circularly polarized probe beam has an intensity of 5Isat where the resonant

saturation intensity is Isat = 41 mW/cm2. (B) On resonance the atomic cloud is

optically thick for the probe beam and the image formed on Camera 1 displays a hole

in the cloud center due to multiple scattering. At a detuning of ∆ = 40Γ the atom

cloud is optically thin and the corresponding image resembles the atomic density

distribution. The detuned frequency is used in the Pauli blocking experiment. A

magnetic bias field of 3 Gauss applied in the horizontal plane along the y-direction

defines the atomic quantization axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
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5.3 Suppression of light scattering in a 87Sr Fermi gas over a range of tem-

peratures and Fermi momentums.

All measurements are performed with a 10-component Fermi gas containing 18 000

atoms per spin state. The scattering behavior is distinctly different for the two ob-

servation angles of 24◦ (blue circles and squares) and 72◦ (red circles). Raw photon

counts are normalized with respect to measurements on non-Pauli-blocked reference

samples (see main text). Each circle data point is derived from 150 iterations of the

experiment, while each square point results from 50 experimental runs. Solid theory

curves are calculated with no free parameters. The widths of the theory lines reflect

the experimental uncertainties of Fermi energy and temperature. The error bars are

purely statistical and indicate one-standard-deviation confidence intervals. (A) At

a constant Fermi wavevector of kF /kR = 0.93 (EF /ER = 0.86), the atom ensemble’s

scattering cross section decreases as the gas approaches deep quantum degeneracy.

The suppression observed under 24◦ is pronounced and reaches 50% at T/TF = 0.13.

In contrast, under 72◦, the suppression is negligible. (B) At constant T/TF = 0.13,

kF is varied by adiabatically changing the confinement. A larger kF results in a

stronger suppression. (C) The data reported in A and B are measured along 4

trajectories (dotted lines) through the parameter space spanned by k/kF and T/TF .

Depending on the scattering angle k varies between 0 and 2kR. Light collected under

an off-axis angle of 24◦ corresponds to a momentum transfer ~k < ~kF for the given

Fermi gas, leading to substantial reduction of the density of available final states.

On the contrary, for the 72◦ collection angle, the corresponding momentum transfer

~k > ~kF . Thus most final states are not blocked and scattering is not suppressed. 135
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5.4 Photon scattering from a Fermi gas after exposure to a pre-pulse of vari-

able duration.

For the chosen pre-pulse detuning and intensity, the Pauli blockade is destroyed af-

ter exposure for a few µs. The scattering signal from the deeply degenerate sample

(green squares) increases by almost a factor of 2 while the barely degenerate sam-

ple (purple squares) shows only minimal increase, as expected for a Fermi sea with

kF /kR = 0.93 under an observation angle of 24◦. Data in the plot is normalized

relative to the mean counts detected for 4 and 5 µs pre-pulse durations. . . . . . . . 137

5.5 Spatially resolved light scattering from a trapped Fermi gas at T/TF = 0.12.

Radially averaging the spatially resolved mean signal (inset) from 1100 individual

images obtained along the z-axis yields a radial light scattering profile (blue data

points). In-situ column density images, separately obtained using a high intensity

fluorescent imaging technique, are used to predict the scattering signal for a non-

degenerate gas (purple curve). The spatial profile of light scattering calculated for

the T/TF = 0.12 ensemble (blue curve) agrees well with the measured data. . . . . . 139

6.1 (a) Pauli blocking is maximized for atoms in the center of the Fermi sea. Atoms get a

directional momentum kick ~kabs from the absorbed light, and a diffusive momentum

kick ~kemi from the emitted light, giving a net momentum kick ~k in the center of

the Fermi sea. An atom in the center has the maximal suppression since it is least

likely to find an unoccupied final state. (b) Exciting atoms in the center of the

Fermi sea can be approximated using a three-level scheme with imbalanced Fermi

gases. Two ground states with an imbalanced atom number are created and the

minor Fermi gas is excited so that it predominantly decays into the major Fermi gas.

Under the optimal conditions this decay channel is blocked. . . . . . . . . . . . . . . 143
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excited to the 3P1, F = 11/2, mF = 9/2 excited state using a π pulse with π polarized
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Chapter 1

Introduction to atomic clocks

Time is a physical quantity that has had practical relevance for the majority of human history.

In our modern capitalist society, we often view time in terms of its monetary value, realizing that

time, like energy, is a vital yet finite currency that is necessary to get anything done. Early

agrarian cultures associated time with sustenance — Egyptians observed the annual flooding of the

Nile River, and the Mayans were cognizant of the reproducibility of the optimal harvest time.

Time is unidirectional, irreversibly succeeding from past through present to the future. An

interval separating two points on this timeline can be measured by a device that is cyclical in

nature. Time is measured by counting the number of cycles that have passed during an interval.

Numerous phenomena are cyclical and could serve as a standard for time. One example is Earth’s

revolution around the sun, which defines a year. The sun is a remarkably good timekeeping device

due to its accessibility and reasonable stability (if the sun is high in the sky, it’s around noon), but

it has limitations. First, its definition of time is not stable as its location in the sky changes with the

seasons, and Earth’s rotation is gradually decreasing over time. Additionally, it is challenging to

accurately measure time intervals below tens of minutes. Another example is a grandfather clock.

Each half cycle of a grandfather clock takes a second, which allows time to be defined well over

the course of seconds but poorly for much less than a second. Over many days, the error per cycle

accumulates, meaning it does not work well over long timescales. Additionally, since the oscillation

frequency depends on the length of the pendulum, it is difficult to create two grandfather clocks

with the same definition of time.
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To create an optimal definition of time, we need a system that works over many timescales

and is accurate, stable, and consistent. High accuracy implies the time can be told with few

systematic errors, while low instability means the answer doesn’t change significantly with each

measurement. A consistent definition implies that we can create two clocks at two different places,

such as a clock in Paris and a clock in Boulder, and be able to arrive at exactly the same definition

of time. Furthermore, how can we maximize the societal use of measuring this quantity?

To satisfy all these requirements, a clock consists of multiple components. A local oscillator

(LO) keeps track of time over short timescales, and a frequency reference creates an absolute

definition of time while also providing a stable standard over long timescales. Finally, clocks require

a device that counts the number of oscillations of the clock. For example, since a grandfather clock

works well over the course of seconds, it makes a decent LO. However, because of its accumulated

error per cycle and the variance in the oscillation frequency with each clock, it makes a lousy

frequency reference. The sun, on the other hand, is a better frequency standard, since it works well

over the course of days and two people in the same neighborhood observe the same sky so that a

common definition of time can be implemented. The sun and the grandfather clock can work in

tandem, with the sun periodically updating the local oscillator to create a time standard that works

over many timescales. This system works well enough for those trying to be home by dinnertime,

but needs improvements for people who want modern GPS accuracy or precise navigation in deep

space 1 .

The SI unit of time, the second, is currently defined as 9 192 631 770 periods between two

hyperfine transitions in the unperturbed ground state of a 133Cs atom [2]. The hyperfine transition

is probed with a microwave oscillator, which acts as the LO. Microwave electromagnetic radiation

can be thought of as a grandfather clock except with a 1010 times higher oscillation frequency. This

allows the Cs clock to achieve a much higher quality factor Q = ν/∆ν than a grandfather clock.

Energy transitions in atoms provide a stable frequency reference and a universal definition of time,

1 See for example NASA’s deep space atomic clock.
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Figure 1.1: (a) Schematic of a modern atomic clock. A local oscillator that has good short term
stability is referenced at long times to a narrow linewidth energy transition in an atom. Here, the
frequency reference is represented by neutral atoms trapped in a 1D optical lattice clock, and the
laser probes the 1 mHz linewidth 1S0− 3P0 clock transition in 87Sr. The number of optical cycles is
then counted with traditional counters by converting the optical signal to a microwave one using a
frequency comb. (b) Example of the fractional frequency stability of an atomic clock. The stability
at short times is determined by the local oscillator. At long times, the laser stability degrades and
is corrected by the atomic reference, which acts as a frequency discriminator that provides feedback
to the local oscillator.

since a transition frequency in a given element is identical for all atoms of the same isotope, as long

as they are in the same environment.

Optical clocks capitalize on this idea and probe electronic transitions that operate at optical

frequencies 4 orders of magnitude higher than a hyperfine transition. Fig. 1.1 outlines a modern

atomic clock. The LO is a laser, where an oscillation cycle is defined by the laser wavelength and

the speed of light. With the advent of ultrastable laser technology, the oscillation frequency can be

defined with sub-Hz resolution, making modern ultrastable lasers incredibly pristine oscillators. At

long times, the laser frequency drifts owing to environmental perturbations so that a long-term fre-

quency standard is required. The LO excites a narrow linewidth transition in an atom, which when

probing the slope of the atomic lineshape (red dots in Fig. 1.1) acts as a frequency discriminator
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that corrects the laser frequency and keeps the laser on resonance with the atomic transition. Fi-

nally, to count the rapid optical cycles of the clock, a frequency comb is utilized. A frequency comb

allows a low noise conversion of optical frequencies into microwave, where traditional electronic

counters can count the number of cycles.

As mentioned previously, accuracy and stability are two important variables for atomic clocks.

Accuracy is how far away the measured clock transition frequency is from the true unperturbed

value. A low uncertainty implies that the offset is very well known. In contrast, precision and

stability define the noise of the measurement. A worse stability means that the standard deviation

of frequency measurements is larger. It takes less time to average away the noise if the clock has a

higher stability, allowing sub-Hz frequency shifts to be measured faster.

Both ion clocks and neutral atom optical clocks have surpassed Cs. Compared to ion clocks

that generally trap single ions, neutral atom optical clocks interrogate thousands of atoms simul-

taneously. This grants a lower instability, and neutral atom optical clocks have demonstrated low

10−17 instability after averaging for 1 s [3, 4]. It currently takes Cs standards 106 s to achieve a

10−17 level of instability [5]. Optical clocks have demonstrated systematic uncertainty over two

orders of magnitude lower than a Cs clock, with accuracies in the low 10−18 [6, 7, 8, 9]. To achieve

a low uncertainty, potential systematics that can shift the clock transition frequency have to be

controlled and understood. Nuclear clocks are an exciting new research direction since the nucleus

is expected to be less sensitive to external perturbations such as electromagnetic fields [10]. A

prominent example is the 229Th clock, which features a long-lived few eV nuclear transition. Given

the ability to connect ultrastable lasers at telecom wavelengths to the ∼150 nm nuclear transi-

tion frequency using an XUV frequency comb [11], this avenue of research is bound to have many

exciting discoveries over the upcoming decades.

The exceptional accuracy and stability of optical atomic clocks drives the consideration of

a redefinition of the SI second [12]. Moreover, besides timekeeping there are many exciting appli-

cations of atomic clocks. Because clocks are relatively insensitive to their external environments,

they can be also used to detect small frequency shifts of the clock transition that are normally
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invisible to other experiments. As a result, precision metrology affects a range of applications in

quantum sensing and fundamental science. Atomic clocks can enable relativistic geodesy [13, 14],

which motivates physicists to develop transportable clocks that can be used outside the laboratory

[15]. In addition, clocks can be used to detect possible drifts in fundamental constants [16, 17, 18],

to test fundamental symmetries [19, 20], to look for the existence of ultralight dark matter can-

didates [21, 22, 23], and potentially to measure gravitational waves [24]. Optical clocks are also

ideal many-body platforms to study light-matter and matter-matter interactions and to further our

understanding of quantum science [25, 26, 27, 28]. Such fundamental physics applications are con-

nected to the rapidly advancing frontier of quantum technology, and they also provide a necessary

means to further improve atomic clocks. Physics that is uncovered at a given level of performance

must be accounted for or circumvented for further improvement. This relation between time and

physics can never fully be disentangled and is one of the drivers of our discoveries and passions.

In Section 1.1 we detail the various noise sources in atomic clocks that can lead to an increase

in instability. In Section 1.2 we then outline next generation atomic clocks that attempt to solve

the instability problems that have plagued past systems.

1.1 Noise sources in atomic clocks

Precision is essential to measuring small frequency shifts in short timescales. Our state-of-

the-art clock uses an ultrastable laser referenced to a mHz-wide optical transition in trapped 87Sr

atoms. Sources of instability are thus rooted in both the local oscillator and the matter-based

frequency reference. Here we discuss limitations to the intrinsic stability of the frequency reference,

quantum projection noise, and noise due to the local oscillator, called the Dick Effect.

1.1.1 Quantum projection noise

The intrinsic instability of an atomic clock is determined by quantum projection noise (QPN).

When an atom is in a superposition of ground and excited states |ψ〉 = a |g〉+ b |e〉, measuring an

atom in the ground or excited state is not deterministic but instead follows a binomial distribution,
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where the probability finding the atom in |g〉 (|e〉) is given by pa = |a|2 (pb = |b|2), assuming

|a|2 + |b|2 = 1. This noise that is inherent to quantum mechanics is called quantum projection

noise, since atoms are projected into a given state upon measurement [29]. If the atoms are

uncorrelated, they can be regarded as independent so that the excited state variance is

σ2
e = Npb(1− pb) , (1.1)

where N is the total number of atoms. Converting this to an excitation fraction Pee = Ne/N ,

where Ne is the number of excited state atoms, gives us σ2
Pee

= pb(1 − pb)/N . Generally atomic

clocks operate with pb = 0.5, where the slope between the frequency and the excitation fraction is

maximized. The excitation fraction noise can then be converted to fractional frequency noise δν/ν

from the analytic shapes of the Rabi and Ramsey spectroscopy lineshapes. This gives

σRabiy =
0.264

Tpν

√
Td + Tp
Nτ

(1.2)

σRamseyy =
1

2πTdarkν

√
Td + Tp
Nτ

, (1.3)

where Tp is the pulse time, Tdark is the Ramsey dark time, τ is the averaging time, and Td is the dead

time, or preparation time, of the atomic state. The dead time is typically not zero, since atomic

clocks so far operate in a destructive fashion - the atomic sample is destroyed upon measurement

so that the atoms have to be continually re-prepared, which takes time Td. More details on this in

the upcoming subsection.

In order to achieve a better intrinsic stability, it thus helps to 1.) operate a clock with more

atoms N , 2.) maximize the coherence time Tp (or Tdark), and 3.) reduce the preparation time

Td. With 1000 atoms, Tp = 5 s and Td = 1 s, our QPN-limited stability for Rabi spectroscopy is

10−17/
√
τ , and sub-10−18 frequency shifts can be resolved in 100 s.

1.1.2 Dick effect

Comparisons between independent clocks generally have an instability above the QPN limit

due to noise from the local oscillator called the Dick Effect [30]. The clock transition typically
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cannot be measured continuously, since most techniques that probe the excited state fraction are

destructive and heat atoms out of the trap. As a result, an atomic clock operates in cycles of

preparing the atomic sample, probing the clock transition, and reading out the quantum state.

During state preparation and detection, also called the dead time, the laser frequency is not mea-

sured and thus acts like a flywheel. This periodic sample of the laser phase leads to aliasing of high

frequency laser noise down to lower frequencies, and causes a random false frequency correction of

the laser phase that can degrade the performance of a clock. The Dick effect stability is given by

[30]

σ2
y(τ) =

1

τ

∞∑
m=1

|G(n/Tc)|2

|G(0)|2
Sy(n/Tc) , (1.4)

where Tc is the cycle time, Sy(f) is the power spectral density of fractional frequency fluctuations

of the laser at frequency f , and G(f) is the Fourier transform of the response function, g(t), defined

by

δPee =
1

2

∫ Tp

0
g(t)δω(t)dt . (1.5)

That is, the sensitivity function defines how changes in the laser frequency δω(t) over the coherent

interrogation pulse changes the excitation fraction Pee. To reduce the aliased signal, it is advanta-

geous to have a high duty cycle, where the majority of time is spent coherently probing the atomic

sample. Lower laser noise will also reduce the Dick effect.

Typically, independent clock stability of neutral atom clocks is limited by the Dick effect

[6, 9, 31, 4]. However with the advent of ultrastable lasers based on crystalline materials, which are

discussed in the next section, the Dick effect can be on par with state-of-the-art QPN stability [3].

In addition, interleaved interrogation of two atomic clocks in a zero-dead-time configuration can

drastically reduce the Dick effect [4]. Synchronous measurements, performed between two atomic

regions of a single clock [32] or between two separate systems [3, 33], can cancel the Dick effect and

are useful if one is not using a clock as a time standard but instead to measure frequency shifts

brought on by physical phenomena, such as the gravitational redshift.
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1.2 Next-generation systems

Here we discuss next-generation systems whose goal is to increase the precision of atomic

clocks. In subsection 1.2.1 we introduce a local oscillator that is composed of a laser locked to a

Si reference cavity. The high quality factor and low temperatures afforded by this system permit

a low thermal noise, and allow demonstration of record-breaking laser stability [34]. Next in

subsection 1.2.2 we give an overview of a 3D optical lattice clock. Confinement of atoms on

individual 3D lattice sites guards against interactions, and allows large numbers of atoms to be

probed coherently for over 10 s, reducing QPN.

1.2.1 Ultrastable lasers with Si reference cavities

A state-of-the-art optical oscillator is composed of a laser that is locked to a stable passive

resonator. Fundamentally, the frequency stability of the oscillator is limited by the length stability

of the resonator. Barring technical noise, the length stability is given by the composite thermal

noise of the substrates, spacer, and coatings that make up the resonator. For the majority of

state-of-the-art cavities, the noise of the substrates and coatings are much larger than that of the

spacer, so that we can write that the fractional frequency stability as σ2
TN ∝

T
QEL2 , where T is the

temperature, Q is the mechanical quality factor, E is the Young’s modulus, and L is the cavity

length. While the total thermal noise of the spacer depends on the length of the resonator, the

thermal noise of the substrates and coatings do not. This is why the fractional length stability

of the substrates and coatings is ∝ L−2, and the fractional length noise can thus be reduced by

increasing the length of the resonator. However, the resulting increase in the vibration noise on the

cavity and the temperature non-uniformity of the spacer create technical noise that is challenging

to mitigate. These technical noise sources were overcome in a cavity that was 40 cm long in our

group in 2013 [35, 36]. Thermal-noise-limited instability has been demonstrated in cavities as

long as 48 cm [37]. However, increasing L significantly beyond this length remains difficult. A

different strategy is thus warranted for significant advances in ultrastable laser technology. Up
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Figure 1.2: (a) Contributions of the substrate, spacer, and dielectric SiO2/Ta2O5 coatings to the
thermal noise for different spacer and substrate materials. The thermal noise is minimized when
all-crystalline components are used. Here the frequency noise of the Si/Si cavity is calculated at
124 K. (b) Coefficient of thermal expansion (CTE) for Si. The CTE crosses zero at 124 K and 17
K, and trends towards zero as T → 0.

until 2012, ultra-low expansion (ULE) glass was predominantly used as a spacer material in state-

of-the-art cavities due to its low coefficient of thermal expansion (CTE) at room temperature. A

significant advance was made when crystalline materials with more optimal material properties were

considered. Crystalline materials such as Si have many orders of magnitude higher Q compared

with conventional glass materials, and a large Young’s modulus [38]. A crystalline cavity can thus

demonstrate significantly lower thermal noise than one composed of amorphous materials, as shown

in Fig. 1.2 (a). The stiffness of Si provides the additional benefit that the cavity is more robust

against vibrations [38].

Thermal noise is also reduced when the cavity is operated at a lower temperature. However,

technical limitations prevent ULE and other materials from working at cryogenic temperatures.

Critical to demonstrating a thermal-noise limited cavity is the reduction of technical noise sources

that can change the cavity length. Temperature fluctuations and vibrations constitute two major

technical contributions that must be mitigated. ULE and other materials have an appreciable

coefficient of thermal expansion (CTE) at cryogenic temperatures (the CTE instead passes zero
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(a) (b)

Figure 1.3: (a) Fractional frequency stability of the JILA ultrastable laser locked to a 124 K Si
resonator (b) Frequency noise of the JILA 124 K ultrastable laser.

around room temperature). As such, operating these cavities at low T can enhance the coupling

between thermal fluctuations and the cavity length. In contrast, as shown in Fig. 1.2 (b), Si has

a CTE zero crossing at 124 K and 17 K. In addition, as is true of all materials, the CTE trends

towards zero as T approaches zero. Si cavities can thus operate at a lower T with a reduced coupling

of thermal fluctuations to the cavity length.

Thus far, lasers locked to Si resonators at 124 K and 4 K have been developed at JILA and

Physikalisch-Technische Bundesanstalt (PTB). Fig. 1.3 (a) shows the fractional frequency stability

of a laser locked to a 124 K Si cavity, extracted using a three-cornered hat comparison [39] with a

4 K Si cavity and our second clock laser based on a 40 cm ULE cavity. The laser with a 124 K Si

reference cavity demonstrated a thermal noise limited instability of 4 × 10−17, corresponding to a

coherence time up to 55 s at 1550 nm [34]. This was roughly a factor of two improvement in the

thermal noise over our previous clock laser [35].

The JILA setup has an improved long-term stability thanks to a few upgrades. First, the

intensity of the laser light is stabilized in the transmission port of the cavity, minimizing the cavity’s

thermal fluctuations due to changes in the intracavity power. Second, superpolished optics and

better thermal control of the environment were added, both which reduce slowly drifting parasitic
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Index fi (Hz) ai (1/Hz3) Γi (Hz)

1 5.7 7.0e-34 1.0
2 12.7 1.5e-34 1.5
3 20.0 4.0e-34 0.1
4 30.0 5.0e-34 0.1
5 40.0 5.0e-34 0.1
6 50.0 1.0e-34 4
7 55.0 4.0e-34 1.2

Table 1.1: 124 K Si cavity resonance frequencies, amplitudes, and linewidths

etalons. These improvements lead to a thermal-noise-limited stability from 0.2− 104 s and a drift

rate of the Si cavity below 60 µHz/s [40], a more than two orders of magnitude improvement in

the drift rate over our previous clock laser. An interesting question is if the drift rate of this cavity

decreases over time. We are continuining to monitor the drift rate of this cavity, and as of the

writing of this thesis, the lowest drift rate we have seen over the course of days is 30 µHz/s. This

ultralow drift makes Si cavities useful as stand-alone oscillators [40].

Fig. 1.3 (b) shows the frequency noise of the 124 K Si cavity, extracted using a cross-

correlation measurement [41] between a 124 K Si cavity, a 4 K Si cavity, and our old 40 cm

ULE clock laser [3]. From this measurement, we can extract a frequency noise model of the Si

laser, given by

Slaser(f) =
h−1

f
+ h0 + h2f

2 +
N∑
i=1

aif
2

1 + (f−fiΓi/2
)2
. (1.6)

This model includes a white frequency noise term (h0 = 4× 10−34 Hz−1), a flicker frequency noise

term (h−1 = 1.5×10−33), a white phase noise term (h2 = 3×10−36 Hz−3), and a series of resonances

that arise from for e.g. vibrations that are listed in Table 1.1.

Using the Si noise model quoted above, we can predict what the Dick effect-limited instability

of the clock will be for different dead times and pulse times as shown in Fig. 1.4. The Dick effect

stability quoted in this model was confirmed by transferring the stability of the 124 K Si cavity to

the 698 nm clock transition using a frequency comb (see Chapter 3), and subsequently performing
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(a) (b)

Figure 1.4: (a) Dick effect (×10−17) at 1 s averaging time for different pulse times Tp and dead
times Td, using Rabi spectroscopy. (b) Dick effect (×10−17) at 1 s averaging time for different dark
times Tdark and dead times Td, using Ramsey spectroscopy.

intercomparisons between two Sr atomic clocks [3] 2 . Prior to 2019, the Dick effect limited clock

stability was around 10−16/
√
τ [31, 4, 42, 9]. With the implementation of the 124 K Si cavity, an

independent clock stability of 4.8× 10−17/
√
τ was reached with a 570 ms pulse time and a 600 ms

dead time [3]. Further improving the stability is possible with improvements in the coherence time

and additional reduction of the dead time.

At 4 K, vibrations from the closed-cycle cryostat limited previous results [43]. With the

addition of a custom-designed cryostat with many layers of thermal isolation and minimal coupling

to the cooling mechanism [44], vibrations and thermal fluctuations were suppressed below the

thermal noise floor to demonstrate a 4 K cavity with thermal-noise-limited instability of 6.5×10−17

and a drift rate as low as 30 µHz/s, the latter of which depends on the intracavity power [45].

Decreasing the Dick noise contribution will of course benefit from an improvement in the laser

noise. As shown in Fig. 1.2 (a), the predominant noise contribution in a Si cavity is the mirror

coating noise. Crystalline semiconductor coatings made from AlGaAs/GaAs epitaxial layers have

demonstrated an order of magnitude reduction in Brownian noise at room temperature compared

to commonly used dielectric mirror coatings [46]. These coatings also have high optical quality in

2 More details on these measurements will be contained in upcoming theses.
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the telecom band, producing a finesse up to 300,000 at 1550 nm with scattering and absorption

losses of a few ppm [47]. Implementation of these coatings in a 4 K Si cavity could result in a

thermal-noise floor in the lower half of the 10−18 range, roughly an order of magnitude better than

the current state-of-the-art [34].

1.2.2 Three-dimensional optical lattice clocks

Neutral atom clocks probe thousands of atoms simultaneously, resulting in a favorable QPN.

Typically optical lattice clocks consist of thousands of neutral atoms that are trapped, cooled to

µK temperatures, and loaded into a 1D optical lattice so that atoms are confined to individual

pancakes. The optical lattice reduces the effect of atomic motion on the transition probability

of the atom. In particular, if the probe laser is along the direction of the optical lattice in the

Lamb-Dicke regime, the recoil caused by the probe light is absorbed by the lattice so that the

atom’s motional state is unaffected [48]. Furthermore, the wavelength of the lattice laser can be set

such that the polarizability of the ground state equals the polarizability of the excited clock state,

creating equivalent trapping conditions for the two states. 1D optical lattice clocks (OLCs) have

reached record accuracies of low 10−18 [6, 9], but since they only have strong confinement along

one direction, they suffer from collisions between atoms that dephase and shift the clock frequency.

These atomic interactions place a limit on the number of atoms per lattice pancake and maximum

coherence time, and thus limit the achievable QPN.

One possible solution to this problem is to create a 1D optical lattice with a large beam

waist [4], which increases the distance between atoms and thus reduces the interaction strength

throughout the interrogation pulse. This solution is accompanied by various technical challenges

that scale with the size of the atomic sample. For example, correctly modeling the temperature

environment over the extended sample will be critical to correctly account for blackbody radiation,

a leading systematic for many optical lattice clocks [6, 9] and ion clocks [8, 7].

An alternative scalable solution is to create a 3D optical lattice clock [49, 50], which is the
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Figure 1.5: Schematic of a 3D optical lattice clock. Using retro-reflected laser beams along all three
directions, single atoms are trapped on individual lattice sites, guarding the system against particle
interactions. The large arrows represent the propagation direction, while the double arrows denote
the polarization. The narrow line clock laser is phase stabilized to the x̂ lattice beam. The oblique
clock laser is used to measure sideband frequencies in along all three directions.

subject of this thesis. A spin-polarized, unity filled 3D lattice clock contains one atom per lattice

site, as shown in Fig. 1.5, which removes contact interactions and thus reduces density shifts.

3D optical lattice clocks can thus support more atoms per unit volume than a traditional 1D

optical lattice clock. Additionally, residual atoms in other spin states that create doubly occupied

lattice sites have an interaction energy that is much larger than in a 1D lattice clock due to the

significant spatial overlap between the wavefunction of the two atoms. These kHz interaction

shifts are spectroscopically resolvable from singly-occupied sites given our sub-Hz resolution of the

clock transition. The clock laser can consequently singularly address solely-occupied sites, guarding

against contact interactions that affect the clock transition frequency. Interactions present in a 1D
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lattice clock can also dephase the atoms during the clock interrogation, reducing the atom-atom

coherence time and thus the maximum allowable probe duration during spectroscopy. As discussed

earlier, increasing the probe duration reduces not just QPN but also the Dick Effect, and is thus

beneficial to obtain better clock stability.

To create a near-unity filled 3D optical lattice, it is necessary to load a Fermi-degenerate

gas. Fermi-degenerate gases have entropy on the order of a few kB per particle, where kB is the

Boltzmann constant. Adiabatically loading this low-entropy gas into the optical lattice allows only

the lowest energy states to be occupied so that atoms are loaded into the ground band of the optical

lattice with a minimal number of holes. 3D optical lattice clocks consequently require extra stages

of cooling to prepare a near-T = 0 gas, as is discussed more in Chapter 3. We have demonstrated

temperatures as low as 0.07 times the Fermi temperature [51], corresponding to only a few tens of

parts per billion above absolute zero.

In the first implementation of this new technology, we demonstrated a record QPN of 1.5×

10−17/
√
τ [32, 49]. This was achieved using 6000 atoms with a coherent interrogation time of 4

s and a dead time around 16 s. We also observed atom-light coherence times up to 6 s, limited

by the coherence time of the clock laser [35]. A long-standing question was whether a 3D optical

lattice could support the small AC Stark shifts required for highly accurate optical clocks. To

avoid interference effects, each lattice beam needs either orthogonal polarization or a different

lattice frequency. Despite these challenges, we demonstrated state-independent trapping based on

a proposal in Ref. [52] and measured the magic frequencies of each lattice beam to around 10 ppb

[49]. Higher order Stark shifts such as hyperpolarizability, magnetic dipole, and electric quadrupole

interactions [53], will be a fruitful subject for future study.

To extract the QPN and cancel the Dick effect, we take advantage of a high-resolution

imaging system with an NA = 0.23 to spatially map the frequency shifts of our atomic sample

[32]. The clock transition frequency can be compared in different parts of the atomic sample to
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Figure 1.6: (a) Ramsey spectroscopy data, demonstrating a 6 s atom-light coherence time. (b)
Fractional frequency stability of the frequency difference between two regions of the 3D optical
lattice, P1 and P2. The blue solid line shows an instability of 3×10−17/

√
τ , which when extracting

the QPN of the total ensemble with twice as many atoms gives an instability of 1.5 × 10−17/
√
τ .

When the number of atoms is reduced by a factor of three in each region, the instability increases by√
3, confirming the stability is governed by QPN. (inset) Spatially resolved image of the excitation

fraction. The frequency difference is extracted between two regions with excitation probability P1

and P2.

perform a spatially resolved synchronous comparison. This technique rejects the Dick effect since

all atoms in the sample see the same laser noise. The stability of this frequency comparison is

thus limited by QPN. Spatially resolving frequency shifts can identify important clock systematics

such as AC Stark shifts [32], dipolar interactions, and few-to-many-body physics [54]. In addition,

since synchronous comparisons improve a measurement’s precision, they open up the possibility of

measuring gravitational redshifts at 10−19 stability within a single experiment.

Further improvements in the stability of 3D optical lattice clocks requires increasing the

atom number and the coherence time, and decreasing the dead time. To further scale the atom

number beyond what was demonstrated in Ref. [49], larger lattice waists can be used. A bigger

challenge for 3D optical lattice clocks is the extended preparation time associated with preparing a

Fermi degenerate gas. The workhorse technique for preparing a Fermi degenerate gas is evaporative

cooling, which typically takes 10s of seconds. This prolonged dead time is significantly longer than
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the hundreds of ms dead time demonstrated in 1D optical lattice clocks. Decreasing the dead time

to prepare a Fermi degenerate gas requires novel cooling techniques and is the subject of Chapter 4.

Coherence time limitations in 3D optical lattice clocks are an active field of study [55, 56, 57].

In particular, we found that our atom-atom coherence time was limited to 12 s [55], despite the

118 s lifetime [58] of the 3P0 clock transition. This coherence time was found to be limited by

Raman scattering of lattice photons from the deep 3D optical lattice. Raman scattering is reduced

when the optical lattice is operated at lower lattice depths. However, an additional dephasing

mechanism due to site-to-site tunneling is then introduced. The interplay between tunneling and

Raman scattering leads to a maximum coherence time in our system of 12 s. Further improving

the coherence time may be achieved by operating in the band-insulating regime, where tunneling

is suppressed, or by operating with a larger lattice spacing. The latter requires different lattice

geometries to maintain the magic wavelength for each optical beam.

Eventually, the coherence time of atomic clocks will be limited by the lifetime of the excited

state. Such a limitation would be an exciting development. However, it is prudent to think of

techniques that can engineer the coherence time beyond this seemingly fundamental limit. One

mechanism to achieve this is by altering the density of available final atomic motional states.

Measurements to observe this intriguing idea, predicted back in the 1980’s, will be discussed in

Chapters 5 and 6.

1.3 Outline of this thesis

The work reported in this thesis aims to increase the stability of quantum degenerate clocks by

decreasing the preparation time of the system and increasing the coherent interrogation time. This

thesis in particular highlights the essential interplay between improvements in quantum metrology,

and understanding and exploiting advances in quantum physics. The outline of this thesis is as

follows. First we will discuss the theory behind Fermi degenerate gases in Chapter 2. The con-

sequences of Fermi statistics and the Pauli exclusion principle are profound and lead to striking

physics, which will be detailed. The theory introduced in this chapter is the basis of many measure-
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ments we make throughout the rest of this thesis. Then, in Chapter 3 we discuss the experimental

setup of the 3D optical lattice clock, with a particular focus on the spin polarizing sequence, imag-

ing techniques, and stability transfer of the ultrastable laser referenced to a 124 K Si cavity, which

operates at 1542 nm, to the narrow linewidth atomic transition at 698 nm.

In Chapter 4 we discuss new cooling techniques to rapidly create Fermi degenerate systems.

By taking advantage of the many collisional partners a multi-spin component gas contains and the

lack of inelastic loss for atoms with SU(N) symmetry, we demonstrate a sub-3 s preparation time

to reach deep degeneracy that includes only 600 ms of evaporation. This is roughly a factor of

5 decrease in the preparation time over our prior work. We also perform a detailed study of the

enhanced SU(N) interactions in the Fermi gas.

Chapters 5 and 6 outline efforts to quantum engineer the natural lifetime of the atomic state

using Pauli blocking, which exploits the Pauli exclusion principle to prohibit decay of an excited

atom to states already occupied by an identical fermion. In Chapter 5 we discuss experiments that

successfully observe Pauli blocking on the 1P1 transition in a light scattering experiment that an-

gularly resolves the suppression of the spontaneous emission rate. Chapter 6 details measurements

made on the 3P1 transition that attempt to directly measure the lifetime of the atomic state as

opposed to an angularly-resolved scattering rate. Finally, we conclude and provide an outlook for

future research in Chapter 7.



Chapter 2

Degenerate Fermi gases

Studying and controlling the quantum many-body system that comprises neutral atom atomic

clocks is essential for accurate and precise quantum metrology, and in tandem creates unique op-

portunities to advance our understanding of quantum science. Since atomic clocks use cold matter,

the quantum statistics of the constituent atoms governs their behavior. The statistical proper-

ties of bosons and fermions dictates how particles interact. For example, the required asymmetric

wavefunction of fermions implies that spin-polarized ground state fermions cannot interact at low

temperatures. Since particle interactions cause frequency shifts and dephasing, this was an essential

original argument for using fermions in neutral atom clocks.

The rich physics of Fermi-degenerate systems near T = 0 creates intriguing reasons to use such

low temperatures in atomic clocks. Three-dimensional optical lattice clocks rely on loading a gas

into the ground band of a 3D optical lattice. In order to load the lattice at high filling, it is necessary

to load a Fermi-degenerate gas. Near T = 0 and without particle interactions, the textbook example

of an ideal Fermi gas can be realized. Even though the system is theoretically simple, it provides

many opportunities to build our physical understanding and to use new discoveries to advance

quantum science. We will see an example of this when we discuss changing the decoherence rate

of an atom by exploiting the well-known phenomena that is Pauli exclusion. Adding particle

interactions creates a complex system that can describe for example the liquid state of electrons in

a solid. These normal Fermi liquids are an active field of study, and we will see later on in this thesis

that such interactions can be utilized for example for novel cooling mechanisms. The intriguing
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capabilities that are granted by the use of Fermi-degenerate systems requires a deep understanding

of the quantum physics underlying them. In this chapter, we thus review the physics of Fermi gases.

First we theoretically outline particle interactions and how they are simplified at low temperatures.

We next detail the statistics and thermodynamics of noninteracting Fermi gases. We focus on

observables such as the shape of the gas after releasing it from its confining potential, as well as the

structure factor and corresponding density correlations of the gas. The quantum statistics produce

striking results in both cases. The former gives rise to Pauli blocking of collisions and spontaneous

decay, while the latter changes the compressibility and thus particle number fluctuations of the

sample. Subsequently, we review the corresponding thermodynamics of interacting Fermi gases.

We describe the expansion dynamics of an interacting sample and how interactions modify the

system’s compressibility.

2.1 Colliding fermions

In this section, we discuss scattering between fermions at low temperatures. The theory

explains when interactions need to be considered to properly describe the system. Further details

on non-interacting and interacting Fermi gases are the subject of the rest of the chapter.

In dilute atomic gases, interactions between particles are predominantly governed by pairwise

collisions. Here, we will discuss elastic collisions1 . Scattering theory is discussed in detail in many

textbooks [59, 60]. For a spherically symmetric scattering potential V (r), where r is the distance

between the particles, the wavefunction after scattering can be represented for r →∞ by

ψ(r) = A

[
eiki·r + f(ki,kf )

eikf r

r

]
|s〉 , (2.1)

where ki and kf are the incoming and outgoing wave vectors, A is a normalization constant, and

|s〉 is the two-particle spin wavefunction. This equation consists of an incoming plane wave and an

outgoing spherical wave with scattering amplitude f(ki,kf ), which can be expanded using spherical

1 We neglect inelastic collisions, which matter at high densities.
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harmonics into

f(ki,kf ) =
1

k

∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ) , (2.2)

where θ is the angle between ki and kf , l is the angular momentum of the partial wave, δl is the

acquired phase shift that depends on the interaction potential, Pl is the Legendre polynomial, and

|ki| = |kf | = k. The two-body wavefunction can then be written as [60],

ψ(r, θ) =
1

(2π)3/2

∑
l

(2l + 1)
Pl(cos(θ))

2ik

[
e2iδl

eikr

r
− e−i(kr−lπ)

r

]
|s〉 . (2.3)

To reflect the quantum mechanical nature of the colliders, the total spin and spatial wavefunc-

tion ψ(r, θ) must be antisymmetric. If two fermions interchange, θ → θ − π. Under this exchange,

the spatial part of the wavefunction is symmetric (antisymmetric) for even (odd) l. This implies

that two fermions in the s = 0 spin singlet state can only interact through even partial waves, while

two fermions in one of the s = 1 spin triplet states can only scatter through odd partial waves.

Thus, elastic collisions between two fermions in the same spin state can occur through odd l, while

fermions in different spin states can interact through even and odd l, based on whether the spin

state is symmetric or antisymmetric. Two ground state atoms with low energy k → 0 have a phase

shift δl ∝ k4 for l > 1, and δl ∝ k2l+1 for l = 0 or 1 [61]. The phase shift is thus smaller as l increases

at ultralow temperatures where k is small. Thus, the scattering amplitude given in Equation 2.2 is

largely governed by low l partial waves at ultralow temperatures. As a result, two cold fermions in

the same spin state to a good approximation only undergo p-wave (l = 1) scattering. In contrast,

two fermions in different spin states can undergo s-wave (l = 0) or p-wave scattering depending on

if the spin is in a singlet or a triplet state. The proportionality factors of the phase shifts are called

the scattering length for s-wave scattering, a, and the scattering volume for p-wave scattering, b3.

The ratio δ1/δ0 = k2b3/a is proportional to T in the classical limit. P-wave scattering is thus

suppressed at ultralow temperatures below the p-wave barrier. The threshold energy Eth at which

collisions occur can be approximated as

Eth(l) =
~2l(l + 1)

2mb2
− C6

b6
, (2.4)
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where l is the corresponding partial wave, m is the mass of the atom, and

b2 =

√
6C6m

~2l(l + 1)
. (2.5)

The C6 coefficient for the 1S0 state is 3107(30) a.u and for the 3P0 state is 5360(200) a.u. [62],

where 1 a.u. = 1 Eha
6
0, Eh is the Hartree energy and a0 is the Bohr radius. For l = 1, the

centrifugal barrier is thus 35 µK in 1S0 and 26 µK in 3P0. Using narrow-line laser cooling we

can reach temperatures of 1 µK. P-wave scattering, although small at µK temperatures, has been

measured in both 87Sr and 171Yb optical lattice clocks in the excited clock states [63, 64, 25]. In

the upcoming sections we will discuss the Fermi-degenerate regime, where T is 100s of nK. P-wave

scattering is negligible at these temperatures and only s-wave scattering is allowed.

The elastic scattering cross section is σ =
∫
|f(θ)|2dΩ, which can be simplified to σ =

4π/k2
∑

l(2l + 1) sin2 δl. For fermions in different spin states that undergo s-wave scattering, this

further simplifies to (k → 0)

σ = 4πa2 , (2.6)

where a is the scattering length. However, for fermions in the same spin state, the s-wave scattering

cross section is zero.

2.2 Noninteracting Fermi gases

S-wave collisions, the predominant collisions at ultralow temperatures, are forbidden for

spin-polarized fermions. As a result, a spin-polarized ultracold Fermi gas can be described as

an ideal Fermi gas consisting of noninteracting particles. Noninteracting theory is also a good

first approximation for multi-component Fermi gases with small scattering lengths. This theory

highlights the unique statistics of fermions and its consequences.

In this section, we first describe trapped Fermi gases in subsection 2.2.1. We subsequently

describe the expansion of noninteracting Fermi gases after being released from the confining po-

tential in subsection 2.2.2. Next we describe the structure factor, the response of the system to an

external wavevector, in subsection 2.2.3, and the consequences of the Pauli exclusion principle on
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the structure factor, including Pauli blocking of collisions in subsection 2.2.4 and Pauli blocking of

light scattering in subsection 2.2.5. We conclude with a discussion of a Fermi gas’s correlation func-

tion, which is its response to spatial perturbations, in subsection 2.2.6 and the resulting suppression

of density fluctuations in subsection 2.2.7.

2.2.1 Statistics of trapped Fermi gases

The thermodynamics of non-interacting Fermi gases can be described through statistical

relations. The average number of fermions in a given spin state with energy ε is given by the

Fermi-Dirac distribution [65]

F(ε) =
1

eβ(ε−µ) + 1
, (2.7)

where β = 1/kbT , kb is the Boltzmann constant, and µ is the chemical potential. Non-interacting

trapped Fermi gases can be described by the Hamiltonian

H =
p2

2m
+ U(r) , (2.8)

where p is the momentum, m is the mass, U(r) = 1
2m
∑

i ω
2
i x

2
i is the trapping potential, and ωi

are the trap frequencies due to the confinement along direction xi. For a symmetric trap where

ωx = ωy = ωr, we can rewrite the potential as U(r) = 1
2mω

2
r (x

2 + y2 + λ2z2) with λ = ωz/ωr. The

total atom number is

N =

∫ ∞
0

g(ε)F(ε)dε

= −ωr
ωz

(
kbT

~ωr

)3

Li3(−ζ) , (2.9)

where ζ = eβµ is the fugacity, Lin is the generalized polylogarithm of order n and g(ε) is the density

of states as a function of energy ε, which in 3D is equal to [66]

g(ε) =
ε2

2~ω̄3
, (2.10)

where ω̄ =
(∏

j ωj

)1/3
. At T = 0, the occupation is one for each distinct energy state below EF

and zero above EF . The above equation can then be simplified to N =
∫ EF

0 g(ε)dε and integrated
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to give EF = ~ω̄(6N)1/3. The total energy of the system is

E =

∫ ∞
0

εg(ε)F(ε)

= − 3

λ

(kbT )4

(~ωr)3
Li4(−ξ) . (2.11)

At T = 0 the mean energy per particle is 3
4 EF . The fugacity is related to the reduced temperature

through

Li3(−ζ) = − 1

6(T/TF )3
. (2.12)

For large numbers of atoms, a semiclassical phase space distribution can be used to describe

the many-body wavefunction, where f(r,p) = (2π~)−3F(H(r,p)). A semiclassical transport equa-

tion can be derived by assuming the phase space density is conserved, that is df(r,p, t)/dt = 0.

Expanding this derivative gives us ∂f/∂t+∇rf · ṙ +∇pf · ṗ = 0. This simplifies to

(
∂t +

p

m
· ∇r −∇r U(r) · ∇p

)
f = 0 . (2.13)

The above equation is called the Vlasov, or the collisionless Boltzmann, equation. We can see that

the Fermi phase space distribution function, given by

f0(r,p) =
1

(2π~)3

1

e
β
(

p2

2m
+U(r)−µ

)
+ 1

, (2.14)

solves Equation 2.13 in equilibrium, when ∂tf = 0. The real space density n(r) =
∫
d3pf(r,p) is

then given by

n(r) = −(kbmT )3/2

(2π)3/2~3
Li3/2(−ζe−mω2

rβρ
2/2) , (2.15)

where ρ2 = x2 + y2 + λ2z2.

2.2.2 Time of flight expansion

As is further discussed in Section 3.2, high-SNR images of the atomic cloud at high densities

are best performed after the atoms are released from the confining potential and measured after

long expansion times. The expanded gas can then be appropriately fit to extract T/TF and the
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atom number of the gas. For a noninteracting gas, atoms expand ballistically and thus the phase

space density f(t, r,p) = f0(t, r− pt/m,p). This can be rewritten as [67]

f(r,p, t) = f0

(
ri
λi(t)

, λi(t)pi −mλ̇i(t)ri
)
, (2.16)

where f0 is the equilibrium distribution function given in Equation 2.14. The parameters λi are

scaling parameters that represent the dilution of the gas along the ith direction and can be solved

to give the distribution function for different expansion times. We assume that before t = 0, the

gas is in equilibrium with trap frequency ωi where i denotes the cardinal direction. The dynamics

are then described by a sudden trap frequency change at t = 0 from ωi to ωf [67]. Multiplying

Equation 2.13 by ripi and integrating in phase space, we find

λ̈i + ω2
fλi −

ω2
i

λ3
i

= 0 , (2.17)

To study the expansion after switching off the trap, ωf in Equation 2.17 is set to 0. The

differential equation is then solved for the scaling parameters, which yields λi(t) =
√

1 + ω2
i t

2. This

simple rescaling is unique for a harmonic trap. The scaling parameters can then be plugged into

the scaling ansatz to yield the phase-space distribution after time-of-flight. We get that the density

evolves according to

n(r, t) =
n(r, 0)∏

i

√
1 + ω2

i t
2
. (2.18)

That is, the 3D density is simply rescaled after expansion out of the trap.

The 3D density is hard to extract experimentally. Instead, the line-of-site integrated density

is imaged along a particular direction (here integrated along y) which gives

n(x, z) = − 1

2
√

1 + (ωrt)2
√

1 + (ωzt)2

m(kbT )2

π~3ωr
Li2(−ζe−x2/2σ2

x−z2/2σ2
z ) , (2.19)

where

σ2
i (t) =

〈
x2
i

〉
0

(t) =
kbT

m

1 + ω2
i t

2

ω2
i

. (2.20)
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Fitting the expanded gas cloud to the above equation after time of flight allows us to extract the

fugacity. As the fugacity depends on the shape of the atomic cloud and not on other extracted

parameters, it allows an accurate determination of T/TF . The aspect ratio of the line-of-site

integrated density is

σz
σx

=
ωx
ωz

√
1 + ω2

z t
2

1 + ω2
xt

2
. (2.21)

At long expansion times (ωit >> 1), the aspect ratio approaches one. This reflects the fact that

expansion occurs ballistically. After long time-of-flight, the cloud reflects the isotropic momentum

distribution even if the confining potential is anisotropic.

2.2.3 Static structure factor

Fermi statistics has profound effects on the scattering behavior of particles. The static struc-

ture factor Sk describes the response of a system to a perturbation with wave vector k. Perturba-

tions can come from, for example, light, or from collisions with other non-identical particles. The

consequences of the Pauli exclusion principle are evident in the static structure factor, given by

Sk =
∑
u

∑
v

ni(v)
(

1− nf (u)
)
| 〈u| eik·r̂ |v〉 |2 , (2.22)

where the sums are over all energy eigenstates and r̂ represents the position operator. This equa-

tion states that the probability a fermion scatters from energy state |v〉 into energy state |u〉 is

proportional to the occupation number of the initial state ni(v), times the probability that the

final state nf (u) is empty. The product must be weighted by the probability that the fermion will

scatter into state |u〉 given a momentum transfer of k. In a harmonic trap with many harmonic

oscillator levels filled, the structure factor can be approximated with a semiclassical equation as

S(k) = h−3

∫
d3r

∫
d3pfi(p, r)

(
1− ff (p + ~k, r)

)
, (2.23)

where f(p, r) is given in Equation 2.14.
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2.2.4 Pauli blocking of collisions

The Pauli exclusion principle describes a fundamental phenomenon that gives rise to prop-

erties such as Fermi pressure, which causes the size of a Fermi gas to saturate as the temperature

is lowered [68]. The above discussion demonstrates a consequence of the Pauli exclusion principle,

that scattering is not allowed if the final momentum state is occupied by another identical fermion.

The momentum transfer k during this process can be imparted for example through collision with

another particle. This has a measurable consequence on the equilibrium thermodynamic proper-

ties and collisional dynamics of a multiple component Fermi gas. In the degenerate regime, Pauli

exclusion reduces a gas’s ability to perform binary collisions, which can be illustrated by noting

the following: Imagine that the system consists of two equal T = 0 Fermi gases, so that all levels

below EF are occupied, and where each Fermi sea has a different spin so that scattering between

the seas is allowed. The initial energies of any scattered particles E1 and E2 must be less than EF .

In order for two particles to scatter, the final states with energies E3 and E4 must be greater than

EF , since all states below EF are occupied. That is, our conditions for scattering are E1, E2 < EF

and E3, E4 > EF . However, energy conservation requires that E1 + E2 = E3 + E4. This is in

direct contradiction with the energy bounds we set. Thus, scattering between two Fermi seas is

completely blocked at T = 0.

The elastic cross-section for a two-component Fermi gas goes from the classical value of σel =

4πa2 to 0 at T = 0 [69]. The suppression of collisions causes a reduction in the evaporation efficiency

at degenerate temperatures [70] and in the energy per atom in an imbalanced two-component Fermi

gas [71]. In the latter case, different Fermi energies cause a disparate mean energy per particle

between the two components. In a classical system, collisions between components would equalize

the mean energy per particle, but those collisions are blocked for a Fermi gas. The more degenerate

component has a larger Fermi sea, and collisions that cause a reduction in energy are blocked due

to occupied final states.
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2.2.5 Pauli blocking of light scattering

The momentum k imparted to an atom can additionally be caused by light. When an atom

absorbs a photon, it receives a recoil of energy Er = ~2k2/2m, where k is the light’s wavevector.

For a light scattering experiment where an atom undergoes a directed absorption followed by a

dispersive spontaneous emission event, the total momentum transfer k can range anywhere from

0 to 2kr, where kr =
√

2mEr is the recoil momentum. This has the striking consequence that if

T = 0, k is much less than the Fermi momentum radius kF , and the Fermi sea is weakly excited

such that the ground state Fermi sea remains unperturbed after absorption of the probe light, most

excited atoms are prohibited from decaying. Only atoms near the edge of the Fermi sea, which

can be excited to unoccupied states outside of the Fermi sea, will be able to decay. Experiments

to observe this Pauli suppression of the spontaneous emission rate of an atom will be discussed in

more detail in Chapters 5 and 6. Here we review the theory of Pauli suppression in light scattering

experiments, focusing on the intuition gained from analyzing the case of a T = 0 spin-polarized

Fermi gas.

Equation 2.23 can be compared to a Maxwell-Boltzmann distribution to give the relative

scattering rate [72]

SFM (k)

SMB
=
h−3

∫
d3r

∫
d3pfi(p, r)

(
1− ff (p + ~k, r)

)
h−3

∫
d3r

∫
d3pfi(p,q)

. (2.24)

This integral can be simplified by making the variable substitutions r̃j = rj
√
βmω2

j /2, p̃j =

pj
√
β/2m to give

SFM (k)

SMB
= 1− 6

π3E3
Fβ

3

∫
d3r̃

∫
d3p̃

1

1 + ζ−1e(p̃2+r̃2)

1

1 + ζ−1e((p̃+
√
βEFk/kF )2+r̃2)

, (2.25)

where ω̄ = (ωxωyωz)
1/3 is the average trap frequency, and we used the fact that ~kF = (2mEF )1/2

and EF = ~ω̄(6N)1/3. This makes the integral spherically symmetric. We can align our coordinate

system such that the momentum transfer k is along the z-direction, that is k = kẑ. The position

and two other momentum directions can be expressed in 5-dimensional spherical coordinates with
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radius s to give

SFM (k)

SMB
= 1− 16

πE3
Fβ

3

∫
dss4

∫
dpz

1

1 + ζ−1es2+p2z

1

1 + ζ−1es2+(pz+kscal)2
, (2.26)

where we have used the fact that the volume element, integrated over the 4 angular directions, is

equal to 8π2/3s4ds and kscal =
√
βEFk/kF . Finally, we let a = s2 to arrive at the formula

SFM (k)

SMB
= 1− 8

πE3
Fβ

3

∫
daa3/2

∫
dpz

1

1 + ζ−1ea+p2z

1

1 + ζ−1ea+(pz+kscal)2
. (2.27)

This can be numerically solved for finite T/TF to extract the reduction factor of the scattering

rate. Equation 2.27 can be explicitly solved at T = 0 to obtain [72]

SFM (k)

SMB
= 1− 32

5π
χ(

k

2kF
)Θ(2− k/kF ) , (2.28)

where Θ is the Heaviside step function and

χ(x) =
x
√

1− x2

48
(−8x4 + 26x2 − 33) +

15

48
cos−1(x) . (2.29)

For a light scattering experiment, an atom first receives a momentum kick kabs along a defined

direction, and a second randomly oriented momentum kick kemi upon spontaneous decay, where

|kabs| = |kemi| = kR. The total momentum transfer k is then given by k = kabs + kemi where

k = 2kRsin(α/2) and α is the angle between the absorbed and emitted photon. This is illustrated

in Fig. 2.1 for the specific case of a single excited atom in the center of the Fermi sea in a T = 0

gas. Here, if kF > 2kR, complete suppression is achieved and SFM (k) = 0.

Equation 2.28 is plotted in Fig. 2.2 as a function of α and kF /kR. Decay can occur if the

momentum transfer kicks the atom outside the Fermi sea. No suppression occurs when k > 2kF ,

as is reflected in the Heaviside step function in Equation 2.28. This is because all atoms, regardless

of their position within the Fermi sea, will get kicked outside it. For k < 2kF , suppression is

dominant in a cone near the absorption direction, where the total momentum transfer is small.

Larger suppression can be achieved at all angles α when EF >> ER. However, even at large Fermi
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Figure 2.1: (a) In a T = 0 Fermi gas, all available harmonic oscillator states up to the Fermi energy
EF are filled with unity occupation. An excited atom (orange) acquires a recoil energy ER when
returning to its internal ground state (blue). (B) In momentum space, the atoms form a Fermi sea
occupying all states up to the Fermi momentum ~kF . Spontaneous decay of an excited atom with
emission along α and total momentum transfer ~k can happen only if the final momentum state is
not occupied by another ground state fermion. If kF > 2kR, all final states are occupied and the
atom cannot decay. The decay in both (a) and (b) is blocked since the final state is occupied.

energies, atoms near the edge of the Fermi sea can be excited to available decay channels outside
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Figure 2.2: Suppression of the scattering rate for a Fermi versus classical gas for various angles
α between the absorbed and emitted photons, and Fermi versus recoil momentum. When k =
2kR sin(α/2) > 2kF , no suppression occurs.

the Fermi sea. Complete suppression thus only occurs for EF >> ER and when only the atoms

near the center of the Fermi sea are excited. Note that Equation 2.28 only depends on the ratio

k/kF = 2kR/kF sin(α/2). Thus, changing the ratio of kR/kF or the angle α are equivalent. At

finite temperature, holes within the Fermi sea provide additional paths for atoms to decay, and

even with EF >> ER only finite suppression is achieved at all angles.

2.2.6 Density-density correlation function

If Fermi statistics modify the response of a Fermi gas to a perturbation of wavevector k,

then it must similarly modify the response to perturbations at a distance scale of r = 1/k. This is
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reflected in the correlation function ν(r), which is the Fourier transform of Sk [73]:

ν(r) =
1

(2π)3

∫
d3kSke

ik·r , (2.30)

where r = r1 − r2 is the distance between two particles at positions r1 and r2. The idea to look

at density-density correlations of ultracold atoms was originally proposed in Ref. [74], and was

first measured between different spin states of a Feshbach molecule [75]. To further analyze ν(r),

we take advantage of the local density approximation (LDA) [76] and absorb the spatial variation

of the potential into a locally changing chemical potential µLDA ≡ µ − U(r). This allows us to

locally treat the trapped Fermi gas as a homogeneous gas. The density-density correlation function

C(r) = nν(r), where n is the density, can then be written as [77]

C(r) = nδ(r)−

[
kBT

EF

k2
F

2π2r

∫ ∞
0

du
u sin(u

√
kBT/EFkF r)

e−βµLDAeu2 + 1

]2

. (2.31)

For a T = 0 gas, the correlation function further simplifies to [78]

C(r) = nδ(r)− n2 9

(kF r)2

[
cos(kF r)

kF r
− sin(kF r)

(kF r)2

]2

= nδ(r)− n2(g2(r)− 1) , (2.32)

Equation 2.32 is divided into “auto-correlations”, which associate the correlation of the particle

with itself, and pair-wise correlations given by g2(r), which is the conditional probability of finding

two particles separated by distance r. g2(r) is plotted in Fig. 2.3 versus kF r. From this figure, one

can see for distances r ∼ 1/kF that g2(r) < 1 and approaches 0 as r → 0. This reflects the reduced

probability of finding two fermions closer than ∼ 1/kF due to Pauli exclusion.

Combined with the autocorrelations, C(r) is negative for fermions. This fermionic ‘anti-

bunching’ was originally observed in a band insulator of 40K atoms released from an optical lattice

[79], and in a gas of 3He [80]. Higher order correlations beyond second order lead to the formation

of Pauli Crystals, geometrical structures that are formed in few-body systems [81, 82].
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Figure 2.3: Pair distribution function versus scaled distance between the two particles.

2.2.7 Density fluctuations

The correlation function C(r) = 〈n(r1)n(r2)〉 − 〈n(r1)〉 〈n(r2)〉 is related to density fluctua-

tions through 〈
(δn(r))2

〉
=

∫
d3r1

∫
d3r2C(r)δ(r1 − r2 − r) , (2.33)

where the notation 〈·〉 represents the statistical mean, which is the result of a large number of

independent realizations. In an experimental context, this implies the result of a large number

of repeated measurements. The particle number fluctuations in a subvolume V = 4/3πR3 of the

Fermi gas can be expressed as

〈
(δN)2

〉
=

∫ R

0
C(r)h(r) 4πr2dr =

1

(2π)3

∫
d3knS(k)H(k) , (2.34)

where h(r) is a geometrical overlap factor, given by

h(r) =

∫
V
d3r1

∫
V
d3r2δ(r1 − r2 − r) . (2.35)

Physically, this represents the overlap region between a subvolume V and that subvolume shifted

by r, while H(k) is its Fourier transform. To gain intuition about Equation 2.34, we first look at
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a T = 0 gas. In this limit, the number fluctuations can be rewritten for large kFR as [76, 83]

〈
(δN)2

〉
=

(kFR)2

2π2
ln
[
4eγ−1/2kFR

]
+O(1/kFR) , (2.36)

where 4eγ−1/2 = 4.32. In a T = 0 gas, there are no thermal fluctuations since every state is

always occupied below EF . However, Equation 2.36 reveals an additional source of atom number

noise. Upon measurement, atoms are projected into the subvolume with a probability given by

the overlap of the particle’s wavefunction inside V . This finite probability for small enough box

sizes causes atom number fluctuations, similar in concept to quantum projection noise. For a box

with many atoms, quantum projection noise is a particular problem on the edges of the subvolume,

since projection noise puts these atoms either inside or outside the box 2 . Hence, the fluctuations

depend on the surface area of the box which goes like R2. Written in terms of the atom number,

Equation 2.36 can be written as〈
(δN)2

〉
N

= 3

(
3

32π4

)1/3

N−1/3 ln
[
10.45N1/3

]
, (2.37)

and thus the effect disappears in the thermodynamic limit, when a subvolume contains many

particles and the projection noise tends towards zero.

In the thermodynamic limit at finite temperature, H(k) → V δ(k) so that Equation 2.34

simplifies to (δN)2 = NS(0), yielding the result of the fluctuation-response theorem [84] with

generalized force µ, which is the chemical potential:

〈
(δN)2

〉
= NkBTnκT , (2.38)

where κT = −1/V (∂V/∂P )T,N is the isothermal compressibility. This result can also be derived

using the Grand partition function

Z =
∏
p

∑
np

e−βnp(εp−µ) , (2.39)

2 Technically, the same underlying source of projection noise exists for smaller boxes where there are only a few
atoms, but it is difficult to accurately model the fluctuations in this case as it depends on the precise shape of the
single-particle wavefunctions.
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where the sum is over states p with occupation per state np. For identical fermions, the occupation

can be either zero or one so that

Z =
∏
p

(1 + e−β(εp−µ)) . (2.40)

The average atom number 〈N〉 is related to the Grand Potential Ω = −kBT ln(Z) through N =

− (∂Ω/∂µ)V,T , which after making the sum continuous gives the familiar equation

N = 4π
V

h3

∫ ∞
0

dpp2 1

ζ−1eβεp + 1
=
V

λ3
f3/2(ζ) , (2.41)

where fn(ζ) = −Lin(−ζ) and λ =
√

2π~2/mkBT is the thermal deBroglie wavelength. The variance

is then [85] 〈
(δN)2

〉
=

(
kBT

∂

∂µ

)2

log(Z) = kBT
∂N

∂µ
. (2.42)

κT can be expressed using Maxwell’s relations as κT = V/N2 (∂N/∂µ)T,V . Equation 2.42 thus

reproduces Equation 2.38. Given the relation ∂fn(ζ)/∂ζ = fn−1(ζ)/ζ, we find

〈
(δN)2

〉
=
V

λ3
f1/2(ζ) , (2.43)

and thus 〈
(δN)2

〉
/N =

f1/2(ζ)

f3/2(ζ)
= nkBTκT . (2.44)

Atom number fluctuations in the above equation are of purely thermal origin and can be understood

as follows. Thermal fluctuations manifest on the Fermi surface, where the occupation number is

not unity and the majority of holes lie. In real space, this corresponds to fluctuations delocalized

equally over the whole homogeneous Fermi gas. As T/TF decreases, the width of the Fermi surface

narrows and the number of holes decreases so that the thermal fluctuations correspondingly decline.

Taken in light of the LDA, this implies that fluctuations on the edge of a trapped Fermi gas, where

the local T/TF is larger, will experience increased fluctuations compared to the center of the Fermi

gas where µ is maximum. To first order in T/TF , Equation 2.44 becomes

〈
(δN)2

〉
/N =

3

2
T/TF , (2.45)
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implying κT = 3
2nEF

. In contrast, for a classical gas, (δN)2/N = 1, reflecting the Poisson statistics

of the gas 3 .

In the actual experiment, we do not measure the 3D atomic density but instead the column

density, which is the 3D density integrated along the line-of-site (LOS) of the imaging camera.

We can obtain the expected fluctuations by integrating the fugacity in Equation 2.44 through the

imaging direction x3
4 :

[
(δN)2/N

]
LOS

=

∫
f1/2(ζ(x1, x2, x3))dx3∫
f3/2(ζ(x1, x2, x3))dx3

=
f1(e−β(µ−U(x1,x2)))

f2(e−β(µ−U(x1,x2))
. (2.46)

To obtain T/TF from the experimental data, we look at (δN)2 versus N in the same subvolume

across a series of images. We perform the noise analysis after time-of-flight to avoid any collective

scattering processes that can occur when imaging an atomic cloud at high density. Because the

density is simply rescaled after time-of-flight, the noise properties (δN)2/N = kBT/n ∂n/∂µ are

not altered. To account for shot-to-shot atom fluctuations due to imperfections in the experimental

preparation, we high pass each image by fitting each atom cloud to a gaussian and looking at the

residuals. In comparison to scaling each image, this also minimizes the effect of center-of-mass

fluctuations on the results. Repeating this protocol for subvolumes in the center vs edge of the

Fermi gas gives us T/TF as a function of the harmonic confinement, which we then fit with theory.

The subvolume size is set by looking at (δN)2/N and observing when the fluctuations saturate as

we vary the box size. Finally, photon shot noise must be subtracted to get an accurate calibration

of the thermal fluctuations. This can easily be obtained for each subvolume by looking at the bright

image in the absorption image analysis. See Chapter 3 for more details on our imaging methods.

Sub-Poissonian fluctuations were first measured by the groups of Ketterle [86] and Esslinger

[87] in noninteracting trapped Fermi gases, showing up to around 50% of suppression compared to a

classical gas. Reduced fluctuations have also been seen in the Mott-insulating and band-insulating

regimes in an optical lattice, see for eg [88, 89, 90], and have been used as a complementary

3 The number fluctuations for a classical gas follow a binomial distribution. For large atom numbers, this is
approximately Poissonian and the probability of having atom number N in subvolume V is pN = 〈N〉N e−〈N〉/N !.
The atom number variance is thus (δN)2 = 〈N〉.

4 We use the identity
∫∞
−∞ fn(ζe−x

2

)dx =
√
πfn+1/2(ζ)
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technique to confirm the degenerate temperatures that were extracted through global profile fits in

KRb [91].

2.3 Interacting Fermi gases

When more than one spin component exists in a Fermi gas, s-wave collisions allow interactions

between components with a strength that depends on the scattering length a. In this section,

we outline the physics of interacting two-component Fermi gases, which are the simplest multi-

component system to analyze and gain intuition. This will provide a theoretical basis which will be

expanded on in Chapter 4 to describe interacting SU(N) systems with N = 10 spin components. In

subsection 2.3.1 we derive the Hamiltonian for an interacting Fermi gas, and in subsection 2.3.2 we

discuss the expansion dynamics of interacting systems. We conclude with a discussion of density

fluctuations in a repulsively interacting trapped Fermi gas in subsection 2.3.3.

2.3.1 Interaction Hamiltonian

The scattering potential between particles is complex at short-range, but can be simplified

at long range into a Van-der Waals potential in the ground state, V (r) ∼ C6/r
6. For excited

state atoms, dipole-dipole interactions are also important, with V (r) ∼ C3/r
3. Fermi discovered

that a simpler pseudopotential can describe many properties correctly, including the energies and

scattering phase shifts. The pseudopotential for s-wave scattering is given by [92]

V (r) =
4πa~2

m
δ(r) . (2.47)

The use of a pseudopotential greatly simplifies the interaction potential between particles, and is

accurate as long as the details of the short-range physics are not important.

Given the simplification granted by the Fermi pseudopotential, we will now derive the interac-

tion potential in an ultracold two-component Fermi gas. As derived in Section 2.1, s-wave collisions

are predominant at ultralow temperatures. Interactions thus largely occur between particles with
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different spins. The Fermi pseudotential allows us to write the total interaction energy as

Hint =

∫
d3rd3r′ψ̂†↑(r)ψ̂†↓(r

′)V (r− r′)ψ̂↓(r
′)ψ̂↑(r)

= g

∫
d3rψ̂†↑(r)ψ̂†↓(r)ψ̂↓(r)ψ̂↑(r) , (2.48)

where we have identified the interaction strength g = 4π~2a/m, and ψ̂σ(r) (ψ̂†σ(r)) annihilates

(creates) a fermion of spin σ at point r. We have labeled the two spin states as |↑〉 and |↓〉. The

fermionic operators satisfy {ψ̂σ(r), ψ̂†σ′(r
′)} = δσ,σ′δ(r − r′). Given the density operator n̂σ(r) =

ψ̂†σ(r)ψ̂σ(r), and assuming the density for both components is equal, that is n̂↑(r) = n̂↓(r) = n̂(r),

the interaction energy can be further rewritten as

Hint = g

∫
d3rn̂↑(r)n̂↓(r)

= g

∫
d3rn2(r) . (2.49)

The total Hamiltonian for a single component can be written as

Hσ =

∫
d3r ψ̂†σ(r)

(
−∇

2

2m
+ U(r)

)
ψ̂σ(r) +

∫
d3rψ̂†σ(r)

(
gn(r)

)
ψ̂σ(r) , (2.50)

where the first term describes the kinetic and potential energy of the fermions, which are confined

by a harmonic trapping potential U = m/2
∑

i ω
2
i x

2
i . The above equation makes it apparent that

the interaction energy looks like an additional effective potential with a strength given by the mean

field energy:

VMF = gn(r) . (2.51)

The derived interaction Hamiltonian is accurate for a two-component Fermi gas. In general,

interactions can exist between many spin components, and the interaction potential must take

into account all possible two-body interactions, which in general have different scattering lengths

a. Under SU(N) symmetry, the nuclear spin degree of freedom is decoupled from the electronic

angular momentum so that all scattering lengths a are equal for atoms in different nuclear spin

states, and the interaction Hamiltonian is greatly simplified. This allows enhanced interactions

without inelastic spin loss that normally result when a gas has many-components. We will discuss

SU(N) interactions in more detail in Chapter 4.
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2.3.2 Expansion dynamics

To solve for the expansion dynamics of the gas after switching off the harmonic confinement,

we can use the same method as that used for noninteracting Fermi gases in subsections 2.2.1 and

2.2.2, but replace U(r) with the effective potential U(r)+gn(r). The Boltzmann equation becomes

(
∂t +

p

m
· ∇r −∇r [U(r) + gn(r)] · ∇p

)
f = 0 . (2.52)

Solving the equation in equilibrium (∂tf = 0) gives us the interacting equilibrium distribution

function

f0(r,p) =
1

(2π~)3

1

e
β
(

p2

2m
+U(r)+gn(r)−µ

)
+ 1

. (2.53)

Due to the dependence of the distribution function on n(r), the equilibrium distribution must be

solved self-consistently [59]. First a zeroth order distribution function is calculated by assuming

there are no interactions. The density is then calculated through n(r) =
∫
d3pf(r,p), and then

using the calculated density, the next order distribution function is derived. This process is repeated

several times until the distribution function converges. The time-of-flight expansion dynamics can

then be solved for using the same scaling method as introduced for the non-interacting gas. The

scaling ansatz is

f(r,p, t) = f0

(
ri
λi(t)

, λi(t)pi −mλ̇i(t)ri
)
, (2.54)

where f0 is the equilibrium distribution function. The scaling parameters λi satisfy the differential

equation [93]

λ̈i + ω2
fλi −

ω2
i

λ3
i

+ ξiω
2
i

(
1

λ3
i

− 1

λi
∏
j λj

)
= 0 , (2.55)

where ξi = g 〈n〉 /(g 〈n〉 +
〈
p2
i

〉
/2m). For a zero temperature Fermi gas, ξ ∼ kFa, where kFa

is commonly referred to as the interaction parameter. It can be understood as the ratio of the

scattering length to the interparticle distance, and characterizes the strength of interactions.

If we switch off the harmonic trap, ωf is set to zero and we can numerically solve for λi. The

aspect ratio of the gas after time t is then
√
〈rz(t)〉2 / 〈rr(t)〉2 ≡ σz/σr = λz(t)ωr/λr(t)ωz. For a
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repulsively interacting Fermi gas (a > 0), the cloud aspect ratio will invert for long time-of-flight.

This can be understood as follows. Interactions provide an additional force during expansion that is

proportional to dn(r)/dr. A trap that is initially tightly confined in the z-direction will thus expand

more after time-of-flight, since interactions will preferentially push atoms along the direction of the

largest density gradient. This is in contrast to the non-interacting case, where the aspect ratio

approaches one after long time-of-flight, as dictated by the initial homogeneous momentum.

2.3.2.1 Collisions during expansion

An implicit assumption made thus far is that collisions do not occur during the expansion.

Collisions change the momentum distribution and as a result can alter the expanded density distri-

bution. While the mean-field force is non-dissipative, collisions are dissipative and the availability of

the final momentum states as governed by Fermi statistics needs to be considered [94]. The Boltz-

mann equation, which can be derived by assuming unimpeded semiclassical motion of particles,

needs to be modified. With collisions the Boltzmann equation becomes [95]

(
∂t +

p

m
· ∇r −∇r [U(r) + gn(r)] · ∇p

)
f = Ic[f ] , (2.56)

where Ic[f ] is the collisional term. In general the collisional term describes two-body collisions and

is given by [94]

Ic[f ] =
a2

h3m

∫
d3p2dΩ|p1 − p2|

[
(1− fσ(p1))(1− fσ′(p2))fσ(p′1)fσ′(p

′
2)− (σ ↔ σ′)

]
, (2.57)

where the last term refers to the first term with σ and σ′ swapped. This equation can be simplified

by using the relaxation time approximation [95, 94, 96]. Here, we assume that the distribution

function relaxes to equilibrium over some timescale τ :

Ic[f ] =
f − fle
τ

, (2.58)

where fle is the local equilibrium distribution function, which defines the distribution at a given

point in time where collisions no longer change the temperature of the gas. The relaxation time τ
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Figure 2.4: FQ, an important parameter for the collisional term in the Boltzmann equation

can be defined as [94]

(ω̄τ)−1 =
4

5 31/3π
(N1/3a/aho)

2FQ(T/TF ) , (2.59)

where N is the number of atoms per species, aho =
√
~/mω̄ is the harmonic oscillator length, and

FQ is a function that is only dependent on T/TF , and whose precise form is given in Ref. [94].

Fig. 2.4 plots FQ and displays the important behavior. At very low temperatures, Fermi statistics

suppresses the number of collisions between atoms and one finds that the gas is in the collisionless

regime. At high temperatures, collisions are again less likely because for a fixed atom number,

a higher temperature causes the density to decrease. However, at intermediate temperatures,

collisions during expansion can be an important element of the dynamics.

To properly describe the expansion dynamics with collisions, the scaling parameters have to

be modified. Collisions occur when the local temperature is not constant. As such, in addition to

the parameters λi that describe the spatial expansion of the gas, we introduce additional scaling

parameters θi to describe when the temperature along all three axes are not equal. The distribution
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function can now be scaled as [96]

f(t, ri, vi) =
1∏

j(λjθ
1/2
j )

f0

(
ri
λi
,

1

θ1/2

(
vi −

λ̇i
λi
ri

))
, (2.60)

and the scaling parameters to describe the expansion are solved using

λ̈i + ω2
i

θi
λi

+ ξiω
2
i

(
θi
λi
− 1

λi
∏
j λj

)
= 0 (2.61)

θ̇i + 2
λ̇i
λi
θi = −1

τ

θi − 1

3

∑
j

θj

 , (2.62)

where we have already set the term that describes the harmonic confinement to zero. One can

see from these equations that when the effective temperatures are equal (θi = θ̄ = 1/3
∑

j θj),

collisions are effectively shut off and we get the corresponding scaling solutions without interactions

with θi = λ−2
i . This is equivalent to sending τ → ∞. The aspect ratio can then be solved using

σz/σr = λz(t)ωr/λr(t)ωz. Interestingly, while the mean-field interaction depends on the sign of the

scattering length, a, the collisional term depends on a2, and thus is not sensitive to whether the

interactions are repulsive or attractive.

The first observation of anisotropic expansion was reported in Ref. [97]. Here, the two-

component Fermi gas was prepared with large attractive interactions (a ≈ −104a0) so that the gas

was a superfluid. The mean-field treatment derived above is incorrect at these large interaction

strengths, and instead the hydrodynamic equations of superfluids must be used as in Ref. [93].

2.3.3 Compressibility

Interactions also cause a change in the compressibility of a gas. Repulsive interactions, much

like Pauli exclusion, create a pressure that resists a change in volume. The compressibility κT =

1/n2∂n/∂µ can be derived numerically using the equilibrium distribution function for an interacting

gas, as given in Equation 2.53. To gain intuition about the results, we can look perturbatively at

the compressibility for low temperatures and small interaction parameters. At finite temperature,

we can take use of the Sommerfield expansion and arrive at for the chemical potential [98, 73]

µ(T, a) = EF

[
1− π2

12

(
T

TF

)2

+
4

3π
kFa

]
+O((kFa)2) . (2.63)
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Given TF and kF ’s dependence on the density, we can then derive that the number fluctuations are

(δN)2

N
=

3

2

T/TF

1 + 2
πkFa

, (2.64)

showing that the fluctuations decrease for both lower temperature and larger interactions.



Chapter 3

Making, measuring and probing Fermi-degenerate clocks

This chapter discusses the experimental details of creating and probing a highly precise Fermi-

degenerate optical lattice clock. In section 3.1, we describe the process to create a Fermi-degenerate

gas of 87Sr atoms and load it into a 3D optical lattice. We then discuss the imaging techniques

that we use to spatially resolve our sample in section 3.2. We finish the chapter in section 3.3 with

a discussion of how we transfer the stability of our ultrastable laser based on a Si resonator to the

87Sr atoms.

3.1 Preparation

Here we review the experimental steps necessary to prepare a Fermi-degenerate 3D optical

lattice. Many of these steps have been detailed in other theses1 , and thus will only be discussed in

brief here. Focus is put on the stages that are new as of this thesis, such as the transparency and the

TenS4 lasers. First in subsection 3.1.1 we summarize our experimental sequence. In subsection 3.1.2

we describe the main experimental apparatus, including the optical layout for each laser used in

the experiment. In subsection 3.1.3 we provide an overview of cooling 87Sr and trapping the atoms

in an optical dipole trap, and describe how we measure trap frequencies in subsection 3.1.4. We

then detail the transparency beam technique in subsection 3.1.5, which allows us to overcome light-

assisted loss and increase the density of atoms before evaporation. In subsection 3.1.6 we discuss the

TenS4 laser that allows us to spin-polarize a gas after evaporation with minimal heating. Finally,

1 See mainly Ref. [99].
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we detail loading the spin-polarized gas into the optical lattice in subsection 3.1.7.

3.1.1 Summary of experimental sequence

To create a Fermi-degenerate clock, we perform the following steps.

(1) A high flux of hot Sr atoms is created with an atomic beam oven that runs at a temperature

of 480◦C, which are then slowed using a Zeeman slower and directed into the main vacuum

chamber with two 2D MOTS.

(2) Atoms are cooled to mK temperatures in a ‘blue’ MOT, which addresses the 1S0 → 1P1

transition.

(3) Atoms are then transferred to a second-stage MOT on the 1S0 → 3P1 transition that cools

the atoms to µK temperatures.

(4) For evaporative cooling, the atoms are loaded into a crossed optical dipole trap (XODT).

(5) The transparency laser is applied to the dimple region of the XODT and a further stage

of cooling with the single frequency red MOT occurs to cool atoms in the reservoir of the

ODT while the density of atoms in the dimple is increased.

(6) Nuclear spin states mF = −9/2 and mF = −7/2 are optically pumped to other spin states.

(7) Evaporation with the remaining 8 spin states then proceeds to reach temperatures less than

0.1 times the Fermi temperature with about 50,000 atoms per spin state.

(8) The Tens4 laser is applied to spin-polarize the sample with minimal heating.

(9) Atoms are adiabatically loaded into the 3D optical lattice to form a band insulator.

(10) Clock spectroscopy is performed on the atoms to measure the atomic transition frequency.

Advances in atomic clocks hinge on optimizing, understanding, and harnessing the physics at

each stage of the preparation process. In particular advances in quantum technology benefit from
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controlling and manipulating quantum properties of lab-made quantum platforms. Inspired by this

idea, Chapters 4, 5, and 6 focus on studying, understanding, and manipulating Fermi gases. In

these chapters, the above procedure is stopped after step (7). Frequently all 10 spin states are also

used in these experiments.

3.1.2 Experimental apparatus

Numerous lasers are required to implement all the steps detailed above. Our experiment

consists of three optics breadboards stacked vertically to create optical beam paths that can enter

the vacuum chamber from one of the 15 different available viewports. Beam paths for the bottom,

middle, and top optical breadboards are shown in Figs. 3.1, 3.2, and 3.3, respectively. Further

details on the various beam paths in these drawings will be referred to in their corresponding

sections later in the chapter.

Our experiment is surrounded by an Al enclosure to remove air currents and improve tem-

perature stability, as shown in Fig. 3.4. The box has two ‘garage doors’ that open to allow optical

access to the main parts of the experiment. Small holes on the sides of the box, far away from

important optical beams, allow cables to escape easily. We found that adding this box significantly

reduced fringe issues in our imaging system. The air currents caused by leaving panels of the box

open were found to cause residual parasitic etalons to fluctuate. Dust is also reduced inside the

box, which decreases the number of stationary fringes. The box is equipped with foam inside each

of the panels to damp acoustic vibrations. We additionally temperature control the main optical

table using water cooling that is hooked up to a 100 mK stable chiller. The chiller temperature is

roughly 22 C so that when we open the garage doors there is no significant temperature pertur-

bation. We also temperature control any significant heat sources inside such as AOMs, the oven,
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and beam dumps. With these implementations, the temperature stability inside the box is +/-

100 mK throughout the day and is relatively immune to larger temperature drifts in the main lab.

We find that we have to realign our optical beams significantly less with this control. For ease, we

use picomotor mirror mounts on optics mirrors that are frequently adjusted such as for the lattice
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Figure 3.2: Optical layout of the middle optical breadboard. Atoms are trapped in the center of
the vacuum chamber shown in the middle of the diagram.
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Figure 3.4: One side of the Al enclosure that surrounds the main experiment.

3.1.3 Overview of cooling and trapping 87Sr

Preparing a Fermi degenerate gas starts with cooling and trapping 87Sr. For a more detailed

account of cooling 87Sr to µK temperatures using a two-stage MOT, see Refs. [100, 101]. Refs. [99,

102] discuss trapping Sr in a crossed optical dipole trap (XODT); the latter reference is not the

JILA experiment but the preparation has many overlaps.

A simplified level diagram of 87Sr is shown in Fig. 3.5. The first stage of laser cooling begins

on the 30.4 MHz 1S0 → 1P1 transition. A high flux of hot atoms first leave a commercial AO Sense

oven, and are slowed in an AO Sense Zeeman slower and transversely cooled in two 2D MOTs

before entering the main chamber. We have had to replace the AO Sense oven multiple times over
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Figure 3.5: Simplified energy level diagram of 87Sr.

the course of my PhD. During replacement, we have frequently seen a ‘volcano’ of Sr on the exit

aperture of the oven, where Sr sticks and accumulates. Eventually the Sr creates a bridge that

shorts two disconnected pieces of the chamber, which degrades the temperature stability of the

oven and significantly reduces the oven’s clear aperture. We recently replaced our oven with the

more modern AO Sense oven that has improved temperature control and are hoping this fixes our

intermittent issues.

After the atomic beam enters the chamber, atoms are trapped in a ‘blue’ MOT that has a

30 G/cm gradient. The 1P1 transition is almost closed, with a 1:20,000 chance of decaying to the

1D2 state [103], which then either decays to the 3P2 state or the 3P1 state with 1:2 odds. The



52

atoms that decay to 3P2 are then trapped in that state due to the 40 s lifetime of the state, which

limits the lifetime of the MOT to a few 10s of ms. Multiple repumping transitions can be used; we

historically pump atoms to the 3S1 state, which requires two repumping lasers at 679 nm and 707

nm to pump atoms out of the 3P2 and 3P0 states; the latter becomes populated from decay out of

the 3S1 state.

Atoms are then loaded into a second stage ‘red’ MOT on the 7.4 kHz 1S0 → 3P1 transition.

Cooling on this narrow line transition with a J = 0 ground state requires two lasers to effectively

cool the atoms and pump them out of nuclear spin states that are not trapped [104]. In the first

broadband red MOT stage, the frequency of the red MOT cooling lasers is modulated to capture

and cool more atoms from the blue MOT. The modulation is then gradually ramped down, as is

the intensity of the lasers, until the red MOT is operated at a single frequency with an intensity

below the saturation intensity. This allows us to achieve µK temperatures with roughly 107 atoms.

We perform optical evaporation of the atoms which requires the atoms to be trapped inside

an ODT. In particular, we employ two ODTs, one ‘reservoir’ horizontal ODT (HODT) that has

a sheet-like geometry with waists of 340 µm and 20 µm in the horizontal and vertical directions,

respectively. The second ODT is a ‘dimple‘ vertical ODT (VODT) that is aligned at roughly

10◦ with respect to gravity and is circular with a 30 µm waist. While the reservoir ODT traps

many atoms and sets the trap depth, the dimple ODT sets the density of atoms, which can be

correspondingly higher than in the reservoir due to the small waist. The ODT is on during the

broadband and single frequency red MOT, and we adjust the frequency of the MOT to cool directly

into the ODT.

3.1.4 Measuring trap frequencies

Trap frequencies are measured using two different methods. In the first technique, we pulse on

a second dipole trap that is slightly offset from the cloud and look at the center of mass oscillation

frequency inside the dipole trap. In particular, we use a lattice laser with the retro-reflected beam

blocked to form the extra dipole trap. The dipole trap is then extinguished at variable times and
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the center of mass position of the atoms is measured after a fixed time of flight.

Second, we parametrically heat the atoms by modulating the intensity of the dipole trap.

This is achieved by modulating the RF power of an AOM. Since we have servos that stabilize our

ODT intensity, we add the modulation either at the output of the servo or at the servo reference,

depending on if the modulation frequency is outside or inside the servo bandwidth, respectively.

The heating rate is maximized at twice the trap frequency [105]. We do not measure atom loss,

which requires high modulation intensites that can lead to nonlinearities in the drive signal and

the excitation of atoms beyond the minimum of the trap where the harmonic approximation holds.

Instead we look at the width of the cloud after time of flight, which is sensitive to the temperature

of the atoms in the trap. Minimal heating can be easily measured with this technique and small,

clean modulation frequencies can be applied that result in high SNR heating resonances.

Examples of the dipole oscillations and parametric heating resonances are given in Fig. 3.6.

Dipole oscillations are performed by exciting the gas along a particular direction and thus cannot

separately measure trap frequencies along x and y. In contrast, we clearly observe the asymmetry

in our VODT through parametric heating measurements. The trap frequencies extracted using the

two methods agree well, as shown in Fig. 3.7.

3.1.5 Transparency beam

A large density in the dimple of our ODT is advantageous for efficient evaporative cooling.

For a ground state with SU(N) symmetry, the evaporation rate is given by Γ = (N − 1)nσvrel,

where N is the number of spin components, n is the single-component density, σ = 4πa2 is the

s-wave collisional cross-section, and vrel is the relative velocity (see Chapter 4). Inelastic light-

assisted collisions [106] and reabsorption of the cooling light, which leads to an effective repulsion

between atoms [107], scale with the density, making it challenging to achieve high density samples.
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Figure 3.6: Left column: Parametric modulation of the ODT intensity leads to heating resonances
at twice the trap frequency. The top figure shows the vertical trap frequency and the bottom the
horizontal frequencies. Right column: Trap frequencies are extracted through dipole oscillations of
the atomic cloud.

To overcome light-assisted loss, we render atoms inside the dimple transparent to the cooling light.

This is achieved by applying an additional laser to atoms in the dimple that shifts the cooling light

out of resonance, see Fig. 3.8. The large density of atoms that accumulate inside the dimple then

thermalize with atoms in the surrounding reservoir.

Using a transparency beam to overcome light-assisted loss has been demonstrated in a low

phase-space density MOT [108], and was used in bosonic 84Sr to reach the critical phase-space
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Figure 3.7: Trap frequency measurements for various intensity setpoints extracted using both
parametric heating and dipole oscillations. The left shows the vertical trap frequency and the right
the horizontal trap frequencies.

density for Bose-Einstein condensation without any evaporation [109]. The critical phase space

density is reached when nλ3
dB > 2.612, where λdB is the thermal de-Broglie wavelength and nλ3

dB ∝

nT−3/2. In comparison, Fermi-degeneracy does not have a critical point and the transition is instead

continuous. While the effects of Fermi degeneracy begin when nλ3
dB > 1 (T/TF < 0.6), if one wants

to reach deep degeneracy, say so that one can load a band-insulator state into an optical lattice with

over 90% filling, the requirements are much more strict and one then needs nλ3
dB > 20 (T/TF < 0.1).

This makes using the transparency beam alone as a replacement for evaporation in fermions more

challenging. In addition, hyperfine structure creates additional complication, since a sufficient AC

Stark shift needs to be created for each nuclear sublevel. Transparency from both the trapping and

stirring second stage MOT lasers is also required [110].

Accordingly, the transparency beam is blue-detuned from the 3P1 to 3S1 transition by 25

GHz. The laser spatially overlaps with the VODT (see Fig. 3.3) but has a slightly larger waist

to ensure all atoms in the dimple do not absorb cooling light, and delivers 5 mW of power to the
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Figure 3.8: Potential energy of the 1S0 ground state atoms and 3P1 excited state atoms in the
ODT. The transparency beam shifts the cooling light out of resonance for atoms in the dimple.
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Figure 3.9: Calculated Stark shift of the excited 3P1 stirring/trapping states for different nuclear
spin states. The linewidth of the 3P1 state is Γ = 2π × 7.5 kHz.

experiment. The beam is linearly polarized along x, while a small magnetic field is applied along z

(see Fig. 3.10). In this configuration, the smallest Stark shift still detunes the excited state by ∼200
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Figure 3.10: Schematic of the reservoir and dimple dipole traps, as well as the propagation direction
(single arrows) of transparency beam and the TenS4 laser, and their polarization (double arrows).
The magnetic field while the transparency beam is on is denoted by Btsp and the magnetic field
while the TenS4 laser is on is represented by BTenS4. The polarization of the TenS4 laser is along
the magnetic field, so that the ellipticity is zero.

linewidths, see Fig. 3.9, and keeps spontaneous scattering events beyond relevant experimental time

scales. In general the Stark shifts are sensitive to the transparency beam’s polarization, and we

calculate that circular light would not give a sufficient shift to all spin states for both cooling lasers.

The effect of the transparency beam on the sample is shown in Fig. 3.11. Here, we apply the

transparency beam to the dimple part of the XODT and apply 3P1 light to remove atoms from the

reservoir. The atoms in the dimple do not absorb the 3P1 light and thus remain in the trap after

the pulse, as shown in the image on the right.

The transparency light is derived from an extended cavity diode laser (ECDL) that is filtered

by a volume Bragg grating (VBG). Without the VBG, residual amplified spontaneous emission
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Figure 3.11: Atoms remaining in the xODT after applying a cleanup pulse to the xODT (left image)
with the transparency beam on. Only atoms that don’t absorb the cooling light remain.

(ASE) on-resonance with the 1S0 − 3P1 transition limits the lifetime of atoms in the dimple to 250

ms. With the filter, the lifetime is extended to 5 s.

To separately extract the number of atoms in the dimple and reservoir, the HODT is extin-

guished so that atoms fall under gravity. Atoms in the dimple are guided by the VODT which has

a small angle with respect to gravity, while atoms in the reservoir undergo free expansion. This

spatially separates the atoms in the dimple from atoms in the reservoir, and respective atom num-

bers are then measured using absorption imaging. The number of atoms in the dimple saturates

at 5× 106, i.e. about 50% of the total atom number, after 400 ms of cooling with the transparency

beam. This leads to a total density of 2× 1014 atoms/cm3, corresponding to a three-body lifetime

around 10 s [54]. T/TF is then determined for atoms in the dimple by calculating TF and measuring
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the temperature. The latter is determined by fitting all atoms to a Gaussian after time-of-flight, and

gives a temperature of 2µK with T/TF = 1.9. Lower temperatures can be achieved by adjusting

the MOT light, but without further improving the phase space density.

After the transparency beam is applied for 400 ms, we proceed with standard evaporation

by lowering the trap depth of the HODT but keeping the VODT high to maximize the density

throughout. We evaporate with all 10 spin states to maximize the evaporation efficiency, as dis-

cussed further in Chapter 4. For final trap depths of a few 100 nK and a vertical (radial) trap

frequencies around 200 Hz (100 Hz), we can reach temperatures as low as 0.07 times the Fermi

temperature, with roughly 50,000 atoms per spin state, after around 1 s of evaporation.

3.1.6 TenS4

After evaporation, the spin distribution is manipulated to subsequently load the optical lattice

into a band-insulating state. Previous attempts to manipulate the spin distribution through optical

pumping after evaporation resulted in light-induced heating of the atoms. Here we detail a method

to manipulate the spin distribution of the gas where the atoms remain confined to the ground state

so that there are no spontaneously emitted photons. This method can produce a spin-polarized gas

with >90% spin purity with minimal heating.

3.1.6.1 Stark shift

Our spin manipulation technique builds off of previous work that used optical beams to

create differential spin forces in alkaline-earth atoms during time of flight [111, 112, 113]. In these

previous experiments, atoms in different spin states could be separated after releasing them from

the harmonic trap to image individual spin components. Our method, the Tensor Stark Shift

Spin Selector (TenS4), creates a spin-selective repulsive force on the atoms from the tensor Stark

shift of a laser while the atoms remain trapped in the XODT. This force can overcome the small

confinement that holds the atoms after evaporation and can subsequently push the atoms out of

the trap. In addition, our beam parameters have to be carefully chosen such that the spin state we
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Figure 3.12: (a) 3P1 hyperfine structure and TenS4 detuning. The TenS4 detuning is referenced to
the zero magnetic field F=11/2 transition. (b) Clebsch-Gordan coefficients squared for transitions
from the 1S0 ground state to the 3P1, F = 11/2 and F = 9/2 transitions. The F = 11/2 and
F = 9/2 states have magnetic field sensitivities of 380 kHz mF /G and 85 kHz mF /G, respectively.

desire to keep in the trap feels no force. Any residual force on this state will heat the atoms in the

trap. The ac Stark shift for a ground state atom with nuclear spin mF is given by [114]

∆ν =
(
∆κs + ∆κvmF ξêk · êB + ∆κtβ

)
U0 , (3.1)

where U0 is the trap depth, ∆κs, ∆κv, and ∆κt are the scalar, vector, and tensor shift coefficients,

and ξ is the beam ellipticity. The light propagation direction and quantization axis are given

by êk and êB, respectively. Finally, β = (3|ε̂ · êB|2 − 1)
[
3m2

F − F (F + 1)
]
, where ε̂ is the beam

polarization vector [52, 114]. The TenS4 laser is detuned from the 3P1, F = 11/2 state as shown in

Fig. 3.12, and is offset from the atom cloud to create a spin-selective repulsive force on the atoms.

The beam has a 30µm waist with a peak intensity of 0.15 kW/cm2, and is linearly polarized along

the magnetic field (ξ = 0), which has a strength of 5 G. Due to the slight tilt of the beam, the

magnetic field mostly points along y but also has a small component along z (see Fig. 3.10). The

scalar shift provides an appreciable shift to all spin states, while the tensor shift, ∝ m2
F , produces

a differential force between atoms with different |mF |. A small differential shift between positive

and negative mF states is further created with a magnetic field, which changes ∆κs and ∆κt due

to a slightly different detuning from the atomic resonances.

The Stark shift cancels for atoms in a particular spin state at the proper detuning. For nuclear
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Figure 3.13: (a) Height of the TenS4 potential versus detuning. At 266 MHz, the TenS4 potential
is zero for mF = +9/2. (b) Potential of the TenS4 beam as a function of position at a detuning of
266 MHz. The beam is offset from the atoms by roughly 1/3 the trap waist (dashed line) to create
a varying potential across the cloud. Plots are shown for a 5 G magnetic field.

spin state mF = +9/2, this occurs at 266 MHz, where the polarizability from 3P1, F = 11/2 cancels

the polarizability from 3P1, F = 9/2. This is demonstrated in Fig. 3.13 (a). The spatial dependence

of the TenS4 potential for the different spin components is shown in Fig. 3.13 (b).

3.1.6.2 Experimental implementation

The TenS4 laser is overlapped with the VODT and the transparency beam, as shown in

Fig. 3.3, which facilitates initial alignment. The TenS4 and transparency beam also share the same

telescope to save space. The laser, which is at a 10◦ angle with respect to gravity, is then offset from

the atomic cloud to provide a force both vertically and horizontally. The combined potential due to

the ODT, the TenS4 laser and gravity is shown in Fig. 3.14. With only a 5 G applied magnetic field,

a residual attractive potential remains for mF = −9/2 and −7/2. We thus conventionally remove

these spins via optical pumping prior to evaporative cooling. Our optical pumping is performed

using σ+ light that is selectively tuned to the 1S0 → 3P1, F = 9/2 resonance. First we apply

a few ms pulse that is on resonance with the 1S0,mF = −9/2 to 3P1,mF = −7/2 transition.

We then step the frequency and apply a second pulse on resonance with the 1S0,mF = −7/2 to
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Figure 3.14: Combined potential due to the ODT, the TenS4 beam, and gravity. Dashed curves
represent mF = −9/2 and mF = −7/2, which are removed through optical pumping.

3P1,mF = −5/2 transition. This allows us to remove the mF = −9/2 and mF = −7/2 populations

by 90%, as measured after evaporation Fig. 3.17. Going to a larger magnetic field and aligning

the beam horizontally to provide maximum force along the vertical direction would remove the

need to optically pump. A magnetic field of 50 G would more than satisfy this requirement. The

spin-polarized gas can then be loaded into the lattice and coherently manipulated if one desires to

work with a different spin state.

When we initially implemented the TenS4 laser, we measured an unexpected loss of atoms.

Loss due to the TenS4 laser can be described by

ṅ = −n/τ − 2Kn2 − k3n
3 , (3.2)

where the first term represents single-particle photon scattering with a lifetime of τ , and the second
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term represents a two-body loss term with a loss rate of K. The vacuum-limited lifetime of the

atoms was measured to be 120 s, significantly longer than any relevant experimental timescales.

The last term represents three-body inelastic collisions with three-body loss coefficient k3, which

for 87Sr give us a lifetime around 10 s, much longer than the observed scattering lifetime [54].

Published photoassociation (PA) spectra on 87Sr is limited to 1P1 [115], where the spectra

is relatively simple due to the broad linewidth, which causes the hyperfine spectra to be unre-

solved. Narrow line photoassociation was measured on 3P1 for bosonic 88Sr [116], but no published

measurements on 87Sr exists. For 87Sr, the narrow linewidth 3P1 transition is predicted to have a

complex spectra due to the resolvable hyperfine structure and large nuclear spin [117]. To measure

photoassociation spectra, we evaporate the atoms to a 500 nK trap depth and then ramp up the

HODT to a few µK. The atoms are then exposed to the TenS4 laser at a power of 10s of µW for 100

ms - 1 s in a 5 G magnetic bias field. At this power and trap depth, the TenS4 does not modify the

optical potential. The gas is then released from the dipole trap and the atom number is counted

using absorption imaging. At a PA resonance, the atom number drops as hot molecules are formed

that cannot be confined to the trap. Fig 3.15 shows the atom loss spectra for a variety of detunings

near the 3P1, F = 11/2 resonance. Due to the F = 9/2 and F = 7/2 states, resonances exist above

and below F = 11/2. The TenS4 laser is referenced to our red MOT trapping laser, which is itself

locked to a laser that has a ∼1 Hz linewidth. As such, the zero, which refers to the zero magnetic

field value of the F=11/2 resonance, can be trusted to within 10s of kHz. Clear PA resonances

exist around 80 MHz and 160 MHz and a broad loss feature consisting of many resonances is shown

in the -400 MHz to -200 MHz region. The other peaks at -60 MHz, -100 MHz, -140 MHz, and

320 MHz consist of a single data point and thus need to be remeasured to confirm the existence

of a resonance at these frequencies. The large intensities used for the measurements result in a

large single-particle scattering rate near the 3P1 resonance, and mask any PA resonances in this

region. A more detailed scan at the TenS4 detuning, taken at a variety of powers, did not reveal a
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Figure 3.15: Photoassociation spectra. The blue data points were taken with 45 µW of power, and
the red with 15 µW of power.

resonance.

Single-body loss is due to photon scattering with the TenS4 light. The predicted light scat-

tering lifetime 266 MHz from resonance with the described beam parameters is 10s of ms, two

orders of magnitude above the measured lifetime. However, the lifetime can be limited by am-

plified spontaneous emission (ASE) from the laser diode at the 3P1 resonance frequencies. ASE

can be suppressed through spectral filtering of the light using a Fabry-Perot cavity. In particular,

we implemented a cavity with a 10 MHz linewidth and a finesse of 200 to suppress on-resonance

scattering by 3 orders of magnitude. After installation of the cavity, the lifetime of atoms became

consistent with the off-resonant scattering rate.

The optics of the TenS4 beam are shown in Fig. 3.16. The TenS4 laser is locked to an

ultrastable laser (‘red master’) at 689 nm. This ultrastable laser is also used to lock our 3P1 MOT

beams. The light is then filtered with a Fabry-Perot cavity that has roughly 50% transmission

before being sent to the main experiment. The Fabry-Perot cavity is locked to the TenS4 laser
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Figure 3.16: Optics setup for the TenS4 beam. Light from an ECDL is locked to an ultrastable
laser with a roughly 1 Hz linewidth at 689 nm (red master). A Fabry-Perot cavity is used to filter
the TenS4 light before being sent through a fiber to the experiment (to Sr2).

using PDH locking.

3.1.6.3 Spin purity measurements

To spin polarize the gas, we first evaporate down to a few 100 nK trap depth and then non-

adiabatically turn on the TenS4 laser for a few ms. The TenS4 spin purity is measured by looking

at the total atom number using blue absorption imaging, and by performing spectroscopy on the

3P0 transition after the atoms are loaded into a 3D optical lattice. Fig. 3.17 (a) shows the total
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Figure 3.17: (a) Total atom number versus TenS4 application time. The majority of atoms are
removed after 100 µs. (b) Spin-resolved measurements of the mF = +/− 7/2 and mF = +/− 9/2
states. After 1 ms, single-particle scattering is visible. Measurements in (a) and (b) were taken on
different days with slightly different total atom numbers.

atom number after the TenS4 laser is applied for variable times. After 100 µs, most atoms in other

spin states are removed. Spin-resolved measurements are shown in Fig. 3.17 (b), giving > 90%

spin purity after 1 ms application time. For longer times, single particle scattering degrades the

mF = +9/2 population. At 5 ms, 96% spin purity is measured.

We also measure T/TF after applying the TenS4 laser for variable times, as shown in Fig. 3.18.

The TenS4 laser does not change the temperature for short application times, since the atoms do

not have time to change their momentum during the pulse. Around 10 µs, the pulse begins to heat

the atoms but atoms do not have time leave the trap. With a pulse duration greater than 1 ms, the

heated atoms have enough time to leave the trap and again cause minimal heating to the sample.

Any single collision between an mF = 9/2 atom and another atom leaving the trap would cause

heating. However, this issue is avoided since the time for atoms to leave the trap is much less than



67

10 6 10 5 10 4 10 3

Pulse duration (s)

0.0

0.1

0.2

0.3

0.4

0.5
Re

du
ce

d 
te

m
pe

ra
tu

re
 T

/T
F

Figure 3.18: T/TF after switching on the TenS4 laser for variable amounts of time. After a long
enough application time, the sample spin polarizes with minimal heating.

the collisional time after evaporation. If we do not optically pump mF = −9/2 and mF = −7/2

prior to evaporation, we notice residual heating after applying the TenS4 laser. Since a residual

potential exists for these spin states, atoms undergo heating but not all atoms leave the trap; the

atoms that remain in the trap heat the sample. With the TenS4 technique, we can demonstrate a

> 90% spin polarized sample with minimal heating. The spin distillation technique enables us to

load a single spin with T/TF = 0.1 into a 3D optical lattice to create a band insulator.

3.1.7 Lattice loading

The spin-polarized, deeply degenerate gas is then adiabatically loaded into the 3D optical

lattice. To measure the entropy increase after loading, we perform a round-trip measurement,
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first loading the atoms into the lattice and then back into the XODT. Afterwards, we extinguish

the XODT and measure T/TF by fitting the expanded gas cloud after time-of-flight. We measure

approximately 10% of heating throughout this process, confirming that the lattice is adiabatically

loaded. We can reach trap depths above 100 Erec in each direction, sufficient to be in the Lamb-

Dicke regime.

If the 3D lattice is loaded adiabatically from a low entropy Fermi gas, a band-insulator could

be formed with one atom per lattice site. To check this, we perform high-resolution fluorescence

imaging on the atoms while they are trapped in the optical lattice. We image atoms simultaneously

with a high-resolution camera from the side (NA = 0.1) and from the top (NA=0.23). These images

allow us to extract the 3D optical density in the center of the trap, and the results are confirmed

using an inverse Abel transform from the image on the side [118]. Preliminary measurements show

over an 85% filling fraction in the center of the gas, consistent with a roughly adiabatic lattice

loading given the finite temperature of the gas before loading the lattice. More information on this

measurement will be contained in an upcoming publication.

It’s worth noting that the experiments discussed in Chapters 4, 5, and 6 study Fermi gases

and thus do not include this lattice loading step. However, this step is crucial for creating a

Fermi-degenerate 3D optical lattice clock.

3.2 Imaging techniques

High resolution imaging is a key tool in our experiment that allows us to look at the atomic

density distribution and at locally varying frequency shifts. In this section, we detail the techniques

we use to image the atomic density distribution in-trap and after time-of-flight. In subsection 3.2.1

we describe how we experimentally implement absorption imaging, which we use to image atomic

clouds that have expanded to a low density after time-of-flight. When imaging in-situ clouds,

we instead use high-intensity fluorescence imaging, which we discuss in subsection 3.2.2. We then

detail our various imaging paths in subsection 3.2.3. In subsection 3.2.4 we describe how to measure

camera parameters such as the read noise and the gain. Finally, in subsection 3.2.5 we discuss how
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relevant imaging parameters such as the magnification and the imaging resolution are extracted.

3.2.1 Imaging expanded gases

To image expanded gas clouds, we use the standard method of absorption imaging. Ab-

sorption imaging looks at the transmission of an atom cloud after it is exposed to on-resonance

probe light. For low probe intensities, the transmitted intensity I is given by the Beer Lambert

law I = I0e
−
∫
σ0ndz, where I0 is incident intensity, σ0 is the low-intensity scattering cross section,

n is the atomic density, and z is the imaging probe direction. Taking into account saturation at

higher intensities and integrating along the atomic cloud gives us the more general formula for the

number of atoms per pixel [119]

N =
A

σ0
log(Sb/Sa) +

2

Γtpg q
(Sb − Sa) , (3.3)

where A is the effective pixel area2 , Sb (Sa) is the number of counts in area A without (with)

atoms, tp is the imaging pulse time, Γ is the spontaneous emission rate, g is the camera gain, and

q is the detector quantum efficiency. Note that the above formula ignores higher order effects such

as reabsorption, which will be discussed further later in this section.

The absorption imaging signal can be extracted using three images that are taken in succes-

sion. First, an imaging pulse is applied to the atomic cloud and the intensity transmission is imaged

onto the camera, which gives counts S̃a. A second ‘bright’ image is taken a few ms after the first

(depending on the readout time of the camera) without atoms, so that the incident intensity can be

measured with counts S̃b. A final ‘dark’ image is then taken without the imaging probe light and

without atoms, which measures the background counts due to dark counts and stray light, Soffset.

This image is then subtracted from the bright (Sb = S̃b − Soffset) and atom (Sa = S̃a − Soffset)

frames before calculating the number of atoms per pixel according to Equation 3.3. Fig. 3.19

shows an absorption image of our cloud after evaporation with roughly 5× 105 atoms. Fitting this

image to a Fermi-Dirac distribution allows us to extract the temperature of the gas according to
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Figure 3.19: Fit of the atomic cloud to a Fermi-Dirac and a thermal distribution after the Fermi
gas is released from the crossed optical dipole trap. The Fermi-Dirac distribution minimizes the
residuals of the fit. The Fermi-Dirac fit extracts a T/TF = 0.08. Inset: Absorption image of an
expanded Fermi gas with a 10 ms time-of-flight.

Equation 2.19; here T/TF = 0.08.

A calculation of the effective atomic cross-section must include the relevant hyperfine manifold

of the ground and excited states, as well as the optical pumping dynamics throughout the imaging

pulse. We perform imaging on the broad (Γ = 2π×30.4 MHz) 1P1 state, where the large scattering

rate allows high SNR images. We also have access to spin-resolved absorption imaging using the

‘red’ narrow 3P1 transition. For 1P1, the excited hyperfine manifold is unresolved so that all excited

states are necessary to include in the calculation. Similar to Ref. [120], we calculate the effective

cross section for 1P1 using a rate equation model, and confirm its validity with a master equation

2 The effective pixel area A is equal to the camera’s pixel size multiplied by the imaging resolution.
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calculation. For linearly polarized light on-resonance with the 1P1 F = 11/2 state, a saturation

parameter of s = 0.17, and a 3 µs imaging pulse, the cross-section is 0.49 times the bosonic cross-

section of 3λ2/2π, where λ is the imaging probe wavelength. Imaging pulses of only a few µs ensure

that blurring due to the directional absorption and diffusive emission of the imaging light is kept

small. For a 1 µs pulse time, the atoms undergo a 500 nm displacement assuming a fully saturated

transition.

Experimental imperfections such as polarization impurity can modify the effective cross sec-

tion from the theoretical result. We perform two separate measurements to double check the

calculation. First, we measure the local density fluctuations of a thermal gas. As detailed in Chap-

ter 2, a thermal gas exhibits Poisson statistics, with ∆N2/N = 1. By analyzing the noise versus

mean atom number in different regions of the gas, we can extract the atom number which provides

a cross-check for the effective cross-section. A thermal gas can easily be created using for example

parametric heating on evaporated samples. Additionally, quantum projection noise can be used

to extract the atom number. Measuring the noise between two regions of the atomic cloud in a

3D optical lattice for a fixed pulse time and dead time provides a calibration of N . All of these

methods agree on the effective cross-section within 20%. These measurements can be performed at

low probe intensity, where only the first term in Equation 3.3 contributes to the result, so that A/σ0

can be extracted. From a separate measurement of the effective pixel size A (see subsection 3.2.5),

the cross-section can be calculated. The probe intensity can then be varied and the coefficient in

front of the second term adjusted so that the atom number remains fixed for different incident

intensities.

3.2.2 In-situ imaging

In-situ, atomic densities are much higher and collective effects such as multiple scattering and

dipolar shifts can distort the absorption imaging signal. Typically we think of emitters as being

independent, so that the light scattered by individual atoms does not interact with the rest of the

sample. This approximation breaks down at the high in-trap densities of over 1014 atoms/cm3
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we demonstrate after evaporation. Light that is scattered off single atoms can be reabsorbed by

other atoms, which destroys the spatial information of the scattered photons and thus scrambles

the imaging signal. Absorption imaging thus does not work well at high atomic densities, and other

imaging techniques must be considered.

Phase contrast imaging as well as dark ground imaging [121] extract the atomic density

distribution by looking at the phase change of highly detuned light across the atomic sample.

These techniques prevent optical absorption of the imaging light and thus avoid the common pitfalls

associated with absorption imaging. An alternative technique is high intensity fluorescence imaging.

Here, a high intensity probe beam is applied to the cloud on-resonance, and the spontaneously

emitted light is collected off-axis. If the number of probe photons is much higher than the number

of atoms, atoms are much more likely to absorb a photon from the probe beam as opposed to

a re-scattered photon from another atom. High-intensity fluorescence imaging has been used to

accurately extract the density distribution of a MOT with densities as high as 1012 atoms/cm3

[122]. We use it to accurately image in-situ Fermi-dirac density distributions with densities higher

than 1014 atoms/cm3.

An example of in-trap and time-of-flight density images extracted using absorption imaging

(left column) and high-intensity fluorescence imaging (right column) are shown in Fig. 3.20. At

central densities above 1014 atoms/cm3, the optical depth is greater than 100 despite the apparent

reduced optical depth shown in the absorption images. Collective effects such as superradiance

along the probe beam cause the apparent optical depth to decrease. The apparent optical depth

increases quickly as the atoms are released from the trap and the density decreases, but at 500 µs

time-of-flight, the apparent optical depth only reaches 5. In contrast, high-intensity fluorescence

imaging correctly models the in-situ optical depth of 150, and the expected decrease in the optical

depth after time-of-flight. The intensity of the fluorescence beam is set by looking at the number of

detected photons on a camera when the probe intensity is varied. Around 1000 I/Isat, the number
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Figure 3.20: Measured optical depth of an atomic cloud with densities greater than 1014 atoms/cm3,
captured both in situ (top row) and after 500 µs time-of-flight (second row). Absorption imaging
(left column) incorrectly extracts the optical depth due to collective effects such as superradiance.
The optical depth is conversely accurately extracted using high-intensity fluorescence imaging (right
column). The images are extracted using a high resolution side imaging setup with an NA = 0.1

of photons saturates. As expected, we additionally measure that the total fluorescence counts,

integrated over the entire cloud, does not change after the cloud is expanded in time-of-flight.

The expected number of camera counts is given by

S =
Γ

2
× tp × q × g ×N × SA , (3.4)

where tp is the imaging pulse time, q is the quantum efficiency, g is the camera gain, N is the

atom number, and SA is the collection angle of the imaging system. Practically, it is challenging

to precisely extract the solid angle of the camera. We alternatively calibrate the fluorescence
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signal by using absorption imaging on expanded gas-clouds, where atom numbers can be precisely

determined. For a 5 µs pulse time, we expect 8 counts per atom on the Princeton camera (see

subsection 3.2.3). The atom number we extract with this method agrees with Equation 3.4 using

our calculated solid angle within 30%.

Fluorescence images are acquired in a single shot. However, background counts due to the

camera offset and stray light need to be removed to accurately extract the number of counts. For a

stable experiment where stray light does not drift over time, many ‘dark’ frames can be taken in a

separate experimental run and averaged before subtracting it from individual fluorescence images.

This allows greater SNR since it reduces the read noise of the processed image (see subsection 3.2.4).

We have found that when trying to extract spatial density distributions with on average less than

one photon per pixel, as will be shown in Chapter 5, it is necessary remove the average dark count

on a pixel-by-pixel basis, since the mean dark count varies slightly across the CCD.

After time-of-flight, the imaged atoms are spread over many pixels and the fluorescence

imaging signal is more affected by the camera’s read noise. As such, it is easier to obtain high SNR

images using absorption imaging after time-of-flight.

3.2.3 Imaging paths

Our experiment contains four different imaging paths to access a range of resolutions and

field of views along different angles, as shown in Figs. 3.1, 3.2, and 3.3. Our highest-NA imaging

axis is along the vertical direction, where the 90 mm distance between the atoms and the 2 inch

wide objective lens provides us with an NA = 0.23 and a magnification of 13 (labeled ‘Princeton

Kuro’). We also have a low resolution camera with a wider field of view from the top (‘Mako 1’)

that allows us to image for example the entire ODT prior to evaporation. The Princeton camera is

a back-illuminated CMOS sensor with 1200 x 1200 pixels that are 11 µm × 11 µm with a quantum

efficiency of 85% at 461 nm. It has a specified read noise of 2.1 e− at a conversion gain of 1.59

ADU/e− with a 200 MHz readout rate/12 bit mode (ADU means analog-digital-units, that is,

the conversion from electrons to digital counts). This camera is quite fast because each row is
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simultaneously read out in parallel; the 200 MHz readout rate implies the one million pixels can

be read out in around 10 ms. This makes it ideal for taking multiple images in fast succession, and

reduces the amount of stray light that hits the detector during the readout.

From the side we have a high-resolution axis with an NA = 0.1 and a magnification of 11

(‘Andor iKon’), while the low-resolution camera (‘Mako 2’) provides a wider field of view and more

easily allows us to look at expanded gas clouds over a range of time-of-flights. The Andor iKon-M

934 is a CCD camera with 1024 x 1024 pixels that are 13 µm × 13 µm each. The quantum efficiency

is 80% at 461 nm. At a readout speed of 1 MHz (1 full frame per second), it has a read noise of 8

e−, and a conversion gain of 0.5 ADU/e− with a 16 bit ADU resolution.

All of these cameras are set up to perform absorption imaging or fluorescence imaging on the

1P1 transition, where the fast decay allows many scattering events in µs timescales so that high

SNR images can be obtained. We are also equipped with a red absorption path from the side so

that we can perform spin-resolved measurements on the 3P1 transition.

The high intensities we use for fluorescence imaging require a tightly focused imaging beam

with a large power. We use a commercial Toptica system that delivers up to 30 mW of power to the

experiment for this purpose. The probe beam we use for fluorescence imaging is shown in Fig. 3.1

(labeled ‘flour. imaging’). The beam is focused onto the atoms with a waist of 100 µm and is on

axis with the ‘Mako 1’ camera shown in Fig. 3.3. High-resolution fluorescence images can be taken

using the horizontal imaging system labeled ‘Camera Andor iXon’ in Fig. 3.2 (NA = 0.1) and the

vertical imaging system labeled ‘Camera Kuro Princeton’ in Fig. 3.3 (NA = 0.23).

To switch between absorption imaging and fluorescence imaging, we use a flipper mirror on

the bottom mezzanine of our experiment. The small beam waist we use for fluorescence imaging

is not suitable for absorption imaging over a wide field of view. We thus switch between this fiber

port and a low resolution absorption imaging port with a flipper mirror. The low resolution fiber

port has a mm beam waist so that it can image large atom clouds, for example in the XODT.

Absorption imaging axes are also implemented for the high-NA side (labeled ‘absorption probe’)

and vertical (labeled ‘High. res. abs. imag.’) axes. For the vertical path, care is taken to reduce
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the number of imaging fringes, as discussed in the following subsection.

3.2.3.1 Imaging fringe mitigation

Fringes that show up in the imaging system can distort the atomic density distribution and

add noise to the extracted atom number, and thus are essential to remove for accurate imaging.

Because absorption imaging requires multiple shots to perform the analysis, the technique is sen-

sitive to varying fringes in the imaging system. Vibrations that are on the order of 10s of Hz can

cause fringes due to either dust particles, residual etalons, or pointing fluctuations of the probe

beam to move between the atom and bright frames, such that the artifact remains in the analyzed

image.

To ensure we have high quality images with few fringes, the optical beam path needs careful

consideration. First, the high-resolution vertical beam path (labeled ‘high res. abs. imag.’) is

made as short as possible, with no optics close to the edge of the optics table where there are more

environmental perturbations. This helps minimize the influence of pointing fluctuations at the

fiber tip. In addition, few optical elements are used to reduce the number of possible etalons and

potential dust particles in the optics path. Etalons are particularly insidious in imaging systems,

since even a 100:1 intensity ratio can produce a fringe contrast of 20%. AR coatings are thus not

sufficient to completely remove this noise source. We tilt our imaging beam by 5 degrees with

respect to the viewports to avoid reflection-induced interference. The CCD is also tilted and has an

appropriate filter so that no stray light hits the camera. Care is taken in choosing the collimation

package of the imaging fiber so that a Gaussian beam exits the fiber. Typically monochromatic

lenses are better for this purpose than molded aspheres, which can cause residual structure in the

emitted beam.

At the output of the imaging laser (not shown in the optical beam path diagrams), we use

AOMs to switch on and off the imaging light and a shutter right before the fiber to block any

unwanted light. The shutter is opened a few ms before the AOM is switched on to produce a clean

pulse of imaging light at the atoms. During this time, zeroth order leakage of the AOM that is
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coupled into the fiber can heat the atoms. We have found that it is desirable to have two switching

AOMs in series to reduce zeroth order light leakage to much less than a photon per atom over these

few ms. RF electronics such as switches should also be properly terminated. Finally, if one is using

an injection locked laser for the imaging light, it is desirable to have on hand a diagnostic tool such

as a Fabry Perot cavity to ensure the seeding is adequate. We have found it is best to avoid this

issue entirely by not using injection locked lasers for our imaging light.

3.2.4 Measuring camera parameters

To get an accurate calibration of the atom number and fluctuations, it is necessary to measure

camera parameters such as the read noise and the gain. In a typical CCD camera, a two dimensional

array of pixels measures the intensity distribution across the array. Photons are converted to

electrons based on the quantum efficiency, q, and are then amplified by a gain factor g and read

out on a pixel by pixel basis. The camera is thermoelectrically cooled to reduce the dark current

below other relevant noise sources. However, every camera has noise associated with the readout

process of the electrons. For a good camera, the read noise r is typically a few electrons. It can

be measured by looking at the pixel counts in a dark image, that is an image without atoms and

without light, where the standard deviation of pixel counts S is given by ∆Sread = g r.

The CCD is also subject to photon shot noise, given by ∆n2
p/n̄p = 1 with n̄p average photons.

The conversion of photons to electrons follows a binomial distribution with a success probability

given by the quantum efficiency, so that ∆n2
e = n̄e where n̄e = q n̄p is the average number of

electrons. The electrons are then amplified deterministically by the gain, giving a variance in the

number of counts due to shot noise ∆S2
shot = g S̄ where S̄ = g q n̄p. The camera gain can thus be

measured by looking at the noise of an illuminated CCD. CCDs are not necessarily illuminated

uniformly, so that the analysis requires two frames to be taken and subtracted. A difference image

is calculated as Sdiff = Sa − Sb, where both frames are without atoms but with equivalent light

illumination3 . The read noise and shot noise are independent, so that total noise in a given frame

3 It is usually necessary to provide a normalization in the total counts between the two images to correct for slight
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can be calculated as

∆S2
diff = 2∆S2

read + 2∆S2
shot = 2g S̄ + 2(g r)2 , (3.5)

where the factor of two is due to the independent noise from two separate images and S̄ = S̄a = S̄b.

Note that if separate dark frames are subtracted from each image, the added read noise must

be included in this equation. If the same dark frame is used, however, the frame cancels in the

difference image. The camera gain thus appears as the slope of a line that plots ∆S2
diff versus S̄.

Fitting the offset provides a consistency check of the read noise determined from the dark image

measurement. An example of this is given in Fig. 3.21, where 700 images were used to extract a

camera gain of c = 1.63 ± .002 ADU/e− and a read noise of r = 2.4 ± .01 e−, consistent with the

Princeton Kuro data sheet and an independent calibration of the read noise using a dark frame.

Imaging artifacts such as residual fringes can increase the measured noise in the difference image.

The data in Fig. 3.21 shows measurements for both coherent and incoherent light, demonstrating

there is no added noise in the system due to interference effects. Data was taken for each gain

setting, but for Princeton’s 16 bit ‘gain combining’ mode, it was found that the gain was nonlinear.

3.2.5 Measuring imaging parameters

Two other parameters that must be measured are the imaging magnification and resolution.

The magnification can be measured using Kapitza-Dirac scattering [123, 99]. Here, lattice light

is quickly pulsed on which populates momentum states 2n~k, where n is an integer and k is the

lattice wavevector. After time of flight, these momentum wavepackets separate, and the distance

between them can be used to accurately calibrate the magnification. For our side imaging system,

the magnification can also be calibrated by measuring the distance that the atomic cloud falls under

gravity for a variable time-of-flight.

The imaging resolution can be extracted by measuring spatial correlations in a system with

zero correlation length. This can be achieved by looking at the spatial correlation of independent

variations in the total intensity between the shots.
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Figure 3.21: Variance of the difference image ∆S2
diff versus the mean of the bright image S̄. Fitting

the data to a line allows one to extract the camera gain through the slope, and the read noise through
the offset. Measurements are taken with both incoherent and coherent light to confirm the absence
of excess noise when using coherent light.

atoms in a 3D optical lattice [32, 124]. In a lattice, correlations in the excitation fraction can

be measured by performing Ramsey spectroscopy on the atoms. After measurement, the atoms

are projected into either the ground or excited state which produces binomial noise given by the

QPN. A finite imaging resolution creates spatial correlations in the image (not, of course, in the

atoms), which can be calculated by looking at the average correlation between pixels that are a

certain distance j apart after standardizing the data:
〈

(pie − p̄e)(p
i+j
e − p̄e)

〉
/varpe, where pie is the

excitation fraction at pixel i, p̄e is the average excitation fraction over pixels i, and 〈〉 refers to an

average over all pixels i. The resolution can then be extracted by plotting the correlation versus

distance j and fitting the 1/e2 distance. A similar measurement can be performed by looking at

the spatial dependence of the number of atoms in a thermal gas, where Poisson statistics dictates

∆N2/N = 1. In either case, it is crucial to double check that the resolution degrades as the image

is defocused. If the imaging system is outside the depth of field, the correlation will produce the
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resolution defined by the NA of the imaging system, which is misleadingly given by the diffraction

limit, and will be rather insensitive to changes in the focus.

3.3 Stability transfer

Our ultrastable laser locked to a Si resonator is centered at 1542 nm, where high quality

telecom fiber components and fiber lasers exist. The transparency window of Si starts around 1

µm, preventing construction of the laser at the 698 nm 1S0 → 3P0 clock transition. To bridge

the frequency gap between 1542 nm and 698 nm while maintaining the high Q optical stability of

the ultrastable laser, a frequency comb is used. In this section, we summarize our frequency comb

architecture and stability transfer measurements from the ultrastable laser to the 3D optical lattice

experiment. In subsection 3.3.1 we briefly introduce frequency combs. Subsection 3.3.2 details the

stability transfer setup, and subsection 3.3.3 summarizes measurements of the frequency comb’s

instability. Finally, in subsection 3.3.4 we discuss measurements of the fiber noise that is introduced

when the clock light is delivered to the 3D optical lattice experiment.

3.3.1 Frequency comb technology

A frequency comb is a phase-stabilized mode-locked laser. The series of optical pulses at the

output of a mode-locked laser is the result of the coherent addition of many optical modes of a

resonator over 10s of nm in bandwidth, which are locked together as a result of nonlinearity in the

laser [125]. The series of pulses are not only regularly spaced, but are also phase coherent with one

another. In the frequency domain, this corresponds to many ‘comb’ teeth, as shown in Fig. 3.22.

Each comb tooth is defined by the equation [126, 127, 128]

νn = n× frep ± f0 , (3.6)

where n is an integer and frep = 1/T = c/L is the repetition rate, T is the time between pulses,

and L is the mode-locked laser round-trip cavity length. The carrier-envelope offset is given by f0

and is related to the phase slip per pulse ∆φ, which arises due to a difference between the group
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Figure 3.22: Time and frequency representation of a frequency comb. In the time domain, a series
of pulses regularly spaced by time T are generated from the output of a mode-locked laser. These
pulses are the result of the coherent addition of many optical modes of a mode-locked laser. The
carrier offset-frequency, defined as zero here, is due to a phase slip between the carrier and envelope
each pulse. frep can be locked to a microwave reference or a laser. The carrier-envelope offset f0

must also be stabilized. Figure adapted from Ref. [1].

and phase velocity in the mode-locked resonator. The carrier-envelope offset is related to the phase

slip per pulse through

f0 =
1

2π
frep∆φ , (3.7)

where ∆φ = (1/vg − 1/vp)Lωc where vg (vp) is the group (phase) velocity, and ωc is the carrier

frequency. The difference between group and phase velocities arise from dispersion inside the
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mode-locked resonator.

The only two free parameters that describe every comb tooth are frep and f0. These two

parameters can be robustly stabilized. Many applications that do not require state-of-the-art

precision lock frep directly to a microwave source. The repetition rate is generally an accessible

microwave frequency between 100 MHz and 1 GHz. However, the noise on frep gets amplified by n,

which is on the order of 106. As a result, it is more beneficial to lock a single comb tooth directly

to a stable laser.

The carrier-offset phase is separately stabilized and can be detected using a self-referencing

technique called an f-2f interferometer [129]. Here, a low frequency part of the optical spectrum is

frequency doubled using second harmonic generation. A heterodyne beat is then formed between

the doubled spectrum and a high-frequency portion of the comb spectrum to produce f0, since

f0 = 2vN − v2N = 2(Nfrep + f0)− (2Nfrep + f0) . (3.8)

Self-referencing requires the comb to span an optical octave. Mode-lock laser bandwidths can

only achieve 10s of nm bandwidth, meaning external frequency broadening must be performed.

Frequency broadening is generally achieved in optical fiber through the process of self-phase mod-

ulation, which uses the intensity dependence of the nonlinear index of refraction (the Kerr effect).

Optical fibers allow large intensities to be generated since they confine light in small mode-waists.

However, chromatic dispersion gradually widens the pulse duration, reducing the peak intensity of

the pulses and thus limiting the maximum achievable frequency broadening. Engineered photonic

crystal fiber [130] circumvents this problem by providing zero dispersion near the carrier frequency

while supporting a fundamental spatial mode. It was the introduction of these optical fibers that

allowed the first demonstration of an optical octave and subsequent direct detection and locking of

f0 [131, 132].

With the repetition rate locked to an ultrastable laser and the carrier offset phase stabilized,

the stability of the ultrastable laser is then transferred to the entire comb spectrum. One can

think of this as converting an ultrastable laser at a single frequency into hundreds of thousands of
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ultrastable lasers that span frequencies of over 100 THz. The stability of the Si cavity can thus

be transferred to the comb tooth at 698 nm, on resonance with the clock transition. A laser at

698 nm can then be phase-locked to the comb and delivered to the optical lattice clock through

phase-stabilized optical fibers, as discussed in the following subsections.

3.3.2 Stability transfer frequency chain

We use a commercial Menlo Er:fiber frequency comb to transfer the stability of the ultrastable

laser at 1542 nm to 698 nm. The comb is based on an Er-doped femtosecond all-PM fiber mode-

locked laser [133] with a repetition rate of 250 MHz and a center wavelength around 1560 nm. The

comb has over a 1 MHz bandwidth on both f0 and frep due to high-bandwidth EOM actuators

that have minimal crosstalk [134]. The almost-independent control of the two actuators is achieved

using an interferometer implemented with polarization optics, where the amplitude between the two

arms is adjusted to achieve a change in the carrier envelope without altering the center frequency.

The comb is equipped with additional low-bandwidth piezo and thermoelectric actuators that allow

the comb to stay locked for multiple months.

The frequency comb is a multi-branch comb, where the output of the mode-locked laser is split

between different ‘branches’ that serve different optical purposes as illustrated in Fig. 3.23. Each

branch contains a separate Er:doped fiber amplifier (EDFA) and highly nonlinear fiber to maximize

frequency broadening at a particular optical frequency. Our frequency comb contains three separate

branches. The first arm is dedicated to detecting f0 through an f-2f interferometer. A second arm

is used to provide a frequency reference at 813 nm, which is our lattice wavelength. Approximately

a 1 Hz frequency shift of the clock transition occurs if the lattice laser is off the magic wavelength

by 1 GHz per 100Erec lattice depth for a combined scalar and tensor Stark shift of an atom with

|mF | = 9/2. Stabilizing the lattice lasers to below a kHz is easily achievable with this system. Since

the broadened comb spectrum spans roughly 1 µm to 2 µm, it is necessary to double the comb

light using a periodically-poled lithium niobate (PPLN) crystal, and 25 mW of power is provided

in a 3 nm bandwidth at the free-space output of the crystal. The light then goes into a home-built
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Figure 3.23: Outline of the Menlo frequency comb we use for stability transfer of the Si3 cavity to
other wavelengths relevant for Sr. Separate branches are used for each desired frequency output.
We have branches that stabilize f0, our 813 nm lattice lasers, and a custom branch with minimal
differential noise to transfer the stability of Si3 (the 124 K cavity) to 698 nm, the 1S0 → 3P0 clock
transition. Our frequency comb is locked to Si3, and the beat between the frequency comb and
MJM (a pre-stabilized cavity at 698 nm) provides the error signal to phase-lock MJM to the comb.
Heterodyne beats between Si3 and Si4 (the 4 K Si cavity), and between the frequency comb and
Si4, also occur inside the Menlo comb box. Acronyms are: erbium-doped fiber amplifier (EDFA),
highly nonlinear fiber (HNLF), periodically-poled lithium niobate (PPLN), bandpass filter (BPF),
beat-detection unit (BDU), pm fiber splitter (FS), pm fiber splitter with fast axis blocked (FSB),
fiber bragg grating (FBG), faraday mirror (FM), acousto-optic modulator (AOM). All fibers and
fiber components are polarization-maintaining (PM).

beat detection unit (BDU), which contains PM fiber splitters to combine the comb light with the

lattice lasers, and a high-bandwidth balanced detector to detect the heterodyne beat. Note that

because of the doubler, the comb teeth follow the equation νn = 2nfrep ± 2f0. Heterodyne beats

are generated separately with two different lattice lasers to provide a stable frequency reference for

each Sr experiment. We achieve 30 dB - 40 dB SNR with 100 kHz resolution bandwidth for these

beats.
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The last branch is used generate beatnotes at both 1542 nm and 698 nm. Outputs centered

at these two different wavelengths were implemented in a single branch to reduce the differential

noise between the two spectral regions. The comb light around 1542 nm is split off right before

the HNLF, while the output of the HNLF goes into a PPLN to generate 5 mW of power in a 3

nm bandwidth centered at 698 nm. In both cases, the comb light is then filtered with a 0.5 nm

bandwidth fiber bragg grating (FBG) and combined on a beam splitter with a cw laser to generate

a heterodyne beat that is detected using a balanced detector. The 1542 nm output of the branch

forms a beat with the Si3 light (the 124 K Si cavity), which is transferred over to the Menlo optics

table using a phase-stabilized fiber link. The fiber noise reference is provided by a PM Faraday

mirror that is inside a metal, temperature-controlled box. The 698 nm comb light forms a beat

with MJM, which is a pre-stabilized laser at 698 nm [35]. The fiber noise cancellation between

MJM and the frequency comb uses two AOMs to form the beat. The first AOM before the fiber

provides the actuator for the fiber stabilization. A unique frequency from the fiber noise reference

is guaranteed using a second static AOM right before the fiber noise reference mirror. This ensures

that the servo only sees the reflection from the mirror and is insensitive to spurious reflections

from other micro-optics, fiber tips, or fiber splices. We are able to achieve 50 dB SNR at 100 kHz

resolution bandwidth for both the Si3-comb beat and the MJM-comb beat.

We additionally take spare light from the comb at 1542 nm to generate a beat with Si4 (the

4 K Si cavity) in a separate Si3/Si4 BDU. The comb light is similarly filtered using a FBG before

being combined with the fiber-stabilized Si4 light to generate a beat. We also create a second beat

between Si4 and Si3 inside this BDU.

The full stability transfer schematic is shown in Fig. 3.24. Light from Si3 is delivered to the

Er comb using a phase-stabilized link, and is used to lock the comb at 35 MHz by actuating on frep.

We additionally lock f0 to a referenced microwave signal at 35 MHz. This transfers the stability of

Si3 to every comb tooth, providing a stable reference for our lattice lasers and our pre-stabilized
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Figure 3.24: Stability transfer of the Si3 cavity to the 1D and 3D optical lattice clocks. A frequency
comb is utilized to do the transfer. The comb is locked to Si3, and a pre-stabilized ULE cavity at
698 nm is locked to the comb. The stabilized light of the ULE cavity seeds two injection locked
lasers (not shown) before being distributed to the Sr experiments and the frequency comb. The
fiber links between the comb and the Si3/ULE laser, and the Sr experiments and the distribution
center, are phase-stabilized.

laser at 698 nm. To complete the stability transfer process, the MJM laser is then phase-locked

to the comb. The MJM ultrastable laser’s output first goes to a distribution center with a phase-

stabilized fiber link. The light is used as a seed to injection lock two different 30 mW diodes, which

are then distributed to the various Sr experiments and to the frequency comb. The MJM laser has

1× 10−16 fractional frequency instability from 1 s to 10s of s [42], and good high frequency noise.

Si3, on the other hand, has improved Brownian thermal noise which is the dominant noise source

up to around 2 Hz. To maximize the noise performance between the two cavities, we lock MJM to

the comb with a bandwidth around 1 Hz. This optimizes the noise performance of the combined

Si3-MJM cavity as determined through simulations of the Dick Effect, described in Chapter 1. To

actuate on the MJM laser, we sum the error signal from the MJM-comb beat into the fiber noise
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Figure 3.25: Electronics demonstrating how we lock MJM to the frequency comb. The MJM-comb
beat provides an error signal which we use to steer the demodulation frequency of the MJM fiber
noise servo. Both the fiber noise and the MJM-comb servo are closed feedback loops.

frequency reference, as shown in Fig. 3.25. The beat is bandpass filtered, amplified, and divided

by a factor of 8 before being demodulated and sent into a loop filter. The output of the loop filter

is then sent into a low-noise VCO, which is mixed with a local oscillator to provide the fiber noise

frequency reference at the correct frequency. The fiber noise reference is mixed with the fiber noise

beat and sent to a loop filter that drives an internal VCO, which powers the MJM fiber noise AOM.

All of the fiber noise servos and the phase locks with the frequency comb are closed feedback loops

so that the Si3 phase is properly transferred to MJM.

3.3.3 Differential noise

To not introduce additional noise in the stability transfer, it is essential to reduce differential

noise between the 1542 nm path and the 698 nm path. Any noise added between the 1542 nm and

698 nm branches of the comb, in the distribution center, or in the transfer of the light to the Sr

experiments, will degrade the pristine stability provided by the Si cavity. A critical potential noise

source in the frequency comb is from unstabilized fiber, which can add noise caused by vibrations

or temperature fluctuations. To reduce the amount of differential noise between the two paths,
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(a)

(b)

Figure 3.26: (a) Picture of the frequency comb, including the outer Al box, the 2 inch breadboard,
and the inner box that goes around a smaller Al breadboard that is water-cooled and clamped
to the middle-sized breadboard. (b) Optical components of the frequency comb, inside the inner
box. Out-of-loop fiber components are housed in Al boxes that are thermo-electrically stabilized
to within 10 mK.
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the fiber lengths are made as short as possible. The 1542 nm path is picked off in the comb as

close to the 698 branch as possible, so that the differential fiber path in the 1542/698 branch is

only 10-15 cm. Fiber components in the Si3/MJM BDU are spliced with roughly 10 cm leads.

In addition, all fiber components in the BDU are housed within a metal box that is temperature

controlled with a 10 mK temperature stability. The fiber leads between the 1542/698 branch and

the Si3/MJM BDU box are only a few cm long. Furthermore, all fibers in the frequency comb

are polarization-maintaining (PM) to reduce fluctuations due to polarization rotation, and all fiber

splitters have the fast axis blocked. The box has foam on top and the sides to reduce vibrational

coupling.

The frequency comb sits on top of a water-cooled Al breadboard that is tightly clamped to a 2

inch breadboard that sits on top of the larger optical table with small viton feet. We use a low-noise

Lauda ECO RE 415 S chiller at the minimum flow rate to provide the water cooling. We confirmed

that the chiller did not add vibration noise by looking at the coherence between the Si3-MJM beat

and an accelerometer placed on the comb table. The water-cooled breadboard is surrounded by

a plastic box with foam on the lids. Furthermore, the 2 inch thick breadboard is surrounded by

a large Al box with conical foam inside to damp vibrations. Temperature fluctuations inside the

large Al box are sub-100 mK over the course of a day. The various boxes are shown in Fig. 3.26.

The large Al box around the Sr2 (3D optical lattice) experiment was modeled after the box around

the frequency comb. The Menlo comb is equipped with a number of heavy electrical cables to

power the pump diodes, provide feedback to the repetition rate and the offset beat, etc. We clamp

the cables with viton on the main large optical table to dampen their vibrations. We furthermore

connect ribbon cables for the pump diodes and light flexible cables for the rest of the cables to

lessen the impact of cable vibrations on the comb.

The added instability of the stability transfer process due to the frequency comb is assessed

by performing a comb comparison with an identical reference system [135]. Each comb is locked to

a common local oscillator at 1542 nm, and the repetition rates are set to the same value. The offset

beat f0 is also phase-locked but differs between the two combs by 5 MHz so that the heterodyne
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Figure 3.27: Differential noise between two identical frequency combs. Each comb is locked to a
common reference at 1542 nm, and a heterodyne beat is formed at 698 nm that is then counted on
a frequency counter.

beat at 698 nm is 10 MHz after the PPLN crystals. The heterodyne beat is then counted using

a dead-time free lambda-type frequency counter with a 100 ms gate time. Because the repetition

rates are equal for the two systems, all comb lines within the 2.5 nm output of the PPLN crystal

contribute to the measured signal. The results of the measurement are shown in Fig. 3.27. The

instability due to the frequency comb is 1.6 × 10−18 at 1 s, well below the local oscillator noise,

while the measured frequency offset of the beat is 1.5× 10−19.

This measurement was performed with Menlo’s commercial BDU units. The instability of our
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home-built BDU units were measured separately. To measure the noise, the comb light is replaced

so that a cw-cw beat is formed with the same local oscillator. To measure the noise in the 1542

nm out-of-loop fiber, Si3 light is split off before the fiber link and a separate phase-stabilized fiber

link is sent to the comb input port of the 1542 nm BDU (prior to the circulator in Fig. 3.23). The

fiber noise AOMs are offset in frequency so that a heterodyne beat is formed at 10 kHz, which is

subsequently counted. The results, as seen in Fig. 3.28 (a), show an instability of 4 × 10−18 at 1

s averaging time. We further measured the frequency offset over the course of a week, where we

saw variations in the center frequency of 2× 10−19. A similar experiment is performed on the 698

nm out-of-loop fiber path in the BDU. A separate path on the distribution center is used, with

a separate phase-stabilized link, to generate the cw-cw beat. Results are shown in Fig. 3.28 (b),

where the instability is 5 × 10−18 at 1 s averaging time. The frequency offset over the course of a

week varied at 5×10−19. The noise is well below the Si cavity, ensuring that any degradation of the

stability transfer due to the frequency comb is negligible. Note that these measurements provide an

upper bound of the instability of the home-built BDU, since the measurement includes noise from

the phase-stabilized fiber links and any out-of-loop noise on the distribution center between the two

698 nm paths. The noise of the 698 and 1542 fiber paths in the BDU are measured independently,

and thus does not take into account that some noise could be common-mode between the two fiber

paths.

3.3.4 Optical path length stabilization

The 698 nm light, locked to the Si3 ultrastable laser, is transferred to the Sr experiments using

phase-stabilized fibers [136]. The link operates in a pulsed fashion so that light is only delivered

to the atoms throughout the coherent interrogation, and is extinguished during the dead time and

readout time. This pulsed operation is a known source of phase transients [137]. To overcome this

issue in previous work, the 0th order transmission of the switching AOM was used as the fiber

noise reference, while the 1st order diffracted beam was directed to the atoms [36]. This ensured
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Figure 3.28: Instability of the out-of-loop fiber in the home-built BDU boxes. The measurements
include fiber noise from the phase-stabilized links.

that RF-induced heating of the AOM was mostly common-mode, and that the fiber-noise servo

was always engaged. The 0th order beam was reflected right before the lattice retro mirror so that

both the 0th and 1st order beams sampled roughly the same optical path. This method reduced

the frequency shift uncertainty to below 10−18 [138], and the out-of-loop path length between the

0th and 1st order was small enough to successfully transfer a clock with an instability of 1× 10−16

to the atoms.

However, we found that the differential noise between the 0th and 1st order paths was above

the level of the Si3 clock laser instability despite the only 10 cm path length difference. The out-

of-loop noise was made worse by the lack of a tight enclosure around the experiment during that

time. Differential path length changes between the 0th and 1st order beams can be driven by

thermal changes in the AOM and air currents. Furthermore, reflections from the fiber tip or the

front surface of the AOM can add noise if the 0th order light is used as the phase reference. To test

the out of loop noise, a heterodyne beat was formed between the 1st order paths of two separate

phase-stabilized links with an out-of-loop path length difference of 10 cm. We saw a significantly

reduced out-of-loop noise when the 1st order light of the AOM was used as the phase-reference as
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Figure 3.29: PSD of the out-of-loop fiber noise measurements. When using the 0th order as the
fiber noise reflection but the 1st order to perform spectroscopy, the differential noise between the
paths is above the Si3 noise floor. When using the 1st order to provide the phase reference and
perform spectroscopy, the noise is much smaller.

opposed to the 0th order, as shown in Fig. 3.29.

To circumvent these issues, in Ref. [3] we used the first diffracted order of the AOM for both

the fiber phase noise reference and for spectroscopy. A wedged beam sampler is placed before the

lattice retro mirror to provide a 10% back-reflection for optical path length stabilization. A shutter

is placed after the beam sampler to keep clock light from hitting the atoms while keeping the servo

engaged. To prevent phase transients from impacting the clock interrogation, the clock light is

detuned by 1 MHz 7 ms before the Rabi pulse and the shutter is opened. Any phase transients

from re-engaging the servo occur while the clock light is detuned, that is when the atomic sensitivity
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Figure 3.30: Schematic of the updated fiber noise stabilization setup. Both a 0th order and a 1st
order servo are utilized. The 0th order servo, which provides actuation on the RF of AOM1, is
continuously on, and provides phase-stabilization for the majority of the fiber link. The 1st order
servo removes any differential noise between the 0th and 1st order paths. This servo is turned off
(by shutting off AOM3) right before spectroscopy, while the shutter is opened.

function is negligible. After the servo settles, the frequency is then linearly swept onto resonance

over 3.4 ms. The fractional frequency shift due to the sweeping of the light onto resonance is

calculated to be below 2× 10−19 for a 600 ms pi pulse.

For Ramsey instead of Rabi spectroscopy, the clock light must be extinguished during the

dark time to avoid a significant clock shift. We thus devise an alternative fiber noise locking

scheme that A.) adds minimal phase noise to the clock light delivered to the atoms, B.) reduces

phase transients when the clock light is pulsed on/off, and C.) provides maximal frequency agility

on the Bloch sphere. The optics and general locking schematic are shown in Fig. 3.30. A fiber noise
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servo is implemented using the 0th order light of AOM3 as the fiber noise reference, and a separate

servo takes care of the differential noise between the 0th order and 1st order paths. For this second

servo, the diffracted 1st order light from AOM3 is used as the fiber noise reference. The 0th order

servo steers the RF drive of AOM1, while the 1st order servo steers AOM3. We additionally add

another AOM, AOM2, after the fiber so that the 0th order servo fiber noise reference is not at the

same frequency as the reflection off the fiber tip. The 0th order servo is continuously on, providing

phase-stable clock light at the 10−16 level.

The 1st order servo remains activated for the majority of the cycle by having the shutter

closed so that the light does not hit the atoms. Before performing spectroscopy, AOM3 is shut

off, the shutter is opened, and then AOM3 is switched on again to create a clean pulse of light for

spectroscopy. Opening the shutter takes around 3 ms. During this time, AOM3 is off, and the 1st

order fiber noise servo is disengaged. The key challenge is then to make sure that re-engaging this

servo does not introduce significant phase transients. One may think that you could just use an

integrator hold feature on the servo during this time, but we measured significant phase deviations

with this method.

Instead, we feed in a synthetic fiber noise beat into the servo while AOM3 is turned off. The

electronics, shown in Fig. 3.31, show how we provide a reference with the right phase and frequency

to the servo box. The solution presented in Fig. 3.31 solves issues A.) and B.) discussed above.

When AOM3 is on, the fiber noise beat is connected to the input of the servo, and is phase-locked

to a reference (fref ). The error signal steers an internal VCO that is used to drive AOM3 (‘1F

out’). The VCO output is centered at 77.76 MHz, so that we need to mix the signal with a function

generator at 36 MHz to get to the right frequency for AOM3.

Right before the shutter is opened, a TTL shuts off the RF drive of AOM3 and simultaneously

switches the input of the fiber noise servo to the synthetic beat signal. The correct frequency is

provided by fref , but the phase needs to be locked so that it is not sensitive to environmental
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Figure 3.31: 1st order fiber noise servo electronics, which reduces phase excursions when the servo
is re-engaged. While AOM3 is on, the 1st order diffracted beam provides a reference for the fiber
noise beat, which actuates on the RF to AOM3. AOM3 is shut off before spectroscopy using a TTL.
During this time, a synthetic beat signal is fed into the fiber noise input. To get the right phase
and frequency input, a servo is used on the synthetic beat signal before AOM3 is extinguished to
properly reference it to fref .

perturbations such as temperature changes. This is achieved using a phase lock loop. The reference

is mixed with a function generator using a phase detector, and the output passes through a loop

filter into the FM modulation port of the function generator. Temperature changes can also alter

the mixer output inside the servo box. As a result, it is necessary to keep the fiber noise servo as

part of the phase loop to prevent accrued error. We use the 2F output of the box for this purpose,

which is derived from the internal VCO. The function generator is first mixed with the 2F output

before being combined with the reference on the phase detector. The output of the mixer is then
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Figure 3.32: Phase transients of the 1st order fiber noise servo once AOM3 is powered and the fiber
noise beat is connected to the servo. 3V corresponds to 90 degrees. Here, the purple traces show
the TTL that turns AOM3 on, and simultaneously switches the servo input to the fiber noise beat.
The blue traces show the in-loop error of the fiber noise servo. The top and bottom traces show the
phase deviation without the feedback loop on the synthetic beat’s phase. The center trace shows
the reduced phase deviation when the loop is engaged. The magnitude of the phase transient with
the synthetic beat phase stabilization enabled corresponds to an AOM phase chirp frequency shift
of below 10−19 for a 450 ms Ramsey dark time and 15 ms π/2 pulses.

used as the synthetic beat signal while AOM3 is off.

To ensure the right phase is fed into the servo once AOM3 is extinguished, the phase lock

loop is activated while AOM3 is on. To set the phase to the right value in the servo, the BNC cable

length between fref and the phase detector is varied to minimize the phase transients once the

servo is reengaged with the real fiber noise beat. Finally, when AOM3 is off, we put an integrator

hold on the clock light intensity servo to avoid integrator wind-up.

The phase transients that occur once AOM3 is re-activated with and without the phase sta-
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bilization of the synthetic beat signal are shown in Fig. 3.32. With the phase stabilization engaged,

we numerically calculate that the deviations correspond to a sub-10−19 clock shift assuming a 450

ms Ramsey dark time and 15 ms π/2 pulses.

The solution presented thus far in Fig. 3.31 solves issues A.) and B.) discussed above. How-

ever, the VCOs in the fiber noise servos have a limited bandwidth of +/- 100 kHz. To increase

our scan range so that we have a solution that solves A.), B.) and C.), we simultaneously jump

the AOM3 frequency and the reference frequency. This is accomplished, with a few additional

electronics, by changing fref , as shown in Fig. 3.33. Instead of a single frequency synthesizer as

shown in Fig. 3.31, the AOM3 frequency is mixed with fref and another function generator. The

synthetic beat signal phase lock also needs to be jumped, so fgen is split into two synthesizers - fref

and another signal generator. fref is then common to the derived AOM3 frequency, the reference

frequency for the fiber noise servo, and both inputs of the phase detector, so that a different spec-

troscopy frequency can be achieved by changing fref without significantly disturbing the fiber noise

servo. This also allows the clock light frequency to be quickly adjusted, since it mostly removes

the change in fref from the error signal.

Any vibrations from the dichroic onwards are common-mode between the lattice and the

clock laser. Path length fluctuations between the 1st order FN reference and the dichroic however

are uncompensated and must be minimized. To accomplish this, we implement a rigid mounting

structure between the two mirrors, as shown in Fig. 3.34. The mirrors are mounted into the

structure of the box and the box is hermetically sealed. Furthermore, ND filters can be inserted

using a motorized actuator so that the intensity of the clock light at the atoms can be changed

by many orders of magnitude without changing the fiber noise beat amplitude. An SRS shutter is

implemented inside the box as well and is mounted on a translation stage for alignment purposes.



99

SIGNAL IN

REF. IN

1F OUT

2F OUT

FNC

REF. SOURCE

fREF = 272 MHz

AOM 3

Fiber noise 

beat

@2F

Func. Gen

TTL switch

TTL LOW

TTL 

HIGH

SYNTHETIC

BEAT SIGNAL 

TTL

f

TTL  

switch

Loop Filter

FM

Func. Gen 

@100 MHz 

Det.

TTL 

switch

TTL 

LOW

TTL 

LOW

~77.76 MHz

41.76 MHz

divide 

by 2

Figure 3.33: Full electronics for the 1st order fiber noise servo, that reduces phase transients when
reengaging the servo and provides maximal frequency agility. The electronics feed in a synthetic
beat signal with the right phase and frequency when AOM3 is shut off, right before spectroscopy.
The electronics also include the ability to scan the beat frequency over a wide range by feeding
forward on fref and the beat signal.
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Figure 3.34: Fiber noise box. The first mirror of the box contains the 1st order FN reference, and
the last mount contains the lattice retro mirror (a dielectric that reflects 813 nm, transmits 698
nm) that provides a common phase reference for the lattice light and the clock light. ND filters
can be inserted inside the box with a motorized actuator, and an SRS shutter is also mounted to
the top of the box.



Chapter 4

Thermodynamics of a deeply degenerate SU(N)-symmetric Fermi gas

The research described in this chapter has been reported in the following publication:

Lindsay Sonderhouse*, Christian Sanner*, Ross B. Hutson, Akihisa Goban, Thomas Bilitewski,

Lingfeng Yan, William R. Milner, Ana M. Rey and Jun Ye, “Thermodynamics of a deeply degener-

ate SU(N)-symmetric Fermi gas,” Nat. Phys. 16, 1216–1221 (2020). * (these authors contributed

equally) [51].

A Fermi-degenerate 3D optical lattice clock has shown a record instrinsic QPN stability of

1.5 × 10−17/
√
τ . However, due to the extended time spent preparing a Fermi gas of more than

10 s, the corresponding laser noise is high - with the Si cavity’s 4× 10−17 thermal noise floor and

a few second pulse time, the Dick Effect stability is above 10−16/
√
τ . To make the 3D lattice

clock competitive as an independent clock, it is necessary to reduce the preparation time, which is

dominated by the evaporative cooling step to reach degeneracy.

Pioneering work by Deborah Jin showed that Pauli blocking reduces the efficiency of evapo-

rative cooling at low temperatures, making it challenging to reach deep degeneracy. As a result, re-

alizing degeneracy in fermions has spurred numerous independent studies over the past two decades

by exploiting two-component spin mixtures near a Feshbach resonance. In this chapter, we detail

experiments to study SU(N) interactions [139, 140] in a 87Sr Fermi gas with N ≤ 10, and utilize

the enhanced interactions for rapid evaporation. While recent studies have started to investigate

the intriguing properties of SU(N) quantum matter, most of the effort so far has been concentrated
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on the investigation of lattice-confined gases [141, 139, 142, 143, 144, 54, 145]. On the other hand,

experiments probing the role of SU(N) interactions in a regime where a Fermi liquid description is

accurate have been limited to non-degenerate [62] or only slightly degenerate [146, 147, 148, 149]

gases. Here, we explore a deeply degenerate regime where N Fermi seas coexist and fundamentally

modify the system’s thermodynamics (Fig. 4.1).

We first outline the challenges of evaporating fermions and motivate using many components

with SU(N) symmetry during evaporation. We then detail our preparation scheme, and demon-

strate an unprecedented short time to reach Fermi degeneracy with a temperature T/TF = 0.22,

where TF is the Fermi temperature, achieved in just 0.6 s of evaporation with a laser-cooled sam-

ple. Our preparation scheme concludes with a new technique to spin-polarize degenerate Fermi

gases without causing light-induced heating, allowing efficient preparation of a low entropy spin-

polarized Fermi gas. We then characterize the enhanced interactions caused by a many-component

SU(N)-symmetric gas. In the deeply degenerate regime, we show through precise measurements of

density fluctuations and expansion dynamics that the large number N of spin states under SU(N)

symmetry leads to pronounced interaction effects in a system with a nominally negligible interac-

tion parameter. We conclude with a technique to extract T/TF in an interacting gas by fitting

the full density profile of the gas, and with it are able to demonstrate thermometry accurate to

one-hundredth of the Fermi energy using a single experimental image.

4.1 Cooling fermions to degeneracy

Cooling fermions to degeneracy has historically been more challenging than cooling bosons

due to the reduced interaction between identical fermions at low temperatures. Evaporation, a

workhorse technique that is used to achieve quantum degeneracy in atomic gases [150, 151], requires

atoms to rethermalize through collisions at each step of the evaporation process. As outlined in

Chapter 2, the dominant interactions at ultralow temperatures in quantum gases occur via s-wave

contact scattering, which, for identical fermions, vanishes due to the anti-symmetry of fermionic

wavefunctions. As a result, spin-polarized fermions predominantly interact through higher order
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p-wave interactions. At low temperatures these interactions are suppressed by the height of the

centrifugal barrier (10s of µK in the 1S0 state of 87Sr). Fermi-degeneracy requires temperatures of

100s of nK. Identical fermions can thus not be evaporatively cooled to degeneracy.

4.1.1 Common techniques

Thermalization throughout evaporation requires collisions between distinguishable atoms.

There are two common techniques to achieve this. First, multi-component fermionic gases can be

used. S-wave collisions are then allowed between different components. This was first achieved in

1999 in the group of Debbie Jin using a Fermi gas consisting of atoms in two magnetic sublevels

of 40K [70]. However, they observed that the cooling efficiency decreased when the gas became

sufficiently degenerate, since rethermalizing collisions were blocked if the final states were occupied

by another atom. This limited the efficiency of evaporative cooling at degenerate temperatures.

Many cold fermion clouds are also created through sympathetic cooling with a bosonic atom.

If bosons are co-loaded into the optical or magnetic trap, they can efficiently evaporate and the

fermions will sympathetically cool through collisions with the bosons. Popular combinations include

7Li and 6Li [68], 6Li and 23Na [152, 153] and 40K with 87Rb [154]. There is no Pauli blocking of

collisions with a Bose-Fermi mixture, which may improve the evaporation efficiency. However,

additional loss can arise due to three body recombination. Extra experimental complexity is also

required to create both a Fermi and Bose gas in the same apparatus. Furthermore, the spatial

overlap between the BEC and Fermi gas can be poor due to Fermi pressure, which increases the

size of the Fermi gas compared to BEC [68]. At this time, Fermi degeneracy has been achieved

through evaporation in a range of other atoms and molecules, including but not limited to 6Li [155],

173Yb [156], 171Yb [112], 87Sr [157, 158, 49], 167Er [159], 3He [160] and KRb [161].

Although these techniques have allowed systems to reach Fermi degeneracy, evaporation is

typically slow, 10s of seconds. This is because rethermalization, which requires a few collisions per

particle, is still limited despite the described increase in the s-wave collisional parameter. For a

two-component gas of equal densities, the elastic collision rate is given by Γ = nσvrel, where n is
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the single component density, σ = 4πa2 is the collision cross section, a is the s-wave scattering

length, and vrel is the relative velocity between the two colliding particles. The latter, of course,

decreases as the temperature is reduced. For a 3D Gaussian distribution, vrel =
√

16kBT/πm.

To increase the collision rate (and thus the rethermalization rate), one can increase the scattering

length a, through for example a Feshbach resonance. However, in alkaline-earth atoms such as Sr,

only optical Feshbach resonances exist which are known to be lossy [162]. As a result, one relies on

increasing the density of atoms. This however has its own limits - light-assisted collisions limit the

attainable initial density [106]. In addition, once degeneracy is reached, Fermi pressure reduces the

attainable density per component.

4.1.2 Exploiting SU(N) symmetry for cooling

Binary mixtures are commonly used to reach degeneracy. They are well studied and versatile

platforms for quantum simulation capable of exploring a wide parameter space [163, 164]. How-

ever, the additional freedom in choosing the number of spin components, N , offers unique, largely

unexplored opportunities. Using more components enhances the collision rate, and in the limit of

large N , the gas should behave like a boson [147]. The collision rate, given by Γ = (N − 1)nσvrel,

increases linearly with the number of components, N . In the 1S0 state, 87Sr has 10 nuclear spin

components. Compared to a 2 component mixture, where each atom only interacts with 50% of

the gas, an atom interacts with 90% of the particles in a 10 component gas. This increase in the

number of collisional partners enhances the collision rate.

Alkaline-earth fermionic atoms have SU(N) symmetry in the nuclear spin states of the 1S0

ground and 3P0 clock state, where N can be as large as 10. This symmetry arises from the

decoupling between the nuclear and electronic degrees of freedom (I · J = 0) intrinsic to the

atom’s internal ground state manifold and gives rise to SU(N)-symmetric two-body interactions,

characterized by a single nuclear-spin-independent scattering length, a [139, 140]. SU(N) symmetry

is an untapped resource for cooling [142, 165, 166, 167]. Absent of SU(N) symmetry, a 10 component

gas would experience spin changing collisions, which cause heating and loss of atoms. Inelastic spin
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Figure 4.1: Unlike bosons which can occupy the same state, indistinguishable fermions must sep-
arate into different energy levels. SU(N) fermions, on the other hand, can have N particles per
state. In a given level, each particle has (N − 1) distinct partners, as shown in the top right, and
interactions are correspondingly enhanced.

changing collisions are forbidden under SU(N) symmetry, and thus the enhanced collision and

thermalization rate provided by the increased number of components can be fully taken advantage

of. SU(N) symmetry thus provides a tool to efficiently remove entropy from the system.

4.2 Rapid cooling of fermions to degeneracy

Our preparation scheme (Fig. 4.2a) begins with standard laser cooling techniques developed

for alkaline-earth atoms, as described in [104] and in Chapter 3. After two stages of laser cooling,

roughly 107 atoms are cooled to 2 µK in a far-off-resonant crossed optical dipole trap (XODT) with
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Figure 4.2: a, Timing diagram showing stages of the experimental sequence. The times are opti-
mized for clock operation in the band insulating regime. Single spin samples with 20,000 atoms at
T/TF = 0.2 are prepared in a 3D optical lattice in under 3 s. b, Atoms are confined in a crossed
optical dipole trap consisting of a reservoir and dimple trap, and accumulate in a dimple after a
“transparency” laser is applied. The transparency and TenS4 lasers overlap with the dimple, and
form a 10◦ angle with respect to gravity.

a sheet-like geometry [49, 157]. A vertically oriented round optical dipole trap (VODT) forms a

dimple in a horizontal optical sheet potential that is provided by an elliptically shaped horizontal

optical dipole trap (HODT) (Fig. 4.2b). The HODT provides support against gravity and therefore

determines the effective trap depth. The stronger confinement in the horizontal plane afforded by

the dimple and the large vertical trap frequencies provided by the HODT provide a high initial

atomic density, which is ideal for efficient evaporation.

4.2.1 Transparency beam

Here we provide a brief summary of the transparency beam, which is discussed in detail

in Chapter 3. The density obtainable in a MOT is generally limited by inelastic light-assisted

collisions [106] and reabsorption of the cooling light, which leads to an effective repulsion between

atoms [107]. To further increase the density inside the dimple beyond these limits, we locally apply

an additional laser that renders atoms inside the dimple region transparent to MOT light, a method

that was adapted from bosonic 84Sr [109]. The beam spatially overlaps with the VODT but has

a slightly larger waist. This “transparency” laser shifts the cooling light out of resonance, and a

high density can then be reached inside the dimple, where atoms collect. Atoms in the dimple
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Figure 4.3: a, Level diagram depicting the energy transitions for the transparency beam and
Tensor Stark Shift Spin Selector (TenS4). b, Time to reach T/TF = 0.12 for different numbers of
nuclear spin states N participating in evaporation. Each trajectory is prepared with 9.6(8) × 105

atoms per spin state and T/TF = 2.0(1). The gray band denotes a 1/(N − 1) scaling based on
the number of initial collisional partners, given a ±20% change in the atom number. The error
bars are upper bounds, reflecting the resolution of the sampling grid. c, Combined optical and
gravitational potential after application of the TenS4 laser. The beam creates a spin-dependent
modification of the potential, and only atoms in spin state mF = +9/2 (purple line) are supported
against gravity. Atoms in mF = −9/2 and −7/2 are removed through optical pumping. d, Spin
purity after application of the TenS4 laser for 10 ms. Atoms are loaded into a 3D optical lattice
and the spin state population is determined using selective excitation on the ultranarrow 1S0 – 3P0

transition. Gray triangles correspond to spin states that are removed through optical pumping.
The error bars denote the standard error of the mean (s.e.m.) and are smaller than the marker
size.

thermalize with atoms in a large reservoir part of the trap, which are continually being cooled by
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the MOT light.

The transparency beam has allowed the production of Bose-Einstein condensation without

additional evaporation [109]. However, for fermions additional complications can arise. Compared

to bosonic strontium, 87Sr has additional hyperfine structure, creating a different AC Stark shift

for each nuclear sublevel. Transparency from both the trapping and stirring second stage MOT

lasers is also required [110]. Accordingly, we use transparency light that is blue-detuned by 25 GHz

from the 3P1 − 3S1 transition (Fig. 4.3a). This provides an ample shift for all nuclear spin states

and keeps spontaneous scattering events beyond relevant experimental time scales. After 400 ms

of cooling with the transparency beam, the number of atoms in the dimple saturates with 5× 106

atoms, i.e. about 50% of the total atom number, a temperature of 2µK, and T/TF = 1.9. Lower

temperatures can be achieved by adjusting the MOT light, but without further improving the phase

space density.

4.2.2 The SU(N) edge

The very dense and almost degenerate sample can then be further cooled via forced evapora-

tion. Spin relaxation is absent due to the SU(N)-symmetric nature of 87Sr in the 1S0 ground state;

however, over the timescale of seconds we observe a decay of the sample which is well described by

a 3-body loss process. The lack of spin relaxation and the small 3-body loss coefficient are further

advantageous features of cooling using 87Sr atoms in comparison to alkalis.

To determine the three-body loss coefficient k3, we load a thermal gas with temperature

T = 1.45µK into the dimple part of the recompressed dipole trap. Starting from an initial central

density of n = 3.9 × 1014 cm−3 we measure over the next ten seconds a decay of the total atom

number Ñ(t) as a function of the holding time t. The observed atom loss is modeled as

Ñ(t) = Ñ(0)− k3

∫ t

0
dτ

∫
n3(r, τ)dV , (4.1)

where n(r, t) is the total atomic density at position r and time t. The data and corresponding

fit are given in Fig.4.4. We find a three-body loss coefficient of k3 = 4.7(1.2) × 10−30 cm6/s.
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Figure 4.4: Three-body loss measurement, which is used to extract k3.

Interestingly, this is a factor of 2 larger than the recent lattice-based 3-body measurement that

showed agreement with a universal Van der Waals model [54]. Discrepancies in 3-body loss between

bulk gas measurements and predictions have been seen before [168, 169]. These discrepancies

indicate the challenge of accounting for inhomogeneous density profiles in a bulk gas measurement.

Under our experimental conditions, single and two-body contributions are expected to be negligible

over a time interval of ten seconds. Using a corresponding multivariate model, we find both to be

statistically insignificant.

Before quantum degeneracy, the elastic collision rate [156] for a balanced spin mixture with

a spatially averaged single-spin density n̄σ is proportional to (1− 1/N)Nn̄σ. Assuming a constant

atom number per spin state, it is thus advantageous to have all 10 spin states populated. We reach
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Figure 4.5: Evaporation trajectories for three different total times, 0.6 s (orange), 1.2 s (blue), and
2.4 s (green). The time constant of the ramps are adjusted to increase the total evaporation length
while maintaining the same final trap depth. The top plot shows T/TF as a function of time, and
the bottom T/TF versus atom number per spin state.

an initial collision rate of 1000 s−1 with N = 10. Evaporation begins at a trap depth of 20µK with

trap frequencies in the dimple of (νr, νz) = (100, 800) Hz. The HODT intensity is then reduced in a

two-stage ramp down to a final trap depth of a few 100 nK with trap frequencies of (100, 200) Hz.

After 600 ms of evaporation, we reach T/TF = 0.22 with 3×104 atoms per spin state. Slower

evaporation leads to lower temperatures, and we achieve T/TF = 0.07 with 5× 104 atoms per spin
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(a) (b) (c)

Figure 4.6: a, Density profile of a Fermi-degenerate gas after 10 ms time-of-flight with 10 spin states
and T/TF = 0.07. b, Residuals after fitting the cloud to a Maxwell-Boltzmann distribution. Color
bars in each subplot correspond to the number of atoms per 1.37 µm2. c, Radially averaged fit of
the density profile given in a to a Maxwell-Boltzmann distribution and a Fermi-Dirac distribution.
The thermal distribution has larger residuals than the Fermi-Dirac fit.

state after evaporating for 2.4 s. Trajectories of three different lengths are given in Fig. 4.5 1 . At

such low temperatures, the normally modest deviation from a thermal distribution is striking, see

Fig. 4.6. Such fast trajectories mark a considerable improvement over previous evaporation results,

where evaporation stages took around 10 s [49].

We observe an approximate 1/(N−1) scaling of the total evaporation time with the number of

spin states participating in evaporation as shown in Fig. 4.3b, reflecting the reduction in collisional

partners for smaller N . Here, each sample is prepared with the same atom number per spin state

and T/TF , and is measured after reaching T/TF = 0.12. The final atom number per spin state is

reduced by roughly a factor of two as N is decreased.

4.3 Spin Manipulation

Here we summarize the TenS4 technique, which is discussed in more detail in Chapter 3. In

order to manipulate the spin composition of the atom sample and prepare a spin-polarized gas,

we apply a spin-selective optical potential to the atoms after evaporation. While past procedures

1 The data shown in Fig. 4.3 (b) and Fig. 4.5 are extracted using a full density profile fit that includes a mean-field
interaction term, as described later in this chapter. Corrections to T/TF are around 20% at the lowest temperatures.
Using a non-interacting fit, our minimum extracted T/TF is 0.05.
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have used optical Stern-Gerlach techniques to separate out spin states during time-of-flight [111,

112, 113], our method, the Tensor Stark Shift Spin Selector (TenS4), creates a spin-selective force

on the atoms from the tensor Stark shift of a laser while the atoms remain trapped in the XODT.

Atoms with the same |mF| experience a small differential force due to an applied magnetic field of

5 G. This magnetic field is too small to fully remove mF = −9/2 and −7/2. We thus conventionally

remove these spins via optical pumping prior to evaporative cooling. For the SU(N) measurements

in the following section, however, we always use all 10 nuclear spins. The TenS4 beam is offset from

the atoms such that the AC Stark shift varies across the atomic sample by hundreds of nK, which

causes a spin-dependent modification in the combined optical and gravitational potential of the

atoms (Fig. 4.3c). The TenS4 laser is blue-detuned from the 3P1, F = 11/2 transition by 266 MHz

(Fig. 4.3a), where the polarizability from 3P1, F = 11/2 cancels the polarizability from 3P1, F =

9/2 for nuclear spin state mF = +9/2. As a result, atoms with mF = +9/2 are unaffected by the

TenS4 laser while all other spin states feel a repelling force.

The spin purity after applying the TenS4 laser for 10 ms is measured by loading the atoms

into a deep 3D optical lattice. The spin population for each nuclear spin state is then read out

through selective π-pulse excitations on the clock transition. We measure 92% of the atoms in the

target mF = +9/2 state, as shown in Fig. 4.3d, and an atom number of 3.3× 104 after application

of the TenS4 beam, in rough agreement with 1/8th of the initial atom population of 2.5 × 105.

The temperature of the sample heats by only ∼10%. Our technique provides spin-state selectivity

without optical excitation and as a result does not cause light-induced heating, overcoming issues

typically associated with optical pumping schemes. The spin distillation technique enables us to

load a single spin with T/TF = 0.2 into a 3D optical lattice with a total preparation time under 3 s

(Fig. 4.2 a).

4.4 Characterization of SU(N)-enhanced interactions

Having prepared a high-density deeply degenerate SU(10) gas, we demonstrate in this section

that a nominally very weakly interacting quantum system with interaction parameter kFa � 1,
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where kF is the Fermi wave vector, can develop striking interaction effects due to SU(N) enhance-

ment. The nuclear spin degree of freedom substantially modifies the character of the gas towards

an interacting multi-component Fermi liquid with subtle consequences for correlation analysis and

thermometry. We first describe our experimental measurements of the compressibility, the expan-

sion dynamics, and anisotropic features of expanded gas clouds, and conclude with a summary of

the interacting theoretical model we use to describe the measurements.

4.4.1 Isothermal compressibility

In order to investigate this intriguing quantum system and illuminate the role of SU(N) sym-

metry, we perform measurements that characterize the system’s thermodynamics. A key quantity

in this context is the isothermal compressibility κ = 1
n2

∂n
∂µ , where n = N nσ denotes the particle

density and µ the chemical potential. For 87Sr with a = 97aBohr, the contact interactions are

repulsive and one expects a decreased compressibility compared to an ideal Fermi gas with com-

pressibility κ0. For a homogeneous gas in the zero temperature limit, κ0 = 3/(2NnσEF ) with Fermi

energy EF and Fermi wave vector kF = (6π2nσ)1/3. One finds to first order in kFa that [170]

κ0/κ = 1 + (N − 1) 2kFa/π . (4.2)

Therefore, the symmetric N -component system is effectively (N − 1)-fold more repulsive than a

typical two spin component Fermi liquid [171]. The favorable scaling with number of internal levels

has to be contrasted with the weak dependence of the compressibility on the atom number per spin

state in a harmonically trapped gas, where kF ∝ N
1/6
σ . All experiments reported in the following

were carried out with spin-balanced 10-component samples. By focusing on this maximum N-limit,

we achieve the most pronounced interaction effects and can perform the most sensitive experiment-

theory comparisons.

Experimentally, we access the compressibility of the gas by measuring its local density fluc-

tuations. Fluctuations, either thermal or quantum, are the drivers of phase transitions, and are
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Figure 4.7: Density fluctuations after 11.5 ms time-of-flight for a degenerate cloud with N = 10
nuclear spin states (red circles). The data is fit using an SU(N) interacting model to extract
T/TF = 0.16 (red solid line), with shading representing a 2σ uncertainty of ±0.02T/TF . Fit-
ting the data instead to a non-interacting ideal Fermi gas gives T/TF = 0.13 (blue dashed line),
showing an interaction-induced suppression of ∼20%. The difference between the interacting and
non-interacting fits is much less than the scatter in the data, highlighting the indistinguishability
between interacting and non-interacting systems by measuring density fluctuations alone at the
given signal-to-noise ratio. The total density fluctuations are 25% of that of the thermal gas. A
thermal cloud (purple triangles) reproduces Poisson statistics with ∆Ñ2/Ñ = 1 (purple dot-dashed
line). Each data point is obtained by looking at the atom number variation and mean in a subregion
of the cloud for a series of images.

sensitive to the underlying phase of matter, its quasi-particles and interactions. The fluctuation-

dissipation theorem states that the thermally driven fluctuations of a thermodynamic variable are

fundamentally related to the conjugate external force through the susceptibility [84]. Considering

a small subvolume of the gas cloud containing on average Ñ atoms, the corresponding generalized

force is the local chemical potential µ. The fluctuation response theorem then states that

∂Ñ/∂µ =
1

kBT
(∆Ñ)2 . (4.3)
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Through Maxwell’s relations we can arrive at ∂Ñ/∂µ = κÑ2/V [85]. The relative number fluctu-

ations η = ∆Ñ2/Ñ are therefore related to the susceptibility ∂Ñ/∂µ via η = nkBTκ, where kB is

the Boltzmann constant. The compressibility elucidates the underlying statistics of the gas. The

equation of state of a classical ideal gas dictates η = 1, reflecting the Poisson statistics of a thermal

sample. A Fermi gas on the other hand is incompressible due to Fermi pressure. As a result, one

expects a reduced compressibility compared to a thermal sample; for a deeply degenerate ideal

Fermi gas, η = 3/2 T/TF . These sub-Poissonian fluctuations reflect the degeneracy pressure in the

gas.

4.4.1.1 Virial expansion

To theoretically derive the compressibility under SU(N) interactions at finite temperature, a

virial expansion technique can be used in addition to directly calculating the density distribution

of the gas (see Section 4.4.4) [172, 173, 174]. Here, the grand partition function of a many-body

quantum system is expressed using a series of perturbative functions that depend on the statistics

of the gas. We start with the expression for the chemical potential of a homogeneous Fermi gas at

low temperature and with weak interactions [175]:

µ(n, T, a) = EF

[
1− π2

12
(T/TF )2 +

4

3π
(N − 1)kFa

+
4(11− 2 ln(2))

15π2
(kFa)2(N − 1)

]
+ CT 2a2 ,

(4.4)

where C is a constant independent of n. The compressibility, κ = 1
n2

∂n
∂µ , can then be evaluated

from the dependence of n on the Fermi parameters.

For simplicity we only keep terms up to first order, to obtain for the number fluctuations

∆Ñ2/Ñ = kBTnκ =
3

2

T/TF

1 + 2
π (kFa)(N − 1)

. (4.5)

This suggests that even in the kFa � 1 limit the interaction effects become non-negligible due to

the (N − 1)-fold SU(N) enhancement.
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4.4.1.2 Density fluctuation measurements

Our density fluctuation measurements are performed on expanded gas clouds. After abruptly

turning off the harmonic confinement (νr = 130 Hz, νz = 240 Hz) the quantum degenerate sample

that contains in total 10 × 59000 atoms such that kFa = 0.07 freely expands over 11.5 ms. We

then obtain line-of-sight integrated density profiles via absorption imaging. Following the protocol

described in [86, 87] we run this experiment in a repeated fashion. Each image is broken up into

small subregions, and the images are normalized such that the total atom number is equal for each

image. For each projected subregion of the cloud containing on average Ñ atoms we can measure

the statistical variance ∆Ñ2. Fig. 4.7 shows the results obtained from 400 individual images

together with a calibration line derived from noise measurements on a thermal gas. Pronounced

noise suppression down to about 25% of thermal noise in the center of the sample indicates that

the gas is deeply in the quantum regime.

To quantitatively interpret the noise data beyond first order including both Fermi pressure

and SU(N)-enhanced interactions, we calculate the expected line-of-sight integrated number fluctu-

ations based on a kinetic approach [176, 177], using the collisional Boltzmann-Vlasov equation with

a mean-field interaction term (see Section 4.4.4 for more details). The Boltzmann-Vlasov equation

describes the evolution of the semi-classical phase-space distribution f(r,p) with position r and

momentum p: (
∂t +

p

m
· ∇r −∇r [U(r) + VMF(r)] · ∇p

)
f = Ic(f) . (4.6)

The phase-space distribution evolves due to ballistic motion of particles (second term), the forces

due to the harmonic trapping potential, U = m/2
∑

i(2πνi)
2r2
i , the mean field interactions, VMF =

g(N − 1)n with g = 4π~2a/m, and the collisional integral, Ic(f) [177, 96]. Solving the Boltzmann-

Vlasov equation in equilibrium and for finite temperature allows us to obtain the real space density,

n(r), from which we can compute the compressibility, and thus the number fluctuations in trap and

after time of flight. By fitting this model to the observed fluctuations, we extract a temperature

T/TF = 0.16± 0.01. At these low temperatures, Ic(f) plays no role.
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To illustrate the interaction-induced compressibility change we additionally fit a noninter-

acting model to the noise data, which gives an apparent T/TF = 0.13 ± 0.01, indicating a ∼20%

compressibility reduction due to interactions. More precisely, we find that the compressibility in

the center of the trap is reduced by 18% compared to a non-interacting gas at the same density

and temperature. This percentage is comparable to the ratio of 21% between the interaction en-

ergy in a small volume V at the centre of the cloud, g/2 (N − 1)n2
σV , and the total energy of a

noninteracting Fermi gas at the same density, 3/5EFnσV . Clearly, without prior knowledge of

the interaction parameter, one cannot distinguish between a colder or more repulsively interacting

system. Repulsive interactions mimic Fermi statistics, each acting to reduce the density where it is

highest, in the center of the gas. Having a full thermodynamic description at hand we also perform

global profile fits of the acquired images to numerically calculated density distributions and find

T/TF = 0.17± 0.01. That is, using the self-consistent solution of Equation 4.13 after time of flight

provides us with a density distribution, which we can use to fit the full density profile of the gas with

T/TF as a free parameter. This approach, which we discuss in more detail later in Section 4.4.3

(and as shown in Fig. 4.9), allows measurement of the temperature in the presence of interactions

in a single measurement. This is in contrast to measuring local density fluctuations, which requires

taking hundreds of images to get good statistics. The temperature derived by fitting the full den-

sity profile is in good agreement with the temperature derived from density noise measurements.

We want to emphasize again that even though the two underlying physical mechanisms that lead

to the observed suppression of density fluctuations are fundamentally different, it is impossible to

distinguish these two contributions by performing density noise measurements alone at the given

signal-to-noise ratio.

4.4.2 Expansion dynamics

To unambiguously distinguish between temperature and interaction effects, we study the

expansion dynamics of the cloud after being released from the trap. Interactions provide an ad-
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Figure 4.8: a, b, c, Line-of-sight integrated atomic density for 0.5 ms, 3.5 ms, and 8.5 ms time-
of-flight (ttof ) expansion times. The colorbar’s unit corresponds to the number of atoms per 1.37
µm2. d, Aspect ratio of a cloud of cold atoms with N = 10 nuclear spin states released from an
optical dipole trap for variable expansion times (red circles). After ∼3 ms, the aspect ratio passes
through unity (black dashed line), a clear signature of interactions in the gas. At long times, the
sample approaches an aspect ratio of 1.12 (grey line). The sample has an initial trap asymmetry
of νz/νr = 6.4. In panels d - f, the expected aspect ratio is shown for N = 10 (red dashed line), N
= 7 (purple dotted line), N = 4 (green dash-dotted line), and N = 1 (blue solid line) nuclear spin
states. e, Aspect ratio versus initial trap asymmetry of a degenerate gas for N = 10 (red circles)
and N = 1 (blue squares) spin states after time-of-flight expansion for 15.5 ms. f, Aspect ratio
versus temperature. Data is shown with roughly the same atom number per shot. The data is fit
using an interacting model that includes both a mean-field interaction and an additional collisional
term. Neglecting the collisional term fails to explain the results (gray dashed line). All error bars
represent the s.e.m. and are smaller than the marker size.

ditional release energy during expansion that is mapped to momentum after long time-of-flight.

Interactions preferentially push atoms along the direction of the largest density gradient. As a

result, the initial trap asymmetry is inverted and this conversion produces an anisotropic distribu-

tion after long time-of-flight, see Fig. 4.8a-c. The expansion can be described via scaling solutions

of the time-dependent Boltzmann–Vlasov equation (see Section 4.4.4) [178, 179, 76, 180]. Unlike

in trap, the effect of interactions on the density after expansion cannot be partly captured by a

lower temperature, and result in a non-unity aspect ratio at long times. This is in contrast to a
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non-interacting gas, where expansion occurs ballistically so that at after long time-of-flight, the

cloud reflects the isotropic momentum distribution even if the confining potential is anisotropic.

Fig. 4.8d displays the aspect ratio of a SU(10) atom cloud measured after variable expansion

times ttof out of a harmonic trap with νr = 125 Hz and νz = 800 Hz. The sample contains

50,000 atoms per spin component at T/TF = 0.16. Initially, the atom cloud reproduces the trap’s

asymmetry. As νr,zttof becomes larger than one, the spatial density distribution is more and more

determined by the momentum distribution in the gas. Observing an inversion of the aspect ratio

beyond 1 is an unambiguous signature that interactions have modified the isotropic momentum

distribution during time-of-flight [97].

To further explore this behavior, in Fig. 4.8e we present measurements of the expanded cloud

aspect ratio (ttof = 15.5 ms) as a function of the confinement asymmetry for a 10-component gas

and a spin-polarized gas, both at T/TF = 0.16. In the non-interacting case N = 1 (blue data

points), the aspect ratio is always 1 as expected in the long time-of-flight limit. Finally, in Fig. 4.8f

we show the dependence of the observed cloud aspect ratio on T/TF for a fixed initial confinement

with νr = 130 Hz and νz = 725 Hz at a fixed ttof = 15.5 ms. Atomic interactions add a mean field

term ∝ a and a collision term Ic(f) ∝ a2, see Equations 4.10 and 4.12. The latter, however, is only

relevant in the presence of high collision rates, and, in fact, its pronounced effect is observed when

the gas is relatively hot (Fig. 4.8f). In comparison, at low temperatures the interaction energy and

kinetic energy become comparable, and the collisional rate is suppressed by Fermi statistics.

All measurements are well reproduced by our quantitative model, see Section 4.4.4. Since

our model allows us to extract the density distribution of the gas, we can also easily extract the

aspect ratio. To emphasize the role of N in modifying the dynamics, we also plot in Fig. 4.8d-f the

behavior expected for N = 1, 4, 7, 10 spin states using the validated theoretical model. Because

the aspect ratio measurements, which are extracted through Gaussian fits, are fairly immune to

most imaging artifacts, they can be exploited to perform precise thermometry of the interacting
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Figure 4.9: a,b,c, Line-of-sight integrated atomic density n(x, z) after time-of-flight for a single
shot of the experimental data, non-interacting theory, and interacting theory, respectively. The
colorbar’s units represent the number of atoms per 1.37 µm2. Images are shown with an initial
trap asymmetry of νz/νr = 1.8 and T/TF = 0.17. d,e,f, The anisotropy of the cloud, defined
as n(x, z) − n(z, x), is shown in the second row, where lobes are clearly visible for clouds with
interactions. To improve the signal-to-noise ratio the experimental image is first symmetrized by
reflection along the x and z-axes. g,h,i, If the anisotropy is integrated along one direction, peaks
symmetric to the center of the gas appear for the interacting distribution that are sensitive to
temperature, while the non-interacting signal shows a different signature that displays only weak
temperature dependence. Here, the red lines show the integrated anisotropy of the images in (d-f),
while the blue dashed lines in (h) and (i) show the integrated profile for a 50% higher temperature.

Fermi gas.
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4.4.3 Anisotropic density features

Beyond their directly visible manifestation through cloud ellipticity one can also identify

interaction-modified expansion dynamics in the full density profile of the gas by carefully inspecting

high-signal-to-noise absorption images. Fig. 4.9 illustrates that a presumably round line-of-sight

integrated density profile n(x, z) still contains a systematic interaction signature. After a time-of-

flight time of 11.5 ms, we observe density profiles that at first sight appear circularly symmetric

(first row) for the experimental data (first column), and the noninteracting (second column) and

the interacting (third column) model. Interactions are revealed in the transpose-anisotropy of the

density distribution, defined as n(x, z)−n(z, x), shown in the second row. The transpose anisotropy

removes any common mode features between the two axes. Both the experimental data and the

interacting model exhibit pronounced lobes that are not visible in the non-interacting case. Finally,

a one-dimensional measure of this anisotropy can be defined by integrating over one of the axes

(
∫
dz(n(x, z) − n(z, x))) as shown in the third row. In the integrated transpose-anisotropy we

observe peaks symmetric to the centre of the cloud whose height are sensitive to T/TF for the

experimental data and the interacting model, whereas in the noninteracting case this anisotropy

is significantly reduced, inverted and insensitive to temperature. The small residual anisotropy in

the non-interacting theory reflects the initial asymmetric trap, whose effect on the cloud after long

time-of-flight is minimal. These results reveals the interacting nature of the Fermi gas in a single

absorption image and can serve as a precise temperature probe. In practice, to extract T/TF in

an interacting gas, we minimize the least squares residuals between the integrated anisotropy of an

experimental image and the simulated image with T/TF used as a single free parameter.

4.4.4 SU(N) interacting model

In this section, we detail the theoretical model used to describe the density fluctuation and

anisotropic expansion measurements. Study of a multi-component interacting system with SU(N)

symmetry is a logical extension of studying interacting two-component systems, as detailed in
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Chapter 2. To study the collective behaviour of the quantum gas, we use a kinetic approach

[176, 177]. Interactions can be approximated as two-body s-wave contact interactions. The total

interaction energy is given by

Hint =
g

2

∑
σ,σ′

∫
d3rψ̂†σ(r)ψ̂†σ′(r)ψ̂σ′(r)ψ̂σ(r)

=
gN(N − 1)

2

∫
d3rn2

σ(r) , (4.7)

where g = 4π~2a/m, the sum includes all N spin components, and in the final step we assume

the single component density nσ(r) = ψ̂†σ(r)ψ̂σ(r) is the same for each component. Note that this

equation is drastically simplified compared to a general multi-component interaction Hamiltonian

due to SU(N) symmetry2 .

The total Hamiltonian for a single component is then

Hσ =

∫
d3r ψ̂†σ(r)

(
−∇

2

2m
+ U(r)

)
ψ̂σ(r) +

∫
d3rψ̂†σ(r)

(
g(N − 1)nσ(r)

)
ψ̂σ(r) , (4.8)

where the first term describes the kinetic and potential energy of the fermions, which are confined

by a harmonic trapping potential U = m/2
∑

i(2πνi)
2x2
i . The above equation looks like the Hamil-

tonian for a single species in an external potential with an additional effective potential given by

the mean field energy:

VMF = g(N − 1)nσ(r) , (4.9)

which is (N − 1) more repulsive than a two-component gas (see Chapter 2).

To look at the dynamics, we use the semiclassical transport Boltzmann-Vlasov equation:

(
∂t +

p

m
· ∇r −∇r [g(N − 1)nσ(r) + U(r)] · ∇p

)
f = Ic[f ] . (4.10)

The single component phase-space distribution f evolves due to ballistic motion (second term),

and from forces due to the harmonic trapping potential U(r) and the mean-field interactions with

strength VMF = g(N − 1)nσ(r). Finally, collisions during expansion are described by the integral

Ic[f ] [177].

2 For a theoretical description of a multi-component Fermi gas without SU(N) symmetry, see Ref. [181].
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Collisions can be approximated using the relaxation time approximation as [96]

Ic[f ] = −f − fle
τ

, (4.11)

where f approaches the local equilibrium state fle over a characteristic relaxation time τ . We can

follow [94, 182] and approximate the relaxation time as

(2πντ)−1 = (N − 1)
4

5 31/3π

(
Ñ1/3 a

aho

)2

FQ(T/TF ) , (4.12)

where FQ(T/TF ) is a universal function given by an integral [94]. At low temperatures, collisions

are Pauli blocked and thus FQ vanishes as (T/TF )2, a signature of Fermi statistics. FQ is of order

1 in the intermediate temperature regime, and vanishes as (T/TF )−1 at higher temperatures. It is

thus only in the intermediate temperature region where collisions play a significant role.

To obtain the phase space density in-trap, we solve the Boltzmann-Vlasov equation in equi-

librium (i.e. with Ic[f ] = 0 and ∂f/∂t = 0). This gives us

f(r,p) =
1

e
β
(
p2

2m
+U(r)+g(N−1)nσ(r)−µ

)
+ 1

. (4.13)

However, since this equation depends on the single component density nσ(r) =
∫ d3p

(2π~)3
f(r,p), it

has to be solved self-consistently to get a closed-form solution. This is achieved iteratively. First,

we ignore the interaction term which gives us f0. Since for a given atom cloud, µ is unknown, µ0 is

then determined from
∫ d3rd3p

(2π~)3
f0(r,p) = Nσ where Nσ is the number of atoms per spin species. The

atom number can be measured through standard absorption imaging. For iteration number i, ni

can then be computed from fi−1 to update VMF,i. This defines f(µi, VMF,i), where at each step µi is

determined through normalization to the atom number. We then set fi = αf(µi, VMF,i)+(1−α)fi−1

with α = 0.9. Iterating this procedure leads to convergence in 5-10 iterations for the parameters

we consider. From Equation 4.13 we can then calculate, given the mean-field interaction, the full

density profile n(r) = Nnσ(r) and the corresponding T/TF of the gas. However, due to higher

order dipolar interactions caused by the absorption imaging probe beam, the density profile cannot

be accurately fitted in-trap. As a result, we expand the gas before measurement.
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4.4.4.1 Time of flight expansion

To study the dynamics, we make a scaling ansatz for the distribution function [183, 96, 93,

184, 180]. Our ansatz is

f(r,p, t) =
1∏

j(λjθ
1/2
j )

f0

(
ri
λi
,

1

θ
1/2
i

(pi −mλ̇/λiri)

)
. (4.14)

The parameters λi and θi are scaling parameters along the ith direction that vary in time. Following

[96], we take the moments of ripi and p2
i to obtain a closed set of differential equations for the scaling

parameters λi, θi:

λ̈i + (2πνi)
2λi − (2πνi)

2 θi
λi

+ (2πνi)
2ξi

(
θi
λi
− 1

λi
∏
j λj

)
= 0 , (4.15)

and

θ̇i + 2
λ̇i
λi
θi = −

(
θi − θ̄

)
/τ , (4.16)

where ξi = g/2(N−1)〈nσ〉
g/2(N−1)〈nσ〉+〈p2i 〉/m

accounts for the mean-field interaction with 〈· · · 〉 being phase-space

averages with respect to the equilibrium distribution and θ̄ = 1/3
∑

i θi.

To study the expansion after switching off the trap, the second term in Equation 4.15 is set to

0. The differential equations are then solved for the scaling parameters, which when plugged into the

scaling ansatz yield the phase-space distribution after time-of-flight. With the phase distribution

distribution, we can then calculate the full density profile of the gas. The compressibility can be

computed directly from the density profiles. In a harmonic trap the chemical potential varies as

µ(r) = µ − U(r). Thus, to calculate the compressibility, the derivative with respect to µ can be

replaced by a derivative with respect to one of the spatial directions, giving ∂n
∂µ = −1

m(2πνi)2ri
∂n
∂ri

.

4.5 Concluding remarks

We have demonstrated that SU(N) symmetry substantially enhances interaction dynamics

in a quantum degenerate Fermi gas. The many-body problem for the dilute repulsively interacting

Fermi gas can be solved exactly, and we have shown with high precision how the additional spin
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degree of freedom systematically modifies thermodynamic properties in the bulk gas. This opens

the path for future quantum simulators to systematically explore SU(N)-symmetric Fermi systems

in periodic potentials.

The enhanced SU(N) interactions allow us to reach ultralow temperatures in record speed.

Rapidly creating a spin-polarized degenerate sample is an important milestone for the realization of

a band-insulator atomic clock [55]. With a total preparation time under 3 s, Dick effect contributions

are in the mid-10−17/
√
τ , and are thus on-par with the most stable intercomparisons to date [3].

This work sets the stage to prepare a low-entropy 3D band insulator with a spin-polarized Fermi

gas. Ongoing work is expected to push the lattice clock coherence time to 10s of seconds.



Chapter 5

Pauli blocking of atom-light scattering

The research described in this chapter has been reported in the following publication:

Christian Sanner*, Lindsay Sonderhouse*, Ross B. Hutson, Lingfeng Yan, William R. Milner, and

Jun Ye, “Pauli blocking of atom-light scattering,” Preprint at https://arxiv.org/abs/2103.02216

(2021). * (these authors contributed equally) [185].

Radiative relaxation of an excited quantum system is a ubiquitous phenomenon: it makes

fireflies glow, underlies the radiative recombination of electrons and holes in light-emitting diodes,

and can be observed as gamma decay of nuclear isomers. The intimately related phenomenon of

light scattering involves minimally populated excited states that often assume a virtual character

[60, 186]. The blue sky is a direct manifestation of such a second-order excitation-emission process

with air molecules scattering sunlight. What all these light-matter interactions have in common is

that the radiative decay depends on the final density of states for the joint emitter-photon system.

In particular, for the photon channel it has been demonstrated [187, 188, 189] that manipulation of

the density of vacuum modes through the use of an electromagnetic resonator modifies the emission

and scattering of light. This Purcell effect is now widely used in nanostructured devices [190].

More than 30 years ago it was suggested [191] that constraints imposed by quantum statistics

on an atomic medium could also modify spontaneous emission and light scattering. Fermi statistics

requires the total wavefunction of a fermionic system to be antisymmetric, giving rise to the Pauli

exclusion principle that forbids indistinguishable fermions from occupying the same internal and
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external quantum states. Accordingly, if a sufficient number of ground state fermionic atoms occupy

all available external motional states into which an internally excited fermionic atom has to decay,

this decay process will be blocked. The prospect to manipulate light scattering properties and to

quantum engineer the natural lifetime of an excited atomic state by embedding it inside a Fermi

sea has triggered many theoretical studies and proposals [192, 193, 194, 195, 196, 197, 72, 198, 199],

but up to now this fundamental modification of atom-light scattering by Fermi statistics has not

been observed, complicated by atomic properties and competing collective radiative behavior.

Spontaneous emission and light scattering are not synonymous. Even though the usual de-

scriptions [186] of both processes involve the relaxation of an excited state (a populated atomic

energy eigenstate and a virtual intermediate state, respectively), their properties and decay dy-

namics are different. In a noninteracting Fermi gas, however, the unavailability of final momentum

states is the sole cause for single-particle modifications of radiative (re)emission properties and

therefore equally affects all atom-light processes that transfer randomly directed recoil momentum

to the atom [197].

In the following, we report the first direct observation of Pauli suppression of light scattering

using a quantum degenerate Fermi gas of strontium atoms. We confirm that the suppression

becomes stronger as degeneracy is increased and when the Fermi energy approaches the photon

recoil energy. By angularly resolving the photon scattering rate, we measure up to a factor-of-two

reduction in comparison to the natural value determined from a thermal ensemble. This striking

manifestation of Fermi statistics connects for the first time the fundamental radiative property

of atoms to their motional degrees of freedom subject to quantum statistics. The consequences

of Pauli blocking of atomic motion have been demonstrated earlier, including the suppression of

collisions [71], the direct observation of Fermi pressure [68], the onset of Hanbury Brown-Twiss

anticorrelations [79, 80], local antibunching [200, 19, 88], the suppression of chemical reactions

between molecules [201], and the formation of Pauli crystals [81].

In this chapter, we reintroduce the concept of Pauli blocking in section 5.1. In section 5.2

we explain our experimental strategy to observe Pauli blocking using a light scattering experiment
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with a weakly excited Fermi gas. We then detail our experimental results in section 5.3, and finally

conclude in section 5.4.

5.1 Pauli blocking in a large Fermi sea

Fig. 5.1 illustrates the key concept of the experiment and introduces the relevant energy scales

[178]. An ensemble of N harmonically confined identical fermions of mass m forms a quantum

degenerate Fermi sea with close to unity occupation of the oscillator states if the thermal energy

kBT is small compared to the Fermi energy EF = (6N)1/3~ω. The three-dimensional confinement is

characterized by the mean trap frequency ω = (ωxωyωz)
1/3, and kB and ~ denote the Boltzmann and

reduced Planck constants, respectively. The Fermi temperature TF and Fermi wavevector kF are

defined via EF = (~kF )2/(2m) = kBTF . If an atom inside the Fermi sea absorbs a photon carrying

momentum ~kabs, it gains a corresponding recoil energy ER = (~kabs)2/2m. Here, we consider the

case of weak confinement with ~ω << ER and treat Rayleigh scattering as a two-step momentum

transfer process [72, 202]. Upon photon re-emission the atom experiences a randomly directed

second momentum kick ~kemi where |kemi| = |kabs| = kR, resulting in a total momentum transfer

~k = ~kabs + ~kemi. If, however, the corresponding motional state is already occupied by another

atom within the Fermi sea, this decay channel is blocked, and light scattering will be suppressed.

The relative temperature T/TF and the wavevector ratio k/kF , where ~kF = (2mEF )1/2 is the

momentum space radius of the Fermi sea, determine the density of available final momentum states

and hence the degree of blockade. Following Fermi’s golden rule one finds using a local density

approach [195, 72] a relative scattering rate of1

S(k) =

∫
d3p d3qni(p,q) [1− nf (p,q)]∫

d3p d3qni(p,q)
. (5.1)

Here the integrals cover the six-dimensional phase space spanned by three momentum dimen-

sions p and three real space dimensions q. The initial and final state phase space cell occupations

1 This equation simplifies to Equation 2.27 for a harmonically trapped gas.
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Figure 5.1: Light scattering on atoms embedded inside a Fermi sea.
(A) Indistinguishable fermions obey the Pauli exclusion principle. If the thermal energy kBT is
sufficiently low they fill almost all available harmonic oscillator states up to the Fermi energy EF
with near-unity occupation. An excited atom (orange) acquires a recoil energy ER when returning
to its internal ground state (blue). (B) In momentum space, the atoms form a Fermi sea occupying
most states up to the Fermi momentum ~kF . Light scattering with re-emission along α and total
momentum transfer ~k can happen only if the final momentum state is not occupied by another
ground state fermion. A detector covering a solid angle dα registers the emitted photon. (C) Pauli
blocking leads to a characteristic angular distribution of scattered photons in the deeply degenerate
regime (here T/TF = 0.1). For EF ∼ ER (left sphere) scattering is preferentially suppressed in a
small cone around the forward direction, while EF >> ER (right sphere) causes strong suppression
for all scattering angles α. The suppression factor specifies the scattering rate relative to a non-
Pauli-blocked sample.
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are given by ni = nFD(p,q) and nf = nFD(p + ~k,q), where nFD is the Fermi-Dirac distribution

for a harmonically trapped gas, that is

nFD(p,q) =
1

1 + ξ−1exp[
(
Σi p2

i /(2m) + Σimω2
i q

2
i /2
)
/kBT ]

. (5.2)

The index i runs over all three dimensions and ξ is the fugacity related to T/TF through

1/Li3(−ξ) = −6(T/TF )3, where Li3 is the trilogarithm function. The expression for S(k) counts

all available final momentum states for a given momentum transfer ~k and averages over all initial

states within the Fermi sea.

5.2 Light scattering experimental strategy

The above analysis suggests two pathways to observe pronounced Pauli suppression of light

scattering. One can either prepare a Fermi gas with EF >> ER so that a significant decay blockade

is obtained for all emission directions, that is, for any momentum transfer up to the maximum

2~kR (homogeneously colored right sphere in Fig. 5.1 C). Or one can relax this requirement and

selectively observe only scattering events with a small momentum transfer so that EF ∼ ER is

sufficient. The second approach, which we take here (gradient-colored left sphere in Fig. 5.1 C), is

straightforwardly realized in a small-angle light scattering configuration where a small number of

atoms within the Fermi sea are optically excited and a subset of the scattered photons is collected

under a shallow angle α with respect to the excitation beam corresponding to a momentum transfer

of ~k = 2~kR sin(α/2).

A multitude of effects besides quantum statistics can influence radiation dynamics in a dense

ensemble of emitters. Coherence, either externally imprinted or spontaneously established, can

lead to super- and subradiant collective states that correspondingly exhibit super- and subnatural

radiative lifetimes. Dicke superradiance [203, 204], radiation trapping [205], multiple scattering

[206], and other forms of coherent or incoherent collective scattering [207] all critically depend

on the integrated optical density OD =
∫
σndl of the atomic gas. This attenuation parameter,

derived from the single-atom scattering cross section σ and density n, where l is measured along
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the direction of the incoming light, defines a parameter region where the gas is optically thin

(OD << 1) and single-particle scattering dominates over collective effects. Given that on resonance,

σ is on the order of the squared optical wavelength λ2 = (2π/kR)2, and kF is tied to the 3D

peak density via n = k3
F /6π

2, it is not possible to satisfy the Pauli blocking criterion kF ∼ kR

without violating the small OD requirement. Indeed, typical optical densities encountered in atomic

Fermi gas experiments easily exceed 100. In this optically thick regime multiple photon scattering

strongly affects the light propagation inside the sample, as evidenced with the resonant fluorescence

image displayed in Fig. 5.2 B. Using off-resonant light reduces the effective scattering cross section

and renders the atom cloud weakly absorbing for the incoming probe light at sufficient detuning.

This, combined with differential observation strategies and avoiding light detection in the forward

direction, minimizes the influence of collective scattering dynamics. Furthermore, unlike Pauli

blocking, these competing effects are not dependent on quantum statistics and can therefore be

observed using a thermal gas [26], instead of a quantum degenerate gas, to provide a baseline.

Our experiment starts with the preparation of a 87Sr Fermi gas as described in reference [54].

The 1S0, F = 9/2 ground state is split into ten magnetic spin states mF = −9/2, ..., 9/2. Here F is

the total angular momentum of the nuclear spin. This fully thermalized 10 component sample [51]

contains 18 000 atoms per spin state confined in a crossed optical dipole trap with maximum radial

trap frequencies of ωx = ωy = 2π × 120 Hz and an axial confinement with ωz = 2π × 506 Hz. This

leads to a Fermi energy of EF = 440 nK for each of the ten Fermi seas and we reach temperatures

down to 0.1TF . The small inter-component s-wave scattering length a = 97a0, where a0 is the Bohr

radius, makes the Fermi gas weakly interacting with kFa = 0.06, which is scaled by the number of

spin states, increasing the total energy of the gas by less than 7%. These weak repulsive interactions

in principle affect S(k), but their differential effect is negligible [51] at the measurement precision

achieved in this study. Under suitable conditions, any optical excitation returning to the ground

state should experience a decay blockade. We perform specific measurements on the 1S0 − 1P1
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Figure 5.2: Experimental Setup.
(A) Off-resonant probe light excites 87Sr atoms inside a Fermi sea. Spontaneously re-emitted
photons are collected simultaneously along two imaging axes under angles of 24◦ and 72◦, with
their numerical apertures (NA) shown respectively. Small scattering angles correspond to a small
momentum transfer with k/kF < 1, whereas the transversal observation detects photons from
scattering events with k/kF > 1. The circularly polarized probe beam has an intensity of 5Isat
where the resonant saturation intensity is Isat = 41 mW/cm2. (B) On resonance the atomic cloud
is optically thick for the probe beam and the image formed on Camera 1 displays a hole in the
cloud center due to multiple scattering. At a detuning of ∆ = 40Γ the atom cloud is optically thin
and the corresponding image resembles the atomic density distribution. The detuned frequency is
used in the Pauli blocking experiment. A magnetic bias field of 3 Gauss applied in the horizontal
plane along the y-direction defines the atomic quantization axis.



133

transition at 461 nm with a natural linewidth of Γ = 2π × 30.4 MHz [208] and a recoil energy of

ER = 520 nK. Employing a continuous weak-drive Rayleigh scattering scheme, the Fermi gas is

exposed for 1 µs to a 1.2 GHz detuned drive beam that causes on average < 10% of the atoms to

undergo an excitation cycle. No evidence for inelastic scattering is observed.

For the given drive beam and atom cloud parameters the sample is optically thin with an

effective OD of 0.02, corresponding to a forward transmission of 98%. As illustrated in Fig. 5.2, two

detectors collect scattered photons simultaneously under off-axis angles of α1 = 24◦ and α2 = 72◦.

These operational parameters are chosen to simplify the interpretation of our measurements. First,

as discussed above, the detuning from resonance by 40Γ eliminates multiple scattering dynamics and

furthermore avoids refractive lensing contributions [121] far off-axis. Second, the low excitation rate

keeps the Fermi sea intact throughout the probe pulse exposure. Third, operating in the weak-drive

limit ensures that there is no inelastic scattering contribution beyond the recoil-induced energy shift,

i.e., Mollow triple-peaked fluorescence spectra and other strong-drive effects are negligible [186].

5.3 Experimental results

To systematically explore how quantum degeneracy affects light scattering, we start with a

deeply degenerate gas of T/TF = 0.1 and gradually heat it up to T/TF = 0.7 through parametric

confinement modulation while keeping the atom number and Fermi energy constant. Under these

conditions photons scattered off of the weak probe pulse are counted. To satisfy the requirement

to minimally disturb the Fermi gas by the probe, the number of collected photons along the two

detection axes is correspondingly low. Even for the axis with a high NA = 0.23 objective lens fewer

than 200 photons are collected at full quantum efficiency. By operating the gated CCD detectors in

a hardware binning mode that maps all detected photons into a 3x3 superpixel array, we spatially

and temporally isolate the signal from background contributions and maintain low readout noise.

The measured photon counts are compatible with ab-initio estimates within 30% based on the

reported drive parameters and detection efficiencies. All relevant thermodynamic parameters are

independently assessed through measurements on expanded gas clouds after time of flight.
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5.3.1 Temperature and Fermi energy dependence

The results of Pauli-suppressed scattering are shown in Fig. 5.3A. Under the shallow off-

axis angle of 24◦, where k/kF = 0.45 for our Fermi sea, we find a strong dependence of the

photon counts on T/TF . To properly normalize the detector signal, i.e., to convert the registered

photon counts to a suppression ratio without introducing an arbitrary scaling factor, it is necessary

to prepare an equivalent reference sample that is not Pauli-blocked. Because the weak optical

confinement does not maintain a constant atom number for T/TF > 1, we devise an alternative

method to eliminate Pauli blocking: At 10 µs before applying the actual probe pulse we expose

the Fermi gas to a 5 µs long pre-pulse that destroys the Fermi sea by randomly exciting atoms to

momentum states beyond kF . Consequently, light scattering is no longer Pauli suppressed during

the subsequent probe pulse. All blue round data points in Fig. 5.3A/B are normalized to a common

reference photon count obtained from a single pre-pulse exposed sample (see below). Numerically

integrating the expression for S(k) at all probed temperatures reveals good agreement between

experiment and theory. The simultaneously acquired measurements at an observation angle of

72◦ do not show a pronounced suppression and only exhibit a weak temperature dependence, as

expected for k/kF = 1.27 since most final momentum states lie outside of the Fermi sea.

To further verify that Pauli blocking is the mechanism responsible for the observed scattering

behavior, we study the dependence on kF /kR by varying the confinement while keeping atom

number and T/TF = 0.13 constant, as displayed in Fig. 5.3B. Even at the shallowest confinement

with kF /kR = 0.57 (EF /ER = 0.32), the momentum transfer along the 24◦ axis amounts to only

k/kF = 0.74 so that we still observe substantial suppression of light scattering. This is in contrast

to the 72◦ case, where k/kF = 2.07 at kF /kR = 0.57. If k/kF > 2 Pauli blocking is negligible at

any temperature so that we normalize all photon counts acquired under 72◦ (red data points in

Fig. 5.3A/B) with respect to this reference point (solid red circle in Fig. 5.3B).



135

BA

kF / kR =  0.93 ± 0.02 T / TF =  0.13 ± 0.01

0.1 0.3 0.5 0.7

0.5

1.0

1.5

2.0

T / TF

k 
/ k

F

Su
pp

re
ss

io
n

1.0

0.8

0.6

0.4

C
kF / kRT / TF

1.0

0.9

0.8

0.7

0.6

0.5

1.0

0.9

0.8

0.7

0.6

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.7 0.8 0.9 1.0

Su
pp

re
ss

io
n

Figure 5.3: Suppression of light scattering in a 87Sr Fermi gas over a range of temper-
atures and Fermi momentums.
All measurements are performed with a 10-component Fermi gas containing 18 000 atoms per spin
state. The scattering behavior is distinctly different for the two observation angles of 24◦ (blue
circles and squares) and 72◦ (red circles). Raw photon counts are normalized with respect to mea-
surements on non-Pauli-blocked reference samples (see main text). Each circle data point is derived
from 150 iterations of the experiment, while each square point results from 50 experimental runs.
Solid theory curves are calculated with no free parameters. The widths of the theory lines reflect
the experimental uncertainties of Fermi energy and temperature. The error bars are purely statis-
tical and indicate one-standard-deviation confidence intervals. (A) At a constant Fermi wavevector
of kF /kR = 0.93 (EF /ER = 0.86), the atom ensemble’s scattering cross section decreases as the
gas approaches deep quantum degeneracy. The suppression observed under 24◦ is pronounced and
reaches 50% at T/TF = 0.13. In contrast, under 72◦, the suppression is negligible. (B) At constant
T/TF = 0.13, kF is varied by adiabatically changing the confinement. A larger kF results in a
stronger suppression. (C) The data reported in A and B are measured along 4 trajectories (dotted
lines) through the parameter space spanned by k/kF and T/TF . Depending on the scattering angle
k varies between 0 and 2kR. Light collected under an off-axis angle of 24◦ corresponds to a momen-
tum transfer ~k < ~kF for the given Fermi gas, leading to substantial reduction of the density of
available final states. On the contrary, for the 72◦ collection angle, the corresponding momentum
transfer ~k > ~kF . Thus most final states are not blocked and scattering is not suppressed.
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5.3.2 Pre-pulse application

The additional blue square data points displayed in Fig. 5.3 were normalized by applying

a pre-pulse separately for each data point and are in good agreement with the common-mode

normalized measurements. In particular, with a 10 µs wait time before the probe pulse, the atomic

density remains essentially the same with or without the pre-pulse. This ensures common-mode

cancelation of collective scattering dynamics. Below we present light scattering measurements with

variable pre-pulse durations for a deeply degenerate (T/TF = 0.11) and heated (T/TF = 0.58)

Fermi gas. This data confirms the scattering-induced destruction of the Fermi sea over the course

of the pre-pulse application.

The suppression factors reported in Fig. 5.3 as red and blue circles were obtained by normal-

izing the measured photon counts against a common reference count value. Residual total atom

number and probe pulse intensity fluctuations were below 10% over the course of the data acqui-

sition. For the 72◦ detection axis (red circles) the measurement at kF /kR = 0.57 (red solid circle),

which is outside the Pauli-blocking regime with S > 0.99, directly provided the reference count.

The photon counts detected along the 24◦ axis were normalized against a reference count measured

by exposing the Fermi gas to a 1.2 GHz detuned pre-pulse to create holes in the Fermi sea before

applying the actual probe pulse. Precise detection gating with an interline transfer CCD (Camera

1) and a short dark time of 10 µs between the two pulses avoided contamination of the probe signal

with pre-pulse fluorescence while keeping the atomic density distribution unaffected. The pre-pulse

intensity was calibrated such that each atom scattered on average more than one photon during a

5 µs long pulse. To directly verify that this exposure destroyed the Fermi sea and eliminated the

Pauli blockade, we systematically varied the pre-pulse duration and observed for two samples at

T/TF = 0.11 and T/TF = 0.58 how the probe signal saturated at the non-blocking reference level

for longer pre-pulses (Fig. S1). A pre-pulse duration of 5 µs was chosen to obtain the reference

count along the 24◦ detection axis.
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Figure 5.4: Photon scattering from a Fermi gas after exposure to a pre-pulse of variable
duration.
For the chosen pre-pulse detuning and intensity, the Pauli blockade is destroyed after exposure
for a few µs. The scattering signal from the deeply degenerate sample (green squares) increases
by almost a factor of 2 while the barely degenerate sample (purple squares) shows only minimal
increase, as expected for a Fermi sea with kF /kR = 0.93 under an observation angle of 24◦. Data
in the plot is normalized relative to the mean counts detected for 4 and 5 µs pre-pulse durations.

5.3.3 Spatially resolved scattering rate

Spatially resolving the origin of the scattered photons within the Fermi gas, in addition to

counting the total number of scattered photons along a given direction, provides a picturesque

revelation of the Pauli blocking mechanism. For this purpose, we modify the 24◦ high-NA axis

to deliver magnified images of the atom cloud and employ a non-binning CMOS camera with a
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low readout noise of 2 photoelectrons. The cylindrically symmetric atomic cloud at T/TF = 0.12

with a diameter of about 20 µm is projected along the z-axis into a 2D image with 0.9 µm wide

pixels. Because a single pixel collects on average less than 1 photon, it is necessary to average

hundreds of frames in order to derive a finely resolved scattering profile. Furthermore, we radially

average the mean image to obtain the radial profile (blue data points) shown in Fig. 4. Residual

optomechanical drifts in the optical setup cause small displacements of the center of mass position

of the cloud during the frame averaging period. This, together with the finite resolution of the

imaging system, leads to an effective 1/e2 pixel blurring on the order of 3 µm. To compare the

observed scattering profile to theory predictions without introducing a free scaling parameter, we

independently acquire in-situ density profiles of the Fermi gas through the same imaging setup via

high intensity fluorescent imaging [122]2 . Using the frame-wide summed total photon counts and

the measured global suppression ratio at T/TF = 0.12 (Fig. 5.3A), we then properly scale the radial

density profile to reflect the scattering profile expected without Pauli blockade for the weak probe

beam (purple curve). Momentum space integration plus one-dimensional line-of-sight integration of

S(k) yields a radially resolved suppression ratio for us to determine the expected scattering profile

with Pauli blockade (blue curve). Except at the center of the cloud, where radial averaging does

not significantly improve the signal-to-noise ratio, we find good agreement between calculated and

measured profiles. Towards the outer rim of the cloud the local Fermi energy drops so that light

scattering is not suppressed anymore; the local suppression ratio will approach the thermal gas

limit of 1. This happens, as seen with the blue theory curve, only in the outermost region where

the density is so low that the signal-to-noise level is insufficient to reliably determine a suppression

ratio.

2 Also see Chapter 3. A separate manuscript is in preparation to further describe our high intensity fluorescence
imaging method.
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Figure 5.5: Spatially resolved light scattering from a trapped Fermi gas at T/TF = 0.12.
Radially averaging the spatially resolved mean signal (inset) from 1100 individual images obtained
along the z-axis yields a radial light scattering profile (blue data points). In-situ column density
images, separately obtained using a high intensity fluorescent imaging technique, are used to predict
the scattering signal for a non-degenerate gas (purple curve). The spatial profile of light scattering
calculated for the T/TF = 0.12 ensemble (blue curve) agrees well with the measured data.

5.4 Conclusion

In conclusion, we have reported a clear demonstration that Fermi statistics leads to strongly

modified light scattering in a quantum degenerate system. The presence of a Fermi sea alters

the final atomic motional mode spectrum and enables a direct observation of Pauli blockade of

light scattering. Interpreted from a many-body system perspective, this experiment probes the

structure factor [73] of a quantum degenerate Fermi gas. Defined as the Fourier transform of the

spatial density-density correlation, the static structure factor S(k) characterizes the linear response

of a system to a perturbation with wavevector k. Accordingly, the suppression of light scattering
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and the suppression of density fluctuations [86] in a Fermi gas are two interrelated manifestations

of the same fundamental many-body physics.

It will be exciting to go beyond the regime of Rayleigh scattering and directly measure a

prolonged excited state lifetime using properly prepared quantum states. The capability to alter

a fundamental decoherence mechanism will open new avenues for quantum engineered atom-light

interfaces. In particular, custom designed Fermi reservoirs can protect optical qubits at local nodes

while facilitating cavity-free directional photon emission for efficient network connectivity. In the

context of optical atomic clocks this work could enable spectroscopic interrogation times exceeding

the natural lifetime of the excited clock state and investigation of novel radiative properties of

atoms.



Chapter 6

Attempts to measure Pauli blocking of the natural lifetime using coherent

control on a narrow-linewidth transition

Quantum information science strives to use well-controlled, artificial quantum systems to

advance scientific understanding and foster the growth of new technology. Pauli blocking is a

quantum tool that lies at the heart of this idea. A large Fermi gas made out of ultracold atoms is

built using a tabletop experiment to quantum engineer an atomic transition with a lifetime longer

than what nature would provide alone. Spontaneous emission causes information to escape into the

environment and can thus destroy optical qubit states and ultimately limit spectroscopic resolution.

As a result, this tool could have tremendous applications in quantum technologies such as precision

metrology and quantum information processing.

The first observations of Pauli blocking of light scattering, which has now been measured in

multiple experiments [185, 209], demonstrated the ability to realize this long-sought theoretical idea

and established a scientific understanding of the fundamental and competing radiative mechanisms.

This was a crucial first step towards implementing Pauli blockade as a practical tool, but the steady-

state scattering regime these experiments were performed in is not suitable for modern atomic clocks

and quantum information platforms, which require arbitrary coherent control of the atomic state.

In this chapter, we detail experiments that attempt to observe Pauli blocking of the natural

lifetime of an atomic state after atoms in a Fermi gas are coherently driven to the excited state.

We directly detect the lifetime of the atomic state by time-resolving the number of excited atoms,

as opposed to angularly detecting the scattered photons as was done in Chapter 5 [185], and
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in Refs. [209, 210]. Measurements are performed on the 7.4 kHz linewidth 3P1 transition in a

multi-spin component Fermi gas of 87Sr atoms. In Section 6.1, we discuss our technique to create

pronounced suppression using imbalanced Fermi gases. We then outline our experimental setup

in Section 6.2. In Section 6.3 we detail a systematic study of the competing radiative effects

present in this coherent-drive scheme by measuring the lifetime of a thermal gas of atoms. We

then present lifetime measurements at degenerate temperatures. Although we measure an angle-

averaged lifetime that is up to 20% longer than the natural lifetime at ultralow temperatures, as

shown in Section 6.4, we will show that we could not fully rule out other systematic effects that

come with coherently driving a system with a high optical depth (OD). An intriguing alternative is

to use systems with different geometries. In Section 6.5 we detail initial measurements performed

in two-dimensional systems formed in a 1D optical lattice, where collective radiative properties are

designed to be different than in a 3D gas. In fact, here the experimental results are consistent with

theory predictions based on Pauli blocking. However, we cannot fully support Pauli blocking with

experimental results alone just yet. Finally, in Section 6.6 we present an outlook.

6.1 Pauli blocking with imbalanced Fermi gases

The key concept of Pauli suppression is illustrated in Fig. 6.1 (a), which shows the Fermi

sphere in momentum space. A photon with initial momentum ~kabs and final momentum ~kemi

transfers momentum ~k = 2~kR sin(α/2) to an atom, where kR = |kabs| = |kemi| and α is the

angle between kabs and kemi. For a zero-temperature gas with a Fermi energy much larger than

the recoil energy, atoms in the center of the Fermi sea cannot decay since all available final states

are occupied. Decay can only occur if an atom is within ~|k| of the Fermi surface. At finite

temperature, the number of holes in the Fermi sea increases, and thus also does the number of

unoccupied states that an atom can decay to. As the density of holes is greater near the surface,

atoms within roughly ~|k|+
√

2mkb T can decay.
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Figure 6.1: (a) Pauli blocking is maximized for atoms in the center of the Fermi sea. Atoms get a
directional momentum kick ~kabs from the absorbed light, and a diffusive momentum kick ~kemi
from the emitted light, giving a net momentum kick ~k in the center of the Fermi sea. An atom in
the center has the maximal suppression since it is least likely to find an unoccupied final state. (b)
Exciting atoms in the center of the Fermi sea can be approximated using a three-level scheme with
imbalanced Fermi gases. Two ground states with an imbalanced atom number are created and the
minor Fermi gas is excited so that it predominantly decays into the major Fermi gas. Under the
optimal conditions this decay channel is blocked.
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For maximal suppression, it is thus desirable to only excite atoms in the center of the Fermi

sea. As suggested in Ref. [72], this could be achieved with an excitation laser that is focused

much more tightly than the atomic cloud. Alternatively, one can create scattering between two

imbalanced Fermi gases, where the atom number in one gas is much less than in the other, as

shown in Fig. 6.1 (b). The two Fermi gases can be created for example by having two different

spin states with unequal population that co-exist in the same optical trap. Their corresponding

optical transitions are connected by the relevant Clebsch-Gordan coefficients. The minor Fermi

sea, which only samples the smallest energies of the major sea, can then be excited and made to

predominantly decay to the major Fermi sea. Compared with the tight probe beam technique, this

has the further advantage that the ground state Fermi sea is not perturbed during the excitation.

In this three-level scheme where the minor Fermi sea with fugacity ξi is excited and only decays to

the major sea with fugacity ξf , the scattering rate relative to a non-Pauli blocked sample is (see

Equation 2.27)

S(k(α)) =
SFM (k)

SMB
= 1− 8

πE3
Fiβ

3

∫
da a3/2

∫
dpz

1

1 + ξ−1
i ea+p2z

1

1 + ξ−1
f ea+(pz+kscal)2

, (6.1)

where kscal = 2
√
βEFi kR sin(α/2)/kFi.

If the atomic population is detected, the total decay rate as opposed to the angle-dependent

decay rate is measured. In contrast to the Purcell effect, where the solid angle of the cavity is

too small to measurably change the atom’s total decay rate, for large Fermi energies and low

temperatures, Pauli blocking has the capability of changing the total decoherence rate of the atom

(see the right sphere in Fig 5.1 (c) ). The total relative decay rate M is given by integrating over

all emission angles

M =

∫
S(k(θ))P (θ)dΩ = 2π

∫ π

0
S(k(θ))P (θ) sin θdθ (6.2)

where θ is the angle between the quantization axis and kemi, and P (θ) is the dipole emission pattern.

For linear polarization P (θ) = 3/8π sin2 θ, and for circular polarization P (θ) = 3/16π (1 + cos2 θ).

Note that with these definitions, θ is not necessarily the same angle as α. The direction of the
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quantization axis can change the amount of suppression you get. If the maximum of the dipole

emission pattern happens to coincide with the smallest k-vectors, more suppression will be achieved.

Extending this to a three-level system where decay from the excited state can either occur to the

major Fermi sea with blockade M or back to the initial state (which is unblocked), the total

suppression has to be weighted by the Clebsch-Gordan coefficients of the two possible decay paths,

that is the suppression

Mtot = | 〈Fgmin ,mgmin ; 1, q|Fgmin , 1;Fe,me〉 |2 +Mmaj ∗ |
〈
Fgmaj ,mgmaj ; 1, q|Fgmaj , 1;Fe,me

〉
|2 .

(6.3)

6.2 Experimental setup

The preparation of our Fermi gas is described in Chapter 3. 87Sr atoms in all 10 nuclear

spin states are evaporated to temperatures as low as T/TF = 0.1 with radial confinement as high

as ωr = 2π × 100 Hz and a maximum axial confinement of ωz = 2π × 700 Hz. Imbalanced Fermi

gases are achieved by using atoms in two different nuclear spin states, mF = 9/2 and mF = 7/2, of

the 1S0 ground state, as shown in Fig. 6.2. The number of atoms with spin mF = 9/2 is a factor

of 10 smaller than the number of atoms in mF = 7/2, which is achieved using optical pumping to

remove most of the atoms in the mF = 9/2 state. At T/TF = 0.1, the final atom numbers give a

maximum Fermi energy of 450 nK for the major component.

In order to directly measure the spontaneous emission lifetime of the excited state, we then

coherently excite the mF = 9/2 atoms on the Γ = 2π×7.4 kHz linewidth 3P1 transition at 689 nm,

where the 21.8 µs natural lifetime can be easily time-resolved. This leads to a recoil energy of 230

nK. An applied magnetic bias field of 1 G splits the excited state’s sublevels so that the atoms can

be coherently excited to the F = 11/2, mF = 9/2 state using a 5 µs π pulse with π-polarized light.

Due to the Clebsch-Gordan coefficients, without Pauli blocking, the excited atoms would decay to

the mF = 7/2 ground state with an 82% probability. However, the large ground state Fermi sea
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Figure 6.2: 3P1 level scheme. Imbalanced Fermi gases with a 10:1 atom number ratio are created
using two nuclear spin states of the ground 1S0 state. Atoms in mF = 9/2 are then excited to the
3P1, F = 11/2, mF = 9/2 excited state using a π pulse with π polarized light. The excited atoms
are Pauli blocked from decaying to the mF = 7/2 ground state. The numbers in boxes refer to the
Clebsch-Gordan coefficients squared.

largely blocks that decay channel for the minor excited Fermi gas.

The F = 11/2 state is used since it is the most magnetically sensitive 3P1 hyperfine state,

which reduces the probability of off-resonant excitation. The combined effects of off-resonant exci-

tation and polarization impurity are measured by varying the Rabi detuning of the probe, as shown

in Fig. 6.3. At -0.5 MHz, the probe is on-resonance with the mF = 9/2 to mF = 11/2 transition.

These measurements give us an upper bound of the two effects of 2%. Given the 10:1 atom number

ratio, this implies a worst-case scenario where we excite 5 times more 9/2 atoms than 7/2 atoms.

The prediction given in Equation 6.3 is shown in Fig. 6.4 for variable T/TF and EF /ER.

Here it is assumed that the atom number ratio is 10:1 and that the Clebsch-Gordan coefficients

are as shown in Fig. 6.2. Given our incoming light is π-polarized so that kabs is perpendicular to

the quantization axis, α = π/2 + θ. All of the mF = 9/2 population is excited so that no blockade

occurs when atoms decay back to the mF = 9/2 ground state. As a result the optimal suppression

is determined by the Clebsch-Gordan coefficients; in this case the optimum Mtot = 0.18. For the
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Figure 6.3: Rabi scan as the frequency of the excitation laser is changed. Zero corresponds to the
mF = 9/2 to 3P1, F = 11/2, mF = 9/2 transition. Given the magnetic field of 1 G, the mF = 11/2
transition is on resonance at -.5 MHz.

Fermi energies and temperatures in our sample, we can expect a optimum Mtot = 0.4. The benefit

of going to an imbalanced Fermi sea is shown in Fig. 6.5. At T/TF = 0.1 and EF /ER = 2.0, two

equally populated Fermi gases have a total suppression of 0.6, compared to 0.4 for an atom number

imbalance of 10:1.

In this coherent excitation, 3-level scheme, multiple observables exist to measure Pauli sup-

pression. The lifetime of the atomic state can be determined by time-resolving the population of

excited atoms. In addition, if decay of excited atoms to the 7/2 ground state is blocked, more

atoms will decay to the 9/2 ground state. Pauli blocking can thus be thought of as modifying the
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Figure 6.4: Prediction of Pauli blocking suppression for a three-level scheme where the atom number
ratio between the two ground state Fermi gases is 10:1 and the Clebsch-Gordan coefficients for the
decay are 0.82:0.18. Suppression is shown for various temperatures T/TF and Fermi energies
EF/ER, quoted for the majority component.

branching ratio of the excited state. The number of atoms decaying to 9/2 as opposed to 7/2 can

provide a separate confirmation of the blockade process. Finally, the decoherence rate of the atoms

due to spontaneous emission can be measured by looking at the decay of Rabi oscillations. Below

we discuss how we measure each of these observables.

To achieve fast, high SNR measurements, atomic state readout is performed using the 30.4

MHz broad 1P1 transition, where roughly 100 photons can be scattered in 1 µs per atom. Around

1% of the fluoresced photons are subsequently detected using a high resolution imaging axis with

an NA = 0.23. The experimental sequence to measure the lifetime is shown in Fig. 6.6 (a). First,

the mF = 9/2 atoms are excited to the 3P1, F = 11/2, mF = 9/2 state using a π pulse. After a

variable time twait, a 10 µs pulse of high intensity 1P1 light causes significant recoil heating to the
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Figure 6.5: Total suppression for a three-level scheme where the Clebsch-Gordan coefficients for
the decay are 0.82:0.18, and T/TF = 0.1 with variable EF /ER for the major component. Here the
suppression is shown for different atom number imbalances for the major component and minor
component (EF is quoted for the majority component in the legend).

ground state atoms, which are as a result removed from the trap. After a further 1 ms, all excited

atoms have decayed and the ground state atoms are removed from the image. A fluorescence image

is then taken during a 2 µs long 1P1 readout pulse, where light is collected using a vertical camera

axis with an NA = 0.23. Wait times are varied from 1 µs to 200 µs, and 200 measurements are

recorded over 20 different wait times. The wait time is randomized for each run. The lifetime

is then extracted from the time constant, which is determined by fitting the entire data set to a

single exponential. This allows us to time-resolve the decay of atoms out of the excited state. We

originally used an alternative differential measurement technique that allowed us to measure the

excitation fraction every shot so that we were immune to fluctuations in the total atom number.

However, we found that our experiment was stable enough that this differential technique was
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Figure 6.6: (a) Strategy to measure the excited state lifetime and the branching ratio from the
mF = 9/2 excited state. Atoms are excited on the narrow linewidth 3P1 transition using a π pulse
and the excited atoms are read out using the broad 1P1 transition. The upper and lower right
panels describe how we measure the lifetime of excited atoms and the branching ratio of excited
atoms back to mF = 9/2, respectively, and are discussed in the main text. (b) Experimental
setup. Excitation light probes a Fermi gas on-resonance with the 1S0, mF = 9/2 to 3P1, F = 11/2,
mF = 9/2 transition. The ground state population is read out by taking a fluorescence image using
the 1P1 state, where the fluorescence is measured using a high NA imaging system.

unnecessary. To measure the decoherence rate (not shown), the same experimental procedure is

used with twait = 1µs and a variable excitation time.

To measure the number of 9/2 atoms, the lifetime measurement can be repeated with

T-wait = 1 µs, before any atoms have decayed. The branching ratio is then measured by first

exciting all the atoms to 9/2 with a first π pulse, waiting 200 µs for these atoms to decay, and then

measuring the number of atoms that have decayed to 9/2 with another π pulse (see Fig. 6.6 a).

Comparing the total number of atoms that decay to mF = 9/2 before and after the initial excitation

pulse provides a measurement of the branching ratio on the 9/2→ 9/2 transition.
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6.3 Optical depth considerations

We first measured a 28 µs lifetime of the excited state at T/TF = 0.1, 30% longer than the

natural lifetime. We soon discovered however that the longer-than-natural lifetime was insensitive

to the temperature of the sample, indicating that other mechanisms were governing the radiative

behavior. We also observed a faster-than-expected decoherence rate when Rabi flopping between

the mF = 9/2 ground state and excited state. At the high central densities over 1014 atoms/cm3

and on-axis optical depths (ODs) around 10 for each spin component, collective effects such as

super and sub-radiance as well as multiple scattering influence the radiative properties of the

atoms [205, 26]. In Chapter 5, we suppressed rescattering by detuning the drive frequency from

the atomic resonance. This was a steady-state scattering experiment where atoms act like driven

dipoles and light is scattered at the drive frequency. In contrast, here we are coherently driving

atoms to the excited state and then extinguishing the drive. Atoms consequently spontaneously

emit at the natural non-AC Stark shifted resonance frequency, and the probability of reabsorption

is no longer reduced for a detuned drive. We thus sought to systematically study the competing

mechanisms as the OD was changed for the different components, with the hope that we could

find a parameter regime where we weren’t sensitive to collective effects but still had an appreciable

Pauli blocking signal.

Despite the long lifetime measured at thermal temperatures, we found evidence for superradi-

ance in numerous measurements. By gating the camera on axis with the excitation laser within 1 µs

of when the excitation pulse ends, we detected > 10 times more photons than what was expected

through spontaneous emission alone. In addition, we measured a lifetime as short as 8 µs after

exciting 9/2 atoms if the 7/2 component was first removed. With the 7/2 component in place, we

also measured that up to 70% of the atoms returned to the mF = 9/2 ground state for a thermal gas

with T/TF = 2.0 despite a branching ratio of only 18%. By systematically varying the confinement

and atom number of the mF = 9/2 component, we found that fractionally fewer atoms returned

to the 9/2 ground state as the OD decreased, as shown in Fig. 6.7. The OD shown in this plot is
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Figure 6.7: Fraction of atoms that return to the mF = 9/2 ground state after the mF = 9/2 atoms
are excited to the 3P1, F = 11/2, mF = 9/2 state. Measurements are performed with a thermal
sample where T/TF = 2.0.

measured by counting the number of atoms in a central region of the Fermi gas and multiplying

it by the cross-section, that is OD = 3λ2/2π
∫
n(0, 0, z)dz. We measured that the branching ratio

approached a constant value for an OD < 1. The offset from 0.18, as expected from the Clebsch-

Gordan coefficients, can be explained by residual excitation of the 7/2 atoms. Residual excitation

of 7/2 atoms can occur through off-resonant excitation of the π-polarized probe light and due to

polarization impurity, which can cause on-resonant excitation of 7/2 atoms to 9/2.

Once we reduced the mF = 9/2 OD below 1, all measurable superradiant behavior disap-

peared. Coherent Rabi flopping on the 9/2 atoms in a thermal sample reproduced the expected

profile given by the Rabi frequency and the spontaneous decay of the excited state, shown in Fig. 6.8,



153

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Pulse time (us)

E
xc
ita
tio
n
fr
ac
tio
n

Figure 6.8: Rabi flopping on 1S0, mF = 9/2 → 3P1, mF = 9/2 transition, measured on a thermal
Fermi gas. The red line represents a fit using no free parameters and assuming the 21.28 µs natural
lifetime for the excited state.

where the theory line is plotted for a two-level system with no free parameters. This experimental

evidence suggests that superradiance predominantly occurs on the 9/2→ 9/2 transition, given by

the phase imprint from the driving field.

Creating a sample with an OD < 1 for the mF = 9/2 atoms can easily be achieved by using

fewer than 5000 atoms in 9/2 and by making our Fermi gas into a pancake, with tight axial

frequencies of ωz = 2π × 700 Hz and loose radial trap frequencies of ωr = 2π × 30 Hz. The cloud

is then probed along the z-direction for the minimal OD.

Despite the measured branching ratios at low 9/2 ODs that are close to the theory expecta-

tion, we still observed long lifetimes in non-degenerate Fermi samples. While superradiance seemed
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Figure 6.9: Lifetime versus mF = 7/2 OD. Measurements are performed with a thermal sample
where T/TF = 0.75 at a 7/2 OD of 2.7. The 9/2 OD is fixed at 0.7 for all measurements.

to be removed by creating a sample with a 9/2 OD < 1, collective effects can still occur along the

7/2 channel, where the large Fermi sea creates an OD up to 5 at low temperatures. In particular,

we suspect that multiple scattering is a dominant collective mechanism along the 7/2 channel.

The lifetime was systematically measured in a thermal sample for various 7/2 ODs, as shown in

Fig. 6.9. Here, the OD was changed by reducing the number of 7/2 atoms using optically pumping.

We observed that the lifetime approached the natural lifetime as the 7/2 OD was reduced below 1.

Here is where we run into a challenge for observing Pauli blocking of the spontaneous emission

rate on the 3P1 transition without any collective radiative effects that obscure the signal. Reducing

the 9/2 OD removes collective effects on the 9/2 channel and simultaneously improves the Pauli

blocking signal since fewer atoms in 9/2 creates a larger Fermi sea imbalance. In contrast, reducing

the 7/2 OD reduces the major component’s Fermi energy, which in turn degrades the Pauli blocking
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Figure 6.10: Measurements of the excited state lifetime for variable temperatures (here quoted for
the majority component) while the OD is kept relatively constant. The 7/2 OD varies from 2.0
to 1.5 as T/TF is increased. Here the 9/2 OD is 0.7, and T/TF is quoted for the 7/2 component.
Measurements of the lifetime performed for a thermal (T/TF = 0.75) gas at equivalent ODs yield
shorter lifetimes.

suppression.

6.4 Measurements with a cold sample

Given the measured dependence of collective radiative effects on the optical depth, we took

differential measurements where we compared the lifetime at low and high temperatures with a

fixed OD. Fig. 6.10 shows the lifetime as T/TF is increased, where the 7/2 OD changes from 2.0

to 1.5 across the measurement, and the maximum 9/2 OD is 0.7. The sample temperature is

increased using parametric heating of the optical dipole trap. Measurements at the same 7/2 and

9/2 ODs but at a higher temperature show a reduced dependence on the OD, suggesting that

the large differential effect we see at low temperatures is influenced by Pauli blocking. For the

thermal samples, the 7/2 OD is varied by adjusting the number of atoms in mF = 7/2 using optical

pumping. The measured decay curves from the excited state closely follow a single exponential at
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Figure 6.11: Full lifetime curve for a Fermi gas with a 7/2 OD of 2, a 9/2 OD of 0.7, and T/TF = 0.2
for the major component. The blue line is an exponential fit to the data, which gives a 1/e lifetime
of 25.7 ± 0.3 µs. Data points reflect the mean, and error bars are 1 standard deviation.

degenerate temperatures, as shown in Fig. 6.11 where a 1/e lifetime of 25.7 ± 0.3 µs is extracted.

We additionally measured the branching ratio from the mF = 9/2→ mF = 9/2 transition for

variable T/TF , where the 7/2 OD and 9/2 OD was kept fixed by adjusting the number of atoms

in each spin state using optical pumping. As shown in Fig. 6.12, as T/TF increased, we observed

that fewer atoms return to the 9/2 ground state, which is consistent with Pauli blocking on the

7/2 channel causes more atoms to return to the 9/2 ground state at cold temperatures.

These measurements are suggestive that Pauli blocking is influencing the lifetime of excited

atoms, but they rely on the assumption that the OD is the only important parameter for determining

how much the lifetime is influenced by collective effects. To collect stronger evidence to claim the

observation of Pauli blocking on 3P1, we looked into alternative methods to observe Pauli blocking.
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Figure 6.12: Fraction of atoms returning to mF = 9/2 while the 7/2 and 9/2 optical depth are
kept fixed. The temperature is quoted for the 7/2 component. As the sample is heated, the ratio
decreases towards the non-Pauli blocked ratio. Here T/TF is quoted for the major component.

6.5 Measurements in a 1D optical lattice

Going to 2D has intriguing benefits for observing Pauli blocking in a coherent drive scheme

as described here. First off, if the drive beam is along the tightest direction where the lattice

confinement is large, the initial recoil associated with absorbing a photon is taken up by the trap

instead of the atom, increasing the degree of suppression. Second, due to a change in the Fermi

energy and the density of states in 2D, enhanced Pauli blocking is expected for a fixed atom

number and radial trap frequency compared to 3D, and Pauli blocking can be observed at higher

temperatures. Third, multiple scattering may be reduced. Even though the OD can be large

along the radial direction, the probability that a photon will be spontaneously emitted along this

direction is small - that is, the angle-averaged OD is quite small. Initial theory results that include

the effects of both Pauli blocking and collective dynamics using a master equation suggest that

multiple scattering is in fact reduced in a 2D geometry1 . Doing measurements in a 1D optical

lattice offers an alternative to a true 2D geometry if an experiment does not have immediate access

to the required lattice setup. In a 1D optical lattice, it is desirable to load as few layers as possible.

1 See an upcoming publication with Thomas Bilitewski and Ana Maria Rey.
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Figure 6.13: (a) Experimental setup to measure the lifetime in a 1D optical lattice. The optical
lattice is formed along gravity, g, and the excitation probe polarization (ê is along the magnetic
field, which points into the page. (b) Lifetime of excited atoms in the 1D optical lattice versus
EF /ER. The 9/2 OD is 0.8, and the temperature is T/TF = 0.6 in the XODT when the 7/2 OD
is 5.5.

For EF = 1Erec, a single layer has an OD of 1.5 along the tightly confined direction. However, how

collective effects depend on the optical depth in a 2D gas and in a 1D optical lattice have not been

studied.

Here we show measurements performed in a 1D optical lattice formed along the z direction,

where the probe beam is incident with 5 degrees with respect to z, as shown in Fig. 6.13 (a). The

axial trap frequency is νz = 44 kHz, giving a Lamb-Dicke parameter along z of η =
√
νprec/νz = 0.33,

where νprec is the recoil frequency of the probe laser. We use the scheme described in Fig. 6.6 (a)

to measure the lifetime of the excited atoms. For these measurements, the 9/2 OD is 0.8 and

ωr = 2π× 150 Hz. The vertical extent of the cloud is 4 µm so that roughly 10 pancakes are loaded

with 1000 atoms in 7/2 in the central pancake at EF /ER = 1.4. The temperature is T/TF = 0.6 for
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Figure 6.14: (a) Lifetime as the excitation pulse area is varied for a fixed 7/2 OD of 5 and a fixed
9/2 OD of 0.8 (b) Lifetime as the excitation pulse area is varied for a 7/2 OD of 3 and a 9/2 OD
of 0.8

the 7/2 component. To achieve a temperature of T/TF = 0.6, the Fermi gas is loaded into the 1D

lattice and parametrically heated. The temperature is measured by fitting the expanded the Fermi

gas in time-of-flight after the lattice is adiabatically decreased to 0 Erec and atoms are transferred

to the XODT.

Fig. 6.13 (b) shows the measured lifetime as EF /ER is varied for the 7/2 component. The

7/2 Fermi energy is varied by changing the number of 7/2 atoms using optical pumping. Similar

to the 3D case, we observe that the lifetime increases as EF /ER, or equivalently the 7/2 OD, is

increased. Contrary to the single 2D pancake case, in a 1D optical lattice, multiple scattering

could still occur between pancakes, which makes interpreting the results more difficult. However,

at T/TF = 0.6, a Pauli suppression factor of 0.8 is expected in 2D. We measured the lifetime while

varying the excitation pulse area at a fixed 7/2 OD of 3, and separately for a fixed 7/2 OD of 5,

as shown in Fig. 6.14. In both cases the 9/2 OD was 0.8. Interestingly, we observe no difference

in the lifetime as the pulse area is varied, suggesting that superradiance is absent in our system.

This observation agrees with our measurements in a 3D gas, where we observed that superradiance
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disappeared once the 9/2 OD was less than 1.

While superradiance and multiple scattering have been extensively studied in 3D [205, 26],

little research has been performed in 2D. Initial theory results suggest that multiple scattering is also

suppressed in a 1D optical lattice.2 More systematic measurements at a variety of temperatures

and Fermi energies would be a fruitful future study to clarify the role of Pauli blocking and collective

dynamics in this system.

6.6 Outlook

To observe the effects of Pauli blocking with an excitation scheme that coherently controls

the atomic state, as discussed here, it is desirable to go to a 2D gas with a single layer. Here, the

on-axis OD can be quite small and the Fermi energies large so that significant Pauli suppression

is expected without the influence of competing collective radiative mechanisms. The three-level

system we outline here has the advantage of having multiple observables to confirm Pauli blocking.

In addition to measuring the lifetime of the excited state, the branching ratios between the two

ground states and the excite state provide a new angle to observe the suppression. The technique

presented in this chapter to measure the branching ratio was associated with systematic effects that

caused residual excitation of 7/2 atoms, which limited us from observing the natural branching ratio

of 0.18 at low ODs and thermal temperatures. A larger magnetic field would help with off-resonant

excitation, but polarization impurity, which can excite 7/2 atoms to the 9/2 excited state, will

always be on-resonance with the probe. Reducing the impurity below a percent is difficult. It

would thus be optimal to devise an alternative strategy to measure the branching ratio, perhaps

using optical Stern-Gerlach separation to measure the ground state spin population [113]. However,

the spin states need to be spatially well-separated since small changes in the minority component

need to be detected at high SNR, which can be technically difficult since this component has

significantly fewer atoms than other spin states. Additionally, it is intriguing to think of measuring

Pauli blocking by looking at the coherence time after continuously Rabi flopping on the desired

2 See an upcoming publication by Thomas Bilitewski, Ana Maria Rey, and others.
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state. While effects such as multiple scattering can change the lifetime as atoms spend more time on

average in the excited state, it should not increase the coherence time. Our initial measurements of

the coherence time did not lead to obvious results but more study into this effect could be fruitful.

Finally, to use Pauli blocking in 3D optical lattice clocks, it is desirable to measure Pauli blocking

in a 3D optical lattice as opposed to a Fermi gas [198]. This could be demonstrated using a similar

three-level scheme with two atoms per lattice site.



Chapter 7

Conclusion

In this thesis, we present multiple results that highlight how quantum gas engineering can

enhance the performance of Fermi-degenerate optical atomic clocks. Here, we provide a brief

summary of the results reported in this thesis and provide an outlook on future research directions.

7.1 Summary

To improve the dead time of Fermi-degenerate atomic clocks, we described an experiment

that used multiple nuclear spin states with SU(N) symmetry during evaporation to increase cooling

rates. The compressibility and expansion dynamics of the SU(N)-interacting Fermi gas were studied

in detail. This new cooling scheme allows us to significantly reduce the preparation time of Fermi-

degenerate 3D optical lattice clocks, in turn reducing the Dick Effect for such systems to mid-

10−17/
√
τ if coherently interrogated for a few seconds using a state-of-the-art ultrastable laser.

We additionally showed that Fermi-degenerate gases can be used to reduce the spontaneous

emission and light scattering rates using Pauli blocking. Pauli blocking exploits Fermi statistics to

prohibit decay of an excited atom to states already occupied by an identical fermion. By embedding

excitations within a degenerate Fermi sea, we measured up to a factor of two reduction in the

light scattering rate along a direction where the net momentum transfer from the excitation light

was reduced. Our method employed multiple precautionary measurements, including simultaneous

observation of the fluoresced light under different angles (with different net momentum transfer) and

measurements with hole-poked Fermi gases at the same density, to conclusively rule out potential
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competing radiative mechanisms. Our results agreed with a simple semiclassical model with no free

parameters besides a single common scaling factor for the data.

We also presented results from an experiment that attempted to observe Pauli blocking

using coherent spectroscopy on the 3P1 narrow linewidth transition. We presented a series of

measurements in a bulk 3D Fermi gas and initial measurements in a 1D optical lattice. In the

former we carefully explored the dependence of the lifetime on the optical depth.

The work presented in this thesis showcases a common theme in atomic physics: improve-

ments in our fundamental understanding of quantum science goes hand in hand with advancing

quantum technology. This connection between the very fundamental and the very practical is a

cornerstone of our advances in AMO physics, and highlights the interlaced connections between

academia, industry, and society at large.

7.2 Outlook

In the future, engineered light-matter interfaces could provide a new means to create next-

generation optical lattice clocks. Contrary to what is practical using common light-matter interfaces

such as an optical cavity, Pauli blocking provides an avenue to change the total decoherence rate

of an atom. For large Fermi energies and low temperatures, the spontaneous emission rate can

be reduced for all emission angles, resulting in a measurable change in the total (angle-averaged)

spontaneous emission rate. Suppression larger than what we demonstrated can be achieved using

a higher Fermi energy, or if instead the gas is loaded into a deep optical lattice. If Pauli blocking

is implemented in a 3D optical lattice, it could be used to increase the coherence time of current

optical atomic clocks beyond the limit given by the natural lifetime of an atomic transition.

One could even imagine using this technique to provide more flexibility in the chosen atomic

clock transition. Instead of optimizing for insensitivity to a range of environmental parameters and

simultaneously a long natural lifetime for narrow spectroscopy purposes, one could pick an atomic

transition that is optimally insensitive to the environment, perhaps at the cost of a slightly shorter

natural lifetime. Pauli blocking (or other cooperative techniques) could then be used to push the
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system into spectroscopic competitivity. In order to use Pauli blocking for practical devices, it is

necessary to do a bit more homework on how the physical mechanism can be realized using coherent

spectroscopy as would be necessary in a real quantum device. Of course the challenge with this

mechanism is to find a way to remove cooperative scattering while still keeping other important

quantities such as atom numbers high.

One could also use these competing radiative mechanisms as the dominant means for creating

next-generation atomic clocks. A subradiant array of atoms is an alternative means to engineer

longer lifetimes, the promise of which has been demonstrated using a 2D array of 87Rb atoms [211].

Avenues to observe subradiance in fermionic atoms with a multilevel internal structure such as 87Sr

have also been discussed theoretically [212].

Superradiant lasers [213] reference the linewidth of the laser to an atomic transition, for the

case of the clock transition in 87Sr, 1 mHz. A continuous superradiant laser has the potential to

reduce the reliance of local oscillators on length standards, which could be advantageous as creating

ultrastable resonators is a significant technical challenge. This system may one day allow the local

oscillator and atomic reference to be combined into one device, removing the need for a distributed

clock system.

By combining atomic clocks with optical cavities, one could demonstrate non-destructive

detection of the atomic state, reducing dead time substantially. The combination of non-destructive

measurement and spin squeezing using an optical cavity could create an atomic clock whose stability

that surpasses the state-of-the-art and is better than the Standard Quantum Limit [214]. In the end,

creating a system where each degree of freedom can be controlled and manipulated for the optimal

conditions will only provide more opportunities and competitive avenues for quantum devices.

On the accuracy front, it will be interesting to study dipole-dipole interactions in the 3D

optical lattice clock. The same physics that gives rise to cooperative scattering also implies the

existence of dipole-dipole coupling between emitters. A spin-polarized 3D optical lattice clock

removes contact interactions by making doubly occupied sites energetically suppressed by the

bandgap. However, there are still higher order long-range interactions due to dipole-dipole in-
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teractions, which could be enhanced given the regularity of the atom array and the sub-wavelength

spacing between emitters. At first glance, you might assume that such an interaction effect is very

small given the strength roughly scales like the linewidth, in this case only 1 mHz. However, even

frequency shifts at a fraction of the linewidth are now measurable in modern clocks. Diagnosing the

spatial dependence of the dipole-dipole shift using our high-resolution imaging system will provide

a deterministic avenue to ensure the minute shifts are due to dipole-dipole interactions instead of a

number of other potential systematics such as AC Stark shifts, BBR gradients, and Zeeman shifts.

After measuring the shift we can explore different lattice geometries [215] or spin components [216]

to reduce this shift below a measurable quantity.

A Fermi-degenerate 3D optical lattice clock could also offer a clean way to measure higher-

order ac Stark shift coefficients, since the trapping potential occupation number is well-controlled

in all three directions. One challenge is that the hyperpolarizability coefficient changes for lattice

beams that have a different polarization. Measuring the spatial dependence of such shifts could

provide a sensitive detection method.

Engineering longer lifetimes also requires us to actually be limited by the natural lifetime of

the excited clock state, which is 118 s for 3P0 [58]. Reducing the lattice depth along all three axes

to below 4 Erec is necessary to not be limited by Raman scattering, but one then needs to find a

means to have low tunneling rates [55]. An optical lattice with a larger lattice spacing can reduce

the tunneling rate, which was used in an optical tweezer experiment with 88Sr to demonstrate a

coherence time of 20 s for an 150 atom tweezer array [57]. Tweezer clocks are an intriguing avenue

for future metrology but will need to solve scaling to a competitive number of atoms, as well as

demonstrate a robust systematic evaluation. Alternatively lattices can be formed by interfering

two beams at an angle to create a large lattice spacing that still operates at the magic wavelength

necessary for state-independent trapping. A near-unity filled optical lattice could significantly relax

the lattice spacing requirement as it suppresses tunneling between occupied lattice sites, although

distinguishability created through the clock excitation will continue to be an issue unless the lattice

spacing is made to be commensurate with the clock light.
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The future of quantum precision metrology is quite bright — the combination of better control

over atomic systems and further improvements in measurement stability and accuracy promises

many exciting discoveries. Clock performance will one day reach the limit where new physics is

limiting our measurements. This new physics could be fluctuating fundamental constants [16], dark

matter [23], or a tantalizing idea, maybe even one day gravitational waves [24]. Moving atomic

clocks outside the laboratory, and potentially into outer space, will provide even more opportunities

for discovery. Regardless, the scientific attitude of understanding fundamentally the underlying

system and its current limits will allow us to propose new solutions to better improve our devices,

which in turn will lead to new scientific discoveries and to practical technologies for society.
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N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow. Atomic clock performance
enabling geodesy below the centimetre level. Nature, 564(7734):87–90, December 2018.

[10] L. von der Wense and B. Seiferle. The 229th isomer: prospects for. nuclear optical clock.
Eur. Phys. J. A, 56:277, 2020.
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J. Ye. Inelastic collisions and density-dependent excitation suppression in a 87sr optical lattice
clock. Phys. Rev. A, 84:052716, Nov 2011.

[64] N. D. Lemke, J. von Stecher, J. A. Sherman, A. M. Rey, C. W. Oates, and A. D. Ludlow.
p-wave cold collisions in an optical lattice clock. Phys. Rev. Lett., 107:103902, Aug 2011.



172
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[205] Patrizia Weiss, Michelle O Araújo, Robin Kaiser, and William Guerin. Subradiance and
radiation trapping in cold atoms. New J. Phys., 20(6):063024, jun 2018.

[206] M. C. W. van Rossum and Th. M. Nieuwenhuizen. Multiple scattering of classical waves:
microscopy, mesoscopy, and diffusion. Rev. Mod. Phys., 71:313–371, Jan 1999.

[207] W. Guerin, M.T. Rouabah, and R. Kaiser. Light interacting with atomic ensembles: collec-
tive, cooperative and mesoscopic effects. J. Mod. Opt., 64(9):895–907, 2017.
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